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ARTICLE INFO ABSTRACT

Aftic{e history: Heart rate data are often collected in human factors studies, including those into vehicle
Received 30 September 2018 automation. Advances in open hardware platforms and off-the-shelf photoplethysmogram
Received in revised form 5 August 2019 (PPG) sensors allow the non-intrusive collection of heart rate data at very low cost.

Accepted 24 September 2019 However, the signal is not trivial to analyse, since the morphology of PPG waveforms

differs from electrocardiogram (ECG) waveforms and shows different noise patterns. Few
validated open source available algorithms exist that handle PPG data well, as most of
these algorithms are specifically designed for ECG data.
Heart rate analysis In this paper we present the validation of a novel algorithm named HeartPy, useful for
Physiological signals the analysis of heart rate data collected in noisy settings, such as when driving a car or
Signal analysis when in a simulator. We benchmark the performance on two types of datasets and show
Open source that the developed algorithm performs well. Further research steps are discussed.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

Vehicle automation is rapidly gaining popularity in the agendas of the automotive sector and governments. Automation
promises to increase traffic flow efficiency (Hoogendoorn, van Arem, & Hoogendoorn, 2014) and free up the time of the dri-
ver for other activities. However, (semi-)autonomous vehicles below SAE level 5 will still need to interact with the driver, for
example for a transition of control, or in emergency situations when the automation fails. This means that the vehicle needs
to be aware of the driver’s state (e.g. distraction, fatigue), because a transition of control can be dangerous when the driver is
not able to take over control of the vehicle (Merat, Jamson, Lai, Daly, & Carsten, 2014), because of for example high workload
or distraction. Additionally, In-Vehicle Information Systems (IVIS) that interact with the driver to provide information or
advices can also benefit from knowledge about the driver’s state to choose the most appropriate interface (Birrel, Young,
Stanton, & Jennings, 2017; Park & Kim, 2015), content and timing of the information (van Gent, Farah, van Nes, & van
Arem, submitted for publication).

Algorithms are being developed that can estimate the driver’s state, whether this is driver workload (Solovey, Zec, Garcia
Perez, Reimer, & Mehler, 2014; van Gent, Melman, Farah, van Nes, & van Arem, 2018), driver distraction (Liang, Reyes, & Lee,
2007) or a driver’s interruptibility (Kim, Chun, & Dey, 2015). Heart rate is frequently included as an input for predicting a
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driver’s state since it contains information about changes in (driver) workload (Mehler, Reimer, & Coughlin, 2012; Mehler,
Reimer, Coughlin, & Dusek, 2010), stress (Healey & Picard, 2005), and general driver state such as drowsiness (Danisman,
Bilasco, Djeraba, & Ihaddadene, 2010). In addition to the benefits for autonomous systems, many human factors studies
focusing on the interaction between the driver and (semi-)autonomous vehicles also include heart rate measurements
(Jamson, Merat, Carsten, & Lai, 2011; Reimer, Mehler, & Coughlin, 2016; Reimer, Mehler, Coughlin, Roy, & Dusek, 2011;
Stapel, Mullakkal-Babu, & Happee, 2017).

However, capturing heart rate in the often noisy conditions of either a driving simulator or in an in-vehicle setting, and
subsequently analysing the complex signals either real-time or offline, can be difficult or costly (Brookhuis & de Waard,
2010). Low-cost commercial devices are available, but these are generally designed for sporting contexts and not specifically
for scientific research. Furthermore, the proprietary nature of the firmware and software used in these devices creates prob-
lems with data reliability, reproducibility of results, and integration into in-vehicle hardware for the purpose of real-time
driver monitoring. This reduces the usefulness of these devices for research into (partially) self-driving vehicles and makes
it nearly impossible to integrate them into actual in-vehicle systems.

One potential solution lies in the recent advances in wearable technology and open hardware platforms, such as Arduino’
and Raspberry Pi.” They are open source in both hardware and software design, meaning that integration into existing systems
is feasible. There is, however, a lack of open source available heart rate analysis algorithms that are validated, easy to use and
able to handle noisy data from low-cost PPG sensors. Implementations of heart rate analysis algorithms described in research
papers are often not available, poorly documented, or require substantial technical expertise to implement properly.

In a previous study we collected heart rate data with low-cost sensors to develop an affordable driver workload estima-
tion approach (van Gent et al., 2018; van Gent, Farah, van Nes, & van Arem, 2017). Available open source algorithms did not
function well on this type of -often noisy- data and couldn’t easily be integrated into a real-time system. To overcome this
issue, our aim is to develop a novel algorithm that (i) functions better on this type of noisy data, and (ii) provides an easy-to-
use analysis method for the collected heart rate data both, offline and real-time. We’ve named the developed algorithm
HeartPy. For a technical overview of HeartPy, its development and its availability, please see (van Gent, Farah, van Nes, &
van Arem, submitted for publication). The main aim of this paper is to describe the validation of HeartPy using two datasets:
a noisy dataset collected in a driving simulator (van Gent et al., 2017), and an openly available medical dataset (Jager et al.,
2003).

In the rest of this paper, we first describe basic properties of the heart rate signal as they relate to data collection and
analysis. This is followed by a brief overview of the algorithm’s functioning, discussion of our methods, results and conclud-
ing remarks.

1.1. Measuring heart rate in naturalistic or simulated settings

There are two major approaches to measuring heart rate, which mainly differ in the physiological properties they
measure.
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Fig. 1. The differences in morphology of the ECG wave (a) and PPG wave (b), and the time lag ‘x’ between both waves (c). The ECG (a) wave consists of most
notably the Q-R-S complex (I-1II). The P (IV) and T (V) waves are also marked in the plot. The PPG (b) wave consists of the systolic peak (VI), the diastolic
peak (VIII) and the dichrotic notch (VII).

1 See http://www.arduino.cc.
2 See http://www.raspberrypi.org.


http://www.arduino.cc
http://www.raspberrypi.org

370 P. van Gent et al./ Transportation Research Part F 66 (2019) 368-378

Electrocardiogram recordings (ECG) are collected by placing electrodes on the chest near the heart. These elec-
trodes measure the electrical activation of the heart during each cardiac cycle. The defining feature in the ECG signal
is the QRS complex (Fig. 1a I-Ill). Advantages of the ECG signal are that it directly measures the heart’s electrical
activation and that it presents a strong QRS complex presence in the resulting signal (Fig. 1a). A common source
of noise in ECG signals are motion artefacts resulting from sensor displacement due to participant movement. These
tend to fall in the same frequency range as the QRS-complexes, which can make it difficult to filter them without
deforming the QRS complex (Kirst, Glauner, & Ottenbacher, 2011). In traffic related studies, ECG recordings have been
used in for example (Brouwer & Dijksterhuis, 2015; Fallahi, Motamedzade, Heidarimoghadam, Soltanian, & Miyake,
2016; Farah et al., 2012; Miyaji, Danno, Kawanaka, & Oguri, 2008). The main disadvantage is that ECG is not easily
measured unintrusively.

Photoplethysmogram (PPG) recordings offer a less invasive method of assessing the cardiac cycle. These devices
employ an optical sensor to measure the changes in coloration of the skin as blood perfuses through the arteries
and capillaries with each heartbeat. PPG is typically measured at the fingertip or through wrist bracelets. The PPG
signal consists of a systolic peak (Fig. 1b-VI), a dicrotic notch (1b-VII), and a secondary peak called a diastolic peak
(1b-VIII). The secondary peak may be absent in some recordings or of very low amplitude. Advantages of the PPG
method are that it is low cost, easy to set up, and non-invasive (Elgendi, 2012; Millasseau et al., 2000). Ways of
obtaining the PPG signal contactless through cameras have been demonstrated, further reducing intrusiveness (Sun,
Hu, Azorin-Peris, Kalawsky, & Greenwald, 2012). However, PPG tends to display more amplitude variation over short
time-intervals (Fig. 1c), more variation in waveform morphology, as well as contain more noise from various
sources when compared to ECG measurements. This makes analysis more difficult. In the traffic domain, PPG sen-
sors have been used by for example (Jarvis, Putze, Heger, & Schultz, 2011; van Gent et al., 2018; Zhai & Barreto,
2006).

1.2. Analysing heart rate data

The heart signal is often split into heart rate (HR) and heart rate variability (HRV) measures. Heart rate is a simple mea-
sure of the heart period, expressed in the beats per minute and the inter-beat interval. Heart rate variability measures
describe how the heart rate signal varies over time, and can be divided into time-domain measures and frequency-
domain measures (Mehler, Reimer, & Wang, 2011; Montano et al., 2009).

When extracting heart beats from a signal, a marker is chosen that can reliably be detected at the same position on all
heartbeat complexes in the signal. In the ECG the R-peak is often taken (Fig. 1a-II), in the PPG signal the maximum of the
Systolic wave is usually marked (Fig. 1b-I).

Common measures expressing the HR found in the literature are the beats per minute (BPM) and the mean inter-beat
interval (IBI). HRV is expressed by the median absolute deviation of intervals between heart beats (MAD), the standard devi-
ation of intervals between heart beats (SDNN), the root mean square of successive differences between neighbouring heart
beat intervals (RMSSD), the standard deviation of successive differences between neighbouring heart beat intervals (SDSD),
and the proportion of differences between successive heart beats greater than 50 ms and 20 ms (pNN50, pNN20, resp.). HRV
can also be expressed in the frequency domain, where two frequency bands are usually included: low frequency (LF, 0.04-
0.15 Hz), which is related to short-term blood pressure variation (Bernardi et al., 1994), and high frequency (HF, 0.16-0.5Hz),
which is a reflection of breathing rate (Montano et al., 2009).

Despite the different underlying physiological constructs that are measured, a high correlation (median 0.97) between
peak-peak intervals extracted from ECG and PPG signals has been reported (Selvaraj, Jaryal, Santhosh, Deepak, & Anand,
2008). This makes the PPG a valid alternative for applications that require non-intrusive heart rate measurements, given that
validated analysis algorithms exist.

1.3. Development and availability HeartPy

We developed HeartPy to help analyse noisy heart rate data collected in driving settings (both simulated and on-road).
The algorithm runs on desktop computers (Python) as well as wearables (embedded C) such as Arduino and Teensy boards,
both offline and in real-time. The latter allows for real-time heart rate analysis in in-car settings as well as other mobile sit-
uations, such as with cyclists or pedestrians. The algorithm is available as the Python package ‘HeartPy’, hosted on GitHub
(van Gent, 2017) and is installable through Python’s ‘pip’ package manager as well. Documentation is available through the
GitHub page. The wearable embedded C version is available on GitHub as well (van Gent, 2018), together with documenta-
tion linked there.

HeartPy was designed to be resistant to typical noise patterns (e.g. motion artefacts, momentary signal loss) of partici-
pants engaged in other tasks (driving simulator, on-road car experiment, bike experiment), to be capable of handling signals
from low-cost off-the-shelf sensors, and to be user friendly.
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1.4. Overview of the HeartPy algorithm

HeartPy comes with various pre-processing options to clean up signals, including FIR filtering and outlier detection. This
section briefly outlines the peak detection methods. Please refer to van Gent et al. (submitted for publication) for more infor-
mation on the software, its availability and its functioning.

Peak detection uses an adaptive threshold (Fig. 2III) to accommodate for morphology and amplitude variation in the
PPG waveform, followed by outlier detection and rejection. To identify heartbeats, a moving average is calculated using a
window of 0.75 s on both sides of each data point. Regions of interest (ROI) are computed between two points of inter-
section where the signal amplitude is larger than the moving average (Fig. 2I-1I), which is a standard way of detecting
peaks. Two methods of obtaining a peak’s location are included. In the first approach, the peak position is simply taken
to be the highest point in the marked ROI. Although this is a computationally low-cost operation, its accuracy depends
on the sampling rate used, with a higher sampling rate resulting in more accurate results. In the second method a uni-
variate spline is used to upsample and interpolate the ROI, which is then solved for its maximum. This requires more
computation but is also more accurate, especially with lower sampling rates. Both methods are available in HeartPy,
by default the fast method is used.

| " I
| M Ml |

o MK U
l,l){ 4l1 ‘l‘ \ qul'}l ‘ 1

IV,
—>

| ‘
wﬂkmunﬂ“‘

Fig. 2. Process of peak extraction: a moving average is used as an intersection threshold (I). Candidate peaks are marked at the maximum between
intersections (II), with optional spline interpolation available to improve position accuracy. The moving average is raised stepwise (III). IV. shows the
detection of the onset and end of clipping, and the result after interpolating the clipping segment.

Signal clipping is a special case that hinders the accurate placement of a peak’s position. Clipping can occur for various
reasons, for example when digitising an analog signal. HeartPy detects the onset and end of clipping segments, and will
attempt to reconstruct the waveform by spline interpolation, as shown in Fig. 3IV.

During the peak detection phase, the amplitude of the calculated threshold is adjusted stepwise (Fig. 2III). The best fit
is determined by minimising the standard deviation of peak-peak intervals (SDNN, see also 2.2). The instantaneous heart
rate (BPM) is computed and evaluated in tandem with the SDNN. This represents a fast method of approximating the
optimal threshold amplitude by using the (relative) regularity of the heart rate signal. As shown in Fig. 3, missing
one peak (III.) already leads to a substantial increase in SDNN compared to the optimal fit (II.). Marking incorrect peak
positions also leads to an increase in SDNN (I.). The lowest SDNN value that is not zero, in combination with a reason-
able BPM value, is selected. The BPM must lie within a predetermined range (default: 40 <= BPM <= 180, range settable
by user).
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Fig. 3. Effects of missing or additional peaks on the SDNN metric: the last image (IIl.) shows that missing a single beat will already lead to a large increase in
SDNN compared to the optimal fitting. BPM is also considered when fitting.

Due to the variable PPG waveform morphology, it is possible that after the initial peak fitting phase incorrectly marked
peaks remain. Motion artefacts may be another cause of detection error. A correction is performed by thresholding the
sequence of peak-peak intervals. Peaks are considered low confidence if the interval created between two adjacent peaks
deviates by more than 30% of the mean peak-peak interval of the analysed segment (Fig. 4). The threshold is adaptive based
on the current segment with a minimum value of 300 ms. We’ve found this to be a good approximation for incorrect detec-
tions. If any peaks are considered incorrect detections, the array of peak-peak intervals is recomputed to only contain inter-
vals between two high confidence peak positions.

. Peak-peak intervals with thresholds ||. PPG signal with rejected peaks marked

| £

Fig. 4. The plotted peak-peak intervals with thresholds (I.), and the resulting rejected peaks (IL.)

2. Methods

The algorithm was validated using two datasets from two different experiments and research domains. The first dataset
used was collected with a low-cost PPG sensor in a driving simulator experiment (van Gent et al., 2018). This dataset con-
tains approximately 20.7 h of PPG recordings. The second dataset is the openly available Long-Term ST Database (Jager et al.,
2003), containing 86 long ECG recordings of 80 participants, with each recording being between 21 and 24 h.

The PPG dataset was used in its entirety and split into one-minute segments. Because the ECG dataset was so large, 1.000
one-minute segments were randomly selected from the database. The peak positions in all the segments from both datasets
were annotated manually and checked a second time to serve as a ground truth. These annotations are also available on the
GitHub page (van Gent, 2017). For both data sets a one-minute length for the segments was used to balance both the number
of peaks in each segment with the time needed to manually annotate all segments. The algorithm performance was com-
pared to the annotated data on four variables: detected peak position, mean of the peak-peak intervals calculated over
the analysed segment, beats per minute computed by the algorithm (a HR measure), and a common heart rate variability
(HRV) measure: the standard deviation of successive differences (SDSD). To quantify the accuracy of the algorithm’s predic-
tions, we used the Root Mean Squared Error (RMSE), defined as:
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~\2
RMSE = w (1)
where y is the ground truth value, y is the value predicted by the algorithm, and n the number of comparisons. For the accu-
racy of the absolute peak-positions in time as compared to the annotated ground truth, we used the mean of the absolute
deviations.

2.1. Error types

In addition to the performance comparison, the results of the one-minute segments were plotted and three types of errors
annotated (shown in Fig. 2): ‘Incorrectly rejected’ - meaning that a correct peak has been marked as low confidence (Fig. 2a).
‘Missed’ - indicating that a peak is present but not marked (Fig. 2b). ‘Incorrectly accepted’ - indicating a peak is marked
where no peak is considered present by the human annotator (Fig. 2¢). Fig. 2d, e and f show other examples that were clas-
sified as ‘incorrectly accepted’: cases where a peak was marked at a non-maximum position, or where a diastolic peak was
marked instead of a systolic peak. The algorithm has been designed to minimise the ‘incorrectly accepted’ error type for rea-
sons discussed in the next section.

a.) b.) c.) d.) e) f.)
p &

L

Fig. 5. Figure displaying the possible errors. These are: (a) ‘incorrectly rejected’, (b) ‘missed’, (c) ‘incorrectly accepted’. Peaks marked on a correct QRS
complex but not on its peak maximum, are also counted as ‘incorrectly accepted’. This type of error is shown in (d). Other possible mistakes counted as
‘incorrectly accepted’ are marking a peak at a non-maximum position (e), or incorrectly marking a diastolic peak (f).

2.2. Minimising the correct error type

The algorithm was designed to minimise the ‘incorrectly accepted’ peak error types because this error type has the stron-
gest effect on calculated output measures. This section illustrates why the choice was made.

Heart rate variability (HRV) measures are not robust against outliers. Marking a peak on an anomalous position affects
these measures since they express the variation in the intervals between peak positions. Marking a peak at an incorrect time
position creates a deviation in the length of the surrounding intervals which will strongly influence the variance in the sam-
ple. Note that the heart rate (HR) measures such as IBI and BPM are quite resistant to outliers because they use the mean of
all peak-to-peak intervals in a given signal segment.

To further explain and show these effects, a bootstrapped simulation was performed. We took a manually annotated one-
minute segment of PPG heart rate data and artificially introduced two types of errors:

(1) “Incorrectly rejected” peaks were simulated by dropping a random n% of peaks from the signal. Measures were then
calculated on intervals between peaks where no missing value occurred in between, mimicking the algorithm’s beha-
viour of only computing peak-peak intervals between two accepted peaks.

(2) “Incorrectly accepted” peaks were simulated by introducing a position error into a random n% of all peaks. The error
disturbed the peak position randomly by 0.1-10%, meaning a random positional disturbance of between 1 ms and
100 ms. For each selected peak the disturbance magnitude was randomised.

Simulations were run with values of 5%, 10% and 20% for ‘n’. Each simulation run was bootstrapped for 10.000 iterations
to reduce the effects of the random selection process.

Results show that the effect of incorrect beat detections (displacement scenario) is significantly stronger than the effect of
missing values, especially the effect on HRV measures. The effect on BPM is negligible in both the missing and displacement
simulations, showing the HR measures’ resilience to outliers. Effects on HRV measures are substantial. The data are displayed
in Table 1 below, and the analysis notebook is available on the Python GitHub (van Gent, 2017).

3 See: https://github.com/jramshur/ECG_Viewer.
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Table 1
The absolute errors introduced in the simulations. The errors introduced in the HRV measures by displaced peaks are
particularly evident (marked grey).

Errors introduced in simulated scenarios (n=10.000)

Missing n% of peaks Displacing n% of peaks
n=5% n=10% n=20% n=5% n=10% n=20%
BPM 0.001 0.007 0.062 0.000 0.000 0.000
1BI 0.012 0.067 0.541 0.002 0.004 0.003
SDNN 0.004 0.042 0.267 2.635 5.172 10.006
SDSD 0.614 1.210 2.354 9.543 16.365 26.200
RMSSD 0.773 1.565 3.161 10.774 19.658 34.446
pNN20 0.006 0.012 0.025 0.043 0.082 0.149
pNN50 0.005 0.010 0.022 0.064 0.125 0.232

The data in the table show that the errors induced are especially large in the case of the variability measures. As discussed,
this has to do with what the measures are designed to express: the variability measures express the variation in the beat-to-
beat intervals. Considering that for example the RMSSD range tends to lie between roughly 20-55 (Kim & Woo, 2011) and in
our experience rarely exceeds 125, the error of 34.446 introduced by displacing 20% of peaks is more than large enough to
bury any effects of external factors on HRV. Effects on BPM (and thus IBI as well) are negligible, however, reflecting their
relative insensitivity to outliers.

3. Results
3.1. PPG data

The PPG dataset represents 20.7 h of PPG recordings split into 1240 one-minute segments. Due to sensor disconnects,
1.095 (18.25 h) of the data contained a heart rate signal. The signals were recorded at the tip of the finger as participants
were driving in a driving simulator. The sensor placement did not interfere with driving. Participants were instructed to
drive as they normally would in real life.

The data set was manually annotated by a human, then checked a second time to ensure accuracy. To annotate the set a
custom tool was developed based on the Python’s ‘pyplot’ plotting library. Each of the segments was visualised, and in the
tool the annotator could manually mark peak locations, correct incorrectly placed peak locations and delete incorrect detec-
tions. Segments where little to no heart rate signal was present (for example due to the sensor detaching from the fingertip)
were excluded. This left a total of 1.095 segments for the validation phase. A total of 89,837 peaks were detected by the algo-
rithm. Of these, 84,845 (95.11%) were correctly accepted, and 2977 (3.34%) were correctly rejected automatically. This indi-
cates that for 98.45% of all detections, the algorithm correctly labelled the peak locations. 957 (1.07%) peaks were incorrectly
rejected. 426 (0.48%) peaks were incorrectly accepted. A total of 632 peaks were annotated as missed. Most of the incorrectly
accepted peaks occur either because a peak location was marked not at but nearby its maximum (Fig. 2e) which induces a
minor error, or because a diastolic (secondary) peak is marked as a peak (Fig. 2f) which induces a larger error. Future updates
of the algorithm aim to further reduce these error rates.

We compared the performance of our algorithm with an implementation of the Pan-Tompkins QRS algorithm (Pan &
Tompkins, 1985), as well as with an open source algorithm called HRVAS ECGViewer.? The latter was chosen because it is
one of the first hits when searching for open source heart rate analysis software on Google and it shows high usage statistics.
It is designed for Matlab, but a standalone version is also available. The Pan Tompkins algorithm is a computationally efficient
algorithm widely used in ECG analysis.

The comparison results are displayed in Table 1. They indicate that our algorithm significantly outperforms the other two
open source algorithms on PPG data. The peak position error is 0.89 (milliseconds), indicates that the mean of the errors
between the actual peaks and the predicted peaks was low compared to the other two algorithms. The resulting peak-
peak intervals were also more accurate compared to the other algorithms. This is likely due to less missed and less incor-
rectly accepted beats in our case (see Table 2).

Differences in BPM error are not very large. Since the BPM uses the mean of all peak-peak intervals in a segment, it is
relatively robust to a few incorrectly placed peak positions. However, effects on heart rate variability measures are large.
To evaluate HRV performance we selected the Standard Deviation of Successive Differences (SDSD), which is one often used

3 See: https://github.com/jramshur/ECG_Viewer.
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HRV measure that expresses how the intervals between the heart beats vary over time. It shows a large root mean squared
error in the other two algorithms. This shows the importance of correctly identifying peak positions as well as identifying
incorrectly labelled peaks, as deviations risk introducing substantial error to the output measures.

Table 2
Table showing how our algorithm compares to two other popular open source algorithms on key metrics.

Comparison of algorithm performance on PPG dataset (N = 1240)

Peak location error (ms) RMSE peak-peak intervals RMSE BPM RMSE SDSD
Developed algorithm 0.89 29.64 3.77 167.77
Pan-Tompkins 7.62 267.67 10.73 1060.77
HRVAS ECGViewer 4.25 171.32 4.76 364.74

All analysis data, code and results are also available on the GitHub page (van Gent, 2017) in the form of Jupyter notebooks.
These can be opened and viewed directly on GitHub, or downloaded and executed using the Python 3.6 Anaconda
distribution.”

3.2. ECG data

The 1.000 sections selected from the ECG dataset comprise a total of 16.67 h of heart rate data. More information about
the dataset is available in the publication of Jager et al. (2003).

The dataset was fully annotated. A total of 73.841 peaks were detected by the algorithm. Of these, 73.443 (99.46%) were
correctly accepted and 190 (0.26%) were correctly rejected, representing a total of 99.72% of peaks correctly treated. 54
(0.07%) of peaks were incorrectly rejected, and 154 (0.21%) were incorrectly accepted. A total of 929 peaks were annotated
as missed, meaning they were not detected by the algorithm. Note that with ECG, which has a more stable morphology, per-
formance is significantly improved compared to PPG.

This performance was compared to the same algorithms as described above. The developed algorithm again showed
superior performance on ECG data, although we were impressed with the performance of ECGViewer as well. The peak posi-
tion error is lower compared to the PPG data, reflecting that the ECG waveform is easier to detect and more stable than the
PPG waveform. The peak finding method we employ does not discriminate between the types of waveforms and can handle
considerable morphological distortion.

The details are displayed in the table below.

Table 3
Table showing how our algorithm compares to two other popular open source algorithms on key metrics.

Comparison of algorithm performance on ECG dataset (N = 1000)

RMSE peak location RMSE peak-peak intervals RMSE BPM RMSE SDSD
Developed algorithm 0.16 6.38 0.41 221.79
Pan-Tompkins 6.84 335.25 3.07 371.38
HRVAS ECGViewer 3.64 97.34 1.88 231.96

As with the PPG data, all analysis data, code and results are also available on the GitHub page (van Gent, 2017) in the form
of Jupyter Notebooks. These can be used in conjunction with the manually annotated datasets to validate the performances
on both datasets.

If must be noted that the lower performance of the other two algorithms is mainly due to a relatively small number of
segments. Further analysis showed that for the developed algorithm, 98.7% of all segments had an error of 25 ms or less
in the computed peak-peak intervals, with 58.1% showing no error at all. For the Pan-Tompkins implementation the majority
(67.5%) also showed an error of 25 ms of less, with 9.5% showing no error at all. For the ECGViewer implementation 77%
showed an error of less than 25 ms. No segments were without error. The reason for this is likely that this implementation
uses a template matching system for beat detection, which while robust to noise, also creates slight errors in the positions of
detected peaks because the template rarely matches the heartrate waveform in the measured signal perfectly.

Furthermore, the ECGViewer implementation for example failed to detect any peaks in 108 segments (10.8%), likely due
to noise or deviating morphology. One such example is shown in the Fig. 3 below. These segments were excluded from the
calculation of the performance measures from Table 3, so they do not negatively influence these measures.

4 See: https://www.anaconda.com/download)/.
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Fig. 6. An example of a noisy ECG recording where the ECGViewer implementation fails to detect any complexes. These segments were excluded from
further analysis.

3.3. Additional information embedded in the heart rate signal: Breathing patterns

In addition to heart rate, the developed algorithm extracts breathing patterns from the collected heart rate data as well.
Heart rate tends to increase during inhalation and decrease again during exhalation (Grossman & Taylor, 2007). This creates
the possibility of extracting an estimate of the breathing rate from heart rate signals.

We've included a basic estimation method in the algorithm and validated it on an existing dataset (Karlen, Raman,
Ansermino, & Dumont, 2013), that includes both PPG and respiratory data from patients undergoing surgery. Ground truth
breathing rate was calculated from the CO, capnometry signal, which measures the increase in carbon dioxide concentration
whenever the patient exhales. To extract breathing rate from the PPG signal the peak-peak intervals were upsampled, and
their cycles marked. The following image visualises how the upsampled signal relates to the CO, capnometry signal.

CO2 capnometry signal

a.)

estimated breathing from PPG

b.)

Fig. 7. Figure showing how the CO2 capnometry signal (top) relates to the breathing signal extracted from the PPG.

As discussed in (Grossman & Taylor, 2007), the relationship between heart rate variability and breathing rate is not a lin-
ear one and can be impacted by factors such as medication use and physical strain. The results of our validation on this data-
set reflect this nonlinear relationship. The estimates correspond to the breathing rate determined by capnometry but include
detection errors. See Table 4 for an overview of the detection errors expressed as the difference in Hertz between ground
truth and calculated measures. The mean error present in the PPG estimation compared to the ground truth estimation of
breathing rate, corresponds to a confidence interval of roughly 5-10%. This illustrates that the breathing rate extracted from
the PPG signal should only be taken as an estimation and not an absolute value. Future improvements to the method might
increase accuracy. The data files and analysis code are available on the GitHub page (van Gent, 2017).
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Table 4
Table showing the difference between the ground truth breathing rate and the breathing rate estimated from the PPG.
Mean Median Minimum Maximum
Error magnitude 0.028 0.015 0 0.102

4. Discussion and conclusion

In this paper we have presented the validation analysis and results of a novel, robust heart rate analysis algorithm devel-
oped for use in lab settings, as well as in-vehicle and other mobile settings. The motivation to develop such an algorithm is
that current available open source algorithms do not work well on noisy PPG data, are often highly technical or expensive to
implement, and because low-cost commercial measurement devices offer no suitable solution for scientific purposes. The
developed algorithm runs both in real-time and offline, on desktop computers and wearable (embedded) hardware. This
makes it ideal for human factors studies seeking to incorporate heart rate analysis in their design, which includes studies
into how automated vehicles can obtain and maintain an awareness of the driver’s state.

We have evaluated the algorithm’s performance on a manually annotated PPG and an ECG data set and compared the
performance to two other available algorithms. Results showed superior performance on PPG data. This reflects that the
lower performance of the two other algorithms is specific to the type of data: PPG data collected in the field using low-
cost sensors has quite different signal and noise properties compared to ECG data, for which many available open source
algorithms are designed. Despite the higher noise rate, PPG data can be collected using less intrusive or even contactless
methods, which makes it ideal for real-world driving settings. On ECG data the differences between algorithms were less
pronounced.

Making automated vehicles smarter means they need to be aware of the driver’s state. Heart rate is one physiological
marker that allows the estimation of driver state on several levels. By offering an openly available and validated toolkit
for heart rate analysis, we aim to increase the research possibilities into this field, as well as the reliability and reproducibil-
ity of results obtained.

One limitation of the present validation is that it was performed on 2.095 one-minute segments, due to the time-
intensive nature of the manual annotation. The annotation was done by hand, which means minor errors can exist in the
annotations. Although we believe that the reported performance is a good reflection of real-world performance due to
the two different datasets used, a larger validation will add further confidence to the results. Furthermore, the included
breathing rate estimation should be taken as an estimated value rather than an absolute one, since the relationship between
heart rate and breathing rate is not linear. Future steps include this larger validation, as well as increasing the accuracy and
functionality of the algorithm, and comparing its performance to commercially available solutions (see Figs. 5-7).
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