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A B S T R A C T

This paper studies a Gaussian process approximation for a class of stochastic traffic flow models.
It can be used to efficiently and accurately evaluate the joint (in the spatial and temporal sense)
distribution of vehicle-density distributions in road traffic networks of arbitrary topology. The
Gaussian approximation follows, via a scaling-limit argument, from a Markovian model that is
consistent with discrete-space kinematic wave models. We describe in detail how this formal
result can be converted into a computational procedure. The performance of our approach is
demonstrated through a series of experiments that feature various realistic scenarios. Moreover,
we discuss the computational complexity of our approach by assessing how computation
times depend on the network size. We also argue that the (debatable) assumption that the
vehicles’ headways are exponentially distributed does not negatively impact the accuracy of
our approximation.

. Introduction

This paper focuses on the efficient numerical evaluation of stochastic road traffic models. Traditionally, the development of
eterministic models has been a dominant research line (Chanut and Buisson, 2003; Hoogendoorn and Bovy, 2001; Logghe and
mmers, 2008; Maerivoet and De Moor, 2005; van Wageningen-Kessels et al., 2015; Wong and Wong, 2002). For such models,
wing to their relatively simple dynamics, the vehicle-density propagation can typically be evaluated in an efficient manner, also
or large-scale networks. Recently, a renewed interest has been seen in studying their stochastic counterparts; see, e.g., the research
ines (Jabari and Liu, 2012, 2013; Lu and Osorio, 2018, 2021; Osorio and Wang, 2017). Such stochastic models aim to incorporate
he deterministic kinematic properties of traffic flow as well as its inherent stochastic fluctuations. Consequently, they can be used to
apture the uncertainty of various performance indicators (such as travel times), which can ultimately be applied when developing
easures that improve network robustness and reliability. Due to their intrinsic complexity, stochastic models are computationally

ignificantly more demanding than deterministic ones. This explains the lack of stochastic traffic flow models that are consistent with
eterministic traffic flow models but that at the same time can be evaluated on medium to large-scale networks, cf. the discussion
n Lu and Osorio (2018). Our paper aims to bridge this gap between deterministic, reasonably tractable models on one hand, and
tochastic, laborious models on the other hand.
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Central in this paper is a class of stochastic traffic flow models that generalizes the prominent class of discrete-space kinematic
ave models (i.e., models based on LWR theory; cf. Lighthill and Whitham (1955) and Richards (1956)). The setup considered

epresents a road traffic network made up of 𝑑 segments, and focuses on describing the distribution of the vehicle densities in these
egments as a function of time. We work with Markov dynamics that are set up in such a way that the fundamental diagram of traffic
low is respected. In Mandjes and Storm (2021) it was shown that on road segments of (roughly) several hundreds of meters, the
oint vehicle-density process in the 𝑑 segments can be accurately described (as a function of time, that is) by a Gaussian process. Its
eans and (co-)variances, as a function of time, characterize the joint vehicle-density distribution, and can be found by evaluating
coupled system of ordinary differential equations, which makes the Gaussian framework highly efficient from a computational

oint of view. Formally, the results of Mandjes and Storm (2021) are in terms of a scaling limit : under an appropriate scaling of the
raffic rates and the segment lengths, the joint per-segment vehicle-density process converges in distribution to a Gaussian process.

The translation of the results derived in Mandjes and Storm (2021) into practical computation recipes brings in its own challenges.
t involves expressing a practical setting into the model’s (hyper-)parameters and features (on-ramps, merges, etc.), and in addition
arious coupled systems of differential equations have to be numerically evaluated. The key objective of this paper is to provide a
etailed description and discussion of the underlying computational aspects, as well as an in-depth account of the method’s pros and
ons. Concretely, this requires various non-trivial steps in which the formal convergence-in-distribution result of Mandjes and Storm
2021) is to be converted into an approximation of the joint per-segment vehicle-density process. The goal is to demonstrate how,
y applying standard numerical software only, both the intra-segment correlations and the temporal correlations can be efficiently
nd accurately evaluated for networks of considerable size. A second objective concerns an assessment of the method’s complexity.
oncretely, we aim to systematically analyze the impact of the model parameters on the computation time.

We proceed by briefly reviewing related branches in the literature, after which we provide more background on our approach
nd contributions, and on how these relate to the existing literature. As mentioned, most traffic flow models in the literature are
eterministic, but the stochastic nature of road traffic has been widely recognized, cf. the accounts in Jabari et al. (2014), Ngoduy
2021) and Qu et al. (2017).

There have been several attempts to model the observed fluctuations in traffic flows (or fundamental diagram scatter) by means
f macroscopic stochastic models. A frequently followed approach works with the stochastic cellular transmission model (CTM),
wo variants of which have been explored in the literature. In the first variant one starts with a deterministic CTM and replaces the
odel parameters with random variables (Boel and Mihaylova, 2006; Li et al., 2012; Ngoduy, 2011; Panda et al., 2019; Sumalee

t al., 2011; Zhong et al., 2013). In Lu and Osorio (2018) it is argued that the numerical evaluation of these models can become
omputationally intensive for large-scale networks, due to the sampling that is required. The second variant is based on a stochastic
odel in which the vehicle headway is seen as a random quantity. This approach, originally proposed in Jabari and Liu (2012,
013), was generalized to incorporate multi-class fundamental diagrams and networks in Mandjes and Storm (2021). It is the
atter approach that we follow in the present paper, its major asset being that it does not require any sampling; instead, as will
e extensively demonstrated, it allows highly efficient numerical evaluation.

The stochastic link transmission model (LTM) is another approach of macroscopic stochastic traffic flow modeling, that builds on
ewell’s theory of kinematic waves in traffic (Newell, 1993). By recognizing that cumulative flows of vehicles across link boundaries

it the mathematical framework of (fictitious) queues inside a link, Osorio and Flötteröd (2015) succeeds in characterizing the per-
ink distribution of the number of vehicles using matrix exponential methods. In Lu and Osorio (2018) the model evaluation speed
s significantly increased by using simplifying assumptions that allow for explicit formulas for the matrix exponential. The recent
aper (Lu and Osorio, 2021) extends the model to networks.

Another class of stochastic models relies on the microscopic traffic flow modeling paradigm. The evaluation of these models is
ypically even more computationally intensive than the ones we discussed thus far, as it relies on simulation. With the key example
eing the class of stochastic car-following models (Laval and Leclercq, 2008; Laval et al., 2014; Lee et al., 2019; Ngoduy et al.,
019; Treiber and Kesting, 2017; Yuan et al., 2018), their focus lies on reproducing traffic phenomena such as capacity drop or
raffic oscillations, and less on the evaluation of vehicle-density distributions in large-scale networks. Another class of microscopic
odels uses stochastic traffic cellular automata, as reviewed in Maerivoet and De Moor (2005), with Nagel and Schreckenberg

1992) presenting the seminal model.
Recently, with the increasing availability of highly granular data, data-driven approaches have been devised to predict vehicle

ensities, see, e.g., Ahmed et al. (2021) and Yuan et al. (2021). For instance, using UAV-images (Ahmed et al., 2021) one could
ncorporate a vast amount of information into predictions. Such a procedure has the potential to lead to highly accurate (online)
redictions of vehicle densities. Relative to the use of mathematical models (such as the ones discussed above) it has the disadvantage
f not providing fundamental insights and understanding.

The above overview indicates the need for stochastic traffic flow models that allow an efficient and accurate evaluation of the
oint (in the spatial and temporal sense) distribution of vehicle-density distributions. These should work for road traffic networks of
rbitrary topology, and should be able to incorporate a broad array of relevant features, such as speed limits, traffic heterogeneity,
tc. As mentioned, in this paper we will adopt the framework developed in Mandjes and Storm (2021).

Now we provide a detailed account of the paper’s contributions, also commenting on the relation with the context that has
een provided above. Our work should be seen in the tradition of the pioneering works (Jabari and Liu, 2012, 2013), aiming at
valuating the probability distribution of the numbers of vehicles simultaneously present in the individual segments. In this approach
t is implicit that the proposed stochastic model necessarily inherits the average behavior that is in line with the kinematic wave
127

odels. In Mandjes and Storm (2021) we succeeded in lifting the framework of Jabari and Liu (2012, 2013) to a higher level of
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realism, by, e.g., incorporating multiple traffic classes (so as to be able to model the different behavior and impact of, say, normal
cars and trucks, in line with the framework developed in Chanut and Buisson (2003)).

The main finding of Mandjes and Storm (2021) was that, under a natural scaling, the numbers of vehicles per vehicle class
imultaneously present in 𝑑 segments, can be accurately described (as a function of time, that is) by a Gaussian process. This Gaussian
rocess can be taken as a starting point for a traffic flow model, the mean and covariances (spatial and temporal) can be found by
valuating matrix ordinary differential equations (ODEs). Since a multivariate Gaussian distribution is completely characterized by
he associated mean vector and covariance matrix, the ODEs represent an extremely efficient way of evaluating the joint vehicle-
ensity distribution. This paper discusses the various non-trivial decisions that are to be made when one wishes to use this Gaussian
ramework, focusing on the computational aspects and their complexity properties.

As mentioned, the results of Mandjes and Storm (2021) are in terms of a scaling limit, which effectively means that under
n appropriate scaling of the traffic rates and the segment lengths, the joint per-segment vehicle-density process converges in
istribution to a 𝑑-dimensional Gaussian process. This scaling is to ensure that there is enough aggregation, concretely meaning
hat any road segment should be sufficiently long to guarantee that the typical number of vehicles of any type is large enough for
he central limit regime to kick in. Importantly, as has been extensively explored, typically central limit based approximations
o not require an excessive scale in order to be reasonably accurate; as a rule of thumb, it suffices that any segment can
ccommodate roughly 15–20 vehicles of any type. The above in particular means that at any point in time, the joint distribution
f all traffic densities is multivariate normal, as long as the level of aggregation is sufficient. In this paper we show that our
aussian approximation can evaluate the joint per-cell vehicle-density distribution highly accurately and efficiently for networks
f considerable size. The approximation nicely decomposes the deterministic component representing the system’s mean behavior,
hich complies with the associated kinematic wave model, from the stochastic component, which reflects the fluctuations around

he mean. In this sense our approximation inherits the structure of classical central-limit type approximations, where an aggregate
f random quantities is approximated by the corresponding mean increased by a zero-mean normal random variable.

Finally, we provide a number of realistic experiments to demonstrate the potential of the Gaussian process approach. Their
ocus is on the effect of traffic surges (e.g. at on-ramps) on congestion, on the way in which the effect of accidents propagates,
nd combinations of these two elements. An extremely useful property of our approach is that it is straightforward to evaluate the
ombined impact of various traffic phenomena and control measures, as we demonstrate in one of our experiments. In particular,

any cell can potentially be endowed with a different fundamental diagram to capture relevant properties specific to local traffic
flows. In contrast, many existing traffic models focus on the effect of a single phenomenon or control measure, cf. Papageorgiou
et al. (2003). We also include a complexity study, in that we systematically evaluate the impact of the model parameters on the
computation time. Our method, being based on an underlying Markov model, uses the assumption that that cell sojourn-times are
exponentially distributed (with congestion-dependent rates), but we show through a series of experiments that the performance of
our method hardly degrades when these sojourn-times actually stem from other distributions.

The organization of this paper is as follows. In Section 2 we present the model from Mandjes and Storm (2021), and point
ut how the formal results are translated into our Gaussian approximation. We also discuss the advantages of our approach over
ompeting computational techniques. In Section 3 we present a series of experiments in which the vehicle-density distribution is
valuated (jointly at multiple locations and multiple points in time, that is). Additional properties of the approach are presented in
ection 4; this includes (i) a complexity study and (ii) an assessment of the robustness of the methodology under different choices
or the cell lengths in the underlying road network. Section 5 reflects on our approach, in particular showing that the assumption
f exponentially distributed headways can be relaxed while hardly compromising the model’s accuracy. Finally, Section 6 presents
oncluding remarks.

. Model, limit results, and methodological advantages

In the first part of this section we summarize the traffic flow model of Mandjes and Storm (2021), as well as the main results
btained there. We point out how this framework allows for an efficient assessment of stochastic traffic flows on networks of arbitrary
opology using a Gaussian approximation. We then present a detailed discussion on the how to utilize the Gaussian approximation
n a practical context, in particular explaining how to translate a specific choice for the model’s (hyper-)parameters and features
on- and off-ramps, merges, diverges, etc.). We conclude this section by discussing the benefits of using our Gaussian approximation
ver alternative methods (which will be further backed in Section 3 through a series of representative experiments).

.1. Model summary

We start by providing a compact model description; see Mandjes and Storm (2021, Section3) for more details. For ease of
xposition we here focus on a segment consisting of a sequence of cells, modeling a road segment without any intermediate on-
amps and off-ramps, rather than a general network. As pointed out in Mandjes and Storm (2021, Section 7.1), however, this setup
aturally extends to networks of arbitrary topology.

The segment is divided into 𝑑 ∈ N cells, with cell 𝑖 having length 𝓁𝑖 > 0, for 𝑖 ∈ {1,… , 𝑑}. An important asset of our model
s that we allow for multiple vehicle types; in the sequel we let 𝑚 ∈ N denote the number of types. We focus on probabilistically
escribing the objects 𝑋𝑖𝑗 (𝑡), defined as the number of type-𝑗 vehicles in cell 𝑖 at time 𝑡 ⩾ 0, for 𝑗 ∈ {1,… , 𝑚} and 𝑖 ∈ {1,… , 𝑑}. The

random variable 𝑋 (𝑡) attains values in {0, 1,… , 𝑥jam}, where 𝑥jam ∈ N is an upper bound on the number of type-𝑗 vehicles that
128
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can be simultaneously present in cell 𝑖. We denote by 𝑋(𝑡) the 𝑚𝑑-dimensional random vector with entries 𝑋𝑖𝑗 (𝑡). Define the type-𝑗
ehicle density in cell 𝑖 at time 𝑡 ⩾ 0 by

𝜌𝑖𝑗 (𝑡) ∶=
𝑋𝑖𝑗 (𝑡)
𝓁𝑖

,

ttaining values in {0, 1∕𝓁𝑖,… , 𝑥jam
𝑖𝑗 ∕𝓁𝑖}, where 𝜌jam

𝑖𝑗 ∶= 𝑋jam
𝑖𝑗 ∕𝓁𝑖 can be interpreted as the jamming vehicle density. Analogously to

(𝑡), we let 𝜌(𝑡) be the 𝑚𝑑-dimensional random vector with entries 𝜌𝑖𝑗 (𝑡).
Vehicles traverse the consecutive cells, starting at cell 1 and ending at cell 𝑑. In a cellular transition model (CTM), vehicle-mass

oves across cell boundaries at a rate that is given by a discrete flux function. This function, whose arguments are the vehicle
ensities in the sending and receiving cells (of all 𝑚 types), is derived from a macroscopic fundamental diagram (MFD) by solving
n associated Riemann problem (Mandjes and Storm, 2021, Section 3.2). More formally, this means that the discrete flux function
rom cell 𝑖 to cell 𝑖 + 1 is given by a function of the type

𝑞𝑖 ∶
𝑚
⨉

𝑗=1

(

[0, 𝜌jam𝑖𝑗 ] × [0, 𝜌jam𝑖+1,𝑗 ]
)

→
𝑚
⨉

𝑗=1
[0, 𝑞max

𝑖𝑗 ].

In our setup, we consider stochastic inter-cell transition times, that we choose in such a way that the mean dynamics correspond
ith a CTM. More precisely, the time it takes a type-𝑗 vehicle to move from cell 𝑖 to cell 𝑖+1 is an exponentially distributed random
ariable, with a mean that is in line with the discrete flux function (and thus depends on the value of the vehicle-density process in
ells 𝑖 and 𝑖+1). In addition to vehicles jumping between cells, vehicles enter the segment at cell 1 and depart from the segment at
ell 𝑑. These transitions are to be handled slightly differently from the inter-cell transitions. Concretely, the type-𝑗 arrival rate at cell
depends on the vehicle densities in cell 1 but is in addition bounded by a given rate 𝜆𝑗 . Likewise, the type-𝑗 departure rate from

ell 𝑑 is a function of the vehicle densities in cell 𝑑, truncated at 𝜈𝑗 . Since in our framework the transition times are exponentially
istributed, the process under study is a continuous-time Markov chain.

We denote by 𝑞0𝑗 (𝜌(𝑡)), 𝑞𝑖𝑗 (𝜌(𝑡)) and 𝑞𝑑𝑗 (𝜌(𝑡)), respectively, the arrival rate at cell 1, transition rate between cell 𝑖 and cell 𝑖 + 1,
nd departure rate from cell 𝑑, given the state of the system 𝜌(𝑡), all of them pertaining to vehicles of type 𝑗; here 𝑖 ∈ {1,… , 𝑑 − 1}

and 𝑗 ∈ {1,… , 𝑚}. In the analysis presented in Mandjes and Storm (2021) we heavily rely on a description of the type-𝑗 density in
cell 𝑖 (𝜌𝑖𝑗 (𝑡), that is) in terms of the densities in preceding cells in the past (𝜌(𝑠) with 𝑠 ⩽ 𝑡, that is). Concretely,

𝜌𝑖𝑗 (𝑡) = 𝜌𝑖𝑗 (0) +
1
𝓁𝑖 ∫

𝑡

0
𝑌𝑖−1,𝑗

(

∫

𝑡

0
𝑞𝑖−1,𝑗 (𝜌(𝑠)) d𝑠

)

− 1
𝓁𝑖 ∫

𝑡

0
𝑌𝑖𝑗

(

∫

𝑡

0
𝑞𝑖𝑗 (𝜌(𝑠)) d𝑠

)

, (1)

here 𝑌𝑖𝑗 (⋅) are independent unit-rate Poisson processes, with 𝑗 ∈ {1,… , 𝑚} and 𝑖 ∈ {1,… , 𝑑}. Here 𝑌𝑖𝑗 (𝑡) can be interpreted as
he cumulative number of arrivals to cell 𝑖 of type 𝑗 over the interval [0, 𝑡]. We denote by 𝑌 (⋅) the process with entries 𝑌𝑖𝑗 (⋅), for
∈ {0,… , 𝑑}, 𝑗 ∈ {1,… , 𝑚}.

.2. Scaling limit

It is important to observe that, for realistic instances, the Markov chain defined in the previous section has an excessively large
tate space. As a consequence, direct numerical evaluation of performance metrics is typically not feasible; we get back to this issue
n Section 2.3.2. The main idea presented in this section, is to approximate the random objects under study by a suitably chosen
aussian counterpart that does allow efficient numerical evaluation. The formal backing of this procedure is given by the scaling

imits presented in Mandjes and Storm (2021, Section 4), which we briefly summarize here.
In our approach we scale the cell lengths by a factor 𝑛, i.e., 𝓁𝑖 ↦ 𝑛𝓁𝑖. Here, we let the scaling parameter 𝑛 grow large to

btain central-limit theorem type of results. We emphasize, however, the well-known fact that typically the corresponding Gaussian
pproximations are already accurate for relatively low values of 𝑛 (i.e., it suffices if there are on average a couple of tens of vehicles
er segment). Simultaneously, we scale time by a factor 𝑛, i.e., 𝑡 ↦ 𝑛𝑡, so that the expected flow of density between cells per unit
f time remains invariant. We denote 𝜌𝑛(𝑡) ∶= 𝜌(𝑛𝑡)∕𝑛, with the cell lengths being given by 𝑛𝓁𝑖, for 𝑖 ∈ {1,… , 𝑑}.

To keep notation light, let 𝑄(𝜌(𝑡)) be the vector of length (𝑑+1)𝑚 with entries 𝑞𝑖−1,𝑗 (𝜌(𝑡)), 𝑖 ∈ {1,… , 𝑑+1}, 𝑗 ∈ {1,… , 𝑚}, ordered
lexicographically, i.e., 𝑄(𝑖−1)𝑚+𝑗 = 𝑞𝑖−𝑖,𝑗 . We define 𝐻 to be the 𝑑𝑚 × (𝑑 + 1)𝑚 matrix with 𝐻𝑘𝑙 ∶= 1{𝑘=𝑙} − 1{𝑘+𝑚=𝑙}. Finally, we
set 𝐿 as the 𝑑𝑚 × 𝑑𝑚-dimensional diagonal matrix, with the 𝑘th diagonal element being 1∕𝓁𝑖 if ⌈𝑘∕𝑚⌉ = 𝑖, for 𝑘 ∈ {1,… , 𝑑𝑚} and
𝑖 ∈ {1,… , 𝑑}. As pointed out in Mandjes and Storm (2021, Assumption 3.1), to formally prove the Gaussian convergence results
elow, a mild regularity condition has to be imposed on the functions 𝑞𝑖.

The first result is what is called a fluid limit, which can be seen as a law of large numbers at the process level. It states that if
𝜌𝑛(0) → 𝜌̄(0), then, as 𝑛 → ∞,

𝜌𝑛(𝑡) → 𝜌̄(𝑡) = 𝜌̄(0) + ∫

𝑡

0
𝐹 (𝜌̄(𝑠))d𝑠, (2)

with 𝐹 (𝜌(𝑡)) ∶= 𝐿𝐻𝑄(𝜌(𝑡)); for the precise statement we refer to Mandjes and Storm (2021, Thm. 4.1). The proof extensively exploits
129

the representation (1).
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The second result is what is usually referred to as a diffusion limit, i.e., a central limit theorem at the process level. Suppose that
im𝑛→∞

√

𝑛|𝜌𝑛(0) − 𝜌0| = 0 for some 𝜌0. Then it states that the process 𝜌̂𝑛(⋅), defined through 𝜌̂𝑛(𝑡) ∶=
√

𝑛(𝜌𝑛(𝑡) − 𝜌̄(𝑡)), converges in
istribution (as 𝑛 → ∞) to the process 𝜌̂(⋅) solving the stochastic differential equation

𝜌̂(𝑡) = 𝜌̂(0) + ∫

𝑡

0
𝜕𝐹 (𝜌̄(𝑠)) 𝜌̂(𝑡)d𝑠 + ∫

𝑡

0
𝐿𝐻 𝛴(𝜌̄(𝑠))d𝐵(𝑠); (3)

see for details (Mandjes and Storm, 2021, Thm. 4.3). Here 𝜕𝐹 (𝜌(𝑡)) is to be understood as the matrix of weak partial derivative
f 𝐹 (𝜌̄(𝑡)), 𝛴(𝜌̄(𝑠)) is the diagonal matrix with the square roots of 𝑄(𝜌̄(𝑡)) as entries, and 𝐵(⋅) is a vector of length (𝑑 + 1)𝑚 of
ndependent standard Brownian motions. This result was established again using the representation (1), in combination with results
rom martingale theory.

It is known that 𝜌̂(⋅), as defined through (3), defines a Gaussian process. For our scaled system, it thus leads to the following
pproximation of the scaled joint vehicle-density process:

𝜌𝑛(𝑡) ≈ 𝜌̄(𝑡) + 1
√

𝑛
𝜌̂(𝑡).

The first term, which is deterministic, reflects the process’ mean behavior, and has been constructed such that it complies with
the associated kinematic wave model. The second term, which is stochastic, quantifies the process’ inherent fluctuations around
the mean. Observe the similarity with the commonly used central-limit type of approximations: with 𝑋1,… , 𝑋𝑛 a sequence of
independent and identically distributed random variables with mean 𝜇 and variance 𝜎2, we approximate

1
𝑛

𝑛
∑

𝑖=1
𝑋𝑖 ≈ 𝜇 + 1

√

𝑛
𝜎 𝑁,

with 𝑁 a standard normal random variable. One could thus say that our Gaussian approximation is a process level generalization
of the conventional central-limit based normal approximation. A formal backing of the above reasoning is given in Mandjes and
Storm (2021, Section 6.1.1).

The fact that 𝜌̂(⋅) is a Gaussian process in particular entails that all linear combinations of the 𝜌̂𝑖𝑗 (𝑡𝑘), for time points 𝑡𝑘, have a
Gaussian distribution. The corresponding mean vector and covariance matrix are defined as

𝑀(𝑡) ∶= E[𝜌̂(𝑡)], 𝛤 (𝑠, 𝑡) ∶= cov (𝜌̂(𝑠), 𝜌̂(𝑡)) = E[(𝜌̂(𝑠) −𝑀(𝑠))(𝜌̂(𝑡) −𝑀(𝑡))⊤].

The covariance matrix of 𝜌̂(𝑡) is denoted by 𝑉 (𝑡) ∶= cov(𝜌̂(𝑡), 𝜌̂(𝑡)) = 𝛤 (𝑡, 𝑡). As in Karatzas and Shreve (2012, Section 5.6, Problems
6.1 ,6.2), 𝑀(𝑡) and 𝛤 (𝑠, 𝑡) satisfy the explicit expressions

𝑀(𝑡) = 𝛷̄(𝑡)
[

𝑀(0) + ∫

𝑡

0
𝛷̄−1(𝑠)d𝑠

]

,

𝛤 (𝑠, 𝑡) = 𝛷̄(𝑠)
[

𝑉 (0) + ∫

𝑡∧𝑠

0
𝛷̄−1(𝑢)𝐿𝐻 𝛴(𝜌̄(𝑢))

(

𝛷̄−1(𝑢)𝐿𝐻 𝛴(𝜌̄(𝑢))
)⊤ d𝑢

]

𝛷̄⊤(𝑡), (4)

where 𝛷̄(𝑡) ∶= 𝛷(𝑡, 0) and 𝛷(𝑡, 𝑠) is the solution to the matrix-valued ordinary differential equation
𝜕
𝜕𝑡
𝛷(𝑡, 𝑠) = 𝜕𝐹

(

𝜌̄(𝑡)
)

𝛷(𝑡, 𝑠), 𝛷(𝑠, 𝑠) = 𝐼. (5)

In addition, 𝑀(𝑡) and 𝑉 (𝑡) solve the linear (matrix) differential equations
d𝑀(𝑡)
d𝑡

= 𝜕𝐹 (𝜌̄(𝑡))𝑀(𝑡),

d𝑉 (𝑡)
d𝑡

= 𝜕𝐹 (𝜌̄(𝑡))𝑉 (𝑡) + 𝑉 (𝑡)(𝜕𝐹 (𝜌̄(𝑡)))⊤ + 𝐿𝐻 𝛴(𝜌̄(𝑡))(𝐿𝐻 𝛴(𝜌̄(𝑡)))⊤. (6)

Solving this type of differential equations is a well-developed branch of research in the field of numerical mathematics, and can be
done relying on standard computational software.

2.3. The Gaussian approximation and its advantages

We proceed by pointing out how the scaling limit results from the previous subsection can be used to approximate the joint
vehicle-density distribution by a multivariate Gaussian distribution. Then we discuss the advantages of this method over competing
approaches.

2.3.1. Obtaining the Gaussian process approximation
The above fluid and diffusion limit results imply that the (non-scaled) vehicle-density process 𝜌(⋅) can be approximated by

𝜌̄(⋅)+ 𝜌̂(⋅), cf. Mandjes and Storm (2021, Equation (22)), with 𝜌̄(⋅) and 𝜌̂(⋅) given by (2) and (3), respectively. As argued in Section 2.2,
the first (deterministic) term takes care of working with the correct mean, while the second (zero-mean Gaussian) term takes care
of the fluctuations around that mean. In particular, this means that 𝜌(⋅), for any sequence of time points 0 ≤ 𝑡1 < ⋯ < 𝑡𝑘 < ∞, with
𝑘 ∈ N, is approximately multivariate Gaussian, where

[( )] ( ) [( )] [( )]
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E 𝜌(𝑡1),… , 𝜌(𝑡𝑘) ≈ 𝜌̄(𝑡1),… , 𝜌̄(𝑡𝑘) , cov 𝜌(𝑡1),… , 𝜌(𝑡𝑘) ≈ cov 𝜌̂(𝑡1),… , 𝜌̂(𝑡𝑘) .
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It follows that we can approximate the distribution of the 𝑘𝑚𝑑-dimensional object (𝜌(𝑡1),… , 𝜌(𝑡𝑘)) by a multivariate Gaussian
distribution of dimension 𝑘𝑚𝑑, i.e.,

(

𝜌(𝑡1),… , 𝜌(𝑡𝑘)
)

≈ 𝑁𝑘𝑚𝑑 (𝜇,𝛴), (7)

where the associated mean vector 𝜇 and covariance matrix 𝛴 are provided by numerically solving the integral equations in (2) and
(4) at the time points 𝑡1,… , 𝑡𝑘.

In summary, the problem of finding the joint vehicle-density distribution is, in practical terms, reduced to solving the integral
equations (2) and (4) that provide us with the 𝜇 and 𝛴 in (7). We now present a detailed description of the complete procedure.

We suppose that the network topology is given including the lengths of the road segments in the network (i.e., the lengths of
the edges in the underlying graph). Then, a choice must me be made for the number of cells per segment and the cell lengths.
Concretely, as before focusing on a segment consisting of a sequence of cells, the number of cells 𝑑 ∈ N needs to be chosen,
together with the length 𝓁𝑖 > 0 for each cell 𝑖; this determines the matrices 𝐿 and 𝐻 appearing in (4). There is an incentive to
choose the cell lengths 𝓁𝑖 relatively small, so as to provide a description of the vehicle-density distribution that is as detailed as
possible. This should, however, be done under the constraint that the cells are sufficiently large to make sure that the use of our
Gaussian approximation is justified: there should be a sufficient level of aggregation so that the central limit theorem kicks in. Much
is known about the minimum aggregation level required; see e.g. the rules of thumb discussed in Schader and Schmid (1989). In
the setting of this paper, one could work with the practical requirement that each cell should be able to accommodate, say, 15–20
vehicles of any type. This reasoning also explains why, in a practical context, the number of types should not become excessively
large. In Section 4.3, we demonstrate that given sufficient aggregation, the model’s outcomes are robust for different choices of the
cell lengths 𝓁𝑖.

◦ First, a choice for a discrete flux function 𝑞 (and, hence, fundamental diagram) is made, together with a choice for the involved
parameters (e.g., maximum vehicle velocity, backwards wave velocity, and jamming capacity). This choice also involves the
parameter 𝑚, where 𝑚 = 1 corresponds to single class and 𝑚 = 2, 3,… to multi-class. The flux function essentially encodes how
the vehicle velocity depends on the vehicle densities in the sending and receiving cell. In Mandjes and Storm (2021, Section
3.3), two possible choices for a discrete flux function have been presented for a network without merging and diverging; we
will use the merging and diverging rates of Mandjes and Storm (2021, Example 1), which are originally from Daganzo (1995),
and which will be further discussed in Section 3.1.1.

◦ The choice for a specific discrete flux function determines the functions 𝛴 and 𝐹 (both via the function 𝑄) appearing in the
integral equations (2) and (4). Determining 𝜕𝐹 entails (a) computing the Jacobian of 𝐹 whenever it exists, and (b) choosing
the value that 𝜕𝐹 takes whenever the Jacobian of 𝐹 does not exist. The validity of this reasoning is provided in Mandjes and
Storm (2021, Section 4.2) and a detailed example is worked out in Jabari and Liu (2013, Section 4.1) for the discrete flux
function that corresponds to the Daganzo fundamental diagram.

◦ Having determined the functions 𝐹 , 𝛴, and 𝜕𝐹 , as well as the matrices 𝐻 and 𝐿, one can numerically solve the integral
equations (2) and (4). The solution to the former can be found by feeding its corresponding differential form

̇̄𝜌𝑡 = 𝐹 (𝜌̄𝑡), 𝜌̄0 = 𝜌̄

to an ODE-solver. Computing 𝛤 (𝑠, 𝑡) in (4) requires numerical integration of the functions 𝐹 , 𝛷, and 𝛷−1. The functions 𝛷 and
𝛷−1 can be evaluated by solving (5) and its adjoint equation (cf. Hale (1969, Lemma III.1.4)),

𝜕
𝜕𝑡
𝛷−1(𝑡, 𝑠) = −𝛷−1(𝑡, 𝑠)𝜕𝐹 (𝜌̄(𝑡)), 𝛷−1(𝑠, 𝑠) = 𝐼

respectively, at a sequence of time points 0 = 𝑡1 < ⋯ < 𝑡𝑘 = 𝑡 for some 𝑚 ∈ N using an ODE-solver. Then, 𝛤 (𝑠, 𝑡) is computed
for every pair (𝑡𝑖, 𝑡𝑗 ), for 𝑖, 𝑗 ∈ {1,… , 𝑘}. Note that the discretization 𝑡1,… , 𝑡𝑘 of [0, 𝑡] determines the time points at which the
multivariate distribution of 𝜌(⋅) is computed. Moreover, the mesh of the discretization prescribes the accuracy at which the
integrals are to be evaluated. While, by and large, one can rely on off-the-shelf numerical software, in specific cases one has to
slightly adapt the input to obtain meaningful results. Most notably, as extensively discussed in Mandjes and Storm (2021), in
case the discrete flux function does not obey a certain regularity condition (i.e., being ‘Lipschitz’), numerical issues can arise,
which can be resolved by applying a standard mollifier.

Note that if one is only interested in spatial covariances (not the temporal ones), then solving (6) rather than (4) is sufficient. This
is even faster since numerical integration is not required.

The resulting Gaussian approximation can be used to approximate the probability of any event that can be expressed in terms of
the random vector (7). The evaluation of these probabilities will be efficient, as it require basic numerical operations; specifically,
we are to solve the integral equations (2) and (4) for the mean vector and covariance matrix, respectively, which have a standard
functional form. In the remainder of this section we compare our approximation, in terms of computational efficiency, with two
131

evident competing approaches.
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2.3.2. Advantages over alternative methods
A first alternative for evaluation of the finite-dimensional distributions concerns the use of computational tools for continuous-

ime Markov chains. The objective is to numerically evaluate the matrix 𝑃 (𝑡) with entries P(𝜌(𝑡) = 𝑘 ∣ 𝜌(0) = 𝓁), for 𝑘,𝓁 in the
state space  of 𝜌(⋅). Denoting by  the transition rate matrix associated to the Markov chain 𝜌(⋅), then, by the Kolmogorov forward
quation, we need to evaluate the following matrix exponential: for 𝑡 ⩾ 0,

𝑃 (𝑡) ∶= exp(𝑡) =
∞
∑

𝑘=0

(𝑡)𝑘

𝑘!
.

Both 𝑃 (𝑡) and  are matrices of the dimension || × ||, where || is the dimension of the state space  of 𝜌(⋅). Note that ||
epends on, e.g., the cell lengths, vehicle types and fundamental diagram. For the case of a single vehicle type and homogeneous
ell-lengths, we have || = |(𝑋jam + 1)|𝑑 , with 𝑋jam the maximum number of vehicles that can be simultaneously present in a cell. It
s directly seen that already for a model of modest size (e.g., 𝑑 = 10 and 𝑋jam = 20), this number is too large to make this approach
omputationally viable as a method for computing 𝑃 (𝑡). There are other ways to numerically evaluate 𝑃 (𝑡), for instance by solving
system of linear differential equations, but these approaches will also break down as the dimension of the state space grows.

An other alternative is to rely on simulation. This approach, however, has intrinsic conceptual complications as well. The most
rominent issue is that one has to deal with estimation errors. For instance, suppose we wish to reliably estimate (i.e., aiming at
stimates with errors that are smaller than a given, small, fraction of the estimates themselves) the distribution of 𝜌(⋅) at times
1,… , 𝑡𝑘. Then, many runs are needed, as a consequence of the fact that all states (in the large state space) have to be visited
ufficiently often. Evidently, if one is interested in specific events that effectively do not involve the full state space, or just one
oint in time, the computational load will be more manageable. It is noted, however, that there are various relevant performance
etrics whose reliable estimation is prohibitively time-consuming; for instance, as was pointed out in the introduction of Jabari

nd Liu (2013), estimating the time-dependent covariance matrices is particularly challenging.

. Vehicle-density distribution evaluation in networks

With a precise understanding of our model and Gaussian process approximation, we now turn to the main contribution of this
aper: we demonstrate that the model can efficiently evaluate the joint (both in the spatial and temporal sense) vehicle-density
istribution for a road-traffic network. The resulting numerics can be used to assess the probability of ‘risky events’, such as excessive
ongestion. As pointed out earlier, the distributions found are consistent with Godunov solutions for conservation laws, i.e., our setup
eneralizes kinematic wave models.

The main objective of this section is to demonstrate that the model is capable of evaluating the joint vehicle-density distribution
n a wide range of real-life traffic scenarios: when congestion arises due to on-ramp traffic, jam formation and dissipation due
o accidents, and traffic propagation when the road capacity drops due to a lane closure. Moreover, we illustrate how relevant
robabilities can be computed, e.g., the probability of exceeding a critical density threshold (i.e., corresponding to heavy congestion).
n attractive feature of our approach is that it allows the evaluation of the combined impact of various traffic phenomena and control
easures, as we demonstrate in one of our experiments. In addition, every cell can have its own specific fundamental diagram to
odel effects specific to local traffic flows. We illustrate this by taking different parameters for the flux functions in various cells,

ut in principle the flux functions themselves could also be different. We in addition compare the computation times with those
orresponding to estimating the relevant means and variances by simulation. In Section 4, we present an in-depth study of the
omputation times of our approach.

.1. Experimental setup

We first provide a detailed setup of all real-life scenarios that we evaluate using our approach; in the sequel we refer to these by
xperiments. We throughout use the same topology, as well as the same initial condition, so as to facilitate comparing the outcomes
f the experiments. We first describe these commonalities, after which we in-depth discuss the experiments. As our objective is to
how that our approach is capable of quickly evaluating the joint vehicle-density distribution in a network, we decided to keep
he setup of our experiments as focused as possible. We work with single-class traffic-density models with all ‘topological features’
i.e., on-ramps, merges, etc.) that are contained in networks. For several multi-class examples on a road segment, we refer to Mandjes
nd Storm (2021, Section 6).

.1.1. Commonalities
The topology of our network is graphically represented in Fig. 1. It consists of 4 road segments with both an on-ramp and

ff-ramp between every consecutive pair of road segments. The four road segments, denoted 𝑟𝑖 in the figure, consist of 𝑑𝑖 ∈ N cells,
= 1, 2, 3, 4. In front of the first cell of 𝑟1, a cell is placed at which vehicles seek to arrive with rate 𝜆0. Similarly, at the end of 𝑟4, a

cell is placed from which vehicles depart with a rate that is bounded by 𝜈0.
The topology of the part of the network that contains an on-ramp and off-ramp (called a ‘block’) is also schematically represented

n Fig. 1. Each of the three blocks consists of 5 cells: a diverge cell (D), a merge cell (M), an on-ramp cell (on) to which vehicles arrive,
n off-ramp cell (off) from which vehicles depart, and an intermediate cell (I). We note that the latter is necessary to comply with the
ramework of merge and diverge models as proposed in Daganzo (1995) and reviewed in Tampère et al. (2011). From the diverge

div div
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ell in block 1, vehicles prepare to leave the network with probability 𝑝1 , or they stay on the network with probability 1 − 𝑝1 .
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Fig. 1. Schematic representation of the network, consisting of 4 roads 𝑟𝑖 between circular nodes, with 𝑑𝑖 ∈N cells per road, 𝑖 ∈ {1,… , 4}. Between consecutive
pairs of roads there is both an on-ramp and off-ramp for traffic to arrive and depart, respectively, as represented by the part in the red box. Arrows with label
𝜆0 or 𝜈0 correspond to, respectively, cells with arriving and departing vehicles. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Similarly, vehicles in the intermediate cell and at the on-ramp, merge into the merge cell, where priority is given to the vehicles
from the on-ramp with probability 𝑝mer

1 . Similar parameters are defined for merging and diverging behavior in blocks 2 and 3.
The arrival and departure rate of on-ramp 𝑗 and off-ramp 𝑗 are positive numbers and are denoted, respectively, by 𝜆𝑗 and 𝜈𝑗 , for
𝑗 = 1, 2, 3.

From Fig. 1 it can be seen that in this network, diverge cells are in one direction followed by an ‘intermediate’ cell (I) which
continues the road segment. In the other direction after the diverge cell, we have placed an off-ramp (off) where vehicles depart
the network. Instead, we could have continued the network in this direction, similar to how we continued the network after each
intermediate cell, resulting in a network of highway segments that vehicles can switch between. Hence, conceptually there is no
difference between a single stretch of highway with one or more merge and diverge cells, and a concatenation of stretches of
highways connected by merge and diverge cells. This concretely means that a network consisting of the elements that are covered
in Fig. 1 contains all features necessary to build large-scale traffic networks.

To be able to perform any numerical calculations, we need to specify the model’s discrete flux function, i.e., the entries of the
vector 𝑄(𝜌(𝑡)), being a function of the current state of the joint vehicle-density process 𝜌(𝑡). For this, we rely on the expressions
derived in Daganzo (1994, 1995) corresponding to Daganzo’s fundamental diagram. As pointed out in Chanut and Buisson (2003),
it follows from Lebacque (1996) that for transitions between two cells, the discrete flux-function can be written as the minimum
of a sending and receiving function, which are then given in Daganzo (1994). These functions were generalized to include merging
and diverging in Daganzo (1995). We summarize the rate functions 𝑞𝑖(𝜌(𝑡)) below.

◦ The rate at which a vehicles transitions between two cells 𝑖 and 𝑖 + 1 (unless they are merge or diverge cells) is given by

𝑞𝑖(𝜌(𝑡)) = min
{

𝑆𝑖(𝜌(𝑡)), 𝑅𝑖(𝜌(𝑡))
}

,

where

𝑆𝑖(𝜌(𝑡)) ∶= min
{

𝑣𝑓𝑖 𝜌𝑖(𝑡), 𝑞
max
𝑖

}

𝑅𝑖(𝜌(𝑡)) ∶= min
{

−𝑤𝑖(𝜌𝑖(𝑡) − 𝜌max
𝑖 ), 𝑞max

𝑖
}

;

the minimum in the definition of 𝑞𝑖(𝜌(𝑡)) reflects the fact that this rate is determined by the most binding of the ‘sending rate’
𝑆𝑖(𝜌(𝑡)) and the ‘receiving rate’ 𝑅𝑖(𝜌(𝑡)). The arrival rate to cell 1 and departure rate from cell 𝑑 are given by, respectively,

𝑞0(𝜌(𝑡)) = min
{

𝜆0, 𝑅1(𝜌(𝑡))
}

, 𝑞𝑑 (𝜌(𝑡)) = min
{

𝑆𝑑 (𝜌(𝑡)), 𝜈0
}

.

◦ When two cells 𝑖 and 𝑗 merge into a cell 𝑘, with priority probability 𝑝 for cell 𝑖, then the rates 𝑞𝑖(𝜌(𝑡)) and 𝑞𝑗 (𝜌(𝑡)) at which
vehicles depart cells 𝑖 and 𝑗, respectively, are given by

𝑞𝑖(𝜌(𝑡)) = 𝑆𝑖(𝜌(𝑡)),
𝑞𝑗 (𝜌(𝑡)) = 𝑆𝑗 (𝜌(𝑡)),

if 𝑆𝑖(𝜌(𝑡)) + 𝑆𝑗 (𝜌(𝑡)) ≤ 𝑅𝑘(𝜌(𝑡)),

in case 𝑆𝑖(𝜌(𝑡)) + 𝑆𝑗 (𝜌(𝑡)) ≤ 𝑅𝑘(𝜌(𝑡)), and

𝑞𝑖(𝜌(𝑡)) = mid
{

𝑆𝑖(𝜌(𝑡)), 𝑅𝑘(𝜌(𝑡)) − 𝑆𝑗 (𝜌(𝑡)), 𝑝𝑅𝑘(𝜌(𝑡))
}

,
𝑞𝑗 (𝜌(𝑡)) = mid

{

𝑆𝑗 (𝜌(𝑡)), 𝑅𝑘(𝜌(𝑡)) − 𝑆𝑖(𝜌(𝑡)), (1 − 𝑝)𝑅𝑘(𝜌(𝑡))
}

,

in case 𝑆𝑖(𝜌(𝑡)) + 𝑆𝑗 (𝜌(𝑡)) > 𝑅𝑘(𝜌(𝑡)), where mid{𝑎, 𝑏, 𝑐} is the median of the three numbers 𝑎, 𝑏, and 𝑐.
◦ Similarly, when a cell 𝑖 diverges into cells 𝑗 and 𝑘, with a fraction 𝑝 going into cell 𝑗, then the departure rate from cell 𝑖 is

given by

𝑞 (𝜌(𝑡)) = min
{

𝑆 (𝜌(𝑡)), 𝑅 (𝜌(𝑡))∕𝑝, 𝑅 (𝜌(𝑡))∕(1 − 𝑝)
}

,
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and the rate into cells 𝑗 and 𝑘 is given, respectively, by 𝑝 𝑞𝑖(𝜌(𝑡)) and (1 − 𝑝) 𝑞𝑖(𝜌(𝑡)) (where it is noted that 𝑞𝑖(𝜌(𝑡)) depends on
𝑗 and 𝑘).

e refer to Jabari and Liu (2013) for an account of how to properly take derivatives of the functions 𝑆𝑖 and 𝑅𝑖. Our choice regarding
he weak derivatives matches the one applied in Jabari and Liu (2013).

Each experiment is initialized from a state complying with the stationary distribution of the model with a set of baseline
arameters. The underlying idea is that we want to make sure that the effect of the real-life scenarios that we modeled, can all
e compared to the same reference scenario. The set of baseline parameters corresponds to a relatively lightly-loaded network
onfiguration, so that including an additional on-ramp or an accident has a clear effect. In addition, in the instance we consider
here is no traffic arriving or departing at any of the intermediate on- or off-ramps (but, evidently, we could have chosen different
cenarios as well). Specifically, we let 𝑑𝑖 = 5 for each road 𝑖, with each cell in the network having length 500 m. We choose the
ollowing parameters of the fundamental diagram. In each cell, the maximum velocity is 𝑣𝑓 = 80 km/h, the backward wave speed
s 𝑤 = 20 km/h, and the maximum flow is 𝑞max = 1800 veh/h. We let the critical density equal 𝜌max = 108 veh/km for each cell.
inally, the arrival rate at the first cell is 𝜆0 = 1200 veh/h, 𝜈0 = 1800 veh/h, and 𝑝div

𝑗 = 𝜆𝑗 = 0 (so that we do not need to specify
mer
𝑗 and 𝜈𝑗) for 𝑗 = 1, 2, 3.

.1.2. Experiments
We now provide a detailed description of the three experiments.

n-ramp influence In this experiment, we add an extra stream of arriving vehicles at the second on-ramp. More specifically, we set
2 = 1200 veh/h and 𝑝mer

2 = 0.5, on top of the baseline setting. This means that when the second merging cell is congested, the
eceiving flow for the merging cell is divided over the second on-ramp cell and second intermediate cell. We evaluate the flow of
raffic for half an hour.

By imposing a higher load on the second merging cell (𝜆0 +𝜆2 = 2×1200 = 2400) than it can handle (𝑞max = 1800), we anticipate
hat congestion should arise. Specifically, congestion arises both on the on-ramp and in the intermediate cell, due to 𝑝mer

2 = 0.5,
hich divides the load evenly. Consequently, congestion should propagate upstream from the intermediate cell.

ccident modeling For this second experiment, we start with the baseline setting, and divide a window of half an hour into three
ntervals [0, 𝜏1], [𝜏1, 𝜏2], [𝜏2, 𝜏3], with 𝜏1 = 300 s, 𝜏2 − 𝜏1 = 600 s, and 𝜏3 − 𝜏2 = 900 s. At 𝜏1, an accident occurs at cell 𝑑1 + 3, that is,
t the third cell of the second road. We model this by restricting the flow into cell 𝑑1 + 3 by a factor 0.75, i.e., we scale the rate
(𝜌𝑑1+2, 𝜌𝑑1+3) by a factor 0.25. At 𝜏2 = 900 s, we let the accident be resolved, and traffic can again flow as before. We then let the
etwork evolve until 𝜏3 = 1800 s.

ombined phenomena An appealing feature of our approach is that it allows easy evaluation of the combined effect of multiple
ifferent phenomena and control measures, in contrast to many existing methodologies that primarily focus on quantifying the
mpact of a single measure phenomenon or measure, cf. Papageorgiou et al. (2003). It means that we can analyze, for example, the
ombination of the impact of on-ramps and accidents, but also scenarios in which in addition specific control measures (e.g., ramp
etering and maximum-speed measures) are incorporated, or design choices (e.g., extra lanes and new roads), or natural phenomena

e.g. capacity drops and weather changes). By our final experiment we demonstrate this, by considering a scenario that combines
arious features in a single experiment. More specifically, we ‘activate’ our on-ramps and off-ramps, we change the maximum
elocity on 𝑟1 to 100 km/h instead of 80 km/h, and we impose time-varying arrival rates at the arrival cell and on-ramp 3. The
DE-solver evaluates the joint effect of these changes (relative to the baseline model).

The effects are evaluated over the time span of one hour. We set 𝜆1 = 𝜆2 = 600 veh/h and 𝜆3 = 𝜆0(𝑡) (explained below), with
mer
1 = 𝑝mer

2 = 𝑝mer
3 = 0.5. All 𝜈 are set to 1800 veh/h, with 𝑝div1 = 0.7, 𝑝div2 = 0.5, and 𝑝div3 = 0. Finally, for the time-varying arrivals at

he arrival cell and on-ramp 3, we take a piece-wise constant arrival rate function 𝜆0(𝑡), defined as

𝜆0(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

400, 𝑡 ∈ [0, 600),
1100, 𝑡 ∈ [600, 1200) ∪ [3000, 3600),
1800, 𝑡 ∈ [1200, 1800) ∪ [2400, 3000),
2400, 𝑡 ∈ [1800, 2400),

hat is, we model an arrival pattern that step-by-step increases from 400 to 2400, and then decreases down to 1100 again. More
omplicated arrival patterns can be evaluated, such as daily patterns of arrivals. To keep our setup relatively simple, we decided
o work with a piece-wise constant arrival rate function, but it is stressed that one could work with considerably more general
on-homogeneous Poisson processes (notably, with arrival rates that change continuously with time). In a similar way, the diverge
nd merge probabilities could be made time-varying as well. However, to keep the setup as transparent as possible, we decided to
efrain from this in this experiment, and work with ramp-specific diverge probabilities instead.

.2. Experiment outcomes

We now present the outcomes of each of our experiments. For every experiment, we graphically illustrate how the model has
valuated the vehicle-density distributions. In addition, we demonstrate how probabilities of certain relevant events can be computed
n a straightforward manner. In addition, we provide the corresponding computation times, both using our approach and using
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Fig. 2. Vehicle-density propagation under congestion arising from an on-ramp. Both the mean (left) and the upper and lower bound for a confidence interval
(right) are plotted on top of the (time, cell index)-plane.

3.2.1. On-ramp influence
To present how the vehicle-density distribution for all cells jointly evolves over time, we plot the mean vehicle density 𝜌̄𝑖(𝑡), as

well as the upper and lower endpoints of the associated confidence interval [𝜌̄𝑖(𝑡)−𝜎𝑖(𝑡), 𝜌̄𝑖(𝑡)+𝜎𝑖(𝑡)] in various different ways, where
𝜎𝑖(𝑡) =

√

𝑉𝑖𝑖(𝑡) with 𝑉 (⋅) as in (6). In the first place, we have plotted these quantities in Fig. 2, for 𝑡 ∈ [0, 0.5] and 𝑖 corresponding to
the cells in the main segment (excluding on- and off-ramps) in the order they are visited by vehicles. The figure illustrates how the
vehicle density builds up in the cells upstream of the on-ramp in a backpressure-like manner as a consequence of the congestion
caused by the on-ramp at cell 17.

The evolution of traffic densities and the corresponding confidence intervals is more clearly represented in Fig. 3 for a selection
of representative cells. Specifically, the mean vehicle density and its associated confidence intervals are shown for the on-ramp, an
upstream cell, the merge cell, and a downstream cell. From this figure, it becomes apparent that cells that are upstream from the
on-ramp become more congested. In contrast, cells downstream from the on-ramp fill up to the point that the vehicle velocity would
start to suffer from congestion.

Both Figs. 2 and 3 illustrate that the variance obtained from the Gaussian approximation reflects the backwards propagation of
congestion. The spike in the variance of the upstream cell between 𝑡 = 0.1 and 𝑡 = 0.2 can be explained from the traffic density
passing through the point where the derivative of the fundamental diagram has a discontinuity, cf. Mandjes and Storm (2021,
Remark 2). A possible remedy to obtain a better variance approximation is to increase the cell lengths, thereby obtaining better
approximations cf. Mandjes and Storm (2021, Section 6.1.2), and rescaling the variance afterwards. We discuss this scaling property
in greater detail in Section 4.2.

As mentioned before, the Gaussian approximation can be used to assess the probability of a wide range of relevant events. As an
example, we consider here the probability P𝑖(𝑡) that the density in cell 𝑖 exceeds the critical threshold of 30 veh/km at time 𝑡 ≥ 0,
which is the value at which vehicles drive slower than 60 km/h. Using the notation of (7), write 𝛴(𝑡) = (𝜎𝑖𝑗 (𝑡)) for the covariance
matrix at time 𝑡, with 𝑖, 𝑗 ranging over the indices of the cells. For every cell 𝑖, the marginal distribution is then 𝑁(𝜌̄𝑖(𝑡), 𝜎2𝑖𝑖(𝑡)).
This makes computation of the probability of the above event straightforward once the matrix 𝛴(𝑡) has been determined by the
ODE-solver.

The Gaussian approximation in (7) also provides us with covariances, which play a role in computing the probability of events
that involve the state of multiple cells (possibly at different points in time). To illustrate this, consider also the probability P(3)

𝑖 (𝑡)
that cells 𝑖, 𝑖 + 1, and 𝑖 + 2 all have a vehicle density larger than 30 veh/km at time 𝑡. To compute the probability of such events,
we require spatial covariances (at a single point in time); temporal covariances are not required here.

In Fig. 4 we have plotted both P𝑖(𝑡) and P(3)
𝑖 (𝑡) for all cells 𝑖 in the main segment (i.e., omitting on- and off-ramps) and 𝑡 ∈ [0, 0.5]

as heatmaps. The computed probabilities indicate that the risk of congestion is very high (almost probability one) in front of the
on-ramp. We also observe how the risk of congestion propagates backwards over time. The left heatmap shows that the presence
of the on-ramp arrivals also increases the risk of congestion downstream from the on-ramp. Finally, we present the times it takes
to establish the Gaussian process approximation, i.e., the time required to solve (2) and (6), with the time one would need when
relying on simulation. To evaluate the differential equations we used an ODE-solver from the SciPy package in Python. Both the
code used by the simulation and the ODE-solver have not been (fully) optimized; the presented numbers serve as an indication of the
135



Transportation Research Part B 164 (2022) 126–144P.J. Storm et al.
Fig. 3. Detailed plots of the qualitative change in cell density due to congestion arising from an on-ramp. Starting from the left, both the mean vehicle density
(solid line) and a confidence interval (dashed lines) of width two standard deviations, are plotted for: the on-ramp, a upstream, the merge, and a downstream
cell, as seen from the second on-/off-ramp block.

difference in computation times. All numerical experiments were performed on a high-performance laptop, where it is anticipated
that computation times can be improved by using specialized computation clusters. The computation time for the ODE-solver was
about 12 s. The simulation required about 20 min to return 𝑁 = 100 sample paths of 𝜌(⋅), and over 3 h to return 𝑁 = 1000 sample
paths.

Note that simulated results provide an estimate of the ‘true’ distributions of 𝜌(⋅) (on a grid of time points), which evidently comes
with an estimation error. This error can be made smaller by increasing the sample size 𝑁 . As an example, we present 𝛼-confidence
intervals for the estimated mean and standard deviation of the vehicle density in cell 10 at 𝑡 = 0.5 h, the latter obtained using a
bootstrap of size 104. For 𝛼 = 0.95, we obtain (67.41, 70.15) and (70.02, 70.88) as 𝛼-confidence intervals for the mean, using 𝑁 = 100
and 𝑁 = 1000 respectively. The 𝛼-confidence intervals for the standard deviation are (7.97, 8.73) and (7.30, 9.42). Recall the rule that
in order to reduce the standard deviation of an estimator (and hence the width of the corresponding confidence interval) by a factor
10, the number of samples should be increased by a factor 100. Therefore, even for this relatively small size of the network and with
an optimized simulation implementation, simulation times are anticipated to be of the order a few days at the minimum. Parallel
simulation may substantially reduce simulation time, but an excessively large number of cores would be needed to be on par with
our Gaussian approach.

The ODE solver provides an approximation to the desired vehicle-density distributions, which comes with an approximation
error. This error will not fully vanish, since the vehicle densities 𝜌(⋅) tend to the Gaussian process only in the limit. By making the
cells larger, though, the approximation becomes better over aggregated time intervals. Moreover, the ODE solver also introduces a
error, but this error is negligible compared to the other ones discussed; the ODE-solver is typically set to accept absolute errors of
size 10−6 at any time 𝑡 in our experiments.

Finally, we note that in the present case, we focused on spatial covariances only, and were therefore not required to solve
(4). The evaluation of spatial covariances requires longer computation times, but this increase is not significant. In particular, our
experiments that we performed indicate that the computation time is still orders of magnitude smaller than the simulation time, so
that the numbers presented above can be considered representative. In this context we refer to the experiments performed in Mandjes
and Storm (2021, Example 6.2), in which the travel-time distribution is evaluated in a multi-class setting, requiring the evaluation
of temporal covariances.

3.2.2. Accident modeling
For the second experiment, we again present how the vehicle-density distribution evolves over time by plotting the mean vehicle

density 𝜌̄𝑖(𝑡) and the corresponding confidence interval with width 2𝜎𝑖(𝑡). The space–time behavior of the distribution is depicted
in Fig. 5. The figure quantifies how, due to reduced flow in the third cell of 𝑟2 during 𝑡 ∈ [1∕12, 1∕4], congestion builds up in cells
upstream from that cell. In contrast, cells downstream start to empty, as one would expect. After the accident has been resolved
and the flow is no longer reduced, the formed traffic jam starts to dissipate during 𝑡 ∈ [1∕4, 1∕2]. However, the jam does propagate
backwards, i.e., congestion temporarily increases in upstream cells.

The behavior of vehicle densities in cells of 𝑟2 is plotted in detail in Fig. 6. Here, we show the mean vehicle density and its
confidence interval as a function of time for the first cell of 𝑟2, the cell where the accident happens, and the last cell of 𝑟2. The
different stages of time are colored differently to emphasize what happens before, during, and after the accident. Again, it is apparent
that the path of the variance found by the Gaussian process approximation roughly follows the same shape as the path of the mean,
which illustrates that the same traffic flow phenomena are captured by the mean and the variance. As an aside, note that, due to
the specific we in which we in this experiment modeled the accident’s impact, in the accident cell itself the density is relatively low;
to make sure that the accident cell itself fills, one could model the accident’s impact by reducing the flow into the cell beyond the
accident cell.

To quantify the computational advantage of our approach, we ran a simulation with 𝑁 = 100 samples paths, and another one
with 𝑁 = 1000 sample paths, which took 13 min and over 2 h, respectively. The computation time required by the ODE solver, on
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Fig. 4. Heatmaps, depicting the (Gaussian) probability P𝑖(𝑡) of cell 𝑖 exceeding a density of 30 veh/km at time 𝑡 (left) and the probability P(3)
𝑖 (𝑡) of cells 𝑖, 𝑖+1,

and 𝑖 + 2 all exceeding a density of 30 veh/km at time 𝑡 (right).

Fig. 5. Jam formation and dissipation due to an accident. Both the mean (left) and the upper and lower bound for a confidence interval (right) are plotted on
top of the (time, cell index)-plane.

3.2.3. Combined phenomena
In our final experiment, we again show the evolution of vehicle-density distributions by plotting the mean vehicle density 𝜌̄𝑖(𝑡)

and associated confidence interval with width 2𝜎𝑖(𝑡); see Fig. 7. It shows that the time-dependent arrivals at the arrival cell influence
vehicle densities at 𝑟1 and 𝑟2 (the latter mildly), but hardly at 𝑟3. This effect is partly due to most vehicles departing from 𝑟1 at the
first off-ramp. In addition, it shows that on-ramp 3 has enough arrivals to create congestion at 𝑟3. This even happens at the low
arrival rates, due to the arrivals at on-ramp 1 and on-ramp 2. Importantly, from the upper and lower endpoints of the confidence
interval, it can be seen that the variance obtained is consistent with the fluid limit, also in this case of combined phenomena.

In Fig. 8, we present how the vehicle densities behave in 𝑟1 and the first on-/off-ramp block. The figure demonstrates that
the influence of time-varying arrival rate and diverging traffic is handled appropriately, also in terms of the (co-)variance of the
vehicle-density process. The effect of the time-varying arrival rate on the vehicle densities in these cells is clearly visible. Also, we
see how the off-ramp has a higher vehicle density than the intermediate cell, which was to be expected due to the large diverge
probability of 0.7 in the first diverge cell.

To assess the efficiency our approach, we again compare with simulation. Generating 𝑁 = 100 sample paths took as long as
40 min, while 𝑁 = 1000 took even almost 7 h. The ODE-solver returned output in just 16 s.
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Fig. 6. Detailed plots of the qualitative behavior of vehicle densities in cells in and around the accident cell the third cell of 𝑟2. The vehicle density (solid line)
and associated confidence interval (dashed lines) have been plotted, with the different stages in time around the accident colored differently. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Vehicle-density propagation under the combined influence of different phenomena (on-ramps, off-ramps, and time-varying arrivals). Both the mean (left)
and the upper and lower bound for a confidence interval (right) are plotted on top of the (time, cell index)-plane.

Fig. 8. Detailed plots of the qualitative change in cells of 𝑟1 and the first on-/off-ramp block under the combined influence of different phenomena (on-ramps,
off-ramps, and time-varying arrivals). Starting from the left, both the mean vehicle density (solid line) and a confidence interval (dashed lines) of width two
standard deviations, are plotted for: the first cell of 𝑟1 and the first diverge, intermediate and off-ramp cells in the segment.

4. Complexity and scaling properties

This section provides an in-depth analysis of the computation time of our approach. Specifically, we quantify the time it takes
to evaluate the differential equations for the mean and (co-)variance of the Gaussian process. We assess the dependence of the
computation times on the number of cells 𝑑 (i.e., the computational complexity), establish that computation times are invariant
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Fig. 9. Three plots of the best-fit polynomial (gray line) for the computation times (green dots), with the associated 𝑅2 and sum of squared residuals (SSR).
The maximal degrees of the polynomials are: two (left), three (middle), and four (right).

under scaling of time and space, and compare computation times for different discrete flux functions (i.e., different fundamental
diagrams). In addition, we focus on robustness with respect to the precise choice of the cell lengths: we demonstrate that, under
the constraints for choosing the cell lengths that were discussed in Section 2.3.1, the way in which the road segment is divided into
cells does not significantly affect our methodology’s output, as desired.

4.1. Number of cells

We start by studying the computation time as a function of the number of cells 𝑑 in the network. Recall that the computation
time of the model is essentially the time that it takes an ODE solver to compute the solution to the differential equation for (2) and
(6) jointly. Since 𝑑 determines the size of the matrices and vectors occurring in these differential equations, and since solving ODEs
is effectively dominated by matrix multiplications, we would expect that computation times are roughly of the order 𝐶 × 𝑑𝛼 , for
some 𝐶 > 0 and 𝛼 ≈ 3. Strictly speaking, the value of 𝛼 depends on the efficiency of the implementation of matrix multiplication:
standard software typically achieves 𝛼 ≈ 2.8, but for large matrices more efficient implementations have been developed. In general,
a network can be composed of merge/diverge cells, arrival/departure cells, and cells that are none of the former. The number of
each of these types typically influences just the constant 𝐶 involved in the order of complexity, i.e., not the order 𝛼. Therefore, for
simplicity, we focus on a network that is a single road segment, without any on-/off-ramps, i.e., without merge and diverge cells
and with one arrival and one departure cell.

The number of cells 𝑑 is taken between 100 and 3000, with increments of 100. Each cell has unit length. We use the fundamental
diagram of Daganzo, with 𝑣𝑓 = 100 km/h, 𝑤 = 20 km/h, 𝜌max = 108 veh/km, 𝑞max = 1800 veh/h, and an arrival and departure rate
equal to, respectively, 𝜆 = 1800 veh/h and 𝜈 = 1200 veh/h. The network is initialized as empty, and is evaluated on the time interval
[0, 1∕3], with time expressed in hours.

To confirm our idea of the computation times being roughly 𝑑3, we apply functional regression to the computation times. To
present the outcomes, we have plotted in Fig. 9 the computation times along with the best-fit order-𝑘 polynomial, for 𝑘 = 2, 3, 4.
At the top of each of the plots we give the condition number 𝑅2 and the sum-of-squared residuals SSR. The graphs and numbers
demonstrate that the fit improves significantly from 𝑘 = 2 to 𝑘 = 3, but hardly from 𝑘 = 3 to 𝑘 = 4. We conclude that the computation
time of the model has a complexity of roughly order 𝑑3, as anticipated.

Some improvement can be achieved by exploiting the special (sparse) structure of the matrices involved, the complexity can
be reduced. Exploiting the sparsity, specializing to the case 𝑚 = 1, the computation fluid limit theoretically takes 𝑂(𝑑), while
computing all objects featuring in the diffusion approximation of Eq. (7) is 𝑂(𝑑2). In our numerical experiments we have relied
on Python, in particular NumPy in conjunction with ODE-solvers from SciPy. We verified that switching to sparse matrices in
SciPy did not significantly improve computation times. To achieve the theoretical complexity of 𝑂(𝑑2), a tailor-made low-level
implementation of the numerical procedures may be required. It is noted that, given the fact that the 𝛴 matrix, featuring in the
Gaussian approximation (7), contains 1

2 (𝑘𝑚𝑑)
2 + 1

2𝑘𝑚𝑑 distinct entries, the theoretical complexity cannot be below 𝑂(𝑑2).
A similar analysis applies when studying the impact of the number of vehicle types 𝑚, since the dimension of 𝐹 (and thus of the

matrices in (6)) is also determined by 𝑚. However, since 𝑚 is typically relatively small, we omit this analysis.

4.2. Scaling properties

An interesting property of the model is that if the cell lengths and time are scaled by the same constant 𝑐 > 0, then the means
stays invariant while the (co-)variances scale by 1∕𝑐 (i.e., standard errors by 1∕

√

𝑐). This property shows that when cell lengths
become larger, the approximation becomes more accurate. However, when 𝑐 becomes too large, the process dynamics degenerate
on small time intervals, in that the process becomes constant on these intervals. Additionally, increasing 𝑐 removes the randomness
from the system, which is shown by vanishing (co-)variances. We briefly elaborate on these properties.
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To formally establish the above scaling property, first consider (2). Now, for some 𝑐 > 0, we scale time (i.e., 𝑡 ↦ 𝑐𝑡) and space
i.e., 𝓁𝑖 ↦ 𝑐𝓁𝑖 for all cells 𝑖). Then,

𝜌̄(𝑐𝑡) = 𝜌̄(0) + ∫

𝑐𝑡

0

1
𝑐
𝐿𝐻 𝑄(𝜌̄(𝑠))d𝑠 = 𝜌̄(0) + ∫

𝑡

0
𝐿𝐻 𝑄(𝜌̄(𝑐𝑠′))d𝑠′,

where we recall that 𝐹 (𝜌) = 𝐿𝐻 𝑄(𝜌) for the matrices 𝐿 and 𝐻 , and function 𝑄(𝜌), and where we apply the transformation 𝑠 = 𝑐𝑠′.
This shows that 𝜌̄(𝑐𝑡), with cell lengths scaled by 𝑐, is equal to 𝜌̄(𝑡) with the unscaled cell lengths.

Performing similar manipulations on 𝛷(⋅) and 𝛤 (⋅, ⋅), and using (5) (as well as its adjoint equation) and (4), one can show

𝛤 (𝑐𝑠, 𝑐𝑡) = 𝛷̄(𝑐𝑠)

[

𝑉 (0) + ∫

𝑐(𝑡∧𝑠)

0
𝛷̄−1(𝑢)𝐿𝐻 𝛴(𝜌̄(𝑢))

(

𝛷̄−1(𝑢)𝐿𝐻 𝛴(𝜌̄(𝑢))
)⊤ d𝑢

]

𝛷̄⊤(𝑐𝑡)

= 𝛷̄(𝑐𝑠)

[

𝑉 (0) + 1
𝑐 ∫

(𝑡∧𝑠)

0
𝛷̄−1(𝑐𝑢)𝐿𝐻 𝛴(𝜌̄(𝑐𝑢))

(

𝛷̄−1(𝑐𝑢)𝐿𝐻 𝛴(𝜌̄(𝑐𝑢))
)⊤ d𝑢

]

𝛷̄⊤(𝑐𝑡).

It therefore follows that if 𝑉 (0) is scaled by 1∕𝑐, we obtain that 𝛤 (𝑐𝑠, 𝑐𝑡), with cell lengths scaled by 𝑐, is equal to 𝛤 (𝑠, 𝑡)∕𝑐 with
nscaled cell lengths.

To empirically validate the scaling property that we established above, we consider the network segment featuring in Section 4.1
or 𝑑 = 20 and each cell having length 0.5 km. Specifically, for 𝑐 ∈ 𝐶 ∶= {1, 10, 20, 30,… , 1000}, we scale the cell length 𝓁𝑖 ↦ 𝑐𝓁𝑖 for

each cell 𝑖, and evaluate the model on [0, 𝑐𝜏] with 𝜏 = 600∕3600 h. We consider for each 𝑐 ∈ 𝐶 the mean 𝜌̄(𝑐𝑠) and variance 𝑐𝑉 (𝑐𝑠) at
equidistant points in time (i.e., times 𝑠 ∈ {𝑡0,… , 𝑡50} ⊂ [0, 𝑐𝜏], with 𝑡𝑖 = 𝑐𝜏𝑖∕50 and 𝑖 = 0, 1,… , 50). These are then compared against
the solution obtained for 𝑐 = 1:

max
𝑐 ∈𝐶

max
𝑡𝑘

‖𝜌̄(𝑡𝑘) − 𝜌̄(𝑐 𝑡𝑘)‖ = 7.18 ⋅ 10−11,

max
𝑐 ∈𝐶

max
𝑡𝑘

‖𝑉 (𝑡𝑘) − 𝑉 (𝑐 𝑡𝑘)‖ = 2.60 ⋅ 10−9,

where the norms over vectors/matrices are taken as the maximum absolute difference between corresponding entries. We conclude
that this numerical experiment confirms that the solutions indeed match.

4.3. Impact of cell length on approximation accuracy

In light of the above scaling properties of the model, one may wonder how the accuracy of the Gaussian approximation is
influenced by the choice of the cell lengths. The considerations in the previous subsection entail that when cells become too large,
the dynamics of traffic flow are no longer captured accurately. Therefore, as we argued in Section 2.3.1, cells should be taken as
small as possible, while still being large enough to accommodate sufficiently many vehicles to justify the Gaussian approximation.
In this subsection we demonstrate the robustness of this approach. Concretely, for two different choices of cell lengths satisfying
the above constraints, we show that the outcomes are hardly distinguishable, as desired.

In the instance considered, we take a road segment of 8 km long. In Model 1 we divide the segment into 𝑑 = 16 equally-sized cells
of length 500 m, whereas in Model 2 we take 𝑑 = 10 equally-sized cells of length 800 m. The fundamental diagram in both models
is the one used in Section 4.1. The arrival rate to the segment is 𝜆 = 800 veh/h and the maximal departure rate is 𝜈 = 1800 veh/h.
Both models are initialized with a density of 5 veh/km with a standard deviation of 1. Note that with these settings, in both models
the per-cell aggregation level is large enough to validate a Gaussian approximation.

The two models are evaluated using both the Gaussian approximation and simulation, on a time interval of 500 s. For the
simulation, we generate 1000 sample paths per model, from which we estimate the 𝑑-dimensional vector with the mean numbers of
vehicles per cell, as well as the corresponding 𝑑 × 𝑑 covariance matrix, both at 51 equidistant time points {𝑡0, 𝑡1,… , 𝑡50} in [0, 500].
The same quantities are computed using the Gaussian approximation.

To compare the output for 𝑑 = 16 and 𝑑 = 10, we evaluate (at every timepoint 𝑡𝑘) the mean and variance of the number of
vehicles corresponding to a subsegment of equal length. We take for this the final 4 km of the road segment, corresponding in
both models with an integer number of cells (i.e., 8 cells for Model 1 and 5 cells for Model 2). We denote by 𝜇𝑛(𝑡𝑘) and 𝜎𝑛(𝑡𝑘),
respectively, the mean and standard deviation of the number of vehicles in these cells at time 𝑡𝑘 for Model 𝑛, computed via the
Gaussian approximation method. We denote by 𝜇̂𝑛(𝑡𝑘) and 𝜎̂𝑛(𝑡𝑘) the same quantities, but then estimated from the simulated sample
paths. The quantities 𝜇𝑛(𝑡𝑘) and 𝜎𝑛(𝑡𝑘) can be obtained in the evident manner, i.e., 𝜇𝑛(𝑡𝑘) by summing over the final 𝑑∕2 entries in
the mean vector, and 𝜎𝑛(𝑡𝑘) by summing the entries of the right-lower (𝑑∕2) × (𝑑∕2) submatrix of the covariance matrix.

In Fig. 10, we have plotted 𝜇𝑛(𝑡) and 𝜇𝑛(𝑡) ± 𝜎𝑛(𝑡), as well as 𝜇̂𝑛(𝑡) and 𝜇̂𝑛(𝑡) ± 𝜎̂𝑛(𝑡), as a function of time, for 𝑛 = 1, 2. The figure
hows that both models produce highly similar means and variances, in both the Gaussian method and the simulation. In addition,
he maximum relative differences between the compared quantities using the Gaussian estimates are

max
𝑘∈{0,…,50}

|𝜇1(𝑡𝑘) − 𝜇2(𝑡𝑘)|
1
2

(

𝜇1(𝑡𝑘) + 𝜇2(𝑡𝑘)
)

= 0.0189, max
𝑘∈{0,…,50}

|𝜎1(𝑡𝑘) − 𝜎2(𝑡𝑘)|
1
2

(

𝜎1(𝑡𝑘) + 𝜎2(𝑡𝑘)
)

= 0.0725, (8)

and for the simulated estimates we have

max
𝑘∈{0,…,50}

|𝜇̂1(𝑡𝑘) − 𝜇̂2(𝑡𝑘)|
1 ( )

= 0.0204, max
𝑘∈{0,…,50}

|𝜎̂1(𝑡𝑘) − 𝜎̂2(𝑡𝑘)|
1 ( )

= 0.0683. (9)
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Fig. 10. The left figure is a graphical comparison of 𝜇1(𝑡) and 𝜇2(𝑡) (solid lines) and of 𝜇2(𝑡) ± 𝜎2(𝑡) and 𝜇2(𝑡) ± 𝜎2(𝑡) (dashed lines), as a function of 𝑡 ∈ [0, 500].
On the right, the same comparison is made for the quantities 𝜇̂𝑛(𝑡) (solid lines) and 𝜇̂𝑛(𝑡) ± 𝜎̂𝑛(𝑡) (dashed lines), with 𝑛 = 1, 2.

Fig. 11. Three different fundamental diagrams (left) and corresponding computation times as a function of the number of cells 𝑑 (right).

Fig. 10 and the numbers in (8) and (9) show that Models 1 and 2 give highly similar predictions for the distribution of the number
of vehicles simultaneously present on the subsegment. This indicates that the choice of the cell lengths has a modest impact on the
accuracy, as long as the constraints stated in Section 2.3.1 are met.

4.4. Complexity for different fundamental diagrams

We conclude this section by studying the influence of fundamental diagrams on the computation times. Recall that the discrete
flux function in our model is derived from an (for now unspecified) fundamental diagram by solving the associated Riemann problem.
We now aim at quantifying, for various types of fundamental diagrams, the computation time as a function of the number of cells 𝑑.
For typical fundamental diagrams, the number of calculations to evaluate the flow between two cells does not depend on 𝑑. As
such, one expects that changing the discrete flux function (or, equivalently, the fundamental diagram) does not have any significant
impact on the computational complexity, in that the discrete flux functions depend in roughly the same way on 𝑑, potentially with
different proportionality constants.

To corroborate the above principle, we consider three discrete flux functions, derived from frequently used fundamental
diagrams. In addition to the one by Daganzo, which we have been using thus far, we consider Smulders’ fundamental diagram (Smul-
ders, 1990) and the power-function variant of the generic fundamental diagram given in Kessels (2019, Section 2.2.1) (see the
references for the precise functional form). We take the parameters for the Daganzo discrete flux function as in Section 4.1. The
parameters for the Smulders and power-function discrete flux function are chosen such that the free-flow velocity, backwards wave
speed, and maximum possible flow are matched as close as possible. See the left window in Fig. 11 for a graphical representation of
the three fundamental diagrams. The right window of Fig. 11 shows the computation time for the three flux functions, as a function
of the number of cells 𝑑, confirming the expected behavior described above. When working with a mixture of the fundamental
diagrams (e.g. some cells having the Daganzo discrete flux function and other the Smulders one), an interpolation provides an
impression of the computation time needed.

5. Discussion and generalizations

At this point, we have demonstrated the potential of the Gaussian approximation for efficient numerical evaluation of
stochastic traffic flows. In our setup the vehicle-density process is Markovian, meaning that the underlying transition times are
exponentially distributed (with a parameter that depends on the vehicle densities in the sending and receiving cells). In this
section we experimentally show that this exponentiality assumption is of minor impact, in that can be substantially relaxed without
compromising the accuracy of the approximation.

In addition, we discuss a series of generalizations that further enhance our model’s scope. So far, to keep our exposition as clear
as possible, we have been working with a relatively basic variant, but, as it turns out, our approach can be extended in various
141
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5.1. Exponentiality assumption

In our Markovian model, the gaps between vehicles (measured in units of time), also referred to as headways, are exponentially
istributed, with a mean that depends on the current network population (and follows from the discrete flux function associated
o the chosen fundamental diagram). The exponentiality assumption is particularly convenient, as it brings us into the realm of
arkovian models, thus allowing the formal derivation of the Gaussian approximation. As in practice headways are typically

on-exponential, one wonders what the impact of our exponentiality assumption is.
The exponential distribution is known to have a standard deviation that is equal to its mean, or, in other words, it has a coefficient

of variation (defined as the ratio of the standard deviation and the mean) equal to one. For headway distributions, this coefficient of
variation is typically strictly smaller than one, in particular in congested or high traffic-flow regimes (Ye and Zhang, 2009, Table 1)
when the headways are relatively deterministic. In this subsection we show that for headway distributions with smaller coefficients
of variation, the Gaussian methodology still provides accurate approximations.

To test the impact of the headway distribution we use the class of Coxian distributions. This class is a subset of the class of
hase-type distributions, that contains distributions with an arbitrarily small coefficient of variation. In our setup, we consider a
pecific type of Coxian distribution, namely where the associated non-negative random variable 𝑋 is given by

𝑋 =

⎧

⎪

⎨

⎪

⎩

𝑋1 with probability 1 − 𝑝1,
𝑋1 +𝑋2 with probability 𝑝1(1 − 𝑝2),
𝑋1 +𝑋2 +𝑋3 with probability 𝑝1𝑝2,

where 𝑋1, 𝑋2 and 𝑋3 are independent exponential random variables, say with parameter 𝜇 > 0. Observe that 𝑋 always has one
exponential phase, with probability 𝑝1 a second phase on top of this, and then with probability 𝑝1𝑝2 even a third. It is readily verified
that

E𝑋 =
1 + 𝑝1 + 𝑝1𝑝2

𝜇
, Var𝑋 =

1 + 2𝑝1(1 + 𝑝2) − 𝑝21(1 + 𝑝22)

𝜇2
.

To systematically assess the robustness of the Gaussian approximations, we consider the following adapted version of our model
in which the headways have a given coefficient of variation (that differs from 1). We let the time until the next type-𝑗 vehicle
jumps from cell 𝑖 to cell 𝑖 + 1 now be given by a Coxian random variable (rather than an exponentially distributed one). The
parameter 𝜇, that was underlying the exponential distribution that we used in our original model, is (time-dependently) chosen
such that E𝑋 = 1∕𝑞𝑖𝑗 (𝜌(𝑡)), to make sure that the mean of the headway distribution is in line with the fundamental diagram By
choosing the parameters 𝑝1, 𝑝2 ∈ [0, 1] appropriately, we can make sure that the headway distribution has the desired coefficient
of variation. Observe that, technically speaking, with these non-exponential inter-cell transition-time distributions, the model is no
longer Markovian. One can make it Markovian again, however, by also keeping track of the residual number of exponential phases
that the leading vehicle in each cell has to complete.

In order to verify the performance of approach for different headway distributions, we perform the following experiment. We
focus on 𝑑 = 3 cells of length 500 m, in the time interval [0, 1000∕3600] (time in hours). We take 𝑚 = 1, with arrival rate 𝜆 = 1800
veh/h and 𝜈 = 𝜆∕8. Furthermore, we take Daganzo’s variant of the fundamental diagram (see, e.g., Mandjes and Storm (2021,
Example 3.2)), with parameters 𝑣𝑓 = 100 km/h, 𝑤 = 20 km/h, 𝜌max = 108 veh/km, and 𝑞max = 1800 veh/h. Based on 1000 simulations
we estimate the mean and standard deviation of 𝜌(⋅) at a 1000 equidistant time points in [0, 1000∕3600], i.e., as a function of time.
This we do for two Coxian headway distributions, corresponding to coefficients of variation equal to 0.7 and 0.5; from Ye and Zhang
(2009), we anticipate these numbers to be representative for congested and high traffic-flow regimes. We compare our output to
the mean and standard deviations for 𝜌(⋅), at the same time points, as provided by our Gaussian approximations (being based on
the model with exponentially distributed headways, having a coefficient of variation equal to 1).

The output of this experiment can be found in Figs. 12 and 13. We have plotted dashed lines for the confidence interval centered
around the mean, with a width that equals twice the standard deviation. Importantly, observe that the means (corresponding to
the three values of the coefficient of variation) almost match. As expected, when reducing the coefficient of variation, the standard
deviation goes down as well, but this effect is relatively modest. We thus conclude that our approach is robust, in that for headway
distributions with a coefficient of variation of 0.7 or 0.5, the Gaussian approximation remains accurate. The slightly non-smooth
behavior for small 𝑡 is due to the chosen fundamental diagram having a point at which it is non-differentiable; see Mandjes and
Storm (2021, Remark 4.4). We also note that working with exponentially distributed headways can be considered as conservative:
headways with a coefficient of variation smaller than 1 lead to (slightly) smaller standard deviations.

5.2. Models generalizations

Our experiments predominantly focused on systems in which the parameters are constant over time. We included one example
where the arrival rates at on-ramps were varying with time, but used piece-wise constant rates for these processes. In general, our
framework allows the external arrival processes (parametrized by 𝜆𝑗), the departure processes (parametrized by 𝜈𝑗), and the turning
rates in merge and diverge cells to vary with time. The technical condition for this to hold, is that the resulting vehicle-density
processes (i.e., the counterparts of (1)) can be described by non-homogeneous Poisson processes that have their rate function as
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Fig. 12. Comparison of mean and standard deviation of 𝜌(⋅), for the Coxian case with coefficient of variation equal to 0.7 (simulation) and the exponential case
(Gaussian).

Fig. 13. Comparison of mean and standard deviation of 𝜌(⋅), for the Coxian case with coefficient of variation equal to 0.5 (simulation) and the exponential case
(Gaussian).

A relevant aspect that we did not emphasize, is that the flux function can be chosen cell-specific. In technical terms, the condition
is that the flux between pairs of cells is Lipschitz continuous in the cell-densities involved. Therefore, it is allowed to take different
parameters for different cells, but also to vary the functional form of the flux function per cell. For instance, if there are compelling
reasons to do so, one could take Daganzo’s flux function in one pair of cells and Smulders’ in another. Therefore, it is possible to
accurately calibrate the model to a practical situation, by estimating the fundamental diagram for every segment separately.

In this paper we exclusively analyzed single-class examples, but, as mentioned previously, the approach remains valid for multi-
class fundamental diagrams. In Mandjes and Storm (2021), several experiments are conducted using a two-class model, which
enables one to assess the impact of, e.g., trucks on a road-traffic network. With a fundamental diagram describing the interaction
between automated vehicles and ordinary vehicles, one could use our approach to numerically evaluate relevant future scenarios.

We conclude this section with a short discussion on the class of models we have been working with. The most detailed class of
stochastic models distinguish individual vehicles, keeping track of where they reside at every point in time. Evidently, this approach
would lead to a model with an excessively large dimension that would not allow any computations. In models in which one ‘zooms
out’, one predominantly observes the fluid limit, in line with the conservation laws, but not providing any insight into fluctuations
around the deterministic limit. In that sense, our approach can be seen as a ‘middle ground’: there is some aggregation, so as to
facilitate computability (in particular yielding huge reduction of complexity in comparison to models that work with individual
vehicles), but not too much, to be able to still capture the system’s inherent randomness in a sound manner. A consequence is
that the precise position of individual vehicles in cells are abstracted away from. This for instance means that, in a literal sense,
we do not model a situation in which a platoon of cars drives behind a truck. The corresponding fundamental diagram, however,
does incorporate that such situations every now and then occur. In this sense, microscopic effects are included in the model in a
macroscopic manner through the fundamental diagram (or discrete flux function) that is used.

6. Concluding remarks

In this paper, it was shown how a Gaussian approximation, resulting from the scaling limit results of Mandjes and Storm (2021),
can be used in road traffic networks to efficiently compute the vehicle-density distribution, jointly at both different points in the
network and at different times. The setup is easy to use since it can be implemented through off-the-shelf ODE-solvers, is orders of
magnitude faster than simulation, and is capable of evaluating the impact of combinations of effects and/or measures (accidents,
increased traffic load, velocity regulation, ramp metering, etc.) simultaneously. Moreover, the presented approach is highly flexible
as the user can choose to implement any fundamental diagram, and works on networks of arbitrary topology. Our framework
effectively generalizes the class of discrete-space kinematic wave models, in that it reproduces their deterministic part while at the
same time it is capable of capturing their stochastic fluctuations.

Future research could concern exploring how the model under consideration can be extended to include more complex road
traffic dynamics. For instance, the basic kinematic wave models have been criticized for not being able to capture phenomena
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such as capacity drop, vehicle acceleration and hysteresis. Since the model in this paper is a generalization of the discrete-space
kinematic wave models, it will not capture these phenomena either. The challenge lies in identifying model extensions under which
the Gaussian process approximation still applies. A different approach could be to consider the differential equations for the mean
and (co-)variances of the Gaussian processes, and modify them such that they cover more complex road traffic dynamics. Another
potential research direction could relate to further optimizing the efficiency of the underlying computational procedures.
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