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PREFACE 

 “There is nothing more certain and unchanging than uncertainty and change.” 

hese words, already spoken some time ago by John F. Kennedy, reflect the uncertainties 

in our contemporary society that continuously affect our lives. Despite this ever-present 

uncertainty, how can we make better decisions? How to deal with these often deep 

uncertainties, is one of the most valuable insights I gained from (almost) completing my master's 

in Engineering and Policy Analysis. In my studies, I also developed an interest in simulation and 

modelling. It was inevitable that these two had to be combined in the thesis that is now in front 

of you. The importance of uncertainty analyses and the simulation and modelling of complex, 

socio-technical systems is now, I reckon, more relevant than ever.  

At the beginning of my graduation, I imagined the end differently. Even though everyone had to 

withdraw a little, my supervisors, friends, and family had done a lot for me. This preface would 

not be complete without expressing my appreciation. 

First of all, I would like to address my graduation committee. When I came to the two biggest 

geeks of the TPM faculty when putting together my thesis committee, I was afraid that I would 

feel ignorant. The opposite is true. In the beginning, we agreed that documenting “first” and 

“second” supervisors was only a distinction on paper. I am glad that this remained so until the 

end of my thesis. I find it extraordinary how enthusiastically you have guided and motivated me. 

Jan Kwakkel, thank you for your guiding attitude in the world of uncertainty analysis. If I had 

read or come up with something, you would always be able to name a term or concept, and you 

would spoon down a number of articles relating to it. Despite your busy schedule, you made time 

to help me and to have extensive discussions. 

Igor Nikolic, thank you very much for your help in writing my thesis. I really appreciated your 

relaxed attitude and sincere interest. You like to link the methods and uncertainty analyses to 

the real world: what real-life insight can we get out of this and how do we communicate this to 

people who understand it even less than I do? This has helped me to keep the link to the "real 

world". 

I would like to thank my family for reading my thesis, hearing endless stories about uncertainty, 

multi-models, and how this combination can be applied to, for example, the port of Rotterdam. 

And of course for your unfailing support. 

I would also like to thank my friends for the welcome distraction. With some of them, I went 

through the same graduation stages. That helped me a lot to keep going.  

All that's left is for me to wish you a lot of fun reading my thesis. 

 

Alexander Drent 

Delft, July 15th 2020  
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ABSTRACT 

ur contemporary society consists of increasingly complex systems-of-systems in which 

technical and social subsystems influence each other. Multi-models reflect this complexity 

and are useful to analyse these complex socio-technical systems. They consist of 

connected simulation models which may each have their focus on a subsystem or modelling 

paradigm. However, these models contain different types of uncertainties influencing the fidelity 

of the results. Several methods are available to identify and analyse these uncertainties. It is yet 

unknown if and how existing uncertainty analysis methods can be applied to multi-model 

ecologies. In this thesis, we aim to provide for an answer to the following research question: 

“To what extent can we apply existing uncertainty analysis 
methods to multi-models?” 

To answer this question, it is important to first identify additional uncertainties in multi-model 

ecologies compared to single models. Next, we identify and apply methods to analyse these 

additional uncertainties. As proof of principle, a multi-model is used which focusses on the 

expansion and decarbonisation of the energy grid in the Port of Rotterdam.  

There are three dimensions of uncertainty in simulation models: location, level, and nature. The 

different locations include the conceptual model, the computer model, input data, the technical 

model implementation, and the processed output data. In multi-models, we found an additional 

location: the interface. This is where the exchange of parameters between the models takes 

place. Within the multi-model locations, we identified some aspects that increase uncertainty. 

Epistemic opacity and computational expense are properties of multi-models that limit the 

analyst's knowledge of the multi-model and the feasibility of extensive uncertainty analyses. 

The methods we identified for analysing these types of uncertainties are divided into sensitivity 

analysis and calibration. Sensitivity analysis quantifies the contribution of specific uncertainties 

to the overall uncertainty in the model outcome. Well-established methods are extra-trees 

feature scoring and Sobol. Calibration methods are based on the notion of equifinality. Using a 

specified likelihood function, they determine parameter values that lead to results with a high 

likelihood. Monte Carlo Markov Chain (MCMC) methods are often used for calibration purposes. 

The applicability of these methods depends on the multi-model configuration. To describe these 

configurations, two limiting archetypes were used: directed graphs, and undirected graphs with 

feedback mechanisms over the model components. We found that uncertainty analysis of direct 

graphs can be carried out on both the model components and the whole. For undirected graphs, 

the research showed only added value in performing an uncertainty analysis on the whole multi-

model. Otherwise, the changing context and emerging path dependencies cannot be included.  

The application of extra-trees feature scoring, Sobol, and MCMC on the case study model showed 

that methods for uncertainty analysis are applicable on multi-models by including uncertainties 

on the interface. Furthermore, it is possible to reduce computational costs by factor fixing, 

distinguishing between deep and stochastic uncertainties, and assessing the convergence of 

sensitivity indices. Epistemic opacity can be dealt with by performing multiple replications and 

by including uncertainties related to the technical implementation of the multi-model. MCMC 

methods are suitable for scenario discovery, which provides insight into parameter values that 

lead to specific model results. 
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For future research on this topic, it is recommended to apply uncertainty analysis on multi-

models with different network structures and a higher number of model components. This 

research offers a single case study multi-model, being an undirected graph with two model 

components. The role of uncertainties on the interface, epistemic opacity, and computational 

expense should then be further investigated in these different configurations. In addition, other 

uncertainty analysis methods in the context of multi-modelling could be investigated. Especially 

the application of moment-independent sensitivity analyses could be interesting to investigate 

further, since multimodal outcomes can arise from the interaction of heterogeneous models.  
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1.  

INTRODUCTION 

1.1 Research Context 
arge-scale, complex systems are an increasingly important component of our evolving 

modern-day society, consisting of both social and technical aspects, combined in a network 

of different actors. Examples of such large-scale socio-technical systems are the complex 

infrastructures used to provide energy, telecommunication, transports of goods and people, 

water management, and healthcare. Typical for these systems is that they show unpredictable, 

highly uncertain and emergent behaviour, which dynamically evolves. They often consist of 

subsystems, all influencing each other. An evolving field where these dynamics occur is, for 

example, the field of energy systems and its challenges relating to climate change, forcing the 

energy infrastructure to develop and become more sustainable (Herder, Bouwmans, Dijkema, 

Stikkelman, & Weijnen, 2008; Nikolic, Kwakkel, & Bletsis, 2019; van Dam, Nikolic, & Lukszo, 

2013). 

1.1.1 Simulation models 
To analyse socio-technical systems, we use simulation models. These models are a theoretical, 

simplified representation of reality and help to assess the impact of policies and uncertainties to 

improve the real-world system. It is essential to consider that the outcomes of models only 

imitate some relevant features of real-world processes. Models use input data for initial and 

boundary conditions, to process in the technical implementation of the model. This 

implementation consists of all hardware and software that are involved in executing the 

simulation model. Simulation models, in turn, also generate data, which is generally processed 

using statistical methods and software. A vital element of this processing is the visualisation of 

this data to understand and interpret the outcomes. There are a lot of different methodological 

approaches to build these models and to prepare and process the input and output data 

(Petersen, 2006). 

1.1.2 Multi-models 
In the field of modelling and simulation, there is a growing need for tools capable of analysing 

large-scale socio-technical systems. A new approach is the use of multi-models, consisting of 

multiple models, connected in a multi-model ecology. These models may each have their own 

(modelling) paradigm and focus on a specific part of the (sub)system. In this way, a broader 

picture of the system can be taken into account since one formalism usually is not able to capture 

the complexity of the whole system. The individual models may focus on different technical or 

societal aspects of the system or both. The output of one model can be input for another model 

and vice versa. In this way, the models co-evolve and adapt to each other over time (Bollinger, 

Nikolic, Davis, & Dijkema, 2015; Carley, Morgan, Lanham, & Pfeffer, 2012; Mikulecky, 2001). 

Following Bollinger, Nikolic, Davis, & Dijkema (2015), we define a multi-model ecology as "an 

interacting group of models and data sets co evolving with one another within the context of a 

dynamic socio-technical system" (p.254). 

Using and developing multi-models has many advantages. Multi-models enable us to investigate 

different uncertainty paths across the entire width of the system. This ensures that undesirable 

results can be prevented and allows us to make robust no-regret decisions that work regardless 
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of how the future unfolds. Developing and testing simulation models is a time-intensive exercise, 

involving a high level of expertise. It is sensible to reuse these models in other configurations 

and couple them with other models. In decisions in which several parties are involved, the 

combination of multidisciplinary model formalisms increases the recognizability of the results. 

The principle of authority, combining different models developed by authorities on their specific 

domains, gives the combined multi-model an even more credible status.  

1.1.3 Windmaster project 
An example of a multi-model is the Windmaster project, conducted by the Delft University of 

Technology and Siemens, in collaboration with Gasunie, TenneT, Stedin, Port of Rotterdam, 

Deltalinqs, ISPT, and the province of South-Holland. This multi-model focusses on the energy 

transition in the industrial complex located at the Port of Rotterdam. It is developed to shape 

adaptive and robust investment policies to assure that the industrial complex in the Port of 

Rotterdam is decarbonised by 2050. The multi-model combines three models: an exploratory 

modelling scenario model, a technical-economical infrastructure model (which again consists of 

two sub-models for gas and electricity infrastructure) and a model that focusses on the 

investment behaviour of network operators (Wurth et al., 2019). 

1.1.4 Challenges regarding multi-models 
There are many challenges when developing multi-models (Nikolic, Kwakkel, et al., 2019; 

Nikolic, Warnier, et al., 2019). First, it needs to be technically possible to connect two or more 

models. This aspect is referred to as interoperability: the way the different models exchange 

data and how models are implemented and executed. Another aspect of connecting two or more 

models is composability. Composability deals with the question if it makes sense to connect these 

models on a conceptual level; are concepts across the different models defined in the same 

manner? Do assumptions in one model also stand when its outcome is transferred to another 

model? Composability consists of many aspects: consistency of syntax, semantics, and 

pragmatics, assumptions and validity. Validity concerns the question if the model is correct (Davis 

& Tolk, 2007). Validity closely relates to fidelity: the extent to which the model is capable of 

reproducing real-world behaviour (Feinstein & Cannon, 2001). Pace (2015) defines fidelity as a 

multi-faceted concept, consisting of attributes as accuracy, precision, timeliness, potential error 

sources and uncertainties, consistency, and repeatability.  

1.1.5 Uncertainty  
Uncertainties and potential error sources impact fidelity. In modelling and simulating socio-

technical systems, there are a lot of different sources for uncertainty. These sources include 

stochastic variables and processes, a lack of accuracy and precision, and errors (Pace, 2015). A 

widely accepted definition of uncertainty is “a lack of precise knowledge as to what the truth 

is, whether qualitative or quantitative” (National Research Council, 1994, p. 161).  

There are different kinds and levels of uncertainty identified in the available literature. 

Funtowicz & Ravetz (1990) differentiate between ‘inexactness’, ‘unreliability’ and ‘border with 

ignorance’. Inexactness is expressed by using a range, and unreliability by a statistical confidence 

level. The ‘border with ignorance’ is impossible to express statistically. According to Walker et 

al. (2003), uncertainty is roughly divided into two types: uncertainty due to lack of knowledge 

and deep uncertainty. Deep uncertainty is defined as “the condition in which analysts do not 

know or the parties to a decision cannot agree upon (1) the appropriate models to describe 

interactions among a system’s variables, (2) the probability distributions to represent 

uncertainty about key parameters in the models, and/or (3) how to value the desirability of 

alternative outcomes” (Lempert, Popper, & Bankes, 2003, p. 3).  Pennock & Gaffney (2018) 

distinguish three kinds of uncertainty: aleatory uncertainty, epistemic uncertainty, and errors. 
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Aleatory uncertainty is any uncertainty or variation that is impossible to be reduced by new 

measurements, as opposed to epistemic uncertainty, where new measurements are able to 

reduce uncertainty. Epistemic uncertainty can be nestled in phase, structural, and ontological 

uncertainty.  

1.1.6 Decision-making under deep uncertainty 
Uncertainties impact our ability to make decisions. Often our reaction is to do more research, 

make more predictions, or use more models. Following the aphorism by Box (1976), all those 

models have one thing in common: they are all wrong. Due to the complexity of socio-technical 

systems and a high degree of uncertainty, we are unable to sketch an unambiguous picture of 

the future. 

Decisions concerning large socio-technical systems are never made by one party. Different 

parties are involved who look at the same problem in a different way. They often disagree on 

assumptions, problem definitions, desired outcomes and how the system works. They interpret 

the same results or data differently and claim to know how the system works. We cannot predict 

the future, so we do not know who is right. That is why we have to look at problems and systems 

in a broader perspective using uncertainty analysis and multi-models. If we have to make 

decisions for the future now, we have to accept the associated uncertainty: given that we do not 

know, what is the best we can do?   

1.2 Research Question 
When creating multi-models, different problems arise around the composability of two or more 

models. Composability is affected by the validity and fidelity of the models. Factors influencing 

the fidelity include uncertainties and errors in the models. Since models are subject to different 

types of uncertainty, ranging from errors to epistemic and deep uncertainty, these uncertainties 

might propagate when coupling these models in a multi-model ecology (Nikolic, Kwakkel, et al., 

2019; Nikolic, Warnier, et al., 2019). To analyse the impact of uncertainties and errors in (single) 

simulation models, a range of methods is available. These methods are capable of assessing the 

influence of varying input parameters on the outputs of the model. However, it is uncertain if 

these methods also provide sufficient insight into uncertainty in the domain of multi-models. 

Also, there are no known methods to assess the uncertainty propagation in multi-models. To be 

able to assess the validity of such models, methods are needed to provide insight into this 

uncertainty propagation. 

The knowledge gap this research is focussing on is the ability to apply existing methodologies for 

assessing the impact of uncertainties on single simulation models on multi-model ecologies. This 

research will be conducted as part of graduating from the master Engineering & Policy Analysis 

(EPA). Typical EPA- problems involve multiple actors, faced with a wicked problem, where the 

problem is perceived differently by different actors, and no clear solution is available (Rittel & 

Webber, 1973). To be able to gain a better understanding of complex systems, we need to be 

able to develop models, reflecting the complexity of large-scale socio-technical systems. This 

means we need to gain an understanding of how uncertainty propagates in a multi-model ecology 

and how this impacts the model results.  

Therefore, the research question is defined as follows: 

“To what extent can we apply existing uncertainty analysis 
methods to multi-models?” 
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To be able to understand the uncertainty propagation in multi-models, we use a case study 

approach, using an existing multi-model to apply single-model methods for uncertainty analysis. 

To answer the main question, we distinguish the following sub-questions: 

1. What additional sources of uncertainties exist in multi-model ecologies in comparison to 

single models? 

This question focusses on sources of uncertainties. There are currently frameworks available for 

describing the uncertainty in single models. The aim is to give insight into what is different and 

what may be additional sources of uncertainty in multi-model ecologies. The question will be 

answered using a literature study. 

2. What methods for uncertainty analysis exist to analyse uncertainty propagation in single-

models? 

This question focusses on methods to analyse uncertainties in single-models. The goal is to select 

methods and compare them to make a selection of methods that will be put to further use in the 

research. The question will be answered through a literature study. 

3. How can these methods be applied to analyse a whole multi-model ecology?  

Based on the provided additional uncertainties in multi-models and the available methods, this 

question aims to develop an understanding of how these methods can be applied on a multi-

model ecology. The selected methods are going to be used on a case study multi-model, the 

Windmaster model, as proof of principle. Based on this uncertainty analysis, we aim to conclude 

on uncertainty analyses of multi-models in general. 

1.3 Structure 
The structure of this research is as follows. It starts with elaborating on uncertainty in simulation 

models and multi-models in particular. Next, the available methodologies are discussed and 

subsequently, a general approach to the use of these methods in the context of multi-modelling 

is given. This approach will be used to apply to the Windmaster model. Based on this specific 

case, a synthesis will be made regarding the use of uncertainty analysis on multi-models.  

  



 

 

 5 

2.  

UNCERTAINTY IN MULTI-MODEL ECOLOGIES 

his chapter aims to answer the first sub-question: “What extra sources of uncertainties 

exist in multi-model ecologies in comparison to single models?” First, a synthesis will be 

made of what is known about uncertainty regarding single simulation models. This will be 

based on definitions and frameworks found in the literature. This synthesis will lead to a 

framework to assess uncertainty in single models, which will subsequently be supplemented with 

sources of uncertainties that are expected to play a role in multi-model ecologies. 

2.1 Dimensions of Uncertainty 
Uncertainty consists of many aspects, and there are different types of uncertainty. Uncertainty 

is typified using three dimensions: location, level, and nature. Location concerns the source of 

uncertainty, the level of uncertainty deals with the severity of uncertainty, and the nature of 

uncertainty describes whether this uncertainty is part of the system, or caused by lack of 

knowledge or consensus amongst experts (Kwakkel, Walker, & Marchau, 2010; Walker et al., 

2003). In the next three paragraphs, we discuss these dimensions in more detail. 

2.1.1 Location of uncertainty 
The location of uncertainty refers to which part of the model the uncertainty occurs. Based on 

Kwakkel et al. (2010), Petersen (2006), and Walker et al. (2003), we distinguish five locations of 

uncertainty: 

• Conceptual model 

• Computer model 

o Model structure 

o Model parameters 

• Input data 

• Technical model implementation 

• Processed output data 

The conceptual model is at the essence of the simulation model. It determines the context and 

boundaries of the system and what general theories, principles, assumptions, and relationships 

underlie the model. Due to these demarcations -what is included and what is not- and 

assumptions, uncertainties may arise in this location. There may also be alternative or even 

contradicting conceptual models, based on other theories, concepts, or relationships, which 

could be a source of uncertainty as well.  

The computer model comprises how the conceptual model is translated into computer code using 

model parameters, relations, and mathematical functions. In Petersen (2006), this location is 

referred to as the ‘mathematical’ model. We subdivide the computer model location into the 

structure of the model and the used parameters. These parameters are inside the model or used 

as a representation of an external effect or policy. 

The input data determine the initial values and boundary conditions of model parameters. As 

input data may, for example, come from other simulation models, experiments, observations, or 

‘guesstimations’, there might be different sources of uncertainty in this location. 
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The technical model implementation consists of all hardware and software used for implementing 

and running the simulation model. Uncertainties in this location could be caused by bugs and 

errors in the model code or hardware. 

Simulation models, in turn, also generate data which is generally processed and visualised using 

statistical methods and software to understand better and interpret the outcomes of the model. 

The simulation model’s output data is the location where the uncertainties of the other locations 

stack after having propagated during a simulation run. Additional uncertainties may arise during 

the processing of the output data and in the interpretation of this data (Kwakkel et al., 2010; 

Petersen, 2006; Walker et al., 2003). 

2.1.2 Level of uncertainty  
The level of uncertainty indicates the degree, or severity, of uncertainty. On the two extreme 

sides of this dimension are deterministic knowledge, when there is no uncertainty at all, and 

total ignorance, where we can say nothing knowledgeable because we simply do not know that 

we do not know. Between these two extreme levels of uncertainty, we define five levels of 

increasing uncertainty: from marginal uncertainty, shallow uncertainty, medium uncertainty, 

deep uncertainty, to recognised ignorance. These levels, included in Table 1, are defined by 

Pruyt & Kwakkel (2014):  

• Deterministic knowledge applies to systems in which there is no uncertainty involved. We 

consider this type of uncertainty the ‘zero-point’ on the uncertainty scale.  

• Level 1: Marginal uncertainty addresses systems in which there might be some recognised 

uncertainty, but the influence of this uncertainty on the outcomes of the model is 

deemed negligible.  

• Level 2: Shallow uncertainty applies to systems in which some uncertainties are present 

that can be described sufficiently in statistical terms. This kind of uncertainty is captured 

through a forecast within a confidence interval or multiple forecasts (scenarios) with 

certain probabilities.  

• Level 3: Medium uncertainty refers to uncertainties in which scenarios are developed, 

but the probability of these scenarios cannot be expressed in statistical terms. However, 

they can be arranged in order from probable to unlikely.  

• Level 4: Deep uncertainty applies to situations in which we may develop future scenarios, 

but we do not know or cannot agree upon the probability of occurring, and we cannot 

determine if one scenario is more or less likely to occur than another scenario. Deep 

uncertainty can be defined as “the condition in which analysts do not know or the parties 

to a decision cannot agree upon (1) the appropriate models to describe interactions 

among a system’s variables, (2) the probability distributions to represent uncertainty 

about key parameters in the models, and/or (3) how to value the desirability of 

alternative outcomes” (Lempert et al., 2003, p. 3).   

• Level 5: Recognised ignorance is the most severe level of recognised uncertainty. It refers 

to situations in which we have no clue about the underlying mechanisms in the system, 

and we are unable to estimate the possibility of certain events happening. The only thing 

that is known is that we do not know. In the literature, this kind of uncertainty may also 

be referred to as ‘black swans’ (Taleb, 2015) or ‘coconut’ uncertainty (Makridakis, 

Hogarth, & Gaba, 2009), indicating that we know certain phenomena or events exist or 

may occur, but we cannot predict them nor explain the underlying causes.  

• Total ignorance is the severest level of uncertainty. In these situations, we can say 

nothing about the uncertainty, because we do not know that we do not know. This type 

of uncertainty acts as the other limiting case on the uncertainty scale. Since this type of 

uncertainty cannot be specified, it is not covered by recognised uncertainty anymore.  
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Table 1  Five levels of uncertainty as found in Walker et al. (2013, p. 4): marginal uncertainty (level 
1), shallow uncertainty (level 2), medium uncertainty (level 3), deep uncertainty (level 4), and recognised 
ignorance (level 5). Two extreme levels of uncertainty demarcate these levels: deterministic knowledge on 
the left side and total ignorance on the right side.  

 

2.1.3 Nature of uncertainty 
Nature concerns whether uncertainty is caused by variability in the real-world system, or by lack 

of knowledge. Two classifications are used: ontic and epistemic uncertainty. Ontic uncertainty 

applies to systems that are chaotic by nature. Therefore, this kind of uncertainty cannot be 

reduced by increasing knowledge since it is unpredictable. This type of uncertainty, dealing with 

situations we cannot know, may also be referred to as ‘aleatoric’ or ‘statistical’ uncertainty 

(Kwakkel et al., 2010; Petersen, 2006; Van den Hoek, Brugnach, Mulder, & Hoekstra, 2014; 

Walker et al., 2003). 

A lack of knowledge causes epistemic uncertainty. It refers to situations we do not know (yet), 

but could potentially be reduced. To deal with epistemic uncertainty, one could perform more 

research or involve experts (Kwakkel et al., 2010; Pennock & Gaffney, 2018; Petersen, 2006; Van 

den Hoek et al., 2014). However, epistemic uncertainty could also be caused by the fact that 

experts or stakeholders do not agree on the underlying mechanics of the system, or they interpret 

data differently (Kwakkel et al., 2010). This is caused by differences in perception, opinion, and 

values. Kwakkel et al. (2010) and Van den Hoek et al. (2014) call this ambiguity. This kind of 

uncertainty is fundamentally different as it does not refer to things we do not or cannot know, 

but things that actors know differently. We follow Van den Hoek et al. (2014): “Ambiguity refers 

to the situation in which there are different and sometimes conflicting views on how to 

understand the system to be managed” (p. 375). We divide epistemic uncertainty into two 

subtypes: uncertainties caused by not knowing enough (incomplete knowledge) and uncertainties 

caused by knowing differently (ambiguity).  
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2.1.4 Framework for assessing uncertainty  
We present a framework to assess uncertainty in simulation models. This framework is based on 

the uncertainty matrices as proposed by Kwakkel et al. (2010, p. 311), Petersen (2006, p. 50), 

and Walker et al. (2003, p. 11). The uncertainty matrix is included in Table 2.  

Table 2  Uncertainty matrix. A framework to assess uncertainty in simulation models by using three 
dimensions: location, level, and nature. Location concerns the part of the model where the uncertainty 
manifests itself, the level of uncertainty deals with the severity of uncertainty and the nature of uncertainty 
describes whether this uncertainty is ontic or epistemic. Since epistemic uncertainty can be caused by not 
knowing enough or knowing differently, this type of uncertainty is divided into incomplete knowledge and 
ambiguity.  
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2.2 Additional Uncertainties in Multi-model Ecologies 
In a single model, dealing with uncertainty, variability, and noise is hard. In multi-models, 

dealing with uncertainty might be even harder. In multi-model ecologies, the outcomes of one 

model, which are subject to uncertainties, are fed into another model, which are then 

permutated. This relates to uncertainty propagation, which is the effect that uncertainty in the 

input variables spreads to an even more substantial degree in the outcomes of a model. 

In this paragraph, we look into additional sources of uncertainty that may play a role in these 

multi-model ecologies. These sources include a new location of uncertainty, extra sources of 

uncertainty within the defined locations, and aspects of multi-models that make it harder to 
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analyse uncertainty propagation. The uncertainty matrix will be supplemented accordingly. First, 

we will go into aspects of multi-models that may play a role in all locations of the multi-model. 

Second, we will discuss what extra sources of uncertainty there are within existing and new 

locations.   

2.2.1 Aspects 

Epistemic opacity 
In multi-model ecologies, models may often come from different modellers. This makes it 

difficult or even impossible to comprehend their internal processes, assumptions, and the exact 

meaning of the output variables and input parameters. This aspect is referred to as epistemic 

opacity. Not being able to understand the internal processes of a model entirely is at the same 

time the main reason for using simulation models at all as otherwise, we would not have to use 

them (Humphreys, 2009).  

Computational expense 
Simulation models may take a long time to run. As multi-models are dependent on the combined 

execution time of different models, the runtime increases considerably. Uncertainty analysis 

methods rely on running a high number of model runs. Computing power is often limited, so there 

is a trade-off between computational expense and extensiveness of the analysis. Even when we 

consider clusters of high-performance computing environments, the runtime might still be too 

long to perform, for instance, a full factorial design.  

2.2.2 Locations 

Conceptual model 
Conceptual models of the multi-model level describe how concepts from different simulation 

models influence each other. As each simulation model in the multi-model ecology has its 

conceptual model as well, the uncertainties quickly become more extensive, and the conceptual 

models might contradict each other or make assumptions that will not hold in the theoretical 

framework of the other model. Uncertainties may arise because the paradigms of each model 

are different, and relations may be subject to discussion.  

Computer model 
Dealing with uncertainty in multi-modelling depends on how the multi-model ecology is 

structured. There are a lot of different possible configurations with each their own specific 

additional uncertainties. These may situate in the timing and process of exchanging information 

between the different models.   

Connecting models from different modelling paradigms may lead to unexpected behaviour, for 

instance, if a deterministic simulation model receives chaotic input from agent-based models 

(ABM) or discrete event simulation (DES) models. These models rely on stochastic processes, 

which cause variance in the outcomes. Stochasticity may lead to different outcomes, based on 

the same chosen input variables. 

Input data 
In a single model, we can largely control the input that is given to a model through data cleaning 

and determining the initial value and upper and lower boundaries of parameters. In a multi-

model ecology, the exchange of in- and output from the different models is largely autonomic. 

In combination with the property of epistemic opacity of multi-models, one or more models might 

be pushed into a parameter space for which it was not designed. The model might still function 

and give output, but these results might be highly unreliable.  

Simulation models in a multi-model ecology may use scattered input data coming from, for 

instance, other models, external data sources, or educated guesses, which makes it hard to keep 



 

 

 10 

track of all the inputs that are fed to the models. Therefore, it might be the case that parameter 

values used in the different models are contradictory or should not be used in combination with 

each other.  

The curse of dimensionality plays a role as well, which refers to various problems that may occur 

when applying analysis methods that work well with relatively low dimensionality of the input 

space to high-dimensional input space. Dimensionality increases through the growing number of 

parameters in multi-models, used for the individual models, or to switch between different sub-

models. Due to the rapidly increasing complexity of the input space, methods may not work or 

may take an extremely long time to calculate, especially in combination with multi-models that 

have a long execution time. 

Technical model implementation 
The multi-model infrastructure enables models to interact. This infrastructure may be 

distributed amongst different computer systems and even different organisations. This results in 

the proliferation of all involved hardware and software in multi-model ecologies. Especially when 

there are a lot of heterogeneous computer systems involved, the simulation models running on 

these systems may respond differently or may not respond at all. 

Processed output data 
The processing and interpretation of output data of multi-models are bound to be subject to 

more sources of uncertainty. Although the processing of the output data may not be as complex 

on its own, the interpretation of the output is considerably more difficult, because one has to 

deal with all additional sources and locations of uncertainty.  

Model interface 
Multi-model ecologies depend on interactions between models. These interactions enable the 

different models to use each other's output as input. This process takes place between model 

interfaces. A model interface is key in a multi-model ecology, as it enables simulation models to 

exchange information. In the process of exchanging information, additional uncertainty may 

occur. Following the broad notion of a model interface as provided by Nikolic, Warnier et al. 

(2019), we focus on the social interaction part of the model interface. The backend connectors 

and other components which are needed to support this social interaction are allotted to the 

technical model implementation location.  

Let us consider two simulation models in a multi-model ecology, models A and B, which are 

connected via their model interfaces and use each other's output as input. When the output of 

model A is transferred to the interface of model B, this output is subject to the accumulation of 

uncertainties of model A, propagated during a simulation run. Model B performs its calculations 

and feeds its output back to model A. This input for model A is now subject to uncertainty from 

the first step of model A and the additional uncertainty of model B, which was also subject to 

uncertainty from model A. Depending on the structure of the multi-model ecology, this kind of 

interaction may take place frequently per time step, between multiple models. Wilby & Dessai 

(2010) describe this process, causing a cascade of uncertainty, as the envelope of uncertainties 

is expanded every step of the model.  

Another source of uncertainty is in the exchange of (numerical) information. Depending on the 

modelling paradigm of a model, the output of a model could be highly chaotic. This is the case 

in, for instance, ABM or DES models. The variability in the output of these models is high, caused 

by a lot of stochastic parameters and processes. Each time the model runs, the output might be 

different. Dealing with this kind of intrinsic uncertainty might be hard when we need to transfer 

this uncertainty as input for other models. It might not be trivial to determine which descriptive 
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to use to communicate the uncertainty associated with the outcomes. Are we interested in the 

mean value, where the bulk is, or are we mainly interested in that one outlier?  

2.2.3 Framework for assessing uncertainties in multi-model ecologies 
With the identification of a new location for uncertainty in multi-model ecologies, we extend 

the framework with the interface location, included in Table 3. One might argue that the 

interface could also be part of the “model structure” location, and that is right. Therefore, it 

might be beneficial further to define the existing locations within the uncertainty framework.  

The existing locations conceptual model, input data, and processed output data can both concern 

the multi-model ecology and the individual models. The technical model implementation can be 

applied to the individual models as well, while in the context of the multi-model ecology, it 

focusses on the required infrastructure to enable model interaction. The computer model 

location includes uncertainties within individual models and their parameters and structure. With 

the introduction of the new interface location, we focus on the interaction between the different 

involved computer models within the multi-model ecology. A conceptual overview of locations 

for a general multi-model, including two individual simulation models is included in Figure 1.  

The level and nature of uncertainties also apply to a multi-model ecology. Within these 

dimensions, we see no aspects that could engage other levels or different kind of natures.  

 

Figure 1  Conceptual overview of the uncertainty locations within the uncertainty matrix for a 
general multi-model, including two simulation models. The new uncertainty location ‘Model interface’ lies 
within the different sub-models and concerns the social part of the interaction between the models. Actual 
communication in the technical sense is covered by the technical model implementation and ‘infrastructure’ 
of the multi-model.  
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Table 3  Multi-model uncertainty matrix. A framework to assess uncertainty in multi-models by using 
three dimensions: location, level, and nature. Location concerns the part of the multi-model or individual 
simulation model where the uncertainty manifests itself, the level of uncertainty deals with the severity of 
uncertainty and the nature of uncertainty describes whether this uncertainty is ontic or epistemic. Since 
epistemic uncertainty can be caused by not knowing enough or knowing differently, this type of uncertainty 
is divided into incomplete knowledge and ambiguity. For illustrative purposes, the computer model location 
is divided into two parts: one for a hypothetical computer model A and one for a hypothetical computer 
model B. It will depend on the exact configuration and on the focus of the uncertainty assessment of a multi-
model ecology how the different locations are divided over the individual simulation models and the multi-
model ecology as a whole.  
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3.  

METHODOLOGIES FOR UNCERTAINTY ANALYSIS 

o deal with uncertainty in simulation models, a variety of methods is available. These 

methods will be discussed in this chapter, which aims to answer the second sub-question: 

“What methods for uncertainty analysis exist to analyse uncertainty propagation in single-

models?” We start with a quick overview of relevant methods, describing the general idea of 

these existing methods. From this overview, we select the methods that will be used in the 

uncertainty analysis of the Windmaster multi-model ecology.  

From a policy-making perspective, the policy system, captured in a model, can be seen as a 

function, which output is influenced by uncertainty and policies. To capture this, we use the 

XPIROV framework included in Figure 2. XPIROV is a policy problem structuring framework, 

introduced by Agusdinata & DeLaurentis (2008).  

 

Figure 2  XPIROV policy analysis framework, as obtained from Agusdinata & DeLaurentis (2008, p. 5).  

XPIROV consists of six elements: external forces (X), policies (P), the policy system under study 

consisting of internal factors (I) and relationships (R), outcomes of interest (O), and the value 

systems of the stakeholders and policymakers (V). The framework is used by policy analysts to 

present and structure the system under investigation (Agusdinata, 2008; Agusdinata & 

DeLaurentis, 2008; Castrejon-Campos, Aye, & Hui, 2020). The framework is an extension of the 

XLRM framework as introduced by Lempert et al. (2003).  

External forces, or exogenous uncertainties, are factors that are out of control by the 

stakeholders and may influence the success of their strategy. Policies, or policy levers, are 

instruments that the decision-maker can deploy to influence the behaviour of the policy system 

to strive for better outcomes. Internal (endogenous) factors are part of the policy system and 

are influenced by the external forces and policies. Relationships link and influence the external 

forces, policies, and internal policies and produce the outcomes of interest. Outcomes of interest 

measure the performance of the policy system and relate to the objectives of stakeholders. The 

value systems reflect the goals, objectives, and preferences of the stakeholders. Based on these 

value systems, the desirable outcomes of interest and policies can be determined (Agusdinata, 

2008; Agusdinata & DeLaurentis, 2008; Castrejon-Campos et al., 2020; Lempert et al., 2003).  

T 
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To gain insight into the different possible outputs of the model, we make use of uncertainty 

analysis. Uncertainty analysis is the practice of quantifying the uncertainty in model outputs. It 

relies on the propagation of uncertainty in model inputs to the model outputs. A closely related 

method is sensitivity analysis (SA), which focusses on “how uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the model 

input” (Saltelli, Tarantola, Campolongo, & Ratto, 2004, p. 45). Another purpose for uncertainty 

analysis is the calibration of model parameters to fit observed data or, more generally, a 

statistical model. This method is known as Bayesian inference and gives insight into the 

distribution of parameter values for which the resulting outcomes of a simulation model are in 

line with a target model or observed data.  

3.1 Sensitivity Analysis 
While uncertainty analysis focusses only on the uncertainty of the output, sensitivity analysis 

(SA) attempts to quantify what the sources of this uncertainty are. We distinguish two main 

approaches in sensitivity analysis: local and global sensitivity analysis (GSA). Local sensitivity 

analysis is executed by varying one input parameter around a defined base value while keeping 

the values of the other parameters at a constant level. The method studies how small variations 

around a base value affect the output and is particularly suitable for linear models. Global 

sensitivity analysis is an approach where the entire range of values of input parameters is 

considered, without defining some base value (Saltelli et al., 2008). We focus on the latter form 

of sensitivity analysis, as local methods do not adequately explore uncertainty in models with 

non-linearities (Saltelli et al., 2019). 

3.1.1 Independent sampling methods 
Sensitivity analysis methods use model parameter value sets which are specified a priori. We 

refer to this as independent sampling. We distinguish One-At-a-Time (OAT) and All-At-a-Time 

(AAT) sampling. OAT samples the value of one certain input parameter while keeping the others 

constant. AAT varies the value of all the input parameters simultaneously. The benefit of All-At-

a-Time sampling is that interaction effects between input parameters can be evaluated, which 

is not possible using OAT sampling. The main drawback of AAT is that it is more computationally 

expensive, as it requires extensive sampling. Mainly, there are three commonly used AAT sample 

methods: Monte Carlo (MC), Latin Hypercube Sampling (LHS), and Sobol sequences (Pianosi et 

al., 2016). 

MC sampling draws random values within the defined boundaries for each uncertainty. One 

combination of these different random parameter values makes for one sample, or experiment. 

Draws of Monte Carlo samples are purely random. This implies that all individual experiments do 

not correlate with other experiments. On its turn, this implies that we get no guarantees about 

the quality of the sample in terms of clustering or drawing samples across the whole distribution 

range. We might end up with a sample that focusses mainly on certain parts of the total input 

space.  This may be solved by adding more samples.  

To get more guarantees on the sampling quality, we might choose for Latin Hypercube Sampling. 

LHS subdivides the total range of one parameter into equal probable intervals and draws the 

same number of random samples from each interval. The draws are shuffled to combine different 

draws from one parameter with draws from the other parameters. Since the number of intervals 

for each parameter is dependent on the number of samples, we know that the whole input space 

is covered. The disadvantage of using LHS is that we need to know on beforehand how much 

samples we need to draw since it is not possible to simply add more samples if we might conclude 
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that we need to generate more samples. The advantage of LHS is that generally, fewer samples 

are needed to reach the convergence of the estimated input space.  

The Sobol sequence sampling method, like LHS, subdivides the input space into subspaces. 

However, Sobol subdivides the whole multi-dimensional input space at once. This ensures a 

better spread of the samples in the input space, at the cost of being more computationally 

expensive than both MC and LHS. An advantage of Sobol sequence sampling is that it is possible 

to add more samples, which will increase the number of subspaces from where to draw samples.  

3.1.2 Objectives 
Through the use of sensitivity analysis methods, one can classify the input variables into factors 

with (1) a high main effect, (2) a small main effect, but high total effect, and (3) variables with 

both a small main and total effect. The first category contains variables that mainly drive the 

output without interaction effects. Variables in the second class influence the model chiefly 

through interaction effects with other variables, while the third category contains variables that 

have a negligible influence on the output of the model. Therefore, SA is used for different 

applications, depending on the purpose of the analysis (Saltelli et al., 2008): 

• Factor prioritisation (FP) 

• Factor fixing (FF) 

• Variance cutting (VC) 

• Factor mapping (FM) 

Factor prioritisation (also referred to as ‘ranking’) is used for identifying those parameters that 

have a great influence on the output of the model. These variables would fall into the first or 

second category. If these parameters were fixed at the base value, the variation of the output 

would decrease. These parameters might be interesting to focus on, as reducing the uncertainty 

of these parameters could potentially reduce the uncertainty of the model output. Factor fixing 

(also referred to as ‘screening’) can be understood as the opposite of factor prioritisation: it 

identifies the parameters which have a minimal effect on the variance of the output. These 

parameters, which are covered by the third class, could be fixed on an arbitrary value within its 

bounds, leading to fewer parameters to consider in further analysis. Variance cutting aims to 

bring the output uncertainty below a determined threshold by fixing the lowest amount of input 

values as possible. Factor mapping determines which region of the output space is associated 

with which region in the input space (Saltelli et al., 2008).   

3.1.3 Sobol 
One of the most used SA methods is variance-based sensitivity analysis, often referred to as the 

Sobol method. This method is a form of GSA with AAT sampling and determines which proportions 

of the output variance contribute to the variance of the model inputs while taking interaction 

effects between input parameters into account. These proportions are quantified in the Sobol 

sensitivity indices (SI’s). SI’s are divided in first, second, and total order indices. The first-order 

sensitivity indices are measures for the direct effect of one individual parameter’s variance on 

the output variance. Second-order indices are the combined effect of two parameters’ variances 

on the variance of the output. The total order indices indicate the total effect of one variable’s 

variance on the output variance, including the main effect and all its interactions with other 

parameters (Ghanem, Owhadi, & Higdon, 2017; Saltelli et al., 2008; Sobol, 2001).   

Although Sobol is computationally expensive, the method is quite popular, as the method can 

deal with interaction effects between parameters and the Sobol indices are easy to interpret. 

Another benefit of Sobol is that the method is model-independent, so the model itself does not 

have to be moderated to work. The method uses the model as a so-called ‘black box’: it feeds 
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different input values to the model and record its output. Despite this ‘black box’ approach, the 

method allows more insight into the internal working of the model and the recognition of strongly 

related processes, through the second-order Sobol indices (Ghanem et al., 2017; Saltelli et al., 

2008; Sobol, 2001).   

A disadvantage of variance-based sensitivity analysis methods, including Sobol, is the assumption 

of a unimodal distribution of the output. After all, by definition, the variance is always 

considered around some mean value. Therefore, it is essential to keep in mind that we have to 

check the distribution of the output and determine whether the output is unimodal or multi-

modal distributed (Ghanem et al., 2017; Saltelli et al., 2008; Sobol, 2001).   

3.1.4 Morris 
The Morris method, proposed by Morris (1991) and later improved by Campolongo, Cariboni, & 

Saltelli (2007) is a form of variance-based sensitivity analysis as well but differs from Sobol as it 

relies on OAT sampling. The method is used for factor screening, so it can be used to identify 

important factors in the high-dimensional input space and determine which factors are 

negligible, linear and additive, or are non-linear or have strong interactions with other input 

variables. Morris can deal with computationally expensive models as well, since the amount of 

needed samples is relatively low in comparison with other variance-based GSA methods 

(Campolongo et al., 2007; Morris, 1991; Saltelli et al., 2008, 2004).  

The method determines for each input variable several local sensitivity measures, which are 

referred to as Elementary Effects (EE). From this EE, the sensitivity measures can be calculated, 

which consist of the mean (µ), the estimate of the mean of the distribution of the absolute values 

(µ*), and the variance (σ). The mean is the overall influence of an input variable on the output. 

The variance is an estimation of the non-linear effect or interaction effects with other input 

variables. The estimate of the mean of the distribution of the absolute values is later added by 

Campolongo et al. (2007) and gives extra information on the sign of the relation between the 

input variable and the output. If this sign switches depending on the sampling value, then the µ* 

would indicate that this variable has a strong influence, while at the calculation of µ the different 

signs would cancel each other out and thus indicates a low influence (Campolongo et al., 2007; 

Morris, 1991; Saltelli et al., 2008, 2004).  

Since the Morris method can deal with interaction effects between parameters, needs a 

considerably lower amount of samples, is model-independent, and results can be interpreted 

easily, the method is quite popular. The drawback of the method is that, although interaction 

effects and non-linearities can be recognised, there is no information on the nature or source of 

these interactions. These properties render the method especially suitable for factor fixing 

(Cariboni, Gatelli, Liska, & Saltelli, 2007).  

3.1.5 RBD-FAST 
The RBD-FAST method is a Random Balanced Design (RBD) method based on the Fourier amplitude 

sensitivity test (FAST). 

FAST is a variance-based GSA method proposed by Cukier, Fortuin, Shuler, Petschek, & Schaibly 

(1973) and later improved by Saltelli, Tarantola, & Chan (1999). It indicates the total effect of 

one input variable on the output and includes both its primary and interaction effects. The classic 

FAST method uses a space-filling curve, based on a periodic function, with a different frequency 

for each input variable. Random points on this curve are selected, and the model is executed 

repeatedly for these input values. Subsequently, the Fourier spectrum is calculated to estimate 

the sensitivity index of an input variable (Cukier et al., 1973; Saltelli et al., 2008, 1999). 
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RBD-FAST is a method introduced by Tarantola, Gatelli, & Mara (2006). A certain amount of 

points is selected over a curve with frequency 1, leading to a coverage of only a limited subspace 

of the total input space. Subsequently, independent random permutations are applied to the 

selected points to generate random input values and get a space-filling design. Then the Fourier 

spectrum is calculated on the model output at frequency 1, from which the sensitivity indices 

are calculated (Saltelli et al., 2008; Tarantola et al., 2006). 

The benefits of the combined method are that it is model-independent, and a relatively low 

number of samples is needed. It is specifically a suitable method for computationally expensive 

models. With RBD-FAST, only the first-order effect can be calculated, so the interaction effects 

cannot be derived. If the explained variance is far below 1, another method considering the 

interaction effects may be more appropriate (Saltelli et al., 2008; Tarantola et al., 2006).  

3.1.6 PAWN 
The PAWN method is a form of density-based sensitivity analysis, introduced by Pianosi & 

Wagener (2015) and later revised in Pianosi & Wagener (2018). Density-based means that the 

method investigates the whole output distribution, rather than just the variance. This kind of 

method is also referred to as “moment-independent”, as the analysis does not only focus on one 

moment (the mean) but considers the whole shape of the Probability Density Function (PDF). 

This is especially useful if the output distribution is not centred around just one mean (if the 

outcome distribution is multi-modal) or the output is highly skewed. The sensitivity measure 

derived from density-based methods, in general, is based on the distance between the 

unconditional probability distribution and the conditional probability distribution. The 

unconditional probability distribution is derived by sampling the whole input space, while varying 

all the input variables at the same time. The conditional probability distribution is derived by 

sampling the whole input space while keeping only one variable at a constant level (Khorashadi 

Zadeh et al., 2017; Pianosi et al., 2016; Pianosi & Wagener, 2015, 2018).  

The PAWN-method is based on the Cumulative Distribution Function (CDF) rather than the PDF. 

According to Pianosi & Wagener (2015), this is because the CDF is much easier to approximate 

from sampled data. The distance between the unconditional and conditional CDF is expressed by 

using the Kolmogorov-Smirnov statistic, which takes the maximum absolute distance between 

two CDF’s. This statistic gives a value between 0 and 1, with 0 meaning that this input value 

does not influence the output and 1 meaning that the parameter has a strong influence on the 

output. Although the first introduction of PAWN uses a tailored sampling method, the method 

can be used at datasets generated by generic sampling methods as well. The sample data is then 

divided in a subset for calculating the unconditional CDF, while using the remaining sample data 

to fix values of the various input parameters to a certain value or value interval (Khorashadi 

Zadeh et al., 2017; Pianosi et al., 2016; Pianosi & Wagener, 2015, 2018). 

PAWN can be used for factor fixing, factor prioritisation, and factor mapping. The main benefit 

of the PAWN method is that the method is moment-independent, implying it can deal with a 

highly skewed or multi-modal output. The algorithm is further model-independent and works 

with a relatively low number of samples. With the method being able to work with generic 

sampling methods, the method is computationally cheap as well (Khorashadi Zadeh et al., 2017; 

Pianosi et al., 2016; Pianosi & Wagener, 2015, 2018).  

3.1.7 Random Decision Forests 
The random decision forest method is a statistical machine-learning approach, based on a large 

number of decision trees. First, we dive deeper into the concept of decision trees. Afterwards, 

we describe the random decision forest method.  
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A decision tree is a graphical representation, in the form of a sort of flowchart, which goes from 

observations on attributes of an item to a prediction of the target value of this item. The tree 

consists of a root, branches, decision points (nodes), and leaves (terminal nodes). In the starting 

node (the root), a first binary splitting rule is made to split the observations in two and from this 

root, two branches emanate. In these branches, the succeeding node will again split the 

observations. This process is repeated until the stopping condition is fulfilled. This stopping 

condition can be either the depth of the tree (the maximum number of successive nodes) or the 

maximum number of samples to be found in a leave. These stopping conditions can be varied, to 

find the right balance between overfitting and variance (James, Witten, Hastie, & Tibshirani, 

2013; Jaxa-Rozen & Kwakkel, 2018).  

A decision tree is used for either classification, where an item is classified as a discrete value or 

category, or regression, where the target value of an item is estimated by the mean of the 

samples in this node. These trees are respectively called classification trees or regression trees. 

The splitting value of a node is determined by an optimisation procedure, where the value of a 

variable is chosen that will lead to the greatest reduction in the impurity of the underlying 

(‘child’) nodes. Impurity describes how well the node can estimate the observed value. If 100% 

of the data points are classified correctly, we consider the nodes ‘pure’. As long as it doesn’t, 

we consider the nodes ‘impure’. The impurity can be calculated using, for instance, the ‘Gini’ 

measure for a classification tree, or the mean square error for a regression tree (James et al., 

2013; Jaxa-Rozen & Kwakkel, 2018).  

The main benefits of decision trees are that the method can deal with heterogeneous input 

variables and interactions between them, the trees are quite easy to interpret, and can deal 

with non-linear models. The main downsides are that decision trees have a high level of variance, 

causing the trees to be very sensitive for small changes in the input data and have a high chance 

of overfitting the data. Therefore, decision trees are often used in ensemble methods, where 

the different trees are combined in so-called forests (Jaxa-Rozen & Kwakkel, 2018).  

There are multiple ways to combine decision trees in a forest, one of which is the random forest. 

This is a type of bagged (or bootstrap aggregated) decision trees. Bagging is used to reduce 

variance and means that multiple training sets are constructed by bootstrapping the sampled 

data. The different trees are built by resampling the data with replacement. With a random 

forest, the individual trees are randomised by selecting a subset of the input variables on which 

the tree will be trained (Breiman, 2001). The predictions of the regression trees are then 

averaged, and the predictions of classification trees are taken as a majority vote (Breiman, 2001; 

James et al., 2013; Jaxa-Rozen & Kwakkel, 2018; Tin Kam Ho, 1995).  

Another ensemble method is the use of extremely randomised trees (Extra-Trees), as introduced 

by Geurts, Ernst, & Wehenkel (2006). In this method, an extra form of randomisation is used by 

randomising cutting points for each node as well as the randomisation of the subset of input 

variables.  

Apart from classification and prediction, random forests and Extra-Trees are widely used for 

analysing the importance of variables, for variable selection, and detection of outliers (Verikas, 

Gelzinis, & Bacauskiene, 2011). Most of the advantages of a single decision tree apply to the 

ensemble methods as well: the forests can deal with heterogeneous input variables and 

interactions between them and can deal with non-linearities. However, the interpretability of 

the forests is less than the interpretability of a single tree, since the result of the algorithm 

cannot be graphically displayed in one intuitive tree anymore. The additional benefits of forest 

methods are that the growing of forests and the analysis are performed quite fast, they can deal 
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with common sampling methods, and perform well on relatively small datasets with high 

dimensionality.  

3.1.8 Patient Rule Induction Method 
The Patient Rule Induction Method (PRIM) was proposed by Friedman & Fisher (1999). The method 

aims to associate certain uncertainties with a subset of the output space, which is called ‘factor 

mapping’. This subset can, for instance, be outcomes that are of particular interest, because 

they fall under or above a determined threshold value or fall into a certain quantile of the data. 

If we are interested in these specific points of the outcome, we might be interested in what 

uncertainties cause these kinds of outcomes as well, and especially under what input values. 

That is where scenario discovery comes in, where PRIM is an example of (Kwakkel, Auping, & 

Pruyt, 2013).  

The method starts by repeatedly executing the model, sampling the input variables over the 

whole uncertainty space. The resulting dataset is then classified based on the value of the 

outcome of interest. The PRIM algorithm will create hyperrectangular “boxes” to describe the 

samples in the output space that violate the determined threshold value. In general, these boxes 

contain both samples that are of interest as samples that are not of interest. The goal is to select 

a box that contains as many samples of interest as possible, while also containing as least as 

possible samples that are not of interest. This trade-off is expressed in the use of two descriptive 

values: coverage and density. A high coverage indicates a high proportion of the total number of 

outcomes of interest within the subspace. High density indicates a high percentage of outcomes 

in the subspace that are of interest (Abu-Hanna, Nannings, Dongelmans, & Hasman, 2010; Bryant 

& Lempert, 2010; Friedman & Fisher, 1999; Kwakkel & Jaxa-Rozen, 2016). 

The algorithm starts with a first box that contains all the data points of the experiments. The 

next step is to peel off a bit of this box, by discarding a small slice of the data. The amount of 

data points that will be peeled off in each iteration is dependent on the chosen ‘peeling alpha’. 

Since the dimensions can be continuous, discrete or categorical, this step depends on the data 

type of the dimension. For a continuous dimension, the algorithm will consider peeling off a 

small slice from the top or the bottom. In the case of a discrete dimension, the method will 

consider the highest or lowest values. For categorical data types, the algorithm will just try to 

remove one of the categories. After considering all the slices of the different dimensions, the 

algorithm will choose the best one to remove from the dataset. Which one is ‘the best’, is 

determined by an objective function and depends on the input variables. One way to determine 

which is the best slice to remove is to consider the increase in the mean of the output value 

divided by the number of data points that are removed. The last step of the method is up to the 

analyst. Based on the ‘peeling-trajectory’, the analyst assesses the earlier mentioned trade-off 

between coverage and density. Subsequently, based on the chosen box, we deduce which 

uncertainties and what values ensure the outcomes in the selected box (Abu-Hanna et al., 2010; 

Bryant & Lempert, 2010; Friedman & Fisher, 1999; Kwakkel & Jaxa-Rozen, 2016).  

3.2 Calibration 
Calibration methods come from an understanding that multiple parameter sets may result in 

comparable outcomes and are able to match calibration data or a statistical model. This 

understanding is referred to as equifinality (Beven & Freer, 2001). These methods are mainly 

used to calibrate models on observed data. It is also possible to use the methods to fit models to 

specific outcomes, so they can also be used for scenario discovery purposes. Within calibration 

methods, we distinguish two main approaches, regarding the sampling of parameter values: 

forward modelling based on independent sampling, and inverse modelling based on dependent 

sampling. Forward modelling uses model parameter value sets which are specified a priori. These 
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values may be adjusted manually to better match observations or calibration data. Inverse 

modelling attempts to start with the observations or calibration data and infer the suitable 

parameter values. It can be seen as a form of guided search through the model space for a range 

of plausible values for each unknown parameter (Vrugt, 2016; Vrugt, ter Braak, Gupta, & 

Robinson, 2009).  

3.2.1 Generalized Likelihood Uncertainty Estimation 
The Generalized Likelihood Uncertainty Estimation (GLUE) method, introduced by Beven & Binley 

(1992) makes use of forward modelling. It relies on a high amount of sampled model runs with 

varying input values. Based on the comparison between observed and sampled data, an 

estimation is given for how likely each sample resembles the observed data. This estimation is 

reflected in the likelihood measure. There exist multiple ways to determine this likelihood, one 

of which is the inverse error variance, which calculates the closeness between the model 

outcomes and the calibration data. For all the sampled data points with their corresponding 

likelihood, the samples are divided into ‘behavioural’ and non-behavioural parameters sets. 

Behavioural parameters sets indicate that these sets are a likely combination of parameter 

values. This division is based on a determined cut-off value, which is defined as an acceptable 

deviation or a percentage of the total number of model runs. Subsequently, these behavioural 

parameters sets are normalised to construct the cumulative distribution function of the model 

output. Based on this distribution, we calculate the median and associated uncertainty (Beven & 

Binley, 1992; Ratto, Tarantola, & Saltelli, 2001; Vrugt, 2016; Vrugt et al., 2009).  

GLUE is especially useful to investigate to what extent the model is able to replicate observed 

behaviour. The benefits of using GLUE are that the method is model-independent and quite 

intuitive. It can deal with different classes of parameters, allowing for analysis of categorical or 

structural uncertainties as well. If the method is performed on distributed computer systems, 

the method can be performed quite fast. However, the drawback is that quite a large number of 

model runs might be needed to find parameter values that resemble the calibration data. Even 

if sample methods like Latin Hypercube Sampling are used, this might result in only a few 

behavioural runs (Beven & Binley, 1992; Ratto et al., 2001; Vrugt, 2016; Vrugt et al., 2009). 

3.2.2 Markov Chain Monte Carlo methods 
Markov Chain Monte Carlo (MCMC or MC2) is an umbrella term for lots of different algorithms and 

approaches. MC2 approaches make use of inverse modelling and are based on Bayesian statistics, 

estimating the posterior distribution of input variables and output. They make use of an efficient 

algorithm to sample in the uncertainty space, using a combination of Monte Carlo simulations 

and Markov Chains.  

Monte Carlo simulations are simulations which are executed using random input values within a 

determined domain for each input parameter, following some sort of probability distribution. By 

sampling using a Monte Carlo method, the values with a higher probability are sampled more 

often than values with a lower probability. Markov Chains are connected, sequential points, 

which are probabilistically related. The next point in the chain is dependent on the current point 

and the probabilistic distribution of the possible next points. This implies that the generation of 

a Markov Chain is not dependent on the history of the chain: a Markov Chain is memoryless.  

MC2 methods use the randomness of Monte Carlo simulations and the generation of samples 

following the Markov Chains logic. Generally, the method will choose a random value for the 

parameter as an initial sample. The next sample is chosen randomly, based on the current sample 

and a random sized step in an arbitrary direction. We consider this next sample a proposed 

successive value. This proposed point is compared to the current point in the chain. If this new 

point is more likely to explain the data, this new point is accepted. Otherwise, the proposed 
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point is either rejected or accepted, based on the generation of a random value and a 

predetermined threshold. If this value is lower than the determined threshold, the proposed 

point is accepted. Otherwise, this point is rejected. MCMC methods assure that the regions of 

high probability are sampled more than other regions. Because the first points of the chain are 

heavily dependent on the arbitrary chosen initial point, these are often thrown away. This 

approach is referred to as the ‘burn-in’ time. By removing these samples, the chain is no longer 

dependent on this starting point.  

MCMC aims to approximate parameter values which explain observed data. Based on the 

accepted samples, the posterior output distribution can be approximated as well. Therefore, 

Markov Chain Monte Carlo methods can be used to calibrate the input parameters to fit some 

observed data. Based on the posterior distribution of the parameters, one can derive the relative 

influence of this parameter on the output of the model.  

A variety of methods is developed to improve the efficiency of MC2 methods further. The 

approaches can roughly be divided into single- and multi-chain methods. Single-chain methods 

consist of one Markov Chain, which searches through model space. Although this approach works 

quite well for Gaussian-shaped output distributions, it might not converge well for target 

distributions with long tails or multi-modal outcome distributions. Single-chain methods have 

difficulties in dealing with different regions of attraction and many local optima, as they might 

get stuck in a single region without exploring the rest of the input space. Multi-chain methods 

are MCMC approaches where multiple Markov Chains are deployed simultaneously to search the 

model space. This approach ensures that it is able to converge more efficiently, even if the 

target distribution is long-tailed, multi-modal, and has many local optima (Vrugt, 2016).  

One of the best known MCMC algorithms is the Metropolis algorithm. This algorithm starts with a 

random initial value in the uncertainty space, for which the model is evaluated. The next jump 

size is taken from a jump distribution, centred on the current value. Most commonly, this is a 

normal distribution with a variance specified by the analyst. The model is evaluated again at this 

point, and the jump is accepted or refused based on the likelihood of the next point, divided by 

the current point. If this ratio is bigger or equal to one, the point is accepted. Otherwise, the 

point is accepted based on the ratio and the draw of a random value between zero and one. If 

the ratio is smaller or equal to this draw, then the next step is accepted. Otherwise, the current 

value is used again to evaluate the model. Subsequently, the algorithm is repeated with the 

proposal of a next point.  

Another well-known algorithm, similar to the Metropolis algorithm, is the Metropolis-Hastings 

algorithm. The two algorithms are very much alike, although they differ in the distribution of 

the jump function. Where the Metropolis algorithm requires a symmetric distribution, the 

Metropolis-Hastings algorithm allows the use of an asymmetric jump distribution. This is 

particularly useful when we are interested in higher sample values (for which we would use a 

skewed distribution) or when there are particular constraints on the parameter values.  

An example of a multi-chain algorithm is the DiffeRential Evolution Adaptive Metropolis (DREAM) 

algorithm, introduced by Vrugt, ter Braak, Clark, Hyman, & Robinson (2008). It has been 

developed to search for parameter sets that fit observed data efficiently. The chains use multiple 

starting points, so the method can better deal with multiple regions which may be of high interest 

and can better assess whether the algorithm has been converged. Since the different chains 

exchange information, the method removes chains that are stuck in spaces of the parameter 

space which do not contribute to the discovery of high probability areas. For the proposal 

function, used to determine the next point to consider, the scale and orientation are dynamically 

being updated during the analysis. The subset of dimensions to consider is also varied each step, 
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as with high-dimensional input space it is often not optimal to consider all dimensions (Vrugt, 

2016; Vrugt et al., 2008, 2009). 

3.3 Comparison of Methods 
In this chapter, we discuss and compare the different methods for analysing uncertainty. Which 

method to use is mainly dependent on the model, the goal of the analyst, and the characteristics 

and number of uncertainties.  

Global Sensitivity Analysis methods Sobol, Morris, FAST, PAWN, Random Decision Forests, and 

PRIM all use an uncertainty space-filling design to determine the influence of uncertainties on 

the model outcomes. Their differences lie in the used sampling method, purpose, and the 

required number of model evaluations. The assumed output distribution is different as well, as 

most methodologies are variance-based, assuming the mean and variance are adequate 

indicators for the characterization of uncertainty. PAWN and RDF are able to deal with 

multimodal outcomes. The calibration methods GLUE and DREAM are both designed to fit the 

output of a model to observed calibration data. GLUE does this by randomly sampling the 

uncertainty space using a Monte Carlo approach; DREAM uses a Markov Chain Monte Carlo 

approach, actively searching for high probability regions, deploying multiple chains.  

We typify the different methods and approaches by using a comparative framework provided in 

Table 4. The first attribute we consider is the intended purpose of the method: whether it is 

meant for factor prioritization, factor fixing, or factor mapping, or calibration (CB). The next 

attribute is the assumed output distribution. Another aspect is whether the method can deal 

with integer (INT), categorical (CAT), continuous (CNT) uncertainties, and interaction between 

them. The sampling method is another property of the methods. If the methods are able to 

perform their analysis on the base of standard sampling methods as Monte Carlo or Latin 

Hypercube Sampling, the same dataset can be used to perform multiple analysis, which is 

beneficial for computationally expensive models. The sampling methods differ as well in the use 

of OAT or AAT sampling, although only the screening method of Morris uses an OAT-approach. 

Also, we indicate if a method is available as a Python package or as part of the EMA-workbench. 

The last attribute is the number of samples which is needed to run the analysis reliably. The 

sample size generally depends on the number of uncertainties (M) that is included in the analysis 

and the complexity of the model output.  
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Table 4  Framework for comparing methods for uncertainty analysis. The methods differ in intended 
purpose, assumed output distribution, type of uncertainties, and sampling methods and size. 

 Purpose Assumed 

output 

distribution 

Uncertainty 

types 

Uncertainty 

interaction 

Sampling Available in 

Python  

Sample 

size 

SA CB   

 

F
P
 

F
F
 

F
M

   

IN
T
 

C
A

T
 

C
N

T
     

Sobol x x   Unimodal, 

symmetric 

x x x Can deal 

with 

interactions 

AAT, Sobol Yes, and 

available in 

EMA-

workbench 

1000 x 

(M + 1) 

Sobol 

(incl. 

2nd 

order) 

x x   Unimodal, 

symmetric 

x x x Can deal 

with 

interactions 

and 

calculates 

2nd order 

interaction 

AAT, Sobol Yes, and 

available in 

EMA-

workbench 

2 x 1000 

x (M + 1) 

Morris  x   Unimodal, 

symmetric 

  x Can deal 

with 

interactions 

Morris, OAT Yes, and 

available in 

EMA-

workbench 

10 – 100 

x M 

FAST x x   Unimodal, 

symmetric 

x x x Indices only 

indicate the 

total effect 

AAT, no 

specific 

method 

Yes, and 

available in 

EMA-

workbench 

1000 x M 

PAWN x x x  Multimodal, 

skewed 

x x x Can deal 

with 

interactions 

AAT, no 

specific 

method 

Not yet 

implemente

d in Python 

1000 x M 

RDF x x x  Multimodal, 

skewed 

x x x Can deal 

with 

interactions 

AAT, no 

specific 

method 

Yes, and 

available in 

EMA-

workbench 

100 x M 

PRIM   x  Unimodal, 

symmetric 

x x x Can deal 

with 

interactions 

AAT, no 

specific 

method 

Yes, and 

available in 

EMA-

workbench 

100 x M 

GLUE    x Multimodal, 

skewed 

X x x Can deal 

with 

interactions 

AAT, no 

specific 

method 

Yes 1000 x M 

DREAM    x Multimodal, 

skewed 

x x x Can deal 

with 

interactions 

AAT, MCMC Yes, e.g. 

through 

PyDREAM 

package  

1000 x M 
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4.  

METHODOLOGIES AND MULTI-MODEL ECOLOGIES 

ased on the provided additional uncertainties in multi-models and the available methods, 

what can we say about uncertainty analysis on multi-model ecologies in general? How can 

these methods be applied to analyse a whole multi-model ecology? 

This answer depends largely on the composition and structure of the multi-model ecology: what 

and how many different models are included, how and to what extent do the models interact, 

what different types of simulation models are involved, is there an overlap between the used 

parameters and input data? The variety of possible configurations of multi-model ecologies 

render it nearly impossible to give a conclusive answer on this question that can be applied to 

all of these configurations.  

4.1 Multi-model Archetypes 
Therefore, we propose two archetypes of two coupled simulation models. These archetypes can 

be considered as building blocks, whereof numerous different multi-model configurations can be 

composed. We consider models as nodes in a network structure or graph. The interfaces form 

the edges of the graph. The differentiation lies in the extent to which feedback mechanisms are 

present and whether or not the graph is directed between the nodes (models). We limit ourselves 

to the conceptual level of the multi-model ecology. Many multi-models will use a combination 

of these archetypes. The archetypes can be considered as two extreme forms of model 

interaction: 

• Multi-model structure as a directed graph 

• Multi-model structure as an undirected graph and with feedback mechanisms 

4.1.1 Directed graph 
In this kind of configurations, visualized in Figure 3, there is no run-time interaction between 

the two separate computer models. The multi-model is a kind of pipeline implementation. One 

computer model performs its calculations based on the input data, provides its output and in the 

next step, the next computer model uses this output, combined with other input data, and 

provides the output data. Substantive interaction between the models is limited.  

 

Figure 3  Multi-model structure as a directed graph. 

4.1.2 Undirected graph 
In this archetype, visualized in Figure 4, there is bidirectional run-time interaction between the 

models. Feedback loops run over the model components. These are related to the changing 

context and path dependencies that may emerge in the models.  

B 

Computer model A Computer model B 
Model interface 

Input data Processed 

output data 
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Figure 4  Multi-model structure as an undirected graph and with feedback mechanisms 

4.2 Uncertainty Analysis on Different Multi-model Archetypes  

4.2.1 Directed graph 
There are no additional uncertainties compared to a single simulation model. It is sufficient to 

perform a sensitivity analysis on the first model in the chain and to capture the range of the 

different model outcomes in a probability density function. This PDF can then be used on the 

input parameter(s) to the second model, which are affected by the first model. A sensitivity 

analysis can be performed on the second model, taking into account the full posterior probability 

density function of the first model. 

A similar approach is possible for calibration. In this case, it might be better to reverse the order 

of analysis: first, calibration could be applied to the second (or last) model in the pipeline. Next, 

it is clear within which outcome space the first model should come out. Based on this analysis, 

the first model can be calibrated to estimate the parameter values under which this sub-output 

space would be reached. 

Depending on the multi-model, an alternative might be to perform both sensitivity analysis and 

calibration on the multi-model as a whole. Because there are no interaction effects between the 

models, it is expected that in terms of results, it does not matter whether we apply the methods 

to the individual models or the whole multi-model. In terms of computational costs, it should 

not matter in most cases, either. However, if the dimensionality of the uncertainty space in a 

multi-model becomes very large, some methods may require substantially more samples. When 

the first model affects several parameters of the second model, and there is a complex 

relationship between them, it might be better to apply the methods to the multi-model as a 

whole. Otherwise, to reduce the uncertainty dimensions, it would be better to perform the 

analysis onto the two separate models.  

4.2.2 Undirected graph 
Run-time interactions result in accumulation of uncertainties on the interface. The input of both 

models is needed to give sensible results. Because of the interwoven, two-sided dependency in 

the different model steps, only sensible parameter values can be provided using the logic of the 

underlying simulation models. It does not make much sense here to perform an uncertainty 

analysis on the individual models. 

To provide insight into the sensitivity of the exchanged parameters on the multi-model outcomes, 

we propose to include the parameters that are exchanged between the different model in the 

uncertainty analysis. These are the values that are used to perform the next modelling step in 

the other model. One could think of setting a bandwidth around different (continuous and 

discrete) exchange parameters. For each data exchange, we can examine whether this exchange 

can be adjusted slightly by influencing the values. Other possibilities for manipulation could be, 

for example, the order of delivery of information, influencing the used descriptive statistics, or 

the (numerical) rounding of numbers. In this way, we can analyse to what extent the multi-model 

Computer model A Computer model B 
Model interface 

Input data Processed 

output data 
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results depend on different ways of delivering information or small variations in the exchanged 

values.  

Concerning calibration, a similar approach is possible. By performing calibration on the multi-

model as a whole, we include all relevant parameters and processes. This does not mean that 

the parameter values found can also be used one-to-one for the individual models. However, we 

state that the sub-models cannot be used separately in a sensible way, or at least not on the 

defined multi-model outcomes.  

4.3 Experimental Setup  
In this section, we propose an experimental setup for multi-models with undirected graphs, which 

we then apply to the Windmaster model. We consider the Windmaster model a multi-model with 

undirected graphs and feedback loops over the different sub-models. First, we assess the 

uncertainties in the multi-model using the XPIROV framework and uncertainty matrix. 

Afterwards, we apply a selection of the methods introduced. To perform an uncertainty analysis 

on the model, we use two sensitivity analysis methods with independent sampling techniques 

and one calibration method with dependent sampling.  

4.3.1 Factor fixing 
The first step is the generation of plausible scenarios, using different combinations of values of 

the uncertainties. Based on these experiments, we get an overview of possible model outcomes. 

On these outcomes, we apply a factor fixing approach.  

Sampling method 
Since the uncertainty space is high-dimensional, a Sobol sequence-based sampling method 

becomes too computationally expensive. This leaves us with the choice for either Monte Carlo 

sampling or LHS. Although a better distribution may be reached using Latin Hypercube Sampling, 

it is not possible to add more samples afterwards and investigate the convergence of feature 

scores over the increasing number of used samples. To be able to gain insight into this 

convergence, we choose MC sampling.  

Sensitivity analysis method 
For the selection of the method, we must take into account some requirements: 

• A limited number of required model runs; since we need to incorporate many 

uncertainties, we aim for a method that can calculate its sensitivity indices based on a 

relatively limited number of model evaluations.  

• Python implementation; there is an implementation of the method available as Python 

package or, preferably, as part of the EMA-workbench. 

• Uncertainties; the method can handle categorical, integer, and real parameters. 

• Assumed output distribution; the method does not impose any specific requirements on 

the shape of the output values since we do not know what the output distribution for 

the KPI’s will be. 

• Sampling; the method can perform analysis on MC drawn experiments. 

• Interaction effects; the method needs to cope with interaction effects between input 

parameters. 

Based on the comparison framework in Table 4, we choose a Random Decision Forest feature 

scoring, based on the extremely randomized trees method.  

Experimental design 
We use the EMA workbench developed by Kwakkel (2017), as the Windmaster model already 

includes an implementation of the workbench. The EMA workbench feeds different combinations 
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of uncertainties and policies to the Windmaster model and retrieves and structures the used 

model inputs and the model outcomes. In addition, the EMA workbench carries out the 

computation of the experiments in parallel. We make use of this by performing the experiments 

on a cloud-based High-Performance Cluster. 

To limit the number of required model evaluations, we distinguish deep uncertainties we want 

to explore in a broad, global context and stochastic uncertainties which we want to explore in a 

more limited, computationally cheaper, context. Deep uncertainties will be included in the 

generation of experiments, where stochastic uncertainties will be included in the replications of 

the model. Replications are a set of specified uncertainty values, for which each experiment will 

be repeated. For each deep uncertainty, we may trace back its impact on the different outcomes 

of interest. We may analyse the impact of a specific replication of the model outcomes, but we 

cannot determine the impact of a specific parameter included in these replications, because we 

will not sample enough combinations of parameter values within this category and therefore 

would lead to unreliable estimates for the individual stochastic uncertainties. We include policy 

options as a deep uncertainty as well, to limit the required amount of model evaluations. If we 

were to include the policies in a partial factorial design, we would need more model evaluations.  

Subsequently, we need to determine the number of experiments and replications, which together 

determine the required model evaluations. We include 11,000 experiments over ten different 

replications, what comes down to 110,000 model evaluations.  

4.3.2 Global Sensitivity Analysis 
We perform a Global Sensitivity Analysis to calculate first, second, and total order sensitivity 

indices for the remaining uncertainties. We use the results of the factor fixing method to 

determine what uncertainties to fix on an arbitrary value within its bounds. We also include the 

uncertainties relating to the interface, because it is expected that there will be interaction 

effects between the (intermediate) outcomes and the other uncertainties. Based on the 

comparison framework, we choose Sobol because this method is available as part of the EMA 

workbench, it can deal with interactions between uncertainties and provides insight into these 

interactions. A Sobol sequence sampling method is required.  

Experimental design 
The design is largely the same as the previous one. Since the required number of experiments is 

largely dependent on the amount of included deep uncertainties, we will require around 22,000 

experiments. We will perform ten replications for each experiment. This amounts to 220,000 

model evaluations for the Sobol sequence sampling.  

4.3.3 MCMC method 
For the dependent sampling calibration method, we choose an MCMC method. MCMC methods 

are not yet implemented in the EMA workbench, but there are several Python packages available 

that we can use on the model. Preference is given to a multi-chain approach, in which the chains 

can work in parallel to achieve convergence faster and reduce computational costs. We, 

therefore, choose the DREAM algorithm. Since there is no data available on which the model can 

be calibrated, we use the MCMC method for the purpose of factor mapping or scenario discovery. 

We deploy the DREAM method to search for scenarios in which an outcome of interest violates a 

specific threshold value. These outcomes and threshold values are based on the value systems of 

the stakeholders.  
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Experimental design 
We use the Python package PyDREAM as developed by Shockley, Vrugt, & Lopez (2018) to sample 

experiments in the area of interest. We deploy three chains with different starting points and 

use a distance function for the likelihood. For outcomes under the threshold value, we define 

this function as the negative distance. For all outcomes higher than the threshold value, the 

function returns 1. 

Since the PyDREAM package cannot cope with different types of parameters by itself, we sample 

all the parameters as if they were real numbers. In the model, we then convert the numbers to 

integers or categories by using a floor function. This mathematical function converts real 

numbers to the highest integer lower than the sampled number. Contrary to the common 

rounding function, the probability of any integer within the domain is equally high. 

Because each chain runs on a single processor core, there is no added value in deploying more 

than three cores. This entails that we can make limited use of distributed computer systems. 

Consequently, the viable number of samples is somewhat limited. The advantage of dependent 

sampling is that the experiments can always continue later since the history of each chain is 

recorded. The chains then continue where they left off. We perform 500 iterations per chain. No 

replications will be executed in order to reduce the computational expense. 

 

 

  



 

 

 29 

5.  

UNCERTAINTY ANALYSIS OF THE WINDMASTER MODEL 

5.1 Introduction to the Windmaster Model 
lobal warming, driven by increasingly higher CO2 emissions, is one of the grand challenges 

of current times. Effects of global warming are already visible through melting glaciers, 

rising sea levels and long periods of drought. Since climate change is affecting everybody 

in all countries, the United Nations acknowledged global warming as part of their Sustainable 

Development Goals (SDGs) (United Nations, 2018). These SDGs also underline the need for 

affordable and clean energy. Over the last few decades, CO2 emissions have increased 

significantly. Reduction of CO2 emissions is paramount in order to reduce global warming and to 

preserve our planet for future generations. One hundred ninety-five countries signed the Paris 

agreement to limit global warming. As the Netherlands is also part of this agreement, CO2 

emissions need to be zero in 2050 (Nederlandse Emissieautoriteit, 2015). 

Despite this agreement, the Netherlands is lagging on the reduction of CO2 emission. The Port of 

Rotterdam emits approximately 15% of this emission. The Port aims to reduce CO2 emissions by 

50% in 2025 as compared to 1990, which entails a total reduction of 12 Megaton of CO2. However, 

research shows that emissions are only increasing (Plomp, Wetzels, Seebregts & Kroon, 2013).  

Electrification is seen as a solution with great potential to reduce CO2 emissions in the Port of 

Rotterdam to decrease these emissions, especially within the industrial (petrochemical) 

complex. Electrification entails that these industries use electricity as energy source, instead of 

fossil fuels such as oil and gas. Although this solution has great potential, industries cannot adapt 

their processes and assets on an individual basis, because all industries are interconnected and 

therefore dependent on each other. Besides, the current energy grid in the Port of Rotterdam, 

consisting of infrastructure from network operators TenneT, Stedin, and Gasunie, cannot cope 

with an increased amount of demand and supply of energy. Therefore, investments in the energy 

infrastructure need to be made to support the energy transition in the Port of Rotterdam.  

However, how this energy transition will take place is highly uncertain. Besides, the involved 

investment costs are high, and the lead times of investments tend to be long. Investments require 

collaboration and consistent investment policies between the different network operators to 

make sure the right circumstances are created for industries to switch to alternative energy 

technologies.  

The Windmaster model is developed to discover robust policies regarding the investments in the 

infrastructure of the industrial cluster of the port of Rotterdam. The multi-model consists of 

three connected single-models with different modelling paradigms: an exploratory modelling 

scenario model, a technical-economical infrastructure model, and an investment behaviour 

model. Viewed on a conceptual level, these components of the Windmaster model generate 

different possible (equally likely) energy transition pathways, determine their impact on the 

electricity and gas networks, propose and consider investments, make a choice for an 

investment, update the energy network accordingly, and keep a track record regarding which 

events from the transition pathways could be supported and which could not (Wurth et al., 2019).  

G 



 

 

 30 

5.2 Uncertainties within the Windmaster Model 

5.2.1 External factors  
The Windmaster model is developed to explore uncertainties in the development of supply and 

demand of energy in the industrial cluster of the Port of Rotterdam. After all, the objective of 

network operators is to support the industrial cluster with their energy infrastructure. Since the 

development of new energy infrastructure and the expansion of the current infrastructure tend 

to take long and involve high investment costs, it is important to gain insight in the uncertainties 

involved in the energy transition in the Port of Rotterdam. Based on this exploration, insights 

can be obtained regarding robust adaptive investment strategies, which can support these 

different transition pathways. 

Following the logic of the Windmaster model, we define transition pathways as a series of 

discrete events influencing the peak demand of energy of an asset,  the required feedstock of 

an asset, or the realization of new energy production or conversion assets on a specific location. 

To generate different plausible pathways, we need a variety of parameters. The Windmaster 

model has incorporated these parameters, and they will be introduced in this section. The 

industrial cluster in the Windmaster model consists of different assets, which are either supply, 

conversion, or final demand assets. 

The supply side consists of the supply of feedstock for the assets in the cluster. They include the 

delivery of waste, coal, gas, oil, and electricity. Electricity comes from the Dutch electricity 

grid, the BridNet connection on the Maasvlakte, the offshore wind landing site on Maashaven, 

and the offshore wind landing site on Simonshaven. Uncertainties in the supply side of the cluster 

include the growth of wind energy landing on Simonshaven and Maashaven from 2030 and 

onwards. In addition to wind energy, the production and import of hydrogen gas are uncertain 

as well. Hydrogen gas could be either imported, produced at existing SMR locations, or produced 

at a new hydrogen gas production site at the Maasvlakte or the Botlek area. Production sites of 

hydrogen gas in the industrial cluster are included as conversion asset.  

Conversion assets are assets where feedstocks are used and (partially) converted to one or more 

other feedstocks. They include oil refineries, energy plants, and water electrolysers. At these 

assets, different types of energy can be produced, such as steam, heat, electricity, and syngas. 

The assets can be divided into the following categories: 

• Boilers; production of steam 

• Furnaces; production of heat 

• Cogen plants; combined production of heat and electricity 

• Steam Methane Reformers (SMR’s); production of hydrogen gas 

• Coal plants; production of electricity  

• Oil refineries; production of oil-based fuels 

All these assets have different kind of (future) technologies or feedstocks to switch to, as part 

of the energy transition. These transition alternatives are laid out in Figure 5.  
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Figure 5   Transition alternatives per conversion asset category. Boilers, furnaces, and cogeneration 
plants switch to other feedstocks or a combination using a hybrid implementation. SMR’s install a Carbon 
Capture and Storage (CCS) facility, switch to electrolysis of H2O, or both. Coal plants either switch to biomass 
feedstock or close. The oil refineries either install a hydrocracker or phase out.  
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Each alternative has an impact on the amount and type of both required and produced feedstock 

and emission of CO2. The choice for specific technologies in itself is uncertain, but also the timing 

of implementation and the time of availability of these technologies are uncertain. The 

uncertainties included in the generation of transition pathways are: 

• Year of availability of technology 

o Availability of CCS 

o Availability of electrolysis H2O  

• Year of implementation 

o Switch to biomass or closure of Uniper's coal plant 

o Switch to biomass or closure of Engie’s coal plant 

o Lead time for implementation per conversion asset 

The lead time for implementation per conversion asset is the time that passes before this asset 

indeed implements the chosen alternative. For example, if each oil or gas-fired boiler is switching 

to electricity from 2020 onwards, the actual implementation per asset may take place between 

2020 and 2025.   

On the demand side of the Windmaster model, we identify uncertainties in demand for hydrogen 

gas in the Hinterland and the demand for natural gas in the built environment of the port. The 

demand for natural gas in the municipality of Rotterdam determines when backbones of 

Gasunie’s infrastructure could be used for transporting hydrogen gas. The demand for hydrogen 

gas in the Hinterland determines whether the port of Rotterdam will function as a transit port 

for H2 and what volumes are required per year.   

An overview of all the parameters that together control the generation of transition pathways is 

included in Table 5.  
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Table 5  Overview of parameters used in the Windmaster multi-model ecology to generate transition 
pathways. The parameters may be used to either influence the peak demand of energy of an asset, the 
required feedstock of an asset, or the realization of new energy production or conversion assets on a specific 
location. The variable name refers to the used parameter name in the Windmaster mode; description gives 
a short explanation of the controlled aspects of the parameter; a type can be either Boolean (bool), 
categorical (Cat), real, or integer (Int). Limits or categories indicate the possible parameter values.  

 # Variable name Description Type Limits or categories 

S
u
p
p
ly

 

1 offshore wind growth Growth of wind capacity between 
2030 and 2050. If True, the supply 
to both TenneT’s 380 kV stations at 
Simonshaven and Maasvlakte grow 
each year following an S-curve from 
3 (in 2030) to 13 (MV) or 12 (SH) in 
2050 

Bool True; 
False 

C
o
n
v
e
rs

io
n

 

2 BOILER paths Steam production from current (gas, 
oil, or hybrid) to alternative 
technology. Assets can change to 
Hybrid (a combination of current 
and e-boiler), Hybrid H2 (H2 and e-
boiler), e-boiler, or H2 boiler 

Cat Hybrid; 
HybridH2; 

Electricity; 
H2; 
Hybrid_HybridH2; 
Hybrid_Electricity 

3 COGEN paths Cogeneration (combined heat and 
power) from current (gas, oil, or 
hybrid) to alternative technology. 
Assets can change to Hybrid (a 
combination of current and e-
boiler), Hybrid H2 (H2 and e-boiler), 
e-boiler, or H2 boiler 

Cat Hybrid; 
HybridH2; 

Electricity; 
H2; 
Hybrid_HybridH2; 
Hybrid_Electricity 

4 FURNACE paths Heat production from current (gas, 
oil, or hybrid) to alternative 
technology. Assets can change to 
Hybrid (a combination of current 
and e-boiler), Hybrid H2 (H2 and e-
furnace), e-furnace, or H2 furnace 

Cat Hybrid; 
HybridH2; 

Electricity; 
H2; 
Hybrid_HybridH2; 
Hybrid_Electricity; 

5 SMR paths Steam Methane Reformers from 
current (with or without CCS) to 
water electrolyser or current 
(without CCS) equipped with CCS. 
Both these options are dependent 
on their year of technology 
introduction 

Cat SMR_CCS; 
Electrolysis_H2O; 
SMR_CCS_Electrolysis_H2O 

6 timing CCS Year of the introduction of Carbon 
Capture and Storage technology 
(possible extension for SMR sites) 

Int 2022 - 2030 

7 year of introduction 
ELECTROLYSIS_H20 

Year of introduction hydrogen gas Int 2028 - 2050 

8 location h2 
production 

Location of possible new H2 
production site (SMR) 

Cat None; 
Maasvlakte; 
Botlek 

9 Delta per conversion 
asset 

For each conversion asset, a ‘delta’ 
value is included, which determines 
the lead time (in years) for 
implementation of a new 
technology 

Int 0 - 5 
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10 SF factory 2032 
location 

Location for a new production plant 
for synthetic fuels based on CO2 
obtained from the air in 2032 

Cat None; 
Maasvlakte; 
Botlek 

C
o
n
v
e
rs

io
n

 

11 SF factory 2036 
location 

Location for a new production plant 
for synthetic fuels based on CO2 
obtained from the air in 2036 

Cat None; 
Maasvlakte; 
Botlek 

12 SF factory 2040 
location 

Location for a new production plant 
for synthetic fuels based on CO2 
obtained from the air in 2040 

Cat None; 
Maasvlakte; 
Botlek 

13 SF factory 2044 
location 

Location for a new production plant 
for synthetic fuels based on CO2 
obtained from the air in 2044 

Cat None; 
Maasvlakte; 
Botlek 

14 SF factory 2048 
location 

Location for a new production plant 
for synthetic fuels based on CO2 
obtained from the air in 2048 

Cat None; 
Maasvlakte; 
Botlek 

15 yearHydrocrackerBP Hydrocracker BP Bool True; 
False 

16 baseload biomass or 
closure C3 

Switch to biomass (True) or closure 
(False) of Uniper's coal plant 

Bool True; 
False 

17 C3 year Year in which Uniper's coal plant 
switches to biomass or closes 

Int 2020 - 2030 

18 baseload biomass or 
closure C6 

Switch to biomass (True) or closure 
(False) of Engie’s coal plant 

Bool True; 
False 

19 C6 year Year in which the Engie’s coal plant 
switches to biomass or closes 

Int 2020 - 2030 

20 yearBPOffline Year BP offline if BP has not 
invested in hydrocracker capacity 

Int 2035 - 2040 

21 yearGunvorPhaseout Year of Gunvor’s oil refinery 
phaseout 

Int 2025 - 2030 
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22 yearKochPhaseout Year of Koch’s oil refinery phaseout Int 2025 – 2030 
D

e
m

a
n
d
 

23 easterly demand H2 Possible H2 market development, 
following an S-curve from 0 in the 
year of H2 introduction, to 
parameter value in 2050 

Int 30 – 172 

24 year end demand gas 
Rotterdam 

End year of natural gas demand 
from the built environment of 
Rotterdam and surroundings 

Int 2030 - 2045 

5.2.2 Policies 
The policies in the Windmaster model focus on the investment decision making strategy of the 

individual network operators. There are four defined investment strategies: reactive, current, 

proactive, and collaborative. The alternatives influence various characteristics of the decision-

making process: 

• Time horizon; the time frame that network operators may consider in their decisions. 

• Investment goal; preference for an investment alternative based on price and expected 

overcapacity. 

• Investment budget; the specified budget for each network operator. 

• The propensity to save; whether the focus of a network operator is on saving for future 

investments. 

• Lead time per investment; the lead time for the implementation of an investment is 

dependent on whether a network operator tries to collaborate to shorten the lead time. 

Table 6  Controlled aspects of decision-making process per network operator and decision-making 
policy. Stedin, Gasunie, and TenneT can apply a reactive, current, or proactive decision-making policy. The 
‘collaborative’ network operator is a fictive combined operator which is responsible for all the energy 
infrastructure in the Port of Rotterdam industrial cluster.  

 Investment aspect Reactive Current Proactive 

T
e
n
n
e
T

 Time horizon (years) 0 10 20 

Investment goal Lowest overcapacity Satisfy as many 
clients as possible 

Highest overcapacity 

Investment budget (M €) 10 75 150 

Propensity to save No Yes Yes 

G
a
su

n
ie

 Time horizon (years) 0 10 20 

Investment goal Lowest overcapacity Satisfy as many 
clients as possible 

Highest overcapacity 

Investment budget (M €) 5 25 150 

Propensity to save No Yes Yes 

S
te

d
in

 

Time horizon (years) 0 10 10 

Investment goal Lowest overcapacity Satisfy as many 
clients as possible 

Highest overcapacity 

Investment budget (M €) 3 5 8 

Propensity to save No Yes Yes 

C
o
ll
a
b
o
ra

ti
v
e
 Time horizon (years) 20 

Investment goal Create transport capacity as fast as possible 

Investment budget (M €) 411 

Propensity to save Yes 
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5.2.3 Internal factors and relationships 
The internal factors and relationships are defined in the agent-based investment behaviour 

model and the technical-economical infrastructure model. This section will elaborate on the 

global operation of the multi-model and the interactions between the two models. For a full 

description of the Windmaster model and its assumptions, we refer to the model documentation 

and report by Wurth et al. (2019). 

The Windmaster model consists of the two ‘main’ models, an exploratory modelling part, and 

different datasets used by both models to make sure the input data and assumptions are the 

same for both models. An overview of the multi-model ecology is given in Figure 6. 

 

Figure 6  Schematic view of the Windmaster multi-model, as obtained from Wurth et al. (2019, p 14). 

The technical-economical infrastructure model is developed in Python and is used to calculate 

the load flow over the energy infrastructure in the Port of Rotterdam, considering changes in 

one of the connected demand or supply assets in the Port. For these changes, the model 

determines if there are bottlenecks in the distribution networks, consisting of energy stations 

and distribution lines. If one of these components is expected to overload, the model generated 

a set of investment options to obviate these bottlenecks. The investment behaviour model is an 

agent-based model developed in Netlogo. Based on the information from the technical-

economical model, it determines alternative investments.  

Finally, the Exploratory Modelling and Analysis (EMA) part of the multi-model is used for 

generating different energy transition pathways in which the energy transition may take place. 

These pathways, consisting of certain ‘events’, may, for instance, be the switch of one industry 

to another form of energy technology, the introduction of energy technology, or the closure of 

an oil refinery. These pathways are fed to the two connected models, which are used to 

determine the impact of these events on the capacity of the energy infrastructure. After each 

model run, the output of the different models is recorded and transposed again by the EMA part 

to be able to perform analysis. To provide a conceptual overview of the model interaction 

between the two models, the global model steps of both models and interactions between the 

models are included in Figure 7.  
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Figure 7  Simplified overview of model steps and interactions on the interface location between the 
agent-based decision-making model (left) and the economical-technical infrastructure model (right).  
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The interactions between the agent-based model and the technical model are mainly related to 

the transition path events and the communication of needed investments with assumptions on 

CAPEX, lead time, and realised overcapacity. Since we already cover the influence of uncertainty 

in the transition path events by the external factors, we focus on the communication of the 

investments. A couple of aspects of this communication may influence the decisions taken by the 

network operators: the sequence of the selected investment alternatives, the estimated lead 

time of the investment, and the estimated CAPEX of the investment. Also, the sequence in which 

network operators select the investments may influence the model outcomes. 

To analyse these interactions on the interface level between the two models, we use four 

parameters to influence the interaction between the models: 

• The sequence of the lists of investments  

Every time step, the technical-economical infrastructure model generates a list of possible 

investments per network operator. The sequence in which these investment options is presented 

could influence the order in which the investments are chosen and thus, which investments are 

less chosen, because of budgetary constraints. We will use a Boolean parameter which 

determines if the sequence is shuffled or not.  

• Lead time per investment option 

• CAPEX per investment option 

For each investment option, the infrastructure model presents the lead time and CAPEX per 

investment options as a fixed number. By influencing these values and varying them in an interval 

around these fixed numbers, we analyse the sensitivity for these values in the decisions taken by 

the investment behaviour model. We will use a stochastic continuous factor between 0.8 to 1.2 

for both parameters.  

• Random seed ABM 

The random seed of the investment behaviour model determines in which sequence the network 

operators may make their investment decisions. By fixing the random seed, we analyse the 

influence of these decision orders. As an added benefit, we increase the reproducibility of the 

experiments, since the agent-based model will always give the same outcomes if the same 

random seed is used. We will use an integer parameter between -2147483648 and 2147483647, 

which are all the options for a random seed in Netlogo.  

5.2.4 Outcomes of interest 
According to Saltelli et al. (2019), a proper sensitivity analysis should always be based on the 

question that is aimed to be answered instead of the model in general. After all, a simulation 

model generally has many outputs, and the relation between the input variables and the output 

may differ substantially. The Windmaster model has a range of different outcomes, focussing on 

different aspects of the model. An overview of all defined model outcomes is presented in Table 

7.  

Table 7  Overview all of the defined outcomes of the Windmaster model with description and units.  

# Outcome Description 

1 Stedin load The load on the Stedin energy infrastructure  

2 Stedin capacity The total capacity of the Stedin energy infrastructure 

3 TenneT load The load on the TenneT energy infrastructure  

4 TenneT capacity The total capacity of the TenneT energy infrastructure 

5 Gasunie capacity The total capacity of the Gasunie energy infrastructure 

6 Investments The type and amount of the implemented investment per investment type 

7 Stedin CAPEX The capital expenditure of the implemented investments by Stedin 
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8 TenneT CAPEX The capital expenditure of the implemented investments by TenneT 

9 Gasunie CAPEX The capital expenditure of the implemented investments by Gasunie 

10 Collaborative 
CAPEX 

The capital expenditure of the implemented investments by the fictive 
collaborative energy network operator 

11 H2 import Seaside hydrogen gas import 

12 Stedin lost Customers that switched from Stedin to TenneT electricity connection 

13 First failure The first year in which a transition pathway event could not be supported by the 
energy infrastructure 

14 Missed over time Amount of transition pathway events that could not be supported by the energy 

infrastructure 

 

These outcomes cover the types and amount of realized investments, the financial aspects of 

these investments (CAPEX), the technical load distribution aspects of the infrastructure, and 

amount of achievable (and missed) transition path events. To retain a broad view, we want to 

choose Key Performance Indicators (KPI’s) that cover these aspects. The KPI’s should give insight 

into the performance, efficiency, types, and costs of the realized investments. To achieve this, 

KPI’s included in Table 8 will be used in the uncertainty analysis.  

Table 8  Selection of Key Performance Indicators covering the different aspects of the model 
outcomes and their descriptions.  

# KPI Description 

1 Investments 
(#) 

The type and amount of the implemented investment per investment type. This KPI 
records the total amount of realized investments per investment type per model 
run (30 years).  

2 Missed over time 
(#) 

The amount of transition pathway events that could not be supported by the energy 
infrastructure. This KPI records the number of missed events per year.  

3 Used capacity 
TenneT 
(%)  

The portion of the realized infrastructure capacity that is used by the assets in the 
port region. This KPI is calculated by dividing the TenneT load by TenneT capacity 
and is presented as a percentage per year.  

4 Total CAPEX 
(€) 

The capital expenditure of the implemented investments by the different network 
operators (Stedin, TenneT, Gasunie, and Collaborative). This KPI records the CAPEX 
per year.   

 

5.2.5 Value systems 
Based on the value systems, a preference for certain ranges of outcomes may be specified, or 

there may be an emphasis on a particular outcome of interest. In the analysis of the Windmaster 

model, we can apply the value systems for two purposes. First, value systems are embedded in 

the specified decision strategies: whether a network operator chooses an investment alternative 

which creates as little overcapacity as possible (reactive decision making), which satisfies as 

many clients as possible (current decision making), which creates as much overcapacity as 

possible (proactive decision making), or creates capacity as fast as possible (collaborative 

decision making). Second, we can use value systems as part of a scenario discovery (or factor 

mapping) approach, where we divide the outcomes of interest into a part that is desirable and a 

part that may be less desirable. In this case, we may define threshold values for an outcome of 

interest and analyse what uncertainty ranges play a role in generating these model outcomes. 

Given this approach, network operators will probably tend to prefer lower CAPEX, as much used 

capacity as possible, and as little missed events as possible. Depending on the network operator, 

there might be a preference for specific extensions of the infrastructure grid, such as H2 capacity 

or high voltage transformers.  

5.2.6 XPIROV framework 
Based on the identified external factors, policies, internal factors, relations, outcomes of 

interest, and value systems, we fill the XPIROV framework for the Windmaster model. The 

application of the XPIROV framework is included in Figure 8. 
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Internal Factors (I) 

• Sequence of list of investments  

• Lead time per investment 

option 

• CAPEX per investment option 

• Random seed ABM 
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• Technical-economical 
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o Gas model 

o Electricity model 
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• Total CAPEX 

o TenneT CAPEX 
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capacity 
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• Reactive decision making 

• Current decision making 
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• Collaborative decision making 

 

Value Systems (V) 

 

• Preference for investments 

based on decision strategy 

o Overcapacity 

o Shorter lead times 

o Satisfy more clients 

• Preference for certain (regions 

of) outcomes 

 

Figure 8  XPIROV framework applied to the Windmaster multi-model. The framework includes external 
factors (X), of which most are used to generate transition path events; policies (P) which influence different aspects 
of the decision making; internal factors (I) , which focus on the model interaction between the investment behavior 
model and the technical-economical infrastructure model; relationships (R) which include the different models of 
the multi-model; outcomes of interest (O) which contain the selected KPI’s; and the value systems (V) which contain 
the investment goals of the network operators and the preference for (certain regions of) a KPI.  
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5.2.7 Uncertainty matrix 
For a further structuring of the uncertainties in the Windmaster model, we apply the multi-model 

uncertainty matrix in Table 9. The focus is on the parameterized uncertainties and not on the 

corresponding technical or conceptual uncertainties. Therefore, we will distinguish uncertainties 

on both individual models, and for the remaining locations, we will combine the uncertainties on 

both the individual models and the multi-model ecology as a whole.  

Table 9  Multi-model uncertainty matrix filled for the Windmaster model. The focus of analysis lies 
on uncertainties in the policy system and in the interface location. Due to the tightly coupled structure of 
the Windmaster model, external forces apply to both models and therefore, are combined.  
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model 
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• Furnace paths 
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Model interface  

• Lead time per 

investment 

option 

• CAPEX per 

investment 

option 

   

Input data   

• Investment 

alternatives 

• Current assets 

• Current 

infrastructure 

  

Technical model 

implementation 
 Random seed 

Sequence list of 

investments 
  

Processed output data    
• Selection of KPI’s 

• Valuation of KPI’s 
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5.3 Extra-Trees Feature Scoring 
In appendix A, we show the experiments used to generate the model outcomes. We note that 

there is no bias in the experiments that could lead to unreliable results of the analysis.  In this 

section, we discuss the results of the factor fixing analysis. We look into the generated results. 

Next, we show the results of the sensitivity analysis. Finally, we will interpret these results. 

5.3.1 Results 

Overview of possible model outcomes per KPI 
The line plots in Figure 9 visualize the KPI’s over the model run time. Each line represents a 

possible outcome of the model, based on one experiment, averaged over ten replications.  

 

Figure 9  Line plots showing outcomes for each KPI over time. All lines represent the realisation of 
one experiment, averaged over ten replications. A high degree of opacity has been used to make clear where 
many realisations lie. 
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Feature scores  
We first focus on the (cumulative) end state of each KPI. A heatmap of the calculated feature 

scores is included in Figure 10. 

 

Figure 10 Heatmap of extra-trees feature scores on the (cumulative) end states of each KPI. The scores 
indicate the degree of influence each uncertainty has on the concerning KPI. No influence is indicated by 0, 
while high influence is indicated by 1.  
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It is striking that only a few indicators stand out, while most uncertainties do not seem to have 

a strong influence on any KPI. Besides, the influence of uncertainties differs per KPI. For 

example, the applied decision-making model seems to have a high impact on both the used 

capacity of the TenneT infrastructure and the total CAPEX, while it does not seem to influence 

the number of missed events. To explore the influence of the decision-making model on the KPIs, 

we group the outcomes by the decision-making models in Figure 11. Based on this grouping, we 

indeed distinguish different behaviour for the KPI’s, except for the missed events. Moreover, for 

the used capacity of TenneT, the impact of the decision-making model seems to differ over time. 

 

Figure 11 The development of the Key Performance Indicators over time, disaggregated per applied 
decision-making strategy. The strategy does not seem to influence the amount of missed events, but it 
influences the used capacity of TenneT from 2025 on, while it influences the CAPEX from the beginning.  
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We look further into the development of influence over time by performing extra-trees feature 

scoring per KPI for each additional time step in Figure 12.  
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Figure 12 Extra-trees feature scoring over time per KPI. For each year, the influence of the 
uncertainty on the realization of the KPI has been recalculated. No influence is indicated by a black square, 
while a white square indicates a strong influence. Some uncertainties only influence the concerning KPI in 
specific moments in time, while others remain relatively constant.  

For TenneT’s used capacity, we indeed see that the influence of the decision-making model only 

starts impacting the outcomes from 2030 and onwards. Until that moment, the KPI is mainly 

driven by a combination of the boiler paths, cogeneration paths, furnace paths, and the timing 

of introduction of CCS. For the CAPEX, we see that the furnace paths start influencing the KPI 

from 2026 onwards. The influence of the decision-making model differs over time. For the missed 

events, the influence of the boiler paths remains relatively the same over the model run, while 

the offshore wind growth starts only influencing this KPI from 2035 onwards. The influence of 

the furnace paths seems to take over the influence of the cogeneration paths.  
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Investments  
We now look into the remaining KPI: the investments. As this KPI is not recorded over time and 

consists of the different investment alternatives and their realized investments, the type of 

analysis we perform is different from the other KPI’s. The first step is to gain insight into what 

type of investments are generally realized. To visualize this, we create a heatmap over the whole 

range of experiments in Figure 13. 

 

Figure 13 Heatmap of the realized investments in the various experiments. The colour indicates how 
many investments of a certain type have been made. The figure gives an idea of the realization of 
investments across the whole range of experiments. 
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As we can see, the type and amount of investments differ substantially for some investment 

types, while other investment types are either almost always or never realized. To gain insight 

into the driving uncertainties for the different type of investments, we again perform extra-trees 

feature scoring. The scores are visualized in a heatmap in Figure 14. Again, we see that only a 

small part of the uncertainties play a role in the decision for an investment type. The decision-

making model seems to have a strong influence on the type and amount of investments like we 

also see on the CAPEX KPI. This is to be expected since the CAPEX is mostly related to the 

investments.  

 

Figure 14 Extra-trees feature scores per investment alternative. The colour indicates the influence 
of uncertainties per investment alternative. No influence is indicated by a black square, while a white square 
indicates a strong influence. 
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To visualize the relationship between the decision-making model and the choice for investment 

types, we regroup the realized investment types on the underlying decision model in Figure 15. 

We indeed see that the choice for the type and amount of realized investments differs per 

decision making strategy, with the most striking aspect being the choice for new hydrogen gas 

grids, chosen almost only when applying the collaborative decision-making strategy. There is also 

a big difference between the reactive decision-making strategy and the other strategies, with a 

reactive strategy leading to less realized investments. 

 

Figure 15 Types of investments implemented and their number, subdivided into experiments with 
the different decision-making strategies. The colour indicates how many investments of a specific type have 
been made. Because the experiments are broken down according to the investment strategy used, this 
indicates the difference in (types of) investments under the influence of different strategies. It is notable, 
for example, that hydrogen-related investments are made almost exclusively in collaborative decision 
making, and barely 150 kV investments are made under reactive decision making.   
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Convergence  
The reliability of the method depends on the chosen amount of experiments and replications per 

experiment. In Figure 16, we analyse the convergence of the feature scores on the KPI’s for the 

four uncertainties that have the most influence on these. This analysis is based on a repetitive 

extra-trees feature scoring while adding 500 samples each iteration. For each additional block 

of samples, we repeat the feature-scoring based on a bootstrapped repetition on the same 

samples and show the minimum and maximum value of the feature score, based on this 

bootstrapped repetition. We take into account both the order of importance of the uncertainties 

and the convergence of the scores to a relatively stable level. On that basis, we note that 3,000 

experiments seem enough to get reliable feature scores.  
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Figure 16 Feature scores based on increasing sample size, on the top 4 most influencing 
uncertainties. The (dashed) lines indicate the scores based on an Extra-Trees feature scoring over the whole 
sample set. The shaded areas indicate lower and upper limits based on a bootstrapped repetition of the 
feature scoring. Every 500 samples, the feature scores are recalculated and repeated for random sampling 
with replacement. The number of bootstrapped reruns is equal to the amount of included samples, divided 
by twenty. The shaded area, therefore, does not represent a confidence interval, and this explains why the 
(dashed) lines may exceed the shaded area. Although this might be solved by repeating the bootstrapping 
process more often, the goal of the figure is to get a sense of the decreasing uncertainty in the feature 
scoring by adding more samples, until both the feature scores and the bandwidth of the bootstrapped results 
converge.  

Stochastic influence  
To determine the influence of stochastic uncertainties on the model outcomes, we calculate the 

Extra-Trees feature scores for each replication in Figure 17. For the missed events, we see that 

there is little to no difference in the calculated scores. For the total CAPEX, we see some 

differences in the calculated scores on the decision-making model for the first replication (# 0) 

relative to the other replications, while the rest of the scores are pretty stable over the different 

replications. However, the impact of the different replications on TenneT’s used capacity seems 

very high on the scores for all uncertainties. Based on this observation, we note that we may 

need to include more replications per experiment to get more reliable feature scores.  
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Figure 17 Extra-Trees feature scoring per replication. If the scores per replication do not differ that 
much, the KPI is not sensitive for a different set of deltas per conversion asset. For the missed events, there 
is little to no difference in the calculated scores. For the total CAPEX, the calculated scores on the decision-
making model for the first replication (# 0) is lower relative to the other replications, while the rest of the 
scores are pretty stable over the different replications. The impact of the different replications on TenneT’s 
used capacity seems very high on the scores for all uncertainties.  

  



 

 

 55 

5.3.2 Main findings: factor fixing 
As regards the distribution of the results, we see a (very) wide distribution in the number of 

missed transition events, while the used capacity has a narrower distribution. The total CAPEX 

is relatively narrow distributed as well. We attribute the uncertainty in the various outcomes to 

the uncertainties. The results show that the influence of uncertainties differs per KPI and per 

time period in the model. We distinguish the following uncertainties that overall have a limited 

impact on the outcomes: 

• Baseload biomass or closure C3 

• Baseload biomass or closure C6 

• C3 year 

• C6 year 

• Easterly demand H2 

• Location H2 production 

• SF factory 2032 location 

• SF factory 2036 location 

• SF factory 2040 location 

• SF factory 2044 location 

• SF factory 2048 location 

• SMR paths 

• Year BP offline 

• Year end demand gas Rotterdam 

• Year Gunvor phaseout 

• Year hydrocracker BP 

• Year Koch phaseout 

• Year of introduction electrolysis H2O 

We fix these uncertainties in the following analyses on randomly selected values within their 

bounds. The following uncertainties appear to have a significant influence and therefore remain 

in the analysis: 

• Boiler paths 

• Cogeneration paths 

• Decision-making model 

• Furnace paths 

• Offshore wind growth 

• Timing CC 

The choices for technologies to produce steam (captured in the ‘boiler paths’), for the combined 

production of heat and electricity (captured in the ‘cogeneration paths’), and for the production 

of heat (captured in the ‘furnace paths’) mainly have an impact on the amount of missed 

transition events. Also, the technology choices contribute to the used capacity in the period from 

2020 to 2035. For the total investment costs, we only see the impact of the technology choice 

to produce heat from 2025 to 2050. The remaining technologies do not influence investment 

costs. The used decision-making strategy has a considerable impact on the TenneT capacity used 

and the total investment costs but has a negligible influence on the amount of missed transition 

events. Although the influence of the strategy is relatively constant for the total investment 

costs, we see that it only starts to play a role from 2030 onwards for the capacity used. The 

increase in offshore wind energy from 2035 onwards has a high impact on the amount of missed 

transition events but does not influence the TenneT capacity used and the total investment costs. 
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The timing of the introduction of Carbon Capture and Storage for the production of hydrogen gas 

has a relatively strong influence on the TenneT capacity used and the amount of missed transition 

events, around 2025. The year of introduction does not influence the total investment costs.  

The combination and degree of influence of the uncertainties differ per investment alternative. 

To provide an overview, we included the degree of influence per uncertainty per investment 

alternative, for only the four impactful uncertainties and the investment alternatives that are 

most dependent on these uncertainties in Figure 18. 

 

Figure 18 Degree of influence for the four uncertainties with the highest impact on the choice for 
investments. A black square indicates no influence of the uncertainty on the respective investment 
alternative, while a white square would indicate a powerful influence.  

The uncertainties related to the interface have a limited impact. Still, we include them in the 

following analysis to analyse their effects on the model outcomes more deeply. Since the CAPEX 

factor and lead time factor are partial outcomes, we expect that there are interaction effects 

with other uncertainties influencing the CAPEX and lead time, such as the decision model. We 

increase the bandwidth of both the CAPEX and lead time factor from 20% to 30%, to investigate 

if under these parameter values the importance of these factors increases.  

The stochastic influence on the model results is relatively limited. We, therefore, keep the 

number of replications the same for further analysis.  
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5.4 Global Sensitivity Analysis: Sobol 
In appendix B, we provide insight into the distribution of the samples in the experiments. In this 

section, we will discuss the results of the Sobol analysis. 

5.4.1 Results  
Based on the Sobol sampling, we get slightly different results compared to the MC sampling with 

more included uncertainties. Although most results are comparable, the KPI 'missed events' shows 

a somewhat less continuous spread than the previous MC sampling. An overview of the different 

outcomes is included in Figure 19.  

 

Figure 19 Line plots for the different KPI's based on the Sobol sampling. The colours indicate the 
underlying decision model. The plot on the right is a KDE plot and indicates the probability density function 
for each KPI, again divided based on the decision-making model.  
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First, we focus on the first- and total-order sensitivity indices for each outcome. These are 

included in Figure 20. It is striking that for the KPI missed events, there seem to be nearly no 

interaction effects between the uncertainties. This can be deduced from the minimal 

discrepancy between the first-and total order sensitivity index. For the other outcomes, there 

seem to be interaction effects between the uncertainties. As with the previous analysis, we see 

that the influence of uncertainties on the various outcomes is different. Uncertainties that have 

a strong influence on one outcome have little or no influence on the other outcome. 

 

Figure 20 Sobol Sensitivity Indices for each KPI. The total-order sensitivity index indicates the total 
contribution to explained variance, thus includes the first-, second-, third-, and higher-order sensitivity 
indices. The first-order sensitivity index indicates the main effect of the uncertainty on the variance of the 
KPI’s. The further apart these two indices are, the higher the indirect (higher-order) interaction effects 
with other variables. For each index, the confidence interval is indicated by an error bar.  

The Sobol indices are initially calculated on the cumulative endpoints of the three KPI’s. Here, 

too, it is interesting to look at the development of these scores over time. In Figure 21, we look 

at the total-order Sobol indices, which thus contain the main effect and all interactions with 

other uncertainties. 
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Figure 21 Heatmap for the total-order Sobol indices over time per KPI. The total-order Sobol index 
indicates the part of the variance in the outcome that is explained by the variance of the uncertainty, 
including the interaction effects with other uncertainties. For each year, the explained variance of the 
uncertainty on the realization of the KPI has been recalculated. No influence is indicated by a black square, 
while a white square indicates a strong influence. Some uncertainties only influence the variance of the 
concerning KPI in specific moments in time, while others remain relatively constant. 
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The difference between the total and first-order sensitivity index already indicates the degree 

of interaction between the uncertainties per KPI. To elaborate on this, we analyse the second-

order sensitivity index for each pair of uncertainties. For the outcome missed events, the 

expectation is that these will be very low. For the two remaining KPI's, based on the difference 

between the total and first order sensitivity index, there is an expectation that there will be 

interaction effects.  

To gain insight into the pairwise interactions, and the first- and total-order sensitivity indices, 

the relations are plotted in a diagram included in Figure 22. Indeed, we see that the second-

order effects at the KPI missed events are limited. In the KPI used capacity, there is a strong 

interaction between the decision-making model and the paths for the cogeneration plants, 

which in turn interacts with the chosen paths for the furnaces and boilers.  

Concerning the second-order effects of the total CAPEX, we see limited interaction, except 

between the decision model and the furnace paths. 

 



 

 

 61 

 

Figure 22 First, second, and total-order sensitivity indices for each KPI. The total-order SI is indicated 
by the outer (dark red) ring per uncertainty. The degree of (orange) padding indicates the proportion of the 
first-order sensitivity index. The connecting lines between the circles indicate the degree of interaction 
between the connected uncertainties: ticker means a higher degree of interaction. Only uncertainties with 
a minimum total-order sensitivity index of 0.01 are included.  

 



 

 

 62 

To visualize the main effect and the composition of the interaction effects of the various 

uncertainties, we use a chord diagram in Figure 23. The connection with itself represents the 

main effect, while the connection with other uncertainties represents the second-order 

interaction. The size of the uncertainty indicates the total effect compared to other 

uncertainties. 
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Figure 23 First- and second-order sensitivity indices for each KPI visualized in a chord diagram. The 
chords between the uncertainties indicate the degree of interaction, while a chord connecting an arc with 
itself indicates the first-order sensitivity index. The size of the arcs indicates the sensitivity of the KPI on 
this uncertainty and consists of the sum of the first- and second-order sensitivity indices. It may be 
considered an approximation of the total-order sensitivity index.  
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Investments 
We now focus on analysing the Sobol scores on the chosen investments. For this analysis, we take 

into account the development of the different investments over time, categorized into five 

groups. The general development is shown in Figure 24. Especially in the 150 kV category, many 

investments are made. 

 

Figure 24 Investments over time. The different lines reflect the cumulative number of investments 
in different categories. 

In order to get a sense of which uncertainties mainly influence the choice for certain (categories 

of) investments, we perform a Sobol analysis. The first- and total-order indices are shown in 

Figure 25. What is striking is that a large reliability interval is shown for furnace and boiler paths 

in the GTS grids investments. It is interesting to see how strongly the influence of uncertainties 

on the different categories differs. The decision strategy is strongly determinant in all categories. 

We focus on investments in new H2 grids and expansion of the 380 kV network to limit the number 

of analysis displayed. The analyses on the other categories of investments are included in 

appendix B.  
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Figure 25 Sobol first- and total-order sensitivity indices for the different categories of investment 
alternatives. The total-order sensitivity index indicates the total contribution to explained variance, thus 
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includes the first-, second-, third-, and higher-order sensitivity indices. The first-order sensitivity index 
indicates the main effect of the uncertainty on the variance of the various investment categories. The 
further apart these two indices are, the higher the indirect (higher-order) interaction effects with other 
variables. For each index, the confidence interval is indicated by an error bar. 

Again, we look at the changing influence of uncertainties over time. The heatmap with the total-

order scores is shown in Figure 26. Especially with the new H2 grids, we see a strongly varying 

influence of the various uncertainties. From the start, there is a strong influence of the chosen 

technologies and the growth of offshore wind energy. 

 

Figure 26 Heatmap of the total-order Sobol indices over time. The total-order Sobol index indicates 
the part of the variance in the amount of realized investment that is explained by the variance of the 
uncertainty, including the interaction effects with other uncertainties. For each year, the explained 
variance of the uncertainty on the realization of the investment category has been recalculated. No 
influence is indicated by a black square, while a strong influence is indicated by a white square. Some 
uncertainties only influence the variance of the concerning category of investments in specific moments in 
time, while others remain relatively constant. 

To take a closer look at the composition of the effects of the uncertainties, we again use the 

circle plots in Figure 27. Interesting is that it is mainly indirect effects that seem to influence 

the choice of investments in the 380 kV segment. New hydrogen infrastructure is mainly driven 

by a combination of direct influence from the decision strategy, combined with the choice of 

furnace paths. The furnace paths almost exclusively have a total effect, consisting of interactions 

with many of the other uncertainties. This is also shown in Figure 28. Whereas for the choice of 

new hydrogen infrastructure, there is a significant relationship between the decision model and 

itself, in the expansions in the 380 kV network, we hardly see any relationships with themselves. 
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Figure 27 First, second, and total sensitivity indices for investments in the 380 kV segment and 
expansions in the amount of H2 grids. The total-order SI is indicated by the outer (dark red) ring per 
uncertainty. The degree of (orange) padding indicates the proportion of the first-order sensitivity index. 
The connecting lines between the circles indicate the degree of interaction between the connected 
uncertainties: ticker means a higher degree of interaction. Only uncertainties with a minimum total-order 
sensitivity index of 0.01 are included. 

  



 

 

 68 

 

Figure 28 First- and second-order sensitivity indices for investments in the 380 kV segment and 
expansions in the amount of H2 grids, visualized in a chord diagram. The chords between the uncertainties 
indicate the degree of interaction. A chord which connects an arc with itself indicates the first-order 
sensitivity index. The size of the arcs indicates the sensitivity of the investment category on this uncertainty 
and consists of the sum of the first- and second-order sensitivity indices and may be considered an 
approximation of the total-order sensitivity index. 
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Expansions in the hydrogen network are thus mainly driven by choice for a decision strategy. 

The number of realised 380 kV investments over time is also influenced by the decision model 

but mainly by a combination of factors. To show the influence of this strategy, we show the 

investments in these categories for the different strategies in Figure 29.  

 

Figure 29 Development of investments in the 380 kV segment and new H2 grids under the influence 
of the different applied decision-making models.  

5.4.2 Main findings 
The application of Sobol shows that interaction effects between the uncertainties play a role in 

the Windmaster model. These interactions occur with the KPI used capacity TenneT and, to a 

lesser extent, with total CAPEX. We see many interactions, particularly in the choice of 

investment alternatives. Some uncertainties, such as the choice of technologies, have virtually 

only interaction effects in some investment categories and no direct effect. By including the 

investments over time to the analysis, we gain a better understanding of the development of 

investments and the underlying uncertainties. We see that for new H2 grids the decision model 

and furnace path technology together largely steer the choice for new hydrogen gas grids. 

From the uncertainties at the interface, we conclude that the results of the model are not 

sensitive to permutations of the investment options and the random-seed used. The influence of 

manipulating development time and costs per investment is limited.   
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5.5 Scenario discovery: DREAM 
We use the DREAM algorithm to search in the uncertainty space for areas resulting in the number 

of missed transition events exceeding the average value of 150. Based on the sensitivity analysis, 

we include the following uncertainties in the analysis. The other uncertainties, including the 

random-seed, are fixed so that they do not affect the model results. 

• Boiler paths 

• Cogeneration paths 

• Decision-making model 

• Furnace paths 

• Offshore wind growth 

• Timing CCS 

• Lead time factor 

5.5.1 Results 
For the burn-in period, we discard the first 20% of each chain, so we look at three times 400 

samples. In Figure 30, the three chains are plotted in a line plot for every uncertainty. Please 

note that here we use the original, raw data, to give an idea of the convergence of the individual 

chains, but also of the chains together. For the samples, it is noticeable that for the offshore 

wind growth, most samples are 0.5 or higher. In the model, this is interpreted as an increase in 

the supply of wind energy. For the technology pathways, the lower options seem to be chosen. 

With the lead time factor, we see that in the burn-in period (up to 100 samples) many samples 

are still being sampled at the same levels and that this fluctuates more afterwards. The 

univariate distribution of the raw values for the uncertainties is included in Appendix C. 
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Figure 30 Sampled values per chain. Per MCMC chain, the drawn samples have been plotted. The first 
20% of the points are discarded because they still depend too much on the three randomly chosen starting 
points. After that, the chains converge to certain areas in the domains of the different uncertainties. This 
is particularly visible in the case of offshore wind growth. Please note that the points have not yet been 
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completed and that these are only points that have been accepted by the DREAM algorithm. In reality, more 
samples were drawn and calculated, but mainly the points for which the outcome of the KPI was higher than 
150 were actually taken into account and shown here. The points have not yet been rounded off either, as 
was done during the calculation of the Windmaster model. 

In order to provide further insight into the sampled values, they are shown in different ways in 

Figure 31. We now round them off with the floor function, as is done in the model to make clear 

how the sampled value is factored into the outcome of the model. On the diagonal, it shows the 

univariate histograms for each uncertainty, with a KDE plot. This shows which values occurred 

mainly to generate results above 150 missed events. Some uncertainties stand out sharply. The 

rest of the uncertainties seem to have a limited influence. The offshore wind growth parameter 

has a strong tendency to be 'True'. For the boiler technology paths, the first two technologies 

seem to contribute strongly to many missed events, just like the first two technologies of the 

cogeneration paths. In terms of timing CCS, the earlier and later years 2022 and 2029 seem to 

have been sampled. For the lead time factor, values 1 and 1.4 appear to be relatively common. 

The investment strategy and the FURNACE paths appear to have virtually no influence.  

By also visualizing the uncertainties in pairs, we gain into which combinations of uncertainties 

influence the exceeding of the average number of missed events. This is shown in the lower 

triangle by a KDE plot that indicates where a higher concentration of points is. On the upper 

triangle, this is visualized by a normal scatterplot with a high degree of transparency. The more 

points, the stronger this point is shown.  

Looking for example, at the cogeneration and boiler paths, the choice for the first boiler path 

technology and the second cogeneration path technology seems to be decisive. For the 

cogeneration paths, the interactions with the lead time factor and the decision-making model 

are also significant, since these areas, in particular, are darker coloured.  
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Figure 31 Sampled values during the DREAM algorithm, rounded using the mathematical floor 
function. On the diagonal, we see the histogram with a normalized distribution indication. The uncertainties 
that are more or less uniformly distributed, we conclude that these uncertainties do not negatively influence 
the results. Where there are one or more bins that stand out, this is, however, the case. In these bins, there 
is a higher density of points. This means that the number of missed events for these bins is higher than 
others. In the lower and upper triangle, the density of the pairwise distribution is indicated. Darker points 
mean more samples, which means that here are the points that are mainly responsible for the outcome in 
which we are interested. Bottom left is a so-called KDE plot, which plots the density of the dots. Top right 
is a normal scatter plot with a high degree of transparency. More sampled points in the same spot increase 
the intensity of this point. Since the uncertainties are mainly categorical or integer, this is necessary to give 
an idea of the number of points plotted there.  
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To look further into the relationship in sampled uncertainties, we visualize the sampled values 

in a parallel coordinates plot in Figure 32. The degree of opacity indicates that many samples 

have been drawn in this correlation.  

For example, on the left axis, we see the samples drawn for offshore wind growth. Due to the 

high degree of opacity from 1 (which stands for an increase in offshore wind growth), we see 

that many samples have been drawn here. Based on this uncertainty, there does not seem to be 

a specific cogeneration path that leads to a high number of missed events. If there is no growth 

in the supply of offshore wind, in combination with a choice for the second cogeneration path 

technology, we still see a high number of missed events.  

With the cogeneration and boiler paths, we also see a correlation between the choice for 

technologies that lead to a high number of missed events. We also see this connection, albeit to 

a lesser extent, with the furnace paths. For the decision strategy and timing CCS, we see a 

specific relationship: if the second decision strategy is chosen, there is a relationship with the 

conversion of CCS in 2023, where for the fourth strategy there will be a high number of missed 

events, mainly in the year 2029. With the lead time factor, there is a less clear connection. The 

density seems to be higher from the previous years for timing CCS to a higher lead time factor.  

 

Figure 32 This plot is suitable to compare the various uncertainties and to be able to see the 
relationship between the points. Each uncertainty is plotted on its own axis with its own lower and upper 
boundary. All experiments are plotted over the different sampled values of uncertainties. A relatively high 
degree of transparency has been chosen, so that more frequent samples stand out better. It is striking, for 
example, that for offshore wind growth, many samples have been drawn with value 1 and that from there, 
there is little difference in the choice of a technology path for cogeneration plants. The relatively fewer 
samples drawn with 0 are always combined with the first or second technology option. 

5.5.2 Main findings 
Using the DREAM algorithm, we find the (combination of) uncertainties that lead to a higher 

number of missed transition events. In particular, the uncertainty surrounding offshore wind 

energy in combination with the various technologies leads to more missed events. Specific years 

in the introduction of CCS seem to emerge in combination with a lead time factor of 1 or 1.4.   
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6.  

UNCERTAINTY ANALYSIS OF MULTI-MODEL ECOLOGIES 

s the application on the Windmaster model shows, the methods available for uncertainty 

analysis on single models are suitable to be used for multi-models and to include 

uncertainties on the interface. This section discusses how to deal with additional 

uncertainties in multi-models and aims to answer the third sub-question: “How can these 

methods be applied to analyse a whole multi-model ecology?”  

6.1 Interface 
The Windmaster model is an example of an undirected graph with feedback loops over the sub-

models. These loops relate to the changing context and emerging path dependencies. In the case 

of Windmaster, the investments proposed by the technical-economic model depend on prior 

investments and expected transition events. The context includes the current infrastructure, 

implemented energy technologies, the related supply and demand of feedstocks, and the 

(planned) investments. For undirected multi-models in general, it is not useful to perform 

uncertainty analysis on the sub-models, because in that case, we cannot take the changing 

context into account. 

We gain insight into the sensitivity to sub-model outcomes exchanged on the interface by 

including them as uncertainty in the uncertainty analysis. By setting a bandwidth around these 

values, we determine whether small changes in the exchanged parameters will result in just 

small changes in the model outcome or will show significantly different outcomes. Since these 

are outcomes of the model components, there will always be interaction effects with other 

uncertainties. In the Windmaster model, for example, the CAPEX and the development time of 

an investment depends on the chosen decision model. These uncertainties must be analysed with 

a method that is able to deal with interactions and also indicates the direct and total effect on 

the multi-model outcomes. The second-order sensitivity index indicates which uncertainties 

affect the partial outcome, while the first-order sensitivity index indicates to what extent this 

intermediate outcome affects the multi-model results. Sobol is, therefore, more suitable for this 

than, for example, Extra-Trees feature scoring.  

6.2 Epistemic opacity 
Suppose we know nothing about the operation of the model, is it still possible to perform an 

uncertainty analysis? Quantitative uncertainty analysis methods are based on a black-box 

approach. This also becomes clear from the XPIROV framework, where the model is considered 

as a function of uncertainties and policy options. Therefore, an analyst can perform uncertainty 

analysis without being able to access the inner workings of a model. However, it is essential to 

take a couple of factors into account. 

It is only possible to perform an accurate uncertainty analysis if a simulation model is 

deterministic. This means that the model returns the same results for the same given 

parameters. If a simulation model contains stochastic components, a model returns different 

results based on, for instance, the random seed used. Since the working and input to the model 

might be unknown, it is also possible that the reasons for the different given results are unclear 

for the analyst. This is harmful to the reproducibility of the research. Hence, it is advisable to 

run a few replications for a large number of experiments, without specifying other parameter 
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values. If the results for the different replications are different, this indicates that results are 

generated based on parameters or input from other sources. 

For sensitivity analysis methods, such as Extra-Trees feature scoring and Sobol global sensitivity 

analysis, the scores indicate the extent to which the uncertainties play a role in the difference 

in model outcomes. For Sobol, this is an approximation of the proportionally explained variance 

of an uncertainty. A high variance in the outcomes not explained by the parameter values 

provided could indicate that factors outside the uncertainty analysis mainly generate the model 

outcomes. 

Another aspect is the (technical) transfer of information on the interface. It can be useful to 

perform permutations of the exchanged data and determine the effect on the multi-model 

outcomes. These permutations can lead to insight into the sensitivity of the subcomponents to, 

for example, small adjustments of numerical values, the transmission order of the information, 

or the descriptive statistic used. These uncertainties relate to the technical model 

implementation or the interface of the multi-model.  

6.3 Computational expense  
It is possible to divide the allocation of computer power between different input dimensions, for 

example, deep and stochastic uncertainties, and different system states. In the case of 

electricity networks, these system states can, for example, consist of different supply and 

demand states per asset per minute, hour, day, month, season, or year. It is necessary to know 

the added value of including more different scenarios, more stochastic influences, and more 

system states. To achieve a proper trade-off, an analyst can explore both deep and stochastic 

uncertainty spaces, using a global All-At-a-Time sampling method for deep uncertainties, and 

using an amount of fixed, random draws for stochastic uncertainties.  

To determine a reasonable number of samples, an analyst can look at smaller subsets of the 

samples and repeat the analysis to analyse the convergence in terms of absolute score and 

bandwidth around this score. Note that the convergence of the sensitivity indices can only be 

determined based on an experiment set, in which the sampled values do not correlate with each 

other. This is the case with, for instance, a Monte Carlo sampling technique. The replications 

can initially be averaged in the analysis for each experiment. Then, the analysis can be repeated 

for the individual replications. This gives insight into the sensitivity to the stochastic 

uncertainties of the model. By exploring the added value of adding more samples to the analysis, 

a profound choice can be made for the distribution of computer power. It may seem contradictory 

to have to do more samples in order to conclude that one could have sufficed with fewer samples. 

However, this analysis should be seen as a first step in the exploration of the dimensions of 

uncertainty. If it turns out that it is possible to draw a reliable conclusion based on, for instance, 

3,000 experiments and ten or twenty replications, this knowledge can then be used to calculate 

the model for different system states. It might even have been more convenient first to run the 

experiments on a limited number of replications to determine the number of experiments needed 

and then repeat the experiment set for additional replications.  

To decrease the number of required experiments, we can lower the uncertainty space 

dimensionality. Based on a relatively low number of runs, a factor fixing technique can be 

applied. Feature screening reduces the dimensionality for possible subsequent analyses, such as 

a Sobol global sensitivity analysis, calibration, or scenario discovery method, without 

compromising the original variability of the model outcomes. For these subsequent analyses, the 

number of required samples is typically strongly related to the number of uncertainties included.  
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7.  

CONCLUSION  

arge-scale complex systems are increasingly part of our society. Simulation models can be 

used to get a better understanding of these systems. Since such systems are often too 

complex to analyse from the view of just one modelling paradigm, there is a growing need 

for integrating multiple modelling paradigms. Multiple models with different modelling 

formalisms and focal points can be connected in multi-model ecologies. Developing a multi-

model ecology involves many challenges. One of these challenges is the validity of such models. 

Because the outcomes of models within the multi-model ecology are used and permutated in 

other models, there arise cascades and loops of variability, uncertainty and noise propagation, 

which are hard to identify, trace and consider. To investigate how uncertainty propagation in 

multi-models can be analysed, the following research question is defined: 

“To what extent can we apply existing uncertainty analysis 
methods to multi-models?” 

Based on the following sub-questions, an attempt is made to answer this research question. 

1. What additional sources of uncertainties exist in multi-model ecologies in comparison to 

single models? 

We describe uncertainty as "a lack of precise knowledge as to what the truth is, whether 

qualitative or quantitative" (National Research Council, 1994, p. 161). Uncertainty has three 

dimensions: location, level, and nature. Location refers to which part of the model the 

uncertainty occurs. We distinguish five locations for uncertainties: the conceptual model, the 

computer model, input data, the technical model implementation, and the processed output 

data. The level indicates the degree of uncertainty. We use two extreme levels. On one side, we 

have deterministic knowledge where there is no uncertainty. On the other side, we have total 

ignorance. In this level, there are uncertainties that we cannot say anything about because we 

do not know that we do not know them. Between these two extreme forms, we define five 

ascending levels, making it increasingly difficult to determine the probability of future scenarios. 

Nature indicates whether the uncertainty is caused by variability in the real system (ontic) or by 

lack of knowledge (epistemic). 

We distinguish one additional location for uncertainty in multi-model ecologies: the model 

interface. Here, the exchange of parameters between submodels takes place without the 

intervention of an analyst or modeller. Uncertainty can quickly increase here, especially if there 

are many run-time interactions. Including uncertainties on this location in the analysis shows 

how sensitive model results are to small changes in the exchanged parameter values, the order 

in which this takes place, or the descriptive statistic used. The multi-model uncertainty matrix 

can be used to describe and assess uncertainty in a multi-model across the three dimensions.  

Various aspects of multi-models contribute to uncertainty in multi-models or make it harder to 

analyse uncertainties. Epistemic opacity and computational expense limit the analyst's 

knowledge of the simulation model and set limits on the feasibility of extensive uncertainty 

analyses. 
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2. What methods for uncertainty analysis exist to analyse uncertainty propagation in single-

models? 

A variety of methods in the domain of uncertainty analysis is available. We distinguish methods 

for sensitivity analysis and calibration. Sensitivity analysis quantifies the contribution of specific 

uncertainties to uncertainty in the model outcomes. They are used for the identification of (non-

) influential uncertainties and factor mapping. Each method has its application, limitations, and 

assumptions about the input and output variables. Two well-known methods for sensitivity 

analysis are extra-trees feature scoring and Sobol. Extra-trees feature scoring uses a set of 

decision trees to assign scores based on the contribution that the various uncertainties make to 

predicting the outcomes. Sobol determines which part of the variance in outcomes is determined 

by variance in the various uncertainties, distinguishing the direct effect and total effect. 

Calibration methods are based on the concept of equifinality, which means that several 

parameter combinations result in the same outcomes. Frequently used methods use a Markov 

Chain Monte Carlo approach. These methods actively search for points in the uncertainty space 

that result in a high likelihood, using a defined likelihood function and Monte Carlo sampling. 

The sequence of points creates a Markov chain. Extensive methods, such as DREAM, have been 

developed. These methods deploy, for instance, multiple chains at the same time, select 

multiple candidate points, take a different subset of uncertainties with each step, dynamically 

adjust the step size, and exchange information between the different chains. 

3. How can these methods be applied to analyse a whole multi-model ecology? 

The way to perform an uncertainty analysis is related to the configuration of the multi-model. 

We distinguish two archetypes of multi-models with a different network structure: directed and 

undirected graphs. With directed graphs, there are no run-time interactions between the sub-

models. The uncertainty analysis can be carried out on both the individual models and the multi-

model as a whole. The findings of both analyses should lead to similar results. In the case of 

undirected graphs and feedback loops across the models, we only see added value in doing a 

sensitivity analysis on the multi-model as a whole. In doing so, we take into account the changing 

context and emerging path dependencies exchanged on the interface. 

As proof of principle, we applied extra-trees feature scoring, Sobol, and DREAM on a case study 

multi-model. The application of these methods to the Windmaster model shows that it is possible 

to perform an uncertainty analysis on a multi-model taking into account the additional 

uncertainty aspects.  

By including the uncertainties on the interface, we can use the methods developed for single 

models. Furthermore, we can use applications of analysis methods to reduce computational 

costs. This can be done by determining the added value of adding more samples by assessing the 

convergence of the method, reducing the dimensionality of the multi-model by factor fixing and 

by distinguishing between deep and stochastic uncertainties. To deal with epistemic uncertainty, 

multiple replications can be used without changing parameter values. If these replications give 

different outcomes, this indicates that the sub-model is not deterministic. Also, sensitivity 

methods indicate the contribution of the uncertainties to the explanation of the outcomes. If 

this contribution is low, other variables outside the analysis play a more significant role. By 

adding uncertainties regarding the technical implementation of the multi-model, the influence 

of communicating parameter values in different ways can be determined. 



 

 

 79 

8.  

DISCUSSION 

8.1 Implications 

8.1.1 Implications for the use of uncertainty analysis on multi-models 
The premise of this research is that uncertainty analysis on multi-models differs from the analysis 

on single simulation models. With the inclusion of additional uncertainties on the interface, 

uncertainty analysis methods can be used on multi-models as well. The methods do not have to 

be adapted for this. 

Directed graphs 
The performed uncertainty analysis on the Windmaster model concerns a multi-model as an 

undirected graph. The other distinct form is a directed graph. The findings on undirected multi-

model interfaces can also be used for this type of multi-model. Compared to regular simulation 

models, there are few or no additional uncertainties on the interface because there is no run-

time model interaction. However, complicating aspects as epistemic opacity and computational 

costs can still play a role. If there is a high degree of epistemic opacity, it may be useful to 

perform an uncertainty analysis on the subcomponents to determine whether the model is 

deterministic for the included uncertainties. It may be better to perform the analysis on the 

multi-model as a whole to reduce computational costs. However, if the uncertainty space is high 

dimensional, the curse of dimensionality may play a role, and it may still be better to perform 

the analysis on the sub-models. Since there is no run-time interaction, the findings of both 

analyses should lead to similar results.  

Undirected graphs 
The Windmaster model is an example of a tightly coupled multi-model. The submodels are 

developed side by side, and the number of interactions per time step is high. It is not immediately 

possible to perform an uncertainty analysis on the sub-models, because the model steps depend 

on each other's input. This makes it relatively easy to ensure that the context is the same in both 

models. In addition, the multi-model is designed to calculate the uncertainties based on the logic 

of the EMA workbench.  

If multi-models are loosely coupled and not designed using the EMA workbench logic, it can be 

more challenging to perform an uncertainty analysis. However, by approaching the whole multi-

model as a function based on uncertainties and policy options, the findings of the analysis on the 

Windmaster model should also be applicable to other undirected multi-models. We already see 

this in the number of applications using the EMA workbench or another implementation of the 

methods. 

Identifying uncertainties on the interface will be an essential part of uncertainty analyses. The 

methods are based on a black-box approach, making the methods model-independent. The notion 

of epistemic opacity and computational costs can also be applied to these multi-models. The 

described approach to deal with these additional aspects of multi-models can also be used. 

Sampling 
There are two main approaches in sampling techniques: dependent and independent sampling. 

Although the choice for one or the other depends on the intended purpose, it may be useful in 

the context of multi-modelling to look at independent sampling techniques and how they can be 
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applied. In contrast to dependent sampling techniques, independent sampling techniques 

actively search for areas in the outcome space that meet predefined requirements. Markov Chain 

Monte Carlo applications show that the number of required model evaluations can be significantly 

lower than when using dependent sampling techniques. 

Since calibration approaches are based on specific target functions, it might be possible to use 

them for more than just calibration, being their primarily use nowadays. Our proposition for a 

different application is scenario discovery. Independent sampling uses a large number of 

experiments, of which usually only a small part contains results matching the predefined 

requirement.  MCMC can be used to search directly for subspaces in the input space that generate 

these results. Because the sampling method lingers in these areas, this ensures more samples are 

being performed there. Therefore, it is possible to make a statement about the driving 

uncertainties in these sub-areas, based on more samples, without wasting computer power on 

samples in areas that are not of interest. However, more research is needed in this field.  

8.1.2 Implications for the use of uncertainty analysis in policy decision support  
Based on the uncertainty analysis and the obtained insights, what can we learn from these 

analyses? How can the results be used in a broader context? 

From sensitivity analysis, we learn which uncertainties are primarily responsible for the variation 

in possible future states of the system. By linking these uncertainties to observations of the 

model outcomes over time, it becomes clear at what point these uncertainties start to play an 

important role. Based on these insights, we can look further into the development of robust 

policy pathways. Uncertainty analysis can provide a start for the identification of ‘trigger points’ 

or ‘adaptation tipping points’ for adaptive policy paths. These trigger points indicate when 

system outcomes become undesirable, and when (additional) measures are needed for the 

outcome to remain desirable. It is, therefore, useful to identify the uncertainties most affecting 

this outcome and which (combinations of) uncertainties lead to this outcome to become 

undesirable. We obtain these insights from a sensitivity analysis and scenario discovery method.  

The strength of the Windmaster model, combining an investment decision model and a technical-

economic model, is the possibility to compare different strategies to investigate which 

investment alternatives are opted for in response to different values of the uncertainties. The 

combination of a technical model and a decision model can be interesting for other applications, 

where, based on observations, a choice has to be made between a large number of possible 

investments. This is valuable for developing adaption pathways to identify the actions needed to 

obtain a positive result. 

The aggregation level of the Windmaster model and the associated uncertainty analysis is not 

yet suitable to provide sufficient insight in developing these adaption pathways. Regardless, it is 

possible to determine which general investments are influenced over time by which 

uncertainties.  Based on these identifications, it is possible to conclude that the choice for 

specific investment strategies is mainly determined by the type of technologies used for the 

boilers, furnaces, cogeneration plants, and by the opted-for decision-making strategy. To be able 

to generate adaption pathways, actions need to be at a more concrete level, such as the specific 

location of the investment. Other than that, it is essential to study the relation between 

uncertainties and identifying which specific investments lead to a low number of missed events. 

8.2 Limitations 

8.2.1 Research setup 
This research focusses on uncertainty analysis on multi-models in general. There are many 

different configurations of multi-models possible of which the Windmaster model is just one 
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example. The Windmaster model is tightly coupled and relatively constraint because of a limited 

set of investment options, physical factors, and decision strategies. Although these may be 

considered good reasons to carry out an initial exploration of uncertainty analysis on multi-

models, this does limit the generalisability of the results. Regardless, the theoretical approach 

of the two proposed different archetypes and the application of this approach to an example 

multi-model provides a handle on how to deal with uncertainty analysis on multi-models. The 

additional challenges and interface do apply to both archetypes.  

The discussed approaches to uncertainty analysis on a multi-model deal with multi-models 

consisting of two submodels. The challenge of multi-modelling in general and uncertainty analysis 

in particular also lies in the multiple interactions and feedback loops across different models. 

This research can offer limited insight into performing uncertainty analyses on multi-models with 

multiple sub-models. However, it should be noted that the most common implementations of 

multi-models can be described by one or more combinations of the described archetypes.  

8.2.2 Uncertainty analysis 

Windmaster model 
Regarding the uncertainty analysis of the Windmaster model, there are a number of limitations. 

During the sensitivity analysis, many different parameter values are applied to the model. When 

calculating some experiments, the model returned an error message. Since the uncertainty 

analysis was performed as a proof-of-principle, and the Windmaster model will be further 

developed, it was decided not to solve these bugs. The concerning experiments were excluded 

from the analysis. The error messages gave no reason to assume that the successful experiments 

would be affected by these bugs. 

There are a few imperfections in the Windmaster model. For example, the load flow calculations 

for the infrastructure are not yet or not correctly calculated. Compared to the realized capacity 

of, for example, the TenneT grid, the load flow is low. If these are divided, the capacity used is 

approximately 0.2%. Although the shape and behaviour of both the load flow and the capacity 

are most important, it is clear that the exact numbers are not in line with expectations. It is also 

striking that the used investment strategy affects the realization of various investments. 

Although it seems plausible that hydrogen gas investments will only get off the ground with a 

collaborative decision strategy, it also becomes clear that with a reactive strategy, less 150 kV 

investments will be realized. It could well be that this says more about the exact implementation 

of the decision models in the Windmaster model than it does about the real system. This 

immediately indicates an essential challenge in modelling: the dividing line between the 

conclusions of the implementation of the model versus the real-world system. The knowledge of 

experts and other actors is often required to interpret this.  

Choice of KPI's 
The focus is on four specified outcomes: realized investments (#), missed events over time (#), 

used capacity TenneT (%), and the total CAPEX (€). Although these outcomes give a broad picture 

of the system, particular uncertainties may play a significant role within the system, but not on 

these specified outcomes. This is in line with what Saltelli et al. (2019) say about carrying out 

uncertainty analyses: the analysis should focus on the purpose of the model and not on the model 

itself. 

Stochastic influence 
For each experiment, ten replications were performed for stochastic uncertainties, which 

influence the lead time per conversion asset. The uncertainty analysis on the individual 

replications implied that one outcome of interest is sensitive to these stochastic components. 

This could entail that the number of replications carried out is not sufficient. It might be useful 
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here to repeat the experiments for more replications or repeat the analysis for 3,000 experiments 

and 20 replications. 

It may be useful to use multiple statistical descriptions of the outcomes in the replications to 

gain more insight into the influence of stochasticity on model outcomes. As an example, we 

mention the use of the interquartile distance. These indicate a degree of dispersion in the model 

results and can be used as a supplement to, for example, plotting model results. Scenario 

discovery, for example, can be used to determine whether the influence of stochasticity is more 

severe in certain cases than in others. 

Feature fixing 
Extra-Trees feature scoring allows interaction effects, but these effects cannot be calculated. If 

there are factors with a high total effect but a limited main effect, these factors are labelled as 

not influential. Whether this is a bad thing will, of course, depend on the model and analysis 

concerned. In the case of Windmaster, we do not expect strong second-order interaction effects 

from the uncertainties that have been labelled as not influential. We do see, for example, that 

there are strong second-order interaction effects between uncertainties that have come through 

the screening. In addition, we see interaction effects between the lead time factors and CAPEX 

factor and the decision model on the investment outcomes, while these were deemed non-

influential during the screening phase. Since these three uncertainties have some degree of 

overlap, it is not strange that interaction effects occur here. If these uncertainties were wrongly 

removed from the analysis, this would still have little effect on the reliability of the uncertainty 

analysis. It might be useful to take these factors further into the analyses if higher-order 

interaction effects are likely to play a role, even though they do not score high during the 

feature-scoring.  

During the factor fixing, the investments over time were not recorded, due to limitations in the 

dimensionality of the results handler of the EMA-workbench. As a result, a feature scoring over 

time for the different (categories of) investment could not be carried out in this phase. Storing 

the investments over time is later solved by defining separate outcomes for each time step. 

Therefore, the investments over time can still be included in the Sobol analysis. As the 

uncertainty analysis over time has been performed on the outcomes and the identified 

uncertainties on the investments match those of the other three KPIs, we do not expect that we 

missed a critical uncertainty. By still showing the effect over time for the most critical 

uncertainties, a nearly complete picture can be created of the influence of uncertainties on the 

choice for investment alternatives.  

The factor fixing is based on uncertainties that did not have a high feature score. This choice 

could be better substantiated by introducing a dummy parameter. This dummy does not influence 

anything in the model but can be assigned (low) scores by the methods. After all, the scores are 

an approach based on experiments and not analytically calculated scores. Based on the assigned 

score for the dummy variable, a cut-off point can be determined. In addition, the dummy score 

may give a better insight into the number of samples that need to be included. 

Sobol  
For the calculation of Sobol sensitivity indices, some SI’s turned out to be slightly negative or 

come with a high confidence interval. This could indicate that more model evaluations need to 

be performed or that the primary conditions for a Sobol sensitivity analysis are not met: the 

Sobol method assumes a unimodal, symmetrically shaped distribution of the outcome. However, 

based on the visualization of the distribution of the results, we state that this basic condition 

has been met. However, it may help to choose a moment-independent method like PAWN, as it 

is not based on assumptions about the form of output distribution. 
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8.3 Future Research 
Based on the limitations and findings of this research, we make some recommendations for future 

research. For a single case study model is used, we recommend to apply uncertainty analysis on 

multi-models with different network structures and a higher number of sub-components. The 

influence of uncertainties and feedback mechanisms on the interface can then be further 

investigated in different (combinations of) network types. The role of epistemic opacity can also 

be further investigated, especially when multi-models are developed in cross-institutional 

collaborations. The limitations that computational costs impose and how they can be reduced 

can also be further investigated by including more dimensions of uncertainty into the analysis.  

Finally, we recommend doing more research on how other methods for uncertainty analysis can 

be applied to multi-models. Especially the use of moment-independent sensitivity analysis add 

value since multi-modal outcomes could arise due to interaction between heterogeneous models. 

In the context of scenario discovery, we recommend looking further into the application of MCMC 

methods, especially if the input space becomes highly dimensional.  
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9.  

RECOMMENDATIONS 

eveloping multi-models and performing uncertainty analyses brings additional challenges 

that go far beyond what we have discussed in this research. Nevertheless, we acknowledge 

that the development of multi-models is interesting to perform a broader analysis of 

increasingly complex systems. There are certainly still many challenges and things to discover in 

this branch of simulation models. These will only be tackled further by trying out different 

combinations, implementations, and new methods. We make some recommendations for the use 

of uncertainty analysis in the context of multi-models.  

9.1 Version Tracking 
With the proliferation of involved software and hardware for multi-models, one can quickly lose 

the overview. Specific operating systems, versions of software, python packages, and other 

components of the technical model implementation may be incompatible. It is essential to apply 

version tracking so that bugs can be fixed quickly. For the Windmaster model, this would be: 

• Python: 3.6 

o Python package NetworkX: 2.1 

o Python package JPype1: 0.7.0 

• Netlogo: 6.0.4 

• Java (JRE): 1.8.0 

It would be even better if a container-like approach were used to ensure that all necessary 

applications, settings, and packages are delivered with the model, and the model is offered as a 

plug-and-play component.  

9.2 Methods 

9.2.1 Moment-independent sensitivity analysis 
Some uncertainty analysis methods, such as the Sobol global sensitivity analysis, assume a 

specific outcome distribution. Newer approaches, such as PAWN, consider the whole distribution 

function and can therefore also deal with multimodal outcomes. They can deal with other 

sampling methods as well, so no additional experiments need to be performed. This analysis can 

be done in addition to Sobol. At this moment, there is no python implementation of PAWN 

available. 

9.2.2 DREAM 
This research used a DREAM implementation for scenario discovery. Although there are already 

examples available for the use of DREAM for calibration purposes, the use for scenario discovery 

has not been applied before. It may be interesting to investigate this approach further. The 

possibility to make use of processor cores would also make this method even more interesting. 

9.3 Decision-making under Deep Uncertainty 
Uncertainty analysis in itself adds little value. It is essential to interpret the results of the 

uncertainty analysis to make clear to policymakers what we can get from the analyses. An 

unambiguous answer is still often expected from science. Dealing with deep uncertainties is for 

many decision-makers, but also scientists and model-owners, not yet far developed. There is still 

a tendency to assume a minimal number of future scenarios. Although this makes the system 
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tame in a sense, which is ideal for decision making, we must not forget that the influence of 

uncertainty on the real system is not affected by the assumptions a policy analyst might make in 

determining these scenarios. It is vital to investigate scenarios that are not driven by limited 

assumptions about the future development of the system. Collaboration between different 

actors, modellers, model-owners, analysts, and experts will be necessary to identify various 

future scenarios, determine the effects on the system and develop policies that will work well 

regardless of the future scenarios.  

 

  



 

 

 86 

10.  

BIBLIOGRAPHY 

Abu-Hanna, A., Nannings, B., Dongelmans, D., & Hasman, A. (2010). PRIM versus CART in 
subgroup discovery: When patience is harmful. Journal of Biomedical Informatics, 43(5), 
701–708. 

Agusdinata, D. B. (2008). Exploratory modeling and analysis: A promising method to deal with 
deep uncertainty. TU Delft. 

Agusdinata, D. B., & DeLaurentis, D. (2008). Specification of system of systems for policymaking 
in the energy sector. The Integrated Assessment Journal, 8(2), 1–24. 

Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and 
uncertainty prediction. Hydrological Processes, 6(3), 279–298. 

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in 
mechanistic modelling of complex environmental systems using the GLUE methodology. 
Journal of Hydrology, 249(1–4), 11–29. 

Bollinger, L. A., Nikolic, I., Davis, C. B., & Dijkema, G. P. J. (2015). Multimodel Ecologies: 
Cultivating Model Ecosystems in Industrial Ecology. Journal of Industrial Ecology, 19(2), 252–
263. 

Box, G. E. P. (1976). Science and Statistics. Journal of the American Statistical Association, 
71(356), 791. 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. 

Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, computer-
assisted approach to scenario discovery. Technological Forecasting and Social Change, 
77(1), 34–49. 

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity 
analysis of large models. Environmental Modelling & Software, 22(10), 1509–1518. 

Cariboni, J., Gatelli, D., Liska, R., & Saltelli, A. (2007). The role of sensitivity analysis in 
ecological modelling. Ecological Modelling, 203(1–2), 167–182. 

Carley, K. M., Morgan, G., Lanham, M., & Pfeffer, J. (2012). Multi-modeling and sociocultural 
complexity: Reuse and validation. Advances in Design for Cross-Cultural Activities Part II, 
(July), 128–137. 

Castrejon-Campos, O., Aye, L., & Hui, F. K. P. (2020). Making policy mixes more robust: An 
integrative and interdisciplinary approach for clean energy transitions. Energy Research & 
Social Science, 64(January), 101425. 

Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., & Schaibly, J. H. (1973). Study of the 
sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. The 
Journal of Chemical Physics, 59(8), 3873–3878. 

Davis, P. K., & Tolk, A. (2007). Observations on new developments in Composability and multi-
resolution modeling. Proceedings - Winter Simulation Conference, 859–870. 

Feinstein, A. H., & Cannon, H. M. (2001). Fidelity, verifiability, and validity of simulation: 
Constructs for evaluation. Developments in Business Simulation and Experiential Learning, 
28, 57–67. 



 

 

 87 

Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and 
Computing, 9, 123–143. 

Funtowicz, S. O., & Ravetz, J. R. (1990). Uncertainty and quality in science for policy (Vol. 15). 
Springer Science & Business Media. 

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 
63(1), 3–42. 

Ghanem, R., Owhadi, H., & Higdon, D. (2017). Handbook of Uncertainty Quantification. In R. 
Ghanem, D. Higdon, & H. Owhadi (Eds.), Handbook of Uncertainty Quantification. Cham: 
Springer International Publishing. 

Herder, P. M., Bouwmans, I., Dijkema, G. P. J., Stikkelman, R. M., & Weijnen, M. P. C. (2008). 
Designing infrastructures using a complex systems perspective. Journal of Design Research, 
7(1), 17–34. 

Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 
169(3), 615–626. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. 
New York, NY: Springer New York. 

Jaxa-Rozen, M., & Kwakkel, J. H. (2018). Tree-based ensemble methods for sensitivity analysis 
of environmental models: A performance comparison with Sobol and Morris techniques. 
Environmental Modelling & Software, 107(June), 245–266. 

Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., Van Griensven, A., Wagener, T., & 
Bauwens, W. (2017). Comparison of variance-based and moment-independent global 
sensitivity analysis approaches by application to the SWAT model. Environmental Modelling 
and Software, 91, 210–222. 

Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for 
exploratory modeling, scenario discovery, and (multi-objective) robust decision making. 
Environmental Modelling and Software, 96, 239–250. 

Kwakkel, J. H., Auping, W. L., & Pruyt, E. (2013). Dynamic scenario discovery under deep 
uncertainty: The future of copper. Technological Forecasting and Social Change, 80(4), 789–
800. 

Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling 
heterogeneous uncertainties and multinomial classified outcomes. Environmental Modelling 
and Software, 79, 311–321. 

Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010). Classifying and communicating 
uncertainties in model-based policy analysis. International Journal of Technology, Policy 
and Management, 10(4), 299–315. 

Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the Next One Hundred Years: New 
Methods for Quantitative, Long-Term Policy Analysis. In Academy of Management Learning 
& Education. Rand Corporation. 

Makridakis, S., Hogarth, R. M., & Gaba, A. (2009). Forecasting and uncertainty in the economic 
and business world. International Journal of Forecasting, 25(4), 794–812. 

Mikulecky, D. C. (2001). The emergence of complexity: Science coming of age or science growing 
old? Computers and Chemistry, 25(4), 341–348. 

Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. 
Technometrics, 33(2), 161. 

National Research Council. (1994). Science and Judgment in Risk Assessment. In Environmental 
Health Perspectives (Vol. 102). Washington, D.C.: National Academies Press. 



 

 

 88 

Nederlandse Emissieautoriteit. (2015). Klimaatakkoord van Parijs. Retrieved from 
https://www.emissieautoriteit.nl/onderwerpen/klimaatakkoord-van-parijs 

Nikolic, I., Kwakkel, J. H., & Bletsis, A. (2019). Multi- Modelling and Simulation for Large-Scale 
Sociotechnical Systems : Extending the Multimodel Ecology Perspective. Delft. 

Nikolic, I., Warnier, M., Kwakkel, J. H., Chappin, E., Lukszo, Z., Brazier, F., … Palensky, P. 
(2019). Principles, challenges and guidelines for a multi-model ecology. Delft. 

Pace, D. K. (2015). Fidelity, Resolution, Accuracy, and Uncertainty. In M. L. Loper (Ed.), Modeling 
and Simulation in the Systems Engineering Life Cycle: Core Concepts and Accompanying 
Lectures (pp. 29–37). London: Springer London. 

Pennock, M. J., & Gaffney, C. (2018). Managing Epistemic Uncertainty for Multimodels of 
Sociotechnical Systems for Decision Support. IEEE Systems Journal, 12(1), 184–195. 

Petersen, A. C. (2006). Simulating nature: a philosophical study of computer-simulation 
uncertainties and their role in climate science and policy advice. Amsterdam: Het Spinhuis. 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. 
(2016). Sensitivity analysis of environmental models: A systematic review with practical 
workflow. Environmental Modelling & Software, 79, 214–232. 

Pianosi, F., & Wagener, T. (2015). A simple and efficient method for global sensitivity analysis 
based on cumulative distribution functions. Environmental Modelling & Software, 67, 1–11. 

Pianosi, F., & Wagener, T. (2018). Distribution-based sensitivity analysis from a generic input-
output sample. Environmental Modelling & Software, 108, 197–207. 

Plomp, A. j., Wetzels, W., Seebregts, A., & Kroon, P. (2013). Verkenning voor Rotterdam Climate 
Initiative - CO2-emissies tot 2030. (May 2015), 29. 

Pruyt, E., & Kwakkel, J. H. (2014). Radicalization under deep uncertainty: a multi-model 
exploration of activism, extremism, and terrorism. System Dynamics Review, 30(1–2), 1–28. 

Ratto, M., Tarantola, S., & Saltelli, A. (2001). Sensitivity analysis in model calibration: GSA-GLUE 
approach. Computer Physics Communications, 136(3), 212–224. 

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy 
Sciences. 

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., … Wu, Q. (2019). 
Why so many published sensitivity analyses are false: A systematic review of sensitivity 
analysis practices. Environmental Modelling & Software, 114(March 2018), 29–39. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., … Tarantola, S. 
(2008). Global Sensitivity Analysis: The Primer. In Global Sensitivity Analysis. The Primer 
(pp. 237–275). Chichester, UK: John Wiley & Sons, Ltd. 

Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity Analysis in Practice: 
a Guide to Assessing Scientific Models. Chichester: John Wiley & Sons, Ltd. 

Saltelli, A., Tarantola, S., & Chan, K. P. S. (1999). A Quantitative Model-Independent Method for 
Global Sensitivity Analysis of Model Output. Technometrics, 41(1), 39–56. 

Shockley, E. M., Vrugt, J. A., & Lopez, C. F. (2018). PyDREAM: High-dimensional parameter 
inference for biological models in python. Bioinformatics, 34(4), 695–697. 

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte 
Carlo estimates. 55, 271–280. 

Taleb, N. N. (2015). The Black Swan: The impact of the Highly Improbable. New York: Random 
house. 



 

 

 89 

Tarantola, S., Gatelli, D., & Mara, T. A. (2006). Random balance designs for the estimation of 
first order global sensitivity indices. Reliability Engineering and System Safety, 91(6), 717–
727. 

Tin Kam Ho. (1995). Random decision forests. Proceedings of 3rd International Conference on 
Document Analysis and Recognition, 1, 278–282. IEEE Comput. Soc. Press. 

Torn, K. (2019). Windturbines Maasmond. Port of Rotterdam Authority. 

United Nations. (2018). About the Sustainable Development Goals. Retrieved from United Nations 
website: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ 

van Dam, K. H., Nikolic, I., & Lukszo, Z. (2013). Agent-Based Modelling of Socio-Technical 
Systems. Dordrecht: Springer Netherlands. 

Van den Hoek, R. E., Brugnach, M., Mulder, J. P. M., & Hoekstra, A. Y. (2014). Analysing the 
cascades of uncertainty in flood defence projects: How “not knowing enough” is related to 
“knowing differently.” Global Environmental Change, 24(1), 373–388. 

Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey 
and results of new tests. Pattern Recognition, 44(2), 330–349. 

Vrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: 
Theory, concepts, and MATLAB implementation. Environmental Modelling & Software, 75, 
273–316. 

Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., & Robinson, B. A. (2008). Treatment 
of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain 
Monte Carlo simulation. Water Resources Research, 44(12), 1–15. 

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., & Robinson, B. A. (2009). Equifinality of formal 
(DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic 
Environmental Research and Risk Assessment, 23(7), 1011–1026. 

Walker, W. E., Harremoës, P., Rotmans, J., Van der Sluijs, J. P., Van Asselt, M. B. A., Janssen, 
P., & Krayer von Krauss, M. P. (2003). Defining Uncertainty: A Conceptual Basis for 
Uncertainty Management in Model-Based Decision Support. Integrated Assessment, 4, 2003. 

Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180–185. 

Wurth, T., Nikolic, I., Kwakkel, J. H., Sloot, M., Cuppen, E., & Quist, J. (2019). Project 
Windmaster: De weg naar een adaptief investeringsbeleid. Delft. 

 



 

 

 90 

A.  

EXTRA-TREES FEATURE SCORING 

The first step of the analysis is to assess the distribution of the generated experiments. Since a 

Monte Carlo sampling was used to generate the experiments, it is important to check if the 

samples are evenly distributed over the whole range of each uncertainty. A pair plot of the 

included uncertainties is included in Figure 33 to assess the distribution. In the other figures, the 

distribution is given for each univariate distribution.  

 

Figure 33 Pair plot of the distribution of the sampled integer, categorical, and real uncertainties. 
From left (and top) to right (and bottom): random-seed, easterly demand H2, C3 year, C6 year, timing CCS, 
year end demand gas Rotterdam, year of introduction electrolysis H2O, year BP Offline, year Gunvor 
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Phaseout, year Koch phaseout, CAPEX factor, and lead time factor. On the diagonal, a histogram is plotted 
to indicate the univariate distribution. 

 

 

Figure 34  Distribution of samples of Boolean uncertainties 
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Figure 35 Distribution of samples of categorical uncertainties 
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Figure 36 Boxplot of samples of integer uncertainties 

We see that there are no values for uncertainties that have been sampled disproportionately 

often and therefore form a reliable sample to generate results. The next step is analysing the 

outcomes. It can help to look at the outcomes in relation to each other and the underlying 

uncertainties. Figure 37 shows the results broken down by the underlying decision strategies. 

Figure 38 shows the results in relation to each other. In Figure 39, we see the density over time 

in a KDE plot, also broken down by decision model.   
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Figure 37 Line plots for realizations of KPI under different decision-making strategies 
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Figure 38 Coherence of the different outcomes, categorized per decision-making model 
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Figure 39 Density over time for the different KPI's under the different decision-making strategies 
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B.  

SOBOL SENSITIVITY ANALYSIS 

 

Figure 40 Pair plot of the sampled values based on the Sobol sequence. From left (and top) to right 
(and bottom): Random seed, timing CCS, CAPEX factor, and lead time factor. Each point represents a sampled 
value in the domain of the various uncertainties. The KDE plot indicates the univariate distribution. 
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Figure 41 Density over time for KPI's per decision-making model 
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Figure 42 Sobol Sensitivity Indices per KPI and investment category 
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Figure 43 First- and second-order sensitivity indices per KPI and investment category 
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Figure 44 Total-order sensitivity indices for KPI's and investment categories 
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C.  

DREAM 
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Figure 45 Distribution plot of the raw sampled data from the DREAM algorithm.  
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D.  

CODE 

The code for the analysis on the Windmaster model is available on GitHub: 

 https://github.com/alexanderdrent/Uncertainty-Analysis-Windmaster  

https://github.com/alexanderdrent/Uncertainty-Analysis-Windmaster
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