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Investigating Theory of Mind Capabilities
in Multimodal Large Language Models

Amber van Groenestijn, Chirag Raman, and Jens Kober

Abstract—Human Theory of Mind (ToM), the ability to infer
others’ mental states, is essential for effective social interaction.
It allows us to predict behavior and make decisions accordingly.
In Human Robot Interaction (HRI), however, this remains a
significant challenge, especially in dynamic, real-world scenarios.
Enabling robots to possess ToM-like capabilities has the poten-
tial to greatly improve their interaction with humans. Recent
advancements have introduced Large Language Models (LLMs)
as robot controllers, leveraging their strengths in generalization,
reasoning, and code comprehension. Some have claimed that
LLMs may exhibit emergent ToM capabilities, but these claims
have yet to be substantiated with rigorous evidence. This study
investigates the ToM-like abilities of Multimodal Large Language
Models (MLLMs) by creating a benchmark dataset from humans
performing object rearrangement tasks in a simulated environ-
ment. The dataset visually captures the participants’ behavior
and textually captures their internal monologues. Based on this
dataset (text, video, or hybrid) three state-of-the-art models made
predictions about the participants’ belief updates. While the
results do not conclusively establish ToM capabilities in MLLMs,
they offer promising insights into mental model inference and
suggest future directions for research in this domain.

Index Terms—Human-Robot Interaction, Large Language
Models, Multi-Modality, Robotics, Theory of Mind.

I. INTRODUCTION

SUCCESSFUL intuitive communication between humans
and robots relies on the robot’s ability to interpret human

thoughts. Inferring someone’s mental model, some might
even call it mind reading, is something that humans do all
the time, even when unaware. This skill helps them navigate
social situations by predicting about what others are thinking.
Additionally, predicting what someone thinks that you are
thinking is not a problem for most people. This aspect of
the human mind is described in the domain of ToM. It
is suggested to be the genetically inspired difference that
separates us from the animals, as well as the foundation
of human civilisation [1]. ToM is defined as the ability of
humans to infer other humans’ mental states from observation
and act on those inferences [2]. It is an umbrella term that
encapsulates multiple aspects (e.g. empathy [3], emotion,
percepts, knowledge, beliefs, desires, and intentions [4]).

Machine Theory of Mind. Having a machine that is
aware of the mental model of a human and can predict their
next steps, brings us one step closer to intuitive Human

Fig. 1: This figure illustrates how belief updates are yielded from certain visual and textual data. Section IV explains in more
detail what is, and is not, a belief update. The user study described in this study provides us with (1) visual data in First
Person View (FPV) of someone in a household environment performing object rearrangement tasks, and (2) textual data of
them thinking-aloud during these tasks. Every visual and/or textual data point has the possibility to cause zero, one, or even
multiple belief updates.
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Robot Interaction (HRI). There have been many attempts
already on creating mentalizing ability in machines. Recent
studies [5–7] have claimed spontaneous ToM capabilities
emerging in LLMs from model evaluations based on classic
psychological tests. However, this is being contradicted in
other research [8, 9] which showed that small variations in
these tests cause very different outcomes. On top of that,
critics [10–14] point out that the current benchmark testing is
still limited, mainly based on tests designed for humans, and
that synthetic data used in benchmarks risks displaying biases
that the models could learn. This motivates the use of a new
method for testing models on ToM capabilities, one that takes
on a different format than the classical tests from psychology
and incorporates human-generated data. Although, it must be
noted that human data generation comes with scale limitations.

Embodiment & Multimodality When equipping a robot
with a Large Language Model (LLM) based brain, the model
is making inferences about the surroundings to determine
appropriate reactions. The model has acquired a body.
Defining embodiment is tricky, but for this paper we will
define being embodied as being associated with a body that
can perceive its environment and act on those percepts [15].
Humans perceive the environment through their senses: vision,
hearing, touch, smell, and taste. Originally LLMs live in the
unimodal textual domain, but nowadays MLLMs are able to
span their capabilities over more than one modality. When
an MLLM is embodied, their multi-modal capabilities come
in handy to perceive their environment. Robots in-the-wild
encounter dynamic interaction settings and need to constantly
make inferences from the free-form data around them. To
investigate their abilities in this environment it makes sense
to utilize a benchmark that follows the same form rather than
a Multiple Choice Question Answering (MC-QA) approach
[10–14, 16].

Research Gap. Investigating ToM-like capabilities within
models is no uncharted area. However, current MLLMs remain
largely unexplored for these capabilities, except for the study
of MMToM-QA [16], which includes MLLMs. Furthermore,
performing mental model inferences dynamically as events
unfold, rather than retrospectively as the conclusion of a story
through MC-QA, is a novel approach. Various applications
of embodied agents interacting with humans (e.g. robotics,
AR, VR) require such inferences, which also motivates the
investigation of multimodal models in general. The benefit of
human-generated data is that it’s authentic, while synthetic
data leads to inferences about a model’s internal logic. The
research gap tackled in this study consists of (1) evaluating
ToM-like capabilities in state-of-the-art MLLMs (2) by
dynamically marking mental model inferences (3) based on
human-generated benchmark data.

Our Approach. To fill this research gap the authors have
gathered benchmark data through a user study and evaluated
MLLMs by tasking them to make predictions on the mental
model of the user study participants. However, the mental
model is a broad construct. Based on the causal structure

of ToM as presented in Bayesian ToM [17], we decided
to focus on the belief updates (illustrated in Figure 1), but
expanding this could be an interesting direction for future
works. The data flow of, and evaluation on, the benchmark
dataset become more clear in Figure 4.

Contributions. Overall the contributions of this study are
as follows: (1) We are setting up a benchmark dataset to
dynamically evaluate ToM-like capabilities by testing for
belief update inferences while observing object rearrangement
tasks. (2) We are testing several MLLMs on said benchmark
and compare their predictions to each other. The novelty
of this study is in the combination of investigating ToM-
capabilities in MLLMs, with the dynamic evaluation method
of mental model inferences over time on human-generated
data.

II. RELATED WORKS

A. ToM Capabilities in Deep Neural Nets

There have been attempts on achieving Machine ToM using
approaches based on neural networks [18–20], reinforcement
learning [21, 22], and Bayesian probability [17]. As mentioned
in the introduction, claims were made about ToM reasoning
emerging in LLMs [5–7]. However, by diversifying the testing
methods researchers came to different conclusions [8, 9]. This
is still an open debate. Out-of-the-box LLMs do not appear
to have zero-shot ToM-capabilities yet [10], but there are
frameworks available for prompting assistance.

Table I compares some of these frameworks based on
their input and output formats. From these, only BIP-ALM
requires extra training. Regarding the solutions, SimTom [23]
and FaR [13] both propose two-stage prompting solutions.
SymbolicToM [24], RAP [25] and BIP-ALM [16] make use
of symbolic representation creation as intermediate step.

Paper Modalities Output

B Bˆ D I QA

SimToM [23] Text ✓ X X X ✓
FaR [13] Text X X X ✓ ✓
SymbolicToM [24] Text ✓ ✓ X X ✓
RAP [25] Text, Math X X X ✓ ✓
BIP-ALM [16] Text, Video ✓ X ✓ X ✓

TABLE I: Machine ToM frameworks for LLMs. Modalities
refer to the input types the framework handles. The output
types are (left to right): beliefs (B), higher order beliefs (Bˆ ),
desires (D), intentions (I), question-answering (QA).

B. Machine ToM Benchmarks

Evaluating for ToM in machines has a tradition of being
based on the same tests that are historically used to evaluate
ToM capabilities in humans, such as the Sally-Anne test [26]
or the Unexpected Content test [27] for first order false beliefs;
and the Ice Cream Van test [28] for higher order ones. Table II
provides an overview of machine ToM benchmarks out there.
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Paper Inferences Modalities Data Source Evaluation Method

B D I

ToM-bAbi [14] ✓ X X Text Synthetic Templates MC Question-Answering
ToMi [12] ✓ X X Text Synthetic Templates MC Question-Answering
T4D [13] ✓ ✓ ✓ Text Enhanced ToMi Data MC Question-Answering
Hi-ToM [11] ✓ X X Text Synthetic Templates MC Question-Answering
BigToM [10] ✓ X ✓ Text LLM-Generated MC Question-Answering
MMToM-QA [16] ✓ ✓ X Text, Video Procedural Video Generation MC Question-Answering
Our Benchmark Dataset ✓ ✓ X Text, Video Human-Generated Temporal Inference Marking

TABLE II: Benchmarks to evaluate Machine ToM. Inferences show whether the benchmark tests for beliefs, desires, &
intentions. Modalities are about the input types. Data source describes where the benchmark data is coming from.

From these, benchmarks ToM-bAbi [14], ToMi [12] and T4D
[13] are all extensions of each other. Regarding the other text-
based benchmarks, Hi-ToM [11] innovates with higher order
belief testing, and BigToM [10] introduces causal templates.
MMToM-QA [16] is the first multimodal QA benchmark for
ToM.

Unlike existing benchmarks, our method uses human gener-
ated data and evaluates on this benchmark dataset by temporal
inference marking instead of QA. Temporal inference marking
refers to the chosen method of this study that, based on the
input data, marks the belief updates throughout the course of
events.

C. Applications of MLLMs in Robotics

The decision for our benchmark to make use of temporal
inferences as evaluation method instead of MC-QA, such as
the other benchmarks in Table II, has a motivation based
on embodiment. Recent survey papers [29, 30] investigated
the benefits of implementing LLMs into robotics, such as:
intuitive HRI using natural language; robots performing
simple reasoning tasks; robots handling novel objects. Several
studies already describe robotic agents powered by LLMs
(e.g. PaLM-E [31], SayCan [32], RT-2 [33]).

When using Multimodal Large Language Model (MLLM)
powered robots with the objective of improving their machine
ToM skills, these models will be required to do more
than situation observation and answering a multiple-choice
question at the end. These robots have to be constantly aware
whether someone’s mental model has been updated in a way
that requires the robot to take action. For this objective,
evaluating ToM-capabilities via inferences over time is a
more suitable method.

III. DATA ACQUISITION & ANNOTATION

A. User Study Setup

To collect data for the benchmark we conducted a user study
in which participants performed object rearrangement tasks
in a simulated environment while verbalizing their thought
processes. Note that the participants were unpaid. The study
began with questions on demographics and task instructions.
Participants were then given an opportunity to become familiar
with the environment and controls during an initial exploration

round. This is also to train them on interacting with the
simulation. The participants typically took 15 minutes from
the start of the experiment until finishing the exploration. After
this, they engaged in four rounds of tasks, each consisting of
two distinct steps:

• Step 1: Participants initially did not know which object
they needed to find, but there were navigation hints
to guide them. After collecting an object, additional
navigation hints guided them to the object’s goal location.
The objective of step 1 was to get the 2 objects at their
respective goal locations.

• Step 2: Participants re-entered the same environment and
were tasked with finding the objects they left in step 1,
which creates an expectation of the objects being at their
final locations from step 1. However, that is only the case
for two of the four rounds, and for the other two rounds
the objects are in different locations.

Throughout each round and step, there is also a robot
dog (Figure 2) present in the simulation, navigating between
relevant locations and manipulating objects based on a ran-
dom policy. This robot facilitates object relocation during the
experiment, adding variability to the belief updates about the
object locations. Appendix C includes visualizations of the
user interface used in the Habitat User Study.

Total Data Points = (13 participants)× (4 rounds)×
(2 steps)− 10 invalid data points = 94

Fig. 2: An image from First Person View (FPV) in the sim-
ulated Habitat environment that shows the robot dog holding
an object in de living room.
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This process resulted in a total of 94 data points. The 10
invalid data points were due to issues with data saving and
audio recording. Each valid data point includes both a video
and an audio recording, typically lasting a few minutes. The
full experiment typically lasted 1 hour per participant, yielding
8 data points.

B. Think Aloud

While participants perform these object rearrangement
tasks, we want to gather data to analyze afterwards to make
inferences about their mental model. The most direct way to
access their cognitive strategies is simply to ask them. By
having participants narrate their inner monologue, we aim to
gain valuable insights into their mental models.

Think aloud is a method from the psychology field, intro-
duced by Ericsson and Simon [34], which gained popularity
in usability testing of e.g. user interfaces. The implementation
of thinking aloud is as simple as asking participants to narrate
their thought process while they perform a set of tasks.
Although it’s been suggested that the think aloud method
might affect the thought processes and performance, that is
not necessarily the case [35]. For this research the benefits
outweigh the potential drawbacks due to its ability to provide
straightforward insights into the internal thought process.

There are three main types of think aloud methods: (1)
concurrent think aloud, (2) retrospective think aloud, and (3) a
hybrid method [36]. Research comparing these methods found
the concurrent method to be both the most successful and
the fastest [35]. This particular research was performed on an
evaluation task for a website, but the outcome corresponds
with preliminary testing the methods for our user study. Ret-
rospective think aloud is criticized on its reliance on memory
and on allowing for post-task rationalizing [37]. Even though
hybrid think aloud has the potential of providing additional
data on the mental model, both retrospective and hybrid were
discarded to decrease the experiment duration.

C. Habitat Simulation Environment

To create the simulated house environment where partic-
ipants can navigate and interact with objects, Habitat 3.0
[38] is used, a research platform for collaborative human-
robot tasks in household environments, including human-in-
the-loop infrastructure. The design of the house compromised
between being spacious enough for interesting navigation
routes and being compact enough to prevent disorientation.
The layout includes intuitive rooms and locations, although
this may reflect a European cultural bias. Figure 4 (left) shows
a representation of how the user study data is gathered from
the Habitat user study and annotated.

D. Data Annotation

The gathered data from the user study is used to create
data points for the benchmark. This includes visual data (e.g.
top-down view and first-person view) and audio data, which
was transcribed into text. First of all, the audio and video
data had to be aligned. Then, as shown by Figure 4, the

audio is transcribed with the use of a small-sized model
from Whisper [39], an open-source general-purpose speech
recognition model.

IV. EVALUATION METHODS

With the benchmark data prepared, the next step is to
conduct evaluations using this data. The objective of this
research is to have models infer about the mental models of
the human participants who generated the benchmark data.
However, the mental model is quite a broad construct. The
causal structure of ToM [17] states beliefs and desires as the
main components of the agent’s mental model. Beliefs follow
from perceptions of the world model and together with the
desires they constitute to the agent’s actions. Based on this
model we decided to focus on the belief updates. This section,
Section IV, discusses how to retrieve these belief updates from
evaluation on the benchmark.

A. Marking Belief Updates

First of all, there is a need to define what qualifies as a
belief update. A belief update happens whenever someone’s
beliefs about object locations are actively updated. Note that
“actively updated” indicates that there is no need to repeat
consistent beliefs without cause, or to mark it every time they
walk past an irrelevant location and there is no object there.

Example situations:
• They encounter their first object in step 1;
• They are in step 2 and remember from step 1 that they

left the sugar box at the bedroom night stand;
• They thought the cracker box was on the kitchen stove,

but now they see that it’s not there.

Over the course of the object rearrangement task the partic-
ipant encounters several belief updates. Figure 3 shows what
this looks like for the belief updates about a specific object.
The below formatting showcases the formalization of one of
such belief updates.

{
"belief_update":[{

"obj":"tomato soup can",
"neg":False,
"loc":"laundry room",
"timestamp":"15.00"

}]
}

B. Input Modalities

For interactions between humans, much information is com-
municated through nonverbal (visual) information. Someone’s
gaze might drift to an object they are thinking about or their
body pose gives away their navigation goal. The same goes
for text. When reading a book, humans have the ability to
empathize with the characters, and tell how they must be feel-
ing. Humans apply their ToM capabilities across modalities,
raising questions whether that also holds for models.
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Fig. 3: Graphical representation of the belief updates (black
circles) and the resulting belief state (blue line) for a specific
object over the course of an example object rearrangement
task. The locations in the graph are (top to bottom): bathroom,
living room, bedroom, kitchen, human hand, robot gripper.

In this study, predictions are generated based on two modal-
ities: video and text. Figure 4 (right) shows how the visual and
textual data is combined to perform 3 evaluations. Each model
infers the participant’s belief updates: once based on only the
textual data, once based only on the visual data, and once
based on both the visual and the textual data. This allows for
comparison of mental model inferences across modalities.

Due to API restrictions, not all video data could be included
in a single prompt. To solve this, a down-sampling approach
was used, selecting 1 frame for every 50 frames where
possible. When necessary, we used a higher frame interval to
accommodate larger data volumes. This approach was chosen
over batching because models often utilize later information
to inform earlier belief updates.

C. Model Selection

For the model evaluation process, several models were
tasked with analyzing video frames and text snippets from
the Habitat user study. Each model was given the same
objective: to identify relevant belief updates. Models received
instructions, as well as a one-shot example including video
frames with their corresponding timestamps and the desired
output. The models selected for this evaluation were LLMs
that met specific criteria, as detailed below and summarized
in Table III:

• Input Modalities. The model should be able to process
both visual and textual input to identify belief updates
based on audio transcriptions, video frames and their
corresponding timestamps.

• Response Format. For the purpose of evaluating the re-
sults, the model’s output has to be in a structured format.
The newer OpenAI models (e.g. GPT-4o, GPT-4o-Mini)
have a well-restricted method for that: structured output.

Older models (e.g. GPT-4, GPT-4-Turbo) are also able to
output in JSON format, but the format is less rigid.

• Multimodal Processing. The focus lies on models that
use multimodal input tokens rather than tool chaining, as
the research objective is to assess the models’ intrinsic
capabilities rather than those of their external tools.

Based on these criteria, the models GPT-4o, GPT-4o-Mini
and GPT-4-Turbo are selected. All tested models had a temper-
ature setting of 0 to ensure the most deterministic performance.

GP
T-
4o

GP
T-
4o
-M
in
i

GP
T-
4-
Tu
rb
o

GP
T-
4

Input Modalities
Text ✓ ✓ ✓ ✓
Image ✓ ✓ ✓ X

Response Format
Structured Output ✓ ✓ X X
JSON Mode X X ✓ ✓

MM Processing
MM Input Tokens ✓ ✓ ✓ X
Tool Chaining X X X X

TABLE III: Overview of MLLMs scored (✓/X) on the criteria
for being taken into account for this study. Input modalities:
both must be checked. Response format: one ✓suffices, prefer-
ably “Structured Output”. Multimodal processing: only “MM
Input Tokens” should be checked.

D. Measures of Agreement

Selecting an Agreement Metric. The models predict belief
updates based on the benchmark data. Data types vary between
text-only, video-only, or a text-video combination. We need a
metric to compare the agreement between these predictions.
This metric needs to check certain boxes, namely:

• Handle missing data, since not all predictions have coun-
terparts. These count as disagreements.

• One-to-many comparison, since a prediction has to be
compared against all of the other’s predictions within the
time margin. Correct predictions with slight timing offsets
are still be considered in agreement.

• Robust to class imbalance, since there is no equal
distribution assumed across categories such as objects,
locations, and negations.

• Adjust for chance, since predictions agreements by
chance are irrelevant for what we want to measure.

Krippendorff’s Alpha. After some tailoring to the use
case, Krippendorff’s Alpha (α) [40] is a metric that fits all
of the requirements. Fundamentally, it is 1 minus the ratio
between observed disagreement and expected disagreement,
as described in equation (1). So, α = 1 means perfect
agreement, α = 0 means chance agreement, and α < 0
means worse agreement than chance. Between 0 and 1 the
common interpretation is that α < 0.67 shows poor agreement;
0.67 < α < 0.79 is the lower bound for tentative conclusions;
α > 0.8 indicates a satisfactory level of agreement.
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Fig. 4: This image shows the data flow of the benchmark data. Data comes in on the top-left at the data acquisition. Next,
it goes down to the annotation where the audio is transcribed into text. Finally, the data is used (with different modality
combinations) to make predictions on the participant’s belief updates. These updates consist of a timestamp, object, negation
and location.

α = 1− Do

De
(1)

Where:
• Do is the observed disagreement.
• De is the expected disagreement.

Equation (2) describes how to calculate the observed dis-
agreement, which is the number of pairwise disagreements
divided by the number of pairwise comparisons. The distance
between the predictions is shown in equation (3). Due to the
nominal data, the distance is binary.

Do =

∑
j wj · d(xj , xK) +

∑
k wk · d(xk, xJ)∑

j wj +
∑

k wk
(2)

d(xj , xK) =

{
0 (|tj − tk| ≤ tm) ∧ (xj = xk) for k ∈ K

1 else
(3)

Where:
• wj and wk represent the weights assigned to each pre-

diction x from rater j or k. In this implementation,
wj = wk = 1 since all comparisons are treated equally.

• d(xj , xK) is the distance function, which checks whether
any prediction from rater k within the time margin tm
matches the prediction xj in terms of category.

• tm is the time margin in either direction within which
two predictions are considered comparable.

• K represents the set of predictions made by rater k, and
J represents the set of predictions made by rater j, with
comparisons happening in both directions (from j to k
and from k to j).

Equation (4) describes how to calculate the expected dis-
agreement by chance, which is based on the category distri-
bution and temporal overlap.

De = 1−
∑

j wj · pj · ptime +
∑

k wk · pk · ptime∑
j wj +

∑
k wk

(4)

ptime =

∑n
i=1

ti,covered
ti,total

n
≈ 0.44 (5)

Where:
• pj and pk represent the probability of assigning the

respective category, based on the overall distribution of
categories in the data.

• ptime is the probability of two predictions falling within
the allowed time margin.

• ti,covered is the time in seconds that is covered by predic-
tion timestamp ± time margin for data point i

• ti,total is the duration in seconds for data point i.
• n is the total number of considered data points.
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Agreement vs Ground Truth Agreement should not be
confused with the ground truth, as it only evaluates how well
the model predictions align with each other. Drawing fair
conclusions on the ground truth is complicated by the fact that
we do not have direct access to the internal mental models of
participants. So, the participant’s mental model, the simulation
settings and the model predictions are all distinct elements.
Partial ground truth could be achieved by verifying that
the participants understood certain aspects of the simulation
settings, such as which objects are included, and what their
final locations were. Confirming that the models capture these
aspects provides insight into whether their predictions are
aligning in a useful way.

V. RESULTS

A. Experiment 1: Validate Benchmark Data

Before getting into the evaluations on the benchmark data,
we need to validate the benchmark data itself. It is important
that the participants of the Habitat user study understood the
experiment and what was expected from them.

Participants identified objects & correctly marked final
object locations. At the beginning of the experiment the
participant is asked to identify the 4 objects by matching the
correct image of an object with its name in text. 100% of
the participants succeeded in this. Next, after every task the
participant is asked to identify the 2 objects that had to be
rearranged in that scene and what their final positions were.
When the participant failed to do this, the data point was left
out of the benchmark.

Correct Incorrect

Naming Question 100% 0%
Reality Question 98% 2%

TABLE IV: This table shows how the participants of the Habi-
tat user study performed on the naming & reality question.
Correct answers show proper understanding, which means that
their data can be used in the benchmark.

Self-declared understanding is positive. At the end of
the experiment the participants were asked to evaluate their
experience with the user study. On the topic of understanding
& clarity the participants responded positively about the ex-
periment, as shown in Figure 5. Appendix A contains further
evaluations on encountered difficulties and overall experience.
No data points have to be removed from the benchmark based
on these results.

B. Experiment 2: Investigate Model Predictions

Number of Belief Updates within expectations. For
every data point, the models predict a list of belief updates.
The number of belief updates per data point is displayed in
Figure 6. Some outliers are excluded from the graph due to a
cut-off at the largest 1.5× IQR (blue dotted line), which was
applied to maintain readability. Observing Figure 6 we note

Fig. 5: Users self-declared their understanding at the end
of the experiment. Appendix A contains the full participant
evaluation overview, this figure is only a subset.

that GPT-4o-Mini exhibits a wider spread in the number of
predictions. Upon closer examination of the results, it became
evident that GPT-4o-Mini often repeated predictions, rather
than exclusively marking significant updates. Furthermore,
both GPT-4o and GPT-4-Turbo appear to be mostly limited
to either 0 or 1 predictions when relying solely on the video
modality.

Fig. 6: Boxplot showing the number of belief updates per data
point, as predicted by the models based on different modality
combinations (text, video, text-video). The blue dotted line
marks 1.5× Inter Quartile Range (IQR).

C. Experiment 3: Comparison of Models & Modalities

Finally, we evaluated the consistency of predictions
made by three models based on three different modality
combinations. Krippendorff’s α was selected as our metric
to assess the agreement of model inferences across different
input modalities, providing insights into the reliability of the
models’ predictions.

Strongest agreement between text & text-video based
predictions. Table V presents the agreement rates of the
model predictions based on various modality combinations.
Notably, the highest agreement is observed between the
text and text-video modalities for all models. In contrast,
combinations involving the video modality hover around
chance level (α = 0). This aligns with a closer analysis
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Modality Combinations GPT-
4o

GPT-
4o

-M
ini

GPT-
4-T

ur
bo

avg

Text & Text-Video 76.94 45.86 60.66 61.15
Text-Video & Video 4.27 4.68 0.98 3.31
Text & Video 3.60 2.02 0.99 2.20
avg 28.27 17.52 20.88

TABLE V: Krippendorff’s alpha values to determine agree-
ment between MLLMs making inferences based on different
input modalities. The alpha values are multiplied by 100 for
readability. So they are [0-100] instead of [0-1]. GPT-4o refers
to the 2024-08-06 version. GPT-4-Turbo refers to the 2024-
04-09 version.

of the predictions, where we observe significant overlap in
the outputs of the text and text-video modalities, alongside
frequent hallucinations and misclassifications in the video-
based predictions. Among the models, GPT-4o displays the
highest text & text-video agreement, followed by GPT-4-
Turbo, and finally GPT-4o-Mini.

Higher agreement between models on text & text-video
data than on video data. To further analyze the agreement
between models, we focused on their predictions within a
single modality (Table VI). Notably, there is significantly
higher inter-model agreement for predictions based on text
and text-video modalities compared to those based on video
alone. This is consistent with the earlier observation that
video-based predictions are more prone to hallucinations and
misclassifications.

Agreement between GPT-4o & GPT-4o-Turbo higher
than when GPT-4o-Mini involved. Additionally, the
agreement between GPT-4o and GPT-4o-Turbo is substantially
higher than agreements involving GPT-4o-Mini. This
difference aligns with observed behavior from GPT-4o-Mini,
where the model tends to repeat belief updates rather than
only marking the actual update moment. Moreover, GPT-
4o-Mini frequently marks the final objects state at the last
timestamp, even when no belief update occurs. Hallucinations
and misclassifications in the predictions further complicate
these issues.

Poor agreement with preliminary human baseline across
all models. Because agreement scores do not necessarily
reflect the accuracy of the predictions relative to the ground
truth, it would be useful to compare their predictions against
a human baseline. Given that humans are assumed to possess
ToM capabilities, such a comparison could provide valuable
intuition about model performance. Table VI (bottom)
presents preliminary scores based on the answers from four
human participants spread over 16 data points. While the
agreement scores are above chance, they remain relatively
low. This area would benefit from further investigation. To
draw fair conclusions more human evaluation data is needed.

Model Combinations T V T&V avg

GPT-4o & GPT-4o-Mini 45.74 2.17 44.86 30.26
GPT-4o & GPT-4-Turbo 65.62 2.17 61.53 43.77
GPT-4o-Mini & GPT-4-Turbo 43.70 3.18 43.32 30.73
model avg 51.68 2.51 49.90

Human* & GPT-4o - 6.30 - 6.30
Human* & GPT-4o-Mini - 3.96 - 3.96
Human* & GPT-4-Turbo - 2.64 - 2.64
human avg - 4.30 -

TABLE VI: Krippendorff’s alpha values to determine agree-
ment between different MLLMs making inferences on one
input modality. The alpha values are multiplied by 100 for
readability. So they are [0-100] instead of [0-1]. The far-
right column shows the average alpha values over the different
modalities for each model. GPT-4o refers to the 2024-08-06
version. GPT-4-Turbo refers to the 2024-04-09 version. *The
human baseline is preliminary, based on the answers from 4
human participants spread over 16 data points.

Based on text or text-video data models are capable of
object identification & somewhat capable of final object
locations identification. While agreement between models
improves prediction reliability, it does not necessarily reflect
alignment with the ground truth. In this case, determining
ground truth is complicated, because we can not directly
access someone’s mental model. However, it is possible to
compare the predictions against simulation aspects that the
participant confirmed being aware of. The Reality Question
from Table IV shows that nearly all participants were able to
accurately identify the two objects and their final locations.
Tables VII & VIII detail to what extent the predictions
included this information. Noticeable is that the text and the
text-video modalities show similar performance across all
models: correctly identifying both objects for 4 in 5 data
points. In contrast, the video modality under-performs on both
identification tasks, which corresponds to the low number of
predictions as shown in Figure 6.

Model Text (%) Video (%) Text-Video (%)

GPT-4o 80.0 2.2 77.4
GPT-4o-Mini 79.6 52.7 79.6
GPT-4-Turbo 75.0 0.0 79.1

TABLE VII: Accuracy values showing how well the model
predictions, based on different modalities, identify both objects
of interest in simulation.

Model Text (%) Video (%) Text-Video (%)

GPT-4o 56.7 0.0 54.8
GPT-4o-Mini 48.4 9.9 57.0
GPT-4-Turbo 44.3 0.0 58.1

TABLE VIII: Accuracy values showing how well the model
predictions, based on different modalities, identify both final
object locations.
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(a) GPT-4-Turbo and GPT-4o-Mini tend to mark a textual
desire expressed by the participant as belief update.

(b) Hallucination happens across all models. For video-
based data the models sometimes mark a belief update
when they hallucinate an object into a location that’s in
the visual.

(c) Video-based predictions encounter misclassifications
often, when an object or location is incorrectly labeled.

(d) Misclassification also happens for text and text-
video based predictions. For example, when participants
misclassify in their narration or use vague references
such as ”the kitchen”.

Fig. 7: This figure contains illustrations of failure cases the
models encounter while predicting belief updates based on
text and/or visual data.

VI. DISCUSSION

In this work we present a human-generated benchmark
dataset with the objective to serve as evaluation tool for ToM-
like capabilities. The dataset contains visual and textual data of
human participants performing object rearrangement tasks in
simulation. This study specifically evaluates MLLMs on their
ability to predict belief updates in the mental model based on
data of various modalities.

A. Benchmark Data

To generate benchmark data, a method was selected where
participants perform an experiment in a simulation environ-
ment while narrating their thoughts. From this process raw
audio and video data was collected. Initially, a retrospective
think-aloud set-up was considered, where participants would
narrate their thoughts after playing the game while watching
recordings of themselves playing. However, this method was
discarded based on experiment duration and participant feed-
back, the latter of which indicated that recalling the thought
process afterwards was too memory-intensive.

For future iterations of this user study, it would be beneficial
to gather screen recording data that captures exactly what the
person playing is seeing, to make it easier to mentalize. The
current implementation gathers video data from the FPV of the
simulated human. For example, without screen recordings, we
cannot determine when a participant is looking down to check
the object in hand. Additionally, including the navigation hints
in the recordings could help in understanding participants’
navigation decisions. For instance, if a participant enters the
bathroom due to a hint but they actually should have gone to
the laundry room, which is located just behind it, the screen
recordings would clarify this behavior.

Additional improvements for the next iterations are (1)
using more intuitive objects to reduce misclassification, (2)
similarly, using locations that are more distinct from each
other, and (3) providing clearer narration instructions, possibly
with examples.

B. Model Evaluation

The current model prediction method follows a one-shot
approach which requires the model to generate the answer in
one step. Introducing an intermediate reasoning step, such as in
Chain-of-Thought [41], and formatting this step using a causal
template, as demonstrated in BigToM [10], is expected boost
performance. Additionally, transitioning from a one-shot to a
few-shot approach, with examples that have balanced classes
and incorporate frequent scenarios, could further improve the
model’s accuracy. Another potential improvement involves
experimenting with varying levels of image detail and frame
rates during evaluation, though this may be constrained by API
limitations.

Next, the method for evaluating agreement between predic-
tion sets involves comparing each prediction with its counter-
part from the other set, specifically identifying updates that
mark the same [object, negation, location] within a defined
time margin. This time margin, set at 15s, ensures that pre-
dictions still have the possibility to match even when they
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are triggered with some time offset. The choice of 15s is
based on the fact that the narration snippets from Whisper
are smaller than that interval, and all belief updates from one
snippet are aligned with the starting timestamp of the snippet.
By comparing all predictions against predictions within <15s,
this approach necessitates a metric that’s compatible for one-
to-zero, one-to-one, and one-to-many comparisons. However,
a notable limitation is that predictions can be counted multiple
times. Future work could refine this method by developing a
more sophisticated metric that addresses these limitations.

Furthermore, the benchmark dataset contains rich free form
data. Participants’ internal monologues expanded far beyond
marking belief updates about object locations. This richness
allows future research to evaluate broader parts of the human
mental model.

C. Human Evaluation

At present, three models have been evaluated on the bench-
mark data. While it would be beneficial to include more
models in this evaluation, it would also be valuable to assess
more human participants, possibly on different modalities to
compare how their predictions align. Incorporating additional
human data would provide a more robust basis for assessing
the models’ alignment with the human baseline. Additionally,
humans tend to mentalize more easily with individuals similar
to themselves. However, difficulty in interpreting someone
from a different demographic group does not imply lack of
ToM-capabilities. Investigating these effects in models could
be an interesting avenue to investigate further, albeit a bit of
a tangent.

Moreover, including questions on participants’ demograph-
ics and English proficiency could provide a more reliable
baseline for evaluation.

D. General Concept

This research aims to investigate the presence of ToM
capabilities in MLLMs. However, the methods as described
in this study to measure these capabilities also inherently test
for other capabilities, such as task comprehension, instruction
following, and multi-tasking. Additionally, the benchmark
creation is based on the assumptions that humans make use of
mental models in a goal-directed way, that they have specific
goal locations, desired objects, and store relevant information
within a belief system.

VII. CONCLUSION

This paper introduces a novel benchmark dataset, consisting
of 94 data points collected through a user study. Each data
point includes both visual and textual data, capturing partic-
ipants’ behavior during an object rearrangement task along
with their inner monologues. While the dataset is still to be
expanded, the current validation results indicate great potential
for use in future research.

Using this benchmark, the study aimed to investigate how
MLLMs perform in predicting the participants’ belief updates
based on different modality combinations. A tailored agree-
ment metric (α) was used to assess the performance of the

three models: GPT-4o, GPT-4o-Mini, and GPT-4-Turbo. The
results showed the highest consistency between the predictions
based on text-only and text-video data across all models, with
GPT-4o achieving the highest alpha score, followed by GPT-
4Turbo and GPT-4o-Mini. Qualitative analysis of the video-
based predictions observed hallucinations and misclassifica-
tions, which could be an explanation for the poor agreement
between video-only predictions and those based on text or
text-video data.

Preliminary comparisons with human baselines demon-
strated low agreements with the video-based model predictions
across all models, suggesting that the models are currently
unable to infer belief updates from nonverbal visual data
in the same way humans can. However, this study does
not provide sufficient evidence to draw conclusions about
ToM-like capabilities in the MLLMs examined. Overall, this
research builds a foundation for future research.
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APPENDIX A
SELF-DECLARED USER EXPERIENCE

From the data in Figure 8 we can conclude that the majority of participants reported an overall positive experience with
the experiment. All respondents expressed feeling comfortable during the procedure, with only one individual providing a
negative response regarding the level of engagement. The experiment encountered two technical and two non-technical issues,
but these do not harm the experiment results by default. Additionally, one participant mentioned requiring external assistance
(e.g., asking clarifying questions), though it is worth noting that none of the participants reported feeling uncomfortable
seeking such support when needed.

Fig. 8: This figure shows the evaluation from the participants to the Habitat User Study that were taken into the benchmark.
They were asked the questions on the left and had the ability to select an answer from a Likert scale. Note that the colors of
the bars refer to the selected answers, not necessarily to the interpretation of the output.

APPENDIX B
PREDICTION STATISTICS

Fig. 9: These histograms show the distributions of the number of predictions and duration of the video per data point of the
benchmark data. For each of these distributions the mean and median are marked. The fact that there are five predictions per
data point corresponds well to Figure 6
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APPENDIX C
HABITAT USER STUDY

Fig. 10: This figure shows the set-up for the Habitat user study. The participant will constantly have 2 screens in front of them,
one showing the Control Panel and one showing the Qualtrics Survey Questions. When the participants receives instructions
from the Qualtrics to start Round 1 & Step 1, they click the corresponding letter on the Control Panel, which will launch the
Habitat Environment as a pop-up. This process is repeated for all rounds and steps.

Fig. 11: This map is a top-down view of the Habitat simulation environment that the user study takes place in. The colored dots
mark the potential locations for object placement. Each locations has a radius of 20 pixels around it. During the user study,
the participants have to mark the final object locations. When this markings are within the radius of the correct locations, they
pass the Reality Question (Table IV).
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APPENDIX D
MODEL EVALUATION ON BENCHMARK DATASET

Fig. 12: This is the initial prompt that will be fed into the model to explain the task at hand. This prompt differs depending
on the modality on which the model will make its predictions, such as “video” for this specific prompt.

Fig. 13: This is the initial prompt that will be fed into the model to explain the task at hand. This prompt differs depending
on the modality on which the model will make its predictions, such as “text-video” for this specific prompt.
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Fig. 14: This is the initial prompt that will be fed into the model to explain the task at hand. This prompt differs depending
on the modality on which the model will make its predictions, such as “text” for this specific prompt.

Fig. 15: These prompts introduce the objects and object locations that are available for the model to use in the predictions.
These prompts will only be included for the model evaluations based on “video” and “text-video” data.
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Fig. 16: This prompt provides a one-shot example to the model with both text and video data. Each connected text item and
video frame are send in pair.
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Fig. 17: These prompts provide the one-shot example to the model for the text data (left) and the video data (right). For the
video data, the frames are send to the model in combination with their timestamp.

Fig. 18: This prompt provides the answer for the example prompt.
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APPENDIX E
HUMAN EVALUATION ON BENCHMARK DATASET

Fig. 19: This UI shows the instructions for human evaluation on the benchmark dataset. On this screen they will learn what is
expected of them and get to know the relevant objects and locations. When the participants are ready, the check the box and
click on Next.

Fig. 20: After the instructions, the human participants will get to this UI. Top-left there are still some instruction pointers for
reference. Top-right they will find the objects and location map, which they can click to expand. Bottom-left they are able
to load the video they will be evaluating and adjust the speed if preferred. Bottom-right they are able to add a belief update
(object, negation, location). The timestamp will be auto-filled by the timestamp they are at in the video (bottom-left).
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