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Summary
The Koiter methodology is a reduced-order model that can predict the initial post-buckling characteris-
tics of structures. Incorporating the Koiter approach within finite element simulations resulted in chal-
lenges. These included mesh-sensitive initial post-buckling coefficients, computationally expensive
high-order derivatives, and phenomena such as locking, which led to unrealistic behaviour of struc-
tures. The displacement-based Koiter methodology is introduced to overcome these issues due to the
clear connection between the theory and the implementation.

This research aimed to include imperfections in the displacement-based Koiter methodology and to
develop an easily implementable and computationally efficient approach. This novel approach should
be suitable for recurring processes such as sensitivity studies, ultimately leading to the creation of de-
sign guidelines for imperfection-insensitive cylinders. These cylinders are more weight-efficient com-
pared to cylinders sensitive to imperfections and therefore ideal for aerospace applications, such as
the outer shells of rockets.

To demonstrate the incorporation of imperfections within the displacement-based Koiter methodol-
ogy, it was decided to apply the approach first to a plate with an imperfection utilising the single-mode
expansion and Donnell-type kinematics. In order to achieve this goal, three steps are identified to in-
clude imperfections within the displacement-based methodology. First of all the total potential energy
of an imperfect structure is expanded by performing three Taylor expansions. Two possibilities arise
for this expansion, one formulation set up by Budiansky and another one derived by Pignataro. Fol-
lowing this, the perfect and imperfect functional derivatives are derived utilising the Donnell kinematics
by means of Frechét derivatives. One can simplify this procedure by assuming that the pre-buckling
is linear resulting in the out-of-plane rotations to be equal to zero, alternatively, one can disregard this
assumption and have supposedly more accurate but consequently also more functional derivatives. A
total of four solution possibilities arise due to the two assumptions related to the expansion of the total
potential energy and the pre-buckling behaviour.

The last step is to perform an asymptotic analysis. The initial idea was to derive imperfect initial
post-buckling coefficients aI and bI . These could be formulated by substituting the asymptotic expan-
sions for the load and the displacement in the expansion for the total potential energy. The approach
was unsuccessful in finding post-buckling coefficients since it was not possible to isolate any of the
unknowns. Besides the fact that it was not possible to derive expressions for aI and bI , it was reflected
that the coefficients would not be representative of reality as imperfect structures no longer have a bi-
furcation point and therefore it does not make sense to perform an asymptotic expansion in the vicinity
of this critical load.

An alternative for the asymptotic expansion is to derive the imperfection form factors instead of the
post-buckling coefficients. The asymptotic expansion for the load is adjusted to include the imperfection
form factors α and β. To derive expressions for these coefficients, firstly the asymptotic expansion for
the displacement is substituted into the expansion of the total potential energy. Then the load expansion
including the terms α and β is replaced to derive an equilibrium equation. Due to the assumption of
linear pre-buckling α = β, it was possible to formulate an expression for α for a plate with linear pre-
buckling. Initial results show that it matches literature, however, more imperfection shapes should be
tested to conclude that the approach is correct.

The recommendations to verify that the inclusion of imperfection within the displacement-based Koi-
ter methodology is successful are the following: reconstruct the displacement field and compare this to
other non-linear solutions of imperfect plates. Secondly, it is recommended to compute the imperfec-
tion form factors for several different imperfection shapes with the displacement-based approach and
compare it to the FE software DIANA which is able to compute the same form factors.
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1
Introduction

Aerospace structures are designed to be lightweight. A structure that hasmoremass is less economical
since it requires more thrust and lift to operate, consequently resulting in higher fuel requirements. For
aircraft, the additional costs are estimated to be between 45e/kg and 385e/kg for fuel consumption
when the weight of the plane is increased [1]. This cost increase is more significant for space structures
and this is estimated to be around 10 000e per kilogram for Low Earth Orbit launchers [2]. These
predictions for cost increase rely on several factors such as lifetime and application of the vehicle, and
therefore it is difficult to obtain one cost estimation that is relevant for all space structures or all aircraft.

On top of being economical, reducing the weight of aerospace structures is more sustainable. The
reduced fuel consumption due to designing lightweight configurations also minimizes the number of
greenhouse gases emitted. The aviation industry is responsible for 3% of the total CO2 emissions
[3], most of these emissions are produced during the operational lifetime of the aircraft and therefore
reducing the weight is the most sustainable approach to reduce this number.

To achieve these weight-efficient designs, aerospace structures are composed of thin-walled con-
structions prone to buckling. The load is redistributed within the structure due to the change in shape
as a consequence of buckling, and this could potentially lead to yielding or even failure. Additionally,
the aerodynamic shape is no longer maintained, resulting in a less efficient configuration due to the
loss of lift and possible increased drag.

Several studies were carried out to accurately predict the buckling load of shells, resulting in the
Elastic Buckling Theory. This theory solved the eigenvalue problem for shell structures to find the
bifurcation point. The theory was able to predict the buckling load of plates and columns but it failed
short for cylindrical shells. Large deviations between theory and experiment were observed for cylinders
and these were attributed to imperfections. This has sparked interest in designing a cylindrical shell
that is not sensitive to imperfections when axially compressed.

Up to this point, an imperfection-insensitive shell has not yet been achieved. One of the reasons
no guidelines are available for this shell is due to the fact that repeated sensitivity studies are required
to draw conclusions. Computationally expensive non-linear solvers are used to predict the buckling
load of imperfect cylinders and these increase the running time of these sensitivity studies significantly.
Therefore this research aims to introduce a new methodology that is efficient and simple to implement,
namely the displacement-based Koiter methodology with the inclusion of imperfections. This novel
tool could be used in sensitivity studies and eventually assist in the creation of design guidelines for
imperfection-insensitive shells, but the focus of this study lies in the methodology.

The thesis is structured as follows, first, chapter 2 presents a literature review to outline the several
possibilities to predict the buckling load of cylindrical shells andwhich techniques are available to reduce
the sensitivity to imperfections. The chapter concludes by identifying the research gaps related to the
buckling of cylindrical shells. From this conclusion, the research objective and scope are defined in
chapter 3. The goal is to include imperfections within the displacement-based Koiter methodology and
the necessary steps to achieve this are explained in chapter 4 to 7, as well as how effective this novel
modelling technique is. Finally, the concluding remarks can be found in chapter 8 and future research
is presented in chapter 9.
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2
Literature Review

The initial objective of this thesis was to design a lightweight composite cylinder that is insensitive
to imperfections. The first step in achieving this goal is to explore what has been done in the past,
and this chapter provides a short overview of the existing literature relating to imperfection-sensitive
cylindrical shells. The first section of this chapter introduces the revelation that cylinders are sensitive
to imperfections, along with the factors that can reduce their buckling load (section 2.1). Subsequently,
in section 2.2, various approaches to predicting the buckling load of imperfect cylinders are discussed.
Building upon the definition of imperfection sensitivity presented in section 2.3, section 2.4 presents
solution approaches aimed at reducing this sensitivity. The chapter concludes by identifying the gaps
in the existing literature (section 2.5), which serve as the foundation for this thesis.

2.1. Discovery Imperfection Sensitivity
Thin-walled structures are commonly used in aerospace andmarine industries, consisting of lightweight
constructions that are prone to buckling, so extensive research has been done to predict the precise
buckling load of various kinds of structures. The buckling load of structures is often predicted by means
of solving eigenvalue problems that conclude the bifurcation point, at which the structure moves from
the fundamental equilibrium path to the buckled path [4, 5]. When the theories were tested and val-
idated, large deviations between the theoretical and the experimental buckling load were discovered.
These discrepancies were unexpected since similar equations had worked well to predict the buckling
load of plates and columns. Three main conclusions could be drawn from the experiments. First of all,
the true buckling load was lower than the theoretical load, sometimes even as low as 10 % of the the-
oretical value. Secondly, there was scatter in the experimental data, even between identical cylinders
and thirdly, the failures were unstable leading to catastrophic collapse [6, 5].

Koiter [7], Von Karman and Tsien [8], Donnell and Wan [9] could attribute the differences between
the theoretical and experimental results of the buckling analysis of cylindrical shells to imperfections
and thus cylindrical shells were defined as sensitive to imperfections. This discovery that imperfec-
tions can reduce the buckling load sparked much interest in finding solutions to reduce it and analysing
imperfections themselves and other sources that could explain the discrepancies. Many revelations
have been made since the early 1900s and it has been concluded that three factors have a significant
effect on the buckling behaviour of thin-walled cylindrical shells; geometric imperfections, pre-buckling
deformations and stresses, and lastly boundary conditions and non-uniform loading. Geometric imper-
fections lower the buckling load the most, but in combination with the other two factors, it explains the
large deviations between theory and experiments.

2.2. Predicting the Buckling Load of Imperfect Shells
The prediction of buckling load can be divided into three main approaches: Empirical Design Factors,
Koiter’s Asymptotic Analysis and Finite Element Modelling. It was decided not to use Empirical Design
Factors to predict the buckling load in this research since they are commonly used in preliminary design
phases due to their simplistic and conservative nature. Moreover, the design factors are not appropriate
for composite cylinders and therefore this approach is not discussed in detail.

2



2.2. Predicting the Buckling Load of Imperfect Shells 3

2.2.1. Finite Element Modelling
Initially, empirical design factors were a simple fix to dealing with imperfections, but they resulted in
overly conservative designs. Therefore researchers were looking for methods that could take imper-
fections into consideration for more accurate predictions of the buckling load. Finite Element Software
was already being utilized to predict the behaviour of complex geometries, therefore making it the log-
ical choice to also include imperfections in models to find more accurate buckling loads. At first linear
solvers were used, but these did not yield satisfying results. As computational power increased expo-
nentially over time, it was also possible to perform non-linear computations, which led to more accurate
predictions. Now it is common to perform a detailed non-linear analysis of the cylinder within Finite El-
ement software at the end of the design phase to predict the final buckling load. FEM is a powerful
tool, however, one should also pay close attention when assembling the model and all assumptions
should be carefully considered. The results of the model can depend on the input parameters, so the
time to set up a model and verify the results is time-consuming. Within FEM there are three methods
to model imperfections, which are Stress-Free superposition, Single Perturbation Methods, and Non-
Stress-Free superposition. The last one is not discussed in detail, as this is the most complex and
beyond the scope of this research.

The first methodology to replicate imperfections involves superimposing the defects onto the perfect
cylinder. The coordinates of the nodes are translated to the position of the imperfection, resulting in
a stress-free approach [10]. Depending, on how much information is available about the imperfection
pattern there are different assumptions one can make about the imperfection shape. The simplest
method is basing it on the eigenmode, however, this is often not realistic of true imperfection shapes
[6]. More true to nature is to add a single dimple to the model, which causes a single buckle to occur
as it was observed in experiments that a single dimple triggers the buckling mechanism of a cylinder
[11]. Lastly, the most realistic imperfection shape is directly measured from a manufactured specimen
and superimposed onto the cylinder, however, this is only possible when the cylinder is produced.
This stress-free method can be easily implemented into finite element software. Despite the ease
of implementation, one has to be careful that the translated nodes do not cause any axially-oriented
buckling modes, resulting in a seemingly stronger cylinder since the imperfections act as stiffeners [12].

Due to the lack of data to provide realistic imperfection patterns for composite cylinders, simplified
perturbation methods were introduced to overcome this problem [13, 14]. These methods include the
Single Perturbation Load Approach (SPLA), Single Perturbation Displacement Approach (SPDA), and
Single Boundary Perturbation Approach (SBPA). The SPLA is commonly used and therefore only this
is discussed. SPLA assumes that the initial geometric imperfection can be simulated with a single per-
turbation load, which will cause a single buckle to occur as the cylinder is axially compressed. This was
based on the research of Hühne [11] which observed that the buckling of imperfect structures is typi-
cally initiated with a single buckle. Secondly, SPLA assumes the presence of a minimum buckling load,
which remains constant even as the perturbation load increases [15]. This critical load should be used
as the design load. There are several limitations to this approach. First of all, this approach is suitable
for displacement-controlled models and experiments, but not for load-controlled analyses [16]. Experi-
ments are typically displacement-controlled, but real-life structures are somewhere between load- and
displacement-controlled and therefore not truly suitable for this approach. Secondly, it was observed
that certain cylinders failed below the predicted buckling load. This happened because non-geometric
imperfections, such as load eccentricities, have a more significant effect and the SPLA method is un-
able to capture this [17]. Lastly, to obtain accurate results it is necessary to rely on non-linear finite
element simulations which are computationally expensive.

2.2.2. Koiter’s Asymptotic Analysis
An alternative to predict the initial post-buckling response of a cylinder is to make use of perturbation
techniques. The pioneer for this perturbation approach was Koiter [7] and the perturbation methodology
is also often referred to as the Asymptotic Koiter Analysis. Koiter was able to providemathematical proof
of why cylinders collapse before the predicted buckling load, whereas plates are capable of sustaining
loads above them. The idea behind the perturbation technique is to expand the displacement field and
load parameters around a known state. The main advantage of performing the expansion around this
known state is to create a reduced linear model which is less computationally expensive, even when
multiple modes interact. The reduced complexity and computational time are beneficial for repeated
imperfection sensitivity studies of structures, which would become computationally expensive using
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non-linear solvers.
The single mode asymptotic expansions for the load parameter and the displacement field are

presented in Equation 2.1 and 2.2, respectively, where λ represents the load parameter, λc is the
known critical load (typically the bifurcation load), ξ is a scalar parameter, and aI and bI are the Koiter
factors. Moreover, uI is the first-order displacement field which is either a single scaled buckling mode
or a combination of scaled multiple buckling modes, uII represents the second-order displacement
field and is a correction to the first-order field, and lastly, uIII is the third-field order field but this is
usually ignored [18].

λ− λc = aIλcξ + bIλcξ
2 (2.1)

u− uc = ξuI + ξ2uII + ξ3uIII (2.2)

Typically for cylinders multiple buckling loads interact and the single expansion is not sufficient to
predict the initial post-buckling behaviour. In the case of modes interacting the multi-modal expansions
can be used which are expressed in Equation 2.3 and 2.4, where the subscripts j, k, ℓ represent the
summation conventions [18].

ξI (λ− λI) = λIaIjkξjξk + λIbIjkℓξjξkξℓ + · · · (2.3)

u− uc = v = ξiui + ξiξjuij + · · · (2.4)

The Koiter factors, also named the initial post-buckling coefficients, determine if a cylinder’s post-
buckling response is stable and are a direct indication of imperfection sensitivity. This relationship
is shown visually in Figure 2.1. The first post-buckling coefficient, aI , determines if the response is
symmetric or not. The response is symmetric when aI is equal to zero. When the first post-buckling co-
efficient is zero the initial post-buckling characteristics are determined by the second coefficient. When
bI is positive the structure can sustain load after buckling and is therefore stable. However, when the
second post-buckling coefficient is negative the response is unstable since the structure collapses after
the buckling load. If the first post-buckling coefficient is not equal to zero the response is unsymmetri-
cal and therefore depending on the imperfection it will either have a stable or unstable response. This
uncertainty in the post-buckling response is undesired and therefore if the first post-buckling coefficient
is not equal to zero the behaviour is also categorised as unstable.

Figure 2.1: ”Typical initial post-buckling responses. The solid and dotted lines indicate, respectively, the response of the
perfect and imperfect structures.” [19]

The Asymptotic Koiter Analysis is a powerful tool, however, difficulties arise for the implementation
within Finite Element software. These challenges include the implementation of high-order energy
derivatives, which can easily require large amounts of computational power. Moreover, one should
pay close attention to the mechanical modelling as well as the finite element implementation, to avoid
interpolation locking and extrapolation locking [20]. On top of this, it was found that the Koiter factor bI
is mesh sensitive, which would require additional analysis which is undesirable [21]. For these reasons,
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the Koiter method is not available within many commercial FE software. The FE software DIANA1 was
able to overcome all of these issues and implement the Koiter analysis within their software.

To overcome the difficulties of implementing the Koiter method into finite element frameworks,
Castro and Jansen [18, 22] formulated and performed a displacement-based expansion of the Koiter
method. The method allows for a one-to-one correspondence between the formulation and the imple-
mentation. Moreover, the formulation can even be used within every displacement-based application
[18]. The methodology for displacement-based Koiter can be concisely summarized by the following
steps. First of all the potential energy of the system is presented and expanded by two Taylor expan-
sions around the displacement field and the load parameter. The asymptotic expansions are substituted
into the potential energy functional to find the coefficients aI and bI . The derivatives of the potential
energy are found by means of Kinematics such as Donnell or Sanders. The method is expanded for
both single-mode and multiple-modal. However, initial displacements have not yet been included in
the implementation. The inclusion of imperfections would allow for an easily implementable procedure
to assess the imperfection sensitivity of structures, which is also computationally inexpensive.

2.3. Definition Imperfection-Insensitive Shell
The goal of the present literature review is to create a design methodology for imperfection-insensitive
cylinders. Many researchers have extensively studied imperfection sensitivity and solutions to prevent
the decrease in buckling load. However, there is no consistent definition used to define an imperfection-
insensitive cylinder. Therefore a final definition used within this literature research is presented here.

A uniform quantitative measurement to define sensitivity to imperfections is to use the knockdown
factor (KDF), which is a ratio of the buckling load of the imperfect shell over the load of the perfect shell.
The buckling load of the perfect shell can be found by means of linear eigenvalue analysis. On the other
hand, the buckling load of the imperfect shell should be calculated by means of non-linear analysis to
accurately take into account the non-linear effects of the imperfections on the buckling response [6].
A KDF equal to 1 is an imperfection-insensitive shell, however, this is impossible to achieve since the
imperfections will have a minimal effect on the buckling load due to local stress concentrations that
lower the overall critical load. All research related to imperfection-insensitive cylinders did not give any
indication at which KDF a cylinder was insensitive and at which threshold value it is no longer considered
insensitive. Therefore, it was decided to create this definition. If a cylinder is imperfection insensitive
the KDF would be equal to 1. However, this would result in an unrealistic criterion. Therefore it was
decided to take 0.95 as a threshold value, to allow for a more realistic criterion that could be achieved
for certain designs, whilst not being too low that it is easily accomplished. Moreover, it was decided
that an imperfection-insensitive cylinder should achieve this KDF for multiple imperfection amplitudes
to avoid a design for one specific imperfection case. An imperfection range from -4 to 4 times the shell
thickness should be considered as these are typically the size of imperfections [23]. This concludes
the final definition of imperfection sensitivity.

2.4. Solutions against Imperfection Sensitivity
Naturally, researchers have attempted to find solutions to decrease the sensitivity to imperfections of
cylindrical shells, ultimately paving the way to better designs since their behaviour is more predictable
and the weight can be reduced. Two main solution groups are discussed, namely: the addition of
reinforcing elements and variable angle (VA) composites. The goal of the research is to design an
imperfection-insensitive cylinder so, each section concludes if a certain solution is able to achieve
imperfection-insensitive shells, according to the previously established definition. Sandwich structures
are another good alternative to decrease the sensitivity, however, it was decided not to explore this
route since the buckling behaviour is more complex than traditional composite cylinders and therefore
beyond the scope of this research. Moreover, the solutions presented here are limited to composite
cylinders, due to their superior mechanical properties and low density compared to isotropic materials.
Lastly, the solutions are restricted to axially compressed cylinders only.

1https://manuals.dianafea.com/d107/en/1181807-1182380-effect-of-imperfection.html, accessed 30 Aug. 2023

https://manuals.dianafea.com/d107/en/1181807-1182380-effect-of-imperfection.html
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2.4.1. Additional Reinforcing Components
A simple solution to the unexpected decreasing load of compressed cylinders was to reinforce the
cylinders with axially and circumferential stringers and hoops. It was observed that stiffened cylinders
have an increased buckling load and are less sensitive to imperfections, compared to their equivalent
unstiffened cylinder [24]. The addition of stable post-buckling elements increases the stability of the
whole structure reducing the sensitivity to imperfections [25]. A short overview of research related to
creating an imperfection-insensitive shell utilising reinforcing structures is presented.

Wagner et al. [26] designed a cylinder with 18 inward aluminium stringers, and three CFRP hoops
with the goal of it being imperfection insensitive by stopping the formation of significant dimple imperfec-
tions. Unfortunately, the design was not imperfection insensitive, since the authors claim the KDF was
equal to 0.87, however, this is calculated by dividing the experimental results by the non-linear Analysis
buckling load. This definition of the KDF does not match with what is defined for this literature review
which states that the KDF can be calculated by means of the experimental result over the theoretical
linear buckling load. Unfortunately, the linear buckling load is not provided in the paper and thus the
KDF by the definition used in this literature review cannot be computed. The paper also claims that
the three hoops lower the sensitivity to imperfections since the KDF is higher for the cylinder that is
reinforced. However, the KDFs in comparison were calculated in two different manners, resulting in an
unfair comparison. A more fair comparison still leads to the conclusion that the reinforced cylinder is
less sensitive to imperfections, but the difference is less significant so it is a strong statement to claim
it reduces the sensitivity. It is evident that an imperfection-insensitive design was not achieved.

Hao et al. [27] also concluded that the addition of reinforcing stiffeners lowered the sensitivity to
imperfections of cylinders, compared to monolithic equals. The imperfection pattern was based on
the eigenmode obtained from the linear buckling analysis. An imperfection-insensitive shell was not
achieved.

Hao et al. [28] and Wang et al. [29] both concluded that hierarchical stiffened shells have a lower
imperfection sensitivity. Hierarchical stiffened shells are composed of major and minor stiffeners. The
downside of this reinforcing strategy is the additional weight of all the stringers and the additional weight
of the connection components. In conclusion, it is clear that adding reinforcing components lowers the
sensitivity to imperfections, but no imperfection-insensitive design has been achieved yet.

2.4.2. Variable Angle Manufacturing Techniques
Another possible solution to lower the sensitivity to imperfections is to use variable-angle tow (VAT)
composites, which are enabled by novel manufacturing techniques able to steer the fibre (or tow) in
a curved trajectory, as opposed to the traditional straight paths. This allows for variations of the me-
chanical properties within one layer, leading to more optimised designs [30], reducing the occurrence
of instabilities, and designs that are less sensitive to imperfections. The following manufacturing tech-
niques allow for VAT composites; automated fibre placement (AFP), continuous tow-shearing (CTS),
tailored fibre placement (TFP), and variable angle filament winding (VAFW). The first three are pre-
sented below, alongside a discussion evaluating whether these manufacturing processes could enable
imperfection-insensitive cylinders, according to the available literature. VAFW is not discussed since
Wang et al. [31] concluded that VAFW does not allow for designs with lower sensitivity to imperfections
compared to the constant angle cylinders.

Automated Fibre Placement is a manufacturing technique that was developed in the 1980s and
made commercial at the end of the decade. It was unique during development in the fact that the tape
was cut into individual tows, leading to the possibility of more complex designs, such as double-curved
surfaces. A schematic overview of the process is presented in Figure 2.2. Originally AFP was intended
for straight fibre paths, but later on, the technique was used to experiment with curved trajectories as
well. Unfortunately, there are several limitations related to VAT AFP manufactured structures. The
curvilinear paths are achieved by in-plane bending and therefore the minimum radius is limited. Small
radii result in fibre wrinkling or even breaking. Theminimum radius is around 500mm [32]. Moreover, it is
not possible to achieve tessellation of the placed tows. The inner radius is smaller compared to the outer
radius since the head moves along with the path direction and as a result, there are always tow gaps or
tow overlaps [32]. As a consequence, there is an uneven thickness distribution, or tows have to be cut
resulting in unfavourable stress concentrations. Despite these disadvantages, AFP has been used to
fabricate VA cylinders. Wu et al. [33, 34] concluded that AFP enables designs that lower the sensitivity
to imperfections. This reduced sensitivity is based on the fact that the cylinder had locally stiffer regions
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and buckling ismore likely to happen locally, thus preventing geometric imperfections from triggering the
overall buckling of the complete structure. The designed cylinder had a KDF equal to 0.96. Therefore,
it can be concluded that AFP enables designs that can be used to lower the sensitivity to defects
of cylinders, and Wu even manufactured a cylinder that was imperfection insensitive. Nonetheless,
research into designing an imperfection-sensitive shell utilizing AFP should be continued since Wu’s
imperfection-insensitive cylinder is a single case, and the conclusions of this research could establish
new design guidelines for cylinders.

Figure 2.2: Simplified overview of automated fibre placement [35].

Continuous Tow-Shearing is an alternative fibre placement manufacturing technique that was de-
veloped to eliminate the fibre buckling and wrinkling that occurred due to the in-plane bending verified
in fibre-steered parts manufactured by AFP. The first CTS prototypes were developed in 2012 [32] and
therefore it is a fairly recent manufacturing technique. The shearing is achieved by keeping the steer-
ing head parallel to the shifting direction. The main advantage of CTS is that the minimum shearing
radius is significantly smaller when compared to AFP, which allows for more complex designs. The
smaller radius is attained because the steering head remains stationary, as opposed to the rotating
head utilised in the AFP technique. The minimum radius for CTS is typically equal to around 50mm,
whereas the typical radius of curvature for AFP is 500mm, so a significant decrease. Moreover, due to
shearing there no longer is a need for tow gaps or tow overlaps. All the tows are shifted in the same
direction due to the constant direction of the head and therefore they can follow the towpath exactly,
as shown in Figure 2.3.

Figure 2.3: ”Difference of the tow arrangement and head rotation: (a) conventional AFP (tow gap), (b) conventional AFP (tow
overlap), and (c) CTS” [32].

One of the results of this novel manufacturing technique is the coupling between the thickness of the
tow and the shearing angle, which enables embedded stringers and hoops [36, 37]. This relationship
is also presented in Equation 2.5, where t is the thickness of the tow after shearing, t0 is the original
tow thickness, and θ is the angle at which the tow is sheared.

t =
t0

cos(θ)
(2.5)

The main disadvantage of the CTS technique is that it is not as developed as AFP, with the hardware
being significantly more expensive. Moreover, at the moment it is only possible to shear tows that are
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not angled yet, so the initial shearing angle, T0 has to be equal to zero. If one wants to shear, for
example, from 30 to 50 degrees, one would have to shear from 0 to 50 and remove the 0 to 20 region,
as shown in Figure 2.4. This limitation has to be taken into account during the realization of the design
to create a structure that can be manufactured.

Figure 2.4: ” Differentiation between current and idealistic manufacturing methods where: (a) is a 90⟨0|50⟩1laminate for both
methods, (b) is a 90⟨30|50⟩1laminate for the current manufacturing method and (c) is shearing 90⟨30|50⟩1for the idealistic

manufacturing method.” [38]

CTS shows the potential to create imperfection-insensitive cylinders, due to the embedded stringers
and hoops, unfortunately, this has not yet been achieved. Lincoln et al. [39, 38] and Santos et al. [40]
have both performed optimisation algorithms on cylinders to achieve an optimal design, and both con-
cluded that this novel manufacturing technique enables cylindrical shell designs with lower sensitivity
to imperfections.

Lastly, Tailored Fiber Placement (TFP) is an embroidery-based manufacturing technique. The first
papers relating to the procedure date back to 1998, therefore it is not as novel as CTS. The idea behind
the technique involves a needle yarn stitching a roving in a zigzag motion onto a base material. The
base material can be either a fabric or a non-woven composite. The needle yarn is typically polyester.
Standard production techniques, like Resin Transfer Moulding and Vacuum Bag Injection Process, are
used to consolidate the final product [41]. The main advantage of this technique is that it is able to
achieve an extremely small steering radius equal to about 5mm [42]. The technique is limited to two-
dimensional surfaces, so in order to create a cylinder, one must join two ends. Almeida. et al [42]
performed a study on AFP cylinders and concluded that the TFP procedure enables designs that have
reduced sensitivity to imperfections, similar to the other VA manufacturing techniques. However, the
imperfection amplitude in this study was extremely small only 5% of the shell thickness. To the best
knowledge, this is the only information available that relates the TFP technique to imperfection-sensitive
cylinders.

2.5. Conclusion and Research Gaps
It can be concluded that imperfections lower the buckling load of cylindrical shells. Three categories
of imperfections can be identified, namely geometric imperfections, pre-buckling deformations and
stresses, and lastly boundary conditions and non-uniform loading. Geometric imperfections lower the
buckling load the most, but in combination with the other two factors, it explains the large deviations
between theory and experiments.

Naturally, researchers have tried to determine methods to accurately predict the buckling load of
imperfect cylinders, leading to three main solution groups. First of all, empirical design factors based on
experimental data can be used to estimate the imperfect buckling load, however, these factors are con-
servative and not specifically designed for composite cylinders. Secondly, finite element software can
be used to predict the buckling load of imperfect structures. Geometric imperfections can be modelled
by translating the nodes to the desired imperfection shape or by assuming the imperfection initiates
as a dimple. The drawback of including imperfections in finite element software is that they rely on
non-linear analysis to accurately solve the problem making them computationally expensive and not
suitable for repeated processes such as optimisation techniques. Lastly, a less computationally ex-
pensive modelling technique is Koiter’s Asymptotic Expansion. This methodology predicts the initial
post-buckling behaviour only in the neighbourhood of a known state and relies on a linear expansion,
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thus reducing the complexity of the problem. Challenges arise when the Koiter methodology is im-
plemented within Finite Elements Simulations. To overcome these problems, the displacement-based
methodology proposed by Castro and Jansen [22] can be used. There is a close correspondence
between the theory and the implementation minimizing the room for mistakes. Thus, far no imperfec-
tions have been included in this displacement-based methodology and it is always assumed that the
pre-buckling is linear thereby simplifying the problem.

In addition to exploring methods for predicting the buckling load, researchers have attempted to min-
imize the impact of imperfections. Two approaches to reduce the sensitivity to imperfections can be
identified. The first method involves adding reinforcing elements such as stringers and hoops into the
designs. Secondly, variable angle manufacturing techniques can be used to create stronger designs.
Lincoln et al. [38] concluded that a CTS-manufactured cylinder had a constant KDF for an increasing
amplitude load. Santos and Castro [40] also concluded that CTS enables cylinders with lower sensi-
tivity to imperfections. The VA technique creates embedded stringers and hoops due to the coupling
between the shearing angle and the thickness making it more weight efficient than adding reinforcing
components. Moreover, this novel manufacturing technique allows for more complex shapes compared
to AFP since the minimum allowed steering radius is smaller and there is no need for tow gaps or over-
laps. TFP can achieve an even smaller steering radius and achieved surprisingly high KDFs, however,
the KDFs in the available literature were calculated with extremely small imperfections. It is unsure if
this technique lowers the sensitivity for the increased amplitudes of imperfections as well. Lastly, the
literature related to the VAFW manufacturing technique did not suggest that it enables designs with
lower sensitivity to defects.

Lastly, it is important to point out that currently there is no generally accepted definition for imperfec-
tion insensitivity. To address this issue and allow for quantitative comparison between different studies,
a definition for imperfection insensitivity was created and used within this literature review. This defini-
tion is based on the fact that it is common to present the KDFs in research papers focused on imperfect
cylinders. An imperfection-insensitive shell is one where the knockdown factor (KDF) is equal to 0.95 or
higher for imperfection amplitudes ranging from -4 to 4 times the shell thickness. The knockdown factor
is defined as the non-linear predicted buckling load of the imperfect shell over the linear buckling load
based on an eigenvalue analysis of the perfect shell. An alternative approach could be to formulate
a definition centred on the initial post-buckling parameters derived from Koiter’s Asymptotic analysis.
These parameters serve as a direct measure of imperfection sensitivity and are a good alternative for
the proposed definition.



3
Research Definition

3.1. Research Objective
In the literature review three research aspects are addressed concerning imperfection-insensitive shells,
namely the formulation of the buckling load and initial post-buckling characteristics, secondlyminimizing
the impact of imperfections by means of reinforcing elements or VA manufacturing techniques and
lastly, the lack of existence of a general definition for an imperfection-insensitive shell. This thesis
focuses on the formulation of the initial post-buckling characteristics, rather than minimizing the impact
of imperfections. By prioritising the formulation, a more efficient methodology can be created to predict
the post-buckling characteristics of imperfect structures, which in turn can also be used as a tool to
find new or improved solutions to reduce the effect of imperfections. Whilst it is also important that a
definition for an imperfection-insensitive shell is established, the impact of creating this definition was
not deemed large enough and therefore this was not explored further for this research.

Based on the findings from the literature review, it is evident that imperfections have not been
integrated into the displacement-based Koiter methodology. Therefore, the research objective of this
thesis is defined as follows.

Research Objective

Incorporate imperfections within the displacement-based Koiter methodology, aiming to develop
an easily implementable and computationally efficient approach.

This novel approach should be suitable for recurring processes like optimisation algorithms and sen-
sitivity studies. It could be used as a tool in the creation of design guidelines for imperfection-insensitive
cylinders. However, this thesis focuses on the methodology itself, thus exploring its applications is be-
yond the scope of the research.

Koiter’s asymptotic analysis is not novel and there are examples of it being used in combination with
Finite element simulations [19, 43, 44]. The goal of incorporating imperfections into the displacement-
based Koiter methodology is to establish an approach that is easier to implement due to the direct
correspondence between the theory and the execution. Moreover, the methodology should be equally
or even more computationally efficient else the purpose of using Koiter’s analysis is lost.

3.2. Research Scope
Three main steps can be identified for the displacement-based Koiter approach, namely the expansion
of the total potential energy functional, the derivation of the functional derivatives, and the asymptotic
analysis. Each step is based on certain assumptions and therefore to achieve the goal of including
imperfections in the displacement-based Koiter methodology these assumptions can be included or
disregarded resulting in several solution possibilities. First of all, there are two possible approaches
for expanding the total potential energy: one is based on Pignataro’s formulation [45], and the other
follows Budiansky’s convention [4]. The derivation of the functional derivatives initiates from the strains.
One can either assume that the pre-buckling is linear, consequently simplifying the strains, or one can

10
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presume non-linear pre-buckling. These two assumptions lead to four solution possibilities, which are
listed below. The first letter indicates which approach to expanding the total potential energy is used,
either Pignataro (P) or Budiasnky (B). The last letter denotes if the assumption linear pre-buckling is
made (L) or non-linear pre-buckling is presumed (N).

1. PL 2. BL 3. PN 4. BN

The final step is to derive the initial post-buckling characteristics by means of an asymptotic expan-
sion. Two possibilities to define these properties arise, namely a less traditional approach of finding the
imperfection post-buckling characteristics aI and bI . On the other hand, there is the more traditional
approach of introducing two new coefficients known as the imperfection form factors α and β which
define how sensitive a structure is to imperfections. Both alternatives for the asymptotic expansion are
performed for the four solution opportunities to see which approach is more accurate.

To illustrate the inclusion of imperfections within the displacement-based Koiter approach, it was
chosen to include imperfections to a perfect plate for the single mode expansion first. This decision
is made due to the fact that the initial post-buckling behaviour of a plate can be approximated with
simpler kinematics such as Donnell. Since the inclusion of imperfections within a displacement-based
environment has never been attempted, it is expected to make some errors along the way. The method-
ology will have to be adjusted and this is more easily done for simpler kinematics and choosing single-
mode mode over multi-modal. Once the imperfections have been successfully implemented within the
displacement-based Koiter methodology for plates, the same approach can be readily applied to more
complex applications such as a cylinder, different kinematics, or multi-modal expansion. Therefore,
the work presented for this research focuses on the inclusion of imperfection within the displacement-
based Koiter methodology for plates based on Donnell Kinematics and only includes the single-mode
expansion.

3.3. Hypotheses
Based on the four solution possibilities several hypotheses are established

H1: Hypothesis on the assumption linear pre-buckling

The assumption of linear pre-buckling simplifies the procedure of finding the initial post-buckling
coefficients by means of the displacement-based Koiter methodology, but the results are less
accurate.

H2: Hypothesis on the derivations of the initial post-buckling properties

H2.1 Initial imperfect post-buckling coefficients (aI and bI ) can be derived by means of the
displacement-based Koiter methodology.

H2.2 The initial imperfect post-buckling coefficients (aI and bI ) are more efficient in predicting
the post-buckling behaviour of a structure, compared to the imperfect form factors.

3.4. Research Outline
The work of Castro and Jansen forms the foundation of this thesis, therefore a comprehensive overview
of the displacement-based Koiter methodology without imperfections is presented in chapter 4. In
this chapter, certain assumptions are made and formulations are derived, which are revisited when
imperfections are introduced into the methodology. This dedicated chapter ensures a clear distinction
between the prior work and the novel steps taken in this study. Following the explanation of the perfect
methodology, the expansion of the total potential including imperfections is presented in chapter 5.
This forms the first step in including imperfections in the methodology and includes the two possibilities
and the differences between them. Subsequently, chapter 6 outlines the various options for deriving
the functional derivatives. Finally, the derivation of the initial post-buckling characteristics for both the
traditional and less traditional approach is shown in chapter 7 as well as a conclusion on how accurate
they are and if the hypotheses were correct.



4
Displacement-based Koiter Methodology
The displacement-based Koiter methodology [18, 22] aimed to improve the implementation of the Koi-
ter expansion within finite element simulations. Previous attempts of the perturbation methodology
within finite element context had led to initial post-buckling coefficients that were mesh sensitive, com-
putationally expensive higher-order derivatives, and phenomena such as locking in the implementation
resulting in unrealistic behaviour of structures. Rahman [19] and Tiso [43] were able to overcome these
issues resulting in the Koiter methodology being available in the FE Software Diana. The main draw-
back is that the methodology is convoluted and difficult to interpret. The research of Castro and Jansen
creates a strong connection between theory and implementation, facilitating the overall implementation
process. The methodology forms the basis of this thesis and therefore an explanation of the necessary
steps taken is provided in this chapter. Three key steps can be identified for the displacement-based
Koiter methodology. The process begins with the expansion of the total potential energy functional,
which is presented section 4.1. Subsequently, the derivation of the functional derivatives used within
the expansion of the potential energy is outlined in section 4.2. Finally, the formulation of the initial
post-buckling coefficients is addressed in section 4.3.

4.1. Expansion of the Total Potential Energy Functional
The methodology starts with a general-purpose formulation of the potential energy based on the work
of Budiansky [4]. The potential energy functional (ϕ) is dependent on both the displacements (u) and
a scalar load parameter (λ). The variational equation of equilibrium must equal zero as presented in
Equation 4.1 where u0 is a known displacement field that is dependent on a scalar parameter λ. The
Fréchet Derivative ϕ′δu is used to show the dependence of the variation on the displacement and
to express the tensor product between the derivative and the displacement-field vector (δu). The first
differentiation is multiplied by one displacement vector but the second differentiation is multiplied by two
displacement vectors and this logic continues for the higher order derivatives, as shown in Equation 4.2.

ϕ′[u0(λ), λ]δu = 0 (4.1)

δϕ = ϕ′δu

δ2ϕ = ϕ′′δuδu

δ3ϕ = ϕ′′′δuδuδu

δ4ϕ = ϕivδuδuδuδu

(4.2)

It is assumed that the bifurcation point lies on the equilibrium path such that uc = u0(λc) and
therefore the static equilibrium at the bifurcation point is equal to Equation 4.3.

ϕ′[uc, λc]δu = 0 (4.3)
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Next, a Taylor expansion around the known bifurcation point (uc) is performed utilising the displace-
ment perturbation v, equivalent to Equation 4.4. The Taylor expansion is shown in Equation 4.5, where
(′) represents the Frechét differentiation with respect to the displacement.

v = u(λ)− uc (4.4)

ϕ′ [uc, λc] δu = ϕ′cδu+ ϕ′′cvδu+
1

2
ϕ′′′c v2δu+

1

6
ϕivc v3δu+ · · · = 0 (4.5)

Finally, a second Taylor expansion is conducted around the critical load factor (λc), where (ṫ) repre-
sents the Frechét differentiation with respect to the load factor.

ϕ′[uc, λc]δu =

(
ϕ′′c + ϕ̇′′c (λ− λc) +

1

2
ϕ̈′′c (λ− λc)

2
+ · · ·

)
vδu

+
1

2

(
ϕ′′′c + ϕ̇′′′c (λ− λc) +

1

2
ϕ̈′′′c (λ− λc)

2
+ · · ·

)
v2δu

+
1

6

(
ϕivc + ϕ̇ivc (λ− λc) +

1

2
ϕ̈ivc (λ− λc)

2
+ · · ·

)
v3δu+ · · · = 0

(4.6)

4.2. Functional Derivatives utilising Frechét Derivatives
The subsequent step involves finding the functional derivatives (ϕnc , ϕ̇nc , and ϕ̈nc ) that appear in the
expanded potential energy. These functional derivatives are based on stresses, which in turn depend
on the strains, therefore all three aspects are elaborated on in subsection 4.2.1 to 4.2.3.

4.2.1. Strains
Kinematic relations are used to find the strains and their derivatives with respect to the displacements
and load factor. Depending on which kinematic relationship is chosen the complexity of the problem
can be increased to include more non-linear terms. For example, the Donnell kinematics ignore various
non-linear terms and are sufficient to accurately represent the initial post-buckling behaviour of a plate.
However, the Donnell relationship is not accurate enough to accurately compute the post-buckling
coefficients of axially compressed cylinders and therefore the Sanders Kinematics are preferred [22].
As mentioned in the scope of this thesis, the Donnell kinematics are used to demonstrate the inclusion
of imperfections within the displacement-based Koiter methodology, but the same line of reasoning
can be applied to different structures and kinematic relations. The three-dimensional strains can be
expressed as ε(x, y, z) = ε(x, y) + zκ(x, y) and the extensional and rotational strains for a plate are
presented in Equation 4.7 and 4.8.

ε =

 εxx
εyy
γxy

 =


u,x + 1

2 (w,x)
2

v,y +
1
2 (w,y)

2

u,y + v,x + w,xw,y

 (4.7)

κ =

 κxx
κyy
κxy

 =


−w,xx

−w,yy

−2w,xy

 (4.8)

The displacement field can be approximated using the known shape functions Su,v,w as shown
down below.

u, v, w⊤ = Suu

Su =

 Su

Sv

Sw

 (4.9)
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The displacement in each direction u, v, w can also be represented by using the summation con-
vention for repeated indices as shown in Equation 4.10.

u = Su
aua

v = Sv
aua

w = Sw
a ua

(4.10)

The Frechét notation is still applicable to the strains and is equal to the notation presented in Equa-
tion 4.2. Simplifying the strains to ε1 = εxx, ε2 = εyy, ε3 = γxy, κ1 = κxx, κ2 = κyy, and κ3 = κxy the
repeated index notation can be utilised, resulting in the first and second differentiation of the strain to
follow the notation presented in Equation 4.11.

δεi = ε′iaδua

δκi = κ′iaδua

δ (δεi) = ε′′iabδuaδub

δ (δκi) = κ′′iabδuaδub

(4.11)

Following these notations, the first Frechét differentiation with respect to the displacement is shown
in Equation 4.12 and 4.13

ε′a =


Su
a,x + Sw

a,xw,x

Sv
a,y + Sw

a,yw,y

Su
a,y + Sv

a,y + Sw
a,xw,y + Sw

a,yw,x

 (4.12)

κ′
a =


−Sw

a,xx

−Sw
a,yy

−2Sw
a,xy

 (4.13)

The second differentiation with respect to the displacement is represented by Equation 4.14 and
4.15.

ε′′ab =


Sw
a,xS

w
b,x

Sw
a,yS

w
b,y

Sw
a,xS

w
b,y + Sw

a,yS
w
b,x

 (4.14)

κ′′
ab = 0 (4.15)

The differentiation with respect to the load factor (λ) can be found by keeping in mind that u = λu0,
and therefore the first differentiation equals Equation 4.16 and 4.17.

ε̇ =


u0,x + λw2

0,x

v0,y + λw2
0,y

u0,y + v0,x + 2λw0,xw0,y

 (4.16)

κ̇ =


−w0,xx

−w0,yy

−2w0,xy

 (4.17)

The second differentiation with respect to the load factor results in Equation 4.18 and 4.19.
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ε̈ =


w2

0,x

w2
0,y

2w0,xw0,y

 (4.18)

κ̈ = 0 (4.19)

Now moving on to the differentiation with respect to both the displacement and load factor:

ε̇′a =


w0,xS

w
a,x

w0,yS
w
a,y

w0,xS
w
a,y + w0,yS

w
a,x

 (4.20)

κ̇′
a = 0 (4.21)

Since ε̇′a and κ̇′
a are not a function of the load parameter λ, ε̈′a and κ̈′

a are both equal to a zero
vector, as well as λ, ε̇′′a and κ̇′′

a. This concludes all the derivatives of the strain.

4.2.2. Stresses
The stresses can be easily computed from the strains, by making use of the classical constitutive
relations for laminate composites. The stresses are simplified to the following notation N1 = Nxx,
N2 = Nyy, N3 = Nxy,M1 = Mxx,M2 = Myy, andM3 = Mxy and as a result the stress-strain relation
can be represented by the repeated index notation, as shown in Equation 4.22 whereAij is equal to the
membrane stiffness, Bij represents the membrane-bending coupling, and Dij is the bending stiffness.

Ni = Aijεj +Bijκj
Mi = Bijεj +Dijκj

(4.22)

Now all the differentiations of the stress can be found and these are presented below.

N ′
ia = Aijε

′
ja +Bijκ

′
ja

M ′
ia = Bijε

′
ja +Dijκ

′
ja

(4.23)

N ′′
iab = Aijε

′′
jab

M ′′
iab = Bijε

′′
jab

(4.24)

Ṅi = Aij ε̇j +Bij κ̇j
Ṁi = Bij ε̇j +Dij κ̇j

(4.25)

N̈i = Aij ϵ̈j
M̈i = Bij ϵ̈j

(4.26)

Ṅ ′
ia = Aij ε̇

′
ja

Ṁ ′
ia = Bij ε̇

′
ja

(4.27)

4.2.3. Functional Derivatives
The final step is to combine the stresses with the strains and find the functional derivatives. A reminder
that the methodology of the displacement-based Koiter analysis is demonstrated here using a plate,
but the same logic can be applied to any structure. The total potential energy of a plate is equal to
Equation 4.28, where the assumption is made that a general distributed loading N̂ vector is applied to
the boundaries of a plate and where δΩ = dxdy.

ϕ =
1

2

∫
Ω

(Niεi +Miκi) dΩ−
∫
δΩ

λN̂
⊤
ud(δΩ) (4.28)

The stationary total potential energy (ϕ′) is defined at the bifurcation point [uc, λc] is presented in
Equation 4.29.
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ϕ′cδu =
1

2

∫
Ω

(δNiεi +Niδεi + δMiκi +Miδκi) dΩ−
∫
δΩ

λN̂
⊤
δud(δΩ) (4.29)

The variation δu is assumed to be δu = ua = {· · · , ua, · · · }T , such that the first Frechét derivative
with respect to the displacement of the total potential energy is equal to Equation 4.30.

ϕ′cua =

[
1

2

∫
Ω

(N ′
iaεi +Niε

′
ia +M ′

iaκi +Miκ
′
ia) dΩ−

∫
δΩ

λN̂
⊤
Su
ax=ℓxd(δΩ)

]
ua (4.30)

The second Frechét derivative is equal to Equation 4.31

ϕ′′cuaub =

[
1

2

∫
Ω

(N ′′
iabεi +N ′

iaε
′
ib +N ′

ibε
′
ia +Niε

′′
iab +M ′′

iabκi +M ′
iaκ

′
ib +M ′

ibκ
′
ia

+Mi�
��>

0
κ′′iab

)
dΩ

]
uaub

=

[
1

2

∫
Ω

(N ′′
iabεi +N ′

iaε
′
ib +N ′

ibε
′
ia +Niε

′′
iab +M ′′

iabκi +M ′
iaκ

′
ib +M ′

ibκ
′
ia) dΩ

]
uaub

(4.31)

The third derivative is presented in Equation 4.32

ϕ′′′c uaubuc =

[
1

2

∫
Ω

(
���*0
N ′′′

iabcεi +N ′′
iabε

′
ic +N ′′

iacε
′
ib +N ′

iaε
′′
ibc +N ′′

ibcε
′
ia +N ′

ibε
′′
iac

+N ′
icε

′′
iab +Ni���*

0
ε′′′iabc +���*0

M ′′′
iabcκi +M ′′

iabκ
′
ic +M ′′

iacκ
′
ib +M ′

ia�
��>

0
κ′′ibc

+M ′′
ibcκ

′
ia +M ′

ib�
��>

0
κ′′iac

)
dΩ

]
uaubuc

=

[
1

2

∫
Ω

(N ′′
iabε

′
ic +N ′′

iacε
′
ib +N ′

iaε
′′
ibc +N ′′

ibcε
′
ia +N ′

ibε
′′
iac

+N ′
icε

′′
iab +M ′′

iabκ
′
ic +M ′′

iacκ
′
ib +M ′′

ibcκ
′
ia) dΩ

]
uaubuc

(4.32)

Finally, the fourth derivative is shown in Equation 4.33

ϕivc uaubucud =

[
1

2

∫
Ω

(
���*0
N ′′′

iabdε
′
ic +N ′′

iabε
′′
icd +���*0

N ′′′
iacdε

′
ib +N ′′

iacε
′′
ibd +N ′′

iadε
′′
ibc +N ′

ia���*
0

ε′′′ibcd

+���*0
N ′′′

ibcdε
′
ia +N ′′

ibcε
′′
iad +N ′′

ibdε
′′
iac +N ′

ib���*
0

ε′′′iacd +N ′′
icdε

′′
iab +N ′

ic���*
0

ε′′′iabd

+����*0
M ′′′

iabdκ
′
ic +M ′′

iab�
��>

0
κ′′icd +����*0

M ′′′
iacdκ

′
ib +M ′′

iac�
��>

0
κ′′ibd +���*0

M ′′′
ibcdκ

′
ia +M ′′

ibc���*0
κ′′iad

)
dΩ

]
uaubucud

=

[
1

2

∫
Ω

(N ′′
iabε

′′
icd +N ′′

iacε
′′
ibd +N ′′

iadε
′′
ibc +N ′′

ibcε
′′
iad +N ′′

ibdε
′′
iac +N ′′

icdε
′′
iab) dΩ

]
uaubucud

(4.33)

From Equation 4.31 the first and second derivatives with respect to the load factor (λ) can be found,
represented respectively in Equation 4.34 and 4.35.
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ϕ̇′′cuaub =

1
2

∫
Ω


�
��>

0

Ṅ ′′
iabεi +N ′′

iabε̇i + Ṅ ′
iaε

′
ib +N ′

iaε̇
′
ib + Ṅ ′

ibε
′
ia +N ′

ibε̇
′
ia + Ṅiε

′′
iab +Ni�

�>
0

ε̇′′iab

+���*
0

Ṁ ′′
iabκi +M ′′

iabκ̇i + Ṁ ′
iaκ

′
ib +M ′

ia���
0

κ̇′ib + Ṁ ′
ibκ

′
ia +M ′

ib��>
0

κ̇′ia

)
dΩ

]
uaub

=

[
1

2

∫
Ω

(
N ′′

iabε̇i + Ṅ ′
iaε

′
ib +N ′

iaε̇
′
ib + Ṅ ′

ibε
′
ia +N ′

ibε̇
′
ia + Ṅiε

′′
iab

+M ′′
iabκ̇i + Ṁ ′

iaκ
′
ib + Ṁ ′

ibκ
′
ia

)
dΩ

]
uaub

(4.34)

ϕ̈′′cuaub =

1
2

∫
Ω


�
��>

0

Ṅ ′′
iabε̇i +N ′′

iabε̈i +�
�>

0
N̈ ′

iaε
′
ib + Ṅ ′

iaε̇
′
ib + Ṅ ′

iaε̇
′
ib +N ′

ia���
0

ε̈′ib +�
�>

0
N̈ ′

ibε
′
ia + Ṅ ′

ibε̇
′
ia

+ Ṅ ′
ibε̇

′
ia +N ′

ib���
0

ε̈′ia + N̈iε
′′
iab + Ṅi�

�>
0

ε̇′′iab +���*
0

Ṁ ′′
iabκ̇i +M ′′

iab���
0

κ̈i +�
��>

0
M̈ ′

iaκ
′
ib + Ṁ ′

ia���
0

κ̇′ib

+�
��>

0
M̈ ′

ibκ
′
ia + Ṁ ′

ib��>
0

κ̇′ia

)
dΩ

]
uaub

=

[
1

2

∫
Ω

(
N ′′

iabε̈i + 2Ṅ ′
iaε̇

′
ib + 2Ṅ ′

ibε̇
′
ia + N̈iε

′′
iab

)
dΩ

]
uaub

(4.35)

Lastly, from Equation 4.32 the derivative with respect to λ is concluded, as shown in Equation 4.36.

ϕ̇′′′c uaubuc =

1
2

∫
Ω


�
��>

0

Ṅ ′′
iabε

′
ic +N ′′

iabε̇
′
ic +�

��>
0

Ṅ ′′
iacε

′
ib +N ′′

iacε̇
′
ib + Ṅ ′

iaε
′′
ibc +N ′

ia�
�>

0
ε̇′′ibc +�

��>
0

Ṅ ′′
ibcε

′
ia

+N ′′
ibcε̇

′
ia + Ṅ ′

ibε
′′
iac +N ′

ib�
�>

0
ε̇′′iac + Ṅ ′

icε
′′
iab +N ′

ic�
�>

0
ε̇′′iab +���*

0
Ṁ ′′

iabκ
′
ic +M ′′

iab���
0

κ̇′ic

+���*
0

Ṁ ′′
iacκ

′
ib +M ′′

iac���
0

κ̇′ib +���*
0

Ṁ ′′
ibcκ

′
ia +M ′′

ibc��>
0

κ̇′ia

)
dΩ

]
uaubuc

=

[
1

2

∫
Ω

(
N ′′

iabε̇
′
ic +N ′′

iacε̇
′
ib + Ṅ ′

iaε
′′
ibc +N ′′

ibcε̇
′
ia + Ṅ ′

ibε
′′
iac + Ṅ ′

icε
′′
iab

)
dΩ

]
uaubuc

(4.36)

The high order terms ϕ̈′′′, ϕ̇iv, ϕ̈iv equal zero. This concludes the derivation of the functional deriva-
tives. The present derivation serves as an illustration of how to compute the functional derivative
utilising the Donell kinematics for a plate. However, the same reasoning can be applied to a different
structure such as a cylinder or alternative kinematics relation, like Sanders.

4.3. Asymptotic Analysis
The single mode asymptotic expansions for the load parameter and the displacement field are pre-
sented in Equation 4.37 and 4.38, respectively, where λ represents the load parameter, λc is the known
critical load (typically the bifurcation load), ξ is a scalar parameter, and aI and bI are the Koiter factors.
Moreover, uI is the first-order displacement field which is either a single buckling mode or a combi-
nation of multiple buckling modes scaled with respect to the thickness of the plate, uII represents
the second-order displacement field and is a correction to the first-order field, and lastly, uIII is the
third-field order field but this is usually ignored.

λ− λc = aIλcξ + bIλcξ
2 (4.37)
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u− uc = v = ξuI + ξ2uII + ξ3uIII (4.38)

By substituting the asymptotic expansions into the potential energy function expansion, the initial
post-buckling coefficients can be determined. Replacing Equation 4.37 and 4.38 into Equation 4.6, and
disregarding terms multiplied with uIII , leads to Equation 4.39 where the terms are grouped according
to ξ2, ξ3 and higher order terms are left out.

ξ2(
1

2
u2
Iϕ

′′′
c + uIIϕ

′′
c + aIλcuI ϕ̇

′′
c

)
δu+

ξ3
(
1

6
u3
Iϕ

iv
c + aIλcuII ϕ̇

′′
c +

1

2
aIλcu

2
I ϕ̇

′′′
c +

1

2
a2Iλ

2
cuI ϕ̈

′′
c + uIuIIϕ

′′′
c + bIλcuI ϕ̇

′′
c

)
δu

+ · · · = 0

(4.39)

The terms multiplied with ξ2 and ξ3 must both equal zero to satisfy the equilibrium condition. The
assumption δu = uI can be made, resulting in the orthogonality of the second-order displacement
which leads to the simplification that ϕ̇′′cuIuII = 0. Utilising this simplification the expression for aI and
bI for the single-mode expansion are equal to Equation 4.40 and 4.41

aI = − 1

2λc

u3
Iϕ

′′′
c

u2
I ϕ̇

′′
c

(4.40)

bI = −
(
1

6
u4
Iϕ

iv
c +

1

2
aIλcu

3
I ϕ̇

′′′
c +

1

2
a2Iλ

2
cu

2
I ϕ̈

′′
c + u2

IuIIϕ
′′′
c

)
/
(
λcu

2
I ϕ̇

′′
c

)
(4.41)

The second-order displacement field (uII ) is found by using the terms related to ξ2 which must hold
for all arbitrary variations of δu and can be rewritten to find the second-order field.

uII = [ϕ′′c ]
−1
(
−1

2
ϕ′′′c u2

I − aIλcuI ϕ̇
′′
c

)
(4.42)

Equation 4.42 does allow for multiple solutions, however, to ensure the second-order field is orthog-
onal to the first-order field the Gram-Schmidt orthogonalization is performed, as presented here. Now
aI and bI can be computed.

uII = uII − uI
⟨uII ,uI⟩
⟨uI ,uI⟩

(4.43)

It is important to highlight that the expressions for aI and bI are general and do not rely on any
assumption made about the structure. These coefficients can be derived directly from the expansion of
the total potential energy, which is also not specific to any structure. Moreover, it should be pointed out
that all the proceeding steps apply to any energy-based methodology. Castro and Jansen developed
the methodology to ease the implementation within finite element simulations and this implementation
is discussed in the following section, however, the formulation thus far is general and applicable to
other energy methods as well.

4.4. Finite Element Implementation
A crucial assumption for Koiter’s asymptotic expansion is that it relies on the expansion around a known
state. This known state is traditionally the buckling point. This assumption does imply that a method
to calculate this known state is required. It was concluded from the literature review there are several
options to calculate the buckling load. Castro and Jansen define the known state as the linear buckling
mode, which is calculated based on solving an eigenvalue problem. To set up this eigenvalue problem
the Bogner-Fox-Schmit-Castro (BFSC) plate element is utilised for implementation within finite element
models. This novel element is a modification of the Bogner-Fox-Schmit element and it is introduced
to overcome the poor convergence of the second-order displacement field which in turn also affects
the second post-buckling coefficient. An additional four degrees of freedom per node are added to the
BFS element, resulting in an element that has four nodes and 10 degrees of freedom per node. These
additional degrees of freedom allow for third-order interpolation of the in-plane displacements.
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The displacements are approximated utilising Equation 4.44, where uei represents the vector con-
taining the 10 DOFs of the ith node.

u, v, w =

4∑
i=1

Su,v,w
i uei (4.44)

The shape functions Su,v,w
i arange in the matrices according to Equation 4.45, with the cubic Her-

mite functionsHi,Hx
i ,H

y
i , andH

xy
i equal to Equation 4.46. The dimensions of the finite element along

the x and y axis are represented by ℓx and ℓy. Finally, the values for the natural coordinates, ξj and ηi
are given in Equation 4.47

Su
i =

[
Hi Hx

i Hy
i 0 0 0 0 0 0 0

]
Sv

i =
[
0 0 0 Hi Hx

i Hy
i 0 0 0 0

]
Sv

i =
[
0 0 0 0 0 0 Hi Hx

i Hy
i Hxy

i

] (4.45)

Hi =
1

16
(ξ + ξi)

2
(ξξi − 2) (η + ηi)

2
(ηηi − 2)

Hx
i = − ℓx

32
ξi (ξ + ξi)

2
(ξξi − 1) (η + ηi)

2
(ηηi − 2)

Hy
i = − ℓy

32
(ξ + ξi)

2
(ξξi − 2) ηi (η + ηi)

2
(ηηi − 1)

Hxy
i =

ℓxℓy
64

ξi (ξ + ξi)
2
(ξξi − 1) ηi (η + ηi)

2
(ηηi − 1)

(4.46)

Node ξi ηi
1 −1 −1
2 +1 −1
3 +1 +1
4 −1 +1

(4.47)

The natural coordinate can be easily computed from the finite element dimension according to the
conversions presented below.

ξ =
2x

ℓx
− 1 (4.48)

η =
2y

ℓy
− 1 (4.49)

Lastly, the derivative of the shape functions required for the derivative of the strain has to be com-
puted in natural coordinates utilising Equation 4.50 and Equation 4.51.

∂

∂x
=
ℓx
2

∂

∂ξ
(4.50)

∂

∂y
=
ℓy
2

∂

∂η
(4.51)

The buckling load of the plate is calculated to define the known state that forms the basis of the
Koiter expansion. This process initiates with creating a mesh, based on the required number of nodes.
Subsequently, the boundary conditions are applied to the necessary nodes after which an external
load is applied to the edges of the plate. The buckling load and shapes are computed by solving an
eigenvalue problem. The BFSC element was able to accurately predict the linear buckling load. With
the buckling load found, the functional derivative can be computed.

The third- and fourth-order tensors ϕ′′′c and ϕivc can easily require huge amounts of space if one
does not take action to minimize this. Instead of computing the whole individual tensor, the product
between the tensor and the displacements is calculated to reduce the size of the array required to store
this information. This allows for a computationally inexpensive procedure. The functional derivatives
are calculated on an element level and added together with the corresponding weights to compute the
final functional derivatives. These in turn are used to calculate the initial post-buckling coefficients aI
and bI .



5
Expansion of the Total Potential Energy

Functional
The first step in including imperfections into the displacement-based Koiter methodology is to expand
the total potential energy. Opposed to the methodology without imperfections, the total potential energy
now consists of both the perfect and the imperfect structure. The presence of imperfections in the
structure introduces a dependence on the imperfection shape and therefore an expansion around this
imperfection shape is required. Two different approaches to expanding the total potential energy were
found. First of all, the expansion according to Pignataro [45] is presented in section 5.1. Following this,
the work of Budiansky [4] is given in section 5.2. The chapter concludes with a comparison between
the two approaches.

5.1. Formulation by Pignataro
If a structure is imperfect, as in it contains a displacement before any load is applied, the potential
energy functional is a combination of the perfect and the imperfect structure, as shown in Equation 5.1.
The perfect structure is still only dependent on the displacement (u) and the load parameter (λ), the
imperfect structure is dependent on the same two factors on top of the initial displacement (ū).

ϕ̄ = ϕ [u(λ);λ] + ψ [u(λ), ū;λ] (5.1)

The potential energy must equal zero if the imperfection is set to zero and therefore the following
must be true.

ψ [u(λ),0;λ] = 0 (5.2)

The variational equation of equilibrium is equal to zero, and therefore Equation 5.3 is applicable for
an imperfect structure. Note that (′) still represents the Frechét derivative with respect to the displace-
ment and the displacement is still dependent on the load parameter however the concise notation of
just u instead of u(λ).

ϕ′ [u;λ] δu+ ψ′ [u, ū;λ] δu = 0 (5.3)

Subsequently, the first Taylor expansion around the known initial out-of-plane displacement ū0 is
carried out. It is assumed that the initial displacement of the imperfection is small and can therefore
be approximated to zero. As a consequence of this assumption, only the linear terms remain. The ex-
pansion of the potential including this assumption is presented below, where (̃t) represents the Frechét
differentiation with respect to the initial imperfection ū.

ϕ′ [u;λ] δu+�������:0,Eq. 5.2

ψ′ [u,0;λ] δu+ ψ̃′ [u,0;λ] ūδu+
���������:0,Non-linear
1

2
˜̃
ψ′ [u,0;λ] ū2δu = 0

(5.4)

20
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Following this, the total potential energy is expanded around the known displacement (u0).

[
�����:0,Eq. Perfect Structure

ϕ′ [u0;λ] + ϕ′′ [u0;λ] (u− u0) +
1

2
ϕ′′′ [u0;λ] (u− u0)

2
+

1

6
ϕiv [u0;λ] (u− u0)

3
+ · · ·

]
δu+[

ψ̃′ [u0,0;λ] ū+ ψ̃′′ [u,0;λ] ū (u− u0) +
1

2
ψ̃′′′ [u,0;λ] ū (u− u0)

2
+ · · ·

]
δu = 0

(5.5)

To complete the expansion of the total potential energy, a final Taylor expansion around the critical
load parameter (λc) is performed.

[
ϕ′′ [uc;λc] + ϕ̇′′ [uc;λc] (λ− λc) +

1

2
ϕ̈′′ [uc;λc] (λ− λc)

2

]
(u− uc) δu+

1

2

[
ϕ′′′ [uc;λc] + ϕ̇′′′ [uc;λc] (λ− λc) +

1

2
ϕ̈′′′ [uc;λc] (λ− λc)

2

]
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1
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3
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1
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2

]
ūδu+[
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˙̃
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1

2
¨̃
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2

]
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1

2

[
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˙̃
ψ′′′ [u,0;λc] (λ− λc) +

1

2
¨̃
ψ′′′ [u,0;λc] (λ− λc)

2

]
ū (u− uc)

2
δu = 0

(5.6)

It is convenient to rewrite the initial imperfection (ū) to Equation 5.7, such that û is the imperfection
shape and ξ̄ is the imperfection amplitude.

ū = ξ̄û (5.7)

Equation 5.6 can be rewritten in enhanced notation equal to Equation 5.8. This includes the simpli-
fication v = u− u0(λc) and Equation 5.7.

[
ϕ′′c + ϕ̇′′c (λ− λc) +

1

2
ϕ̈′′c (λ− λc)

2

]
vδu+

1

2

[
ϕ′′′c + ϕ̇′′′c (λ− λc) +

1

2
ϕ̈′′′c (λ− λc)

2

]
v2δu+

1

6

[
ϕivc + ϕ̇ivc (λ− λc) +

1

2
ϕ̈ivc (λ− λc)

2

]
v3δu+

[
ψ̃′
c +

˙̃
ψ′
c (λ− λc) +

1

2
¨̃
ψ′
c (λ− λc)

2

]
ξ̄ûδu+[

ψ̃′′
c +

˙̃
ψ′′
c (λ− λc) +

1

2
¨̃
ψ′′
c (λ− λc)

2

]
ξ̄ûvδu+

1

2

[
ψ̃′′′
c +

˙̃
ψ′′′
c (λ− λc) +

1

2
¨̃
ψ′′′
c (λ− λc)

2

]
ξ̄ûv2δu = 0

(5.8)

This concludes the expansion of the potential energy, based on the assumptions made by Pignataro.
Thus far no assumptions have been made about the structure or the imperfection pattern and therefore
this derivation applies to any imperfect structure not only a plate.

5.2. Fomulation by Budiansky
Budiansky’s expansion of the potential energy initiates similarly to Pignataro’s approach and assumes
the potential energy of an imperfect structure can be split into perfect and imperfect. The variational
equation of equilibrium remains zero, and the definitions previously presented in Equation 5.1 to 5.3
are still applicable. However, the two methodologies follow a different path from this point on as Bu-
diansky performs a Taylor expansion around a known displacement position u0 instead of the initial
imperfection.
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ϕ′ [u0;λ] δu+ ϕ′′ [u0;λ] (u− u0) δu+
1

2
ϕ′′′ [u0;λ] (u− u0)

2
δu+

1

6
ϕiv [u0;λ] (u− u0)

3
δu+

ψ′ [u0, ū;λ] δu+ ψ′′ [u0, ū;λ] (u− u0) δu+
1

2
ψ′′′ [u0, ū;λ] (u− u0)

2
δu = 0

(5.9)

Following from this a Taylor expansion around the imperfection ū0 is carried out. The known ini-
tial displacement is assumed to be small and therefore it can be approximated to be zero, similar to
Pignataro. By Equation 5.2 all derivatives of ψ [u,0;λ] equal zero and ϕ′ [u0;λ] disappears due to the
equilibrium of the unbuckled perfect structure, demonstrated in Equation 4.1. The expansion of the po-
tential including these assumptions is presented below, where (̃t) represents the Frechét differentiation
with respect to the initial known geometric imperfection.

������:0,Eq. Perfect Structure

ϕ′ [u0;λ] δu+ ϕ′′ [u0;λ] (u− u0) δu+
1

2
ϕ′′′ [u0;λ] (u− u0)
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1
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]
(u− u0)

2
δu = 0

(5.10)

The imperfection can still be rewritten to be a multiplication of the imperfection amplitude and the
imperfection shape, as shown in Equation 5.7. Therefore Equation 5.10 can be rewritten to the follow-
ing.

ϕ′′ [u0;λ] (u− u0) δu+
1

2
ϕ′′′ [u0;λ] (u− u0)

2
δu+

1

6
ϕiv [u0;λ] (u− u0)
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2
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2
δu = 0

(5.11)

A last Taylor expansion is performed around the critical load λc. Note that in the equation above the
notation of u0 was used, however, this changes to uc due to the assumption uc = u0(λc).[

ϕ′′ [uc;λc] + ϕ̇′′ [uc;λc] (λ− λc) +
1

2
ϕ̈′′ [uc;λc] (λ− λc)
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]
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ϕ′′′ [uc;λc] + ϕ̇′′′ [uc;λc] (λ− λc) +

1

2
ϕ̈′′′ [uc;λc] (λ− λc)

2

]
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[
ϕiv [uc;λc] + ϕ̇iv [uc;λc] (λ− λc) +

1

2
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2
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2
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(5.12)



5.3. Comparison between Pignataro and Budiansky 23

1

2

[
ψ̃′′′ [uc,0;λc] +
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ξ̄2û2 (u− uc)

2
δu = 0

(5.12)

The enhanced notation of Equation 5.12 is presented down below, which utilises the assumption
v = u− u0(λc).

[
ϕ′′c + ϕ̇′′c (λ− λc) +
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2
ϕ̈′′c (λ− λc)

2

]
vδu+

1

2

[
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ξ̄ûv2δu+
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[
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(5.13)

This concludes the expansion of the potential energy according to Budiansky. Once again, the
derivation is not structure-specific since no assumptions about the characteristics of the structure have
been made. Whilst the scope defined this research to be related to plates only, this specific step is
general. Moreover, no specific imperfection pattern is assumed yet and therefore it can take any shape
from a combination of eigenmodes or sinusoidal waves.

5.3. Comparison between Pignataro and Budiansky
Pignataro and Budiansky propose similar approaches to the expansion of potential energy, but there
are two differences. Firstly, the sequence of their expansions is different. Budiansky initially performs
an expansion around the displacement whereas Pignataro kicks off with an expansion around the initial
imperfection. Nonetheless, the sequence of the expansion does not influence the outcome and if either
methodology had initiated with a different expansion it would have resulted in the same conclusion. The
key difference between the two of them is that Budiansky does include non-linear functional derivatives

of the imperfect structure ( ˜̃ψ(n),
˙̃̃
ψ(n) and

¨̃̃
ψ(n)) as opposed to Pignataro who assumes these are equal

to zero.



6
Functional Derivatives utilising Frechét

Derivatives
The second step in including imperfections within the displacement-based Koiter methodology involves
determining all functional derivatives used in the expanded potential energy. To derive the final expres-
sion for the functional derivatives, the strains and stresses are required, thus these two steps in the
methodology are also highlighted. There is one assumption one can make when deriving the deriva-
tives. The pre-buckling can be presumed to be linear, simplifying the procedure of finding the functional
derivatives significantly. The alternative is to ignore the linearity of the pre-buckling, but as a conse-
quence, this increases the complexity of the methodology.

The outline of this chapter is as follows. The derivatives of the strain, without the assumption of
linear pre-buckling, are presented in section 6.1. The influence of the assumption linear pre-buckling
is discussed in section 6.2. Next, the stresses are computed in section 6.3. The stresses are directly
derived from the strains, therefore section 6.4 shows the stresses derived with the assumption of linear
pre-buckling in mind. The functional derivatives are formulated in section 6.5 and 6.6, without and
including the assumption related to linear pre-buckling respectively. Finally, the chapter concludes with
a short overview of the non-zero functional derivatives for each of the four possibilities.

6.1. Strains
The Donnell Kinematic relation for an imperfect plate is presented in Equation 6.1, which can be split
into the perfect (Equation 6.2 and 6.3) and imperfect strains (Equation 6.4). The perfect strains and
rotations are used to calculate the perfect functional derivatives (ϕ) and the imperfect strains are used
to calculate the imperfect functional derivatives (ψ).

ϵ =


u,x + 1

2 (w,x)
2
+ w̄,xw,x

v,y +
1
2 (w,y)

2
+ w̄,yw,y

u,y + v,x + w,xw,y + w̄,yw,x + w̄,xw,y

+ z


−w,xx

−w,yy

−2w,xy

 (6.1)

ε =

 εxx
εyy
γxy

 =


u,x + 1

2 (w,x)
2

v,y +
1
2 (w,y)

2

u,y + v,x + w,xw,y

 (6.2)

κ =

 κxx
κyy
κxy

 =


−w,xx

−w,yy

−2w,xy

 (6.3)
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ε̄ =

 ε̄xx
ε̄yy
γ̄xy

 =


w̄,xw,x

w̄,yw,y

w̄,yw,x + w̄,xw,y

 (6.4)

Luckily, the perfect strain derivatives have previously been computed by Castro and Jansen and
can be reused. The necessary steps to derive these are illustrated in section 4.2, therefore only the
imperfect derivatives of the strains are presented here.

The displacement due to the imperfection can be approximated by using known shape function
Sw̄ and following a similar repeated index notation to what is presented in Equation 4.9, 4.10, and
4.11. Note that only imperfections that are out-of-plane are considered, thus only the shape function
Sw̄ is required. The first Frechét derivative with respect to the displacement for the imperfect strains
is presented in Equation 6.5 and the second derivative is equal to Equation 6.6. It is known that the
imperfection shape is not dependent on the displacement field hence the second differentiation is equal
to a zero vector.

ε̄′a =


�
�>

0

w̄′
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�
�>

0

w̄′
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�
�>
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a,yw̄,y

Sw
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 (6.5)

ε̄′′ab =
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�>
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w̄′
,x
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�>
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w̄′
,y

Sw
a,y�

�>
0

w̄′
,x + Sw

a,x�
�>

0

w̄′
,y


=


0

0

0

 (6.6)

For the differentiations with respect to load factor (λ), the following is still known to be trueuc = λcu0.
Moreover, it is known that the initial imperfection does not increase as the load increases and therefore
w̄,x is not dependent on λ, thus the first derivative is equivalent to Equation 6.7. Other higher-order
derivatives with respect to the load factor equal zero vectors, since none of the terms are dependent
on the load factor.

˙̄ε =


w̄,xw0,x

w̄,yw0,y

w̄,xw0,y + w̄,yw0,x

 (6.7)

The Frechét derivative with respect to both the load factor (λ) and the displacement (u) can be
derived from Equation 6.5 and is equal to zero since the imperfections are not dependent on the load
factor.

˙̄ε′a = 0 (6.8)

Moving on to the derivatives concerning the imperfection field. Only the initial imperfection is depen-
dent on the imperfection shape so therefore the first derivative is equal to Equation 6.9. All higher-order
derivatives are equal to zero since none of the terms are dependent on the imperfection.
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Sw̄
k,yw,y

Sw̄
k,yw,x + Sw̄

k,xw,y

 (6.9)
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FromEquation 6.9 the derivative with respect to both the imperfection field and the displacement can
be found, as shown in Equation 6.10. All other higher-order derivatives related to both the imperfection
and the displacement equal zero.

˜̄ε′ka =


Sw̄
k,xS

w
a,x

Sw̄
k,yS

w
a,y

Sw̄
k,yS

w
a,x + Sw̄

k,xS
w
a,y

 (6.10)

Finally, from Equation 6.9, the derivative with respect to both the imperfection and the load param-
eter is computed and presented in Equation 6.11. Again all high-order derivatives depending on the
imperfection and the load factor become zero. The Frechét derivative with respect to all three param-
eters is also equal to zero.

˙̄̃εk =


Sw̄
k,xw0,x

Sw̄
k,yw0,y

Sw̄
k,yw0,x + Sw̄

k,xw0,y

 (6.11)

This concludes the derivations of the imperfect strains. The imperfect strains that are not non-zero
are listed below as these are used in the next steps of the derivation.

ε̄ ε̄′a
˙̄ε ˜̄εk

˜̄ε
′
ka

˙̄̃εk

6.2. Strains for Linear Pre-buckling
If the pre-buckling state u0 is evaluated linearly for a plate with no bending-extension coupling and
only in-plane pre-buckling loads, the out-of-plane displacement (w0) equals zero. This assumption is
only applicable for small rotations. Besides the out-of-plane displacement (w0) dropping to zero, the
term w and its derivatives also disappear due the fact that uc = u0(λc). The full expressions for
both the perfect and imperfect strains can be found in subsection A.1.1 and A.1.2. This assumption
that w0 is equal to zero for linear pre-buckling is only applicable for a plate and not a cylinder. If the
displacement-based Koiter methodology is modified for cylinder one should pay attention to the case
of linear pre-buckling as it is not as simple as for a plate.

6.3. Stresses
The stresses are computed utilising the classical constitutive relations for laminate composites and
using repeated index notation, similar to what was done for the perfect displacement-based Koiter
methodology. The stresses for the perfect structure have been previously computed by Castro and
Jansen and can be found completely in subsection 4.2.2. The imperfect stresses are based only on
the imperfect strains and are therefore equivalent to Equation 6.12.

N̄i = Aij ε̄j
M̄i = Bij ε̄j

(6.12)

The derivatives of the imperfect stresses can easily be formulated using the imperfect strains and
are presented here.

N̄ ′
ia = Aij ε̄

′
ja

M̄ ′
ia = Bij ε̄

′
ja

(6.13)

˙̄Ni = Aij ˙̄εj
˙̄Mi = Bij ˙̄εj

(6.14)

˜̄Nik = Aij ˜̄εjk
˜̄Mik = Bij ˜̄εjk

(6.15)
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˜̄N ′
ika = Aij ˜̄ε

′
jka

˜̄M ′
ika = Bij ˜̄ε

′
jka

(6.16)

˙̄̃
Nik = Aij

˙̄̃εik
˙̄̃
Mik = Bij

˙̄̃εik
(6.17)

This concludes the derivation of the imperfect stresses. All higher-order derivatives that are not
presented above are equal to zero since the strains are also equal to zero. An overview of the non-
zero imperfect strains can be found at the end of section 6.1.

6.4. Stresses for Linear Pre-buckling
The assumption of linear pre-buckling influences the stresses as well since they are dependent on the
strains. Since the computation of the stresses from the strains is self-explanatory, the final expres-
sions of the derivatives of the imperfect stresses including the assumption linear pre-buckling are only
presented in section A.2.

6.5. Functional Derivatives
The final step is to derive the functional derivatives. To complete the derivation, the imperfect stresses
aremultiplied with the strains to find the imperfect functional derivatives. The full derivation of the perfect
functional derivatives has previously been executed by Castro and Jansen and presented in section 4.2.
The potential energy of an imperfect plate is equal to ϕ + ψ. The contribution the imperfections have
on the potential energy is represented in Equation 6.18.

ψ =
1

2

∫
Ω

(
N̄iε̄i +Niε̄i + N̄iεi + M̄iκi

)
dΩ (6.18)

The equilibrium of the imperfect structure is presented in Equation 6.19, which can also be rewritten
to Equation 6.20. An overview of all the perfect and imperfect stresses and strains that remain after
the differentiation is given in Table 6.1. All other terms are equal to zero vectors, therefore these terms
are crossed during the derivation of all imperfect functional derivatives.

ψ′
cδu =

1

2

∫
Ω
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]
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The second, third and fourth derivatives with respect to the displacement are presented in Equa-
tion 6.21, 6.22, and 6.23.
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Strains Stresses
Perfect Imperfect Perfect Imperfect

ε ε̄ Ni andMi N̄i and M̄i

κ ε̄′a N ′
ia andM ′

ia N̄ ′
ia and M̄ ′

ia

ε′a ˙̄ε N ′′
iab andM ′′

iab
˙̄Ni and ˙̄Mi

κ′
a

˜̄εk Ṅi and Ṁi
˜̄Nik and ˜̄Mik

ε′′ab ˜̄ε′ka N̈i and M̈i
˜̄N ′
ika and ˜̄M ′

ika

ε̇ ˙̄̃εk Ṅ ′
ia and Ṁ ′

ia

˙̄̃
Nik and ˙̄̃

Mik

κ̇

ε̈

ε̇′a

Table 6.1: Overview all relevant strains and stresses for the perfect and imperfect structure

ψ′′′
c uaubuc =

[
1

2

∫
Ω

(
���*

0
N̄ ′′

iacε̄
′
ib + N̄ ′

ia�
�>

0
ε̄′′ibc +���*

0
N̄ ′′

ibcε̄
′
ia + N̄ ′

ib�
�>

0
ε̄′′iac +���*0

N ′′′
iabcε̄i +N ′′

iabε̄
′
ic +N ′′

iacε̄
′
ib

+N ′
ia�

�>
0

ε̄′′ibc +N ′′
ibcε̄

′
ia +N ′

ib�
�>

0
ε̄′′iac +���*

0
N̄ ′′

iacε
′
ib + N̄ ′

iaε
′′
ibc +���*

0
N̄ ′′

ibcε
′
ia + N̄ ′

ibε
′′
iac

+ N̄ ′
icε

′′
iab + N̄i���*

0
ε′′′iabc +���*

0
M̄ ′′

iacκ
′
ib + M̄ ′

ia�
��>

0
κ′′ibc +���*

0
M̄ ′′

ibcκ
′
ia + M̄ ′

ib�
��>

0
κ′′iac

)
dΩ

]
uaubuc

=

[
1

2

∫
Ω

(
N ′′

iabε̄
′
ic +N ′′

iacε̄
′
ib +N ′′

ibcε̄
′
ia + N̄ ′

iaε
′′
ibc + N̄ ′

ibε
′′
iac + N̄ ′

icε
′′
iab

)
dΩ

]
uaubuc

(6.22)

ψiv
c uaubucud =

[
1

2

∫
Ω

(
���*0
N ′′′

iabdε̄
′
ic +N ′′

iab�
�>

0
ε̄′′icd +���*0

N ′′′
iacdε̄

′
ib +N ′′

iac�
�>

0
ε̄′′ibd +���*0

N ′′′
ibcdε̄

′
ia +N ′′

ibc�
��>

0
ε̄′′iad

+���*
0

N̄ ′′
iadε

′′
ibc + N̄ ′

ia���*
0

ε′′′ibcd +���*
0

N̄ ′′
ibdε

′′
iac + N̄ ′

ib���*
0

ε′′′iacd +���*
0

N̄ ′′
icdε

′′
iab + N̄ ′

ic���*
0

ε′′′iabd

)
dΩ

]
uaubucud

= 0

(6.23)

The next step is to compute the functional derivatives with respect to the initial displacement (ū) and
displacement field (u). From Equation 6.20 the first derivative with respect to both ū and u is equal to
Equation 6.24.

ψ̃′
cuaūk =

[
1

2

∫
Ω

(
˜̄N ′
iakε̄i + N̄ ′

ia
˜̄εik + ˜̄Nikε̄

′
ia + N̄i ˜̄ε

′
iak +���*

0
Ñ ′

iakε̄i +N ′
ia
˜̄εik +�

�>
0

Ñikε̄
′
ia +Ni ˜̄ε

′
iak

+ ˜̄N ′
iakεi + N̄ ′

ia��>
0

ε̃ik + ˜̄Nikε
′
ia + N̄i�

��>
0

ε̃′iak + ˜̄M ′
iakκi + M̄ ′

ia��>
0

κ̃ik + ˜̄Mikκ
′
ia + M̄i���*

0
κ̃′iak

)
dΩ

]
uaūk

=

[
1

2

∫
Ω

(
˜̄N ′
iakε̄i + N̄ ′

ia
˜̄εik + ˜̄Nikε̄

′
ia + N̄i ˜̄ε

′
iak +N ′

ia
˜̄εik

+Ni ˜̄ε
′
iak + ˜̄N ′

iakεi +
˜̄Nikε

′
ia +

˜̄M ′
iakκi +

˜̄Mikκ
′
ia

)
dΩ
]
uaūk

(6.24)

From Equation 6.24 the first and second differentiation about the load factor (λ) can be computed,
as presented in Equation 6.25 and 6.26. The third derivative to the load factor is equal to zero.
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˙̃
ψ′
cuaūk =

1
2

∫
Ω

�
��>

0
˙̄̃
N ′

iakε̄i +
˜̄N ′
iak

˙̄εi +�
��

0
˙̄N ′
ia
˜̄εik + N̄ ′

ia
˙̄̃εik +

˙̄̃
Nikε̄

′
ia +

˜̄Nik���
0

˙̄ε′ia +
˙̄Ni ˜̄ε

′
iak

+ N̄i�
��>

0
˙̄̃ε′iak + Ṅ ′

ia
˜̄εik +N ′

ia
˙̄̃εik + Ṅi ˜̄ε

′
iak +Ni�

��>
0

˙̄̃ε′iak +�
��>

0
˙̄̃
N ′

iakεi +
˜̄N ′
iakε̇i

+
˙̄̃
Nikε

′
ia +

˜̄Nikε̇
′
ia +�

��>
0

˙̄̃
M ′

iakκi +
˜̄M ′
iakκ̇i +

˙̄̃
Mikκ

′
ia +

˜̄Mik��>
0

κ̇′ia

 dΩ

]
uaūk

=

[
1

2

∫
Ω

(
˜̄N ′
iak

˙̄εi + N̄ ′
ia
˙̄̃εik +

˙̄̃
Nikε̄

′
ia +

˙̄Ni ˜̄ε
′
iak + Ṅ ′

ia
˜̄εik +N ′

ia
˙̄̃εik + Ṅi ˜̄ε

′
iak

+ ˜̄N ′
iakε̇i +

˙̄̃
Nikε

′
ia +

˜̄Nikε̇
′
ia +

˜̄M ′
iakκ̇i +

˙̄̃
Mikκ

′
ia

)
dΩ

]
uaūk

(6.25)

¨̃
ψ′
cuaūk =

1
2

∫
Ω

�
��>

0
˙̄̃
N ′

iak
˙̄εi +

˜̄N ′
iak��7

0
¨̄εi +�

��
0

˙̄N ′
ia
˙̄̃εik + N̄ ′

ia�
��

0
¨̄̃εik +�

��
0

¨̄̃
Nikε̄

′
ia +

˙̄̃
Nik���

0
˙̄ε′ia +�

�7
0

¨̄Ni ˜̄ε
′
iak + ˙̄Ni�

��>
0

˙̄̃ε′iak

+�
�>

0
N̈ ′

ia
˜̄εik + Ṅ ′

ia
˙̄̃εik + Ṅ ′

ia
˙̄̃εik +N ′

ia�
��

0
¨̄̃εik + N̈i ˜̄ε

′
iak + Ṅi�

��>
0

˙̄̃ε′iak +�
��>

0
˙̄̃
N ′

iakε̇i +
˜̄N ′
iakε̈i

+�
��

0
¨̄̃
Nikε

′
ia +

˙̄̃
Nikε̇

′
ia +�

��
0

˙̄̃
Nikε̇

′
ia +

˜̄Nik���
0

ε̈′ia +�
�7
0

˙̄̃
M ′

iakκ̇i +
˜̄M ′
iak���

0
κ̈i +�

���
0

¨̄̃
Mikκ

′
ia +

˙̄̃
Mik��>

0
κ̇′ia

 dΩ

]
uaūk

=

[
1

2

∫
Ω

(
2Ṅ ′

ia
˙̄̃εik + N̈i ˜̄ε

′
iak + ˜̄N ′

iakε̈i +
˙̄̃
Nikε̇

′
ia

)
dΩ

]
ua

(6.26)

From Equation 6.24, the second derivation with respect to the imperfection field can be found re-
sulting in a third-order tensor and it is equal to Equation 6.27.

˜̃
ψ′
cuaūkūl =

1
2

∫
Ω

�
��>

0
˜̄̃
N ′

iaklε̄i +
˜̄N ′
iak

˜̄εil +
˜̄N ′
ial

˜̄εik + N̄ ′
ia�

�>
0

˜̄̃εikl +�
��>

0
˜̄̃
Niklε̄

′
ia +

˜̄Nik ˜̄ε
′
ial +

˜̄Nil ˜̄ε
′
iak

+ N̄i�
��>

0
˜̄̃ε′iakl +�

��>
0

Ñ ′
ial

˜̄εik +N ′
ia�

�>
0

˜̄̃εikl +�
�>

0
Ñil ˜̄ε

′
iak +Ni�

��>
0

˜̄̃ε′iakl +�
��>

0
˜̄̃
N ′

iaklεi +
˜̄N ′
iak��>

0
ε̃il

+�
��>

0
˜̄̃
Niklε

′
ia +

˜̄Nik�
�>

0
ε̃′ial +�

�7
0

˜̄̃
M ′

iaklκi +
˜̄M ′
iak��>

0
κ̃il +�

��>
0

˜̄̃
Miklκ

′
ia +

˜̄Mik�
�>

0
κ̃′ial

 dΩ

uaūkūl
=

[
1

2

∫
Ω

(
˜̄N ′
iak

˜̄εil +
˜̄N ′
ial

˜̄εik + ˜̄Nik ˜̄ε
′
ial +

˜̄Nil ˜̄ε
′
iak

)
dΩ

]
uaūkūl

(6.27)

Equation 6.27 is used to find the derivatives to the load factor (λ) as shown in Equation 6.28 and
6.29.
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˙̃̃
ψ′
cuaūkūl =

1
2

∫
Ω

�
��>

0
˙̄̃
N ′

iak
˜̄εil +

˜̄N ′
iak

˙̄̃εil +�
���

0
˙̄̃
N ′

ial
˜̄εik + ˜̄N ′

ial
˙̄̃εik

+
˙̄̃
Nik ˜̄ε

′
ial +

˜̄Nik�
��

0
˙̄̃ε′ial +

˙̄̃
Nil ˜̄ε

′
iak + ˜̄Nil�

��>
0

˙̄̃ε′iak

 dΩ

uaūkūl
=

[
1

2

∫
Ω

(
˜̄N ′
iak

˙̄̃εil +
˜̄N ′
ial

˙̄̃εik +
˙̄̃
Nik ˜̄ε

′
ial +

˙̄̃
Nil ˜̄ε

′
iak

)
dΩ

]
uaūkūl

(6.28)

¨̃̃
ψ′
cuaūkūl = 0 (6.29)

From Equation 6.21 the first derivative with respect to the imperfect shape (ū) is equal to Equa-
tion 6.30.

ψ̃′′
cuaubūk =

[
1

2

∫
Ω

(
˜̄N ′
iakε̄

′
ib + N̄ ′

ia
˜̄ε′ibk + ˜̄N ′

ibkε̄
′
ia + N̄ ′

ib
˜̄ε′iak +���*0

Ñ ′′
iabkε̄i +N ′′

iab
˜̄εik +���*

0
Ñ ′

iakε̄
′
ib

+N ′
ia
˜̄ε′ibk +�

��>
0

Ñ ′
ibkε̄

′
ia +N ′

ib
˜̄ε′iak + ˜̄N ′

iakε
′
ib + N̄ ′

ia�
�>

0
ε̃′ibk + ˜̄N ′

ibkε
′
ia + N̄ ′

ib�
��>

0
ε̃′iak

+ ˜̄Nikε
′′
iab + N̄i���*

0
ε̃′′iabk + ˜̄M ′

iakκ
′
ib + M̄ ′

ia�
��>

0
κ̃′ibk + ˜̄M ′

ibkκ
′
ia + M̄ ′

ib���*
0

κ̃′iak

)
dΩ

]
uaubūk

=

[
1

2

∫
Ω

(
˜̄N ′
iakε̄

′
ib + N̄ ′

ia
˜̄ε′ibk + ˜̄N ′

ibkε̄
′
ia + N̄ ′

ib
˜̄ε′iak +N ′′

iab
˜̄εik +N ′

ia
˜̄ε′ibk

+N ′
ib
˜̄ε′iak + ˜̄N ′

iakε
′
ib ++ ˜̄N ′

ibkε
′
ia +

˜̄Nikε
′′
iab +

˜̄M ′
iakκ

′
ib +

˜̄M ′
ibkκ

′
ia

)
dΩ
]
uaubūk

(6.30)

Equation 6.30 can be used to compute the first and second derivative to λ, as shown in Equation 6.31
and 6.32.

˙̃
ψ′′
cuaubūk =

1
2

∫
Ω

�
��>

0
˙̄̃
N ′

iakε̄
′
ib +

˜̄N ′
iak���

0
˙̄ε′ib +�

��
0

˙̄N ′
ia
˜̄ε′ibk + N̄ ′

ia�
��

0
˙̄̃ε′ibk +�

��>
0

˙̄̃
N ′

ibkε̄
′
ia +

˜̄N ′
ibk���

0
˙̄ε′ia +�

��
0

˙̄N ′
ib
˜̄ε′iak

+ N̄ ′
ib�

��>
0

˙̄̃ε′iak +�
��>

0

Ṅ ′′
iab

˜̄εik +N ′′
iab

˙̄̃εik +�
�>

0
Ñ ′

ia
˜̄ε′ibk +N ′

ia�
��

0
˙̄̃ε′ibk +�

�>
0

Ñ ′
ib
˜̄ε′iak +N ′

ib�
��>

0
˙̄̃ε′iak

+�
��>

0
˙̄̃
N ′

iakε
′
ib +

˜̄N ′
iakε̇

′
ib +�

��>
0

˙̄̃
N ′

ibkε
′
ia +

˜̄N ′
ibkε̇

′
ia +

˙̄̃
Nikε

′′
iab +

˜̄Nik�
�>

0
ε̇′′iab +�

��>
0

˙̄̃
M ′

iakκ
′
ib

+ ˜̄M ′
iak���

0

κ̇′ib +�
��>

0
˙̄̃
M ′

ibkκ
′
ia +

˜̄M ′
ibk��>

0
κ̇′ia

 dΩ

uaubūk
=

[
1

2

∫
Ω

(
N ′′

iab
˙̄̃εik + ˜̄N ′

iakε̇
′
ib +

˜̄N ′
ibkε̇

′
ia +

˙̄̃
Nikε

′′
iab

)
dΩ

]
uaubūk

(6.31)

¨̃
ψ′′
cuaubūk = 0 (6.32)

From Equation 6.27, the second derivative with respect to the displacement to form a fourth-order
tensor equal to Equation 6.33. Alternatively, Equation 6.30 could also have been used as an initial
starting point to compute Equation 6.33 and the result would have been the same.
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˜̃
ψ′′
cuaubūkūl =

[
1

2

∫
Ω

(
���*0
˜̄N ′′
iabk

˜̄εil +
˜̄N ′
iak

˜̄ε′ibl +���*
0

˜̄N ′′
iabl

˜̄εik + ˜̄N ′
ial

˜̄ε′ibk

+ ˜̄N ′
ibk

˜̄ε′ial +
˜̄Nik���*

0
˜̄ε′′iabl +

˜̄N ′
ibl

˜̄ε′iak + ˜̄Nil���*
0

˜̄ε′′iabk

)
dΩ

]
uaubūkūl

=

[
1

2

∫
Ω

(
˜̄N ′
iak

˜̄ε′ibl +
˜̄N ′
ial

˜̄ε′ibk + ˜̄N ′
ibk

˜̄ε′ial +
˜̄N ′
ibl

˜̄ε′iak

)
dΩ

]
uaubūkūl

(6.33)

˙̃̃
ψ′′
cuaubūkūl = 0 (6.34)

Finally, the four-order tensor presented in Equation 6.35, can be derived from Equation 6.22.

ψ̃′′′
c uaubucūk =

[
1

2

∫
Ω

(
���*0
Ñ ′′

iabkε̄
′
ic +N ′′

iab
˜̄ε′ick +���*0

Ñ ′′
iackε̄

′
ib +N ′′

iac
˜̄ε′ibk +���*0

Ñ ′′
ibckε̄

′
ia +N ′′

ibc
˜̄ε′iak

+ ˜̄N ′
iakε

′′
ibc + N̄ ′

ia���*
0

ε̃′′ibck + ˜̄N ′
ibkε

′′
iac + N̄ ′

ib���*
0

ε̃′′iack + ˜̄N ′
ickε

′′
iab + N̄ ′

ic���*
0

ε̃′′iabk

)
dΩ

]
uaubucūk

=

[
1

2

∫
Ω

(
N ′′

iab
˜̄ε′ick +N ′′

iac
˜̄ε′ibk +N ′′

ibc
˜̄ε′iak + ˜̄N ′

iakε
′′
ibc +

˜̄N ′
ibkε

′′
iac +

˜̄N ′
ickε

′′
iab

)
dΩ

]
uaubucūk

(6.35)

The higher-order derivatives are equal to zero, as shown below, concluding the derivation of the
imperfect functional derivatives.

˙̃
ψ′′′
c uaubucūk = 0 (6.36)

˜̃
ψ′′′
c uaubucūkūl = 0 (6.37)

˙̃̃
ψ′′′
c uaubucūkūl = 0 (6.38)

6.6. Functional Derivatives for Linear Pre-buckling
The assumption of linear pre-buckling also impacts the functional derivatives. The final expression for
both the perfect and imperfect functional derivatives can be found in section A.3. If linear pre-buckling is
assumed, the perfect second-order derivative (ϕ′′c ) equals the constitutive stiffness matrix of the system
[18, 22].

6.7. Conclusion Functional Derivatives
This concludes the derivation of all functional derivatives for an imperfect plate utilising Donnell kinemat-
ics. A short overview of the non-zero derivatives for each solution possibility is presented in Table 6.2.
A total of four solution possibilities were defined based on two different assumptions. The first assump-
tion is based on which approach is taken to derive the expansion of the potential energy and boils down
to if the non-linear terms of the imperfect structure are taken into consideration or assumed equal to
zero. The second assumption depends on whether the pre-buckling is assumed to linear or non-linear.
These functional derivatives are the only terms that remain in the expansion of the total potential energy
and the other terms cancel to zero.

This derivation is specific for an imperfect plate using Donnell Kinematics. For any other structure
or kinematic relationship the functional derivatives would have to be reevaluated.
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Functional Derivatives
Perfect Imperfect

PL ϕ′′c , ϕ′′′c , ϕivc , ϕ̇′′c ψ′
c, ψ′′

c , ψ′′′
c , ψ̃′

c,
˙̃
ψ′
c, ψ̃′′

c , ψ̃′′′
c

BL ϕ′′c , ϕ′′′c , ϕivc , ϕ̇′′c ψ′
c, ψ′′

c , ψ′′′
c , ψ̃′

c,
˙̃
ψ′
c, ψ̃′′

c , ψ̃′′′
c , ˜̃

ψ′′
c

PN ϕ′′c , ϕ′′′c , ϕivc , ϕ̇′′c , ϕ̈′′c , ϕ̇′′′c ψ′
c, ψ′′

c , ψ′′′, ψ̃′
c,

˙̃
ψ′
c,

¨̃
ψ′
c, ψ̃′′

c , ˙̃
ψ′′
c , ψ̃′′′

c

BN ϕ′′c , ϕ′′′c , ϕivc , ϕ̇′′c , ϕ̈′′c , ϕ̇′′′c ψ′
c, ψ′′

c , ψ′′′, ψ̃′
c,

˙̃
ψ′
c,

¨̃
ψ′
c,

˜̃
ψ′
c,

˙̃̃
ψ′
c, ψ̃′′

c , ˙̃
ψ′′
c ,

˜̃
ψ′′
c , ψ̃′′′

c

Table 6.2: Overview of non-zero functional derivatives for each solution possibility.

.



7
Asymptotic Analysis

The final step for including imperfections in the displacement-based Koiter methodology is to derive
expressions for the initial post-buckling characteristics. There are two different possibilities to formulate
these properties. The first approach is similar to the perfect methodology and the goal is to find an
expression for aI and bI that also includes imperfections within this term. This approach is presented
in detail in section 7.1. On the other hand, the alternative solution methodology assumes that the initial
post-buckling coefficients are derived from the perfect structure and that the imperfection sensitivity of
a structure can be measured by introducing two new coefficients, α and β, which are also referred to as
the imperfection form factors. A detailed explanation of this methodology can be found in section 7.2.

7.1. Initial Imperfect Post-buckling Coefficients
The single mode asymptotic expansions for the load parameters and the displacement field are incor-
porated in either possible expansion of the total potential energy, previously derived in chapter 6. After
performing the substitution, the brackets are expanded and terms are grouped according to their pow-
ers of ξ, up to ξ6 to find the initial post-buckling terms aI and bI to satisfy the equilibrium condition. The
asymptotic expansions are presented in Equation 4.37 and 4.38 and repeated below for convenience.

λ− λc = aIλcξ + bIλcξ
2 (4.37)

u− uc = v = ξuI + ξ2uII + ξ3uIII (4.38)

The objective is to find an expression that combines the perfect post-buckling coefficients with a
correction term for the imperfections. This correction term should be dependent on the imperfect func-
tional derivatives, similar to what is presented in Equation 7.1 and 7.2. The aim of finding this solution
is to immediately observe the effect of the imperfection. It also serves as a verification for when the
imperfection amplitude is set to zero, the methodology including imperfections should yield the same
post-buckling coefficients as the perfect methodology. It is expected that the first post-buckling coeffi-
cient (aI ) will change from a zero value to a non-zero value with the inclusion of imperfections, while the
second post-buckling coefficient will decrease due to the imperfection incorporated into the structure.

aI,imperfect = aI,perfect + constant(ψ(n), ψ̇(n), ψ̈(n)) (7.1)

bI,imperfect = bI,perfect + constant(ψ(n), ψ̇(n), ψ̈(n)) (7.2)

The expressions for the perfect initial post-buckling coefficients are also repeated for convenience.
The first coefficient remains the same, even if the pre-buckling is assumed to be linear. The second
post-buckling coefficient changes to Equation 7.3.
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This solution approach of substituting the asymptotic expansions into the total potential energy and
finding the unknowns such that they assure the equilibrium condition is done for each of the four solu-
tion possibilities and concludes how effective each approach is at determining the initial post-buckling
characteristics.

7.1.1. Option 1: PL
After substituting the asymptotic expansions into the reduced expansion of the total potential energy
as formulated by Pignataro, Equation 7.4 can be found. The underlined terms indicate all the imperfect
terms. When the imperfection amplitude is set to zero all underlined terms disappear, and the remaining
equation matches the one obtained for the perfect case, as presented in Equation B.2. This shows that
the formulation of the perfect terms is correct.
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(7.4)

It is possible to derive aI from the expression multiplied by ξ, according to Equation 7.5 if one
assumes δu = uI . However, it is problematic that the first post-buckling coefficient is not derived from
the terms related to ξ2. If the imperfection amplitude (ξ̄) is set to zero in the methodology including
imperfections it does not equal the coefficient derived for the methodology without imperfections, given
in Equation 4.40. This inconsistency indicates that this specific approach never yields realistic post-
buckling coefficients.

aI =
ξ̄ûψ̃′′

cu
2
I + ϕ′′cu

2
I

−ξ̄û ˙̃
ψ′
cλcuI

(7.5)

If the terms related to ξ2 are inspected to overcome this irregularity, it is evident that this expression
is dependent on three unknowns, namely the first and the second initial post-buckling coefficients (aI
and bI ) and the second order displacement-field (uII ). The arbitrary value δu = uI can be used
resulting in the first-order displacement field being orthogonal to the second-order displacement field.
Due to this orthogonality the terms ξ̄ûψ̃′′

cuIuII and ϕ′′cuIuII equal zero.
The terms multiplied by ξ2 that remain after the simplification of the orthogonality between the first

and second-order displacement field are presented in Equation 7.6. This formulation is dependent on
two unknowns and therefore impossible to get a closed expression for either of the two, but it is possible
to find a formulation for the first-post-buckling coefficient that relies on the second coefficient given by
Equation 7.7.

ξ2
(
ξ̄û
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This expression for bI can be found from the terms multiplied with ξ3. The assumption that δu = uI

is still valid and the terms ξ̄ûψ̃′′′
c uI

2uII and ûϕ̇′′caIλcuIuII equal zero due to the orthogonality between
the two displacement fields, however, the term ϕ′′′c u2

IuII is not equivalent to zero. The remaining terms
multiplied by ξ3 are presented in Equation 7.8 and this expression would yield the same formulation for
the second post-buckling coefficient as given in Equation 7.3.
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6
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)
(7.8)

Equation 7.8 cannot be used to derive bI since the second-order displacement field is still unknown.
Unfortunately, this cannot be found from the terms corresponding to ξ4 because it contains the unknown
bI . It is not possible with the current attempts to rewrite Equation 7.4 to find a closed formulation for
uII . Since the second-order displacement field remains unknown, the second post-buckling coefficient
can not be found since it is dependent on this unknown displacement. Consequently, it also renders
Equation 7.7 useless since aI relies on bI . Therefore it is concluded that this attempt to find imperfect
initial post-buckling coefficients was not successful due to the fact that the expressions rely on two
unknowns and was not possible to isolate one of them similar to the perfect approach.

7.1.2. Option 2: BL
Equation 7.9 arises when the asymptotic expansions are replaced within the potential energy accord-
ing to Budiansky and by simplifying the procedure by assuming linear pre-buckling. If the imperfect
functional derivatives, the underlined terms, are excluded from this expression it is equal to the perfect
methodology presented in Equation B.2. This shows that no errors are made in the derivation of the
perfect terms.
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(7.9)

An expression for aI can be derived from the terms multiplied by ξ and is presented in Equation 7.10.
The same issue as for the PL solution approach occurs and this expression for aI is not derived from the
terms multiplied by ξ2. If the imperfection amplitude is set to zero in this expression it would not match
the expression of the perfect post-buckling coefficient presented in Equation 4.40. This difference
indicates that Equation 7.10 cannot be correct.
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(7.10)

The terms related to ξ2 are dependent on three unknowns, the first and the second initial post-
buckling coefficients (aI and bI ) and the second order displacement-field (uII ). It is assumed that
δu = uI and that the first-order displacement field is orthogonal to the second-order displacement field.
As a consequence the terms 1

2 ξ̄
2û2 ˜̃ψ′′

cuIuII , ξ̄ûψ̃′′
cuIuII and ϕ′′cuIuII equate to zero. The terms that

remain are equal to the PL method and presented in Equation 7.6. Since the expression is equal, the
formulation for aI remains the same, which is provided in Equation 7.7. The first buckling coefficient
stays dependent on the second coefficient.

The terms multiplied by ξ3 up to ξ6 in equilibrium equation Equation 7.9 are equal to the PL equilib-
rium equation presented in Equation 7.4. As the two equilibriums are equal, the same conclusion can
be made. It is not possible to formulate an expression for bI that does not rely on the second-order
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displacement field. The second-order displacement cannot be found since it requires one of the post-
buckling coefficients to be known. Therefore, it must be concluded that with the current attempts, it
was not possible to derive expressions for the imperfect post-buckling coefficients for the BL solution
approach.

7.1.3. Option 3 and 4
Since it was not possible to derive an expression for the post-buckling coefficients even with the sim-
plification of including linear pre-buckling it was decided to not attempt deriving an expression for the
coefficients for options 3 and 4 since these rely on non-linear pre-buckling. The derivation for both
equations is presented in Appendix C.

7.1.4. Conclusion Initial Imperfect Post-buckling Coefficients
It was not possible to derive expressions for aI and bI for the case of linear pre-buckling that was
able to incorporate the effect of the imperfections with the current procedure. For both the PL and the
BL approach an expression for aI could be found from the terms multiplied by ξ however, this was
disregarded as it led to an inconsistency between the perfect and the imperfect displacement-based
Koiter methodology. The term multiplied with ξ2 and higher powers did not yield satisfying results for
deriving an expression for the coefficients.

Even if one were successful in finding the initial post-buckling coefficients, these results would not
have been useful, because a plate with an initial imperfection no longer has a bifurcation point, but
instead a limit load, as depicted in Figure 2.1. The current analysis is performed around the bifurca-
tion point, but the structure would have changed significantly from the perfect configuration, making
this bifurcation point no longer relevant. Hence, the information gained by deriving the post-buckling
coefficients would no longer be representative of the physical situation the plate is experiencing.

Since the attempts to find the coefficient with linear pre-buckling were unsuccessful, the case of non-
linear pre-buckling was not thoroughly analyzed as this was deemed ineffective. However, if this was
attempted and one was successful in finding the initial post-buckling coefficients, these results would
also represent unrealistic behaviour. Since the pre-buckling is no longer linear, the stiffness of the
structure would change before it buckles, indicating that the coefficients would have to be reevaluated
multiple times, which would be computationally inefficient, and therefore would defeat the purpose of
the Koiter methodology.

The only case where the displacement-based Koiter methodology of finding imperfect initial post-
buckling coefficients might still be relevant is for a cylinder with axisymmetric imperfections and linear
pre-buckling. An axisymmetric imperfection is constant along the circumference of the cylinder. Such
cylinders have a bifurcation point despite the inclusion of an imperfection. Hence, one could revisit this
specific methodology and derive expressions for the post-buckling coefficients. However, this is such a
unique situation that this approach of finding imperfect post-buckling coefficients aI and bI should not
be continued.

This conclusion disproves the first hypothesis made about the derivation of the initial post-buckling
coefficients, which is presented below. With the current approach, it was not possible to find initial post-
buckling coefficients. Besides the fact that this attempt was unsuccessful at finding formulation, the
idea behind this methodology was not sound. Due to the imperfections, there is no longer a bifurcation
point and thus the initial post-buckling coefficients no longer reflect reality as the plate would have
buckled sooner.

H2: Hypothesis on the derivations of the initial post-buckling properties

H2.1 Initial imperfect post-buckling coefficients (aI and bI ) can be derived by means of the
displacement-based Koiter methodology.

7.1.5. Comparison Work of Budiansky
As previously noted, the initial imperfect post-buckling coefficients are only useful for the specific sce-
nario of a cylinder with an axisymmetric imperfection, as this structure still has a bifurcation point. Budi-
ansky [4] was able to derive post-buckling coefficients and therefore some of the differences between
Budiansky and the current research are highlighted.
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The derivation for the total potential energy remains exactly equal, however, the imperfection am-
plitude is assumed to depend on the scalar parameter according to the relationship presented in Equa-
tion 7.11.

ξ̄ = αξγ (7.11)

Both asymptotic expansions are substituted into the total potential energy and the assumption that
the imperfection amplitude is dependent on the scalar parameter according to Equation 7.11 is applied
where γ = 2. The emerging equation is regrouped according to the power of ξ.

The terms multiplied by ξ2 are presented in Equation 7.12. An expression for aI can be formulated
according to Equation 7.13 where it is assumed that δu = uI . It is evident that this expression for the
initial post-buckling coefficient is dependent on the perfect coefficient and a correcting term dependent
on the imperfection. This expression for aI is used to reconstruct the load path in the work of Budiansky
according to Equation 7.14, where α can be found by rewriting Equation 7.11.
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ûψ̃′

cuI

ϕ̇′′cλcu
2
I

= aI,perfect − αaI,imperfect (7.13)

λ ≈ λc + aI,perfectξ − (αaI,imperfect) ξ (7.14)

If the initial structure without imperfection is symmetric the perfect initial post-buckling coefficient
(aI,perfect) is equal to zero and thus Equation 7.14 cannot be used to reconstruct the load. An expres-
sion for the second initial imperfect post-buckling coefficient is created to define the load again. To
formulate an expression for bI , it is assumed that γ = 3. The emerging expression for the second
coefficient is presented in Equation 7.15, and clearly consists of the perfect coefficient adjusted by a
term that relies on the imperfect functional derivatives. The coefficient α can be found by rewriting
Equation 7.11.
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The main difference between Budiansky and the current work is that Budiansky simplifies the pro-
cedure by assuming that the imperfection amplitude is dependent on ξ. If this assumption is made the
current work could achieve the same conclusion. The issue with Budiansky is that γ = 2 for the com-
putation of aI , whereas it is equal to three to compute bI , therefore both expressions cannot be used
at the same time due to the different assumptions. The goal of this thesis was to compute both initial
post-buckling coefficients and thus the formulations presented by Budiansky cannot be used directly in
the current methodology of this thesis.

However, the assumption that the imperfection amplitude relies on the load parameter could be
useful and the current approach could be reevaluated for ξ̄ = αξ2. The expression for aI would remain
equal to Equation 7.13, but the expression for the second initial post-buckling coefficient bI should be
computed as well as the second-order displacement field. It was decided not to pursue this path since
formulating these coefficients would only apply to the specific scenario of a cylinder with axisymmetric
imperfection and was not deemed useful within the scope of this thesis.

7.2. Imperfection Form Factors
A more conventional approach to determining the initial post-buckling characteristics of a structure in-
volves using the single-mode asymptotic expansion for the load parameter including additional terms
that relate to the presence of imperfections. This expansion is given by Equation 7.16 [19, 46, 47,
44], compared to the perfect asymptotic expansion presented in Equation 4.37. In the imperfect load
expansion, the parameters α and β are known as imperfection form factors. The coefficients are not
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unique for each imperfection shape but depend on how the imperfection is normalised. To better quan-
tify the sensitivity to imperfections, the term β

α is preferred over just the numerical values of α or β. A
higher value of this ratio corresponds to a lower sensitivity to imperfections, as visually presented in
Figure 7.1.

ξ (λ− λc) = aIλcξ
2 + bIλcξ

3 − αλcξ̄ − β (λ− λc) ξ̄ + . . . (7.16)

Figure 7.1: The influence of β
α
on the buckling load [48].

For the imperfect asymptotic expansion, given by Equation 7.16, the post-buckling coefficients aI
and bI correspond to the perfect structure. These coefficients were previously calculated using the
displacement-based Koiter method by Castro and Jansen [18, 22], and the full derivation can be found
in chapter 4. Additionally, the first and second-order displacement fields can be determined based
on the perfect structure as demonstrated in the same chapter. Hence, the goal of the asymptotic
analysis herein performed is to establish relations using the displacement-based Koiter method for the
imperfection form factors α and β.

First, the imperfect asymptotic expansion can be simplified to Equation 7.17, if the assumption linear
pre-buckling is taken into account, it turns out that α is equal to β [19, 46]. Furthermore, if one also
assumes that the imperfection shape is equal to the first normalized buckling mode, then α = β = 1.
The buckling modes are normalized with respect to the thickness of the plate, and consequently the
imperfection shape as well if one makes this assumption about the imperfection shape.

ξ (λ− λc) = aIλcξ
2 + bIλcξ

3 − αλξ̄ (7.17)

The response of an imperfect plate with α = β = 1 is visually presented in Figure 7.2. It was decided
to take aI = 0 and bI = 0.1717 which are the coefficients derived by Castro and Jansen [18] with the
following material properties:

E1 = 80GPa,E2 = 8GPa,
G12

E2
= 0.6, ν12 = 0.12

The plate itself had a height and width of 0.1m and a thickness equal to 0.1m. The stacking se-
quence is[0/90/90/0]. As expected, the bifurcation point is no longer visible for imperfect plates and it
is replaced with a limit point. As the imperfection amplitude grows the limit point is less significant. This
figure also clearly indicates that an imperfect plate is still capable of sustaining loads after buckling, as
expected due to the positive value of bI .

The issue with this simplification is that it only works for the scenario where the imperfection shape
is equal to the buckling mode. From the literature review, it became clear that the buckling mode is
not a realistic imperfection shape and therefore the goal is to expand the displacement-based Koiter
methodology to include a general imperfection shape. Initially, it is attempted for linear pre-buckling as
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Figure 7.2: Initial post-buckling response of perfect and imperfect plate, where α = β = 1 and aI = 0 and bI = 0.1717

only one imperfection form factor needs to be derived. The goal is to formulate an expression for α and
β for a more general imperfection shape than just the buckling mode.

To achieve this objective, the following methodology is used. Initially, only the asymptotic expansion
for the displacement, given by Equation 4.38, is substituted into the total potential energy. This ensures
the appearance of the term ξ (λ− λc) in the formulation, which can then be replaced with the imperfect
expansion for the load, given by either Equation 7.16 or 7.17. The entire equation is expanded and
grouped according to powers of ξ, ξ2, ξ̄, and ξ̄ξ, with the intention of deriving expressions for α and β.

This solution approach is performed for the four solution possibilities. For the two possibilities in-
volving the assumption of linear pre-buckling, an additional verification check arises. If the imperfection
shape is set equal to the first buckling mode, the methodology should result in α equating to 1. If this
is not the case, it indicates that a mistake was made along the way.

7.2.1. Option 1: PL
Upon substituting the expansion for the displacement, Equation 4.4, into the total potential energy
formulated by Pignataro, the term ξ (λ− λc) arises. The expansion for the load parameter with the
assumption linear pre-buckling, provided in Equation 7.17, is replaced and regrouped to find Equa-
tion 7.18.
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(7.18)

The term multiplied by ξ̄ can be used to derive an expression for αλ. If the term (λ− λc) is disre-
garded similar to what is presented by Arbocz in [44], Equation 7.19 emerges.
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(7.19)

Equation 7.19 is computed for a square plate with the properties previously mentioned. The finite
element implementation of the displacement-based Koiter methodology is described in detail in sec-
tion 4.4. The imperfection shape is initially assumed to be equal to the scaled first buckling mode and
it turns out αλ is equal to 1 · λc. This is exactly as was hypothesized since the imperfection shape is
set equal to the buckling mode. The load and displacement expansions are performed in the vicinity
of the bifurcation point (λc) and thus it makes sense that the value αλ is computed instead of solely α
and most accurate around this bifurcation point. If one compares the initial post-buckling response of
the displacement-based Koiter methodology with the initial assumption that α = β = 1, it is clear that
both responses are equal, as visually depicted in Figure 7.3.

The initial post-buckling response is also plotted for the first four buckling modes and this is pre-
sented in Figure 7.4. It is visible that the first buckling mode is the most significant and has the lowest
bifurcation point. The displacement-based Koiter approach including imperfection shows the typical
post-buckling characteristics that are also visible in literature. Both Figure 7.3 and 7.4 indicate that the
displacement-based Koiter methodology is capable of determining the initial post-buckling characteris-
tics.

Figure 7.3: Comparison between the initial post-buckling
responses of an imperfect plate where α = β = 1 and aI = 0

and bI = 0.1717 and the displacement-based Koiter
methodology (DBKM) where û = uI .

Figure 7.4: Initial post-buckling response of an imperfect
plate for different buckling modes computed by the

displacement-based Koiter methodology (DBKM), where
û = uI .

This initial verification that the results are as expected for an imperfection shape equal to the buck-
ling modes is positive, however, this verification step alone is not sufficient to accept that the method is
without flaws. The model should be compared to literature that computes the imperfection form factors
for different imperfection shapes to validate the inclusion of imperfections in the displacement-based
Koiter methodology. Unfortunately, it was not possible to conduct more verification and validation
within the time frame of this research, but an overview of the proceeding steps can be found in the
recommendations in chapter 9.

7.2.2. Option 2: BL
The expansion of the displacement, Equation 4.4, is substituted into the total potential energy formu-
lated by Budiansky. Afterwards, the expansion for the load parameter with the assumption of linear
pre-buckling, as given in Equation 7.17, is inserted into this formulation and subsequently regrouped
to obtain Equation 7.20.
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The term multiplied by ξ̄ can be used to formulate an expression for αλ. The term ξ̄ is precisely
equal to what is presented in Equation 7.18 and therefore it can be concluded that the expression for
the imperfect form factor is also equal and given by Equation 7.19. Preliminary results show that this
formulation of the imperfection form factors is correct. The fact that both BL and PL conclude the same
post-buckling coefficient indicates that the different approaches to expanding the total potential energy
do not influence the initial post-buckling coefficients for the case of linear pre-buckling.

7.2.3. Option 3 and 4
The remaining two solution possibilities do not rely on the simplification of linear pre-buckling, compli-
cating the solution approach significantly. The derivation of both equilibrium equations can be found in
Appendix C. Due to the increased complexity of deriving the form factors α and β it was not possible
to do this within the time frame of this research.

7.2.4. Conclusion Imperfection Form Factors
The effect of including imperfection form factors in the load expansion yields initial positive results.
There is an indication that imperfections can successfully be included in the displacement-based Koi-
ter methodology. If the imperfection shape is set equal to the buckling mode, the displacement-based
Koiter methodology concludes that αλ is equal to 1 · λc, in line with what literature also predicts. How-
ever, this initial verification is not sufficient to accept that the methodology is without flaws. A detailed
overview of recommendations for future work is presented in chapter 9.

Besides the preliminary conclusion that it might be possible to include imperfections within the
displacement-based Koiter methodology, a conclusion can be made about the two different approaches
to expanding the total potential energy. The expression for αλ is computed from the terms related to ξ̄
therefore it makes no difference which of the two approaches is used. Budiansky includes the non-linear

terms of the imperfection functional derivatives ( ˜̃ψ(n),
˙̃̃
ψ(n) and

¨̃̃
ψ(n)), but these terms are multiplied by

ξ̄2 and hence do not influence αλ.

7.3. Conclusion Asymptotic Analysis
The goal of the asymptotic analysis is to derive expressions for the initial post-buckling characteris-
tics and conclude that imperfections can successfully be included in the displacement-based Koiter
methodology. Two different approaches to deriving these expressions were analyzed.

First of all, the less traditional approach of finding imperfect initial post-buckling coefficients did not
yield satisfying results. With the current approach, it was not possible to derive expressions for aI and
bI . On top of the unsuccessful attempts, it was reflected that this approach would result in unrealistic
coefficients. Due to the introduction of an imperfection to the plate, it no longer has a bifurcation point
and hence performing the asymptotic around the known bifurcation point is not correct. Therefore it is
concluded that this path of determining the initial post-buckling characteristics by means of imperfect
coefficients should be not continued.

On the other hand, the attempts to define the initial post-buckling properties utilising the imperfection
form factors were more successful. Preliminary results show that it is possible to include imperfection
within the displacement-based Koiter methodology. The results are correct for an initial test case, but
more verification and validation should be done to confirm that the approach is correct.
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With all the results presented it is possible to reflect on the hypotheses made at the start of this
thesis. The initial hypotheses are repeated for convenience.

H1: Hypothesis on the assumption linear pre-buckling

The assumption of linear pre-buckling simplifies the procedure of finding the initial post-buckling
coefficients by means of the displacement-based Koiter methodology, but the results are less
accurate.

H2: Hypothesis on the derivations of the initial post-buckling properties

H2.1 Initial imperfect post-buckling coefficients (aI and bI ) can be derived by means of the
displacement-based Koiter methodology.

H2.2 The initial imperfect post-buckling coefficients (aI and bI ) are more efficient in predicting
the post-buckling behaviour of a structure, compared to the imperfect form factors.

H1 cannot be disproved or said to be correct since the attempts of non-linear pre-buckling were not
done due to the lack of results for a plate with linear pre-buckling. For non-linear pre-buckling, it is more
complicated to find formulations for the imperfection form factors (α and β) since now two coefficients
have to be found instead of just one for the case of linear pre-buckling. However, no statement can be
made if the results are more accurate.

H2.1 was previously said to be invalid in the conclusion of the initial imperfect post-buckling coef-
ficients. The coefficients cannot be derived with the current approach. Moreover, the idea of finding
imperfect coefficients should not be continued to due the fact that imperfect structures no longer have
a bifurcation point.

H2.2 is rejected due to the inability to find imperfect post-buckling coefficients. It was concluded that
this approach to define the initial post-buckling properties was not correct and should not be continued,
therefore it will never be more efficient than finding the imperfect form factors. Note that is assumed
that the displacement-based Koiter approach of defining the imperfection form factors is extensively
verified and validated and proven to be accurate, which it is currently not.
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Conclusion

This research aimed to include imperfections in the displacement-based Koiter methodology and to de-
velop an easily implementable and computationally efficient approach. This novel approach should be
suitable for recurring processes such as sensitivity studies, ultimately leading to the creation of design
guidelines for imperfection-insensitive cylinders. These cylinders are more weight-efficient compared
to cylinders sensitive to imperfections and therefore ideal for aerospace applications, such as the outer
shells of rockets.

To demonstrate the incorporation of imperfections within the displacement-based Koiter methodol-
ogy, it was decided to apply the approach first to a plate with an imperfection utilising the single-mode
expansion and Donnell-type kinematics. In order to achieve this goal, three steps are identified to in-
clude imperfections within the displacement-based methodology. First of all the total potential energy
of an imperfect structure is expanded by performing three Taylor expansions. Two possibilities arise
for this expansion, one formulation set up by Budiansky and another one derived by Pignataro. Fol-
lowing this, the functional derivatives are derived utilising the Donnell kinematics by means of Frechét
derivatives. One can simplify this procedure by assuming that the pre-buckling is linear resulting in the
out-of-plane rotations to be equal to zero, alternatively, one can disregard this assumption and have
supposedly more accurate but consequently also more functional derivatives. A total of four solution
possibilities arise due to the two assumptions related to the expansion of the total potential energy and
the pre-buckling behaviour. The last step is to perform an asymptotic analysis.

Each of these four solution opportunities is used to derive the initial post-buckling characteristics
of an imperfect plate. The initial idea was to formulate expressions for imperfect initial post-buckling
coefficients. This approach did not yield satisfying results and it was decided not to continue this path
of finding imperfect coefficients. This decision was backed up due to the fact that imperfect structures
no longer have a bifurcation point and therefore it does not make sense to perform an asymptotic
expansion in the vicinity of this critical load.

A more successful attempt was to evaluate the initial post-buckling characteristics by means of
imperfection form factors. Two new coefficients are introduced in the load expansion for which expres-
sions should be found. For the case of linear pre-buckling, it was possible to derive an expression for αλ.
The first preliminary results show that this derivation was correct, but more cases should be evaluated
before it is concluded that the inclusion of imperfections was done correctly for the displacement-based
Koiter methodology. Besides the promising results, it was also shown that it did not matter whether
the formulation of Pignataro or Budiansky was used to expand the total potential energy since both
obtained the same expression for αλ.

Therefore, the goal of including imperfections in the displacement-based Koiter methodology is not
completed yet. The first attempt to find imperfect post-buckling coefficients was not successful and
should not be revisited. The preliminary results for deriving imperfection form factors are promising,
however, it is too soon to conclude that this approach for including imperfections in the displacement-
based Koiter approach is correct without further verification of the model.

43



9
Recommendations

The objective of including imperfection in the displacement-based Koiter methodology was not achieved
yet and therefore several recommendations for future research are presented in this chapter such that
this goal becomes attainable.

The displacement-based Koiter approach of finding imperfection form factors needs to be verified
and validated thoroughly before it can be concluded that imperfections have been incorporated suc-
cessfully. The most simple way to verify the inclusion of imperfections within the displacement-based
approach is to compare its results to work presented in the work of Rahman [19] and Tiso [43]. Both re-
searchers are focused on implementing the Koiter approach within finite element simulations, but there
are no examples of imperfect plates presented in their work. The methodology of deriving the imper-
fection form factors presented in both is implemented in the finite element software DIANA. Therefore
it is possible to create the missing data on imperfect plates. A reference plate with several different im-
perfection shapes should be modelled in DIANA as well as the current displacement-based approach
and the results of the imperfection form factors should be compared. The coefficients are expected to
be exactly equal since both methodologies utilize the Koiter approach. One should pay attention to the
scaling of the imperfection shapes as this influences the imperfection factors and could be a potential
source for differences.

Another possible verification is to recompute the displacement field and observe the effect of the
initial imperfection. The displacement field can easily be reconstructed by finding the scalar parameter
ξ for each different load parameter. This ξ needs to be substituted back in u−uc = v = ξuI + ξ2uII +
ξ3uIII to the displacement. The out-of-plane displacement of a given node can be compared to the
same out-of-plane displacement computed by FE simulation of an imperfect plate to verify that the
inclusion of imperfections in the displacement-based Koiter methodology is correct.

Once the inclusion of imperfections in the displacement-based methodology has been proven to
work it opens up many possibilities. The method can be expanded from single mode to multi-mode to
find the post-buckling characteristics when multiple buckling modes interact which is often the case for
cylinders. The kinematics can be extended from Donnell to Sanders’ to include more non-linear terms
that are more accurate for cylindrical shells as it captures the non-linear behaviour of the initial post-
buckling better than Donnell’s [22]. The Sanders kinematics including initial imperfections is presented
in Equation 9.1 and 9.2 [49]. When deriving the functional derivatives for a cylinder assuming linear
pre-buckling, it is no longer true that the out-of-plane displacement is equal to zero, as in the case of a
plate.
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Finally, the methodology relying on the imperfect form factors is based on the perfect post-buckling
coefficients. Cylinders are known to have a negative second post-buckling coefficient and therefore
cannot sustain loads after buckling. Optimisation algorithms are recommended in combination with the
Koiter methodology to find cylinders with a positive buckling slope. This will be similar to the research
conducted by Santos and Castro. [40], but the topic could be more explored to establish guidelines for
composite cylinders with positive b-factors. This research did not include the manufacturing limitation
that shearing can only initiate from a zero-degree angle. It would be interesting to explore if cylinders
with a positive b-factor can still be achieved if the true manufacturing capabilities of CTS are considered.
Moreover, the research by Santos and Castro was explicitly done with CTS in mind, however, other VA
manufacturing techniques could be explored since it was evident from the literature review that AFP
and TFP also showed promising results.

In addition to suggesting necessary implementations, it is also important to discourage certain prac-
tices. The methodology of finding initial imperfect post-buckling coefficients should not be done again.
No time and effort should be put into revisiting this methodology and finding the correct coefficients.
These coefficients would only be applicable for a cylinder with an axisymmetric imperfection and this
specific scenario is not broad enough that is it deemed useful for practical application.
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A
Derivation Functional Derivatives for

Linear Pre-buckling

A.1. Strains
The kinematics with the assumption of linear pre-buckling neglect the initial out-of-place displacement
(w0), however due to the fact that uc = u0(λc) is applicable all terms related to the out-of-place dis-
placement equate to zero.

A.1.1. Perfect
The derivation of the derivatives of the perfect strain can be found in subsection 4.2.1 and only the
conclusions are presented here to with the goal of removing the out-of-plane terms.
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A.1.2. Imperfect
The derivation of the derivatives of the perfect strain can be found in section 6.1.
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A.2. Stresses
The stresses are derived directly from the strains and therefore only the non-zero stresses are pre-
sented down below. An overview of the non-zero strains is presented here.
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A.3. Functional Derivatives
The functional derivatives for a plate with the assumption linear pre-buckling are presented down be-
low. All the terms equal zero are crossed-out in the derivation. An overview of the non-zero terms is
presented in Table A.1 which is created from the derivation presented above.

Strains Stresses
Perfect Imperfect Perfect Imperfect

ε ε̄′a Ni andMi N̄ ′
ia and M̄ ′
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ika and ˜̄M ′

ika

κ′
a N ′′

iab andM ′′
iab

ε′′ab Ṅi and Ṁi

ε̇

Table A.1: Overview all relevant strains and stresses for the perfect and imperfect structure with assumption linear pre-buckling

A.3.1. Perfect
The derivation of the perfect functional derivatives can be found in subsection 4.2.3.
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ϕ̈′′′c uaubuc =0 (A.29)

ϕ̇ivc uaubuc =0 (A.30)

ϕ̈ivc uaubuc =0 (A.31)

A.3.2. Imperfect
The derivation of the imperfect functional derivatives can be found in section 6.5.

ψ′
cua =

[
1

2

∫
Ω

(
N̄ ′

ia���
0

ε̄i +���
0

N̄iε̄
′
ia +N ′

ia���
0

ε̄i +Niε̄
′
ia + N̄ ′

iaεi +���
0

N̄iε
′
ia + M̄ ′

ia��>
0

κi +��>
0

M̄iκ
′
ia

)
dΩ

]
ua

=

[
1

2

∫
Ω

(
Niε̄

′
ia + N̄ ′

iaεi
)
dΩ

]
ua

(A.32)



A.3. Functional Derivatives 54

ψ′′
cuaub =

[
1

2

∫
Ω

(
N̄ ′

iaε̄
′
ib + N̄ ′

ibε̄
′
ia +N ′′

iab���
0

ε̄i +N ′
iaε̄

′
ib +N ′

ibε̄
′
ia

+N̄ ′
iaε

′
ib + N̄ ′

ibε
′
ia +���

0

N̄iε
′′
iab + M̄ ′

iaκ
′
ib + M̄ ′

ibκ
′
ia

)
dΩ

]
uaub

=

[
1

2

∫
Ω

(
N̄ ′

iaε̄
′
ib + N̄ ′

ibε̄
′
ia +N ′

iaε̄
′
ib +N ′

ibε̄
′
ia

+N̄ ′
iaε

′
ib + N̄ ′

ibε
′
ia + M̄ ′

iaκ
′
ib + M̄ ′

ibκ
′
ia

)
dΩ
]
uaub

(A.33)

ψ′′′
c uaubuc =

[
1

2

∫
Ω

(
N ′′

iabε̄
′
ic +N ′′

iacε̄
′
ib +N ′′

ibcε̄
′
ia + N̄ ′

iaε
′′
ibc + N̄ ′

ibε
′′
iac + N̄ ′

icε
′′
iab

)
dΩ

]
uaubuc (A.34)

ψiv
c uaubucud = 0 (A.35)

ψ̃′
cuaūk =
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cuaūkūl =

1
2

∫
Ω

 ˜̄N ′
iak���

0
˜̄εil +

˜̄N ′
ial��>

0
˜̄εik +�

�>
0

˜̄Nik ˜̄ε
′
ial +�

��
0

˜̄Nil ˜̄ε
′
iak

 dΩ

uaūkūl
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B
Full Expansion of the Total Potential

Energy
Equation B.1 arises after the asymptotic expansions are substituted into the expansion of the total
potential energy for a perfect plate.
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Equation B.1 can be rewritten including the assumption linear pre-buckling to Equation B.2.
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C
Non-Linear Asymptotic Analysis

C.1. Initial Imperfect Post-buckling coefficients
C.1.1. Option 3: PN
Equation C.1 emerges after the substitution of the asymptotic expansions into the full potential energy
following the work of Pignataro. The imperfect terms are underlined to emphasize the difference be-
tween the perfect and imperfect derivatives.
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C.1.2. Option 4: BN
The final and further longest expression for the fourth solution approach is presented in Equation C.2 af-
ter the asymptotic expansions are substituted into the full potential energy of Budiansky. The imperfect
terms are underlined to highlight the difference between the perfect and imperfect terms.

ξ̄ûψ̃′
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C.2. Imperfection Form Factors
C.2.1. Option 3: PN
The displacement expansion is replaced into the full total potential energy expansion. Subsequently,
the imperfect expansion for the load, provided in Equation 7.16, is substituted to replace ξ (λ− λc).
The emerging equation is rewritten to find Equation C.3. If the imperfection amplitude is set to zero,
thus the underlining terms vanish, it equals the perfect equilibrium presented in Equation B.1.
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c uIuII

)
δu

+ξ4
(
1

2
(λ− λc) ϕ̈

′′
c bIλcuII + ϕ̇′′′c aIλcuIuII +

1

2
ϕ̇′′′c bIλcuI

2 + ϕ̇′′c bIλcuII +
1

2
ϕivc u2

IuII

+
1

2
ϕ′′′c u2

II

)
δu

+ξ4ξ̄

(
û
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C.2.2. Option 4: BN
The last possibility for deriving the imperfection form factors is obtained by substituting the expansion
for the displacement into the full expansion of Budiansky. Consequently, the imperfect load expansion
including both form factors is replaced for ξ (λ− λc), resulting in the following equation after the terms
are regrouped. If the imperfection amplitude is set to zero, thus the underlining terms vanish, it equals
the perfect equilibrium presented in Equation B.1.
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ûψ̃′′

cuII +
1

2
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˙̃
ψ′′
c βuI − û
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