
Faster Test
Development
through Accurate
Digital Twinning
of Loadboards

Shrey Gupta

Faster Test
Development

through
Accurate Digital
Twinning of
Loadboards

by

Shrey Gupta

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday October 31, 2024 at 10:00 AM.

Student number: 5723698
Project duration: July 17, 2023 – October 31, 2024
Thesis committee: Dr. Ir. M. Taouil, TU Delft, supervisor

Dr. Ir. M. C. R. Fieback, TU Delft, co-supervisor
Dr. Ir. Qinwen Fan, Tu Delft
Dr. Ir. G. C. Medeiros, NXP Semiconductors

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The increasing complexity of Integrated Circuits (ICs) and stringent quality requirements in industries
like automotive have contributed to increasing test development time. Virtual testing methodologies,
such as AMS-VT, can be used for pre-silicon debugging of test programs, optimizing the test develop-
ment process. However, AMS-VT has shown limitations in their usage due to the absence of accurate
loadboard models, especially in capturing site-to-site variations. To address the lack of an accurate
loadboard model for pre-silicon debugging, this research proposes a framework for generating an ac-
curate loadboard model by integrating parasitic effects and possible reflections under real-world con-
ditions.

The proposed framework consists of three main stages. The first stage is an automated netlist gen-
eration phase, during which an ideal single-site netlist is created from a multisite loadboard schematic.
The ideal netlist is generated considering the AMS-VT environment so that it can be seamlessly inte-
grated into the current virtual testing environment. In the next stage, Cadence PowerSI, which is an
Electronic design automation (EDA) tool for parasitic extraction, is automated to extract the parasitics
(R, L, G, and C) for all the channels included in the ideal netlist. Finally, in the last stage, a method-
ology is developed to integrate the parasitics and reflection due to impedance mismatch in the ideal
netlist. To improve the accuracy, a static model of the relay was developed that considers its character-
istics, such as on-state resistance and off-state current leakage. All these stages are then automated
and combined to create a framework that can effectively generate an accurate loadboard netlist that
predicts site-to-site variations.

The framework is then validated, with each stage verified independently. The generated ideal
single-site netlist was verified against a golden simulation. This verification displayed that the function-
ality of the generated netlist was accurate and could integrate with AMS-VT seamlessly. The parasitics
extracted from PowerSI were validated using a test Printed Circuit Board (PCB) with multiple configura-
tions. This showed that the simulation results using extracted parasitics were within 1% error compared
to the IR drop analysis. The relay model was also validated by comparing it with its datasheet, proving
that the model accurately considered the physical characteristics. The third stage was then validated
by comparing it with PSpice simulations, demonstrating that the model’s results were accurate, with
the maximum error being below 1.6% for multiple voltages and frequencies. The complete framework
was then validated against a physical loadboard, showing maximum errors of less than 2% across all
sites and improved timing accuracy for pulse width, reducing it to 0.41% for the proposed framework
from 1.6% for the previous methodology. This validation proved that the loadboard generated by the
framework accurately modelled parasitics and reflections. The model also accurately accounted for
temperature variations, demonstrating its effectiveness in changing operating conditions. By introduc-
ing this framework to generate an accurate loadboard model, this research enables a virtual testing
environment for faster and more reliable test development, reducing the time-to-market for semicon-
ductor products.

iii

Acknowledgement
I would like to thank the following people, without whom I would not have been able to complete my
thesis:

• First and foremost, I would like to thank my parents, whose support has been significant in my
personal and academic journey. They stood behind me even when I made wrong choices and
helped me to stand back up after failures. I would like to thank them wholeheartedly for all the
effort they have put into me throughout their life, even when they were going through difficult
times.

• Second, I would like to thank my supervisors at TU Delft, Dr. Ir. Mottaqiallah Taouil and Dr.
Ir. M.C.R. Fieback, who provided me immense support during the entire course of my thesis by
providing me valuable feedback on the work and helping me to look at things critically. The weekly
discussions allowed me to evaluate the work and improve further to achieve better results.

• I would like to express my sincere thanks to my supervisor at NXP Semiconductors, Dr. Ir. G.C.
Medeiros, for his mentorship and guidance throughout my time at NXP. He gave me insights and
knowledge on virtual testing and guided me throughout the project. I would like to thank him for
answering all my questions, even if they were out of context, and giving me the knowledge to
complete the project and start my career in this field.

Shrey Gupta
Delft, October 2024

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State Of The Art . 2

1.2.1 Virtual Testing Methodologies . 4
1.2.2 Limitations . 5

1.3 Thesis Contribution. 6
1.4 Thesis Outline . 6

2 Semiconductor Testing 7
2.1 Semiconductor Manufacturing Process . 7

2.1.1 Design. 7
2.1.2 Wafer Fabrication. 8
2.1.3 Testing . 9

2.2 Test Development Flow . 10
2.3 Testing Hardware . 12

2.3.1 Automatic Test Equipment . 12
2.3.2 Loadboard . 12

2.4 Loadboard Parasitics . 14

3 Virtual Testing and Digital Twinning 17
3.1 Virtual Testing. 17

3.1.1 Evolution towards Virtual Testing . 17
3.1.2 Test Development Speedup through Virtual Testing 18
3.1.3 AMS-VT: Overview and Limitations . 20

3.2 Accurate Loadboard Modelling . 22
3.2.1 EDA Tools for Ideal Netlist Generation . 23
3.2.2 EDA Tools for Parasitics Extraction . 24
3.2.3 Digital Twinning Limitations . 26

4 Framework for Accurate Loadboard Modeling 29
4.1 Derivation of Requirements for Loadboard Modelling . 29

4.1.1 Limitations of the Current Methodology . 29
4.1.2 Operating Conditions Impact. 30
4.1.3 Deriving Requirements . 30

4.2 Overview of Proposed Framework. 32
4.2.1 Key Stages of the Framework . 32
4.2.2 Component Modelling . 33
4.2.3 Platform . 33

5 Framework Implementation 35
5.1 Ideal Netlist Generation . 35

5.1.1 Schematic to Multisite Netlist . 35
5.1.2 Multisite to Single-Site Netlist . 37

5.2 Parasitics Extraction . 40
5.3 Component Modelling . 42

5.3.1 SSR Model Implementation . 43
5.3.2 Algorithmic Representation of the SSR Model . 44

5.4 Parasitics and Reflection Integration . 44
5.4.1 Transmission Line Parasitics and Characteristic Impedance. 46
5.4.2 Reflection Calculation . 46
5.4.3 Integration Automation . 49

vii

viii Contents

5.5 Framework Automation . 50
5.5.1 Proposed Methodology. 50
5.5.2 Execution Flow . 50

6 Framework Validation 55
6.1 Ideal Netlist Validation . 55

6.1.1 Experimental Setup . 55
6.1.2 Validation Methodology. 56
6.1.3 Simulation Results . 56

6.2 Parasitics Validation . 57
6.2.1 Experimental Setup . 58
6.2.2 Validation Methodology. 60
6.2.3 Results and Analysis . 60

6.3 SSR Model Validation . 65
6.3.1 Experimental Setup . 65
6.3.2 Result and Analysis . 67

6.4 Parasitics and Reflection Integration Validation . 70
6.4.1 Experimental Setup . 70
6.4.2 Validation Methodology. 71
6.4.3 Results and Analysis . 71

6.5 Full Framework Validtion . 73
6.5.1 Experimental Setup . 73
6.5.2 Validation Methodology. 75
6.5.3 Result and analysis. 75

6.6 Discussion . 77

7 Conclusion 79
7.1 Summary . 79
7.2 Limitations and Future Work . 80

List of Figures

1.1 Semicondcutor Market Revenue from 1987 to 2024 [3] 1
1.2 Transistor per Semiconductor Chip [9] . 2
1.3 Normal Flow vs Virtual Testing FLow [8] . 3

2.1 Design Flow [6] . 7
2.2 Silicon Ingot and Wafers [21] . 9
2.3 Test Requirements Document [26] . 11
2.4 Automatic Test Equipment (ADVANTEST) [27] . 12
2.5 Loadboard . 13
2.6 Socket [31] . 13
2.7 Motherboard and Daughterboard [26] . 14

3.1 Simplified Simulation Approach [13] . 18
3.2 Overview of Virtual Test Environment [14] . 19
3.3 AMS-VT [18] . 21
3.4 Digital Twinning Setup [43] . 22

4.1 Resistance vs Temperature Graph . 31
4.2 Frequency vs Impedance . 31

5.1 Signals Description in Schematic . 36
5.2 Single site loadboard schematic . 36
5.3 Mutlisite to Single-Site Flowchart . 38
5.4 Connector Mapping Excel File . 39
5.5 Connecting Motherboard and Daughterboard Signals 40
5.6 Loadboard Layout . 41
5.7 SSR Circuit Diagram . 44
5.8 Reflection in Loadboard . 47

6.1 Simulation Validation . 58
6.2 Test PCB . 59
6.3 PSpice circuit of Loadboard Trace for Parasitics Validation 60
6.4 PSpice vs. PowerDC Output Voltages for Baseline Trace 61
6.5 PSpice vs. PowerDC Output Voltages for Increased Trace Lengths 62
6.6 PSpice vs. PowerDC Output Voltages for Increased Trace Widths 63
6.7 PSpice vs PowerDC Output Voltages for Adjacent Traces 64
6.8 Length between traces vs Voltage . 64
6.9 Simulation: On-State vs Temperature . 67
6.10 Datasheet: On-State Resistance vs Temperature [57] 67
6.11 Simulation: Off-State Current vs Voltage . 68
6.12 Datasheet: Off-State Current vs Voltage [57] . 68
6.13 Simulation: Output Capacitance vs Voltage . 69
6.14 Datasheet: Output Capacitance vs Voltage [57] . 69
6.15 Configuration 1: ATE present . 70
6.16 Configuration 3: ATE with Resistor (10 Ω) . 70
6.17 PSpice vs. Stage 3 Model Output Voltages for Configuration 1 (ATE Present) 72
6.18 PSpice vs. Stage 3 Model Output Voltages for Configuration 2 (ATE and DUT Present) 72
6.19 PSpice vs Stage 3 Model Output Voltages for Configuration 3 (ATE with Resistor) . . . 73
6.20 Physical Setup for Full Framework Validation . 74

ix

x List of Figures

6.21 Temperature: Comparison between PowerDC and Framework 77

List of Tables

3.1 Comparison of Netlist Generation Tools . 24
3.2 Comparison of Parasitics Extraction Tools . 27

4.1 Inputs and Outputs for Ideal Netlist Generation . 32
4.2 Inputs and Outputs for Parasitics Extraction . 33
4.3 Inputs and Outputs for Parasitics and Reflection Integration 33
4.4 SSR Relay Characteristics . 34

5.1 PowerSI Parasitics for different frequencies . 40
5.2 Extracted Parasitic Values for Loadboard Site 1 . 42
5.3 Parasitic Elements of Loadboard Transmission Line . 46
5.4 Description of User Parameters . 52

6.1 Project Validation and Design Specifications . 57
6.2 Parasitic Parameters for Baseline Trace at Different Frequencies 61
6.3 Parasitic Parameters for Increased Trace Lengths at Different Frequencies 62
6.4 Parasitic Parameters for Increased Trace Widths at Different Frequencies 63
6.5 Parasitic Parameters for Adjacent Traces at Different Frequencies 63
6.6 Parasitic Parameters with and without Ground Planes at Different Frequencies 65
6.7 Output Voltages after removing Ground Planes at 10 MHz for PowerDC 65
6.8 Parasitic Parameters for Baseline Trace at Different Frequencies 71
6.9 Physical vs. Full Framework Output Voltages at 5V Input 76
6.10 Physical vs. Ideal vs. Final Framework Pulse Widths . 76
6.11 Framework Requirements . 78

xi

List of Algorithms
1 Automated Parasitic Extraction using PowerSI . 42
2 SSR Relay Model Algorithm . 45
3 Netlist Modification Script . 51
4 Verilog-A Module for Transmission Line Segment . 52
5 Master Script for Loadboard Model Workflow . 53
6 Max rating Test Code for Loadboard Validation . 55
7 SSR Model Testbench Algorithm . 66
8 Pin Voltage Control Test Code . 75

xiii

1
Introduction

The thesis delves into innovative strategies in semiconductor testing, mainly focusing on the accurate
digital twinning of loadboards and virtual testing for faster test development. Section 1.1 presents the
motivation behind the thesis and the importance of virtual testing. Then, Section 1.2 presents the state-
of-the-art in virtual testing. This section also introduces the limitations in the current methodologies that
need to be overcome to achieve accurate virtual testing. Section 1.3 presents the scientific contributions
of this thesis. Finally, Section 1.4 presents the outline of the thesis.

1.1. Motivation
Integrated Circuits (ICs) have revolutionised the world of technology by enabling miniaturisation and
increasing efficiency in electronic devices [1]. Due to the increasing demand for electronic devices
needed to manage innovations worldwide, the demand for ICs has become numerous in recent years
[2]. This trend is reflected in statistics fromWorld Semiconductor Trade Statistics (WSTS), which report
that the semiconductor industry’s revenue grew by 16% in 2024 compared to the previous year due to
the rising demand for ICs [3]. Figure 1.1 shows that the semiconductor industry’s revenue significantly
increased from 1987, when it was around 30 billion U.S. dollars, to around 611.23 billion U.S. dollars
in 2024.

As the world is seeing increasing demand for ICs, the requirements of the consumers related to
the quality of the chips are also becoming tighter [4]. These chips are used in critical sectors such as
the automotive industry, where a bad-quality IC can result in disastrous consequences. The industrial
term for defining the quality of a given product is Defective Parts Per Million (DPPM), which refers to
the number of faulty chips sold to the customers in a batch of a million chips [4]. Due to the increas-
ing number of electronic components in recent years, automotive companies like BMW have stated
that even with 1 DPPM, they expect one car failure every hour [5]. This has resulted in a much more
stringent quality requirement for automotive semiconductors, i.e., from DPPM to Defective Parts Per

Figure 1.1: Semicondcutor Market Revenue from 1987 to 2024 [3]

1

2 1. Introduction

Figure 1.2: Transistor per Semiconductor Chip [9]

Billion (DPPB) level [5]. Due to the high-quality standards set by the consumers, the expected quality
of the ICs is increasing. The quality of an IC is determined by testing, where it is determined if every
manufactured semiconductor is functioning within the specifications [4]. The testing strategy is to de-
velop suitable test plans while considering both quality and economy, that is, to detect most errors at
the lowest cost. Depending on the product type and test requirements, the cost of testing accounts for
10–30% of the total IC cost [6].

Over the years, the complexity of IC has also increased sharply. As shown in Figure 1.2, transistor
density in ICs has steeply increased over time, indicating that the complexity of chips is continuously
rising. This trend aligns with Moore’s law [7], which predicts a doubling of transistors on a microchip
every two years. Due to the increasing complexity and quality requirements of ICs, there is an increase
in the test development time of a chip, which then contributes to increased time-to-market [8], which
means the total length of time it takes to bring a product from conception to market availability. The test
development for an IC requires a significant amount of time depending on the complexity, which can
delay the product release by even weeks. To stay competitive and meet customer demands related to
product delivery, it has become crucial for manufacturers to optimise the test development time to re-
duce time-to-market. Efficient test development can enhance the manufacturer’s productivity, allowing
them to deliver innovative products more swiftly [8].

Testing is a complex process that involves several components such as an Automatic Test Equip-
ment (ATE), Test Program, Loadboard, and the DUT. The test program is used to automate the test
process, and its development depends on the DUT and the capabilities of the chosen ATE platform [8].
Its development can be conducted in parallel with the design of the DUT. However, verifying whether
a test program properly conducts the intended tests is challenging before the first silicon, when the
first IC is produced, is available [10]. Certain “sanity checks,” such as ensuring the correct syntax
and configurations for the ATE, can be carried out beforehand. However, comprehensive checks and
full validation can only be performed after the first silicon [8]. As shown in Figure 1.3, a test program
development starts during the design stage and is completed pre-silicon. However, the test program
debugging begins after the first silicon in the current scenario. If the test program can be debugged
pre-silicon, the test development time can be optimised, decreasing the time-to-market. By using a
methodology known as virtual testing, which means using virtual models of testing components to run
a simulation and predict the behaviour of the test program, the test program can be debugged pre-
silicon. This pre-silicon debugging of the test program using virtual testing in the test development flow
speeds up the start of production testing and contributes towards time-to-market speed-up [8].

1.2. State Of The Art
Several methods have been proposed for virtual testing in the test development flow. Section 1.2.1
introduces them and describes how they are used. Then, Section 1.2.2 presents the limitations of
these methodologies.

1.2. State Of The Art 3

Figure 1.3: Normal Flow vs Virtual Testing FLow [8]

4 1. Introduction

1.2.1. Virtual Testing Methodologies
The need for software in testing was already recognised in 1996 by Mielger and Woltz [11]. They in-
troduced a software called VTB that allows the definition of signals with the help of pre-defined models
of the test programs. This was further developed as a simulation tool known as VTest that can be inte-
grated for proper circuit simulations [12]. VTest allowed the engineers to create a platform for designing
and simulating test requirements using DUT models. It allowed design and test engineers to commu-
nicate by introducing a generic library that enables data sharing. This generic library further allowed
the sharing of models between the design and testing stages and opened the door for simulating the
DUT using test requirements. VHDL, a Hardware Description Language (HDL), was used to create a
high-level netlist for the components needed for the simulation [12]. This allowed the test engineer to
work sooner than they were doing by integrating the design and testing environment, and they could
use VHDL models of the components to review the design and provide feedback to designers. This
paved the way for test development to begin even sooner as they could access designer files and
requirements, giving them more time to make a robust test program.

A simulation approach was proposed to verify and test a system before making the hardware [13].
After determining the design and requirements, a schematic was generated for the components. After
this, tests were developed based on the device’s requirements. These tests were then simulated to
check for device performance errors. If errors were detected during the simulation, the issues were
sent back to the designer for verification. Following this approach, an IC could be virtually tested for
specific parameters by simulating the models. In this approach, certain complications were found, such
as the absence of accurate simulation software and accurate models. This demonstrated that the DUT
model generated by designers could effectively be simulated based on the testing requirements. So,
a method was needed to convert test programs made by test engineers in the form of triggers, also
called stimuli, which can then be used to simulate the DUT models. Using this, the behaviour of test
programs can be predicted, and they can be debugged before silicon.

A virtual environment was then created that could combine the models of DUT and ATE and use
test programs as stimuli to trigger voltages in the pins [14]. Using this environment, the test engineers
can efficiently run simulations to design, debug and verify all test-relevant processes [14]. The virtual
testing environment uses an operating system (Linux) to maintain interoperability between the Elec-
tronic Design Automation (EDA) tools and test system, but this requires digital twinning [15] of DUT,
Loadboard, and ATE.

This new approach was successful as it solved one of the major issues: to make an integrated
environment for all models and libraries. Introducing a virtual testing environment allowed companies
such as Infineon Technologies to research ways using which virtual testing can be integrated into the
existing test development flow [10]. The chip was modelled as a Register Transfer level (RTL) code,
and stimuli were applied to verify how the DUT would behave under a specific test program. Infineon
integrated virtual testing for pressure sensors and found that it reduced the test debugging efforts of test
programs after the silicon. A digital twin of the chips was used with stimuli parallel to the chip design,
which reduced the test development time. The main advantage of this is pre-silicon test program
debugging, which means a more robust test program can be obtained before silicon.

Since virtual testing saves test development time, the need for accurate simulation models became
even more significant. The focus moved towards accurate digital twinning of the required testing com-
ponents: ATE, DUT, and the loadboard [16]. ATE manufacturers such as Testinsight started providing
virtual ATE that converts the test program files into an ATE-aware Verilog model that emulates how ATE
drives the DUT [17]. This virtual ATE allows pre-silicon testing by mirroring the behaviour of the phys-
ical ATE. It makes production test debugging shorter and more predictable by ensuring that tests are
ATE-compatible, identifying issues in converting test patterns from design to ATE format, and allowing
attention only to silicon.

After having an accurate model of ATE, designers then developed the DUT model in Verilog to
communicate with the virtual ATE, and by using thesemodels, the test program debugging was possible
before the arrival of the first silicon, as shown in Figure 1.3. The virtual testing methodology was also
compared with the actual ATE results for memory tests using the same test program [8]. For the test, the
registers were first set to 0, then checked, and repeated after setting the registers to 1. This confirmed
that precisely the same outputs were generated by both physical ATE and virtual testing except for the
run-time since virtual testing takes more time [8].

In recent years, NXP has beenworking to integrate a virtual testingmethodology calledAnalog/Mixed-

1.2. State Of The Art 5

Signal Virtual Tester (AMS-VT) into their test development flow. AMS-VT, developed by TestInsight, is
a mixed-signal virtual ATE that enables pre-silicon validation by emulating the actual tester environment
in an EDA simulation using cadence tools [18]. It allows test engineers to debug their test programs and
loadboards before Tape-Out (TO) when ICs are sent for industrial manufacturing, significantly reducing
development time and improving confidence in the test setup. AMS-VT offers several key advantages
that are [18]:

• Emulate the ATE tester.

• Predict the post-silicon test results.

• Faster test program debugging using EDA tools.

• Pre-silicon validation of loadboard design and test program.

The integration of AMS-VT into NXP’s New-Product-Introduction (NPI) process has enabled the
test engineers to perform early simulations with the entire test setup, i.e., the DUT, the loadboard, and
tester instruments, and thus obtaining early knowledge of the product under development. It is also
expected that AMS-VT can significantly reduce development time, leading to a shorter time-to-market
for new products [18].

1.2.2. Limitations
The previous section illustrated the virtual testing methodology over the years and proved that employ-
ing virtual testing in test development flows results in a faster test development process. After using
virtual testing and comparing it with the physical ATE, it was found that the results for memory test-
ing were the same [8]. While AMS-VT used by NXP is the most recent and advanced virtual testing
methodology, representing significant advances in the test development process, certain limitations
still constrain it. One of the critical limitations of the current AMS-VT approach used by NXP is the
inaccuracy of the loadboard model. The loadboard model currently used is an ideal netlist in Verilog
AMS, which is manually created. This manual process is prone to human errors. It does not accurately
reflect the physical characteristics of the loadboard, such as parasitics, which means the loadboard
cannot be debugged pre-silicon.

Furthermore, a loadboard contains multiple sites, where one site means one DUT being tested, so
it is vital to account for site-to-site variations for debugging the test program and the loadboard using
virtual testing. However, AMS-VT cannot evaluate how the test program will behave across multiple
sites as it can only simulate one site at a time [18]. To account for these variations, a loadboard model
is needed to predict the site-to-site differences. Still, currently, the loadboard model being used is an
ideal netlist that cannot account for the site-to-site variations. This limitation is critical because voltage
differences and parasitic effects can vary from site to site, potentially leading to discrepancies not
accounted for in the ideal netlist. Due to these significant limitations, AMS-VT can only debug certain
aspects of the test program, such as ATE-DUT connectivity and the basic flow of the test program;
it cannot thoroughly debug the test program in terms of voltage levels, signal integrity, or site-to-site
variations. These limitations highlight the need for more accurate digital twinning of the loadboard.
Without accurate digital twinning, the results remain idealized, missing critical details that can impact
the final product’s performance.

To overcome these limitations and improve the accuracy of virtual testing using AMS-VT, the follow-
ing requirements for the loadboard modelling framework are proposed:

• The loadboard model should be single-site as this aligns with the current capabilities of AMS-VT.
However, the model must be highly detailed to capture all relevant parasitic effects and signal
integrity issues at that site.

• The loadboard should be in Verilog AMS to ensure compatibility with existing AMS-VT method-
ologies and EDA tools used in virtual testing.

• The framework to generate the model should be generic to accommodate different projects and
loadboard designs.

• The loadboard model must be highly accurate to emulate the site-to-site variations so that the
test program results can be predicted on different sites.

6 1. Introduction

1.3. Thesis Contribution
This thesis addresses the critical limitations identified in the current AMS-VT methodologies employed
by NXP, particularly the need for an accurate digital twin of the loadboard. By focusing on the accurate
modelling of loadboard characteristics and their integration into the AMS-VT environment, this research
makes the following contributions:

• Introduces a framework that automates the generation of a highly accurate virtual model of the
loadboard by including its physical characteristics.

• The framework generates a unique model for each site, emulating the site-to-site variations due to
the parasitics, allowing the test engineers to predict the behaviour of the test program on different
sites.

• The framework seamlessly integrates the generated loadboard model into the AMS-VT environ-
ment, allowing for precise simulation.

• A loadboard model that predicts the effects of real-world operating conditions, such as frequency
and temperature, on voltage and timing.

• For increased accuracy, a static relay model is developed to emulate its parasitic effects on volt-
age and timing.

• Provides a repository containing all the developed models and scripts. The code repository is
accessible at [19].

1.4. Thesis Outline
The rest of this report is organised into seven chapters. The following list provides a detailed description
of the topics discussed in each chapter.

• Chapter 2: It describes the process of manufacturing ICs and then delves deeper into the testing
domain. It discusses the current testing timeline and briefly explains the test development flow.
Then, the testing hardware is explained with a detailed overview of loadboard parasitics.

• Chapter 3: The literature survey and the current state of the art in virtual testing is presented.
This chapter offers insights into diverse techniques and methodologies for the digital twinning of
loadboards and finally presents the limitations of the current methodologies for digital twinning.

• Chapter 4: Based on the current methodology limitations, the requirements for the framework
are derived. Then this chapter proposes a new framework for accurate loadboard modelling to
meet the derived requirements.

• Chapter 5: The complete framework implementation to convert the loadboard into an accurate
virtual model is discussed. This chapter provides the flowchart and algorithm in detail to explain
the implementation of the complete framework.

• Chapter 6: In this chapter, the framework implemented in the previous chapter is validated thor-
oughly to analyse its accuracy.

• Chapter 7: This chapter summarises this thesis and discusses potential future work.

2
Semiconductor Testing

This chapter introduces semiconductor manufacturing, more specifically, semiconductor testing. A
general introduction to the manufacturing process is presented in Section 2.1. After this, Section 2.2
introduces the test development process in detail. Section 2.3 then presents the hardware used in the
industry to materialize the testing process discussed in the previous section. Finally, Section 2.4 delves
into the physical properties of the laodboard that are necessary for its modelling.

2.1. Semiconductor Manufacturing Process
The semiconductor manufacturing process starts with sand as raw material and ends with the final
silicon chips used in electronic devices [20]. This process can be divided into three stages: Design,
Wafer Fabrication, and Testing. The design stage involves creating the layout and specification for the
chips, while the Wafer Fabrication stage transforms raw materials into silicon wafers through a series
of complex steps. The testing stage ensures the fabricated chips meet all performance and quality
standards [21]. A single company can carry out these stages, or multiple companies can carry out
each stage separately, as each requires complex equipment and highly trained engineers [21].

2.1.1. Design
A sequence of steps known as the design flow, as illustrated in Figure 2.1, is followed to design the IC.
The design flow includes stages such as specification, circuit design, layout design, layout verification,
and tape out [6].

Specification
The design flow begins with defining a set of specifications. These specifications include the following
[6]:

• Functional Requirements: A detailed description of the global and local functions of the ICs.
This tells how the IC should behave and what its tasks are. It also includes the software that will
run on it.

Figure 2.1: Design Flow [6]

7

8 2. Semiconductor Testing

• Chip Architecture: This is the software and hardware aspects of the IC. The software includes
the protocol and operating system, and the hardware consists of the standard clock, memory,
and system bus.

• Input/Output Requirements: This is the input and output signals of the target IC. The timing se-
quence concerning other chips, the clock pins, power/ground pins, and chip package specification
and size are included.

• Software Interface: This is the software-accessible peripheral driver, which includes information
regarding the IC programmability. The programmable registers of the chip, such as the hardware
peripheral driver, are defined in this.

Circuit Design
After the specifications are defined, the circuit design begins. In this, the engineers develop the logic
and circuit components for the ICs using Hardware Description Languages (HDL) such as VHDL or
Verilog. For analog and mixed-signal ICs, languages like Verilog-AMS are used as they can handle
both analog and digital signals [22]. After this, Electronic Design Automation (EDA) tools are used to
verify the function and performance of the circuit.

Layout Design and Verification
After circuit design, EDA tools are used to draw the geometric representation of the circuit, which
includes layers of different materials and structures that will be manufactured later in the process.
Engineers then optimize the generated layout from the tool to achieve optimal performance such as
power efficiency, speed, and area utilization [23]. After the design, the layout is verified using EDA tools.
This involves ensuring that the layout adheres to the defined specifications and guidelines. Verification
is essential to prevent any future manufacturing issues and electrical violations.

Tape-Out
After the validation, the final layout is sent for fabrication, called Tape-Out (TO). The layout is sent to
the foundry with a Process Design Kit (PDK) that contains information such as design symbol, device
model, parametric cell, and physical verification rules. The PDK includes the specifications that the
foundry needs to adhere to during the manufacturing process to reach the optimum performance [23].

2.1.2. Wafer Fabrication
After the layout is completed and verified, the process moves to manufacturing. This is done in specially
designed manufacturing sites known as wafer fabs; they are costly and can range from $2 billion to $4
billion based on the requirements [6]. The manufacturing process is performed in a clean room, where
air is filtered periodically, as even a few impurities can affect the fabrication process.

The fabrication of chips starts with the production of silicon wafers. This begins by creating a silicon
ingot by dipping and rotating a silicon seed crystal in purified molten silicon [21]. These ingots are then
sliced into a thin disk-like shape called wafers, as shown in Figure 2.2, which are then used as the base
for the manufacturing process. The production of ingots and wafers is handled by specialized suppliers
rather than the semiconductor manufacturers.

The complete fabrication process after the wafers involves complex steps depending on the tech-
nology requirements. Below are the steps for the fabrication of planar CMOS technology [21]:

• Oxidation: A silicon dioxide layer is formed over a wafer using high temperatures in a furnace.

• Photoresist Coating: The wafer is coated with a light-sensitive material called photoresist that
can be made into a pattern when exposed to Ultraviolet (UV) rays.

• Lithography: This step determines the size of planar CMOS transistors. A wafer is put inside a
lithography machine, exposing it to UV light to form a specific pattern.

• Etching: The next step is to remove the degraded resist where UV light was exposed to show the
pattern. There are two main types of etching: wet etching, which uses chemical baths to expose
the pattern, and dry etching, which uses gases to form the pattern.

2.1. Semiconductor Manufacturing Process 9

Figure 2.2: Silicon Ingot and Wafers [21]

• Doping: After the patterns are made visible on wafers, they are bombarded with ions to tune the
conductive properties of the pattern.

• Packaging: After transistors are manufactured and the interconnect layers are laid out, the
wafers are sliced with a diamond saw into dies. The die is then put inside a substrate that works
as a baseboard and uses metal pins for the channels to produce the final chips.

The steps mentioned above are very sensitive and prone to defects. Equipment malfunctions during
the process can introduce issues in the IC. For example, problems in the photoresist coating step can
lead to photolithographic inaccuracies, causing under or over-exposure to UV rays. This can result in
semiconductor components with incorrect dimensions and performance that is out of specification [6].
Similarly, problems during the doping process can alter the electronic properties of the semiconductor
bandgap, resulting in components with inadequate electrical properties and reduced lifetimes [24].
The next stage, testing, is critical to identify and address these issues before the ICs are shipped
to consumers.

2.1.3. Testing
This stage aims to ensure that the fabricated chips are reliable and meet all the requirements defined
in the specifications by detecting any possible issues [24]. These issues in an IC can happen at any
point in the semiconductor manufacturing process, such as product design or the fabrication process
[24]. The issues can also be seen due to a faulty test being done on the IC, so engineers need to
ensure that the test being done is thoroughly verified. The engineers develop suitable test plans to
detect errors at the lowest cost. It can be said that testing is a process where a stimulus to the Device
Under Test (DUT) is sent, and the response is then compared with the expected value [6]. The device
is faulty if the output is inconsistent with the expected value. So, the testing process depends on the
testing hardware (tester and loadboard), DUT, test stimulus generation, and test response capture. The
testing process can be classified into different categories [25]:

1. Digital Testing: Verifies digital circuits’ logical and timing operations.

2. Analog Testing: Verifies the performance of analog circuits in the chips.

3. Mixed-SIgnal Testing: Verifies both the digital and analog components of the IC.

4. High-Speed Testing: Verifies ICs that operate at high speed for timing and signal integrity.

5. Radio Frequency: Verifies the performance of the Radio Frequency (RF) circuits over multiple
frequency ranges.

6. Memory Testing: Verifies the read and write operations of the memory components.

7. System-on-Chip Testing: Verifies the functionality of the subsystems in an system-on-chip
(SoC).

10 2. Semiconductor Testing

Testing can be performed at two stages in the manufacturing process, the first after the wafer is
fabricated and then after the packaging, as described below:

1. Wafer Testing: This testing is carried out on the wafers before they are cut into individual dies.
This is performed using Automatic Test Equipment (ATE), which has a tester and probe cards
to establish electric contact between the ATE and the wafer. Electric stimuli are applied to dies
in the wafer, and their response is stored. The test results categorize the dies on the wafer into
virtual bins, indicating whether they passed or failed the test. During testing, different bins can be
used for different faulty behaviours, which then can be categorized and used for failure analysis
to root out the problem.

2. Final Testing: After wafer testing, the dies are packaged, finishing the manufacturing process
and resulting in finalized ICs. During the process of packaging and the addition of metal channels,
there is a possibility of something going wrong, so a final test is done after the packaging to check
the correctness of the chips. Since the package has many purposes, e.g., electrical insulation
from surroundings, environmental protection, and heat dissipation, it is essential to check if it
serves its purposes.

Multiple characteristics can be tested at wafer testing and final testing. The tests that can be per-
formed are given below [25]:

1. Parameteric Testing: This involves testing chips to satisfy maximum current and voltage re-
quirements.

2. Burn-In Testing: This is done by subjecting the chips to increased temperatures and voltages
for a long time.

3. Thermal Testing: This checks the thermal characteristics of the chips, such as thermal resistance
and thermal conductivity.

4. Time Domain Reflection: This involves measuring electrical parameters like capacitance using
time domain reflectometry.

5. Radio Frequency (RF) Testing: This tests the chip at different frequencies to ensure their reli-
ability and efficiency under different frequencies.

6. Signal Integrity Testing: This checks the device’s ability to transmit and receive signals in its
pins.

7. Power Integrity Testing: This focuses on how the power is divided into different components in
the chip.

8. Functional Testing: This checks whether the chips perform the functions as intended. It verifies
logical operations and functional correctness by applying different test patterns.

9. System-Level testing: This is done to check whether the chips behave correctly when integrated
into a system. This helps identify the integration issues with the system and other components.

Based on the IC’s requirements, a test program contains the tests needed to analyse all its aspects.
This test program is then loaded on the ATE, and the tests are performed on the DUT. After performing
the tests, the DUT’s output is captured in real-time for data analysis so that the ATE can compare the
data with the expected outputs.

2.2. Test Development Flow
Developing the test program is a crucial step in the testing process as it directly impacts the quality of
the final product. Developing a test program requires significant resources, including skilled engineers,
and extensive time and cost. Generally, developing a test program can take three to six months [6],
depending on the complexity of IC, as it also involves the debugging and validation stages. The devel-
opment is also costly, requiring advanced software tools and multiple iterations to ensure the program’s
robustness. This test program is then run on the ATE to check the functionality and performance of
the DUT. The test program development starts during the designing stage of the IC. It contains several
steps that are as follows [26]:

2.2. Test Development Flow 11

Figure 2.3: Test Requirements Document [26]

• Specification Definition: The process begins with understanding the detailed specifications
of the IC. This includes functional requirements, performance metrics, and the types of tests
needed. Based on this metric, the test objectives are defined to outline the test requirements,
such as timing requirements, electrical characteristics, and operating conditions. Based on these
specifications, the objectives and scope of the tests for IC verification are established.

• Test Planning and Analysis: Based on the specifications, a detailed plan outlines the sequence
of tests and their specific conditions. In this, a Test Requirements Document (TRD) shown in
Figure 2.3 is developed. This sheet lists all the tests to be performed on the device. The tests are
grouped in separate sheets according to the test flow. Engineers also perform an Automatic Test
Pattern Generation (ATPG) to generate the patterns for detecting specific faults, such as stuck-at
or transition faults. After this, a test coverage analysis is performed to ensure the plan covers all
critical checks for the IC while balancing cost and complexity.

• Test Program Development: The engineers write the test program after the plan. The test
programmust follow a syntax specific to the ATE platform used for testing. Key components of the
test program include test vectors, which are sets of inputs and expected outputs used to validate
the ICs, and the sequence in which the tests are performed. Additionally, the program defines
measurement parameters, such as voltage levels, timing parameters, and current measurements.

• Test File Creation: The test program includes files that contain data required to run the test
program. These files can change based on the complexity of the IC and ATE platform. The
common files are as follows [27]:

1. Pin Mapping File: The file on the tester defines the pins on the DUT and how the DUT pins
are connected to the tester through the loadboard.

2. Pattern Files: This refers to a set of electrical inputs and outputs given to the DUT to prepare
it for tests and analyse its functionality and performance.

3. Level Files: Contain voltage and current levels to drive the pins of the DUT.
4. Test Flow: Contains the sequences that define the test flow by specifying the test steps and

the order to execute them.
5. Relay Set File: Contains data on a relay that needs to be turned on or off for specific pins.

The test program combines several test suites to test the DUT’s different parameters and function-
alities. Its development starts before the first silicon, the initial batch of the fabricated ICs, but the test
program is debugged after the initial batch is received. The debugging is done using an ATE platform
to run the test program, which is connected to the loadboard that works as a bridge between the DUT
and ATE [26]. This debugging is crucial to determine if there are any errors in the test program. Based
on the debugging results, the test program is optimized, which includes refining test vectors and mea-
surement parameters, known as test limits [26]. This is an iterative process that ensures the accuracy
and robustness of the test program.

After the complete debugging of the test program, it is optimized for efficiency, ensuring that tests are
conducted with the shortest test time feasible without compromising quality. This involves streamlining
the test flow and removing redundant tests. The finalized test program is then loaded onto the ATE
to test the chips. This consists of transferring the program files and configuring the ATE settings for
production. Once configured, the ATE executes the test program on the ICs for mass-scale testing.
This stage involves setting up the test conditions, applying test vectors, capturing results, and analyzing
data in real-time.

12 2. Semiconductor Testing

Figure 2.4: Automatic Test Equipment (ADVANTEST) [27]

2.3. Testing Hardware
Testing is a time-consuming process that requires skilled engineers and dedicated test equipment.
The main hardware that makes testing possible is ATE and Loadboard. This section gives a detailed
introduction to all the equipment used in testing.

2.3.1. Automatic Test Equipment
Automatic Test Equipment (ATE) is the core of semiconductor testing; it uses electrical configurations to
conduct tests that assess the functionality, performance, and quality of ICs [27]. As the name implies,
they automate electrical stimuli and processes while requiring minimal human interaction [27]. ATE
optimises the testing process, which results in faster and more accurate tests. The ATE shown in
Figure 2.4, from the semiconductor company ADVANTEST, comprises three main components, as
described below. Note that most ATEs from other brands also exhibit a similar configuration. The main
components of the ATE are described below [28]:

• Manipulator: This allows precise positioning of the DUT and the test head. The manipulator can
move the test head in multiple axes, accommodating various DUT configurations and sizes. This
flexibility is essential for testing a wide range of IC packages.

• Workstation: This refers to the computer test engineers use to interact with the ATE system. The
test programs are developed, modified, and managed in the workstation. It serves as the control
centre for the ATE, providing the interface through which engineers can set up tests, monitor the
testing process, and analyze the results.

• DUT Interface: This is the place in the ATE where the loadboard is attached. The loadboard,
which holds the DUT, establishes the electrical pathways between the DUT and the ATE. This
interface has been developed to accommodate different types of loadboards and ensure reliable
connections for testing.

• Testhead: It is the core of ATE, containing the electronics necessary to apply test signals to the
DUT and measure the responses. This includes signal generators, measurement units, and data
acquisition systems.

An ATE operates using a test program developed by test engineers based on the project’s require-
ments.

2.3.2. Loadboard
Loadboards serve as the contact interface between the test head of the ATE and the pins of the DUT
being tested. They typically comprise a Printed Circuit Board (PCB) that carries the test sockets or
probes for the ICs under test and is mounted on the test head [29]. An image of a loadboard is shown
in Figure 2.5. Loadboard design differs based on the complexity of the DUT; a typical board consists
of four main components [30]:

• Pogo Pins: These pins connect with the ATE.

2.3. Testing Hardware 13

Figure 2.5: Loadboard

Figure 2.6: Socket [31]

• Transmission Line: These interconnections transmit the signals from the loadboard to the DUT.
These interconnects are routed across different layers of the loadboard to accommodate complex
signal paths.

• Components: These include active components, such as Solid State Relay (SSR), and passive
electronic components, such as resistors, capacitors, and transistors, required for the testing
process.

• Sockets: These are the connectors on the loadboard where the DUT is inserted as shown in
Figure 2.6. They provide the mechanical and electrical interface between the DUT and the load-
board

A loadboard consists of multiple sites; a single site represents one socket that can hold one DUT.
For loadboards used in development and debugging, the number of sites is generally 8 or 16, whereas
loadboards for production are more extensive and can consist of up to 64 or 128 sites [32]. In some
cases, a board is made of two different loadboards: the motherboard and the daughterboard, as shown
in Figure 2.7 [26]. This practice is often used when a loadboard is already present, and for the new
project, only minor changes are needed, which can be done by adding a daughterboard. In these
cases, the motherboard has the main input signals that receive electrical input from the tester, and it
is connected to the daughterboard that contains extra components and the sockets, which are then
connected to the DUT [25].

A loadboard is a complex PCB containing several layers. Any element in the board can cause
signal integrity issues, so it is essential to carefully design the loadboard while considering the DUT

14 2. Semiconductor Testing

Figure 2.7: Motherboard and Daughterboard [26]

specifications [29]. First, a layout package is generated, which contains general design rules, test
system mechanical guidelines, and project-specific requirements. These documents describe the de-
sign’s goals, needs, and constraints [33]. Then, the schematic of the loadboard is made based on the
specifications, and then an EDA tool is used to generate the board’s layout. The first step in the layout
process is determining the type of stack up, which refers to the arrangement of the different layers
within the PCB. Loadboards generally have asymmetrical stackup to meet specific requirements and
accommodate unique layout constraints. There are typically four types of layers in the stackup, which
are as follows:

• Ground Plane: They provide grounding to the circuits and prevent interference between two
signal layers.

• Signal Layer: The striplines are routed in this layer. They are sandwiched between the ground
plane to avoid signal coupling.

• Power Plane: They provide power to the circuits in the loadboard.

• Dielectric Layer: These insulating layers separate the conductive copper layers.

After determining the board’s stackup, the signals are routed in signal layers, and pads and vias are
determined. The designer’s decision for signal routing is based on considerations such as minimizing
impedance mismatch to keep the voltage and timing variations to a minimum. Then, pads are chosen,
which are the small surface areas of exposed metal on the layer to which the components are soldered.
They are then selected based on the size and type of components mounted on the board to achieve
mechanical stability. Finally, vias are placed on the loadboard to allow the signals to pass from one layer
to another. They are placed so that the effect of vias on signal integrity is minimal. Since a loadboard
often contains multiple sites, the layout needs to be created so that the site-to-site variations are as
minimal as possible. The loadboards are generally significant in size due to their multisite nature.

2.4. Loadboard Parasitics
Ideally, designers try their best to minimize any impedance mismatch by making the stripline the same
impedance as tester channels, but there are always some variations. This is due to parasitics, which
are the unwanted elements due to the layout characteristics such as placement of the stripline, electro-
magnetic interference due to adjacent lines, and physical factors such as the length, width, and height
of the stripline [34]. This mismatch in the impedance can result in the loss of signals while travelling
through the transmission line. The test engineers need to know the possible loss due to the transmis-
sion lines to account for this error in the test program.

The loss in the signal will only occur when the line impedance does not match the tester channel
impedance. So, to analyse this, the impedance of the stripline needs to be calculated. The impedance
of a transmission line can be calculated by finding the four basic parasitics of the stripline [35], which
are as follows:

2.4. Loadboard Parasitics 15

• Parasitic Resistance (R): This is the inherent property of the conductive elements present in
the wire used to transmit signals. Parasitic resistance can cause voltage drops and power losses
and compromise signal integrity, especially in high-speed devices [36].

• Parasitic Capacitance (C): This occurs due to the generation of an electrical field between two
close channels; this can cause coupling, leading to crosstalk and signal degradation.

• Parasitic Inductance (L): This parasitic occurs when current flows through conductive elements.
It opposes current fluctuations, resulting in signal delays, impedance variations, and undesired
coupling.

• Parasitic Conductance (G): This measures how easily a current can pass through the trace. A
shunt resistor between the transmission line and the ground represents it.

These basic parasitic elements of the line can be calculated using EDA tools by running signal in-
tegrity and electromagnetic analysis. These parasitics depend on the physical properties of the stripline
as well as the layout structure, such as having a trace nearby. After finding these four parameters, it
can be used to calculate the transmission line’s impedance, denoted as 𝑍, using the formula described
in Equation 2.1 [37].

𝑍 = √𝑅 + 𝑗𝜔𝐿𝐺 + 𝑗𝜔𝐶 (2.1)

In Equation 2.1, 𝜔 (omega) stands for the angular frequency of the signal. It is defined as 𝜔 = 2𝜋𝑓,
where 𝑓 represents the signal’s frequency. The term 𝑗 describes the imaginary unit, essential to deal
with the phase differences caused by inductance and capacitance in the voltage and current [38]. After
calculating the impedance of the stripline, it is compared with the tester channel impedance. If there
is a difference between them, there is a situation known as impedance mismatch [37]. This mismatch
can cause reflection in signals, which can cause a loss of voltage. These reflections can negatively
impact the quality of the signal, causing loss, distortion, or interference, ultimately affecting the circuit’s
performance. A dimensionless parameter called the reflection coefficient, denoted as Γ, is used to
measure the degree of signal reflection caused by impedance mismatches, which can be determined
from Equation 2.2 [37].

Γ = 𝑍𝐿 − 𝑍𝑆
𝑍𝐿 + 𝑍𝑆

(2.2)

In Equation 2.2, 𝑍𝐿 is the impedance of the loadboard stripline, and 𝑍𝑆 is the source impedance,
which is the impedance of the ATE channel. The reflection coefficient ranges from -1 to 1, indicating
the extent of reflection. A value of -1 signifies total negative reflection, equivalent to a short circuit.
On the other hand, a value of 1 represents total positive reflection, similar to an open circuit. These
reflections significantly impact the output voltage, as constructive or destructive interference can occur
between the reflected and incident waves. One can use the formula in Equation 2.3 to determine the
effective voltage. [37]. This formula helps determine the exact output voltage after being affected by
the first reflected wave.

𝑉𝐿 = 𝑉0 × (1 + Γ) (2.3)

The initial voltage of the signal is denoted as 𝑉0. This formula helps determine the exact output
voltage after being affected by the reflected wave. Knowing the effect of the loadboard on the output
voltage can allow test engineers to adjust their test programs to account for these discrepancies in
pre-silicon simulations and ensure accurate simulation results.

3
Virtual Testing and Digital Twinning

This chapter introduces the current techniques and their limitation in virtual testing in Section 3.1. Sec-
tion 3.2 discusses the concept of digital twinning and the current methodologies with their limitations.

3.1. Virtual Testing
The increasing complexity of semiconductor chips has led to a significant rise in the cost and time re-
quired for testing. The industry is trying to find ways to solve this bottleneck, and one way is to introduce
virtual testing in the test development flow [8]. The need for a change in testing scenarios was already
recognised in 1996 by Mielger and Woltz [11]. The authors acknowledge the need for a simulation tool
to make and debug the test program. They also highlighted the challenges of implementing such an
approach, emphasising that a loadboard and a DUT model are essential components for successful
simulation.

3.1.1. Evolution towards Virtual Testing
Since simulations for DUT testing started gaining recognition in the industry, several researchers have
introduced methodologies to make it more efficient and accurate. The authors, in 1996 [11], introduced
a virtual environment called VTB that allows defining the signals with the help of pre-defined models of
the test programs. They used VTB to save time in making a test program by making signal-generating
modules, rule-based consistency check modules, and import functions for foreign data formats. Build-
ing on this foundation, subsequent research led to the development of VTest in the early 2000s, a
software platform for designing and simulating test requirements and DUT models [12]. However, the
use of VTest revealed three significant challenges:

• Different libraries for testing and design were employed, which made it difficult to synchronize
test and design requirements across different platforms.

• Lack of testing component models to simulate all the aspects of the test process, which led to
inaccurate testing.

• No ways to share the models between different stages of simulation.

To address these issues, VTest introduced a more synchronized framework in 2001, standardising
libraries across both the design and testing domains. This allowed for better communication and data
sharing between the design and testing stages [12]. This framework also improved the integration of
different models by creating a generic resource library accessible throughout the simulation process
[12]. For the simulation in VTest, VHDL was used to make the DUT model in the form of a high-level
netlist. VTest proved to be a system that enables simulation of the DUT model, which the designer
provided, with the help of the test system. The simulation of DUT allowed the test engineer to work
sooner than they were doing by integrating the design and testing environment, and they could use
VHDL models of the components to review the design and provide feedback to designers. This paved
the way for test development to begin even sooner, as they could access design files and requirements

17

18 3. Virtual Testing and Digital Twinning

Design Requirements

DUT Schematic

DUT Netlist Model Test Program

Simulation

Error?Design Modification Test Program Modification

End

Yes
Yes

No

Figure 3.1: Simplified Simulation Approach [13]

earlier, giving them more time to make a robust test program. Despite these advancements, certain
limitations remained, particularly in modelling the entire test development process using HDLs such
as Verilog, VHDL, or SystemC. Additionally, communication barriers between different simulation tools
and the accurate modelling of ATEs continued to pose significant challenges.

In response to these issues, the concept of Virtual Prototyping (VP) emerged in 2002 [39]. VP refers
to the simulation of physical products that allows an engineer to analyse and validate the requirements
and designs of the product. The VP technique at that time had some limitations, such as a lack of inte-
gration of different tools. To solve this issue, an environment that can integrate all the tools and models
is required. This integration will provide a straightforward approach to testing the ICs by simulating
the models from different stages using EDA tools. Considering these problems, a simulation approach
was proposed to verify and test a system before making the hardware in 2003 [13]. The approach is
shown in Figure 3.1, which allows virtual testing for DUT validation [13].

The approach in Figure 3.1 starts with determining the design and its requirements, based on which
a schematic is generated. This schematic is then used to create a netlist of the DUT, which can be
used for simulations. In parallel with this process, the test programs are developed based on the
requirements, which are then used to simulate the DUT netlist. These simulation results are then
analyzed, and if an error is found, feedback is provided to the relevant engineers to verify the DUT
model and the test program. By following this approach, an IC can be virtually tested for specific
parameters using simulation on the models of the device. This approach found certain complications,
such as the absence of accurate simulation software and precise models [13].

3.1.2. Test Development Speedup through Virtual Testing
Early researchers successfully proposed an approach that allows simulation for DUT testing before the
hardware is developed. This approach enables the engineers to verify the functionality of their test
program by predicting the output of the DUT model. After this, ways to integrate the virtual testing ap-
proach into the test development flow were researched. Virtual testing is a subset of virtual prototyping
that involves developing and debugging test programs using simulation models of the DUT and the
test environment [40]. This can reduce time-to-market by reducing the debugging time needed by test
engineers with the actual physical environment. Three main issues do not allow proper integration of
virtual testing in the flow [40].

• It is a time-consuming and complex task to model each step of the test development process

3.1. Virtual Testing 19

Figure 3.2: Overview of Virtual Test Environment [14]

using models in HDL (Verilog, VHDL, SystemC).

• Lack of communication between different simulation software, as designers may use different
software for DUT than what will be used in testing.

• Accurate and precise modelling of ATE.

To overcome these limitations, a virtual platform was used to bridge the gap between design and test
so that test program development could be more efficient [14]. The newmethodology supports combin-
ing the DUT simulation software and the model of test instruments into a single simulation environment,
which means the libraries used by designers can be used with the tester models. Using this environ-
ment, the test engineers can efficiently run simulations to design, debug and verify all test-relevant
processes [14]. The virtual testing environment uses methodologies, models and tools to maintain in-
teroperability between the EDA tool and test system. Figure 3.2 gives an overview of the virtual test
environment’s components. In Figure 3.2, the environment is divided into two main components:

1. Hardware Platform (Top): This is the physical testing system where the actual test program is
executed on hardware components such as ATE, Loadboard, and DUT.

2. Virtual Test Platform (Bottom): This is the virtual test platform that replicates the functionality of
the hardware platform in an operating system. This allows engineers to execute the test program
using models of ATE, loadboard, and DUT before the arrival of silicon. The virtual testing envi-
ronment comprises three significant layers: Test Application, Driver Interface, and Virtual Models
[14].

• Test Application: This layer contains the test program that specifies what kind of test needs
to be performed.

• Driver Interface: This layer connects the test program with the virtual models. This creates
stimuli based on the test program and is based on an ATE platform.

• Virtual Models: The models of loadboard and DUT are then given the stimuli based on
which a voltage is forced in the models, and then the results are analysed. For the mod-
elling, the authors used SystemC-AMS language as it provides additional support for analog
signals.

In both platforms, the test program is executed on a host computer, which then communicates with
the hardware components or their models using the HW/SW driver interface. In this overview, the test
program is used for both the virtual test platforms and the hardware platform. For virtual testing, the
testing hardware, the tester, the loadboard, and the DUT are modelled and simulated based on the test
program.

20 3. Virtual Testing and Digital Twinning

This new approach proved successful as it solved one of the major issues: to make an integrated
environment for all models and libraries. The limitation they found was that the same test program
made for hardware cannot be directly used in simulations due to the differences in the driver interface
between the simulation environment and the actual ATE. This mismatch between environments led to
significant inefficiencies in test program debugging. To address this limitation, the ATE environment
saw advancements that allowed for the same test programs to be used in both the simulations and
physical testing. This was achieved by creating virtual ATE interfaces that closely resembled the driver
interaction in the physical hardware. This allowed engineers to debug the test program using virtual
testing, which made the test development process faster [17]. This new approach allowed some com-
panies like Infineon Technologies to research the advantages of using a virtual testing environment
[10]. They discussed the prospects of reducing the test debugging efforts of test programs post-silicon.
For that, a digital model of the ICs can be used with stimuli parallel to the chip design, which will shorten
the test development time. The chip can be modelled as an RTL code, and stimuli can then be applied
to verify how the DUT will behave under a specific test program [10]. They mainly focus on using this
methodology for pressure sensors and to verify sensor signal processing. After utilising virtual testing
for pressure sensors, Infineon found that this approach significantly reduces the development timeline
and enhances chip quality. The main advantages of using virtual testing in an industry are as follows
[10].

• Once silicon is ready, quick feedback on the device’s performance can be provided.

• The feedback obtained in parallel with the design development also proved to help verify the
design.

• Time for debugging can now be used for quality checks of the test program and test setup opti-
misations.

These advantages were further validated through industrial case studies, proving that virtual testing
allows for earlier debugging of test programs, significantly reducing the time from design to verification
[8]. The virtual testing methodology was also compared with the actual ATE results for memory tests
using the same test program [8]. The memory test involved checking the values stored in the registers.
The value in the register was first set to 0, then inspected to ensure that the correct values had been
stored in the proper register [8]. This process was then repeated after changing the value from 0 to 1.
These tests detect memory corruption, register addressing errors, or improper write operations. The
memory test was performed using both virtual and physical testing environments. The outputs from
both environments were identical, proving that virtual testing provided accurate results [8]. The only dis-
crepancy found was that the run-time of virtual testing was more than its physical counterpart. Although
virtual testing is more time-consuming than physical testing, the ability to test before silicon outweighs
the disadvantages by accelerating the overall development cycle and reducing time-to-market [8].

3.1.3. AMS-VT: Overview and Limitations
The previous section highlighted the advantages of using virtual testing for test development. After
being proven that virtual testing allows for faster test development by allowing pre-silicon debugging
[8], different companies tried to make an advanced methodology for virtual testing that can be used in
the industry. Testinsight introduced a new methodology called AMS-VT, currently the most advanced
virtual testing methodology used by NXP [18]. Its development was encouraged by the increasing
complexity of semiconductor designs and the corresponding demand for more complex virtual testing
methodologies [18]. AMS-VT streamlines the test development flow, ensuring all the parts are in sync:
test program, ATE, DUT and the loadboard. The following things can be checked with AMS-VT pre-
silicon [18]:

• Validate the test program flow and the pass/fail status of the test suites.

• Validate ATE instruments and DUT setup throughout the test execution.

• Confirm ATE-DUT connectivity at every stage of the test program.

AMS-VT uses EDA software with a virtual ATE in a closed-loop system for their stability. This closed-
loop system helps recognise the point at which an error occurs to accelerate test program bring-up and

3.1. Virtual Testing 21

Figure 3.3: AMS-VT [18]

debugging while improving quality. The working of AMS-VT is shown in Figure 3.3. In a closed-loop
system, the ATE operating system connects through AMS-VT to an EDA environment, such as the
Cadence Spectre AMS simulator. It works according to the flow (also marked in Figure 3.3) given
below:

1. In the ATE operating system, all the activities of the ATE test program are recorded and stored
by the ATE Activity Trace in the form of stimuli.

2. The stimuli are then used to drive the DUT signals via the loadboard. The simulation environment
also records the DUT response.

3. The responses are then sent back to the ATE operating systems through the connection made
by AMS-VT.

4. The test program is then updated based on the response of the DUT, after which the loop is
restarted.

Test engineers can significantly reduce test development time and boost confidence in the test setup
by using AMS-VT to debug their loadboards and test programs before TO when ICs are delivered
for industrial manufacture [18]. This allows them to gain early insight by pre-silicon debugging the
developed product. One of the critical features of AMS-VT is its use of Verilog-AMS, an extension of
Verilog that supports analog and mixed-signal designs [18]. This capability is crucial for accurately
simulating the complex interactions between digital and analog components within the loadboard and
DUT, providing a more thorough simulation environment.

Limitations of AMS-VT
The current virtual testing environments solved most of the issues by allowing the exchange of re-
sources between different simulation software and allowing the same test program for both simulations
and physical ATE. These advancements have helped companies like Infinoen to reduce time-to-market
[10]. The most advanced virtual testing methodology, AMS-VT, further improved virtual testing for com-
plex ICs, making it suitable for industries to include it in their test development flow [18]. However,
despite these advancements, certain fundamental limitations constrain its effectiveness and highlight
the need for further innovation.

One significant limitation is the inaccuracy of the loadboard model. The current model is repre-
sented as an ideal netlist in Verilog-AMS, which is manually created. This manual process is prone
to human errors, and it fails to capture real-world characteristics like parasitics. This does not allow
for accurate pre-silicon debugging. Another significant limitation of AMS-VT is its current restriction of
single-site simulations [18]. This is problematic since real loadboards have multiple sites, each with
unique parasitic effects and voltage differences. This also poses a significant issue in the debugging of
the test program, as the test engineers cannot predict how the program will behave on different sites.

To develop a robust test program, it is important to simulate all sites, as site-to-site variations can
affect the program’s performance regarding voltage levels and timing. Since AMS-VT cannot handle
multiple site simulations, a loadboard model that can accurately emulate these site-to-site variations is

22 3. Virtual Testing and Digital Twinning

Figure 3.4: Digital Twinning Setup [43]

needed so that the test engineers can predict the behaviour of the test program on different sites. Due
to these significant limitations, AMS-VT can only debug basic ATE-DUT connectivity and test flow. It
cannot thoroughly debug the test program regarding site-to-site voltage and timing variations. These
limitations highlight the need for more accurate digital twinning of the loadboard.

3.2. Accurate Loadboard Modelling
The importance of virtual testing methodologies was discussed in the previous section. A critical lim-
itation was identified: the current loadboard model is an ideal netlist made manually, not considering
physical effects like parasitics. To address this, a proper digital twinning method is necessary to model
loadboards accurately. Digital twinning refers to creating a virtual representation of a physical device
that mirrors its behaviour and characteristics in a virtual environment [15]. In this context, digital twinning
involves developing a virtual model of the loadboard that accurately reflects its physical characteristics
known as parasitics, allowing simulation to give results consistent with the actual physical board [16].

A systematic approach can be followed to generate a digital twin of the loadboard, shown in Fig-
ure 3.4. The initial step involves defining the physical dimensions and placements of the components
on the PCB, which means making a schematic and layout of the board. Then, the layout must be used
to run an electromagnetic simulation to get parasitic due to the physical characteristics of the board.
Finally, the component needs to be modelled, such as models of relays, and then all of this needs to be
added together as a netlist to create a digital twin of any PCB [41]. EDA tools can generate the netlist
and perform electromagnetic simulations to extract parasitics. These tools allow the user to develop a
complex system like PCB in a computer-based environment, which can then be analysed by running
simulations [42].

The approach shown in Figure 3.4 can generate a digital twin, but this requires several complex
steps, such as ideal netlist generation and parasitic extraction. Since no single EDA tool can complete
all these steps, a three-stage approach can be taken, as follows [43].

1. Schematic and Ideal Netlist: For the first stage, the schematic can be generated and then used
to create an ideal netlist.

2. Layout and Parasitics Extraction: Using the schematic, a layout can be generated and then
parasitic can be extracted by running electromagnetic simulations.

3.2. Accurate Loadboard Modelling 23

3. Final Netlist: The parasitics extracted can be integrated into the ideal netlist to create an accurate
netlist that accounts for the physical characteristics of the board.

Engineers are already creating the schematic and layout using an EDA tool [43]. The next step
is to find EDA tools to generate an ideal netlist and run an electromagnetic simulation for parasitics.
In the following sections, specific EDA tools for ideal netlist generation and parasitic extraction will be
discussed, their capabilities will be compared, and why particular tools have been selected for this
process.

3.2.1. EDA Tools for Ideal Netlist Generation
The process of ideal netlist generation is a critical step in developing a digital twin for a loadboard. A
netlist serves as the fundamental blueprint of the circuit, detailing the electrical connections between
various components on the PCB [44]. In the early stages of digital twinning, generating an ideal netlist
involves creating a simplified version of the circuit in HDL that captures the logic and connections
without accounting for physical effects such as parasitics. This ideal netlist is the foundation for more
detailed models for simulations [44]. In the context of loadboard design, where circuits can be highly
complex with numerous components, the ideal netlist simplifies the circuit to its logic state, enabling
engineers to focus on the functional aspects of the schematic.

Tools Overview
There are EDA tools from multiple vendors that can capture the schematic and then generate an ideal
netlist. It is crucial to analyse these tools and choose the best one for ideal netlist generation since an
error in netlist will disrupt the digital twinning process before it begins. Below is a detailed analysis of four
prominent EDA tools used for ideal netlist generation: Cadence Allegro, EasyEDA, Altium Designer,
and Autodesk Fusion 360.

• Cadence Allegro [45]: It is one of the industry’s most widely used EDA tools, especially for
complex PCB designs. The tool is known for its robust schematic capture and netlist generation
capabilities. After creating the schematic, the tool allows the user options for netlist generation,
including support for various netlist formats such as SPICE, Verilog, and VHDL. The netlist gen-
erated by Allegro is known for its accuracy and completeness, ensuring that all components and
connections are correctly represented.

• EasyEDA [46]: This cloud-based EDA tool has gained popularity due to its accessibility and ease
of use. While it does not have extensive features like Allegro, it offers a straightforward approach
for netlist generation. This tool was made for smaller and less complex projects or engineers
looking for a quick and easy way to generate a netlist.

• Altium Designer [47]: This is also a powerful EDA tool widely used in the industry for PCB de-
sign and netlist generation. It offers an integrated environment allowing engineers to generate
accurate netlists. Like Allgero, it can also handle large, complex schematics with numerous com-
ponents and connections. The generated netlist can be exported in various formats, including
SPICE and Verilog.

• Autodesk Fusion 360 [48]: This is primarily known as a 3D Computer-Aided Design (CAD) tool,
but it also includes an electronics design module that supports netlist generation. The netlist is
generated by capturing the schematic using the electronics design module. However, Fusion 360
is not as specialised as other EDA tools in netlist generation due to its main focus on 3D CAD.

Each of the tools mentioned above offers unique strengths for ideal netlist generation. The following
sections will compare these tools based on specific metrics to choose the best available tool.

Comparison Metrics
This section describes the metrics for evaluating the EDA tools for ideal netlist generation. The metrics
reflect the needs and challenges of ideal netlist generation for loadboards. The chosen metrics are as
follows.

24 3. Virtual Testing and Digital Twinning

Table 3.1: Comparison of Netlist Generation Tools

Tool Complex
PCB Design

Integration Usability Flexibility

Cadence Allegro + + – – + + +
EasyEDA – – – + + –
Altium Designer + – – + + +
Autodesk Fusion 360 + – – + + +

1. Complex PCB Design: This metric evaluates how well the tool can manage complex designs
involving multiple layers, numerous components, and interconnections.

2. Integration: This metric evaluates how well the netlist generation tool integrates with simulation
tools, particularly those used in virtual testing like AMS-VT.

3. Usability: This metric assesses the tool’s ease of use.

4. Flexibility: This metric assesses the tool’s ability to be flexible to specific needs, such as adapting
to different designs.

The tools will be graded for each metric described above. There are four levels using which the
metrics will be evaluated:

• “+ +”: This represents optimal performance, which means no more improvement is required.

• “+”: This means satisfactory performance, indicating that some improvements can be made, but
it is still acceptable.

• “–”: This represents below marginal performance, indicating a need for improvement to reach
an adequate level.

• “– –”: This means poor performance, indicating a need for significant improvements.

Tool Comparison and Analysis
This section evaluates the EDA tools based on the metrics for ideal netlist generation. In Table 3.1,
the grades for each tool across the four metrics can be seen. Cadence Allegro was the best tool for
handling complex PCB designs, a grade of (+ +), due to its ability to handle multi-layer, high-density
designs. EasyEDA scored the lowest, with a grade of (–), due to its inability to handle complex design
as it is suitable for complex projects. The other two tools scored a grade of (+) as they both can
handle more complex designs, but they are slightly less powerful than Allegro. All the tools scored the
worst possible score in integration due to them generating a multisite netlist, whereas AMS-VT can
only handle single-site netlists. The other three tools scored (+) in flexibility as they can handle multiple
design configurations with ease. The only designs they cannot handle properly are configurations when
a loadboard has two boards. However, due to constraints at NXP, which require using Cadence tools to
maintain compatibility across all stages of the design and testing process, Cadence Allegro has been
selected as the primary tool for ideal netlist generation.

3.2.2. EDA Tools for Parasitics Extraction
Parasitics extraction determines the accuracy of the virtual model when compared with its physical
counterpart [16]. This quantifies the four basic PCB parasitics explained in Section 2.4. The process of
parasitics extraction involves using specialised EDA tools to simulate the PCB layout. This is a complex
process as loadboard is a multilayer PCB in which several things contribute to the increase of parasitics
[29]. Another significant challenge is the frequency-dependent nature of parasitics. As the operating
frequency of the signals on the loadboard increases, the parasitic effects also increase [49].

3.2. Accurate Loadboard Modelling 25

Tools Overview
Parasitics extraction needs specialised tools that can simulate a PCB layout to predict the possibilities
of unwanted elements. Multiple tools in the market allow the user to run an electromagnetic simulation
for parasitics extraction. The result of these tools will determine the accuracy of the digital twinning
process of the loadboard. Below is a detailed analysis of four prominent EDA tools: Cadence Sigrity
Aurora, Cadence Sigrity PowerSI, Keysight ADS, and Siemens hyperLynx.

1. Cadence Sigrity Aurora [50]: It is known for its early detection of signal and power integrity
issues at every design stage. It integrates with Cadence’s PCB design environment, making
it a popular choice for designers within the Cadence ecosystem. While it can handle complex
PCB designs, its key limitation is the lack of frequency-dependent analysis, which can limit its
effectiveness in situations where frequency-dependent parasitics play a significant role.

2. Cadence Sigrity PowerSI [51]: It is another tool from the Sigrity suite that offers accurate
electrical analysis for PCBs, enabling comprehensive studies on signal and power integrity and
frequency domain simulations. Unlike Aurora, PowerSI can extract frequency-dependent para-
sitics, making it ideal for high-frequency applications. It is compatible with various complex layout
databases where the accurate modelling of parasitics based on frequencies is essential for en-
suring signal integrity.

3. Keysight ADS [52]: It is a tool known for its RF design capabilities. While this is not exclusively
a parasitic extraction tool, it offers post-layout electromagnetic simulation features that can be
used for parasitics extraction. The strength of this tool is its frequency domain analysis, which
makes it highly suitable for applications involving high-frequency signals. However, its primary
focus on RF applications may be more complex for specific parasitic extraction tasks than tools
like PowerSI.

4. Siemens hyperLynx [53]: It is an EDA tool provided by Siemens that allows electromagnetic
simulations for parasitics extraction. It is mainly known for its ease of use and ability to provide
insights into post-layout parasitics quickly. It also includes frequency-domain analysis, making it
suitable for high-frequency designs. However, while it is user-friendly, it may not offer the same
accuracy of frequency-domain analysis as specialised tools like PowerSI or Keysight ADS.

Each of the tools mentioned above offers unique strengths for parasitic extraction. The following
sections will compare these tools based on specific metrics to choose the best available tool.

Comparison Metrics
This section introduces the metrics that will be used to evaluate the parasitics extraction tools. These
metrics are based on the requirements for digital twinning of the loadboard. The five metrics are Com-
plex PCB Design, Integration, Frequency Domain Analysis, Run-Time, and Computing Resources.

1. Complex PCB Design: This metric assesses the tool’s ability to manage complex PCB layouts
involving multiple layers, numerous components, and interconnections.

2. Integration: This metric evaluates how well the parasitics extraction tool integrates with PCB
design tools.

3. Frequency Domain Analysis: This metric assesses the tool’s ability to perform frequency-
domain analysis to capture the effects of frequency on parasitics.

4. Run-Time: This metric evaluates how long it takes for the tool to complete parasitics extraction.

5. Computing Resource: This metric assesses the tool’s demand for computing resources, such
as CPU and memory usage.

The tools will be evaluated by being assigned a grade for each metric. A tool can score four grades,
which are defined below.

• “+ +”: This represents optimal performance, which means no more improvement is required.

26 3. Virtual Testing and Digital Twinning

• “+”: This means satisfactory performance, indicating that some improvements can be made, but
it is still acceptable.

• “–”: This represents below marginal performance, indicating a need for improvement to reach
an adequate level.

• “– –”: This means poor performance, indicating a need for significant improvements.

Tool Comparison and Analysis
In this section, the four tools for parasitics extraction are evaluated based on the metrics. In Table 3.2,
the grades for each tool across the five metrics can be seen. All three tools except Keysight ADS got a
(+ +) grade in handling complex designs and integration with PCB design tools, as they can effectively
handle multi-layer designs and integrate seamlessly with PCB design tools. KeysightADS scored a
lower grade, (+), in complex designs and integration due to its limited handling of large designs and lack
of interoperability with design tools. PowerSI proved to be the best tool for frequency domain analysis
due to its ability to account for frequency-related changes in parasitic behaviour. At the same time,
Sigrity Aurora scored the lowest in this metric, as the frequency was not considered while extracting
parasitics. Siemens and PowerSI scored the worst in run-time and computing resource efficiency as
they were the best in accuracy, which is why it takes several resources and time to extract parasitic.
Sigrity Aurora scored the best in these parameters due to it being a frequency-independent tool and
less accurate. Even though all of the tools have their advantages, due to constraints at NXP, which
require Cadence tools to maintain compatibility across all stages of the design and testing process,
only Cadence tools can be used. To compare the two cadence tools, it is important to determine the
effects of frequency on transmission line parasitics. As the frequency increases, the parasitics see a
change in their values, as described below.

• Resistance: As frequency increases, the resistance of the transmission line also increases. For
example, the resistance for 1 mm of a transmission line at 1 Hz, which is 0.2 Ω, increases to
around 0.6Ω at 5 GHz [54].

• Inductance: The inductance decreases with increased frequency. A 0.45 nH at 1 Hz for 1 mm
of a transmission line goes down to around 0.38 nH at 5 GHz [54].

• Capacitance: As frequency increases, the capacitance decreases slightly. For example, a 0.12
pF capacitance for 1 mm of the transmission line decreases to around 0.1 at 5 GHz [54].

• Conductance: The conductance increases with the frequency, going from 0.05 S at 1 Hz to 0.1
at 5 GHz for 1 mm of the transmission line [54].

This change in the parasitic values shows that the frequency has a considerable effect on R, L, G,
and C. These changes can then have a more significant effect on the further calculations for charac-
teristic impedance. To account for these changes in parasitics extraction, it is critical to use a tool to
extract the parasitics based on the frequency. So, due to the need to include frequency domain anal-
ysis for parasitics extraction, PowerSI is the better tool amongst the two cadence tools for extracting
loadboard parasitics.

3.2.3. Digital Twinning Limitations
Despite the methodologies and EDA tools discussed for the digital twinning of loadboards, significant
limitations still highlight the need for an automated framework to manage these processes effectively.
These limitations include the complexity of the tools, the challenges in combining their outputs, and the
specific requirements of adapting the results to a virtual testing environment like AMS-VT.

One of the most significant limitations is that no available EDA tools can combine the parasitics
extracted from the PCB layout with the ideal netlist generated from the schematic [42]. This integration
is crucial to generate a final netlist that accurately reflects the real-world behaviour of the loadboard.
Without this integration, the netlist remains ideal, failing to capture the parasitic effects that can impact
voltage and timing. The absence of such a framework means that this process must be done manually,
which is time-consuming and prone to errors [42]. The other limitation is that the EDA tools are highly
specialised and complex. Engineers must spend significant time setting up and running simulations

3.2. Accurate Loadboard Modelling 27

Table 3.2: Comparison of Parasitics Extraction Tools

Tool Complex
PCB De-
sign

Integration Frequency
Domain
Analysis

Run-Time
Efficiency

Computing
Resource
Efficiency

Cadence Sigrity
Aurora

+ + + + – – + + + +

Cadence Sigrity
PowerSI

+ + + + + + – –

Keysight ADS + + + + –
Siemens HyperL-
ynx

+ + + + + – –

accurately [55]. Even if engineers complete the setup, a manual setup can lead to substantial errors,
ultimately affecting the accuracy of the digital twinning process. Combining the parasitics into an ideal
netlist is a problematic process that also requires a lot of time and knowledge [55]. Finally, since
loadboards can be different for multiple projects, the engineers would have to make a new setup for
every loadboard design, which is inefficient. Even then, the netlist would not work in AMS-VT since it
will be multisite, whereas it can only handle a single-site netlist.

These limitations highlight the critical need for an automated framework to manage the digital twin-
ning of loadboards. Such a framework would automate the integration of parasitics with the ideal netlist,
ensuring the results are formatted correctly for AMS-VT and reducing the dependency on error-prone
manual processes. By implementing this framework, we can significantly improve the accuracy and
efficiency of the digital twin process, leading to more reliable virtual testing and faster time-to-market
for semiconductor chips.

4
Framework for Accurate Loadboard

Modeling
This chapter derives the requirements based on the limitations of the current methodology and then
proposes a new framework for accurate loadboardmodelling to meet the derived requirements. Section
4.1 derives the framework’s requirements by analysing the limitations of the current methodology and
operating conditions of the loadboard in the real-world. Finally, Section 4.2 introduces the framework
proposed in this thesis to generate an accurate loadboard model and meet the requirements derived
in 4.1.

4.1. Derivation of Requirements for Loadboard Modelling
There is a need for accurate loadboard modelling to predict site-to-site voltage variations, timing de-
lays, and other critical parameters. The current methodology relies onmanually creating an ideal netlist,
which lacks accuracy due to parasitics and the effects of external parameters not being included. This
can lead to discrepancies between simulation and real-world performance. By analysing the limitations
of the current methodology and testing conditions under which the loadboard operates, some primary
factors the framework must adhere to are derived. These factors include voltage accuracy, timing accu-
racy, integration with AMS-VT, automation level, component modelling, generalization, and execution
speed.

4.1.1. Limitations of the Current Methodology
The current methodology to generate a loadboard is to create a single-site ideal netlist for the loadboard
manually. The limitations of this methodology are:

1. Inaccuarte voltage predictions: The model does not account for site-to-site voltage variations
since it is an ideal netlist. This leads to simulation results that do not reflect real-world behaviour,
which leads to inefficient test program debugging.

2. Neglect of Operating Conditions: Frequency and temperature effects are not considered.
These effects considerably impact voltage, and due to the absence of their inclusion, there is
a mismatch between simulated and physical behaviour.

3. Timing Inaccuracy: Lack of parasitics in the model results in unaccounted timing delays due to
the physical characteristics of the loadboard. This results in an inaccurate calculation of the pulse
width, which gave an error of 1.6% when compared to physical measurement.

4. Integration Challenges: Manual netlist generation may lead to errors while simulating in AMS-
VT.

5. Manual Process: The process of creating the ideal netlist is completely manual, leading to a
high potential for human errors.

29

30 4. Framework for Accurate Loadboard Modeling

6. Ideal Component Modelling of Relays: The physical characteristics of relays are not consid-
ered as they are modelled as an ideal switch. So, their effect on voltage and timing is not taken
into account, which leads to inaccuracy between simulation and real-world results.

7. Lack of Generalization: The methodology is not adaptable to different loadboard designs, es-
pecially unique configurations involving motherboards and daughterboards.

4.1.2. Operating Conditions Impact
The loadboard operates under varying conditions of temperature and frequency, which significantly
impact the behaviour of parasitic elements:

• Temperature: The relation between resistance and temperature is linear, which means resis-
tance increases linearly with temperature; this can also be seen in the resistance versus tem-
perature graph shown in Figure 4.1. The graph demonstrates that the resistance increases from
approximately 0.65 to 0.9 ohms as the temperature rises from 0 to 100. This effect of temperature
on the resistance must be modelled accurately in the loadboard model to ensure the virtual model
mirrors the real-world conditions.

• Frequency: As frequency increases, various parasitic components such as Resistance (R), In-
ductance (L), Capacitance (C), and Conductance (G) exhibit different behaviours.

1. Resistance: As frequency increases, the resistance of the transmission line also increases.
For example, the resistance for 1 mm of a transmission line at 1 Hz, which is 0.2 Ω, increases
to around 0.6Ω at 5 GHz [54].

2. Inductance: The inductance decreases with increased frequency. A 0.45 nH at 1 Hz for 1
mm of a transmission line goes down to around 0.38 nH at 5 GHz [54].

3. Capacitance: As frequency increases, the capacitance decreases slightly. For example, a
0.12 pF capacitance for 1 mm of the transmission line decreases to around 0.1 at 5 GHz
[54].

4. Conductance: The conductance increases with the frequency, going from 0.05 S at 1 Hz
to 0.1 at 5 GHz for 1 mm of the transmission line [54].

This behaviour of the parasitic elements due to frequency affects the parasitic elements, affecting
the impedance calculated using these elements and angular frequency as shown in Equation 2.1.
The effect of frequency on impedance can be seen in Figure 4.2. According to the graph, there
is a slight decrease in the trace impedance when the frequency goes from 10 MHz to 100 MHz.
This change in impedance can lead to impedance mismatch, which can lead to reflections.

4.1.3. Deriving Requirements
Based on the limitations and the impact of the operational conditions, the following requirements for
the loadboard modelling framework are derived.

1. Voltage Accuracy: The model should be able to predict site-to-site voltage variations within a
tolerance of ±0.1 V for a 5 V input signal, ensuring less than 2% deviation.

2. Timing Accuracy: The loadboard model should account for the timing delays due to the physical
characteristics of the loadboard, with a timing accuracy within 1% for the pulse width.

3. Operating Conditions: The model must include the effects of temperature (from −40∘C to
125∘C) as that is the operating range for a loadboard. The model should also account for the
effects on parasitics and impedance due to frequency.

4. Component Modelling: The effects of the relay on voltage and timing should be considered. The
relay model should accurately represent the characteristics such as output capacitance, on-state
resistance, off-state leakage, and switching times.

4.1. Derivation of Requirements for Loadboard Modelling 31

Figure 4.1: Resistance vs Temperature Graph

Figure 4.2: Frequency vs Impedance

32 4. Framework for Accurate Loadboard Modeling

Table 4.1: Inputs and Outputs for Ideal Netlist Generation

Inputs (User) Outputs
Allegro Netlists Single-site netlist (ideal)
Module Name Channels list (to be used in stage 2)
Pin Mapping
Connector Mapping

5. Automation Level: The steps in the framework should be completely automated to reduce hu-
man errors. The ideal framework would automate schematic conversion to single-site netlist,
parasitic extraction, and parasitics integration, thereby minimizing manual intervention.

6. Integration with AMS-VT: The model generated by the framework should be able to integrate
into the AMS-VT environment. For example, the model should be single-site as AMS-VT can only
simulate one site at a time.

7. Generalization: The framework should be able to handle the different designs of the loadboard
without any manual changes. Loadboards can have different complexity based on the project re-
quirements, and there can also be cases where a loadboard is a combination of motherboard and
daughterboard. The framework must work for all these different configurations of the loadboard.

8. Speed of Execution: With automation, the framework should complete the run within 2 hours to
not hinder any project timelines.

4.2. Overview of Proposed Framework
This section introduces the proposed framework to address the limitations in the current methodology
to create an accurate loadboard model. This framework is designed to integrate the parasitics and
other physical effects of the loadboard into a netlist that can be seamlessly used within the AMS-
VT environment. The framework is structured into three primary stages: Ideal Netlist Generation,
Parasitics Extraction, and Parasitics-Reflection Integration. These stages ensure that the final model
accurately reflects the physical characteristics of the loadboard, thereby improving the accuracy and
reliability of pre-silicon validation.

4.2.1. Key Stages of the Framework
The three critical stages of the framework are briefly explained in this section.

Ideal Netlist Generation
The first stage involves generating a formatted, single-site netlist from the schematic of the loadboard.
This process uses Cadence Allegro to capture the schematic and generate a multisite ideal netlist in
Verilog. This Allegro netlist is then formatted using a Python script that converts the multisite netlist
to a single site based on the user input of the site number. This single-site netlist is then converted
to Verilog-AMS by adding an analog block to handle both digital and analog signals of the loadboard.
This stage includes validation steps to ensure the netlist meets the integration requirements. The ideal
netlist is checked for errors in its structure and formatting. This validation ensures that the netlist can
be integrated with the existing AMS-VT environment without issues. The inputs and outputs of this
stage are shown in Table 4.1. This stage addresses Requirement R6 (Integration with AMS-VT) and
contributes to Requirement R5 (Automation Level) by automating single-site ideal netlist generation
from the schematic.

Parasitics Extraction
Once the ideal netlist is generated, the next stage involves extracting the parasitics of the loadboard
channels. This stage uses the PowerSI Cadence tool to extract the parasitics of the channels. These
channels are taken by the formatted ideal single-site netlist generated in the first stage. The frame-
work also takes the frequency of the project by the user and feeds it to the Cadence tool to extract
the parasitics based on the frequency. The cadence tool setup is automated using Python and Tool

4.2. Overview of Proposed Framework 33

Table 4.2: Inputs and Outputs for Parasitics Extraction

Inputs Outputs
Frequency (User) R, L, G, C of each trace
Channels List (1st Stage)

Table 4.3: Inputs and Outputs for Parasitics and Reflection Integration

Inputs Outputs
Temperature (User) Final Accurate Netlist
DUT Impedance (User)
Ideal Netlist (1st Stage)
R, L, G, C (2nd Stage)

Command Language (TCL) commands. This stage provides the channels’ parasitic resistance, capac-
itance, inductance, and conductance in an Excel sheet. The inputs and outputs of this stage are shown
in Table 4.2. This stage addresses requirement: R3 (Operating Conditions) by considering frequency
effects on parasitics and enhances Requirement R5 (Automation Level).

Parasitics and Reflection Integration
The final stage involves the integration of parasitics and reflections into the ideal netlist. A Python
script calculates the impedance of each channel using the parasitics obtained in Stage 2 and adjusts
the resistance value based on Equation 5.1. In this equation, 𝑅0 is the resistance at a reference tem-
perature, R(T) is resistance at temperature T, and 𝛼 is the temperature coefficient of resistance for the
conductive material.

𝑅(𝑇) = 𝑅0 (1 + 𝛼(𝑇 − 𝑇0)) (4.1)

After calculating the impedance of the channel of the loadboard, it is then used to find impedance
discontinuities along the way of propagation. The script calculates the reflection coefficient for the
impedance mismatch between ATE and loadboard, mismatch due to passive components, and be-
tween loadboard and DUT. Suppose a mismatch is found at any point. In that case, the framework
calculates the amount of reflection in that particular channel, and its effects on the voltage are then
included in the final netlist using a Verilog module. Using a Python script, the parasitics and reflections
are added to the ideal netlist as a Verilog-AMS module. After this stage, an accurate model of the
loadboard is generated that can predict the timing delays and site-to-site voltage variations. The inputs
and outputs of this stage are shown in Table 4.3. This stage addresses requirements: R1 (Voltage
Accuracy), R2 (Timing Accuracy), R3 (Operating Conditions), and contributes to R5 (Automation
Level).

4.2.2. Component Modelling
The basic components, such as resistors and capacitors, were alreadymodelled in the existing method-
ology. But components like Solid State Relays (SSR) have ideal models in the current scenario that
work like a perfect switch. SSR is an electronic switching device that has no moving parts. It consists
of an input circuit, a drive circuit, and an output circuit, which also acts as the switch [56]. The frame-
work includes detailed modelling of SSR as they have factors such as output capacitance, On-State
Resistance, Off-State Current Leakage, and switching time that can impact signal integrity. The values
at room temperature (25∘𝐶) and definition of these factors are given in Table 4.4 [57]. The framework
generates a model for SSR that incorporates its characteristics. The new model ensures that the phys-
ical behaviour of the SSR is captured accurately during simulations to mirror their effects on voltage
and timing. This addresses requirement: R4 (Component Modeling).

4.2.3. Platform
The entire framework was automated using Python since it has robust libraries for automation, data
processing, and integration tasks [58]. Pyhton was also used to format the ideal netlist generated by
Allegro to a single-site netlist as required by AMS-VT. This automation significantly reduces the manual

34 4. Framework for Accurate Loadboard Modeling

Table 4.4: SSR Relay Characteristics

Parameter Value Unit Definition
Output Capacitance 27 pF The capacitance the relay must drive to

charge the MOSFET.
On-State Resistance 0.8 Ohms Resistance that occurs when the relay

is turned on.
Off-State Current Leakage 10 nA Small amount of current can still flow

through the relay even when turned off.
Switching On Time 0.12 ms The time it takes for the relay to switch

from off to on.
Switching Off Time 0.08 ms The time it takes for the relay to switch

from on to off.

effort needed for the current methodology, minimizing the potential for human error and speeding up the
overall process. Verilog-AMS was used as the language for the netlist due to its ability to model both
analog and digital components, making it ideal for the mixed-signal nature of loadboards. Verilog-AMS
also allows for seamless integration of the netlist with AMS-VT.

5
Framework Implementation

Following the overview of the proposed framework in Section 4.2, this chapter describes the imple-
mentation of the framework in detail. The first stage in which a single-site ideal netlist is generated is
explained in Section 5.1. The implementation is continued with Section 5.2, where the methodology to
extract the parasitics of the loadboard is explained. Section 5.4 continues with the model for calculat-
ing the impedance, reflection coefficient, and integration of parasitics and reflection in the ideal netlist.
Finally, Section 5.5 explains the automation methodology, which combines the algorithms of all three
stages.

5.1. Ideal Netlist Generation
This section describes the detailed implementation of the first stage of the framework that generates
an ideal single-site netlist in Verilog-AMS from a loadboard schematic. The first stage can be divided
into two steps, which are as follows.

1. Schematic to Multisite Netlist: The first step is transforming the loadboard schematic into a
multisite netlist. During this step, an ideal netlist is created in Verilog that reflects all the phys-
ical connections and components of the loadboard. This generated multisite netlist cannot be
integrated with AMS-VT since it can only handle single-site simulations.

2. Multisite to Single-Site Netlist: After getting the initial multisite netlist, the next step is to convert
it to a single-site netlist, as AMS-VT can only simulate one site at a time. After converting it to a
single-site, the netlist is converted to Verilog-AMS to handle analog, mixed signals.

5.1.1. Schematic to Multisite Netlist
In this step, a complete schematic of the loadboard is used to generate a preliminary netlist. In Section
3.2, four prominent industrial tools, Cadence Allegro, EasyEDA, Altium Designer, and Autodesk Fusion,
were introduced that can convert a schematic to its equivalent ideal netlist. Among these tools, Cadence
Allegro proved to be the best tool available due to NXP constraints, which could be used for ideal netlist
generation.

The loadboard schematic contains all the details regarding its functionality. The first few pages of
the schematic file comprise all the signals the loadboard includes, which aremade as block components
where the signals are given numbers starting from one. While designing, the engineer can use any
signal from any group based on the project’s requirements. The unused signals are still present in
the schematic as they are a part of the loadboard, even though they are not used. One of the signal
description blocks named “M31” is shown in Figure 5.1.

After the signal description blocks, the circuit diagrams of the sites are present. A schematic of Site-
1 for a loadboard design is shown in Figure 5.2. A single page can have multiple sites based on the
complexity of the loadboard. All the sites are identical, the only difference being the signals used and
the numbering of passive components. The main aim of this step is to convert this complete schematic
into a netlist format, which can then be used for further formatting.

35

36 5. Framework Implementation

Figure 5.1: Signals Description in Schematic

Figure 5.2: Single site loadboard schematic

5.1. Ideal Netlist Generation 37

The complete schematic made by designers is loaded in the Cadence Allegro tool. After loading the
schematic, Allegro can generate a netlist in multiple formats. As discussed in Section 3.1, Verilog is the
most suitable HDL for integration with AMS-VT. Verilog language was chosen as the netlist language
for seamless integration with the current virtual testing methodology. After selecting the appropriate
format for the netlist, Allegro creates a multisite netlist within seconds. The generated netlist contains
all the sites and components for signal description, such as M31.

5.1.2. Multisite to Single-Site Netlist
Allegro created a multisite netlist, but several issues arose when that netlist was used to do the simula-
tions. The main issue was that Allegro included the unused components, such as “M31”, in the netlist,
which gave an error as they were undeclared. Since AMS-VT could only handle a single-site, the sig-
nals of only one site were declared in the simulation. Another issue was the netlist’s inability to handle
mixed signals due to its Verilog format. This issue restricted the netlist usability as a loadboard consists
of analog and digital signals. The simulation environment flagged numerous modules that were either
unnecessary for the simulation or not properly declared within the netlist. So, to resolve these issues,
an algorithm was developed to convert the multisite to a single-site netlist and add an analog block to
handle analog mixed signals.

The flowchart of the algorithm is shown in Figure 5.3. The algorithm takes five inputs from the user
to start the netlist formatting, described below.

• Site Number: Since the main aim of this algorithm is to convert the multisite Allegro netlist to a
single site, it is necessary to determine the site on which the netlist is to be created. This is a
number input by the user, such as “1” or “2”, that tells the algorithm the site on which the single-site
netlist will be created.

• Dual-Board: This input determines whether the loadboard comprises two different boards. The
user needs to give a “Yes” or “No” input, which will determine the configuration of the loadboard
based on which the algorithm will run.

• Connector Mapping: This Excel file contains information on how the two boards are connected
when a loadboard is made of two different boards. This determines the signals from each board
that connect to make a complete loadboard for that project.

• PIN and Module Name: This is an input given by users where they can determine the output
PIN and module name for their convenience.

• Allegro Netlist Location: This contains the path to the netlist generated by Allegro. If this is
a dual-board configuration, then two paths will be provided that contain the location of Allegro
netlists for both boards.

After determining these inputs, the user can run the complete algorithm. This algorithm was de-
veloped in Python since it has robust libraries for automation, data processing, and integration tasks.
As shown in Figure 5.3, the algorithm can be further divided into three stages to generate a single-site
ideal netlist. The stages are described below in detail.

1. Stage-1 (Unique Board Design): This is the first stage of the algorithm whose steps are high-
lighted in yellow in Figure 5.3. This step runs based on the “Dual-Board” input provided by the
user. This step deals with cases where a loadboard of a project is made of two different boards.
If the user provides “No” as the input to the “Dual-Board” parameter, the step is skipped as the
allegro netlist generated is the final one and does not require any modifications. If the input is
“Yes”, then this step takes the location of the allegro netlists and the connector mapping Excel file
(shown in Figure 5.4) containing information on how the two boards are connected. Based on the
Excel file, the algorithm searches for the “X4” component in both the netlists. Then, it connects the
connections mentioned in the file, such as PIN 18 of the Motherboard will be connected to PIN 15
of the Daughterboard. To connect these two, the algorithm writes a newmodule named “alias_bit”
that connects the two signals by indicating a zero voltage drop between them. Figure 5.5 shows
motherboard and daughterboard signals on the left and the final output on the right. The PINs 18
from the motherboard and 15 from the daughterboard, marked by orange, are connected using

38 5. Framework Implementation

Figure 5.3: Mutlisite to Single-Site Flowchart

5.1. Ideal Netlist Generation 39

Figure 5.4: Connector Mapping Excel File

the alias_bit module, and an orange box on the right-hand side of the image marks the resulting
connection. After running this stage, the algorithm makes one combined netlist where both the
netlists are connected.

2. Stage-2 (Multisite to Single-Site): After stage-1 of the algorithm, a final Allegro netlist is gen-
erated. The next step is to convert this netlist to a single-site netlist. This step is highlighted by
green in Figure 5.3; this works as a recursive backtracking algorithm based on the user input
of the site number. The user provides the site number whose netlist will be created; based on
the site number, the algorithm searches for the component with that particular site number. This
component contains the final output signals of that specific site, and the algorithm stores all the
signals of that component in a list. Based on the list of signals, the algorithm backtraces the con-
nection that led to that particular output. This backtracking algorithm works only if the signal in the
list is neither ground nor voltage supply, as this signal means that the output is directly connected
to either ground or voltage supply, so there is no need for further tracing. If the signal is neither
ground nor voltage supply, then the algorithm traces all the components and connections that the
signal has in the netlist. If a component is found, the algorithm stores it in a set and then checks
its connections. If the connections of the components have new signals, then the algorithm will
trace the components and declarations of the extra signal. This loop continues until all the com-
ponents and their connection to that output are included, after which the algorithm moves on to
the following output signal from the list. If the output has no subsequent connection, the algorithm
will automatically move on to the next output in the list. The algorithm continues this operation for
all the signals so that all connections and components of that particular site are included in the
netlist. When no signal remains in the list, the algorithm writes all the declarations and compo-
nents in a new file. After writing all the connections stored previously, an ideal single-site netlist
is generated from an Allegro multisite netlist.

3. Stage-3 (Verilog to Verilog-AMS): After completing stage-2 of the algorithm, a single-site ideal
netlist is created in Verilog format. The next step is to convert this netlist into Verilog-AMS to
handle analog mixed signals. This step is the final step and is highlighted by grey in Figure 5.3.
After creating the single-site netlist, the algorithm takes the output component, the site number
component. Then, it stores the output signal and its connections in a list. After storing all the
signals and their connections, the algorithm adds an analog block at the end of the netlist. It adds
those connections to show that the voltage drop between them is zero, indicating the signals
are connected. After converting the component to an analog block, the algorithm checks if the
user has provided output PIN names as input. If an input is provided, the algorithm changes the
output connection to the desired name based on the input. This makes it easier for the users to
differentiate between the projects and makes it easy to understand.

After carefully going through the three-stage algorithm, the Allegro netlist was converted into an
ideal single-site netlist easily integrated with AMS-VT. After running this algorithm, the user generates
an ideal single-site netlist, which can be used for simulation if there are no accuracy requirements.

40 5. Framework Implementation

Figure 5.5: Connecting Motherboard and Daughterboard Signals

Table 5.1: PowerSI Parasitics for different frequencies

Frequency (MHz) R (Ω) L (nH) C (pF) G (S) Impedance (Ω)
10 0.922 63.2 27.951 0.0000675 47.67
20 0.995 62.7 27.947 0.000135 47.25
30 1.083 62.2 27.941 0.000202 46.98
40 1.182 61.8 27.932 0.000269 46.77
50 1.287 61.4 27.921 0.000336 46.61

5.2. Parasitics Extraction
An ideal single-site netlist was successfully generated in section 5.1. This netlist can be used for simula-
tion, but it cannot predict site-to-site variations. The reason behind this is the absence of consideration
of parasitics due to the physical layout of the loadboard, as explained in section 2.4. To include the par-
asitic in the netlist, the first step is to extract them (R, L, G, C) from the physical layout of the loadboard.
An example layout file for a loadboard is shown in Figure 5.6.

Specialised EDA tools can simulate a PCB layout and extract their parasitics. In section 3.2, four
prominent tools were introduced that can be used for parasitics extraction, which are Cadence Sigrity
Aurora, Cadence Sigrity PowerSI, Keysight ADS, and Siemens hyperLynx. Due to the constraints
at NXP, only cadence tools were available for parasitics extraction. Among the two cadence tools,
PowerSI proved to be the best tool as it could extract parasitics based on frequency, and frequency
has a considerable effect on R, L, G, and C [54]. An NXP loadboard layout was uploaded to the
PowerSI tool to check the impact of frequency on R, L, G, and C of a channel of the loadboard. The
parasitics extraction for one channel of loadboard from PowerSI for multiple frequencies can be seen
in Table 5.1. As frequency increases, the resistance and conductance increase, whereas inductance
and capacitance decrease.

To extract parasitic parameters using PowerSI, several steps need to be done in a proper sequence.
These steps require a detailed understanding of how the tool works, so to make it easier for engineers
and reduce manual errors, the extraction was automated using a combination of Python scripts, Tool
Command Language (TCL) commands, and PowerShell execution. The algorithm for the automation
of parasitic extraction is shown in Algorithm 1. The first step is to read the list of channels provided
as a CSV input, provided from stage 1, and store them in a list. The script then starts generating TCL
commands that contain the necessary commands to set up and run the simulation for the automation
of PowerSI. This starts with base commands to open the correct workspace in PowerSI for parasitics
extraction, and then the command for opening the laodboard layout is added. The script then selects
only the channels provided and ground nets, which are moved to a designated group to create ports.
After this, the frequency of the loadboard is specified in commands based on which the parasitics will

5.2. Parasitics Extraction 41

Figure 5.6: Loadboard Layout

42 5. Framework Implementation

Table 5.2: Extracted Parasitic Values for Loadboard Site 1

Net R (Ω) L (nH) C (pF) G (S)

1 0.922 63.2 27.951 0.000067455
2 1.131893 109.28 48.208 0.0000988
3 1.033932 102.38 45.948 0.0000128
4 1.186084 112.33 49.506 0.00007856
5 0.9825 94.65 38.099 0.0000054
6 1.161864 117.37 61.753 0.0000872
7 1.044306 97.884 42.967 0.0000198
8 0.808466 58.217 25.931 0.0000471

be extracted. Finally, the command for the start of the simulation and the export of results to a CSV
file is generated. All these TCL commands are saved in a file, which will be executed in PowerShell.
The script creates a PowerShell command that calls PowerSI with the TCL script as an argument. The
PowerShell command is executed using Python’s subprocess module, which runs PowerSI in batch
mode and then executes the TCL script. After the complete run, a CSV file is generated with the
parasitics of the channels as shown in Table 5.2.

Algorithm 1 Automated Parasitic Extraction using PowerSI
1: Input:
- channels.csv: CSV file containing the list of channels.
- layout.spd: Loadboard layout file for PowerSI.
- frequency: Frequency at which parasitics are to be extracted.

2: Output: Parasitic parameters (𝑅, 𝐿, 𝐺, 𝐶) for each channel.

3: function ParasiticExtraction
4: Step 1: Read the CSV file
5: Read the csv file channels.csv.
6: Store the channels in a list.

7: Step 2: Generate TCL Script for PowerSI
8: Initialize a list commands with base TCL commands for PowerSI.
9: Include commands to open the layout file layout.spd.
10: Set up the PowerSI workflow for parasitic extraction.
11: Add commands to select and configure the nets for the list of channels.
12: Set the simulation frequency to frequency.
13: Add commands to run the simulation and export the results in a CSV file.
14: Write the TCL commands to a file cadence.tcl.

15: Step 3: Execute PowerSI with TCL Script
16: Use PowerShell to execute PowerSI with the generated TCL script.
17: Monitor the execution for completion or errors.
18: After execution, R, L, G, and C for all channels are stored in a CSV file.
19: end function

5.3. Component Modelling
The passive components on the loadboard are the resistor, capacitor, and Solid-State Relay (SSR).
Accurate modelling of passive components is crucial in loadboard modelling to ensure that the model
closely reflects real-world performance. While the models of resistors and capacitors have already
been implemented in Verilog-AMS, SSR requires a more detailed model to account for its physical
characteristics. The initial SSR model is just a standard switch, but the SSR has on-state resistance,
off-state leakage, output capacitance, and switching time. SSR is quite different from standard switches

5.3. Component Modelling 43

and mechanical relays as they use photodiodes to switch between channels electrically instead of
switching using physical parts [57]. This difference in operation leads to certain parasitic characteristics.
The parasitic values for a Panasonic relay, the most common industrial-use SSR, are mentioned below.

• On-State Resistance (𝑅on): It is the resistance that occurs when the relay is turned on. 𝑅on
is approximately 0.8 Ω at 25∘𝐶. This resistance increases with temperature due to a positive
temperature coefficient, which is 0.006818.

• Off-State Current Leakage: Refers to the small amount of current that can still flow through the
relay even when turned off. The current leakage sees a slight increase with increasing voltage
reaching 10 nA at a voltage value of 60 V.

• Output Capacitance (𝐶out): It is a parameter that affects how much charge the relay needs to
drive the MOSFET. This is voltage-dependent, decreasing exponentially with increased applied
voltage. At 0 V, 𝐶out is 27 pF, decreasing to 5.6 pF at 60 V.

• Switching Time: This is the time the relay takes to switch to a different state, which means the
time taken for the relay to go from off-state to on-state and vice-versa. The turn-on time (𝑡on) is
0.12 ms and the turn-off time (𝑡off) is 0.08 ms.

5.3.1. SSR Model Implementation
A behavioural model in Verilog-AMS was developed to account for the above-mentioned physical char-
acteristics and accurately represent the relay model in the netlist. The model created was a static
model that does not consider the power transfer during switching, so the parasitics are only considered
at the time of either on or off state and not in between switching. This model also captures the elec-
trical behaviour of SSR by accounting for the temperature and voltage dependencies of the physical
attributes.

Control Signal Handling and Switching Delays
The relay state is controlled by a voltage signal, 𝑉CMD, which is applied to the control terminal of the
relay. The model changes the state of the relay based on 𝑉CMD and then switches the state after
accounting for the appropriate delay. The relay state S(t) is defined in Equation 5.1, where 𝑉th is the
threshold voltage value set for the model above which the relay is turned on and 𝑡cmd is the time when
the control signal changed.

𝑆(𝑡) = {1, if 𝑉cmd > 𝑉th and 𝑡 ≥ 𝑡cmd + 𝑡on
0, if 𝑉cmd ≤ 𝑉th and 𝑡 ≥ 𝑡cmd + 𝑡off

(5.1)

Voltage-Dependent Output Capacitance
This is the capacitance between the relay’s output terminals; the value of the capacitance changes with
voltage. This behaviour can be modelled using depletion capacitance of a reverse-biased p-n junction
[59]. The junction capacitance 𝐶(𝑉out) is shown in Equation 5.2. Here 𝐶𝑜 is zero-bias capacitance at
0 V, which is 27 pF, 𝑉out is the voltage across the terminal, 𝑉𝑗 is the built-in junction potential, and m is
the grading coefficient, which is 0.5 [59].

𝐶(𝑉out) =
𝐶0

(1 + |𝑉out|𝑉𝑗
)
𝑚 (5.2)

The voltage across output terminals of the relay, which can be calculated by Equation 5.3, where
𝑉IN_P and 𝑉IN_N are the voltages at the positive and negative output terminals of the relay, respectively.

𝑉out = 𝑉IN_P − 𝑉IN_N (5.3)

Based on the literature [59], the built-in junction potential, 𝑉𝑗, for reverse-biased p-n junction is 2.5
V. The output capacitance can be expressed as a function of voltage as shown in Equation 5.4.

44 5. Framework Implementation

𝐶(𝑉out) =
27 pF

(1 + |𝑉out|2.5 V)
0.5 (5.4)

On-State and Off-State Resistance
The conductive path of the relay is modelled using a resistance that switches from 𝑅on to 𝑅off based on
the relay state. The on-state resistance is calculated using the equation shown in Equation 5.5, where
the Temperature is in degrees Celsius.

𝑅on = 0.8 × [1 + 0.006818(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 25∘C)] (5.5)

In the off-state of the relay, there is a current leakage that changes based on the voltage. This slight
increase in current leakage corresponds to an off-state resistance ((𝑅off)). The value of this resistance
can be calculated by considering that the leakage at 60 V is around 10 nA. Using this data, the value
of 𝑅off can be calculated using Equation 5.6, which came out to be 6 GΩ.

𝑅off =
𝑉off
𝐼leak

= 60 V
10 nA = 6 GΩ (5.6)

5.3.2. Algorithmic Representation of the SSR Model
The complete working of the relay verilog model is explained in Algorithm 2. Firstly, the model takes
control voltage (𝑉cmd(𝑡)) and temperature as input. The control voltage then determines the state of the
relay using Equation 5.1, which determines if the relay is on or off and accounts for the switching delay.
Themodel monitors 𝑉cmd(𝑡) for changes and updates the relay state after the switching delay. After this,
the temperature-dependent resistance is calculated using Equation 5.5. Then based on the relay state
𝑅eff, which is the effective resistance, is decided. Next, the voltage across relay terminals is calculated
using Equation 5.3, which is then used to find the effective output capacitance using Equation 5.4.
Finally, the resistive and capacitive currents are calculated and added to get the total current travelling
through the relay. The equivalent circuit diagram for the algorithm is shown in Figure 5.7.

𝑉cmd
𝑅ctrl

LED

Opto-Isolator

IN_N IN_P

𝑆 𝑅on/off

𝐶out

−
+𝑉applied

Figure 5.7: SSR Circuit Diagram

5.4. Parasitics and Reflection Integration
In loadboard, impedance mismatches can occur, leading to reflection, ultimately affecting the transmit-
ted voltage as explained in Section 2.4. For an accurate loadboard model, it is crucial to calculate the

5.4. Parasitics and Reflection Integration 45

Algorithm 2 SSR Relay Model Algorithm
1: Input: Control voltage 𝑉cmd(𝑡), Temperature 𝑇
2: Terminals: Positive Terminal IN_P, Negative Terminal IN_N
3: Initialize: Last control voltage 𝑉cmd, last ← 𝑉cmd(0), relay state 𝑆(0), command change time 𝑡cmd ←
0

4: while Simulation is running do
5: Monitor control voltage 𝑉cmd(𝑡)
6: if 𝑉cmd(𝑡) ≠ 𝑉cmd, last then
7: Record command change time: 𝑡cmd ← 𝑡
8: Update last control voltage: 𝑉cmd, last ← 𝑉cmd(𝑡)
9: if 𝑉cmd(𝑡) > 𝑉th then
10: Set switching delay: 𝑑𝑒𝑙𝑎𝑦 ← 0.12
11: else
12: Set switching delay: 𝑑𝑒𝑙𝑎𝑦 ← 0.08
13: end if
14: end if
15: if 𝑡 ≥ 𝑡cmd + 𝑑𝑒𝑙𝑎𝑦 then
16: if 𝑉cmd(𝑡) > 𝑉th then
17: Set relay state: 𝑆(𝑡) ← 1
18: else
19: Set relay state: 𝑆(𝑡) ← 0
20: end if
21: end if
22: Compute temperature-adjusted on-state resistance:

𝑅on(𝑇) = 0.8 [1 + 0.006818(𝑇 − 25∘C)]

23: Determine effective conductance 𝐺eff:
24: if 𝑆(𝑡) = 1 then
25: 𝑅eff ←

1
𝑅on(𝑇)

26: else
27: 𝑅eff ←

1
6𝐺Ω

28: end if
29: Calculate voltage across output terminals:

𝑉out = 𝑉IN_P − 𝑉IN_N

30: Compute voltage-dependent output capacitance:

𝐶(𝑉out) =
27 pF

(1 + |𝑉out|2.5 V)
0.5

31: Compute resistive current:
𝐼res =

𝑉out
𝑅eff

32: Compute capacitive current:

𝐼cap =
𝑑
𝑑𝑡 [𝐶out(𝑉out) × 𝑉out]

33: Compute total current:
𝐼total = 𝐼res + 𝐼cap

34: Update simulation time 𝑡
35: end while

46 5. Framework Implementation

Table 5.3: Parasitic Elements of Loadboard Transmission Line

Frequency (MHz) R (Ohm) L (nH) C (pF) G (Siemens)
10 0.922 63.2 27.951 0.0000675

possible reflections in the loadboard and include their effects in the netlist. This section first explains
in detail the locations in the loadboard where reflections can occur and how the transmitted voltage is
affected by those reflections. Then, it describes the algorithm that calculates these reflections for all
the loadboard channels and adds its effects to the ideal netlist.

5.4.1. Transmission Line Parasitics and Characteristic Impedance
The transmission line of the loadboard can be characterized by R, L, G, and C, which are frequency
dependent. The parasitics of a transmission line of a loadboard, which are extracted using PowerSI,
are shown in Table 5.3. The accuracy of the PowerSI tool for parasitics extraction is validated in the
following chapter. These parasitics can be used to calculate the characteristics impedance of the trace
using Equation 5.7, where 𝜔 = 2𝜋𝑓. The characteristic impedance of the trace is independent of its
length and only depends on the parasitics and frequency. Using Equation 5.7 with the values given in
Table 5.3, the characteristic impedance at 10 MHz can be calculated as approximately 48.16Ω. This
characteristic impedance can now be used to calculate the mismatch and reflections that can occur in
a loadboard transmission line further.

𝑍0 = √
𝑅 + 𝑗𝜔𝐿
𝐺 + 𝑗𝜔𝐶 (5.7)

5.4.2. Reflection Calculation
Reflection in a transmission line can occur due to impedance mismatches at different points in a cir-
cuit. Based on the type of reflection, the reflected wave can have a destructive or constructive inter-
ference with the incident wave, thereby changing the transmitted voltage. Reflection can be quan-
tified using reflection coeffecient (Γ), which can be calculated using Equation 5.8, where 𝑍S is the
source impedance (impedance of the component from which the voltage is coming) and 𝑍L is the load
impedance (impedance of the component where the voltage is going). After the reflection the final
transmitted voltage (𝑉T) can be calculated using Equation 5.9.

Γ = 𝑍L − 𝑍S
𝑍L + 𝑍S

(5.8)

𝑉T = 𝑉incident × (1 + Γ) (5.9)
This reflection can occur at different points in a loadboard due to impedance mismatches; three

primary cases where reflection appears in a loadboard, as shown in Figure 5.8, are given below.

1. Case-1: ATE to Loadboard: This reflection occurs due to the impedancemismatch between ATE
and loadboard, Case-1 in Figure 5.8. In this case, ATE is the source impedance, and loadboard
is the load impedance.

2. Case-2: Passive Components in Loadboard: When a passive component is present in the
loadboard, the impedance of that segment changes, leading to an impedance mismatch, which
can also lead to reflection. This reflection occurs at two points, first when the signal enters the
segment of the transmission line where the passive component is present and when the signal
exits the segment with the passive component as shown by Case-2 in Figure 5.8.

3. Case-3: Loadboard to DUT: This is the final point where reflection can occur when the signal
goes to the DUT from the loadboard, which is Case-3 in Figure 5.8. In this case, the source is
the loadboard, and DUT is the load.

These three are the primary cases where reflection can occur in a loadboard. The calculation in
each case differs due to the type of reflection. The three cases are explained below with example
calculations explaining their effects on the incident voltage.

5.4. Parasitics and Reflection Integration 47

Figure 5.8: Reflection in Loadboard

Case 1: ATE to Loadboard
At the interface between ATE and loadboard, a reflection can occur if the impedance of ATE (𝑍S) is
different from the impedance of the loadboard transmission line (𝑍L). This mismatch can change the
voltage that is transmitted to the loadboard. To calculate the effect of this reflection on the voltage, the
impedance of ATE is taken as 50Ω, and the impedance of the laodboard channel is 48.16Ω calculated
using values in Table 5.3.

First, the reflection coefficient is calculated using the impedance values in Equation 5.8. The re-
flection coefficient is then calculated, which comes out to be -0.01875 as calculated in Equation 5.10.
The negative sign indicates that the reflected wave is inverted and related to the incident wave, which
will result in a destructive interference. After reflection, the transmitted voltage to the loadboard can
be calculated using Equation 5.9. For an input of 5 V, the transmitted voltage after reflection is 4.906
V as calculated in Equation 5.11. So, due to the reflection from ATE to the loadboard, there is a slight
reduction in the transmitted voltage.

ΓATE-LB =
48.16 Ω − 50 Ω
48.16 Ω + 50 Ω =

−1.84 Ω
98.16 Ω ≈ −0.01875 (5.10)

𝑉LB = 𝑉S × (1 − 0.01875) = 0.98125 × 5 V = 4.906 V (5.11)

Case 2: Passive Components in Loadboard
Passive components such as resistors, capacitors, and relays introduce impedance discontinuities
in the loadboard channel, which leads to reflections. These components change the characteristic
impedance of the segment of the transmission line where they are present, leading to mismatches be-
tween the previous segment and the passive component segment. The reflections occur at two points
due to passive components, first when the signal enters and leaves the component. So, to accurately
calculate the reflections due to passive components, the transmission line needs to be divided into
three segments as shown in Figure 5.8.

1. First Segment: This segment is not impacted due to passive components; the impedance is the
same as the transmission line, 𝑍1 = 48.16Ω. This segment is connected with the ATE, so it can
have reflections due to the mismatch between the ATE and loadboard.

2. Second Segment: This is the segment where the passive component is present. The impedance
of this segment (Z2) changes due to the component, and a reflection occurs when the signal
enters from the first segment to this one.

48 5. Framework Implementation

3. Third Segment: This is the final segment, which connects to the DUT, and its impedance is also
the same as the transmission line, 𝑍3 = 48.16Ω. In this segment, the reflection occurs when the
signal enters from the second segment, as there is an impedance mismatch due to the passive
component in the second segment.

If multiple passive components are present in a loadboard channel, all of them can be combined in
the second segment to calculate the total reflection due to them. This approach allows us to consider
the reflections due to all components while keeping the computational resources minimal. Two example
scenarios will be taken to understand the calculations of the transmitted voltage after reflection due to
passive components.

1. Example 1 (A series resistor is present of 10Ω): Due to the presence of a resistor, the impedance
of the second segment changes to 58.16Ω as calculated in Equation 5.12.

𝑍2 = 𝑍0 + 𝑅 = 48.16 Ω + 10 Ω = 58.16 Ω (5.12)

The reflection will happen at the first interface when the signal goes from the first to the second
segment, whose reflection coefficient comes out to be 0.094 from Equation 5.13. Using this
reflection coefficient, the transmitted voltage to the second segment when the incident voltage is
4.906 V is 5.368 V as calculated in Equation 5.14.

Γ12 =
𝑍2 − 𝑍1
𝑍2 + 𝑍1

= 58.16 Ω − 48.16 Ω
58.16 Ω + 48.16 Ω =

10 Ω
106.32 Ω ≈ 0.094 (5.13)

𝑉12 = 𝑉LB × (1 + Γ12) = 4.906 V × (1 + 0.094) = 4.906 V × 1.094 ≈ 5.368 V (5.14)

After the reflection at the first interface, the next reflection will occur at the second interface be-
tween the second and third segments. In this case, the reflection coefficient is -0.094, as from
Equation 5.13, the source and load impedance are just interchanged, thereby only changing the
sign of the coefficient. The final transmitted voltage to the third segment is 4.866 V as calculated
in Equation 5.15. There is a minor reflection compared to the initial voltage before the component,
which was 4.906 V. This is because constructive interference increases the voltage at the first
interface. Still, at the second interface, destructive interference decreases the voltage, cancelling
most of the reflection effect. As the value of the resistor increases, the effect due to reflection on
the incident voltage will also increase.

𝑉23 = 𝑉12 × (1 + Γ23) = 5.368 V × (1 − 0.094) = 5.368 V × 0.906 ≈ 4.866 V (5.15)

2. Example 2 (Solid State Relay and Series Resistance (10Ω)): A series resistance (10Ω) and
a relay with on-state resistance as 0.8Ω and output capacitance 𝐶out(𝑉) calculated using Equa-
tion 5.4 are present in the loadboard channel. Due to the presence of a relay with an on-state
resistance output capacitance and series resistance, there will be an impedancemismatch, result-
ing in reflection. The on-state resistance (𝑅on) is 0.8Ω and output capacitance is 19.28 pF which
is calculated using Equation 5.4 with voltage being 4.906 V (from Case-1). First, the impedance
of the relay needs to be calculated, and since the on-state resistance and output capacitance are
in parallel, Equation 5.16 will be used for the impedance calculation.

1
𝑍SSR

= 1
𝑅on

+ 1
𝑋𝐶out

(5.16)

To calculate the impedance, the reactance due to the output capacitance, which is 𝑋𝐶out , needs
to be determined. This reactance is 824Ω after the calculation shown in Equation 5.17.

𝑋𝐶out =
1

2𝜋𝑓𝐶out
= 1
2𝜋 × 10 × 106 Hz × 19.28 × 10−12F ≈ 824Ω (5.17)

Now putting the values in Equation 5.16, the relay impedance (𝑍SSR) is found to be approximately
0.8Ω. Now, this relay impedance will be added with the series resistance and impedance of
segment two to get the total impedance of the second segment, which comes out to be 58.96Ω.

5.4. Parasitics and Reflection Integration 49

The reflection at the first interface, where the signal goes from the first to the second segment,
will be calculated. The reflection coefficient comes out to be 0.1 as derived in Equation 5.18.
Using this reflection coefficient, the transmitted voltage to the second segment when the incident
voltage is 4.906 V is 5.3966 V as calculated in Equation 5.19.

Γ12 =
𝑍2 − 𝑍1
𝑍2 + 𝑍1

= 58.96 Ω − 48.16 Ω
58.96 Ω + 48.16 Ω =

10.8 Ω
107.12 Ω ≈ 0.1 (5.18)

𝑉12 = 𝑉LB × (1 + Γ12) = 4.906 V × (1 + 0.1) = 4.906 V × 1.1 ≈ 5.3966 V (5.19)

After this, the reflection will occur at the second point when the signal goes from the second to the
third segment. The reflection coefficient comes out to be -0.1 as the source and load impedance
are interchanged. Using this, the final voltage that goes into the third segment is calculated, which
comes out to be 4.85 V as derived in Equation 5.20. In this case, both the passive components
were combined in the second segment, and the reflections were calculated, resulting in a slight
voltage decrease from 4.906 to 4.85 V.

𝑉23 = 𝑉12 × (1 + Γ23) = 5.3966 V × (1 − 0.1) = 5.3966 V × 0.9 ≈ 4.85 V (5.20)

Case 3: Loadboard to DUT
Finally, the last reflection can occur if there is an impedance mismatch between the loadboard and
the DUT. This can only be calculated if the user provides the impedance value of the DUT for which
the calculation will be made. For an example scenario, the impedance of the DUT is assumed to be
52Ω. The incident voltage will be the voltage at segment three in the previous case, which is 4.85 V
(the results of the second example from case 2 are taken for this case). The source impedance is the
impedance of the third segment, which is 48.16Ω; this leads to an impedance mismatch between the
loadboard and DUT. So, the reflection coefficient will be calculated using Equation 5.8, which comes
out to be 0.0383. The final voltage that reaches the DUT is calculated as shown in Equation 5.21. The
final voltage that reaches the DUT is 5.03 V, slightly higher than the incident voltage from the ATE,
which was 5 V. The signal goes through three reflections from ATE to DUT before reaching its final
destination.

𝑉DUT = 𝑉23 × (1 + ΓDUT) = 4.85 V × (1 + 0.0383) = 4.85 V × 1.0383 ≈ 5.03 V (5.21)

5.4.3. Integration Automation
The previous subsection discussed the calculations required to model reflection due to impedance
mismatches. After understanding the points in the loadboard where reflection can occur and how to
calculate it, the next step is to integrate these parasitics and reflections in the ideal netlist generated
in Stage 1. A Python script and a Verilog-AMS module were used to automate the integration of these
parameters in the ideal netlist.

The Python script automatically includes parasitics effects and reflection in the ideal netlist by calcu-
lating the reflection and adding transmission line segments. The script divides each channel into three
segments, with passive components in the second segment. If a relay is present, the script calculates
the output capacitance based on the voltage to derive its impedance. The script’s algorithm is shown
in Algorithm 3. The script performs the following main tasks:

1. Read Input Data: Load R, L, G, and C parameters, DUT impedance (if provided), temperature
and ideal netlist from the first stage.

2. Process Each Channel: primarily, the script changes the resistance based on the temperature
using equation Equation 5.22.

𝑅(𝑇) = 𝑅0 × (1 + 0.00385 × (𝑇 − 25)) (5.22)

After this, the channel is traced, and the script identifies all the passive components present in
the channel. Then, the R, L, G, and C are used to calculate the impedance of the trace using
Equation 5.7. The channel is then divided into three segments: the first segment is connected with
the ATE, the second segment contains all the passive components, and finally, the third segment

50 5. Framework Implementation

is connected to the output node that goes to the DUT. If a passive component is present, the
script calculates the total impedance of the second segment by combining it with the impedance
of the passive element. The script then calculates the reflection coefficient at each point for all
three segments.

3. Write Final Netlist: Finally, after all the calculations, the netlist is written with three verilog module
calls for each channel. These module calls contain the R, L, G, C, and Γ. After the Verilog module
calls, the connections are changed based on the new nodes and their declarations are added.

As mentioned in Algorithm 3, the Python script adds verilog module calls to the ideal netlist, defined
in Algorithm 4. The Verilog module takes in the R, L, G, C, and Γ as inputs from the Python script. Based
on these inputs, the module applies the reflection coefficient to the input voltage to model reflections.
It adds a resistor, inductor, capacitor, and conductance between the input and output nodes to make a
lumped transmission line circuit. The conductance is modelled as a shunt resistance whose values is
the inverse of G. The Python script and Verilog-AMS module work together to automate the integration
of parasitic effects and reflections into the ideal netlist. After this integration, a final netlist is generated
that accurately represents the physical characteristics of the loadboard.

5.5. Framework Automation
Themethodology to generate a netlist with the parasitics and impedance analysis was divided into three
stages: Ideal Netlist Generation (Section 5.1), Parasitics Extraction (Section 5.2), and Parasitics and
Reflection Integration (Section 5.4). After the third stage, a final netlist with parasitics for each channel
was generated, and the effect of signal reflections was also included. It can be said that the final netlist
emulates most of the critical parameters of the physical loadboard. The algorithm of each stage is
connected, making it difficult for the engineers to operate the framework, as they will have to run the
scripts separately. So, to tackle this issue and make the process more streamlined, an automation
approach was considered and employed.

5.5.1. Proposed Methodology
To make the whole process easier for users, a master script was created that coordinates with the
three stages, which passes on the input from the user to the stages and the outputs of the stages to
the following stages. Firstly, the master script takes all the user inputs from one Excel file, as shown in
Table 5.4, making it easier for users to give the inputs. The master script will then pass the inputs to the
stages based on their requirements. The Excel file contains essential parameters such as frequency,
pin and connector mappings, schematic and layout locations, and temperature settings, among other
things. The inputs for the three stages are stated below:

• Ideal Netlist Generation: Inputs like Allegro Netlists, Module Names, and Pin Mappings are
used in this stage to produce an ideal single-site netlist.

• Parasitics Extraction: Based on the ideal netlist from stage one and the frequency specified by
the user, this step extracts the parasitic values (R, L, G, C) for every trace.

• Parasitics and Reflection Integration: The user provides inputs such as temperature and DUT
impedance combined with the parasitic values calculated from the previous stage and the ideal
netlist from the first stage. These inputs are used to determine the final accurate netlist.

The master script determines how many stages will be executed depending on the “Stage to Run”
setting. This allows the user to finish after creating the ideal netlist or continue to the netlist that includes
parasitics.

5.5.2. Execution Flow
The execution flow of the master script has two main modes, as mentioned below.

• Mode 1: This mode runs only the script to generate the ideal netlist. It is useful when engineers
only need the netlist without the parasitics.

5.5. Framework Automation 51

Algorithm 3 Netlist Modification Script
1: Input: RLGC parameters file (RLGC.csv), netlist file (netlist.vams), DUT impedance file
(DUT.csv), temperature (Temp)

2: Output: Modified netlist file (modified_netlist.vams)
3:
4: function ModifyNetlist
5: Load RLGC parameters into data frame df_rlgc
6: Load DUT impedance values into dictionary dut_impedance_dict
7: Parse components and connections into list: components, ideal netlist lines into list: netlist
8: for each channel channel in df_rlgc do
9: Extract total 𝑅, 𝐿, 𝐺, 𝐶 for the channel
10: Adjust Resistance for Temperature:

Calculate 𝑅temp = 𝑅 × (1 + 𝛼 × (𝑇𝑒𝑚𝑝 − 25))
Where 𝛼 = 0.00385 per ∘C (temperature coefficient of resistance for copper)

11: Trace the channel to identify connected passive components passive_components
12: Calculate the characteristic impedance 𝑍0 using Equation with adjusted 𝑅temp:

𝑍0 = √
𝑅 + 𝑗𝜔𝐿
𝐺 + 𝑗𝜔𝐶

13: Divide the channel into three segments:
Segment 1: from ATE to passive components (𝑍1 = 𝑍0)
Segment 2: includes passive components (𝑍2)
Segment 3: from passive components to DUT (𝑍3 = 𝑍0)

14: Calculate impedance of Segment 2 (𝑍2):
15: if passive components are present then
16: Combine impedances of passive components in Segment 2
17: Calculate 𝑍2 using series and parallel combinations
18: if a relay is present then
19: Calculate 𝐶out using Equation (??)
20: Include 𝑅on and 𝐶out in 𝑍2 calculation
21: end if
22: else
23: 𝑍2 = 𝑍0
24: end if
25: Calculate reflection coefficients:

ATE and Segment 1: Γ𝐴𝑇𝐸1 =
𝑍1−50
𝑍1+50

At interface between Segment 1 and Segment 2: Γ12 =
𝑍2−𝑍1
𝑍2+𝑍1

At interface between Segment 2 and Segment 3: Γ23 =
𝑍3−𝑍2
𝑍3+𝑍2

26: if DUT impedance provided then
27: Segment 3 and DUT: Γ3𝐷𝑈𝑇 =

𝑍𝐷𝑈𝑇−𝑍3
𝑍𝐷𝑈𝑇+𝑍3

28: else
29: Ignore DUT reflection
30: end if
31: Modify the netlist:

Insert Verilog-A module calls for each segment
First segment: between source and node 1
Second segment: between node one and first passive component
Third segment: between last passive component and output node

Update component connections:
Change the input node of the first passive component to the output node of the second

segment
Update analog block:
Change the node connected to the DUT to the output node of the third segment

Add declarations for newly created nodes
32: end for
33: Write the modified netlist to the output file
34: end function

52 5. Framework Implementation

Algorithm 4 Verilog-A Module for Transmission Line Segment
1: Module Declaration:

module lumped_circuit (in_signal, out_signal, gnd);
2: Ports and Disciplines:

inout in_signal, out_signal, gnd;
electrical in_signal, out_signal, gnd;

3: Internal Nodes:
electrical node1;

4: Parameter Definitions:
parameter real R = 0;
parameter real L = 0;
parameter real C = 0;
parameter real G = 0;
parameter real Gamma = 0;

5: Analog Block:
analog begin
V(out_signal) <+ V(in_signal) * (1 + Gamma);
end

6: Parasitic Elements:
resistor #(.r(R_temp)) R1 (in_signal, node1);
inductor #(.l(L)) L1 (node1, out_signal);
capacitor #(.c(C)) C1 (out_signal, gnd);
if (G > 0) begin
resistance #(.r(1/G)) G1 (out_signal, gnd);

7: End Module

Table 5.4: Description of User Parameters

Parameter Description
Frequency At which project is running in Hz
Pin Mapping [1] File that gives user defined outputs based on chip
Dual Board If the loadboard is made of two boards then “yes” otherwise “no”
Connector Mapping [2] If the above is yes, then connector mapping to connect the two boards
Schematic Location Schematic of loadboard (in case of Allegro automation)
Layout Location Location of Layout of loadboard for parasitics extraction
Allegro netlist location Netlist generated by allegro location
Allegro Motherboard Motherboard allegro netlist
Allegro Daughterboard Daughterboard allegro netlist
Temperature In degree Celsius
Stage to run If just want schematic to netlist then “1”, otherwise “2”
Module name Name of module

5.5. Framework Automation 53

• Mode 2: This mode runs the entire process from the netlist generation to the extraction of para-
sitics and the impedance analysis.

The master script controls the whole framework and streamlines the process of generating the
netlist. It also gives users options as to what kind of netlist they require. This automation makes the
data exchange between stages easier and free of manual errors. It also allows users to quickly provide
input in an Excel file instead of giving input to each stage separately.

Algorithm 5 Master Script for Loadboard Model Workflow
1: Load user inputs from Excel using pandas
2: if config[Dual Board] == yes then
3: Set script path and arguments for dual-board configuration
4: else
5: Set script path and arguments for single-board configuration
6: end if
7: if config[Stage to Run] == 1 then
8: Execute netlist generation script
9: else
10: Execute full simulation workflow, including parasitics extraction
11: Continue with integrating parasitics into the netlist
12: end if

After running the full execution flow, this approach generates a netlist formatted according to the
requirements of the simulation environment. The netlist also contains parasitic and a model of reflec-
tion, which integrates the effects caused by an impedance mismatch. After successfully generating a
virtual model of the loadboard, the next crucial step is to validate the flow to test its accuracy.

6
Framework Validation

The framework implemented in the previous chapter is validated in this chapter. The chapters start with
validating the generation of an ideal single-site netlist in Section 6.1. Next, Section Parasitics Validation
validates the parasitics extraction algorithm with the help of a custom PCB. After this, Section 6.3
verifies the relay model created in Verilog. Stage 3, where the parasitics and reflection are integrated
into the netlist, is validated in Section 6.4. Finally, the full framework is validated in Section 6.5 based
on the requirements set in Chapter 4.

6.1. Ideal Netlist Validation
Validation is crucial in determining whether the model’s results are usable. The first step in the vali-
dation process is to verify the ideal netlist generated in Section 5.1. The validation aims to verify the
requirements R6 (Integration with AMS-VT) and R5 (Automation Level).

6.1.1. Experimental Setup
To properly validate the ideal netlist, it is crucial to determine the conditions under which the validation
was done. The key components of the experimental setup are as follows:

Simulation Environment
The simulation was conducted in the AMS-VT environment, a closed-loop system in which the ATE
model is connected to the Cadence Spectre AMS simulator. In the ATE model, all the activities of
the ATE test program are recorded and stored as stimuli. The stimuli are then used to drive the DUT
signals via the loadboard. The simulation environment also records the DUT response. This allows for
realistic simulation of testing scenarios, including forcing voltages, measuring responses, and activating
components like relays.

Test Program
A test program called “Max rating” checks the voltage level by pushing the loadboard pins to their
maximum voltages and relays for all the pins, checking the electrical behaviour of all outputs in the
netlist. The basic structure of the test program is shown in Algorithm 6.

Algorithm 6 Max rating Test Code for Loadboard Validation
Initialize all pins to 0 V.
Force pins to 5 V.
Force pins to 6.5 V.
Force pins back to 5 V.
Record the outputs.

The pins were first forced to 5 V, which is the nominal voltage, and then they were forced to 6.5
V, which is the maximum voltage the pins can go to. The test program is executed in an AMS-VT

55

56 6. Framework Validation

environment with the ideal loadboard netlists. After the complete execution SimVision, a Cadence
waveform viewer and analysis tool, was used for post-simulation analysis. It allows a detailed check of
signal behaviours and voltage levels.

6.1.2. Validation Methodology
The validation process consists of two methods: manual verification and simulation verification.

Manual Verification
This involves a detailed comparison between the generated ideal netlist and the original loadboard
schematic. The steps taken in the manual verification process include:

1. Component Verification: Each component in the netlist was cross-checked with the schematic
to check its presence. This included verifying components such as resistors, capacitors, and
relays.

2. Connection Verification: The electrical connections between the components were checked.
This involved checking if the nodes in the netlist were the same as those in the schematic and if
any connection was missing.

3. Parameter Verification: The values of the components, such as resistance and capacitance
values, were checked to match those specified in the schematic.

4. Hierarchical Structure Verification: For loadboards with multiple boards (e.g., motherboard
and daughterboard configurations), the hierarchy in the netlist was compared to check for the
correct representation of the interconnections.

Simulation-Based Validation
This aimed to verify the functional correctness of the loadboard netlist under realistic testing conditions.
The DUT model was removed to keep the focus on the loadboard netlist and remove any external
variables. This ensures that any errors observed during simulation are due to the loadboard netlist.

1. Simulation Setup: The generated ideal netlist in Stage-1 was integrated into the simulation
environment explained above.

2. Execution of Simulations: After executing the simulations, data such as voltage levels and
signal transitions are analysed using SimVision.

3. Golden Simulation Comparison: The simulation results from the generated netlist are com-
pared against the golden simulation. The golden simulation was executed in the same environ-
ment using a loadboard netlist, which was made and verified by test engineers.

4. Analysis of Parameters: The following parameters are analysed for the simulations:

• Voltage Levels: Verification of the voltage levels on all pins matched between the simula-
tions at corresponding times.

• Pulse Width: Verification of the duration for which signals remained at specific voltage
levels before transitioning. The pulse width is measured at 50% of the voltage increase,
which means the measurement was taken from 5.75 to 5.75 V for rise and fall events.

• Events: Verification of all the events in the simulation with the events in the test program.

6.1.3. Simulation Results
The above-mentioned experimental setup and validation methodology were used to properly validate
stage 1 of the design that generates an ideal netlist. This validation included manual and simulation
checks.

6.2. Parasitics Validation 57

Table 6.1: Project Validation and Design Specifications

Projects Design Type Tool Working Validation Method
1 Single Board Yes Manual and Simulation
2 Single Board Yes Manual
3 Single Board Yes Manual
4 Single Board Yes Manual
5 Double Board Yes Manual and Simulation

Manual Validation Results
After the manual validation, the following findings were made:

1. Components Accuracy: All components in the netlist matched the schematic in terms of type,
nodes and configuration.

2. Connection Integrity: The netlist had correct connectivity with no missing or extra connections,
as each net was correctly represented in the netlist.

3. Hierarchical Consistency: The interconnections were correctly modelled in dual-board config-
urations.

4. Parameter Consistency: All parametric values of the components in the netlist matched with
the schematic.

These results confirm that the ideal netlist accurately represents the schematic without structural
discrepancies.

Simulation Results
The simulation results demonstrated high accuracy between the generated netlist and the golden sim-
ulation. Figure 6.1 shows the comparison for a set of signals.

• Markers: Indicate key events and transitions with precise timing.

• Red Markers: Represent signals from the golden simulation.

• Yellow Markers: Represent signals from the simulation using the generated netlist.

After analysing the signals, it was found that all signals show identical voltage in both simulations.
For example, signals are forced to a nominal voltage of 5 V and then reach a maximum voltage of 6.5 V,
matching exactly in both cases. Signal transitions occur at the same time as written in the text program.
The pulse width from when the signals go from 5 to 6.5 V and then back to 5 V was also identical for
both the simulation results, which was 10.685 ms. The activation and deactivation of relays and other
components occur as expected, with no discrepancies observed. A critical aspect of this validation
was checking if the generated ideal netlist could be integrated with the AMS-VT environment without
errors. No errors were encountered during the integration and simulation with the environment. The
validation in this section confirms the ideal single-site netlist generated by the algorithm adheres to the
requirements R6 (Integration with AMS-VT) and R5 (Automation Level).

Stage 1 was verified for multiple board configurations using manual or simulation validation, as
shown in Table 6.1. The framework generated correct netlists for multiple loadboards, even for a load-
board of dual configuration. This verifies that the framework adheres to requirement R7 (Generaliza-
tion).

6.2. Parasitics Validation
This section explains the setup, methodology and results of validating the parasitic extraction algorithm
used in Stage 2 of the framework described in Section 5.2. The validation process involves creating
a custom PCB with different trace configurations, extracting parasitic using the automation algorithm
from PowerSI, simulating the trace in PSpice and PowerDC, and then comparing the results to ensure
accuracy.

58 6. Framework Validation

Figure 6.1: Simulation Validation

6.2.1. Experimental Setup
The setup contains a custom-designed PCB with different trace configurations to evaluate the parasitic
extraction accuracy under multiple conditions. The key components of the setup are as follows:

Custom PCB Design
The PCB was made using Cadence Allegro PCB Designer, a tool that allows for an easy design with
inbuilt functions to add traces, components, and layers to a PCB. The PCB was fabricated with the
following specifications:

• Material: Copper traces on an FR-4 substrate chosen for its common use in the industry.

• Trace Thickness: The thickness of the trace was set to 35 um, representing a normal trace
thickness.

• Number of Layers: This was a 4-layer PCB, in which layers two and three were ground planes
to minimize electromagnetic interference.

• Trace Configurations: Five different configurations were implemented, shown in Figure 6.2, that
are as follows:

1. Baseline Trace (1 in Figure 6.2): This was used as a baseline for comparison, created with
a straight line and regular measurements. This trace has a 170 mm length and 0.25 mm
width.

2. Traces with varying lengths (2 in Figure 6.2): Different lengths of traces were studied to
see how they affect parasitic. Trace lengths varied from 50 mm to 350 mm to check its effect
on parasitics.

3. Traces with widths (3 in Figure 6.2): Different widths of traces were studied to see how
they affect parasitic. Trace widths varied from 0.25 mm to 0.45 mm to check its effect on
parasitics.

4. Proximity effects due to traces (4 in Figure 6.2): Traces were arranged closely to test
for mutual capacitance and the impact of electromagnetic interference between adjacent
traces.

5. Proximity effect due to Ground Planes (5 in Figure 6.2): For the above six configurations,
the layer that contains the trace is sandwiched between two ground planes. In this case,
the two ground planes are removed and replaced by two ground nodes to see if the model
considers their proximity effect.

6.2. Parasitics Validation 59

Figure 6.2: Test PCB

60 6. Framework Validation

Figure 6.3: PSpice circuit of Loadboard Trace for Parasitics Validation

Parasitics Extraction
The parasitics for the trace were extracted from PowerSI using the automation algorithm that was
developed. Three different frequencies, 10, 50, and 100 MHz, were used to extract the parasitics to
analyse their frequency-dependent nature.

Simulation Tools
Two simulation tools were used to validate the parasitics.

• PSpice: This was used to make a lumped circuit of the traces using the extracted R, L, G, and C
as shown in Figure 6.3. This allows for the simulation of the trace using parasitic to check their
effect on the voltage.

• PowerDC: This was used on the PCB to conduct an IR drop analysis on the PCB traces for
different frequencies.

Operating Conditions
The simulations were performed under certain conditions to ensure consistency.

• Operating Frequencies: Three frequencies, 10, 50, and 100 MHz, were chosen to check the
effects of frequency on voltage.

• Input Voltages: Voltage of 5V, 20V, and 40V were provided as input to analyse the effect of
parasitics on different voltages.

• Environmental Conditions: Simulation was performed considering room temperature (25 ∘C)
conditions.

6.2.2. Validation Methodology
The validation methodology followed a proper approach to simulate the parasitics accurately. The first
step was the PCB design, in which each trace was carefully configured in Allegro Design. The layout
location was provided to the algorithm for each configuration, and parasitics were extracted at the
specified frequencies. Each trace was modelled as a lumped circuit in PSpice using these extracted
parasitics. Then, PowerDC was used to analyse the voltage drop across the traces using different
input voltages and frequencies. The baseline configuration was used as a reference point. Then, the
simulation results from PSpice and PowerDC were compared for each trace configuration. The impact
of frequency on parasitics was evaluated by comparing simulation results across three frequencies.

6.2.3. Results and Analysis
The validation process provided results across all trace configurations for three frequencies. The results
and their analysis for all trace configurations are explained below in detail.

6.2. Parasitics Validation 61

Table 6.2: Parasitic Parameters for Baseline Trace at Different Frequencies

Frequency (MHz) R (Ω) L (nH) C (pF) G (S)
10 0.922 63.2 27.95 0.00065
50 1.287 61.4 27.92 0.00066
100 1.812 59.15 27.88 0.00067

Figure 6.4: PSpice vs. PowerDC Output Voltages for Baseline Trace

Baseline Configuration (Configuration 1
A standard trace is set up as the benchmark to validate the simulation framework thoroughly. This
benchmark is used to determine the types of physical characteristics that the model considers. The
standard trace was created with no bends representing a straight line as shown in Figure 6.2 marked
by ”1”. The baseline trace had no bends and directly went from the input to the output node, and the
length was set as 170 mm since this is the most common length for the traces of loadboards. The
width was set to 0.25 mm, a typical trace starting width. This trace was intentionally selected for its
straightforwardness and consistency, making it perfect for baseline configuration. It does not involve
intricate elements, such as curves or integrated parts, guaranteeing that extra factors do not affect
the outcomes. Table 6.2 presents the extracted parasitic parameters for the baseline trace at different
frequencies. As expected, R increases with frequency due to the skin effect, which causes the current
to flow towards the edge of the trace; it saw around 40% increase when the frequency increased. Also,
L slightly decreases with increasing frequency, which matches the theory that higher frequencies can
lead to reduced inductive effects due to losses in the trace’s magnetic field. The C and G remain see
a minimal change through the frequencies, with C seeing a minor decrease and G seeing a minor
increase.

Figure 6.4 compares the output voltages obtained from PSpice and PowerDC simulations using the
extracted parasitics. The simulation results of both of them are pretty similar. At 10 MHz for 5 V, Both
simulations predict an output voltage very close to the input, with PSpice at 4.997 V and PowerDC at
4.993 V, resulting in a difference of approximately 0.08%. Similarly, for 40 V, the output voltages are
39.972 V (PSpice) and 39.960 V (PowerDC), a negligible difference of 0.03%. For 50 MHz, PSpice
predicts 4.995 V, and PowerDC predicts 4.991 V, a difference of 0.08%, and output voltages are 19.980
V (PSpice) and 19.971 V (PowerDC), a minimal difference of 0.04% for 20 V. At a higher frequency of
100 MHz, Output voltages are 19.970 V (PSpice) and 19.960 V (PowerDC), a difference of 0.05%, and
for 40 V, Output voltages are 39.951 V (PSpice) and 39.936 V (PowerDC), a difference of 0.06%. The
difference observed for the baseline was minimal within the range from 0.03% to 0.08%, indicating that
the extracted parasitics resulted in an accurate voltage drop for the baseline.

Increased Trace Length (Configuration 2)
After getting the baseline results, the physical properties of the trace can be changed to determine if the
model can emulate the changes these effects will bring. The first change was done by increasing the
trace length while keeping all other parameters just like the baseline, as shown in Figure 6.2 marked
by ”2”. To analyse the impact of trace length on parasitic elements, traces of varying lengths, 50, 150,

62 6. Framework Validation

Table 6.3: Parasitic Parameters for Increased Trace Lengths at Different Frequencies

Trace Length (mm) Frequency (MHz) R (Ω) L (nH) C (pF)
50 10 0.462 31.6 13.975
50 50 0.643 30.7 13.960
50 100 0.906 29.575 13.940
150 10 1.387 94.8 41.925
150 50 2.064 92.1 41.760
150 100 2.718 88.725 41.640
250 10 2.305 157.0 69.875
250 50 3.445 152.25 69.700
250 100 4.525 146.95 69.550
350 10 3.227 219.2 97.825
350 50 4.835 222.375 97.450
350 100 6.345 224.125 97.350

Figure 6.5: PSpice vs. PowerDC Output Voltages for Increased Trace Lengths

250, and 350 mm, were simulated while keeping the thickness and width of the trace the same as the
baseline. Table 6.3 presents the extracted parasitic parameters for the baseline and increased trace
lengths at different frequencies. Resistance increases linearly with the trace length; for example, at
10 MHz, R goes from 0.462 Ω (50 mm) to 3.227 Ω (350 mm). Inductance also increases with the
trace length but is not linear; for example, at 10 MHz, L increases from 31.6 nH (50 mm) to 219.2 nH
(350 mm). Capacitance increases with length as the trace interacts more with the ground plane. This
confirms that parasitics extraction accurately captures the effects of trace length.

Figure 6.5 shows the output voltages from PSpice and PowerDC for traces of different lengths
at 10 MHz, 50 MHz, and 100 MHz frequencies. At 10 MHz, the output decreases from 4.76 V (50
mm) to 4.15 V (350 mm) for an input of 5 V, which indicates that the voltage drop percentage ranges
from approximately 4.8% to 3% as trace length increases. For a 20 V input, the output voltage goes
from 19.52 V (50 mm) to 18.11 V (350 mm), showing a drop percentage from approximately 2% to
1.9%. Similarly, for 40 V, the drop percentage ranges from approximately 1.9% to 1.8%. The difference
between PSpice and PowerDC is minimal, with the maximum difference being 0.02 V.

Increased Trace Width (Configuration 3)
The trace width also plays a critical role in determining the signal behaviour in a PCB. As the trace width
increases, the current gets more area to flow, leading to decreased resistance. This configuration was
taken with varying widths of 0.25, 0.35, and 0.45 mm for simulation to analyse the effect of changing
trace width. The length of each trace was fixed at 170 mm, the baseline length. Table 6.4 shows the
extracted parasitics for traces with different widths at multiple frequencies. R decreases with increasing
width, which matches with their, according to which wider traces have lower resistance due to the
increased cross-sectional area. Inductance and capacitance also decrease with increasing width. For
example, C goes from 27.95 pF (0.25 mm) to 27.80 pF (0.45 mm) at 10 MHz.

6.2. Parasitics Validation 63

Table 6.4: Parasitic Parameters for Increased Trace Widths at Different Frequencies

Trace Width (mm) Frequency (MHz) R (Ω) L (nH) C (pF)
0.25 10 0.922 63.2 27.95
0.35 10 0.660 41.2 27.85
0.45 10 0.515 31.4 27.80
0.25 50 1.287 61.4 27.92
0.35 50 0.925 38.5 27.80
0.45 50 0.720 29.0 27.75
0.25 100 1.812 59.15 27.88
0.35 100 1.302 37.3 27.70
0.45 100 1.010 28.8 27.65

Figure 6.6: PSpice vs. PowerDC Output Voltages for Increased Trace Widths

Figure 6.6 shows the output voltages from PSpice and PowerDC for traces with varying widths
at 10 MHz, 50 MHz, and 100 MHz frequencies. At a 5 V input for 10 MHz, the voltage goes from
4.997 to 4.915 as the width increases, showing a minimal voltage drop. Similarly, for 100 MHz, the
output voltage goes from 39.72 V to 39.48 V, showing a voltage drop from approximately 0.06% to
0.07%, demonstrating the negligible impact of trace width on voltage levels at high frequencies. The
difference between PSpice and PowerDC is minimal within an error of 1%, proving that the parasitics
extraction algorithm works well for varying widths for multiple frequencies.

Proximity Effects Due to Adjacent Traces (Configuration 5)
One of the main contributors to the parasitic, especially resistance and capacitance, is the proximity
effect. This refers to the parasitic due to traces being placed very close to each other. For this case,
one trace was added at a distance of 1 mm to the baseline trace with the same physical characteristics.
Table 6.5 shows the extracted parasitics for traces with adjacent proximity. Resistance increases by a
huge number due to the combined effects of trace length and mutual coupling between adjacent traces.
Inductance decreases with frequency from 75.0 nH at 10 MHz to 71.0 nH at 100 MHz, and capacitance
increases marginally with frequency, from 35.50 pF at 10 MHz to 35.40 pF at 100 MHz.

Figure 6.7 shows the output voltages from PSpice and PowerDC for traces with adjacent proximity
at 10 MHz, 50 MHz, and 100 MHz frequencies. For an input of 5 V at 10 MHz, the output decreases
from 4.997 V (baseline) to 4.800 V (adjacent) in PSpice and from 4.993 V to 4.790 V in PowerDC,
representing a voltage drop of approximately 4.8% and 4.9%, respectively. At 20 V, the output goes

Table 6.5: Parasitic Parameters for Adjacent Traces at Different Frequencies

Frequency (MHz) R (Ω) L (nH) C (pF) G (S)
10 1.200 75.0 35.50 0.00070
50 1.700 73.5 35.45 0.00072
100 2.400 71.0 35.40 0.00074

64 6. Framework Validation

Figure 6.7: PSpice vs PowerDC Output Voltages for Adjacent Traces

Figure 6.8: Length between traces vs Voltage

from 19.986 V (baseline) to 19.200 V (adjacent) in PSpice and from 19.978 V to 19.190 V in Pow-
erDC, representing voltage drops of approximately 4.0% for both. Similarly, at 40 V, there is a drop
of roughly 2.6% in both PowerSI and PowerDC. This represents a minimal difference between PSpice
and PowerDC, showing that the parasitics consider the effects due to adjacent traces.

The graph in Figure 6.8 shows how the voltage changes based on the distance between two traces
when a voltage of 40V is forced at 10 MHz. It starts at 39.99V when the trace is only 1 mm apart.
As the distance increases, the voltage gets closer to the baseline, which is 39.96 V. As the distance
increases and reaches 2 mm, the voltage reaches 39.82 V, showing a decrease in mutual trace effects.
This indicates that stage 2 correctly models the impact of distance between the adjacent traces.

Proximity Effects Due to Ground Planes (Configuration 6)
For baseline configuration, the trace was sandwiched between two ground planes and this plane also
caused an increase in parasitic capacitance. For the last case, the ground planes were replaced with
two ground nodes near the trace so that there is no proximity effect due to them. Table 6.6 shows
the extracted parasitic parameters for traces with and without ground planes at different frequencies.
Based on extracted parasitics, it can be seen that there is no difference between the parasitics with
and without ground planes. This means that the output voltage from PSpice will be the same as the
baseline, whereas PowerDC sees a difference in output voltage as shown in Table 6.7. The PowerDC
tool incorporates the effect of removing the ground planes as the output voltage sees a decrease across
all input voltages. This means that the parasitics extraction algorithm does not consider the effects of
the ground plane while extracting parasitics.

6.3. SSR Model Validation 65

Table 6.6: Parasitic Parameters with and without Ground Planes at Different Frequencies

Trace Configuration Frequency (MHz) R (Ω) L (nH) C (pF) G (S)
With Ground Planes 10 0.922 63.2 27.95 0.00065

Without Ground Planes 10 0.922 63.2 27.95 0.00065
With Ground Planes 50 1.287 61.4 27.92 0.00066

Without Ground Planes 50 1.287 61.4 27.92 0.00066
With Ground Planes 100 1.812 59.15 27.88 0.00067

Without Ground Planes 100 1.812 59.15 27.88 0.00067

Table 6.7: Output Voltages after removing Ground Planes at 10 MHz for PowerDC

Input Voltage (V) Baseline - PowerDC (V) Out Voltage - PowerDC (V)
5 4.993 4.9
20 19.978 19.86
40 39.960 39.74

Summary of Parasitics Validation
The parasitics extraction algorithm from stage 2 went through validation for multiple trace configura-
tions, which accounted for most of it except the effects due to the ground plane. The algorithm properly
considers the trace’s physical parameters, such as length, width, and proximity effects due to adjacent
traces. The result of the PSpice simulation that uses the extracted parasitics closely matched the re-
sults of IR drop analysis from PowerDC for multiple frequencies, proving the ability of the algorithm
to extract parasitics based on frequency. This verifies that the framework adheres to requirement R3
(Operating Conditions) for frequency.

6.3. SSR Model Validation
The validation of the SSR model developed in Section 5.3 can be done by comparing the model’s
results with the manufacturer’s datasheet. The verified characteristics are:

1. On-State resistance vs Temperature

2. Off-State Leakage Current vs Applied Voltage

3. Output capacitance vs Applied Voltage

4. Switching Behaviour

By verifying their parameters, it can be checked whether the SSR model is reliable and matches
the datasheet.

6.3.1. Experimental Setup
A testbench was created in Verilog-AMS to simulate the SSR model under different conditions. The
testbench adjusts temperature and applied voltage and records the SSR module’s result. It also vali-
dates the switching behaviour by applying control signals and checking the output.

Testbench Algorithm
The algorithm for the testbench is shown in Algorihtm 7. The algorithm starts by setting a temperature
range from -40 to 80 ∘C and a range of voltage from 0 to 60 V. First, the on-state resistance is measured
by applying a control voltage of 5 V to run SSR on and an applied voltage of 1 V. The current is
then measured, and resistance is calculated using the ohms law. Then, the SSR is switched off, and
the current is measured for different applied voltages. Then the relay is switched on, and the output
capacitance is calculated by measuring reactive current.

The simulation conditions are defined below:

• Threshold Voltage 𝑉𝑡ℎ set to 2.5 V.

• Temperature range set from -40 to 80 ∘C.

66 6. Framework Validation

Algorithm 7 SSR Model Testbench Algorithm
1: Initialize: Define temperature range 𝑇 = {−40∘C, −20∘C, 0∘C, 20∘C, 40∘C, 60∘C, 80∘C}
2: Define applied voltage range 𝑉 = {0 V, 10 V, 20 V, 30 V, 40 V, 50 V, 60 V}
3: Set control voltage threshold 𝑉𝑡ℎ = 2.5 𝑉
4: Verify Switching Behavior:
5: Apply control voltage 𝑉𝑐𝑚𝑑 = 5 𝑉 (above threshold)
6: Apply small voltage 𝑉𝑜𝑢𝑡 = 1 𝑉 across output terminals
7: Measure current 𝐼𝑜𝑛
8: Ensure 𝐼𝑜𝑛 > 0 (relay is conducting)
9: Apply control voltage 𝑉𝑐𝑚𝑑 = 0 𝑉 (below threshold)
10: Measure current 𝐼𝑜𝑓𝑓
11: Ensure 𝐼𝑜𝑓𝑓 ≈ 0 (relay is not conducting)
12: for each temperature 𝑇𝑖 in 𝑇 do
13: Set SSR model temperature to 𝑇𝑖
14: On-State Resistance Measurement:
15: Apply control voltage 𝑉𝑐𝑚𝑑 = 5 𝑉 (relay on)
16: Apply small voltage 𝑉𝑜𝑢𝑡 = 1 𝑉 across output terminals
17: Measure current 𝐼𝑜𝑛
18: Calculate 𝑅𝑜𝑛 =

𝑉𝑜𝑢𝑡
𝐼𝑜𝑛

19: end for
20: for each applied voltage 𝑉𝑗 in 𝑉 do
21: Off-State Leakage Current Measurement:
22: Set SSR model temperature to 25∘C
23: Apply control voltage 𝑉𝑐𝑚𝑑 = 0 𝑉 (relay off)
24: Apply voltage 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝑉𝑗 across output terminals
25: Measure leakage current 𝐼𝑙𝑒𝑎𝑘
26: Output Capacitance Measurement:
27: Apply a small AC voltage 𝑣𝑎𝑐 superimposed on 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑
28: Measure reactive current 𝐼𝑐𝑎𝑝
29: Calculate 𝐶𝑜𝑢𝑡 =

𝐼𝑐𝑎𝑝
2𝜋𝑓𝑣𝑎𝑐

30: end for
31: Output: Compile measured 𝑅𝑜𝑛, 𝐼𝑙𝑒𝑎𝑘, and 𝐶𝑜𝑢𝑡 into tables

6.3. SSR Model Validation 67

Figure 6.9: Simulation: On-State vs Temperature

Figure 6.10: Datasheet: On-State Resistance vs Temperature [57]

• Applied voltage set from 0 to 60 V

• ModelSim Verilog-AMS simulator was used for the simulation.

• Frequency to find output capacitance was 1 MHz.

6.3.2. Result and Analysis
First, the testbench verifies the model’s switching behaviour. The applied voltage was also measured
at the output when a control voltage of 5 V was applied, and there was no conduction when the control
voltage was 0 V. The validation results of the SSR are presented below:

On-State resistance
The on-state resistance of the SSR model at different temperatures is shown in Figure 6.9. The on-
state resistance increases linearly with temperature, which is consistent with the graph in the datasheet
showing in Figure 6.10. At 25 ∘C, both measure approximately 0.8 Ω, resulting in a negligible difference.
Similarly, at 45 ∘C, the resistance increases to 0.91 Ω both. This indicates that the model captures the
temperature-dependent behaviour of the SSR model.

68 6. Framework Validation

Figure 6.11: Simulation: Off-State Current vs Voltage

Figure 6.12: Datasheet: Off-State Current vs Voltage [57]

Off-State Current Leakage
The off-state current leakage measured is shown in Figure 6.11 for different voltages. The simulated
results increase with the applied voltage, which matches the datasheet graph shown in Figure 6.12. At
20 V, PSpice measures the leakage current as 3.33 nA which matches with the datasheet. Similarly,
at 60 V, both leakage is 10 nA, with the off-state resistance being 6 GΩ.

Output Capacitance
The output capacitance was measured for different voltages, and the result is shown in Figure 6.13.
The simulated output capacitance decreases exponentially with increasing voltage, which matches the
datasheet graph shown in Figure 6.14. At 0 V, both give a capacitance of 27 pF. Similarly, at 60 V, they
measure 5.6 pF, showing negligible differences.

validation Summary
This validation depicts that the SSR model accurately calculates the key characteristics compared to
the datasheet. The characteristics were accurate for different temperatures and applied voltages. This
validation confirms that the model adheres to the requirement R4 (Component Modeling).

6.3. SSR Model Validation 69

Figure 6.13: Simulation: Output Capacitance vs Voltage

Figure 6.14: Datasheet: Output Capacitance vs Voltage [57]

70 6. Framework Validation

Figure 6.15: Configuration 1: ATE present

Figure 6.16: Configuration 3: ATE with Resistor (10 Ω)

6.4. Parasitics and Reflection Integration Validation
This section focuses on validating Stage 3 implemented in Section 5.4. Stage 3 involves adding the
parasitics and reflection effects into the ideal netlist to mirror real-world conditions. This validation will
ensure that this stage replicates the expected voltage levels for different configurations.

6.4.1. Experimental Setup
The validation was done by taking the custom-made PCB from Section 6.2. The extracted parasitics
for different frequencies of the baseline configuration were taken for this validation. Three different
configurations were considered for the validation:

1. Configuration 1: ATE Present—This configuration simulates the scenario where only the ATE
is connected to the loadboard, as shown in Figure 6.15. The ATE represents a 50 Ω resistance
after the voltage source.

2. Configuration 2: ATE and DUT Present – Emulates the ATE and DUT presence with the load-
board. The DUT impedance is taken as 45 Ω as it aligns with the typical DUT impedance in the
testing environment.

3. Configuration 3: ATE with Resistor (10 Ω)—This configuration incorporates a passive resistor
component (10 Ω) alongside the ATE to assess the model’s handling of reflections due to the
passive component, as shown in Figure 6.16.

Simulation Tools
PSpice was used to simulate the PCB trace using the extracted parasitics, and the ATE and DUT were
modelled as the resistors at both ends of the trace. The ideal netlist was created for the PCB, and stage

6.4. Parasitics and Reflection Integration Validation 71

Table 6.8: Parasitic Parameters for Baseline Trace at Different Frequencies

Frequency (MHz) R (Ω) L (nH) C (pF) G (S)
10 0.922 63.2 27.95 0.00065
50 1.287 61.4 27.92 0.00066
100 1.812 59.15 27.88 0.00067

3 was used to add parasitics and reflections to the netlist. The complete netlist was then simulated using
Cadence Spectre. ATE impedance was taken as 50 Ω, and DUT impedance was assumed to be 45 Ω.

6.4.2. Validation Methodology
The validation of stage 3 involved the following steps:

Simulation in PSpice and Stage 3 Model
The three configurations were modelled in PSpice using the extracted parasitic as shown in Table 6.8.
The ATE and DUT were modelled as sources and load resistors in PSpice. For the model simulation,
an ideal netlist was created for the baseline trace of the custom PCB, in which parasitics and reflection
were added using the Python script and Verilog module. After this, the stage 3 model was simulated
using Cadence Spectre and compared with the PSpice simulation under identical conditions (same
input voltages and frequencies).

.

6.4.3. Results and Analysis
The validation results compare the output voltage of the PSpice and the stage 3 simulation.

Configuration 1: ATE Present
The ATE is present with the loadboard in this configuration, modelled as a 50 Ω resistor after the voltage
source. Figure 6.17 compares the output voltages obtained from PSpice and the stage 3 model for the
first configuration across different input voltages and frequencies. The simulation results show a high
degree of accuracy, with the error percentage being less than 1%. For a 5 V input at 10 MHz, PSpice
measures 4.83 V while stage 3 measures 4.82 V, resulting in a difference of 0.21%. Similarly, the
difference between the other voltages for 10 MHz is less than 0.3%. For a frequency of 50 MHz, a 10
V input gives an output of 9.68 V from PSpive versus 9.65 V from stage 3, resulting in a difference of
0.31%. The maximum percentage error for 50 MHz is measured at an input of 20 V when the error is
around 0.86% as PSpice measures 19.36 V whereas stage measures 19 V. Finally, for the frequency
of 100 MHz, PSpice records 38.87 V. In contrast, the stage records 38.76 V for a 40 V input, the error
is 0.28. Overall, for the first configuration, the maximum error is recorded to be 0.86% for a frequency
of 50 MHz. These minor differences indicate that the stage 3 model accurately models the reflection
due to the presence of an ATE.

Configuration 2: ATE and DUT Present
Figure 6.18 compares the output voltages obtained from PSpice and the Stage 3 model for Configura-
tion 2 across different input voltages and frequencies. For an input of 5 V, at 10 MHz, stage 3 measures
4.83 V with an error percentage of around 0.41%; at 50 MHz, PSpice records 4.75 V, whereas stage
3 records 4.73 V. For a frequency of 100 MHz, at 10 V the error percentage comes out to be 0.84%
as PSpice measures 9.55 V and stage 3 measures 9.47 V. At the same frequency, PSpice gives an
output of 38.08 V and stage 3 gives 37.92 V for an input voltage of 40 V, with the error percentage
being 0.42%. The maximum error percentage in this configuration is 0.84%, measured at 10 V and
100 MHz.

Configuration 3: ATE with Resistor (10 Ω)
Figure 6.19 compares the output voltages obtained from PSpice and the Stage 3 model for Configura-
tion 3 across different input voltages and frequencies. For 10 MHz, at an input voltage of 5 V, output
voltages are 4.80 V (PSpice) and 4.78 V (Stage 3), reflecting a 0.42% difference. This slight discrep-
ancy arises from the added impedance of the 10 Ω resistor, which introduces additional reflections that

72 6. Framework Validation

Figure 6.17: PSpice vs. Stage 3 Model Output Voltages for Configuration 1 (ATE Present)

Figure 6.18: PSpice vs. Stage 3 Model Output Voltages for Configuration 2 (ATE and DUT Present)

6.5. Full Framework Validtion 73

Figure 6.19: PSpice vs Stage 3 Model Output Voltages for Configuration 3 (ATE with Resistor)

the Stage 3 model accurately captures. At 100 MHz, for a 40 V input, output voltages are 38.59 V
(PSpice) and 38.28 V (Stage 3), resulting in a 0.81% difference. In the same frequency for an input of
10 V, the record error percentage is 1.56%, the highest error for this configuration as PSpice records
9.63 V and stage records 9.48 V. The percentage differences remain consistently low across all fre-
quencies and input voltages, demonstrating that the Stage 3 model effectively integrates parasitics and
reflections introduced by passive components.

Validation Summary
The validation of stage 3 proved that the reflection and parasitic accounted for by the model are very
accurate when compared with the PSpice simulation. The maximum error percentage across all three
configurations was 1.56% for the third configuration at 10 V and 100 MHz. The overall higher error
percentage in configuration three is due to the presence of the passive resistor, which introduces more
complex signal interactions and reflections, especially at higher frequencies.

6.5. Full Framework Validtion
After validating the three stages of the framework and the component modelling, it was confirmed that
the stages work individually. So, the next step is to validate the full framework against a real-world
loadboard to validate how close the model is to its real-world counterpart regarding voltage and timing
characteristics.

6.5.1. Experimental Setup
A complex setup with the physical devices was established in the lab for the physical board, and AMS-
VT was used for the simulation. The goal is the comparison of the simulation and hardware results.

Simulation Setup
The simulation was conducted in the AMS-VT environment, a closed-loop system in which the ATE
model is connected to the Cadence Spectre AMS simulator. In the ATE model, all the activities of the

74 6. Framework Validation

ATE test program are recorded and stored as stimuli. The stimuli are then used to drive the loadboard
signals. The simulation environment also records the response. This allows for realistic simulation of
testing scenarios, including forcing voltages and measuring responses.

Physical Setup
The physical setup is shown in Figure 6.20, whose components are:

• ATE: The ATE used was an Advantest V93000 system. It was used as the ATE to execute a test
program. This ATE sends the signals to the loadboard. The loadboard is attached to the ATE,
which ends various voltage levels and signal patterns as the test program directs.

• Loadboard: This physical board was available at the NXP lab. The loadboard used is of the dual
board configuration to thoroughly check the framework. The frequency of the loadboard was 10
MHz. This was attached to the

• Oscilloscope: A Keysight DSOX3054T oscilloscope was used. This measures voltage levels
and pulse width at the loadboard output pins. The oscilloscope captures waveform details, pre-
cisely comparing simulated and physical signals.

Advantest V93000 ATE Loadboard (Dual Board)
Keysight

DSOX3054T
Oscilloscope

Test Program

Control Block

Signals
(Voltage,Patterns)

Patterns, Voltage Levels Pulse Width, Voltage Levels

Controls

Ground

Figure 6.20: Physical Setup for Full Framework Validation

Test Program
The same test program is used in simulation and the physical environment. A new test code was written
for this in which the pin is stabilised and then forced to 5V, as shown in Algorithm 8.

Oscilloscope Configuration
The oscilloscope was configured for the following setting:

• Bandwidth: 500 MHz, ensuring the capture of signals without attenuation.

6.5. Full Framework Validtion 75

Algorithm 8 Pin Voltage Control Test Code
1: Begin
2: Initialize Pin Voltage:
3: Set pin voltage to 0V to ensure a clean start and eliminate residual effects.
4: Execute RDI Block:
5: Enter Register Direct Interface (RDI) block.
6: Force pin to a target voltage of 5V using direct register control.
7: Monitor and Control:
8: Continuously monitor the pin voltage.
9: Ensure voltage stability and check for consistency.
10: Error Checking:
11: Implement error-checking mechanisms.
12: Detect and respond to any voltage setting failures or anomalies.
13: End

• Sampling Rate: 2 GS/s, providing high-resolution waveform details.

• Input Impedance: 1 MΩ, minimizing loading effects on the circuit under test.

• Triggering Mode: Edge triggering is set to detect rising edges at a threshold of 1.5 V.

• Vertical Sensitivity: 1 V/div, allowing clear observation of voltage levels.

• Horizontal Scale: 1 ms/div, allowing clear observation of pulse widths.

6.5.2. Validation Methodology
The framework validation is conducted by evaluating each requirement derived in Chapter 4. This
methodology involves executing the test program in the physical lab and AMS-VT to compare their
results. The requirements based on which the full framework validation will be done are:

1. Voltage Accuracy: The model should be able to predict site-to-site voltage variations within a
tolerance of ±0.1 V for a 5 V input signal, ensuring less than 2% deviation.

2. Timing Accuracy: The loadboard model should account for the timing delays due to the physical
characteristics of the loadboard, with a timing accuracy within 1% for the pulse width.

3. Temperature Validation: The model must include the effects of temperature (from −40∘C to
125∘C) as that is the operating range.

4. Automation Level: The steps in the framework should be completely automated to reduce hu-
man errors. The ideal framework would automate schematic conversion to single-site netlist,
parasitic extraction, and parasitics integration, thereby minimizing manual intervention.

5. Speed of Execution: With automation, the framework should complete the run within 2 hours to
not hinder any project timelines.

For the validation, the test program was executed on the ATE, which then generated a 5 V signal
across the loadboard. The applied voltages were then measured by an oscilloscope. The same test
program was then executed in AMS-VT, and the results were analysed using SimVision. Timing delays
were measured by applying a pulse signal from 5 to 6.5 V and then back to 5V, measuring the time
taken for the signal to reach 6.5 V and then go back to 5 V. The pulse width is measured at 50% of the
voltage increase, which means the measurement was taken from 5.75 to 5.75 V for rise and fall events.

6.5.3. Result and analysis
The validation results are analysed against each framework’s requirements. The following subsections
present the findings for each requirement.

76 6. Framework Validation

Table 6.9: Physical vs. Full Framework Output Voltages at 5V Input

Site Physical (V) Framework (V)
1 5.09 5.11
2 5.08 5.1
3 5.02 5.06
4 5.06 5.12
5 5.11 5.13
6 5.05 5.09
7 5.11 5.15
8 5.12 5.14

Table 6.10: Physical vs. Ideal vs. Final Framework Pulse Widths

Measurement Type Pulse Width (ms) Difference from Physical (ms)
Physical 10.865 0

Simulation Ideal Netlist 10.685 0.18
Simulation with Parasitics and Reflections 10.82 0.045

Voltage Accuracy
Table 6.9 compares the voltages measured physically and in the simulation when an input of 5 V is
provided across all eight sites of the loadbord. The framework voltage prediction proves to be of high
accuracy with percentage difference for Site 1 being 0.39%, Site 2 being 0.3%, Site 3 being 0.8%, Site
4 being 1.17%, Site 5 being 0.39%, Site 6 being 0.79%, Site 7 being 0.78%, and Site 8 being 0.37%.
The framework achieves a voltage accuracy with a tolerance of 1.17%, which is within the requirements
of less than 2% deviations for a 5 V input. The highest discrepancy was observed at Site 4, where the
physical result was 5.06 V. The framework predicts 5.12 V. This verifies that the framework adheres to
requirement R3 (Voltage Accuracy).

Timing Accuracy
Table 6.10 compares the pulse widths of the signal from the time it goes from 0 to 5 V until it goes back
to 0 V. The pulse width of the physical lab is compared with the ideal netlist and the entire framework
netlist. The timing accuracy is evaluated based on the deviation of simulated pulse widths from physical
measurements. The ideal netlist shows a 1.66% deviation from the physical value. However, the final
framework incorporating parasitics and reflections significantly improves the accuracy, reducing the
discrepancy to 0.41%. This meets the requirements of having a tolerance of less than 1% for the
timing accuracy of pulse width. This verifies that the framework adheres to requirement R3 (Timing
Accuracy).

Temperature Validation
The thermal simulation in PowerDC for baseline trace in custom PCB made in Section 6.2, for 10 MHz,
was executed to check the effects of temperature on the overall voltage. The temperature sweep was
done from -10 to 50 ∘C for an input voltage of 5 and 40 V. The output from both simulations can be seen
in Figure 6.21. As expected, the output voltage decreases slightly when temperature increases due to
increased resistance. At 5 V and -10∘C, the output voltage is approximately 4.9931 V in PowerDC and
4.993 V in the framework showing a negligible difference. As temperature increases, the output voltage
decreases to 4.9912 V in PowerDC and 4.9911 V in the framework. Similarly, at 40 v, the difference
between them is 0.0017 V, which is higher than at 5 V but still negligible. This decrease in output voltage
due to temperature is consistent in the results of both simulations. There is a slight discrepancy between
the output voltages of PowerDC and the framework; this is because the framework only accounts for
temperature effects on R, while PowerDC also accounts for the very minor temperature effects on L,
C, and G. This verifies that the framework adheres to requirement R3 (Operating Conditions) for
temperature.

6.6. Discussion 77

Figure 6.21: Temperature: Comparison between PowerDC and Framework

Automation Level
The framework automation capabilities are evaluated based on the following criteria:

• Schematic to Ideal Single-Site: The framework automates the conversion of Allegro’s multisite
netlist to a single-site netlist. Previously, generating a multisite netlist from Allegro must be done
manually. Still, since this does not require any changes and is not time-consuming, the overall
effect on the automation level is negligible.

• Parasitics Extraction: APython script was developed that automates the extraction of frequency-
based parasites from PowerSI without requiring manual intervention.

• Parasitics and Reflection Integration: The integration of parasitics and reflection in the ideal
single-site netlist is fully automated using a Python script and a Verilog-AMS module.

Overall, the framework fulfils the automation requirements as it automates all the complex pro-
cesses. The only manual process remaining is the generation of the Allegro netlist, which only requires
loading the schematic to Allegro and then generating the netlist. This verifies that the framework ad-
heres to requirement R5 (Automation Level).

Execution Speed
The framework’s execution speed was measured to ensure that it completed the generation of the
model within the set duration, which was 2 hours. The framework completed the execution for a dual
board configuration in approximately 1.5 hours, which is well within the required criteria. High levels of
automation optimized parasitic extraction algorithms, making them faster as they took most of the run
time. This verifies that the framework adheres to requirement R8 (Speed of Execution).

6.6. Discussion
The comprehensive validation of the complete framework against the specified requirements proves
that it generates an efficient, accurate, and reliable laodboard model that can be used directly in virtual
testing. The framework successfully calculated the site-to-site variations and decreased the error per-
centage in the pulse width. The framework can be graded based on the requirements. Four levels are
used to grade the framework:

• “+ +”: This represents optimal performance, which means no more improvement is required.

• “+”: This means satisfactory performance, indicating that some improvements can be made but
still acceptable.

78 6. Framework Validation

Table 6.11: Framework Requirements

Metric Required Score Justification
Voltage Accuracy + + The model is able to predict site-to-site voltage

variations for all the sites on the loadboard.
Timing Accuracy + There is a substantial decrease in the error per-

centage of pulse width to 0.41%. The rise and fall
time can also be considered for more accuracy in
timing.

Frequency and Temperature
Effects

+ + Frequency and temperature effects are included
in the generated model.

Automation Level + The complex steps in the framework are com-
pletely automated to reduce human errors. There
is a simple one-step that is not automated.

integration with AMS-VT ++ Themodel generated by the framework integrates
into the AMS-VT environment with minimal effort.

Component Modeling + The effects of the relay on voltage and timing are
considered. It is a static model that can be con-
verted to a dynamic one if power loss is consid-
ered.

Generalization ++ The framework handle different configurations of
the loadboard with ease.

Speed of Execution ++ With automation, the framework takes 1.5 hours.

• “–”: This represents below marginal performance, indicating a need for improvement to reach
an adequate level.

• “– –”: This means poor performance, indicating a need for significant improvements.

The grade of the framework based on the requirements and their reasoning is shown in Table 6.11.

7
Conclusion

7.1. Summary
Due to the increasing use of ICs in critical sectors, the semiconductor industry’s quality requirements
have become tighter. Due to the higher quality requirements, chip testing to ensure quality is becoming
increasingly essential in semiconductor manufacturing. The industry is also seeing an increase in
the complexity of the ICs due to the demands of functional requirements. This increasing complexity,
combined with tighter quality standards, is leading to a rise in the test development time of an IC. This
increase in test development time is further contributing towards an increasing time-to-market. So,
there is an urgent need to optimise test development flow to reduce the time-to-market. Virtual testing
is a methodology that can be employed in the test development flow to start the debugging process
pre-silicon which is currently being done post-silicon. However, it is currently not being utilised due to
the absence of an accurate loadboard model to connect the tester and DUT model. Therefore, this
thesis created a framework that integrates parasitic effects and signal reflections due to impedance
mismatch into the loadboard netlist and creates an accurate loadboard model for pre-silicon virtual
testing environments. Thus, the primary research question was centred around integrating different
methodologies in a single flow to generate a virtual model of loadboard. Further, how can this flow be
automated to reduce the probability of human errors? The thesis aimed to address these concerns by
streamlining the flow and integrating the different EDA tools with some developed models to achieve
digital twinning of the loadboard.

Chapter 2 explored the fundamentals of semiconductor testing. It briefly introduces the complete
semiconductor manufacturing process, explaining the design and wafer fabrication stages. Then, the
testing stage is introduced, where two primary types of testing are discussed: wafer and final test-
ing. After this, the test development flow is discussed, which explains the complete process of test
development, which starts from defining specifications and then goes on to test planning, test program
development, test file creation, and test program debugging. After describing the test development pro-
cess, the testing hardware, ATE, and loadboard were discussed in detail. Finally, the chapter discusses
the parasitic in the loadboard and how they can introduce reflections due to impedance mismatching,
which affects signal integrity.

Chapter 3 then discusses the state-of-the-art methodologies in virtual testing and digital twinning.
First, the development of virtual testing over the years is discussed. It was noted that companies like
Infineon tried using virtual testing in their test development flow, and they saw a decrease in their
time-to-market by weeks. After this, the latest virtual testing methodology, the AMS-VT developed by
Testinsight, is discussed, and NXP currently uses it. AMS-VT had certain limitations, which prevented it
from being used to its full capability, and the primary limitation was the absence of an accurate loadboard
model. The concept of digital twinning can be employed to create an accurate model. Then, a digital
twinning technique was presented, which involved creating an ideal netlist and combining parasitics
extraction to make an accurate model. Then, the possible EDA tools Cadence Allegro and PowerSI
were selected for ideal netlist generation and parasitics extraction, respectively.

Chapter 4 analysed the current methodology for loadboard modelling and derived requirements.
The requirements are voltage accuracy, timing accuracy, operating conditions, component modelling,

79

80 7. Conclusion

automation level, integration with AMS-VT, generalization, and execution speed. After the derivation
of requirements, an overview of the proposed solution was presented that could be used to counter
the inadequacies found in the previous chapter. These solutions focused on developing an accurate
netlist that could capture the loadboard’s parasitics, integrate reflections caused by mismatches, and
be compatible with tools like AMS-VT. Chapter 5 goes deeper into implementing the proposed solu-
tion by dividing it into three stages. The first stage was the generation of an ideal single-site netlist
with the format of the current virtual testing environment, ensuring compatibility with the existing vir-
tual testing setup. After generating an ideal netlist, tools like PowerSI extracted parasitic parameters
(R, L, C, G) from the loadboard layout, capturing critical parasitic effects for the signal traces. The
parasitic extraction from PowerSI was further automated to reduce manual errors during simulations.
The final stage involved parasitic analysis to calculate the channel’s characteristic impedance, which
was then compared with the source or load impedance, which showed the possibility of a mismatch
and resulting reflection, consequently changing voltage magnitude at the output. A Verilog module
was developed and added to the ideal netlist by a Python script to model this change. This module
successfully added the parasitic as distributed elements for all channels of that site and also added the
effects of an impedance mismatch to calculate the output voltage accurately. A static model of the SSR
relay was also developed that considers the effects of main parameters, such as on-state resistance,
output capacitance, off-state current leakage, switching times, and voltage and timing. Finally, a mas-
ter script was designed to communicate between different stages and make the process streamlined
and error-free.

The implementation was then validated in Chapter 6, where each stage of the framework was vali-
dated separately, and then a full framework validation was done. The first stage, where an ideal netlist
is generated, was validated by comparing it with a golden simulation, proving the netlist generated can
be easily integrated into AMS-VT without requiring manual changes. Then, the extracted parasitic was
validated by creating a test PCB with multiple configurations. The extracted parasitic from the algorithm
were simulated in PSpice and compared with the results from PowerDC where an IR drop analysis was
performed on the channel of the test PCB. This proved that the extracted parasitic from the algorithm
matched with the PowerDC results with an error of less than 1%. Stage 3 was then validated, where
its algorithm was executed on the baseline configuration of the test PCB, and the final netlist was then
simulated for multiple voltages. The results of this simulation were compared with the PSpice results,
which proved that the algorithm was very accurate with an error of less than 1%. Finally, the entire
framework was validated by comparing it with the results of a physical loadboard of NXP. The gener-
ated netlist gave an error of less than 2% for voltage accuracy, and the timing error for a pulse width
was reduced to 0.41% from 1.6%. The generated model was also verified for frequency and tempera-
ture, proving that the model accounts accurately for both these factors. The framework generated an
accurate model of the loadboard in 1.5 hours, which was also well within the requirement of 2 hours.
The framework was used on multiple loadboard configurations, proving its flexibility. The SSR model
was also validated with its datasheet to check if the model accurately represents its characteristics.

7.2. Limitations and Future Work
While the proposed framework provides accurate modelling of loadboard for pre-silicon virtual testing,
some limitations present opportunities for future work.

Firstly, the framework currently provides an accurate model for lower-frequency circuits (below 1
GHz), but it faces limitations when applied to higher frequencies, especially radio frequencies. These
limitations arise because, as frequency goes beyond 1 GHz, the length of the loadboard traces be-
comes comparable to the wavelength. Beyond this frequency, the model loses accuracy because
additional effects such as multiple reflections, ringing, and crosstalk become more apparent. The cur-
rent framework assumes that reflections occur primarily due to impedance mismatches at the ends of
the loadboard and at passive components, which is valid for low frequencies. However, multiple re-
flections occur at higher frequencies along the trace’s length due to bends and vias. These reflections
cause ringing and other signal integrity issues, which are not accounted for in the current framework.
To address this, the effects of bends and vias along the trace lengths can be incorporated to consider
their impact on the signal. This can be achieved by further segmenting the trace into smaller sections
and quantifying the effects of bends and vias on the signal by calculating their reflection. Second, the
framework can be extended to include crosstalk and coupling effects by incorporating electromagnetic

7.2. Limitations and Future Work 81

simulations that capture these interactions between ground planes.
Secondly, the static model of the SSR relay used in the current framework does not accurately

represent its dynamic behaviour. The SSR’s dynamic characteristics in high-speed applications, such
as switching transients, delay variations, and frequency-dependent effects, also become significant.
The relay’s switching states introduce parasitic effects that affect signal timing and voltage, which are
not modelled in the current framework. Developing a dynamic SSR model would overcome these
limitations. This can be done by considering the loss of power during the switching of the relay, which
can then be used to calculate its effects on different parameters.

Thirdly, the current framework assumes that temperature only affects resistance, whereas the in-
ductance and capacitance are also affected by temperature, although the effect is less. This effect of
temperature on L and C becomes more apparent in environments with significant temperature vari-
ations, which can then affect the signal integrity. The framework can be enhanced to account for
temperature-dependent parasitic behaviour in inductance and capacitance. This can be done by intro-
ducing temperature-dependent functions for these parasitics, ensuring the model remains accurate on
a broader range of operating conditions.

Additionally, the framework can be expanded by adding other minor effects that are:

• Power Integrity Issues: Parameters such as power supply noise and ground bounce can be
added to account for their effects, especially in power-sensitive applications.

• Manufacturing Variations: The effect due to variations in dielectric constant can also be added
to make the model more robust

Finally, the framework can be validated for various loadboards, even with designs outside of NXP,
to check its flexibility in handling different configurations. The framework can also be tested for high-
frequency and high-power applications to verify its accuracy. These boards introduce additional com-
plexities such as trace bends, vias, and plane effects, which must be modelled to simulate signal be-
haviour accurately. The framework can be further refined to handle different applications by addressing
these limitations. In conclusion, while the current framework provides an accurate model of loadboard,
future enhancements are necessary to broaden its capability for various applications.

Bibliography
[1] Mario A Bolanos. “Semiconductor integrated circuit packaging technology challenges-next five

years”. In: 2005 International Symposium on Electronics Materials and Packaging. IEEE. 2005,
pp. 6–9.

[2] Shubham Kumar and Ankaj Gupta. Integrated circuit fabrication. Taylor and Francis, CRC Press,
2021, p. 352. doi: https://doi.org/10.1201/9781003178583.

[3] Semicondutor Revenue. Accessed: 25th July 2024. url: https : / / www . wsts . org / 67 /
Historical-Billings-Report.

[4] Stefan R Vock et al. “Challenges for semiconductor test engineering: a review paper”. In: Journal
of Electronic Testing 28.3 (2012), pp. 365–374.

[5] Chen He. “Automotive Semiconductor Test: Challenges and Solutions towards Zero Defect Qual-
ity”. In: 2023 45th Annual EOS/ESD Symposium (EOS/ESD). Vol. EOS-45. 2023, pp. 1–11. doi:
10.23919/EOS/ESD58195.2023.10287730.

[6] Yangyuan Wang et al. Handbook of Integrated Circuit Industry. Springer Nature, 2023.
[7] Gordon E Moore. “Cramming more components onto integrated circuits”. In: Proceedings of the

IEEE 86.1 (1998), pp. 82–85.
[8] Sebastian Pointner et al. “Test Your Test Programs Pre-Silicon: A Virtual Test Methodology for

Industrial Design Flows”. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
2019, pp. 241–246. doi: 10.1109/ISVLSI.2019.00052.

[9] “Transistors per microprocessor”. In: Karl Rupp, Microprocessor Trend Data (2022) – processed
by Our World in Data. Accessed: 25th July 2024.

[10] Adrian I. Voinea and Stefan Kampfer. “Rapid prototyping and test before silicon of integrated
pressure sensors”. In: 2015 IEEE International Test Conference (ITC). 2015, pp. 1–9. doi: 10.
1109/TEST.2015.7342402.

[11] M. Miegler and W. Wolz. “Development of test programs in a virtual test environment”. In: Pro-
ceedings of 14th VLSI Test Symposium. 1996, pp. 99–103. doi: 10.1109/VTEST.1996.
510842.

[12] W.R. Dearborn et al. “The Virtual Test program (VTest)”. In: 1998 IEEEAUTOTESTCONProceed-
ings. IEEE Systems Readiness Technology Conference. Test Technology for the 21st Century
(Cat. No.98CH36179). 1998, pp. 149–159. doi: 10.1109/AUTEST.1998.713435.

[13] Q.M. Li, F.C. Lee, and T.G. Wilson. “Design verification and testing of power supply system by
using virtual prototype”. In: IEEE Transactions on Power Electronics 18.3 (2003), pp. 733–739.
doi: 10.1109/TPEL.2003.810845.

[14] Ping Lu et al. “Mixed-signal test development using open standard modeling and description
languages”. In: 2009 IEEE Behavioral Modeling and Simulation Workshop. 2009, pp. 78–83. doi:
10.1109/BMAS.2009.5338885.

[15] Stefan Mihai et al. “Digital twins: A survey on enabling technologies, challenges, trends and future
prospects”. In: IEEE Communications Surveys & Tutorials 24.4 (2022), pp. 2255–2291.

[16] Saleh Kalantari et al. “Developing and user-testing a “Digital Twins” prototyping tool for architec-
tural design”. In: Automation in Construction 135 (2022), p. 104140.

[17] Virtual ATE. Accessed: 25th July 2024. url: https://www.testinsight.com/vt-virtual-
ate/.

[18] TestInsight AMS-VT. Accessed: 6th August 2024. url: https://www.testinsight.com/
ams-vt-mixed-signal-virtual-ate/.

83

https://doi.org/https://doi.org/10.1201/9781003178583
https://www.wsts.org/67/Historical-Billings-Report
https://www.wsts.org/67/Historical-Billings-Report
https://doi.org/10.23919/EOS/ESD58195.2023.10287730
https://doi.org/10.1109/ISVLSI.2019.00052
https://doi.org/10.1109/TEST.2015.7342402
https://doi.org/10.1109/TEST.2015.7342402
https://doi.org/10.1109/VTEST.1996.510842
https://doi.org/10.1109/VTEST.1996.510842
https://doi.org/10.1109/AUTEST.1998.713435
https://doi.org/10.1109/TPEL.2003.810845
https://doi.org/10.1109/BMAS.2009.5338885
https://www.testinsight.com/vt-virtual-ate/
https://www.testinsight.com/vt-virtual-ate/
https://www.testinsight.com/ams-vt-mixed-signal-virtual-ate/
https://www.testinsight.com/ams-vt-mixed-signal-virtual-ate/

84 Bibliography

[19] Shrey Gupta. Loadboard Digital Twin Framework Code Repository. Accessed: 21st October
2024. url: https://gitlab.tudelft.nl/msc/shrey-gupta-loadboard-simulation.
git.

[20] Chue San Yoo. Semiconductor manufacturing technology. Vol. 13. World Scientific, 2008.
[21] Badih El-Kareh and LouNHutter. Fundamentals of semiconductor processing technology. Springer

Science & Business Media, 2012.
[22] Ian A Grout. Integrated circuit test engineering: modern techniques. Springer Science & Business

Media, 2005.
[23] R Jacob Baker. CMOS: circuit design, layout, and simulation. John Wiley & Sons, 2019.
[24] Michael L Bushnell, Vishwani D Agrawal, et al. “Essentials of Electronic Testing for Digital, Mem-

ory and Mixed-Signal VLSI Circuits [electronic resource]”. In: ().
[25] Sudarshan Bahukudumbi and Krishnendu Chakrabarty.Wafer-level testing and test during burn-

in for integrated circuits. Artech House, 2010.
[26] N Sameeksha Rai, Namita Palecha, and Mahesh Nagarai. “A brief overview of Test Solution De-

velopment for Semiconductor Testing”. In: 2019 4th International Conference on Recent Trends
on Electronics, Information, Communication & Technology (RTEICT). 2019, pp. 205–209. doi:
10.1109/RTEICT46194.2019.9016857.

[27] Keith Brindley. Automatic test equipment. Elsevier, 2013.
[28] Advantest ATE. Accessed: 28th July 2024. url: https://www.advantest.com/en/.
[29] Justin Moses. “Design and Testing of an Electronic Load Board for Power Supply Validation and

Verification”. PhD thesis. Auburn University, 2014.
[30] David E McFeely. “The process and challenges of a high-speed DUT board project”. In: Proceed-

ings. International Test Conference. IEEE. 2002, pp. 565–573.
[31] Yolando G. Yabut et al. “Device Under Test (DUT) Socket Conversion to Improve Analog Load-

board Performance Efficiency”. In: 2006 Thirty-First IEEE/CPMT International Electronics Man-
ufacturing Technology Symposium. 2006, pp. 492–495. doi: 10.1109/IEMT.2006.4456500.

[32] Chongjun Sun and Minghu Zhang. “Automated Calibration Method of Loadboard of Integrated
Circuit ATE”. In: 2018 IEEE International Conference on Electronics and Communication Engi-
neering (ICECE). 2018, pp. 130–133. doi: 10.1109/ICECOME.2018.8644921.

[33] NA Mutalib, MS Mispan, and N Hashim. “INTELLIGENT INTERFACE BOARD COMPONENT
CODE GENERATOR FOR AUTOMATED TESTING EQUIPMENT”. In: Journal of Engineering
and Technology (JET) 14.1 (2023), pp. 121–135.

[34] S.M. Low et al. “Verification of trace length and trace impedance of fabricated load board using
TDR”. In: 2009 1st Asia Symposium on Quality Electronic Design. 2009, pp. 401–404. doi: 10.
1109/ASQED.2009.5206229.

[35] David Reusch and Johan Strydom. “Understanding the effect of PCB layout on circuit perfor-
mance in a high-frequency gallium-nitride-based point of load converter”. In: IEEE Transactions
on Power Electronics 29.4 (2013), pp. 2008–2015.

[36] Tonio Biondi et al. “Distributed modeling of layout parasitics in large-area high-speed silicon
power devices”. In: IEEE Transactions on Power Electronics 22.5 (2007), pp. 1847–1856.

[37] U.A. Bakshi and L.A.V. Bakshi. Communication Network & Transmission Lines. Technical Pub-
lications, 2020. isbn: 9789333223737. url: https://books.google.co.in/books?id=
8E4bEAAAQBAJ.

[38] Wei-Da Guo et al. “Reflection enhanced compensation of lossy traces for best eye-diagram im-
provement using high-impedance mismatch”. In: IEEE Transactions on Advanced Packaging
31.3 (2008), pp. 619–626.

[39] G. Gary Wang. “Definition and Review of Virtual Prototyping ”. In: Journal of Computing and Infor-
mation Science in Engineering 2.3 (Jan. 2003), pp. 232–236. issn: 1530-9827. doi: 10.1115/1.
1526508. eprint: https://asmedigitalcollection.asme.org/computingengineering/
article-pdf/2/3/232/5637643/232_1.pdf. url: https://doi.org/10.1115/1.
1526508.

https://gitlab.tudelft.nl/msc/shrey-gupta-loadboard-simulation.git
https://gitlab.tudelft.nl/msc/shrey-gupta-loadboard-simulation.git
https://doi.org/10.1109/RTEICT46194.2019.9016857
https://www.advantest.com/en/
https://doi.org/10.1109/IEMT.2006.4456500
https://doi.org/10.1109/ICECOME.2018.8644921
https://doi.org/10.1109/ASQED.2009.5206229
https://doi.org/10.1109/ASQED.2009.5206229
https://books.google.co.in/books?id=8E4bEAAAQBAJ
https://books.google.co.in/books?id=8E4bEAAAQBAJ
https://doi.org/10.1115/1.1526508
https://doi.org/10.1115/1.1526508
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/2/3/232/5637643/232_1.pdf
https://asmedigitalcollection.asme.org/computingengineering/article-pdf/2/3/232/5637643/232_1.pdf
https://doi.org/10.1115/1.1526508
https://doi.org/10.1115/1.1526508

Bibliography 85

[40] Ping Lu et al. “A novel approach to entirely integrate Virtual Test into test development flow”. In:
2009 Design, Automation & Test in Europe Conference & Exhibition. 2009, pp. 797–802. doi:
10.1109/DATE.2009.5090772.

[41] Michel Nagel et al. “Virtual PCB Layout Prototyping: Importance of Modeling Gate Driver and
Parasitic Capacitances”. In: 2022 IEEE Design Methodologies Conference (DMC). 2022, pp. 1–
5. doi: 10.1109/DMC55175.2022.9906542.

[42] Dwight Howard. “The Digital Twin: Virtual Validation In Electronics Development And Design”.
In: 2019 Pan Pacific Microelectronics Symposium (Pan Pacific). 2019, pp. 1–9. doi: 10.23919/
PanPacific.2019.8696712.

[43] Pablo González-de-Aledo et al. “Towards a Verification Flow Across Abstraction Levels Verifying
Implementations Against Their Formal Specification”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36.3 (2017), pp. 475–488. doi: 10.1109/TCAD.
2016.2611494.

[44] Jens Lienig and Juergen Scheible. Steps in Physical Design: From Netlist Generation to Layout
Post Processing. Cham: Springer International Publishing, 2020, pp. 165–211. isbn: 978-3-030-
39284-0. doi: 10.1007/978-3-030-39284-0_5. url: https://doi.org/10.1007/978-
3-030-39284-0_5.

[45] Allegro System Capture. url: https://www.cadence.com/en_US/home/tools/pcb-
design-and-analysis/design-authoring/allegro-system-capture.html.

[46] EasyEDA. Accessed: 14th August 2024. url: https://easyeda.com/.
[47] Altium Designer. Accessed: 14th August 2024. url: https://www.altium.com/altium-

designer.
[48] Autodesk Fusion 360. Accessed: 14th August 2024. url: https://www.autodesk.com/in/

products/fusion-360/overview?term=1-YEAR%5C&tab=subscription.
[49] Taigon Song et al. “Full-chip signal integrity analysis and optimization of 3-D ICs”. In: IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems 24.5 (2015), pp. 1636–1648.
[50] Sigrity-Aurora. Accessed: 14th August 2024. url: https://www.cadence.com/en_US/

home/tools/sigrity-x.html#sigrity-x-aurora.
[51] Sigrity-PowerSI. Accessed: 14th August 2024. url: https://www.cadence.com/en_US/

home/tools/sigrity-x.html#sigrity-x-powersi.
[52] Keysight ADS. Accessed: 14th August 2024. url: https://www.keysight.com/in/en/

products/software/pathwave-design-software/pathwave-advanced-design-
system.html.

[53] Siemens hyperLynx. Accessed: 14th August 2024. url: https://eda.sw.siemens.com/en-
US/pcb/hyperlynx/.

[54] Joonhyun Kim and Yungseon Eo. “IC Package Interconnect Line Characterization Based on
Frequency-Variant Transmission LineModeling and Experimental S-Parameters”. In: IEEE Trans-
actions on Components, Packaging and Manufacturing Technology 9.6 (2019), pp. 1133–1141.
doi: 10.1109/TCPMT.2019.2898671.

[55] Louis Scheffer, Luciano Lavagno, and Grant Martin. EDA for IC system design, verification, and
testing. CRC press, 2018.

[56] Vladimir Gurevich. “The International Standard on Solid-State Relays (IEC 62314, Ed. 1) Critical
Review”. In: 8th January (2024).

[57] Solid State Relays. url: https://www.ia.omron.com/support/guide/18/introduction.
html.

[58] Wes McKinney. Python for data analysis. ” O’Reilly Media, Inc.”, 2022.
[59] Katherine A Kim et al. “A dynamic photovoltaic model incorporating capacitive and reverse-bias

characteristics”. In: IEEE Journal of photovoltaics 3.4 (2013), pp. 1334–1341.

https://doi.org/10.1109/DATE.2009.5090772
https://doi.org/10.1109/DMC55175.2022.9906542
https://doi.org/10.23919/PanPacific.2019.8696712
https://doi.org/10.23919/PanPacific.2019.8696712
https://doi.org/10.1109/TCAD.2016.2611494
https://doi.org/10.1109/TCAD.2016.2611494
https://doi.org/10.1007/978-3-030-39284-0_5
https://doi.org/10.1007/978-3-030-39284-0_5
https://doi.org/10.1007/978-3-030-39284-0_5
https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/design-authoring/allegro-system-capture.html
https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/design-authoring/allegro-system-capture.html
https://easyeda.com/
https://www.altium.com/altium-designer
https://www.altium.com/altium-designer
https://www.autodesk.com/in/products/fusion-360/overview?term=1-YEAR%5C&tab=subscription
https://www.autodesk.com/in/products/fusion-360/overview?term=1-YEAR%5C&tab=subscription
https://www.cadence.com/en_US/home/tools/sigrity-x.html#sigrity-x-aurora
https://www.cadence.com/en_US/home/tools/sigrity-x.html#sigrity-x-aurora
https://www.cadence.com/en_US/home/tools/sigrity-x.html#sigrity-x-powersi
https://www.cadence.com/en_US/home/tools/sigrity-x.html#sigrity-x-powersi
https://www.keysight.com/in/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
https://www.keysight.com/in/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
https://www.keysight.com/in/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
https://eda.sw.siemens.com/en-US/pcb/hyperlynx/
https://eda.sw.siemens.com/en-US/pcb/hyperlynx/
https://doi.org/10.1109/TCPMT.2019.2898671
https://www.ia.omron.com/support/guide/18/introduction.html
https://www.ia.omron.com/support/guide/18/introduction.html

	Introduction
	Motivation
	State Of The Art
	Virtual Testing Methodologies
	Limitations

	Thesis Contribution
	Thesis Outline

	Semiconductor Testing
	Semiconductor Manufacturing Process
	Design
	Wafer Fabrication
	Testing

	Test Development Flow
	Testing Hardware
	Automatic Test Equipment
	Loadboard

	Loadboard Parasitics

	Virtual Testing and Digital Twinning
	Virtual Testing
	Evolution towards Virtual Testing
	Test Development Speedup through Virtual Testing
	AMS-VT: Overview and Limitations

	Accurate Loadboard Modelling
	EDA Tools for Ideal Netlist Generation
	EDA Tools for Parasitics Extraction
	Digital Twinning Limitations

	Framework for Accurate Loadboard Modeling
	Derivation of Requirements for Loadboard Modelling
	Limitations of the Current Methodology
	Operating Conditions Impact
	Deriving Requirements

	Overview of Proposed Framework
	Key Stages of the Framework
	Component Modelling
	Platform

	Framework Implementation
	Ideal Netlist Generation
	Schematic to Multisite Netlist
	Multisite to Single-Site Netlist

	Parasitics Extraction
	Component Modelling
	SSR Model Implementation
	Algorithmic Representation of the SSR Model

	Parasitics and Reflection Integration
	Transmission Line Parasitics and Characteristic Impedance
	Reflection Calculation
	Integration Automation

	Framework Automation
	Proposed Methodology
	Execution Flow

	Framework Validation
	Ideal Netlist Validation
	Experimental Setup
	Validation Methodology
	Simulation Results

	Parasitics Validation
	Experimental Setup
	Validation Methodology
	Results and Analysis

	SSR Model Validation
	Experimental Setup
	Result and Analysis

	Parasitics and Reflection Integration Validation
	Experimental Setup
	Validation Methodology
	Results and Analysis

	Full Framework Validtion
	Experimental Setup
	Validation Methodology
	Result and analysis

	Discussion

	Conclusion
	Summary
	Limitations and Future Work

