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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Preventive drought management mea-
sures can reduce the severity of
droughts.

• Allocating drought management mea-
sures is a multi-objective problem.

• This study uses an optimisation
approach to allocate drought manage-
ment measures.

• Management measures’ effect on
droughts exhibits temporal and spatial
variations.

• Management measures show contrasting
impacts on different types of droughts.
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A B S T R A C T

While drought impacts are widespread across the globe, climate change projections indicate more frequent and
severe droughts. This underscores the pressing need to increase resistance and resilience to drought. The strategic
application of Preventive Drought Management Measures (PDMMs) is a suitable avenue to reduce the likelihood
of drought and ameliorate associated damages. In this study, we use an optimisation approach with a multi-
criteria decision-making method to allocate PDMMs for reducing the severity of agricultural and hydrological
droughts. The results indicate that implementing PDMMs can reduce the severity of agricultural and hydrological
droughts, and the obtained management scenarios (solutions) highlight the utility of multi-objective optimisa-
tion for PDMMs planning. However, examined management scenarios also illustrate the trade-off between
managing agricultural and hydrological droughts. PDMMs can alleviate the severity of agricultural droughts
while producing opposite effects for hydrological droughts (or vice versa). Furthermore, the impact of PDMMs
displays temporal and spatial variabilities. For instance, PDMMs implementation within a specific subbasin may
mitigate the severity of one type of drought in a given month yet exacerbate drought conditions in preceding or
subsequent months. In the case of hydrological droughts, the PDMMs may intensify streamflow deficits in the
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intervened subbasins while alleviating the hydrological drought severity downstream (or vice versa). These
complexities emphasise a customised implementation of PDMMs, considering the basin characteristics (e.g.,
rainfall distribution over the year, soil properties, land use, and topography) and the quantification of PDMMs’
effect on the severity of each type of drought.

1. Introduction

Drought, directly and indirectly, impacts society, the environment
and the economy (Duel et al., 2022; UNDRR, 2021; Vogt et al., 2018).
Direct impacts result from the interaction between water deficit and
social, economic or environmental components and are observed in
drought-affected areas (UNDRR, 2021; Vogt et al., 2018). These impacts
include limited water supplies, crop loss, wetland drying, and reduced
energy production. Indirect consequences relate to secondary effects on
natural or economic resources and can be observed in areas far away
from where the drought originated and continue long after the drought
has ended (UNDRR, 2021; Vogt et al., 2018). Indirect consequences can
impact biodiversity and food prices and, in extreme cases, may affect
human health and result in loss of income and food insecurity (UNDRR,
2021).

Extensive drought impacts and climate change projections showing
more frequent and severe droughts worldwide highlight the pressing
need to develop drought management plans (Carrão et al., 2018; Cottrell
et al., 2019; Haile et al., 2020; UNCCD, 2022; Vicente-Serrano et al.,
2020). Literature on drought management stresses the importance of
proactive drought management (FAO, 2019; Gerber and Mirzabaev,
2017; Wilhite, 2016). This approach does not respond to specific events
but recognises drought planning as a permanent and continuing need.
Proactive drought management aims to create resistance and resilience
to droughts, minimising negative impacts in advance and relies on three
pillars: 1) drought monitoring and early warning systems, 2) drought
risk and vulnerability assessment, 3) drought preparedness and miti-
gation (Pischke and Stefanski, 2017; Tsegai et al., 2018; Wilhite, 2019).
Particularly, the third pillar of proactive drought management refers to
measures to mitigate the potential negative of droughts and to enable
ecosystems and communities to withstand the effects of droughts more
effectively (Wilhite, 2019). These measures can be grouped into four
categories according to their purpose: preventive or strategic, opera-
tional, organisational and restoration (Global Water Partnership Central
and Eastern Europe, 2015). They vary broadly, e.g. from interventions at
the field level applied before the drought occurs to negotiated global
compensation for damage to land due to droughts (Assimacopoulos
et al., 2015; King-Okumu, 2021; World Bank, 2019). This study analyses
preventive drought management measures (PDMMs) applied at the
basin level.

PDMMs are developed prior to the onset of droughts. At the basin
level, PDMMs encompass multiple management actions for different
land use types (King-Okumu, 2021; Sanz et al., 2017; Sayers et al., 2017;
UNCCD, 2019). Interventions can be intended for water bodies, flood-
plains and wetlands restoration; croplands soil conservation and best
management practices (terracing, mulching, cover crops), water har-
vesting and recharge; forest and woodlands conservation, reforestation
and agroforestry; and agropastoralism for mixed land uses.

Overall, modelling and field studies on PDMM focus on one specific
measure. Assessment of measures’ performance mainly relies on in-
terventions’ effectiveness in increasing infiltration and water availabil-
ity, improving soil water-holding capacity and preventing land
degradation or desertification (Basche, 2017; Beets and Beets, 2020;
Oweis et al., 2012; Sanz et al., 2017; Wambura et al., 2018; Yadav et al.,
2018). While these criteria provide relevant insights into the measures’
applicability for drought management, there is a lack of information on
the water deficit reduction during drought periods and measures’
contribution to drought alleviation is not explicitly appraised.

Application of drought mitigation measures in a consistent and

structured way has the potential to limit the negative impact of droughts
on society, the environment and the economy (Global Water Partnership
Central and Eastern Europe, 2015). Nevertheless, planning mitigation
measures at the basin scale is not a trivial task. In a given region, a
collection of measures, sites, scales, and possible configurations suitable
for drought management exists. In addition, measures appropriate for
reducing one type of drought may adversely impact another type of
drought, e.g. agricultural drought management measures may exacer-
bate hydrological drought conditions. This conflict can be explained by
the fact that alleviating agricultural droughts requires storing water in
the soil profile, implying a reduction in rivers’ discharge, increasing, in
turn, hydrological droughts (Cai et al., 2015). Accordingly, selecting a
right set of drought management measures is effectively a multi-
objective problem.

Several multi-objective optimisation frameworks have been applied
to optimise types and allocation of management strategies to improve
water quality and stream health (Deb et al., 2023; Geng et al., 2019; Liu
et al., 2019; Raschke et al., 2021; Zhang et al., 2023), flood management
and water availability (Lewis and Randall, 2017; Liu et al., 2023;
Woodward et al., 2014), or prevent soil degradation (Hildemann et al.,
2023; Naseri et al., 2021; Wu et al., 2018). Regarding drought pre-
paredness and PDMMs planning, Cai et al. (2015) developed a multi-
objective stochastic optimisation model to identify the optimal combi-
nation of preventive and tactical measures under different future climate
scenarios. Particularly, they provided relevant information on the
required investments to mitigate drought damage and identified the
trade-off between managing agricultural and hydrological droughts. In
their study, the effects of the preventive measures on drought charac-
teristics (intensity, duration, frequency) were not evaluated.

This study uses an optimisation approach to define near-optimal
drought management scenarios (sets of different PDMMs combinations
and allocations), estimate their impact on the severity of agricultural
and hydrological droughts and analyse the trade-off between managing
both types of droughts. Accordingly, we develop an optimisation engine
integrating a semi-distributed hydrological model – the Soil Water
Assessment Tool (SWAT) (Neitsch et al., 2011). – with an evolutionary
optimisation algorithm – the Unified Non-dominated Sorting Genetic
Algorithm III (U-NSGA-III) (Seada and Deb, 2016). The SWAT model
simulates the PDMMs and their impacts on the basin hydrology. The U-
NSGA-III identifies near-optimal allocations of PDMMs that minimise
the severity of both agricultural and hydrological droughts. The meth-
odology is tested in the Cesar River Basin (Colombia).

2. Study area

For a specific application of this framework, we choose the Cesar
River Basin (17,369 km2) as the study area. The basin’s topography
defines three distinct climatic regions: La Sierra Nevada de Santa Marta
in the northwest (see red dots Fig. 1a), La Serranía del Perijá in the east
(see blue dots Fig. 1a), and the Cesar River valley with the Zapatosa
marsh from northeast to south (see grey dots Fig. 1a) (Universidad del
Atlantico, 2014). La Sierra Nevada de Santa Marta comprises steeply
sloped mountains reaching up to 5700 m above sea level (masl). In this
sector, temperature ranges from 3 ◦C to 6 ◦C, and the mean annual
precipitation is 1000 mm. Meanwhile, La Serranía del Perijá is an
extension of the eastern branch of the Andes range in the east, having an
elevation range from 1000 to 2000 masl. The average temperature is
24 ◦C, and the average annual precipitation varies from 1000 mm to
2000 mm. Lastly, the valley of the Cesar River up to the confluence with
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the Zapatosa marsh is characterised by flat topography and a complex
system of marshes formed by the Cesar River floodplains. The average
temperature is 28 ◦C, and the mean annual precipitation is 1500 mm.
Dominant crops in the Cesar River basin include oil palm, coffee, corn,
and cassava. These four crops accumulate >70 % of the cultivated area
in the basin and account for 90 % of the basin’s agriculture GDP.

The Expansion of water-intensive crops, inappropriate cropping
patterns, and lack of land suitability analysis for agriculture severely
exacerbate water scarcity in the study area (Universidad del Atlantico,
2014). In La Sierra Nevada de Santa Marta and La Serranía del Perijá,
deforestation driven by agricultural land expansion has impacted the
discharge of the Cesar River’s tributaries. <30 % of the primary forest
remains in these areas (Agencia de Desarrollo Rural et al., 2019). In La
Sierra and Serranía foothills, cattle raising and intensive agriculture
have compromised soil structure, reducing infiltration rates (generally
associated with high soil compaction). In a basin’s drought situation
assessment, Paez-Trujilo et al. (2023) showed that an unbalanced water
cycle that favours water loss through evapotranspiration and limits
percolation causes severe agricultural and hydrological drought condi-
tions in the Cesar River valley and La Sierra and La Serranía foothills.

According to the Regional study of soil suitability for agriculture

(2018), suitable land for agriculture is found in the middle part of the
valley, the river floodplains, and in La Serranía del Perijá and La Sierra
Nevada foothills. In practice, agricultural land allocation considerably
differs from soil’s suitability. Notably, the river valley is underused, and
soils in the basin’s northwest and La Serranía del Perijá foothills are
overexploited, as shown in Fig. 1c (Agencia de Desarrollo Rural et al.,
2019; Instituto Geografico Agustin Codazzi and Corporacion Autonoma
Regional del Cesar, 2018).

3. Methodology

The proposed workflow consists of hydrological modelling, drought
analysis and optimisation steps (see Fig. 2). Firstly, hydrological
modelling is used to represent the basin hydrology, simulate the vari-
ables required to analyse droughts in the baseline scenario, i.e., soil
moisture and streamflow, and parametrise the PDMMs. The baseline
scenario represents the current drought situation and is the basis for
comparing the effect of implementing PDMMs on droughts. Secondly,
we apply the threshold level method (Yevjevich, 1967) to identify the
drought events during the analysis period and estimate their severity
levels. Thirdly, we develop and apply an optimisation engine to identify

Fig. 1. Cesar River basin: a) topography, b) land use, and c) land use-conflict.
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the optimal sets of PDMMs that contribute to reducing the severity of
droughts. To solve the optimisation problem in Python, we used the
optimisation framework pymoo (Blank and Deb, 2020) coupled with a
python wrapper for executing SWAT (i.e., SWAT-pytools; (Hernandez-
Suarez and Nejadhashemi, 2022)). Once the optimisation is completed
and the Pareto-optimal solution set is obtained, two multi-criterion de-
cision-making (MCDM) methods are applied to select a few preferred
solutions that balance the objective functions. Lastly, we compare the
drought severity in the baseline scenario with the severity in the optimal
solution for each objective function and the preferred solutions. A
detailed description of the methodology is presented below.

3.1. Hydrological modelling

A SWAT model with an ArcSWAT extension was used to develop the
hydrological model of the Cesar River basin. SWAT is a semi-distributed,
continuous-time, process-based, watershed-scale model developed by
The Agricultural Research Service of the United States Department of
Agriculture (ARS-USDA). The model is intended to simulate surface and
groundwater quantity and quality and to evaluate the long-term effects
of land use and climate change on basin hydrology, sediment, and
agricultural chemical yields (Neitsch et al., 2011). SWAT divides the
basin area into subbasins up to the outlet point. Each subbasin is further
split into Hydrological Response Units (HRUs), which are areas within
the subbasin with common combinations of land cover, soil type and
slope (Arnold et al., 2012).

The Cesar River basin model was built for the period from 1987 to
2018. The basin was divided into 108 subbasins with a median area of
160 km2. Four slope classes were set for the HRUs generation: flat (0–2
%), gentle (2–10 %), steep (10–35 %) and considerably steep (>36 %).
Table 1 presents the details and sources of the input data utilised for the
model set-up. The following methods were used to simulate the main
hydrological processes: the soil conservation service-curve number
(SCS-CN) was used to represent surface runoff; potential evapotranspi-
ration was estimated using the Hargreaves method; and water was

routed through the channel network using the variable storage routing
method.

3.1.1. Model calibration and validation
The model was calibrated using streamflow data from 1985 to 2002

and validated with data from 2003 to 2018, utilising records from four
stream gauges (see black dots Fig. 1a). In both calibration and validation
processes, the initial two years were designated as a warm-up period.
Accordingly, performance indicators were computed for the periods
1987 to 2002 (calibration) and 2005 to 2018 (validation). The source of
the streamflow data is the Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM), Colombia.

The model’s performance for simulating streamflow was evaluated
using the Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS),
represented by Eqs. (3) and (4). The NSE is a dimensionless indicator
ranging from -∞ to 1, with 1 representing a perfect match between the
observed and simulated values (Moriasi et al., 2007). The PBIAS mea-
sures the average tendency of the simulated values to be larger or
smaller than the observed values. The ideal PBIAS is 0, with low-
magnitude values indicating accurate model simulation (Moriasi et al.,

Fig. 2. Flowchart of the methodology

Table 1
SWAT model input data.

Data type Details Source

Digital elevation model 25 × 25 m

Dataset ALOS PALSAR L1.0,
Cartography 1:25000 Geographic
Institute Agustín Codazzi (IGAC),
Colombia

Soil map 300 × 300 m
Soil profiles Project GEF
Magdalena–Cauca VIVE, GEF, BID,
Fundación Natura, Colombia

Land use map 25 × 25 m
Land use map Geographic Institute
Agustin Codazzi (IGAC), Colombia

Daily precipitation and
daily minimum and
maximum temperature

Period
1985–2018 (34
years)

Institute of Hydrology,
Meteorology and Environmental
Studies (IDEAM), Colombia

A.M. Paez-Trujillo et al.
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2007).

NSE = 1 −

∑N

i=1
(Oi − Pi)

2

∑N

i=1
(Oi − O)2

(1)

PBIAS =

∑N

i=1
(Oi − Pi) × 100

∑N

i=1
Oi

(2)

where Oi is the observed data, Pi the predicted data, O the mean of the
observed data and N the number of observations during the simulation
period.

Table 2 summarises the calibration and validation performance in-
dicators for the SWAT model at each gauging station. The calibration
and validation models simulated monthly stream flows with NSE values
equal to or >0.50 and relatively low PBIAS values (GEF et al., 2020,
2021). According to the performance ratings for hydrological model
calibration and validation, these NSE and PBIAS values indicate that the
model is adecuate for simulating streamflow (Moriasi et al., 2007). Fig. 3
displays the model hydrographs at each gauging station for both the
calibration and validation periods. A comprehensive description of the
model setup, calibration, and validation procedure is presented in GEF
et al. (2021,2020).

3.2. PDMMs selection and parametrization in SWAT

In this study, we selected seven interventions and practices to eval-
uate their effectiveness as PDMMs. Interventions were selected to cover
the land and water phases of the hydrological cycle. Additional selection
criteria included compatibility with the basin’s land use and availability
of parameters to represent the intervention in the SWAT model. The
selected PDMMs, the parameters used to represent them in SWAT, and
their values are summarized in Table 3. A description of each PDMM is
provided below.

3.2.1. PDMM-1: infiltration ponds
Infiltration ponds are a Rainwater Harvesting technique (RWH)

aiming to increase the soil water content in the soil profile by storing
rain when it falls (Huang et al., 2021). This intervention contributes to
increasing infiltration and groundwater recharge and decreases soil
erosion by reducing surface runoff velocity (Nyagumbo et al., 2019;
Piemontese et al., 2020). The Infiltration ponds were modelled in SWAT
using the pothole routine (Wambura et al., 2018). Potholes are water
bodies located off the main channel, and water flows to them from the
subbasin (Du et al., 2005). The potholes were applied at the HRU level
and represented by two parameters: the fraction of flow from the upland
HRUs that contributed to the pothole HRU (POT_FR) and the maximum
water depth inside the pothole (POT_VOLX). For the present study, the
RWH pond’s storage capacity was aggregated into one pothole, as there
could be only one in each HRU.

The effect of an RWH pond on the overall water balance at each HRU
is controlled by its storage capacity, which is given by the product be-
tween POT_FR times the HRU draining area and POT_VOLX (Neitsch

et al., 2011). Higher storage capacity generally results in higher
evapotranspiration and soil water content, as well as lower surface
runoff (Wambura et al., 2018). In our modelling approach, the infil-
tration pond’s strength as a PDMM measure is defined by POT_FR given
a fixed POT_VOLX. Higher POT_FR implies higher storage capacity,
whereas POT_VOLX can be defined in terms of the average surface runoff
depth aimed to be stored. In this study, POT_FR was set as 0.3 (i.e., an
application level of 30 % at each HRU), whereas POT_VOLX was set as
20 cm, which represents infrastructure suitable to store approximately
35 % of the average surface runoff depth during the wet period in the
study area.

3.2.2. PDMM-2 and PDMM-3: crops allocation
Allocating crops regarding climate, hydrology, terrain, and soil

qualities maximises land production, prevents water scarcity, and re-
duces topsoil and groundwater depletion (Akpoti et al., 2019; Mosleh
et al., 2017). Adequate crop allocation is crucial for maintaining sus-
tainable production and reducing environmental impact (Bhat et al.,
2023). In SWAT, the allocation of the main crops in the basin (oil palm
coffee, corn and cassava) was simulated using the SCS runoff curve
number for moisture condition II (CN2), the plant identification
(PLANT_ID), the management operation number (MGT_OP) 1 for
planting and 5 for harvest and kill, and the month and day in which the
operation takes place (MONTH/DAY). The CN2 value was assigned for
each hydrologic soil-cover complex (combination of hydrological soil
group and land use) according to SWAT’s crop database. It is worth
noting that CN2 is the main parameter controlling the strength of a
specific crop as a PDMM measure. Higher CN2 values indicate lower
infiltration capacity and higher runoff potential from a particular area.
Meanwhile, the MONTH/DAY of planting, harvest and kill operations of
each crop were set conforming to the National Agricultural Survey
(DANE, 2019).

3.2.3. PDMM-4: Woodlands’ allocation
Forest conservation/restoration includes forest regeneration, species

diversity, and unevenly aged stands. This intervention contributes to
limiting soil degradation to slow runoff and increase infiltration and
groundwater recharge. In this study, the CN2 value for forested areas in
good hydrological conditions represented the intervention. Similarly to
the previous sets of PDMMs, CN2 is the model parameter defining the
strength of this measure. Depending on the hydrologic soil group,
woodlands are generally associated with CN values ranging from 30 to
80 (Neitsch et al., 2011). The CN2 value was assigned for each hydro-
logic soil-cover complex according to SWAT’s crop database. In practice,
the selected values to model this intervention represent forests with
diverse tree species, the presence of native species, and adequate soil
structure and water balance. Overall, forests in these conditions are
protected areas dedicated to forest conservation.

3.2.4. PDMM-5 and PDMM-6: channel restoration: channel protection and
grade control

Channels restoration refers to changes in the physical structure of a
river channel, its riparian zone or the floodplain through reshaping,
reconstruction, or replanting (Muhar et al., 2018; Wohl et al., 2015).
These modifications aim to amend hydrologic, geomorphic, and/or
ecological processes within degraded or altered water bodies. Over the
last few years, river restoration has shifted to a process-based restoration
approach considering rivers’ geomorphology and function (Greene
et al., 2023; Wohl et al., 2015). There is a comprehensive list of in-
terventions used for channel restoration, e.g., reconfiguration of stream
channels, floodplain reconnection, and riparian revegetation (Ciotti
et al., 2021; Inamdar et al., 2023). In this study, we focus on the bank
and bed channel protection and grade control.

Channel protection controls the river’s bank degradation, balances
the sediment load, and reduces water velocity adjacent to the stream-
bank (Li and Eddleman, 2002; Pinto et al., 2016; Rosgen, 2001). In this

Table 2
SWAT model performance simulating streamflow.

Gauging station Calibration Validation

NSE PBIAS [%] NSE PBIAS [%]

Puente Salguero 0.61 4.28 0.52 − 8.3
Puente Carretera 0.50 − 5.34 0.52 7.6
Cantaclaro 0.58 − 11.30 0.50 − 11.7
Puente Canoas 0.70 − 1.34 0.57 10.64

A.M. Paez-Trujillo et al.
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study, channel protection was modelled using SWAT model parameters
such as Manning’s “n” value for the main channel (CH_N(2)) and the
channel cover factor (CH_COV2). Grade stabilization refers to any
intervention that provides stability to the streambed. These in-
terventions range from loose rock structures (e.g., steep-pool sequence)
to reinforced concrete weirs, and they vary in scale from small to large
rivers (Wang et al., 2017). Controlling channel degradation prevents
failures of the channel banks by over-heightening and preventing po-
tential groundwater table lowering caused by channel widening and
bank erosion (Natural Resources Conservation Service, 2007). Here,
channel protection was modelled using SWAT parameters such as the
average slope of the main channel along the channel length (CH_S(2))
and the channel cover factor (CH_COV2). Overall, increases in CH_N(2)
due to the introduction of large and rough bed materials and dense
vegetation, and reductions in CH_S(2) result in lower stream velocities,
which favour aggradation processes and greater residence times within
the river network. Meanwhile, fully protected channels (i.e., CH_COV2
equal to zero) normally result in lower sediment yields from channel
erosion. In the field, the values used to simulate channel protection can
be associated with works such as riverbank riprap, retaining walls and
bioengineering (e.g., pole plantings or coir rolls). In turn, grade stabi-
lization values represent, for instance, treated wood structures or cattle
panel structures. In general, applying these strategies requires thorough
hydrogeomorphic studies to determine the most adequate structure and
can be costly.

3.2.5. PDMM-7: storage ponds
Check dams, small barriers constructed across channels or gullies,

serve the purpose of impeding the flow. These structures store flood-
water, increase the basin’s retention capacity and allow more time for
water percolation to recharge aquifers, among other functions (Abbasi
et al., 2019; Lucas-Borja et al., 2021; Wang et al., 2021). In the SWAT
model, we simulated check dams as ponds (Waidler et al., 2009). SWAT
defines ponds as water bodies within the subbasin area, exclusively
receiving loadings from the subbasin’s HRUs. The model allows the
allocation of only one pond at each subbasin; then, the predicted runoff
from the HRUs is aggregated and routed into the pond situated at each
subbasin (Jalowska and Yuan, 2019; Rabelo et al., 2021). SWAT model

parameters employed to represent the intervention are the fraction of
the subbasin that drains into ponds (POND_FR), the surface area of
ponds when filled to the principal spillway (POND_PSA), and the volume
of water stored in ponds when filled to the principal spillway
(POND_PVOL). Like infiltration ponds, water storage is determined by
POND_FR, given POND_PSA and POND_PVOL values which are check
dams’ design parameters. Therefore, the storage pond’s strength as a
PDMM measure is defined mainly by POND_FR.

3.3. Agricultural and hydrological drought analysis

Drought analysis was conducted using the threshold level method.
This approach is suitable for quantifying the water required to manage
and recover from a drought (Iglesias et al., 2018). According to the
threshold level method, a drought is a period (days, weeks, or months)
during which a variable of interest (e.g., precipitation, soil moisture, or
streamflow) remains below a predetermined threshold (τ) (Tallaksen
et al., 2009; Yevjevich, 1967; Zelenhasić and Salvai, 1987). Generally,
the threshold lies between the variable distribution’s fifth and thirtieth
percentiles (Herrera-Estrada et al., 2017; Heudorfer and Stahl, 2017;
Hisdal et al., 2024). Each drought event can be characterised by its
duration, spatial extent, and severity, among other characteristics
(Hisdal et al., 2024; Zhang et al., 2022). In this study, simulated soil
moisture and streamflow are the variables used to represent agricultural
and hydrological droughts, whereas severity is the feature of interest.
Drought severity was estimated separately for the baseline or current
scenario (represented by the calibrated models of the Cesar River basin)
and the management scenarios (selected most-preferred trade-off solu-
tions from the Pareto front) obtained from the optimisation.

3.3.1. Setting the drought thresholds
This study uses the SWAT model outputs, namely, soil moisture and

streamflow, to calculate agricultural and hydrological drought thresh-
olds, respectively. SWAT results obtained at the subbasin level allow us
to estimate the drought severity at each subbasin and assess the differ-
ential effect of the mitigation measures in upstream and downstream
subbasins.

The simulated soil moisture Ai(t) at the subbasin i (1,2,…,N) in the

Fig. 3. Monthly calibration and validation for streamflow at: a) Puente Salguero, b) Puente Carretera, c) Cantaclaro and d) Puente Canoas; Fig. 1a presents the
location of the gauging stations. From Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic
characteristics and agricultural and hydrological drought severity: case of study Cesar River basin by Paez-Trujilo et al., 2023, Natural Hazards and Earth System
Sciences 23, 3863–3883.
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baseline scenario is used to set the monthly agricultural threshold τAij ,
where j (1,2,…,12). The monthly threshold at each subbbasin corre-
sponds to the 20th percentile of the empirical distribution function of
the series

(
Aij1,Aij2,…Aijn

)
, where n is the simulation year. Similarly, the

simulated streamflow Hi(t) at the subbasin i (1, 2,…,N) in the baseline
scenario is used to set the monthly hydrological threshold τHij , where
j (1, 2,…,12). The monthly threshold at each subbbasin corresponds to
the 20th percentile of the empirical distribution function of the series
(
Hij1,Hij2,…Hijn

)
, where n is the simulation year.

3.3.2. Identifying drought events and estimating the drought severity
We identified the agricultural and hydrological drought events dur-

ing the period of analysis employing the monthly thresholds. In this
study, the agricultural drought state is assumed to occur in a subbasin
when the monthly simulated soil moisture Ai(t) remains below the set

threshold
(
Ai(t) < τAij

)
. Likewise, the hydrological drought state is

assumed to occur in a subbasin when the monthly simulated streamflow

Hi(t) falls below the set threshold
(
Hi(t) < τHij

)
.

To consider a drought state in a subbasin part of a drought event, a
temporal and spatial conditions were set. A drought (agricultural or
hydrological) is assumed to occur in the basin when a number of sub-
basins (covering at least 30 % of the basin’s total area) are in a drought
state for at least two consecutive time steps (i.e., in this study we used
one month as the time step). A drought begins when both conditions are
satisfied and lasts until one of the conditions is not satisfied. It is worth
highlighting that the minimal extension of a drought is not defined, but
it is acknowledged that droughts usually occur on a wide scale (Sheffield
and Wood, 2011). Setting a spatial threshold is a common practice to
keep a minimum drought-affected area and avoid identifying isolated
regions experiencing dry spells as drought events (Brunner et al., 2021).

After identifying the drought events in the analysis period, the
agricultural and hydrological drought severity (deviation from the
threshold) is estimated at each subbasin (Eqs. (3), (4)).

SAi (t) =

⎧
⎨

⎩

τAij − Ai(t) if Ai(t) < τAij
0 if Ai(t) ≥ τAij

(3)

SHi (t) =

⎧
⎨

⎩

τHij − Hi(t) if Hi(t) < τHij
0 if Hi(t) ≥ τHij

(4)

where SAi (t) represents the agricultural drought severity at the subbasin i
at time step t (in mm), and SHi (t) represents the hydrological drought
severity at the subbasin i at time step t (in mm d− 1). Note that the se-
verities here (Eqs.(3) and (4)) are defined as deviations from the
threshold without normalization. Thus, SAi (t) takes the same unit as soil
moisture (here in mm) and SHi (t) takes the same unit as streamflow (here
in mm d). Higher the negative values of the severities, more severe are
the droughts.

3.3.3. Comparison of drought severity between the baseline scenario and
the selected solutions from the Pareto front

The drought severity change was evaluated by comparing the
severity in the baseline scenario to the severity in the near to-optimal
drought management scenarios obtained from the optimisation. Eqs.
(5) and (6) were employed for this purpose.

ΔSAi (t) =
SAi (t)BL − SAi (t)OP

SAi (t)BL
×100 (5)

ΔSHi (t) =
SHi (t)BL − SHi (t)OP

SHi (t)BL
×100 (6)

where ΔSAi (t) is the change in agricultural drought severity (%) at the
subbasin i at time step t; ΔSHi (t) is the change in hydrological drought
severity (%) at the subbasin i at time step t; BL is the baseline scenario;
and OP are the management scenarios obtained from the optimisation
(selected most-preferred trade-off solutions from the pareto front). A
positive change reflects a reduction in the severity of the drought rela-
tive to the baseline scenario, and a negative value shows an increase in
the severity of the drought.

Table 3
PDMM applied to reduce the severity of agricultural and hydrological droughts.

ID Preventive drought
management measures
(PDMM)

Parameter(s)
used in SWAT

Value when PDMM is
applied in a HRU or
subbasin

PDMM-
1

RWH ponds
POT_FR a (.hru),
POT_VOLX b (.
hru).

0.3
20 [cm]

PDMM-
2

Plantation crops
allocation (e.g., oil palm

or coffee) CN2 c (.mgt)
MGT_OP
MONTH/DAY

45, 66, 77 or 80
1
1/1

PDMM-
3

Row crops allocation (e.
g., corn or cassava)

CN2 c (.mgt)
PLANT_ID
MGT_OP
MONTH/DAY
MGT_OP
MONTH/DAY

67, 77, 83 or 87
CORN
1
3/1 (main harvest) 7/
1 (second harvest)
5
8/1 (main harvest)
11/1 (second harvest)

PDMM-
4

Woodlands allocation

CN2 c (.mgt) 25, 55, 70 or 77

PDMM-
5

Channel protection

CH_N(2) d (.rch),
CH_COV2 e (.rch)

CH_N2 reduced 0.15
from the default value.
0.0 (fully protected
river channel)

PDMM-
6

Grade control

CH_S(2) f (.rch),
CH_COV2 e (.rch)

Reduced by 10 % from
the default value.
0.0 (fully protected
river channel)

PDMM-
7

Storage ponds POND_FR g (.
pnd),
POND_PSA h (.
pnd),
POND_PVOL i

(pnd)

0.3
20 [Ha]
1.5 [104 m3]

a Fraction of the HRU area that drains into a pothole.
b Maximum volume of water stored in the pothole over the entire HRU (mm).
c Initial SCS runoff curve number for moisture condition II.
d Manning’s “n” value for the main channel.
e Channel cover factor.
f Average slope of main channel along the channel length (m/m).
g Fraction of subbasin area that drains into ponds.
h Surface area of ponds when filled to principal spillway (ha).
i Volume of water stored in ponds when filled to the principal spillway (104 m3

H2O).
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3.4. Formulation of the optimisation framework for PDMM planning

The optimisation process starts by initialising a population of
drought management scenarios (diverse allocations of the PDMMs
evaluated). For each drought management scenario, the measures and
their potential allocations are put into SWAT to simulate the PDMMs’
impact on the basin hydrology, particularly on soil moisture and
streamflow. Then, agricultural and hydrological drought objectives are
computed using the hydrological modelling outcomes. U-NSGA-III is
applied to obtain near-optimal solutions, minimising both agricultural
and hydrological drought objectives. Thus, the outcome of the optimi-
sation process is a Pareto front containing a set of solutions (manage-
ment scenarios with different PDMMs combinations and allocations)
that contribute to reducing the severity of agricultural and hydrological
droughts. To solve the optimisation problem in Python, we used the
optimisation framework pymoo (Blank and Deb, 2020) coupled with
SWAT-pytools, which includes a wrapper for modifying SWAT input
files. The optimisation runs were executed in the Snellius supercomputer
(Dutch National Supercomputer Snellius, 2023). In Snellius, the
compute nodes are grouped into partitions; we ran the optimisation in
the Genoa partition, which includes 128 cores per node and the memory
per node is 336 GiB. To run the simulation, the number of CPUs per task
was one and the requested memory per CPU was 3GB. Below, we
describe the formulation of the problem of allocating PDMMs as an
optimisation problem.

3.4.1. Objective functions
Two competing objective functions were formulated to identify the

optimal PDMMs sets that reduce the severity of agricultural and hy-
drological droughts. The first objective is based on minimisation of the
agricultural drought severity (Eq. (7)). The Objective Function 1 (OF1)
was formulated as the aggregation (over the simulation period) of the
difference between the average available water capacity (AWC) of the
soil and the simulated soil moisture at each subbasin during the dry
season months (Dec, Jan, Feb, Mar, Apr, May, Jun, Jul). AWC refers to
the soil’s ability to store and provide water to plant roots and depends on
the soil properties, particularly soil texture (Rabot et al., 2017). Further
information on typical AWC values for different soil textures can be
found at de Jong van Lier et al. (2023). Minimising the difference be-
tween AWC and the simulated soil moisture is intended to maintain an
adequate water content in the soil profile (informed by the dominant soil
texture at each subbasin) and prevent this value from falling below the
agricultural drought threshold. We focused on dry months to force the
optimisation engine to select drought management scenarios that
contribute to reducing the soil water deficit during the dry season when
droughts are more likely to occur and their severity tends to increase.

Min
∑m

i=1

∑n

j=1

⃒
⃒AWCST − SWij

⃒
⃒ (7)

where, i = 1, 2,3…n are the subbasins, j = 1,2, 3…m are the dry months
over the years of the simulation period, AWCST is the average available
water capacity of the dominant soil texture at the ith subbasin (in mm)
and SWij is the soil moisture during the jth dry month at the ith subbasin
(in mm).

The Objective Function 2 (OF2) (Eq. (8)) deals with hydrological
drought and was formulated as the aggregation of the simulated
streamflow at the outlet of each subbasin. Maximising the discharge
aimed to increase the streamflow and prevent this value from falling
below the hydrological drought threshold. The optimisation framework
pymoo minimises all the objective functions. If an objective function is
maximised (maxfi), the objective function can be formulated to mini-
mise its negative value (min − fi) (Blank and Deb, 2020).

Min −
∑m

i=1

∑n

j=1
qij (8)

where, i = 1,2, 3…n are the subbasins, j = 1, 2,3…m are the months
over the years of the simulation period, and qij is the discharge during
the jth month at the outlet of the ith subbasin (in mm d− 1).

3.4.2. Decision variables
Fig. 4 shows a schematic of the decision variable matrix for planning

drought mitigation measures. In this study, each matrix row (decision
variable vector) represented a member of the population that consisted
of genes defining a specific combination of PDMMs, or what is referred
to as an allele. Each gene can have either a one or zero state, one indi-
cating the measure is applied in a specific spatial unit (HRU or subbasin)
and zero indicating the measure is not applied in that spatial unit. When
the state is “one” in a spatial unit, all the parameters representing the
measure are modified according to the values presented in Table 1. The
number of alleles in a gene was given by the number of PDMMs appli-
cable at each spatial unit. Four out of the seven evaluated PDMMs were
applied at the HRU level (infiltration ponds, crop allocation, forest
restoration), and the other three PDMMs were applied at the subbasin
level (channel protection, grade stabilization and storage ponds).
Accordingly, the number of alleles in an HRU gene was four and in a
subbasin gene was three.

Considering the significant number of spatial units in the basin
model, the most susceptible spatial units to agricultural and hydrologi-
cal droughts were selected for the optimisation process, that is to say,
855 out of 2699 HRUs and 78 out of 108 subbasins. Then, the number of
decision variables (length of the decision variables vector) was given by
the equation N = (NoHRU × 4)+ (Nosub × 3), where NoHRU is the number
of HRUs selected to apply the PDMMs and Nosub is the number of sub-
basins selected to apply the PDMMs. The number of decision variables
for the optimisation of PDMM in the Cesar River model was 3654, and
the size of the matrix X was 3654 multiplied by the population size; in
this study, 350 individuals.

To narrow down the decision variable space, the most susceptible
subbasins to agricultural and hydrological droughts were selected using
the study outcomes by Paez-Trujilo et al. (2023). Based on their results,
we identified that subbasins located in the upper and middle part of the
river valley are drought-prone areas, and multiple hydroclimatic factors
influence their susceptibility to agricultural and hydrological droughts.

3.4.3. Optimization algorithm and convergence to near-optimal Pareto
front

We used U-NSGA-III to identify strategic portfolios of PDMMs min-
imising hydrological and agricultural drought severity in the study area.
U-NSGA-III is an algorithm developed to solve constrained and uncon-
strained optimization problems with one to more than three objective
functions (Seada and Deb, 2016). As part of the NSGA-III family of al-
gorithms, U-NSGA-III is an elitist population-based method that uses
non-domination sorting, evolutionary operators such as crossover and
mutation, and reference directions to find near-optimal Pareto solutions.
Compared to the original NSGA-III version, U-NSGA-III introduces a
niching-based selection procedure with no extra parameters to allow a
seamless degeneration to mono- and bi-objective problems (Seada and
Deb, 2016). Using the unified version of NSGA-III is intended to main-
tain consistency among solutions when increasing or reducing the
number of objective functions and working with the same decision
variables. In this study, we implemented U-NSGA-III using the pymoo
library in Python 3.7 (Blank and Deb, 2020). Algorithm parameters
include the number of reference directions (which equals the population
size), the maximum number of generations (which operates as the
stopping criterion), crossover and mutation probabilities, and the dis-
tribution indices for simulated binary crossover (SBX) and polynomial
mutation. We generated well-spaced reference directions using the Riesz
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s-Energy method (Blank et al., 2021). Table 4 presents the parameter
values used in this study, which are standard and recommended.

On the other hand, we computed the Hypervolume Indicator at the
end of each generation to evaluate convergence to a near-optimal Pareto
solution. The hypervolume represents the region collectively dominated
by a set of Pareto solutions in the objective space (Auger et al., 2012).
Therefore, the Hypervolume Indicator is usually employed for conver-
gence assessment since it simultaneously accounts for the proximity of
the points to the actual Pareto front, diversity, and spread. Since a larger
hypervolume occurs when the Pareto solutions are closer to the origin of
the objective space, a higher Hypervolume Indicator is considered better
in minimization problems. Moreover, if the Hypervolume Indicator
shows a near-steady behaviour with increasing generations, it indicates
that the Pareto front has stabilized and that convergence has eventually
occurred (Raschke et al., 2021).

3.4.4. Preferred trade-off solutions
Once we obtained the near-optimal Pareto set, we selected a few

preferred solutions balancing the objective functions using two different
multi-criterion decision-making (MCDM) approaches. In the first
approach, we computed a pseudo-weight vector for each solution in the
Pareto set (Deb, 2001). In this vector, the i-th element represents the
relative importance of the i-th objective function for a particular solution
and is computed using Eq. (9).

wi =

(
fmaxi − fi

)/(
fmaxi − fmini

)

∑M
m=1

(
fmaxm − fm

)/(
fmaxm − fminm

) (9)

where fmini and fmaxi are the minimum and maximum values of the i-th
objective function, respectively. It is worth noting that when computing
the pseudo-weight vector, the sum of all elements is forced to one. This
study identified the most balanced solution with a pseudo-weight close
to (0.5, 0.5). Two additional preferred solutions were obtained using

additional target vectors, (0.25, 0.75) and (0.75, 0.25), to indicate a
preference for one of the objective functions. In the second approach, we
identified knee points in the Pareto set, which are solutions showing
high trade-offs. These points result in a slight gain in one objective while
having a high loss in the other when moving along neighbouring solu-
tions. Defining whether a trade-off is high or low requires the definition
of a threshold, which in this study was taken as the average trade-off
plus twice the standard deviation using the entire Pareto set. We
implemented the high trade-off procedure proposed by Rachmawati and
Srinivasan (2009), included in pymoo, to identify any knee points. Then,
we selected the knee point with the most balanced pseudo-weight vector
as a preferred solution.

4. Results

4.1. Drought events in the baseline scenario

We identified the drought events in the analysis period by applying
the method described in 3.3. The date and duration of the identified
droughts were consistent with the agricultural and hydrological drought
events found by Paez-Trujilo et al. (2023) using the Soil moisture deficit
index (SMDI) and the Standardized Streamflow Index (SSI). Further-
more, drought events agreed with the chronology of drought events in
Colombia described at the National Study of Water (Instituto de hidro-
logía meteorología y estudios ambientales (IDEAM), 2019). Table 5
shows the dates and duration of the drought events. Fig. 5a and b show

Fig. 4. Schematic of a decision variable matrix for planning drought mitigation measures.

Table 4
U-NSGA-III parameters and their values for this study.

Parameter Value

Number of reference directions (population size) 350
Max. number of generations 350
Crossover probability 0.9
Mutation probability 1/3654
Distribution index – SBX (Crossover) 10
Distribution index – Polynomial mutation 20

Table 5
Agricultural and hydrological droughts during the period of analysis.

Event Agricultural droughts Hydrological droughts

Date Duration
[months]

Date Duration
[months]

I May 1991 – Jun
1992

13 Apr 1991 – May
1992

14

II Jun 1997 – April
1998

11 Apr 1997 – Feb
1998

11

III Jun 2001 – Aug
2001

3 May 2001 – Jun
2001

2

IV Oct 2009 – Jan
2010

4 Sep 2009 – Nov
2009

3

V Jun 2014 – Aug
2014

3 Jun 2014 – Jul
2014

2

VI May 2015 – Jul
2016

14 Apr 2015 – Apr
2016

13
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the monthly drought severity of the agricultural drought events V and
VI, and Fig. 6a and b show the monthly drought severity of the hydro-
logical drought events V and VI. These two events were the most severe
droughts observed in the analysis period and were selected to assess the
effect of PDMM on the severity of short-term and long-term droughts.

Overall, the drought severity of the drought events evaluated varied
in time and space. For agriculture droughts, the highest deficit was
observed in the basin west, in the river valley, and upstream of the basin
outlet (Fig. 5a and b). During the short-term event, agricultural severity
was alike in the first two months, and in the last month, the area in
drought condition and the severity reduced (Fig. 5a). In the long-term
event, severity slightly increased for the first five months. In October
and November, there was a recovery period. Then, in December, the
severity increased until March (Fig. 5b). Regarding hydrological
droughts, the highest deficit occurred in the mountainous areas in La
Sierra and La Serranía. During the short-term event, the drought severity

did not vary markedly (Fig. 6a), and in the long-term event, the highest
deficits were observed in May, June, September and October (Fig. 6b).

4.2. Pareto optimal front and allocation of the PDMMs for the most-
preferred trade-off solutions

Fig. 7 shows that U-NSGA-III progressed towards a near-optimal
Pareto front, considering the stable behaviour of the Hypervolume in-
dicator at the end of the optimisation run.

A relatively uniform distribution of the objective vectors in the front
is presented in Fig. 8. The initial population consisting of 350 randomly
generated individuals evolved into a well-spread and evenly distributed
convex Pareto front. The final Pareto front consisted of 258 optimal
solutions and was obtained after 350 generations (i.e., 122,500 function
evaluations). Once the optimisation was completed, we selected six so-
lutions from the Pareto-optimal front (Fig. 8. points a to f) to analyse the

Fig. 5. Agricultural drought severity events a) V and b) VI in mm.

Fig. 6. Hydrological drought severity events a) V and b) VI in mmd− 1.
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spatial distribution of the seven PDMMs evaluated (see Table 3) and
compare the droughts’ severity in the baseline scenario with the severity
in the selected solutions. The MCDM approaches utilised to select the
solutions b, c, d and e are described in 3.4.4.

4.3. Optimal allocation of the PDMMs for the most-preferred trade-off
solutions

Once the optimisation was completed, we selected six solutions from
the Pareto-optimal front (Fig. 8. points a to f) to analyse the spatial
distribution of the seven PDMMs evaluated (see Table 3) and compare
the droughts’ severity in the baseline scenario with the severity in the
selected solutions. Fig. 9 presents the PDMMs allocation in the optimal
solutions for agricultural (Fig. 9a) and hydrological (Fig. 9f) droughts,
the selected most-preferred trade-off solutions, obtained through
pseudo-weight and high trade-off methods (Fig. 9c and d) and the
preferred trade-off solutions with preference for agricultural and hy-
drological droughts, selected through the pseudo-weight method
(Fig. 9b and e). The MCDM approaches utilised to select the solutions b,
c, d and e are described in 3.4.4.

Fig. 9a and b (PDMM-1) show that in scenarios with preference for
agricultural drought management, RWH ponds were allocated in the
river valley and in a strip that extends from the basin’s north-east to-
wards the west and in some subbasins at the basin’s west and south. In

the scenarios with preference for hydrological drought management,
RWH ponds were applied to a lesser extent (Fig. 9e and f, PDMM-1).
RWH ponds were allocated in the northeast strip, especially at eleva-
tions >1000 m and in the mountainous areas in the basin’s west. RWH
ponds allocated at the river valley considerably decreased compared
with scenarios with a preference for agricultural droughts.

RWH ponds allocation in the different solutions concurs well with
previous studies concluding that suitable sites for RWH ponds depend on
the intended application. For increasing soil moisture areas with low
runoff potential given by precipitation ranging between 100 mm/year
and <1000 mm/year, sandy soils and moderate slopes are recom-
mended (Kahinda et al., 2008; Terêncio et al., 2017). Factors such as
altitude, topography, and lithology are also evaluated to allocate RWH
for groundwater recharge (Pacheco and Van Der Weijden, 2014).

In the solutions with preference for agricultural drought manage-
ment, plantation crops (e.g., oil palm, coffee) were concentrated in the
middle course of the river valley, and crop patches were observed in the
headwater and the basin’s south (Fig. 9a and b PDMM-2). Overall, crop
allocation obtained from the optimisation process in solutions a and b
agrees with the Regional study of soil suitability for agriculture (2018).
In the best-trade-off solutions and solutions with preference for hydro-
logical droughts, plantation crops were allocated in mountainous areas
at relatively high altitudes (replacing woodlands), the basin’s west and
southeast (Fig. 9e and f PDMM-2). Earlier studies demonstrate that
runoff, baseflow, and streamflow generation in oil palm plantations vary
due to previous land cover, soil, and topographic conditions, showing a
general increase compared to forest cover (Gómez et al., 2023).
Nevertheless, other studies conclude that streamflow tends to decrease
during low-flow months in land areas converted to oil palm (Heidari
et al., 2020). In light of contrasting evidence, careful attention should be
paid to crop allocation.

In the solutions with preference for agricultural drought manage-
ment, the allocation of row crops was limited (Fig. 9a and b PDMM-3).
These crops were allocated in scattered strips in the river valley and
towards the basin’s south. On the contrary, in solutions e and f, the
allocation of row crops notably increased throughout the basin (Fig. 9e
and f PDMM-3), including areas at relatively high altitudes. The allo-
cation of corn in solutions e and f seems connected to the runoff potential
of the curve number representing these crops. Curve number values to
represent these crops are significantly high; then, it is expected that
runoff contribution to the streamflow increases in the wet season,
favouring the maximisation of the streamflow (OF2).

For solutions with preference for agricultural drought, forests in
good hydrological condition spread over the basin area (Fig. 9a and b
PDMM-4). Woodlands were allocated in the downhills of la Sierra
Nevada, La Serranía del Perijá, the middle part of the river valley and in
the basin’s west. Woodlands were allocated in the Sierra and the Ser-
ranía del Perijá at relatively high altitudes for solutions with preference
for hydrological drought management. Overall, woodland allocation is
consistent with the Regional study of soil suitability for agriculture
(2018). The study indicates that a thin topsoil and drainage density

Fig. 7. Hypervolume indicator at the end of each U-NSGA-III generation.

Fig. 8. Optimal Pareto front obtained from the 350th generation and most-
preferred trade-off solutions for the PDMM allocation problem. Each point
represents a set of PDMMs to be allocated (points a to f). The solution of the
baseline scenario (blue dot) is also shown for reference.
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limits soil fertility in mountainous areas at elevations >2000 m. Hence,
the land is suitable for forest conservation or restoration. Additionally,
the allocation of woodlands in management scenarios aligns with find-
ings in the literature indicating that planting native trees and fostering
natural regeneration have regulated the annual streamflow and base
flow since the first phases of restoration (Jones et al., 2022).

Channel protection structures are allocated towards the basin’s west
and in the middle part of the river valley in solutions giving more weight
to agricultural droughts (Fig. 9a and b PDMM-5). It should be pointed

out that the SWAT model parameters used to represent this intervention
do not influence the soil water content simulation; consequently, it has
no impact on the severity of agricultural droughts. Considering this, in
solutions a and b, the number of channel protection structures is low,
mainly in the basin’s west. In solutions giving more weight to hydro-
logical droughts, channel protection allocates in the basin’s west and the
river valley from the headwater to the basin outlet.

Similarly, to channel protection structures, SWAT model parameters
used to represent grade stabilization structures do not influence soil

Fig. 9. Allocation of the PDDMs in the six selected Pareto-optimal solutions: (a) best solution for agricultural drought management, (b) trade-off solution with
preference for agricultural droughts, (c) most-preferred trade-off solution selecting the most balanced pseudo-weight, (d) most balanced high trade-off solution, (e)
trade-off solution with preference for hydrological droughts, and (f) best solution for hydrological drought management.
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water content simulation. In solutions, a and b, stabilization structures
are observed towards the basin’s west and the river valley (Fig. 9a and b
PDMM-6). Most of these subbasins experienced the highest streamflow
deficit during the drought events evaluated (Fig. 6a and b). The number
of grade stabilization structures increases in solutions with preference
for hydrological drought management. The more weight is given to
hydrological droughts, the more protection structures are applied in the
main course of the Cesar River (Fig. 9e and f PDMM-6).

In solutions a and b, storage ponds allocate in the subbasins showing
high runoff potential (Fig. 9a and b PDMM-7). According to the analysis
of the hydroclimatic parameters influencing droughts in the Cesar River

basin by Paez-Trujilo et al. (2023), low infiltration capacity in these
subbasins is associated with the soil hydrological group and land use
that limits the infiltration. Then, allocating storage ponds in these sub-
basins appears to reduce drought exposure by collecting surface runoff
and allowing more time for infiltration. In solutions with preference for
hydrological drought management, the storage ponds are allocated in
the main channel from the headwater to the basin outlet. A few ponds
are observed in basin east and in the Serranía del Perijá foothills.

Fig. 10. Agricultural drought severity change in events V and VI for solutions a, c, and f. Solution a a) event V, b) event VI, solution b c) event V d) event VI, and
solution c e) event V f) event VI.
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4.4. Assessment of drought severity change by comparing drought severity
in the baseline and the most-preferred trade-off solutions

The effect of PDMMs on the severity of agricultural and hydrological
droughts was evaluated by comparing the drought severity in the
baseline scenario to the drought severity in the selected solutions from
the Pareto front. In the following, we describe the changes observed in
the Pareto Front solutions a, c and f, in drought events V and VI.

4.4.1. Agricultural drought severity changes in solutions a, c and f
In solution a, the severity of agricultural droughts was reduced

compared to the baseline scenario. This improvement was particularly
notable in the northwest of the basin and the middle part of the river
valley, especially during August 2014 (Fig. 10a), October 2015,
December 2015 and January 2016 (Fig. 10b), with some subbasins
experiencing a drought severity reduction of up to 100 %. The mitiga-
tion of the drought conditions in the river valley suggests that in solution
a, the soil moisture water content increased by up to 20 mm (soil
moisture deficit observed in the baseline scenario, Fig. 5a and b), and the
agricultural drought ceased to occur during these months.

Agricultural drought alleviation was also observed in the subbasins
experiencing the most severe soil moisture deficits. For instance, during
event VI, specifically in March 2016 soil moisture deficit in the middle
part of the river valley climbed up to 60 mm (Fig. 5b). According to the
results, in March 2016, solution a contributed to reducing the agricul-
tural drought severity by up to 20 % in the middle part of the river valley
(Fig. 10b). Similarly, change in the severity of agricultural drought
manifested consistently across the wet and dry months, in the short and
long duration events analysed, as depicted in Fig. 10a and b.

RHW ponds, plantation and row crops and woodlands were allocated
in the subbasins where agricultural drought severity declined (Fig. 9a).
The examination of the model outputs revealed that the drop in agri-
cultural drought severity is linked to a decline in the surface runoff
volume and sediment yield values. Both changes are commonly associ-
ated with adequate soil structure, which in turn improves soil water
retention capacity and the soil water content.

In solution c, the severity of agricultural droughts decreased in the
basin’s northwest and the middle part of the river valley, as in solution a;
however, the deficit reduction was lower in solution c. While solution a
exhibited a substantial decline of up to 100 % in drought severity in
solution c, it remained below 20 %, with most values not exceeding 10
%, as observed during event V in June and July 2014. Specifically, in
solution a, agricultural drought severity was reduced by up to 70 %
(Fig. 10a). In turn, in solution c, severity was reduced by <10 %, except
for a few subbasins in the river valley showing drought severity decrease
of up to 25 % (Fig. 10c). It is worth mentioning that, in solution c, the
number of subbasins showing a reduction in the agricultural drought
severity was higher compared to solution a, as seen in Fig. 10c and d (e.
g. June 2014, July 2014, May 2015, August 2015 and September 2015).
Results indicated that the magnitude of agricultural drought reduction
declined in solution c; nevertheless, the area experiencing drought
alleviation increased compared to solution a, particularly during the
first months of both drought events analysed.

Conversely, agricultural drought severity intensified in solutions a
and c in the basin’s west and La Serranía del Perijá. Fig. 10a shows that
in solution a, agricultural drought rose by up to 60 % in the basin’s west
and by up to 20 % in La Serranía del Perijá during event V. For instance,
in solution a, agricultural drought severity increased by up to 60 % in
the west tip of the basin during August 2014 (Fig. 10a), potentially
representing an increase of approximately 20 mm in the soil moisture
deficit compared to the baseline scenario. In event VI, another consid-
erable sure was observed in the basin’s southwest. The agricultural
drought severity consistently grew in this area by up to 70 % in May and
June (Fig. 10b). This enhancement of the agricultural drought could
correspond to an increase in the soil moisture deficit of approximately
10 mm compared to the baseline scenario. Interestingly, in the same

area, the rise in agricultural drought severity by 15 % in March 2016
could represent a leap in the soil moisture deficit of a similar magnitude
(10 mm) compared to the baseline scenario.

Model results suggest that converting pastures (current land use) to
row crops increased the surface runoff, and replacing pastures for
plantation crops increased evapotranspiration in the subbasins where
crops were allocated, leading to water loss through surface runoff and
evapotranspiration and subsequently enhancing the soil moisture
deficit.

In contrast to solutions a and c, agricultural drought severity pri-
marily increased in solution f, with rare exceptions. In event V, the soil
moisture deficit climbed up to 70 % in August 2104 (Fig. 10e). This
increase could represent an enhancement of >35 mm for the soil
moisture deficit in the western part of the basin. Regarding event VI,
very little alleviation was observed, as shown in Fig. 10f. Agricultural
drought severity reduction in the river valley appears more connected to
the rainy period in March and April than the drought mitigating effect
produced by the PDMMs. In 2015, drought severity decreased in May,
June and July immediately after the precipitation events, and in 2016,
drought severity only reduced in March and April. After the alleviation
caused by the rainy season, drought severity surged in event VI; for
instance, in August 2015, the severity increased by up to 50 % (Fig. 10f)
in the river valley, potentially representing an increase of 40 mm in the
soil moisture deficit compared to the baseline scenario.

Fig. 9a, c and f illustrate that PDMMs plots in solutions a and c are
alike in the areas where the PDMMs allocate. Nevertheless, the appli-
cation scale of plantation and row crops and woodland increases grad-
ually from solution a to f, while the application of RWH ponds reduces.
Accordingly, results indicate that the same PDMMs can mitigate or
enhance one type of drought depending on the application scale of the
intervention.

4.4.2. Hydrological drought severity changes in solutions a, c and f
Hydrological drought severity consistently increased across the wet

and dry months in solution a (Fig. 11a and b). In the basin’s headwater,
an enhancement of the drought severity of up to 100 % was observed
(event V, June 2014), with most values above 10 %. It is worth
mentioning that the basin’s north presented some of the highest drought
deficits during the events analysed (e.g., June 2014, May and June 2015,
Fig. 6a and b); thus, the drought severity growth represents approxi-
mately 1 mmd− 1 increase in the streamflow deficit. On the other hand,
hydrological drought alleviation in October and November (Fig. 11b) is
likely linked to the increased precipitation in these months rather than
the implementation of PDMMs. Given that the main rainfall events in the
basin occur between August and November, this precipitation is a more
probable cause of the observed hydrological drought alleviation in so-
lution a.

Model outputs revealed that surface runoff was reduced during both
events analysed. It suggests that PDMMs increased soil water-holding
capacity in solution a. However, a consequential outcome was a
diminished contribution of surface runoff to streamflow during wet
periods. Further, model results also showed that no significant change in
the groundwater contribution to the streamflow was observed in the
subbasins where the interventions were applied. Interestingly, although
several interventions were applied in the channels, they did not produce
a significant drought severity alleviation, confirming that the efficiency
of these interventions depends on the volume of water reaching the
streamflow.

In solution c, a positive change in the severity of hydrological
droughts was observed in the basins’s west and La Serranía del Perijá. In
contrast, hydrological drought tends to increase in the headwater and
the river valley (Fig. 11c and d). In event VI, severity markedly reduced
during the wet months (October and November), and the decline
continued to occur for three months more (Fig. 11d). In the wet months,
hydrological drought severity reduced up to 100 %, while in the sub-
sequent months, dry months, up to 30 %. Fig. 10c and d and Fig. 11c and
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d show that in the areas where agricultural drought severity decreased,
hydrological drought severity worsened and vice-versa. It is relevant to
mention that solution c exhibited one of the highest densities of PDMMs
allocated. However, the alleviation of the two types of droughts is lower
compared to the drought alleviation in the best solution for each type.
This implies that a considerable number of PDMMs are required to
satisfy both management objectives; however, the water input (mainly
represented by precipitation) seems insufficient to meet both objectives,
constraining the intervention’s performance.

In solution f, hydrological drought severity consistently decreased in
the river valley; alleviation extended from the headwater to the basin

outlet during both events analysed (Fig. 11e and f). Alleviation of the
hydrological drought severity in the river valley suggests that in solution
f, the streamflow increased by up to 0.4 mmd− 1 (hydrological drought
severity observed in the baseline scenario, Fig. 6a and b). It should be
noted that, in event V, the severity in the subbasins showing the highest
streamflow deficits did not decrease (June and July 2014, Sierra
Nevada, Fig. 6a); on the contrary, the severity raised by 70 % (Fig. 11e).
In turn, during event VI, solution f contributed to alleviate the deficit in
some of the subbasins more impacted for the drought; for instance, in la
Sierra Nevada the deficit of >0.6 mmd− 1 declined by up to 80 %
(September, October and November 2015, Fig. 11f). This positive

Fig. 11. Hydrological drought severity change in events V and VI for solutions a, c, and f. Solution a a) event V, b) event VI, solution c c) event V d) event VI, and
solution f e) event V f) event VI.
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impact can be associated to the combined effect of the wet season be-
tween October and November and the PDMMs allocated in the area.

Fig. 11f illustrates that positive hydrological drought response is the
result of PDMMs plot consisting of RWH ponds allocated in the strip
(also observed in solutions a and c), plantation crops in the basin’s north,
row crops distributed all over the basin, and woodlands allocation in the
upper part of La Serranía del Perijá, and channel protection and storage
ponds in the river’s main course from the headwater up to the basin
outlet. This reveals that alleviating the severity of hydrological drought
in the middle course of the river results from the combined effect of
different PDMMs allocated over the entire basin. Locally PDMMs’ allo-
cation seems problematic. For example, the allocation of row crops
aggravated the hydrological drought in the basin’s north and west.
Similarly, woodlands allocation in the upper part of La Serranía del
Perijá enhanced the drought deficit in some of the subbasins where the
intervention was allocated.

5. Discussion

5.1. Insights on the PDMMs performance reducing severity of droughts

The outcomes of our study confirm that applying PDMMs has the
potential to reduce the severity of agricultural and hydrological
droughts. Nevertheless, it demonstrates that selecting and allocating the
PMDDs is a complex task since results indicate that managing agricul-
tural and hydrological droughts are conflicting objectives. For instance,
in solution a, applying RWH ponds, and land use change to plantation
crops and woodlands alleviated the severity of agricultural droughts in
the basin’s northwest and the middle part of the river valley. These re-
sults are consistent with previous studies asserting that combined in-
terventions (e.g., adequate crops allocation, conservation agriculture,
storage ponds, bench terracing) have a significant effect on water bal-
ance components such as infiltration and soil water holding capacity
(Palumbo Silva et al., 2023; Uniyal et al., 2020).

Agricultural drought alleviation contrasts with the increased hy-
drological drought severity in areas where agricultural drought severity
is reduced. According to previous findings reported in the literature,
surface runoff, soil water flow, and groundwater recharge tend to
decrease after the conversion of grasslands to croplands or forests. The
groundwater recharge decline occurs from factors such as lower and
shallow pore connectivity, higher evapotranspiration rates, and the top
soil texture; for example, clayey soils exhibit lower infiltration rates,
limiting the groundwater recharge (Owuor et al., 2016). Hydrological
drought reduced from the headwater to the basin outlet in the river
valley, while agricultural drought increased in the same area. Then, the
solutions analysed demonstrate that PDMMs application reduces the
severity of agricultural droughts but may produce the opposite effect on
the severity of hydrological droughts (or vice versa).

The above fits well with the results obtained by Cai et al. (2015). The
authors presented an optimisation framework to select preventive and
tactical measures for drought management under different climate sce-
narios. Although the authors did not assess the measures’ effect on the
drought severity (or another drought characteristic), they identified the
trade-off relationship between maximising the crop yield (variable
representing the agricultural drought) and maximising the low flows
(variable representing the hydrological drought) They also concluded
that the climate-change scenarios would aggravate the trade-offs due to
more limited water resources availability.

Moreover, the PDMMs’ effect can vary in time and space. In this
study, variation in time may be linked to the rainy season. In the three
solutions analysed, the most considerable drought severity change is
observed during the rainy season. Drought alleviation lasts until the dry
season and declines gradually until the wet season starts again. Our
findings indicate that the performance of PDMMs balancing the water
cycle relies on rainfall availability.

Regarding variation in space, PDMMs can be beneficial for one type

of drought in a specific area but produce the opposite effect in another
sector. In solution a, converting pastures (current land use) to plantation
crops alleviated the severity of agricultural droughts in the basin’s
northwest and the middle part of the river valley. However, the same
interventions exacerbated the agricultural drought severity in the ba-
sin’s west. This concurs well with earlier studies showing that well-
maintained grasslands can exhibit higher infiltration values compared
to the same soil under cultivation due to shallow-rooted systems and
lower evapotranspiration rates (Basche and Delonge, 2019; Krishnasw-
amy et al., 2018; Robinson et al., 2022).

For hydrological droughts, locally applied interventions can maxi-
mise the drought situation in the area where the measure is applied but
alleviate the drought condition in the surrounding or downstream areas,
as observed in solution f with the allocation of row crops in the basin’s
west and woodlands application in the basin’s southeast. In both cases,
hydrological drought worsens in the subbasins where the interventions
are applied and reduced downstream. It poses an additional challenge to
the implementation of PDMMs, considering the positive impact of the
interventions may not be reflected in the areas where the intervention is
applied.

Our findings indicate that PDMMs must be tailored to each region,
and its planning requires careful assessment of the basin characteristics
(e.g., rainfall distribution over the year, soil properties, current land use,
and topography) and the drought characteristics and likelihood. Equally
important, PDMMs’ performance in reducing the severity of each type of
drought should be quantified and monitored. This requires introducing
appropriate indicators or criteria to measure PDMMs’ effectiveness in
alleviating droughts. All the above confirms that incremental, autono-
mous adjustments made by farmers and reactive measures taken by
governments and institutions after drought emergencies are not the best
and most effective strategies for long-term drought management
(Mapedza and McLeman, 2019).

5.2. Insights on using optimisation for PDMMs planning

The obtained solutions corroborate the benefit of using multi-
objective optimisation for PDMMs planning. Despite the significant
number of decision variables, the algorithm progressed towards a near-
to-optimal set of solutions, namely multiple drought management sce-
narios, including different PDMMs aiming to balance land and water
phases of the hydrological cycle and reduce the severity of agricultural
and hydrological droughts. In the context of drought management, the
optimisation engine can be seen as a decision support tool applicable to
identifying the most appropriate areas to implement PDMMs and esti-
mate their impacts on the basin’s hydrology. Even more, the solutions in
the Pareto Front allow decision-makers to assess the trade-off between
managing agricultural and hydrological droughts.

In this study, the most significant alleviation for both types of
droughts is observed in the river’s middle course. This is consistent with
the formulation of the objective functions, which aggregate the values of
the variables representing each type of drought at each HRU or subbasin.
The river middle course presents the highest values of soil moisture and
streamflow; thus, variable changes in that area tend to impact the
objective functions more. In the areas where the variables representing
agricultural and hydrological droughts are relatively lower, or the
aridity index decreases (ratio between the precipitation and the
evapotranspiration), drought severity alleviation is mainly observed in
the best solutions for each type of drought. Weights can be assigned to
underrepresented areas, preventing uneven contribution to the compu-
tation objective functions.

6. Conclusion

In this study, we framed the task of selecting and allocating pre-
ventive drought management measures (PDMMs) as an optimisation
problem. Accordingly, we integrated the Soil Water Assessment Tool
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(SWAT) modelling system and the Unified Evolutionary Algorithm for
Single, Multiple, and Many-Objective Optimization (U-NSGA-III) to
develop an optimisation engine for planning PDMMs. The optimisation
approach allows the representation of seven PDDMs, namely RWH
ponds, plantation and row crops allocation, woodlands allocation,
channel protection, grade control and storage ponds within various
management scenarios (solutions) and simulation of their impact on the
soil moisture and the streamflow, variables used to represent agricul-
tural and hydrological droughts. Then, we assessed the PMDMs’ per-
formance in mitigating droughts, comparing the agricultural and
hydrological drought severity in the baseline scenario to the severity in
selected drought management scenarios.

The findings from our study confirm that implementing PDMMs has
the potential to reduce the severity of agricultural and hydrological
droughts, and the obtained management scenarios (solutions) under-
score the utility of multi-objective optimisation for PDMMs planning.
Analysed scenarios reveal that PDMMs can reduce the severity of agri-
cultural droughts while producing the opposite effect for hydrological
droughts (or vice versa). Moreover, the impact of PDMMs exhibits
temporal and spatial variations. PDMMs implemented in a particular
subbasin may ameliorate the severity of one type of drought in a
particular month but worsen the drought situation in the preceding or
coming months. In the case of hydrological droughts, the measures can
intensify the streamflow deficit in the subbasins where the interventions
are allocated while reducing the hydrological downstream (or vice
versa). In light of all this, PDMMs should be tailored to each region, and
its planning requires careful assessment of the basin characteristics (e.g.,
rainfall distribution over the year, soil properties, current land use, and
topography) and prior assessment of PDMMs’ applicability to reducing
the severity of each type of drought.

This study is not exempt from certain limitations. Firstly, future work
may assess the non-stationarity in the soil moisture and streamflow time
series. If non-stationarity is confirmed, it will be necessary to identify the
most appropriate technique to transform the time series before calcu-
lating the empirical distribution function and the drought thresholds.
Secondly, further work is needed to refine the representation of PDMMs
and their effect on the hydrological cycle and droughts’ severity. Spe-
cifically, crops and woodlands allocation requires improving the rep-
resentation of vegetation growth, given that the temperature-based
approach incorporated in SWAT has been found to have limitations in
tropical regions (Abitew et al., 2023). Additionally, a more detailed crop
management schedule is needed to simulate better crops’ growth in-
fluence on the water balance of cultivated areas. Thirdly, the practical
implementation of PDMMs involves substantial investments; therefore,
further extensions of this work may evaluate cost-effective management
scenarios incorporating an objective function that accounts for costs
associated with PDMMs implementation. Even more, minimising hy-
drological drought severity implies streamflow increase; future work
may include a flood-associated constraint that prevents the potential
incidence of floods in the wet season, particularly in the solutions with a
preference for hydrological droughts.

Lastly, this study relied exclusively on a single optimization algo-
rithm, U-NSGA-III, for defining and testing the optimisation engine.
Subsequent research should explore the incorporation of alternative
algorithms. This is a recommended practice to assess algorithms’
effectiveness, efficiency and reliability (Maskey et al., 2002; Solomatine,
1998).
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