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A B S T R A C T

Surrogate Safety Measures (SSMs) are used to express road safety in terms of the safety risk in traffic conflicts.
Typically, SSMs rely on assumptions regarding the future evolution of traffic participant trajectories to generate
a measure of risk, restricting their applicability to scenarios where these assumptions are valid. In response to
this limitation, we present the novel Probabilistic RISk Measure derivAtion (PRISMA) method. The objective
of the PRISMA method is to derive SSMs that can be used to calculate in real time the probability of a specific
event (e.g., a crash). The PRISMA method adopts a data-driven approach to predict the possible future traffic
participant trajectories, thereby reducing the reliance on specific assumptions regarding these trajectories. Since
the PRISMA is not bound to specific assumptions, the PRISMA method offers the ability to derive multiple SSMs
for various scenarios. The occurrence probability of the specified event is based on simulations and combined
with a regression model, this enables our derived SSMs to make real-time risk estimations.

To illustrate the PRISMA method, an SSM is derived for risk evaluation during longitudinal traffic
interactions. Since there is no known method to objectively estimate risk from first principles, i.e., there is
no known risk ground truth, it is very difficult, if not impossible, to objectively compare the relative merits
of two SSMs. Instead, we provide a method for benchmarking our derived SSM with respect to expected risk
trends. The application of the benchmarking illustrates that the SSM matches the expected risk trends.

Whereas the derived SSM shows the potential of the PRISMA method, future work involves applying the
approach for other types of traffic conflicts, such as lateral traffic conflicts or interactions with vulnerable road
users.
1. Introduction

Road safety is an important key performance indicator in transporta-
tion. In addition to the suffering of people as a consequence of crashes
in traffic, these crashes cause enormous societal and economic losses.
As a result, road safety research is an important research topic. For
example, in 2018,1 there were over 6.7 million crashes in the U.S.A.
(National Center for Statistics and Analysis, 2020), which is about 1.3
crashes per 1 million vehicle kilometers driven. These crashes in 2018
led to 2.7 million injured people and 37 thousand fatalities (National
Center for Statistics and Analysis, 2020). Furthermore, apart from these
societal losses, the economic costs of all crashes in the U.S.A. in 2018

∗ Corresponding author at: TNO, Integrated Vehicle Safety, Helmond, The Netherlands.
E-mail address: erwin.degelder@tno.nl (E. de Gelder).

1 At the time of writing, more recent results were not yet available.

was 242 billion dollars (National Center for Statistics and Analysis,
2020). Similarly, the (European Commission, 2020) reported over 22
thousand fatalities in 2019.

Road safety can be expressed in terms of injuries, fatalities, or
crashes per kilometer of driving, but ‘‘that is a slow, reactive process’’
(Arun et al., 2021). Furthermore, ‘‘crashes are rare events and historical
crash data does not capture near crashes that are also critical for
improving safety’’ (Wang et al., 2021). An alternative for expressing
road safety that does not rely on historical crash data is the use of
safety indicators that directly measure the safety risk in traffic conflicts
(Tarko, 2018b; Arun et al., 2021; Wang et al., 2021). Traffic conflicts
are far more frequent than traffic crashes and the frequency of traffic
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conflicts can be used to predict the frequency of crashes (Davis et al.,
2011; Tarko, 2018a). To define traffic conflicts, thresholds on so-called
Surrogate Safety Measures (SSMs) are used, where SSMs characterize
the risk of a crash or harm given an initial condition (Arun et al.,
2021). SSMs vary from measures that estimate the remaining time until
a crash, such as the well-known Time to Collision (TTC) (Hayward,
1972), to metrics that estimate the probability that a human driver
cannot avoid a crash, see, e.g., Wang and Stamatiadis (2014).

SSMs typically rely on assumptions of what drivers or systems
controlling the vehicles of interest are capable of doing and how
their future trajectories – given an initial condition – will develop.
For example, TTC (Hayward, 1972), the ratio of the distance toward
and the speed difference with an approaching object, is computed by
assuming a constant relative velocity. As a result of these assumptions,
SSMs are only applicable in certain types of scenarios. For example,
TTC is only applicable when approaching an object. More complex
SSMs consider, e.g., a human model that can react to a risky situation
by braking (Wang and Stamatiadis, 2014) or the uncertainty over the
future ambient traffic state (Mullakkal-Babu et al., 2020). Regardless of
the complexity of these models, however, these SSMs consider neither
the specific capabilities of the driver or of the system controlling the
vehicle, nor the local context for predicting the future of the vehicle’s
environment.

This article presents the Probabilistic RISk Measure derivAtion
(PRISMA) method, which is a data-driven approach for deriving SSMs
that are not limited to certain types of scenarios. Because the method is
not bound to certain predetermined assumptions about driver behavior,
the derived SSMs can be adapted to the situations in which they are
applied. In addition, to avoid relying on predetermined assumptions on
how the ambient traffic evolves over time, the PRISMA method includes
a data-driven approach for modeling the variations of the trajectories of
the ambient traffic. Monte Carlo simulations are employed to predict
the safety risk given these variations. To enable the real-time evalu-
ation of the derived SSMs, we use the Nadaraya-Watson (NW) kernel
estimator (Wasserman, 2006) for local regression. The PRISMA method
has the following characteristics:

• The derived SSMs give a probability that a specified event, e.g., a
crash or a near miss will happen in the near future, e.g., within
the next 10 s, given an initial state and the foreseen evolutions
of traffic participant trajectories. Since a traffic conflict can be
defined as the probability of an unsuccessful evasion in a traffic
interaction, according to Davis et al. (2011), a probability is easier
to interpret than, e.g., a value ranging from 0 to infinity such as
the TTC.

• Next to deriving new SSMs, i.e., new ways to estimate the prob-
ability of an event such as a crash, it is possible to reproduce
already existing measures that provide a probability. Therefore,
the PRISMA method can be seen as a generalization for deriving
such existing SSMs.

• A driver behavior model can be used. It is also possible to use
a model of an Automated Driving System (ADS), such that the
derived SSM estimates the safety risk if this ADS controls the
vehicle.

• Because a data-driven approach is adopted, the derived SSM
adapts to the recorded data. In this way, it is possible to adapt
the SSM to, e.g., the local traffic behavior provided that this local
traffic behavior is captured by the recorded data.

• The PRISMA method is not limited to one type of scenario.

We illustrate the PRISMA method and its benefits by means of a
ase study. The case study demonstrates that when using the PRISMA
ethod with the assumptions of the SSM of Wang and Stamatiadis

2014), both the SSM derived by the PRISMA method and the latter
ield the same result. The case study continues with evaluating the
rash risk of three longitudinal traffic conflicts which are a priori
2

nown to be, respectively, safe (i.e., no crash possible), moderately
safe, and unsafe (i.e., a crash occurs), based on vehicle kinematics. We
evaluate the risk of each of the scenarios using the SSM by Wang and
Stamatiadis (2014) and an SSM derived by the PRISMA method, based
on data from the Next Generation SIMulation (NGSIM) (Alexiadis et al.,
2004). Moreover, since a comparison between these measures is not
directly possible in general scenarios, a method to benchmark SSMs
using expected risk trends is introduced in the case study.

This article is organized as follows. Section 2 provides an overview
of SSMs described in the literature. The proposed PRISMA method is
presented in Section 3. In Section 4, we illustrate the method in a case
study. Some implications of this work are discussed in Section 5. The
article is concluded in Section 6.

2. Literature review

Risk in the context of traffic safety is often defined as the probability
of a crash occurring (Hakkert et al., 2002). Most SSMs are derived
under specific assumptions of the expected behavior of the driving
participants under a specific driving scenario. Several SSMs have been
developed under such assumptions with the goal of quantifying the
risk involved in driving in traffic on the road (Minderhoud and Bovy,
2001; Ozbay et al., 2008; Cunto and Saccomanno, 2009; Laureshyn
et al., 2010). In general, the risk is quantified in terms of the proximity
between two traffic agents in time and/or space, the ability to perform
evasive actions like braking or swerving, or the magnitude of such
actions (Shi et al., 2018; Zheng et al., 2020). In a potential crash
situation, the proximity indicator is close to zero while the magnitude
of evasive action is close to the limits of the driver and the vehicle
(Zheng et al., 2020). The above clustering of SSMs in terms of time,
space, and evasive action is common in the literature; so our literature
review follows this pattern of clustering SSMs. We focus on the most
commonly used measures in each cluster and their underlying assump-
tions. Additionally, we discuss some well-known SSM-based metrics,
i.e., metrics that are derived from other SSMs.

The most common SSMs are time-based. A popular time-based
proximity indicator is the TTC, which is an estimate of the remaining
time until two vehicles collide and is defined as the time remaining
until two vehicles collide if they would continue on the same course
and speed (Hayward, 1972). The assumption for the TTC is that the
relative speed and course will remain the same. In addition, the TTC
is only relevant when two objects are approaching each other. These
assumptions make it difficult to use it for various driving scenarios.
Several other time-based SSMs have been derived from or based on the
TTC. Notable among those are:

• the time-exposed TTC, which measures the amount of time the
TTC is below a certain threshold (Minderhoud and Bovy, 2001);

• the Time Integrated TTC (TIT), which calculates the total area
in a TTC versus time diagram where the TTC is below a certain
threshold (Minderhoud and Bovy, 2001);

• the Modified TTC (MTTC), which is able to calculate the TTC
for cases where vehicles do not keep a constant speed and the
follower is slower than the leader (Ozbay et al., 2008); and

• the Time to Collision Disturbance (TTCD), which calculates the
TTC in case the leader is decelerating with a constant deceleration
(Xie et al., 2019).

For the MTTC and TTCD, the relative speed is not assumed to be
constant, but new assumptions on the acceleration and speed of the
objects are introduced.

Other time-based proximity indicators include Post-Encroachment
Time (PET), which measures the ‘‘time between the moment that a
vehicle leaves the area of potential collision, i.e., the area in which
the paths of the two vehicles intersect, and the other vehicle arrives in
the same area’’ (Mahmud et al., 2017) and Time Headway (THW). PET

can only be calculated when the collision area of the two participants
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is known. This assumption makes it mostly useful for scenarios with
obvious crossing conflicts like intersections.

For distance-based proximity indicators, the Potential Index for
Collision with Urgent Deceleration (PICUD) measures the remaining
distance between vehicles during an emergency stop (Iida et al., 2001;
Uno et al., 2003) and the Proportion of Stopping Distance (PSD) mea-
sures the remaining distance to the potential point of collision divided
by the minimum acceptable stopping distance (Allen et al., 1978; Guido
et al., 2011; Mahmud et al., 2017). These two measures assume that
the vehicles will apply the maximum deceleration during emergency
situations. This makes them suitable for emergency situations for which
these assumption will most likely hold. For non-critical situations,
however, the deceleration that the drivers will apply, may vary. More
recently, a distance-based measure that assumes ‘‘correct’’ driving be-
havior has been proposed (Shalev-Shwartz et al., 2017). This measure
calculates the minimum safety distance between a follower and its
leader, such that no crash occurs if the leader vehicle brakes with a
specified deceleration and the follower brakes after a specified reaction
time with another specified deceleration. Based on the definition of this
measure, it is not suitable for driving situations where the driver does
not follow the description of ‘‘correct’’ driving given above.

In terms of indicators relating to performing evasive actions, the
Deceleration Rate to Avoid Collision (DRAC) is the most widely used.
The DRAC is calculated as the ratio of the difference in speed between a
following vehicle and a leading vehicle and their closing time (Almqvist
et al., 1991; Mahmud et al., 2017). Another indicator is the Crash
Potential Index (CPI), which calculates the probability that a vehicle’s
DRAC will exceed its Maximum Available Deceleration Rate (MADR)
in a given time interval (Cunto and Saccomanno, 2009). The DRAC is
not a risk measure on its own, if it is not compared with the braking
capacity. This is a limitation and this is why the CPI measure has been
developed. Both DRAC and CPI are mostly suitable for a car-following
situation and are not suitable for lateral movements (Mahmud et al.,
2017).

Wang and Stamatiadis (2014) and Xie et al. (2019) propose an SSM-
based metric, i.e., they derive a probability using the TTC and TTCD,
respectively, and some assumptions. In particular, Wang and Stama-
tiadis (2014) assume distributions of the vehicle braking capability and
the driver’s reaction time, while Xie et al. (2019) assume a distribution
of the deceleration rate of the leader. Although these probabilities are
suitable for various car-following situations, lane-change conflicts, and
crossing conflicts, they are limited because they use the TTC and TTCD,
respectively, in their calculations; so these probabilities are undefined
when the TTC and TTCD, respectively, are undefined.

Saunier and Sayed (2008) derive a probability based on the TTCs
that are estimated using hypothetical trajectories of the different traffic
participants. Similar to the approach we present in Section 3, the hypo-
thetical trajectories of the traffic participants are based on a data-driven
model (Saunier et al., 2007). In Saunier and Sayed (2008), also the
probabilities of the different hypothetical trajectories are considered.
In order to keep the computation of the metric feasible in real time,
the number of hypothetical trajectories to be considered is limited.
Altendorfer and Wilkmann (2021) also calculate the probability of a
collision. They provide a general framework that can consider any ar-
bitrary prediction model of the trajectories of the traffic participants. To
ensure real-time computations, their example considers Gaussian distri-
butions and simplified geometries of the traffic participants, such that
they can use numerical integration instead of Monte Carlo simulations.

Shi et al. (2018) use indicators like TIT, CPI, and PSD to measure
the effectiveness of risk indicators for predicting crashes. The idea is
to use a combination of indicators and thresholds on the indicators
to predict whether an interaction may become a crash. This results in
new indicators, but they inherit the union of the assumptions of the
other indicators. Mullakkal-Babu et al. (2020) propose a probabilistic
3

driving risk field. The method derives the risk a vehicle is exposed
to using a kinematic approach with the inclusion of uncertainty in the
vehicle’s future state. Mullakkal-Babu et al. (2020) define this for an
encounter between the ego vehicle and a road obstacle, such as other
vehicles or objects. This research shares similar ideas with our proposed
method of risk estimation, but Mullakkal-Babu et al. (2020) do not
use a data-driven approach to derive the SSM. Furthermore, the future
state of the vehicle is estimated with a fixed distribution (i.e., a normal
distribution). This limits the application in scenarios where the data
may have an entirely different distribution.

To estimate crash probabilities based on existing SSMs, the prob-
abilistic approach using the Extreme Value Theory (EVT) has been
applied successfully (Songchitruksa and Tarko, 2006; Tarko, 2012;
Wang et al., 2021). For example, based on a specific TTC value, EVT
can be used to predict the probability of a crash. Using EVT, the crash
probability is estimated by assuming the generalized extreme value
distribution and fitting the parameters of the distribution using either
the ‘‘block maxima’’ approach or the ‘‘peak over’’ approach (Wang
et al., 2021). It is also possible to combine multiple SSMs using the
EVT. The advantage of EVT is that EVT provides probabilities that are
directly linked to historical data and that these probabilities have been
used successfully to predict the frequency of crashes (Songchitruksa and
Tarko, 2006; Åsljung et al., 2017). Disadvantages of EVT are that it
might inherit the assumptions of the SSMs that it uses to estimate the
crash probability and that it assumes a fixed distribution of the extreme
events, which is only justified if a lot of data is used. Furthermore, as
the estimated crash probability is solely based on the fitted distribution,
it does not consider potential changes to the driver’s behavior (model).

3. Probabilistic RISk measure derivation

In this section, we propose the PRISMA method which is a method
for deriving a measure that quantifies the risk of a certain event, such
as a crash, in a particular situation in which a vehicle – hereafter, the
ego vehicle – is in and that is applicable for real-time use. The PRISMA
method is schematically shown in Fig. 1 and consists of four steps:

1. The parameterization of the ‘‘initial situation’’ and the possible
‘‘future situations’’ (Section 3.1);

2. Based on the initial situation, the estimation of the probability
(density) for the possible future situations (Section 3.2);

3. The estimation of the probability of the specified event based on
the initial and the future situations (Section 3.3); and

4. Local regression in order to speed up the calculations and to
make it possible to use the SSM in real time (Section 3.4).

In this article, the following notation is used. To denote a probability
function, 𝑃 (⋅) is used. A probability density function (PDF) is denoted
by 𝑝 (⋅). The probability of 𝑎 given 𝑏 is denoted by 𝑃 (𝑎|𝑏). Similarly, a
conditional PDF is denoted by 𝑝 (⋅|⋅). To denote the estimation of any of
the aforementioned functions, a circumflex is used, e.g., 𝑃 (𝑎) denotes
he estimated probability of 𝑎.

.1. Parameterize initial and future situations

The first step is to parameterize the initial situation the ego vehicle
s in. In other words, the initial situation needs to be described using
𝑥 numbers that are stacked into one vector 𝑥 ∈  ⊆ R𝑛𝑥 . This vector

contains relevant aspects for determining the risk. As an example, 𝑥
could contain the speed of the ego vehicle and the distance toward its
preceding vehicle. In Section 4, we will consider more examples.

Next to describing the initial situation, the future situation is de-
scribed using 𝑛𝑦 numbers stacked into one vector 𝑦 ∈  ⊆ R𝑛𝑦 . Together
with 𝑥, 𝑦 contains enough information to describe how the relevant
future, e.g., the next 5 s, around the ego vehicle develops over time. As
an example, 𝑦 could contain the speed for the next 5 s of the leading
vehicle (if any) that is in front of the ego vehicle. In Section 4, we will

consider more examples.
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Fig. 1. Schematic overview of the PRISMA method and the organization of Section 3. The mathematical symbols are further explained in Sections 3.1 to 3.4.
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Let C denote an event, e.g., a crash or a near miss, such that the
probability of this event is 𝑃 (C). The goal of our SSM is to estimate the
probability of the event C given a particular situation 𝑥, i.e., 𝑃 (C|𝑥).

e do this by considering all future situations,  , and calculating
he probability of the event C given each possible value of 𝑦. Using
ntegration, we obtain 𝑃 (C|𝑥):

(C|𝑥) = ∫
𝑃 (C|𝑥, 𝑦) 𝑝 (𝑦|𝑥) d𝑦. (1)

.2. Estimate 𝑝 (𝑦|𝑥)

In this section, we propose a method to estimate 𝑝 (𝑦|𝑥), i.e., the PDF
of 𝑦 given 𝑥. Using the product rule for probability, we can write:

𝑝 (𝑦|𝑥) =
𝑝 (𝑥, 𝑦)
𝑝 (𝑥)

=
𝑝 (𝑥, 𝑦)

∫ 𝑝 (𝑥, 𝑦) d𝑦
. (2)

hus, it suffices to estimate 𝑝 (𝑥, 𝑦).
Our proposal is to estimate 𝑝 (𝑥, 𝑦) in a data-driven manner. A

data-driven approach brings several benefits. First, the estimate au-
tomatically adapts to local driving styles and behaviors, which can
change from region to region, provided that the data are obtained from
the same local traffic. Second, assumptions such as a constant speed
of other vehicles, are not needed. For our data-driven approach, let
us assume that we have obtained 𝑁 situations from data. For the 𝑖-
th situation, we denote the initial situation and the future situation
by 𝑥𝑖 ∈  and 𝑦𝑖 ∈  , respectively. The remainder of this subsection
describes how we estimate 𝑝 (𝑥, 𝑦) using

{

(𝑥𝑖, 𝑦𝑖)
}𝑁
𝑖=1.

3.2.1. Kernel density estimation
We first explain how to estimate 𝑝 (𝑥, 𝑦) if we assume that all 𝑛𝑥+𝑛𝑦

parameters depend on each other. If the shape of the PDF is known,
a particular functional form can be fitted to the data, e.g., by esti-
mating the parameters of a distribution by maximizing the likelihood.
For example, if it is known that the data

{

(𝑥𝑖, 𝑦𝑖)
}𝑁
𝑖=1 come from a

multivariate normal distribution, it suffices to estimate the mean and
the covariance. If, however, the shape is unknown, fitting a particular
parametric distribution may lead to very inaccurate results (Chen,
2017). Furthermore, the shape of the estimated PDF might change as
more data are acquired. Assuming a functional form of the PDF and
fitting the parameters of the PDF to the data may therefore lead to
inaccurate fits unless extensive manual tuning is applied.

In the remainder of this work, we assume that the shape of the PDF
𝑝 (𝑥, 𝑦) is unknown a priori. Therefore, we employ a non-parametric
approach using Kernel Density Estimation (KDE) (Rosenblatt, 1956;
Parzen, 1962) because the shape of the PDF is then automatically
computed and KDE is highly flexible regarding the shape of the PDF.
Note, however, that the PRISMA method can also work with other non-
parametric methods for estimating a PDF (cf. Durkan et al. (2019) and
Peerlings et al. (2022)). Using KDE, the estimated PDF becomes:

�̂� (𝑥, 𝑦) = 1
𝑁
∑

𝐾𝐻

([

𝑥
]

−
[

𝑥𝑖
])

, (3)
4

𝑁 𝑖=1 𝑦 𝑦𝑖
here 𝐾𝐻 (⋅) is an appropriate kernel function with an (𝑛𝑥 + 𝑛𝑦)-by-
𝑛𝑥 + 𝑛𝑦) symmetric positive definite bandwidth or smoothing matrix 𝐻 .
he choice of the kernel 𝐾𝐻 (⋅) is not as important as the choice of the
andwidth matrix 𝐻 (Turlach, 1993). We use the often-used Gaussian
ernel (Duong, 2007):

𝐻 (𝑢) = 1
(2𝜋)

(

𝑛𝑥+𝑛𝑦
)

∕2
|𝐻|

1∕2
exp

{

−1
2
𝑢𝖳𝐻−1𝑢

}

. (4)

The bandwidth matrix 𝐻 controls the width of the kernel, or, in
other words, the influence of each data point (i.e.,

[

𝑥𝑖𝖳 𝑦𝑖𝖳
]

𝖳) on
nearby regions (see Wand and Jones (1994) for a more extensive
explanation of the bandwidth matrix). There are many different ways of
estimating the bandwidth matrix, ranging from simple reference rules
like, e.g., Silverman’s rule of thumb (Silverman, 1986) to more elab-
orate methods; see Turlach (1993), Chiu (1996), Jones et al. (1996),
Bashtannyk and Hyndman (2001) and Zambom and Dias (2013) for
reviews of different bandwidth selection methods.

To estimate 𝑃 (C|𝑥) of (1), we need to draw samples from �̂� (𝑦|𝑥).
Drawing samples from the estimated PDF in (3) is straightforward:
two random numbers are drawn, one to choose a random generator
kernel out of the 𝑁 kernels that are used to construct the KDE, and
one random number from that kernel. Sampling from �̂� (𝑦|𝑥) works
imilarly, but instead of using an equal probability for each random
enerator kernel to be selected, different probabilities are used based on
. For more information on sampling from a conditional PDF obtained
sing KDE, see Holmes et al. (2007) and de Gelder et al. (2021).

.2.2. Assuming independence
Due to the curse of dimensionality (Scott, 2015), estimating 𝑝 (𝑥, 𝑦)

ith one KDE according to (3) becomes inaccurate if 𝑛𝑥 + 𝑛𝑦 becomes
arge. One option to avoid this curse of dimensionality is to assume that
ne or more parameters are independent of the other parameters. E.g.,
uppose that 𝑦𝖳 =

[

�̄�𝖳 �̃�𝖳
]

, such that �̃� is independent of 𝑥 and �̄�. Then
e can write

(𝑥, 𝑦) = 𝑝 (𝑥, �̄�, �̃�) = 𝑝 (𝑥, �̄�) 𝑝 (�̃�) . (5)

n this case, we would need to estimate 𝑝 (𝑥, �̄�) and 𝑝 (�̃�), which can be
one in a similar manner as presented in Section 3.2.1. Because these
wo PDFs have fewer variables than 𝑝 (𝑥, 𝑦), the two estimated PDFs will
uffer less from the curse of dimensionality (Scott, 2015).

Another option is to model 𝑝 (𝑦|𝑥) as a cascade of conditional
robabilities. For example, using the partitioning 𝑦𝖳 =

[

�̄�𝖳 �̃�𝖳
]

, 𝑝 (𝑥|𝑦)
can be approximated using two conditional densities:

𝑝 (𝑦|𝑥) = 𝑝 (�̄�, �̃�|𝑥) = 𝑝 (�̄�|�̃�, 𝑥) 𝑝 (�̃�|𝑥) ≈ 𝑝 (�̄�|�̃�) 𝑝 (�̃�|𝑥) . (6)

This approximation is valid if �̄� and 𝑥 are conditionally independent
given �̃� (Nagler and Czado, 2016). The same partitioning can be ap-
plied to 𝑝 (�̄�|�̃�) and 𝑝 (�̃�|𝑥) until only two-dimensional PDFs need to be
estimated. Although this will lead to larger approximation errors, the
lower-dimensional PDFs can be estimated more accurately. For more
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information on this approach, we refer the reader to Aas et al. (2009)
and Nagler and Czado (2016). Note that when relying on the assump-
tion of independence or the assumption of conditional independence,
these assumptions should be justified, e.g., through the use of some
statistical tests like the Pearson’s chi-squared test.

3.2.3. Reduce number of parameters using singular value decomposition
Another way to avoid the curse of dimensionality is to use a Singular

Value Decomposition (SVD) (Golub and Van Loan, 2013) to reduce the
number of parameters. In the field of machine learning, Principal Com-
ponent Analysis (PCA) is commonly used for dimensionality reduction
(Abdi and Williams, 2010; Hasan and Abdulazeez, 2021) and PCA uses
the SVD. With an SVD, the parameters 𝑥 and 𝑦 are transformed into a
lower-dimensional vector of parameters in such a way that the reduced
vector of parameters describes as much of the variation as possible. To
do this, an SVD is made of the matrix that contains all 𝑁 observed
situations:
[

𝑥1 − 𝜇𝑥 ⋯ 𝑥𝑁 − 𝜇𝑥
𝑦1 − 𝜇𝑦 ⋯ 𝑦𝑁 − 𝜇𝑦

]

= 𝑈𝛴𝑉 𝖳. (7)

Here, 𝜇𝑥 = 1
𝑁

∑𝑁
𝑖=1 𝑥𝑖 and 𝜇𝑦 = 1

𝑁
∑𝑁

𝑖=1 𝑦𝑖. The matrices 𝑈 ∈
R

(

𝑛𝑥+𝑛𝑦
)

×
(

𝑛𝑥+𝑛𝑦
)

and 𝑉 ∈ R𝑁×𝑁 are orthonormal, i.e., 𝑈−1 = 𝑈𝖳

and 𝑉 −1 = 𝑉 𝖳. Moreover, 𝛴 ∈ R
(

𝑛𝑥+𝑛𝑦
)

×𝑁 has only zeros except
t the diagonal: the (𝑗, 𝑗)-th element is 𝜎𝑗 , 𝑗 ∈ {1,… , �̄�} with �̄� =

min(𝑛𝑥 + 𝑛𝑦, 𝑁), such that

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎�̄� ≥ 0. (8)

ecause these so-called singular values are in decreasing order, we can
pproximate 𝑥 and 𝑦 by setting 𝜎𝑗 = 0 for 𝑗 > 𝑑 with 𝑑 chosen2 such
hat 𝑛𝑥 < 𝑑 < 𝑛𝑥 + 𝑛𝑦:
[

𝑥𝑖 − 𝜇𝑥
𝑦𝑖 − 𝜇𝑦

]

=
�̄�
∑

𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 ≈

𝑑
∑

𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 ,=

[

�̄�1
�̄�2

]

�̄��̄�𝑖, (9)

here 𝑣𝑖𝑗 is the (𝑖, 𝑗)-th element of 𝑉 and 𝑢𝑗 is the 𝑗-th column of 𝑈 .
oreover, �̄�1 is the 𝑛𝑥-by-𝑑 upper left submatrix of 𝑈 , �̄�2 is the 𝑛𝑦-by-𝑑

ower left submatrix 𝑈 , �̄� ∈ R𝑑×𝑑 is the diagonal matrix with the first
singular values on its diagonal, and �̄�𝑖𝖳 =

[

𝑣𝑖1 ⋯ 𝑣𝑖𝑑
]

. Thus, with
𝑥, 𝜇𝑦, �̄�1, �̄�2, and �̄�, the (𝑛𝑥 + 𝑛𝑦)-dimensional vector

[

𝑥𝑖𝖳 𝑦𝑖𝖳
]

𝖳 is
pproximated using the 𝑑-dimensional vector �̄�𝑖.

Instead of estimating the PDF of
[

𝑥𝑖𝖳 𝑦𝑖𝖳
]

𝖳, we now estimate the
DF of �̄�𝑖 using KDE as described in Section 3.2.1. Note that the choice
f 𝑑 includes a trade-off. Choosing 𝑑 too small results in too much loss
f detail, while choosing 𝑑 too large will give accuracy problems when
stimating the PDF of the new parameters. For more information on
hoosing an appropriate value of 𝑑, we refer the reader to de Gelder
t al. (2022). To sample from �̂� (𝑦|𝑥), we can sample from the estimated
istribution of �̄�𝑖. Because (9) is a linear mapping, the sample �̄� that
s drawn from the estimated distribution of �̄�𝑖 is subject to a linear
onstraint:

̄1�̄��̄� = 𝑥 − 𝜇𝑥. (10)

n de Gelder et al. (2021), an algorithm is provided for sampling from
KDE with a Gaussian kernel of (4) such that the resulting samples are

ubject to a linear constraint such as (10).

.3. Estimate 𝑃 (C|𝑥) using a Monte Carlo simulation

Monte Carlo simulations are used to estimate 𝑃 (C|𝑥), i.e., the
robability of an event C given the initial situation described by 𝑥.

2 We have 𝑑 < 𝑛𝑥 + 𝑛𝑦, such that the dimension is reduced (from 𝑛𝑥 + 𝑛𝑦 to
𝑑) and we have 𝑑 > 𝑛𝑥, such that the number of linear constraints in (10) (𝑛𝑥)
is smaller than the number of variables (𝑑).
5

The details of the simulation depend on the actual application. For
example, if the goal of our SSM is to evaluate the risk that a human-
driven vehicle collides, the simulation should involve a human driving
behavior model. On the other hand, if the goal is to evaluate the risk of
a crash when an ADS is controlling the vehicle, the simulation should
include the model of this ADS.

A straightforward way to compute 𝑃 (C|𝑥) is to repeat a certain
number of simulations with the same 𝑥 and count the number of
simulations that result in the event C. If 𝑁sim denotes the number of
simulations and 𝑁C is the number of events C, then 𝑃 (C|𝑥) could be
stimated using

̂ (C|𝑥) =
𝑁C
𝑁sim

. (11)

An important choice for estimating 𝑃 (C|𝑥) is the number of sim-
lations, 𝑁sim. One approach is to keep increasing 𝑁sim until there is
nough confidence in the estimation of (11). For example, the Clopper–
earson interval (Clopper and Pearson, 1934) or the Wilson score
nterval (Wilson, 1927) can be used to determine the confidence of the
stimation of (11). A disadvantage of (11) is that only the fact whether
he event C occurred or not is used, while the simulation provides more
nformation, such as the minimum distance between two objects or the
mpact speed in case of a crash. Therefore, we provide an alternative
pproach to estimate 𝑃 (C|𝑥).

For the alternative approach, let us assume that one simulation run
rovides more information than just the fact that the event C occurred
r not. Let 𝑧 ∈ R𝑛z be a continuous variable representing the result
f a simulation run and let C denote the set of possible simulation
esults in which the event C occurred. Thus, 𝑧 ∈ C if and only if the
imulation results in the event C. We assume C is known; see, e.g., the
xample in Section 4.1.2. Therefore, we have

(C|𝑥) = 𝑃
(

𝑧 ∈ C|𝑥
)

= ∫C

𝑝 (𝑧|𝑥) d𝑧. (12)

imilar as with the estimation of 𝑝 (𝑥, 𝑦) in Section 3.2, we employ KDE
o estimate 𝑝 (𝑧|𝑥):

�̂� (𝑧|𝑥) = 1
𝑁sim

𝑁sim
∑

𝑗=1
𝐾𝐻𝑧

(

𝑧𝑗 − 𝑧
)

, (13)

where 𝑧𝑗 denotes the result of the 𝑗-th simulation and 𝐻𝑧 denotes an
appropriate bandwidth matrix. The kernel function 𝐾𝐻𝑧

(⋅) is similarly
efined as (4). We can now estimate 𝑃 (C|𝑥) by substituting �̂� (𝑧|𝑥)
f (13) for 𝑝 (𝑧|𝑥):

̂ (C|𝑥) = 𝑃
(

𝑧 ∈ C|𝑥
)

= ∫C

�̂� (𝑧|𝑥) d𝑧

= 1
𝑁sim

𝑁sim
∑

𝑗=1
∫C

𝐾𝐻𝑧

(

𝑧𝑗 − 𝑧
)

d𝑧. (14)

Similar as with (11), we need to choose the number of simulations
sim. Our proposal is to keep increasing 𝑁sim until the uncertainty

of the estimated probability 𝑃
(

𝑧 ∈ C|𝑥
)

is below a certain thresh-
ld. As a measure for the uncertainty of the estimated probability
̂ (𝑧 ∈ C|𝑥

)

, we use the variance of 𝑃
(

𝑧 ∈ C|𝑥
)

. Thus, we keep
increasing 𝑁sim until the variance of 𝑃

(

𝑧 ∈ C|𝑥
)

is below a threshold
> 0. The variance follows from (Nadaraya, 1964):

ar
[

𝑃
(

𝑧 ∈ C|𝑥
)]

=
𝑃
(

𝑧 ∈ C|𝑥
) (

1 − 𝑃
(

𝑧 ∈ C|𝑥
))

𝑁sim
. (15)

Because 𝑃
(

𝑧 ∈ C|𝑥
)

is unknown, we cannot directly use (15). Instead,
we substitute the estimated counterpart of (14) for
𝑃
(

𝑧 ∈ C|𝑥
)

. Thus, 𝑁sim is increased until the following condition is
met:
𝑃
(

𝑧 ∈ C|𝑥
) (

1 − 𝑃
(

𝑧 ∈ C|𝑥
))

< 𝜖. (16)

𝑁sim
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3.4. Regression for real-time estimation of 𝑃 (C|𝑥)

To evaluate the risk measure during real-time operation of the
go vehicle, the expression of (14) is problematic, because it would
equire 𝑁sim simulations. Even if the calculation is accelerated using

technique such as importance sampling, it might take too long.
herefore, we propose to evaluate (14) only for some fixed

{

𝑥′𝑘
}𝑚
𝑘=1.

ext, regression is used to estimate (14). One option is to choose a
arametric model, e.g., a logistic model, and estimate the parameters
f the model using

{(

𝑥′𝑘, 𝑃
(

C|𝑥′𝑘
))}𝑚

𝑘=1. Up to our knowledge, however,
here is no good reason to assume a particular parametric model,
o we use a non-parametric regression technique to estimate (14).
ore specifically, we use the Nadaraya-Watson (NW) kernel estimator

Wasserman, 2006), because it automatically smooths the data (as is
emonstrated in Section 4.1.3) and the approximation is guaranteed to
ive a number between 0 and 1, also when extrapolating the data. The
W kernel estimator is given by:

̂ (C|𝑥) ≈
∑𝑚

𝑘=1 𝐾𝐻NW

(

𝑥 − 𝑥′𝑘
)

𝑃
(

C|𝑥′𝑘
)

∑𝑚
𝑘=1 𝐾𝐻NW

(

𝑥 − 𝑥′𝑘
) . (17)

ere, 𝑃
(

C|𝑥′𝑘
)

is based on (14) and 𝐾𝐻NW
(⋅) represents the Gaussian

ernel given by (4). Two important choices have to be made: The choice
f
{

𝑥′𝑘
}𝑚
𝑘=1 for which to evaluate (14) and the choice of the bandwidth

atrix 𝐻NW. We suggest to base the design points
{

𝑥′𝑘
}𝑚
𝑘=1 on the data

that is used to estimate 𝑝 (𝑦|𝑥) in Section 3.2, i.e.,
{

𝑥𝑖
}𝑁
𝑖=1, such that all

𝑥𝑖 have at least one design point 𝑥′𝑘 nearby. In other words,
{

𝑥′𝑘
}𝑚
𝑘=1 is

chosen such that

min
𝑘

(

𝑥𝑖 − 𝑥′𝑘
)

𝖳𝑊
(

𝑥𝑖 − 𝑥′𝑘
)

≤ 1, ∀𝑖 ∈ {1,… , 𝑁}, (18)

where 𝑊 denotes a weighting matrix. Note that if 𝑊 is the identity
matrix, then (18) calculates the minimum squared Euclidean distance.
In general, 𝑊 is a diagonal matrix. Choosing the diagonal elements
of 𝑊 is a trade-off; if the elements are too large, then too many
details are lost in the approximation of (17); if the elements are too
small, it takes too long to evaluate (14) 𝑚 times, as 𝑚 increases for
lower diagonal elements of 𝑊 . The bandwidth matrix 𝐻NW might be
based on 𝑊 , e.g., 𝐻NW = 𝑊 −1. Alternatively, 𝐻NW might be based on
the measurement uncertainty of 𝑥 if this measurement uncertainty is
significant, where a larger 𝐻NW applies in case of a larger measurement
uncertainty of 𝑥. Note that if 𝐻NW is a diagonal matrix with positive
values on the diagonal that are close to zero, then the NW kernel
estimation of (17) acts like nearest-neighbor interpolation.

4. Case study

In the first part of the case study, we illustrate that the PRISMA
method generalizes the SSM proposed by Wang and Stamatiadis (2014).
Here, we also demonstrate the effect of 𝜖 on the accuracy of the SSM
derived by the PRISMA method and we show the difference between
𝑃 (C|𝑥) of (14) and the approximation of 𝑃 (C|𝑥) using the NW kernel
estimator of (17). In Section 4.2, we demonstrate how the PRISMA
method can be used to create a new SSM that calculates the risk of
a crash in a longitudinal interaction between two vehicles. The SSM
derived in Section 4.2 is qualitatively analyzed in Section 4.3. To also
quantitatively analyze SSMs, Mullakkal-Babu et al. (2017) proposed a
benchmarking method which we apply in Section 4.4.

4.1. Comparison with Wang and Stamatiadis’ measure

Wang and Stamatiadis (2014) provide an SSM, which we denote
by WS, that calculates the probability of a crash under certain as-
sumptions. We first explain how WS is calculated. Next, Section 4.1.2
shows how to estimate this SSM using our method. In Section 4.1.3, we
illustrate the results of both.
6

4.1.1. Measure of Wang and Stamatiadis
The SSM WS calculates the probability of a crash of the ego vehicle

and the leading vehicle, where the ego vehicle is following an initially
slower driving leading vehicle. The SSM WS is based on the following
assumptions (Wang and Stamatiadis, 2014):

• the leading vehicle keeps a constant speed;
• the (driver of the) ego vehicle starts to brake after its reaction

time, denoted by 𝑡r ;
• based on Green (2000), the reaction time 𝑡r is distributed accord-

ing to a log-normal distribution, such that the mean is 0.92 s and
the standard deviation is 0.28 s;

• when the ego vehicle reacts, it brakes with its MADR, denoted by
𝑎MADR; and

• 𝑎MADR is distributed according to a truncated normal distribution
with a mean of 9.7m∕s2, a standard deviation of 1.3m∕s2, a lower
bound of 𝐿 = 4.2m∕s2 (Cunto, 2008), and an upper bound of
𝑈 = 12.7m∕s2 (Cunto, 2008).

To calculate WS at a given time 𝑡, the speed difference between the ego
vehicle and the leading vehicle, 𝛥𝑣 (𝑡), and the TTC, 𝑡TTC (𝑡), are used.
Note that 𝑡TTC (𝑡) is the ratio of the gap, 𝑔 (𝑡), between the ego vehicle
nd the leading vehicle and 𝛥𝑣 (𝑡). If 𝛥𝑣 (𝑡) ≤ 0, then the ego vehicle
rives slower and there is no risk of a future crash according to Wang
nd Stamatiadis (2014), so WS(𝑡) = 0. Given 𝑎MADR, the driver of the
go vehicle needs to react within

max(𝑡) = 𝑡TTC (𝑡) −
𝛥𝑣 (𝑡)

2𝑎MADR
(19)

in order to avoid a crash. Using the distributions of 𝑎MADR and 𝑡r , we
an calculate the probability that this is the case, resulting in:

S(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝛥𝑣 (𝑡) ≤ 0

∫ 𝑈
�̂� ∫ 𝑡max(𝑡)

0 𝑝
(

𝑡r
)

𝑝
(

𝑎MADR
)

d𝑡r d𝑎MADR if 𝛥𝑣 (𝑡) > 0 ∧ 𝛥𝑣(𝑡)
2𝑡TTC(𝑡)

< 𝑈

1 otherwise,

(20)

with �̂� = max
(

𝐿, 𝛥𝑣(𝑡)
2𝑡TTC(𝑡)

)

, 𝑝
(

𝑡r
)

is the log-normal probability density of
𝑡r , and 𝑝

(

𝑎MADR
)

is the truncated normal probability density of 𝑎MADR.

4.1.2. Replicating Wang and Stamatiadis’ measure
Because WS is based on 𝛥𝑣 (𝑡) and 𝑡TTC (𝑡), these two variables are

also used by the PRISMA method to describe the initial situation:

𝑥𝖳(𝑡) =
[

𝛥𝑣 (𝑡) 𝑡TTC (𝑡)
]

. (21)

he leading vehicle is assumed to have a constant speed, so 𝑥(𝑡) of (21)
lready describes the future situation of the leading vehicle. Therefore,
here is no need to estimate 𝑝 (𝑦|𝑥). At the start of each simulation run,
he driver of the ego vehicle is not braking. After the reaction time 𝑡r ,
he driver starts braking with 𝑎MADR. The random parameters 𝑡r and
MADR are similarly distributed as described in Section 4.1.1.

Since we are interested in the probability of a crash, the event C
enotes a crash. A simulation run ends if either the ego vehicle and the
eading vehicle are colliding or if the gap between the ego vehicle and
he leading vehicle is not decreasing. Depending on the reason for a
imulation run to end, we consider the following result:

• If the ego vehicle and the leading vehicle are colliding, we are
interested in the ‘‘severity’’ of the crash. This is expressed using
the speed difference: 𝑣l

(

𝑡end
)

− 𝑣e
(

𝑡end
)

, where 𝑡end denotes the
final time of the simulation run.

• If there is no crash, we are interested in how close the two
vehicles came. Therefore, the minimum gap is used, which is
( )
𝑔 𝑡end .
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Fig. 2. Comparison of WS of (20) (black lines) and 𝑃 (C|𝑥) of (14) (a,b) or the approximation of 𝑃 (C|𝑥) using (17) (c,d) (gray lines) for a speed difference of 𝛥𝑣 = 10m∕s (solid
ines), 𝛥𝑣 = 20m∕s (dashed lines), and 𝛥𝑣 = 30m∕s (dotted lines). Here, 𝑃 (C|𝑥) is based on the same underlying assumptions as WS, see Section 4.1.1. The influence of the
arameter 𝜖, which determines the number of simulations to estimate 𝑃 (C|𝑥), is illustrated by using different values.
hus, we have:

=

{

𝑣l
(

𝑡end
)

− 𝑣e
(

𝑡end
)

if crash
𝑔
(

𝑡end
)

otherwise.
(22)

learly, 𝑧 ≤ 0 indicates a crash, so C = (−∞, 0]. The minimum
umber of simulations to estimate 𝑃 (C|𝑥) is set to 10. The number of
imulations is further increased until the condition in (16) with 𝜖 = 0.2

or 𝜖 = 0.02 is met. For the design points
{

𝑥′𝑘
}𝑚
𝑘=1, we use a rectangular

grid with 𝛥𝑣 ranging from 0m∕s till 40m∕s with steps of 2m∕s and 𝑡TTC
ranging from 0.5 s till 4 s in steps of 0.1 s. Thus, 𝑚 = 21 ⋅ 36 = 756.
For 𝐻NW, a diagonal matrix is chosen with the diagonal elements
corresponding to the square of the step size of the grid, i.e., 4m2∕s2

and 0.01 s2.

4.1.3. Comparison
Fig. 2 shows the results of the comparison between the measure

of Wang and Stamatiadis (2014) and the measure derived using the
PRISMA method described in Section 3. The black lines in Fig. 2 denote
WS of (20). These lines show that for lower values of 𝑡TTC, WS increases.
Also, for increasing values of 𝛥𝑣 (solid, dashed, and dotted lines), the
risk measure WS increases. Both these observations match the intuition
that a lower TTC and a higher speed difference are less safe.

The gray lines in Fig. 2 denote 𝑃 (C|𝑥). In Figs. 2(a) and 2(b), 𝑃 (C|𝑥)
of (14) is used and the gray lines in Figs. 2(c) and 2(d) represent
the approximation of 𝑃 (C|𝑥) using the NW kernel estimator of (17).
Fig. 2 illustrates that 𝑃 (C|𝑥) follows the same trend as WS. Fig. 2 also
illustrates the effect of the choice of the threshold 𝜖. In general, for
a lower value of 𝜖, the number of simulations 𝑁sim used in (13) is
higher. As a result, it can be expected that the estimation 𝑃 C|𝑥 is
7

( ) s
closer to 𝑃 (C|𝑥) (cf. (15)). A comparison of Fig. 2(a) (𝜖 = 0.2) and
Fig. 2(b) (𝜖 = 0.02) demonstrates this effect. Fig. 2 further illustrates the
regression using the NW kernel estimator: the gray lines in Figs. 2(c)
and 2(d) can be seen as smoothed versions of the gray lines in Figs. 2(a)
and 2(b), respectively.

4.2. Developing an SSM for longitudinal interactions

To further illustrate the PRISMA method, we apply it to derive an
SSM that calculates the risk of a crash in a longitudinal interaction be-
tween two vehicles. The SSM is based on the NGSIM data set (Alexiadis
et al., 2004). The NGSIM data set contains vehicle trajectories obtained
from video footage of cameras that were located at several motorways
in the U.S.A. The derived SSM estimates the risk of a crash of the ego
vehicle with its leading vehicle. To describe the initial situation at time
𝑡, 𝑛𝑥 = 4 parameters are used:

• the speed of the leading vehicle (𝑣l (𝑡));
• the acceleration of the leading vehicle (𝑎l (𝑡));
• the speed of the ego vehicle (𝑣e (𝑡)); and
• the log of the gap between the leading vehicle and the ego

vehicle.3 log 𝑔 (𝑡).

Thus, we have:

𝑥𝖳(𝑡) =
[

𝑣l (𝑡) 𝑎l (𝑡) 𝑣e (𝑡) log 𝑔 (𝑡)
]

. (23)

3 Note that the log is used, such that there are, relatively speaking, more
imulations performed with a small initial gap, cf. (18).
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Fig. 3. 50 potential future situations samples from the KDE that is constructed using data from the NGSIM data set.
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The speed of the leading vehicle at 𝑛h = 50 instances, each 𝛥𝑡 = 0.1 s
part, describes the future situation:

𝖳(𝑡) =
[

𝑣l (𝑡 + 𝛥𝑡) ⋯ 𝑣l
(

𝑡 + 𝑛h𝛥𝑡
)]

. (24)

t is assumed that 𝑦(𝑡) depends on 𝑣l (𝑡) and 𝑎l (𝑡). To model this
dependency with a single kernel density estimator would give us a PDF
with 𝑛h + 2 dimensions. To reduce the dimensionality, we use an SVD
as described in Section 3.2.3 with4 𝑑 = 4. In total, 18 182 longitudinal
nteractions between two vehicles have been analyzed. Here, a lon-
itudinal interaction between a leading and following vehicle within
he same lane always begins when the THW is less than or equal to
s, or when 𝑔 is less than or equal to 20m. The interaction ceases
hen both the THW exceeds 4 s and 𝑔 becomes greater than 40m, or
hen both vehicles are no longer the closest pair in the same lane.
his scheme is commonly referred to as a hysteresis loop. For each
econd of an interaction, we extract an ‘‘initial situation’’ 𝑥𝑖 according
o (23) and a corresponding ‘‘future situation’’ 𝑦𝑖 according to (24). This
eads to 𝑁 = 469453 data points. Based on Silverman’s rule of thumb
Silverman, 1986), we use a bandwidth matrix 𝐻 = ℎ2𝐼4 for the KDE
ith ℎ ≈ 0.186 and 𝐼4 denoting the 4-by-4 identity matrix.

To demonstrate the sampling from the estimated density of the
educed parameter vector subject to a linear constraint such as (10),
he plots in Fig. 3 show 50 different future situations in the form
f (24). Fig. 3(a) assumes an initial situation with 𝑣l = 15m∕s and
l = 1m∕s2 and Fig. 3(b) assumes an initial situation with 𝑣l = 15m∕s
nd 𝑎l = −1m∕s2. Note that the same PDF is used to produce the lines in
ig. 3; the only difference between Fig. 3(a) and Fig. 3(b) is a different
inear constraint (based on 𝑣l and 𝑎l) on the generated samples. In case
simulation run is longer than 5 s, the speed of the leading vehicle is

ssumed to remain constant after these 5 s. Note that a simulation run
s rarely longer than 5 s, so this assumption does not have a significant
ffect on the results.

To estimate 𝑃 (C|𝑥) (Section 3.3), we use the Intelligent Driver
odel Plus (IDM+) (Schakel et al., 2010) for modeling the ego vehicle

river behavior and response. In addition to IDM+, we assume that
he driver has a reaction time that is similarly distributed as 𝑡r in
ection 4.1.1 and that the MADR is similarly distributed as 𝑎MADR in
ection 4.1.1. The simulation result 𝑧 is defined according to (22). The
inimum number of simulations to estimate 𝑃 (C|𝑥) is set to 10 and

his number is further increased until the condition in (16) with 𝜖 = 0.1
s met.

4 Note that because we assume that 𝑦(𝑡) depends on 2 parameters of 𝑥(𝑡),
i.e., 𝑣 𝑡 and 𝑎 𝑡 , we need to choose 𝑑 such that 2 < 𝑑 < 𝑛 + 2.
8

l ( ) l ( ) h
To calculate 𝑃 (C|𝑥) using (17), we create a grid of points
{

𝑥′𝑘
}𝑚
𝑘=1

sing the method explained in Section 3.4. For 𝑊 , we use a diagonal
atrix with diagonal elements: 0.25, 4, 0.25, and 0.25, which is a trade-

ff between keeping many points such that the estimation in (17) is
ccurate while also keeping the total number of points for which 𝑃 (C|𝑥)
s estimated manageable. With this choice of 𝑊 , we have 𝑚 = 10129.
or the regression of (17), we use 𝐻NW = 𝑊 −1.

.3. Analyzing the SSMs for longitudinal interactions

The heat maps in Fig. 4 show how the developed SSM depends
n the input variables 𝑣l and 𝑔. The other two parameters, 𝑣e and 𝑎l,
re fixed for each heat map. The heat maps show that the estimated
rash probability is practically 0 if both 𝑣l and 𝑔 are large. This
eems reasonable, because in that case, the ego vehicle is at a safe
istance from its leading vehicle while the approaching speed is small.
n addition, for a fixed 𝑣e, we see that the crash risk increases as the
ifference in speed increases, as is expected. The same applies for a
ecreasing distance between the two vehicles. For small values of 𝑣l and
, the estimated crash probability is practically 1. The left and center
eat maps of Fig. 4 show that for a higher speed of the ego vehicle,
he crash probability is estimated to be higher. Similarly, the right and
enter heat maps of Fig. 4 show that for a lower initial acceleration of
he leading vehicle, the crash probability is estimated to be higher.

In Fig. 5, the evaluations of the measure described in Section 4.2
re shown for 3 different scenarios. Each of the 3 scenarios considers
n ego vehicle and a leading vehicle driving in front of the ego vehicle.
oth vehicles are driving in the same direction and in the same lane. For
omparison, the right plots also include the evaluations of WS of (20).

The first scenario in Fig. 5 (top row) shows a scenario in which
he leading vehicle initially drives with a speed of 20m∕s. The leading
ehicle starts to decelerate after 3 s toward a speed of 10m∕s with an
verage deceleration of 3m∕s2. The ego vehicle initially drives with a
peed of 24m∕s at a distance of 40m from the leading vehicle. The ego
ehicle starts decelerating after 2 s toward a speed of 8m∕s within 4 s. It
akes 4 s more to reach the speed of the leading vehicle. Because the ego
ehicle always maintains a relatively large distance toward the leading
ehicle, both SSMs do not qualify this scenario as risky, considering the
stimated crash probability that stays below 0.1.

The second scenario in Fig. 5 (center row) differs from the first
cenario in that the ego vehicle starts to decelerate 2 s later. As a result,
he ego vehicle approaches the leading vehicle up to a distance of 5.4m.
ccording to 𝑃 (C|𝑥) from Section 4.2 (black line in the right plot of
ig. 5), the probability of a crash reaches almost 1, indicating that
round that time, the risk of a crash is high. The local minimum of
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h

Fig. 4. Heat maps of the SSM described in Section 4.2 as a function of the speed of the leading vehicle (𝑣l) and the gap between the ego vehicle and the leading vehicle (𝑔).
For each heat map, the other two input parameters are fixed at 𝑣e = 25m∕s (left) or 𝑣e = 20m∕s (center and right) and 𝑎l = 0m∕s2 (left and center) or 𝑎l = −1m∕s2 (right). The
estimated crash probability ranges from 0 (white) to 1 (black).
Fig. 5. Demonstration of SSMs for 3 hypothetical scenarios. The left plots show the speeds of the ego vehicle (solid black line) and leading vehicle (dashed black line) and the
distance between the ego vehicle and the leading vehicle (dotted gray line, scale on the right of the plot). The right plots show the estimated probability of a crash corresponding
to the 3 scenarios according to the SSM explained in Section 4.2 (black lines) and the SSM of Wang and Stamatiadis (2014) explained in Section 4.1.1 (gray lines).
s
l

𝑃 (C|𝑥) at around 6 s illustrates the effect of the numerical approxi-
mation of 𝑃 (C|𝑥). Because we have used 𝜖 = 0.1 > 0, the resulting
estimation may have an error. When lowering the threshold 𝜖, the
resulting 𝑃 (C|𝑥) in the center right plot in Fig. 5 will be smoother.
This goes, however, at the cost of an increased number of simulations.5

5 Alternatively, the bandwidth matrix 𝐻NW may be increased. On the one
and, this will lower the variance of the error, but, on the other hand, it will
9

The third scenario in Fig. 5 (bottom row) differs from the second
cenario in that the initial distance between the ego vehicle and the
eading vehicle is 31.5m instead of 40m. As a result, the ego vehicle

collides with the leading vehicle after 6 s. As expected, the SSMs in
Fig. 5 indicate a crash probability of 1. The difference between 𝑃 (C|𝑥)

increase the bias of the result. We refer the interested reader to Chen (2017)
for more details on the effect of 𝐻 .
NW
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and WS is that 𝑃 (C|𝑥) increases earlier. Note that 𝑃 (C|𝑥) increasing
sooner than WS does not necessarily mean that it is better: because
there is no objective truth for an SSM, we cannot argue that one SSM
is better than another SSM. Hence, in the next section, we will present
a quantitative approach to benchmark an SSM.

Note that the choice of 𝑑 = 4 can be considered to be somewhat
rbitrary. Therefore, we have repeated this case study described with
= 3 and 𝑑 = 5. With 𝑑 = 3, the results are comparable to the results
ith 𝑑 = 4 and there is hardly any difference noticeable. With 𝑑 = 5,

the derived SSM fluctuates a bit more, which resulted in a less smooth
SSM. Most likely, this is the case because the KDE becomes less reliable
for 𝑑 = 5. We cannot argue objectively which choice of 𝑑 is better, but
since a lower 𝑑 generally leads to more loss of information and the SSM
with 𝑑 = 5 is less smooth, we have opted for 𝑑 = 4.

4.4. Benchmarking an SSM with expected risk trends

In this section, we demonstrate an approach for benchmarking an
SSM that is based on expected risk trends discussed in Mullakkal-Babu
et al. (2017), who argue that the risk increases if the approaching speed
of the ego vehicle toward the leading vehicle increases. Furthermore,
the risk of the ego vehicle colliding with its leading vehicle increases
with a higher ego vehicle speed (Aarts and Van Schagen, 2006). Note
that as a result of the first risk trend, the risk of a collision with a
vehicle behind the ego vehicle decreases with high ego vehicle speed,
but since the current benchmarking only considers the risk of the ego
vehicle colliding with its leading vehicle, the risk of a collision with a
vehicle behind the ego vehicle is not further considered. The risk also
increases with a higher driver reaction time (Klauer et al., 2006). On
the other hand, the risk decreases with a higher road friction (Wallman
and Åström, 2001) or a larger intervehicle spacing (Mullakkal-Babu
et al., 2017).

To check whether the developed SSM follows these 5 expected risk
trends,6, we evaluate the partial derivatives of the measure of (17).
The intuition is as follows: If the expected risk trend for an input X
(e.g., the ego vehicle speed) is that the risk increases as X increases,
then we expect the partial derivative of our SSM with respect to X to
be positive. Furthermore, if we evaluate the partial derivative at many
points, we expect that at least the majority of these evaluated partial
derivatives is positive. Similarly, if we expect that the risk measure
decreases with increasing X, then we expect that at least the majority
of the evaluated partial derivatives is negative. Note that because the
proposed benchmarking method only considers the partial derivatives,
no claim can be made regarding the actual accuracy of the SSM.

To illustrate the approach for benchmarking an SSM, we use the
SSM of Section 4.2 with a few different assumptions. Because we have
not described an expected trend regarding 𝑎l, we simply use 𝑎l = 0.
Also, because the expected risk trend for the relative speed is defined,
we use the relative speed, i.e., 𝛥𝑣 = 𝑣e − 𝑣l, instead of 𝑣l. For the
same reason, instead of assuming a random reaction time 𝑡r and MADR
𝑎MADR, these are now considered as input to our measure. Finally,
instead of using the log of the gap between the ego vehicle and the
leading vehicle, we use the gap as a direct input. Thus, we have:

𝑥𝖳 =
[

𝑣e − 𝑣l 𝑣e 𝑡r 𝑔 𝑎MADR
]

. (25)

We compute 𝑃 (C|𝑥) using (17) where the points
{

𝑥′𝑘
}𝑚
𝑘=1 are taken

from a grid. For each input variable, 10 different values at equal
distance are used, resulting in 𝑚 = 105. Here, 𝑣e − 𝑣l ranges from 0m∕s

6 In Mullakkal-Babu et al. (2017) a sixth expected risk trend is mentioned
ased on Evans (1994), namely the vehicle mass. Our interpretation of Evans
1994), however, is that the ratio of masses of two colliding vehicles influences
he safety risk and that one cannot argue that a higher mass of the ego vehicle
ecessarily increases the safety risk. Therefore, we exclude the ego vehicle
10

ass from our analysis. o
Table 1
Percentiles of the partial derivatives of the SSM and the corresponding expected risk
trends.

𝑣e − 𝑣l 𝑣e 𝑡r 𝑔 𝑎MADR

Expected trend Increase Increase Increase Decrease Decrease
Maximum 0.1629 0.1555 1.3136 0.0010 0.0037
99th percentile 0.1585 0.1162 0.8968 0.0002 0.0002
95th percentile 0.1495 0.0524 0.6765 0.0000 −0.0000
90th percentile 0.1346 0.0151 0.5351 −0.0000 −0.0000
75th percentile 0.0746 0.0012 0.2917 −0.0002 −0.0003
50th percentile 0.0114 0.0001 0.0605 −0.0070 −0.0054
25th percentile 0.0004 0.0000 0.0022 −0.0320 −0.0290
10th percentile 0.0000 −0.0000 0.0000 −0.0545 −0.0654
5th percentile 0.0000 −0.0002 0.0000 −0.0645 −0.0880
1st percentile 0.0000 −0.0007 −0.0020 −0.0781 −0.1337
Minimum −0.0035 −0.0030 −0.0180 −0.1076 −0.2030

to 20m∕s, 𝑣e ranges from 10m∕s to 30m∕s, 𝑡r ranges from 0.5 s to 1.5 s,
𝑔 ranges from 5m to 30m, and 𝑎MADR ranges from 4m∕s2 to 10m∕s2.
A threshold 𝜖 = 0.02 is used. For the bandwidth matrix 𝐻NW, we use
a diagonal matrix with the (𝑖, 𝑖)-th entry corresponding to the squared
ifference between two consecutive values of the 𝑖th entry of 𝑥. For
xample, the first value is (20m∕s∕(10 − 1))2 ≈ 4.9m2∕s2. The other
alues on the diagonal are: 4.9m2∕s2, 0.012 s2, 7.7m2, and 0.44m2∕s4.
or each input variable listed in (25), we evaluate the partial derivative
f (17) at each 𝑥′𝑘, 𝑘 ∈ {1,… , 𝑚}.

Table 1 shows the result of the benchmarking. It shows that the SSM
ollows the expected risk trends mostly. E.g., in more than 99% of the
ases, the partial derivative of the relative speed (𝑣e−𝑣l) is positive. For
he remaining 1%, the partial derivative is negative, albeit only slightly.
ne explanation is that this remaining 1% is caused by the inaccuracies

ntroduced by the numerical approximation of (14).

. Discussion

Typically, SSMs rely on assumptions regarding the behavior of
raffic participants. An advantage of the presented PRISMA method
or deriving SSMs is that the PRISMA method is not bound to certain
redetermined assumptions. We want to stress, however, that when
sing the PRISMA method for deriving an SSM, a set of assumptions is
till needed. In fact, multiple SSMs can be derived by using the PRISMA
ethod with different sets of assumptions. As a result, the PRISMA
ethod can be used to derive multiple SSMs that are applicable in var-

ous types of scenarios, e.g., ranging from vehicle-following scenarios
o scenarios at intersections. Note that although the PRISMA method is
pplicable in various types of scenarios, the current case study focuses
n longitudinal traffic conflicts. In a future work, we will present the
pplication of the PRISMA method for deriving SSMs for lateral traffic
onflicts.

The PRISMA method uses data to adapt the SSMs to, e.g., the local
raffic behavior. More specifically, the data are used to predict the
ossible future situations (𝑦) given an initial situation (𝑥). This can be
n advantage because the data can be used to rely less on assumptions
s to how the future develops given an initial situation. To fully benefit
rom this approach, the data should satisfy a few conditions. First, the
ecorded data need to represent the actual traffic behavior in which
he SSMs are applied. Second, we need enough data to estimate 𝑝 (𝑦|𝑥).
n de Gelder et al. (2019), a metric is presented that can be used to
etermine whether enough data have been collected to estimate 𝑝 (𝑦|𝑥)
ccurately.

The PRISMA method can still be applied in case no data are avail-
ble. The first alternative is to use existing knowledge to determine
n estimate of 𝑝 (𝑦|𝑥) instead of estimating 𝑝 (𝑦|𝑥) on the basis of
ata. For example, statistics or literature on driving behavior of traffic
articipants may be used. The second alternative is to use assumptions
n how the future develops given an initial situation 𝑥. For example,
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when assuming that the speed of the leading vehicle in Section 4.1.2
remains constant, it is not needed to estimate 𝑝 (𝑦|𝑥). Note that a
combination is also possible. For example, estimate 𝑝 (𝑦|𝑥) based on
data in case 𝑥 is well represented in the data, but define 𝑝 (𝑦|𝑥) on the
basis of existing knowledge and/or assumptions for the cases where
𝑥 is underrepresented in the data. A third alternative is to use other
methods for predicting the trajectories of the other traffic participants,
e.g., using hidden Markov models (Laugier et al., 2011), sequence
similarity methods (Saunier et al., 2007), Gaussian mixture models
(Wiest et al., 2012), or long short-term memory networks (Deo and
Trivedi, 2018). For an overview of trajectory prediction models for
vehicles and pedestrians, see Lefèvre et al. (2014) and Rudenko et al.
(2020), respectively.

Note that the PRISMA method is used to derive SSMs that predict
the probability of a specific event, such as a crash, i.e., the derived
SSMs can be used as a measure of proximity of the specified event.
However, the PRISMA method is not used to measure the severity of
an interaction, i.e., the extent of harm in case the interaction leads to
a crash. For measuring the severity of an interaction, typically energy-
based SSMs are used (Wang et al., 2021). So, if there is a need to also
have an indicator of the severity of an interaction, an energy-based
SSM, e.g., see Ozbay et al. (2008), Alhajyaseen (2015), Laureshyn et al.
(2017) and Mullakkal-Babu et al. (2020), may be considered alongside
an SSM derived using the PRISMA method.

We have illustrated the PRISMA method through different derived
SSMs in the case study. The derived SSMs estimate the probability of a
crash with a leading vehicle under different assumptions. Because of the
focus on crashes, the resulting SSMs may still be low given an initial
situation that is generally considered to be unsafe. For example, the
SSM described in Section 4.2 gives a crash probability of approximately
14% when approaching a leading vehicle that is driving at a constant
speed of 𝑣l = 12m∕s (𝑎l = 0m∕s2) with a speed of 𝑣e = 25m∕s and a
gap of 𝑔 = 20m (see left heat map in Fig. 4). In this initial situation, the
THW is only 𝑔∕𝑣e = 0.8 s and the TTC is only 𝑔∕(𝑣e−𝑣l) = 1.5 s, whereas
a THW of less than 1 s or a TTC of less than 1.5 s is considered unsafe
(Vogel, 2003). In order to put more emphasis on such unsafe situations,
different events – instead of crashes – can be considered. For example,
we can derive an SSM that estimates the probability that the TTC is
below 1 s within the next 5 s. More research is needed to investigate
whether such SSMs can be of practical use, e.g., for evaluating whether
a driver is actively pursuing large safety margins.

A few choices have to be made when using the PRISMA method
for deriving SSMs. One such a choice is the set of initial situations
{𝑥1,… , 𝑥𝑚} for which the probability 𝑃 (C|𝑥) is estimated. Generally
speaking, for larger 𝑚, the approximation of 𝑃 (C|𝑥) in (17) improves.
One disadvantage, however, is that more simulation runs are required
when 𝑚 is larger, but because these simulation runs are performed
offline, this problem might be solved by, e.g., parallel computing
resources. Another disadvantage is that the computational cost of the
approximation in (17) scales linearly with 𝑚. Especially when using this
approximation for real-time evaluation of the SSM, this can be a bottle-
neck. One solution to this is to not use all 𝑚 initial situations for evaluat-
ing (17). The intuition is as follows: since (17) uses local regression, an
initial situation 𝑥𝑘 can be removed from the set {𝑥1,… , 𝑥𝑚} if all neigh-
boring data points give (approximately) the same probability of the
event C, i.e., |𝑃

(

C|𝑥𝑖
)

− 𝑃
(

C|𝑥𝑘
)

| is below a threshold for all 𝑥𝑖, 𝑖 ≠ 𝑘
for which ‖

‖

𝑥𝑖 − 𝑥𝑘‖‖2 is below another threshold (assuming that 𝑃 (C|𝑥)
is sufficiently smooth). For example, the SSM that is shown in Fig. 4,
only a few initial situations are required in the upper right region of the
heat maps, since the estimated probability is always lower than 0.1.

Another choice is the threshold 𝜖 that controls the number of
simulation runs (𝑁sim) that are used to estimate 𝑃 (C|𝑥). According
to (16), 𝑁sim is increased until the variance of the estimation error is
below 𝜖, i.e., Var

[

𝑃 (C|𝑥) − 𝑃 (C|𝑥)
]

< 𝜖. Therefore, a lower 𝜖 generally
11

results in more accurate estimations of the probability, as illustrated i
in Fig. 2. The downside, however, is that for a lower 𝜖, more offline
simulation runs are required. Although a good choice of 𝜖 remains a
topic of research, based on experience, we advice to use a maximum
threshold of 𝜖 = 0.1 and lower values if the computational resources
allow for this.

In the examples presented in Section 4, we have considered the
leading vehicle as the only traffic participant other than the ego ve-
hicle. The PRISMA method can be applied in scenarios with multiple
traffic participants other than the ego vehicle. However, the number of
parameters (𝑛𝑥, i.e., the size of 𝑥) then becomes larger. As a result, two
problems may arise. First, as 𝑚 grows exponentially with 𝑛𝑥, so does the
number of simulation runs. Second, even if these simulation runs can be
performed, the regression using (17) becomes slow due to the large 𝑚.
To overcome these problems, an SSM can be computed for each traffic
participant independently. For example, let 𝑁tp denote the number of
traffic participants other than the ego vehicle. With 𝑖 ∈ {1,… , 𝑁tp},
let C𝑖 denote the event of colliding with the 𝑖-th traffic participant and
let 𝑥𝑖 denote the initial situation considering the 𝑖-th traffic participant.
Under the assumption that 𝑃

(

C𝑖|𝑥𝑖
)

is independent of 𝑥𝑗 for all 𝑖 ≠ 𝑗,
we can calculate the probability of colliding with one or more traffic
participants using

1 −
𝑁tp
∏

𝑖=1

(

1 − 𝑃
(

C𝑗 |𝑥
𝑗)) . (26)

For example, consider a scenario with multiple crossing pedestrians.
Using the PRISMA method, we can derive an SSM that estimates the
probability of colliding with a pedestrian. Then, after evaluating this
SSM for each pedestrian, the probability of colliding with one or more
pedestrians can be calculated using (26) without the need for an SSM
that considers multiple pedestrians.

In the case study, we have shown how to analyze an SSM both
qualitatively, using heat maps and testing the SSM in different scenar-
ios, and quantitatively by benchmarking the SSM with expected risk
trends (Mullakkal-Babu et al., 2017). Since the SSMs derived using the
PRISMA method provide a probability, it is also possible to verify the
estimated probability by comparing it with real data. This requires,
however, an extensive data set that would allow for estimating the
probability of the event C, e.g., a crash, in the near future given a
certain situation a vehicle is in. It remains a topic for future work to use
such a data set to verify the SSMs derived using the PRISMA method.

The PRISMA method is a novel approach for deriving probabilistic
SSMs for risk evaluation. Some limitations, however, may hamper its
use for real-world applications. First, as described earlier, if the set of
initial situations {𝑥1,… , 𝑥𝑚} is too large, real-time calculation of the
SM may be difficult. As a consequence, the dimension of the vector
escribing the initial situation, 𝑥, cannot be too large, meaning that
he initial situation needs to be encoded into a limited set of numbers.
econd, KDE does not work well for large dimensions. Note, however,
hat we have provided some options for reducing the dimensionality,
nd, if reducing the dimensionality further is not an good option, the
RISMA method can also be applied when other methods are used for
he probability density estimation. Third, many simulations may be
equired. It helps that the simulations can be conducted offline, but it
ay still be challenging to conduct the simulations in a reasonable time
indow. Fourth, although we claim that the PRISMA method can be
sed to derive multiple SSMs for different type of scenarios, we cannot
laim that the derived SSMs are more valid than others SSMs, nor can
e derive an SSM that is valid for all types of scenarios. Lastly, for the

imulations, the response of the ego vehicle must be assumed. This may
ot coincide with the ego vehicle response in reality. In a future work,
n case of a human driver, this may be tackled by considering the state
f the human driver, such as whether the eyes are on the road and/or
owards a conflicting traffic participant, as part of the state vector that

s used to describe the initial situation.
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6. Conclusions

Road safety is an important research topic. To quantify the safety
at a vehicle level, Surrogate Safety Measures (SSMs) are often used to
characterize the risk of a crash. We have proposed a novel approach
called the Probabilistic RISk Measure derivAtion (PRISMA) method
for deriving SSMs that calculate the probability that a certain event,
e.g., a crash, will happen in the near future given an initial situation.
Whereas traditional SSMs are generally only applicable in certain types
of scenarios, the PRISMA method can be applied to various types of
scenarios. Furthermore, because the PRISMA method is data-driven,
the derived SSMs can be adapted to the local traffic behavior that is
captured by the data. Also, no assumptions on the driver behavior are
made. Therefore, the PRISMA method has the potential for deriving
multiple SSMs for quantifying the safety of a – possibly automated –
vehicle.

We have illustrated that the PRISMA method can be used to repro-
duce known probabilistic SSMs. In an example, we have derived a new
SSM based on the Next Generation SIMulation (NGSIM) data set that
calculates the risk of a crash in a longitudinal interaction between two
vehicles. Through several explanatory scenarios, it has been shown that
the derived SSM correctly provides a quantification of the crash risk.
We have also presented how the evaluation of the partial derivatives of
the SSM can be used to benchmark an SSM using expected risk trends.

The SSMs derived using the presented PRISMA method can be
used to warn drivers for unsafe situations and ensuring that proper
attention is being paid to the road situation. Furthermore, the derived
measures can prospectively estimate the impact of newly introduced
systems on traffic safety. A limitation of the current study is that the
presented approach is only applied to longitudinal traffic interactions.
Future work involves applying the PRISMA method for the derivation
of SSMs that measure the risk of lateral traffic interactions, interactions
with vulnerable road users, and interactions with multiple (different
types of) traffic participants. Furthermore, more research is needed to
investigate whether the SSMs derived by the PRISMA method can be
used to evaluate whether a driver is actively pursuing (large) safety
margins.
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