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Fitness-Based Linkage Learning in the Real-Valued
Gene-Pool Optimal Mixing Evolutionary Algorithm

Chantal Olieman , Anton Bouter, and Peter A. N. Bosman

Abstract—The recently introduced real-valued gene-pool
optimal mixing evolutionary algorthm (RV-GOMEA) has been
shown to be among the state of the art for solving gray-box
optimization problems where partial evaluations can be lever-
aged. A core strength is its ability to effectively exploit the
linkage structure of a problem, which often is unknown a pri-
ori and has to be learned online. Previously published work on
RV-GOMEA, however, demonstrated excellent scalability when
the linkage structure is prespecified appropriately. A mutual
information-based metric to learn linkage structure online, as
commonly adopted in EDA’s and the original discrete version of
the gene-pool optimal mixing evolutionary algorithm, did not lead
to similarly excellent results, especially in a black-box setting. In
this article, the strengths of RV-GOMEA are combined with a
new fitness-based linkage learning approach that is inspired by
differential grouping that reduces its computational overhead by
an order of magnitude for problems with fewer interactions. The
resulting new version of RV-GOMEA achieves scalability similar
to when a predefined linkage model is used, outperforming also,
for the first time, the EDA AMaLGaM upon which it is partially
based in a black-box setting where partial evaluations cannot be
leveraged.1

Index Terms—Fitness, genetic algorithm, linkage learning,
real-valued optimization, scalability.

I. INTRODUCTION

A KEY strength of many state-of-the-art model-based evo-
lutionary algorithms (EA’s) lies in the effective exploita-

tion of a problem’s linkage structure [5], [11], [28], [32]. When
the linkage structure of a problem is known, this information
can be used to solve the optimization problem more effectively.
If a problem is fully decomposable into subproblems, these
low-dimensional subproblems can be solved independently to
achieve better efficiency [17]. Conversely, if a problem is (par-
tially) inseparable and its variables are strongly dependent,
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trying to solve the problem with a model that wrongly assumes
decomposability is very inefficient [30]. This is known to hold
for problems with discrete (binary) variables, e.g., the decep-
tive trap function [36], as well as real-valued variables, e.g.,
the rotated ellipsoid function [21].

A well-known approach that effectively exploits the linkage
structure of a problem in the discrete domain is gene-pool
optimal mixing (GOM) [38]. In GOM, variables modeled
in the same linkage set will be affected by recombination
together, ensuring that no valuable information captured in the
specific combination of variables is lost. The recombination
operator applies recombination to partial solutions by iterating
over all linkage sets in a linkage model. For every linkage set,
recombination is executed only on the variables represented
in the current linkage set, thereby exchanging partial solutions
between individuals. If this recombination leads to improved
fitness of a solution, the changes to that solution are accepted.
The gene-pool optimal mixing EA (GOMEA) [3] randomly
chooses a donor solution for different linkage sets, thereby
using the entire gene-pool in search for optimal subsolutions.

In many real-world applications, the optimization problem
is not a black box. It may be treated as such if exploiting
specific properties is difficult, but generally some additional
knowledge is available. This may include the possibility to use
partial evaluations, which are used to evaluate the impact of
variation on a solutions’ objective value in a fraction of (k/�)
time of a full fitness evaluation if only k variables are changed.
Most literature, especially in the case of real-valued variables
is, however, focused on black-box optimization [13], [14].

Because OM works specifically by changing subsets of vari-
ables in existing solutions for which the fitness of the solution
is known, partial evaluations can be leveraged excellently, also
in the case of real-valued variables. This makes GOMEA
a well-suited method for solving real-world gray-box prob-
lems. Indeed, recent results show that superior results can be
obtained over taking a black-box approach for real-world prob-
lems, including brachytherapy treatment planning [18], [20]
and deformable image registration [6], [40]. These results were
obtained with the recently introduced real-valued GOMEA
(RV-GOMEA) [5] that leverages the strengths of GOMEA for
the real-valued domain.

The linkage learning method employed by GOMEA has
shown excellent performance and scalability in the discrete
domain, but some issues have been encountered when applying
the same approach to the continuous search spaces of the real-
valued domain. A fundamental drawback of the currently used
mutual information (MI)-based approach lies in its inability
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Fig. 1. Nondecomposable Gaussian search distribution (green isolines)
learned (with maximum-likelyhood estimation) from a population of selected
solutions on a 2-D version of the decomposable sphere problem (purple
isolines).

to correctly recognize fully decomposable subcomponents. At
the root of this lies the fact that this method has problems
in identifying independent variables because selection causes
the solutions to align with the fitness contours in the search
space as illustrated in Fig. 1. Additional mechanisms, such as
the anticipated mean shift in AMaLGaM [2] and the evolu-
tion path in CMA-ES [9], cause the solution and the Gaussian
model of variation to align with the joint direction of improve-
ment (i.e., the gradient in smooth problems), similar to how
momentum is used in gradient descent algorithms when train-
ing neural networks [35]. In either case, the MI of the Gaussian
model will indicate that dependencies exist, even if this is not
the case, e.g., on the sphere function, especially when the pop-
ulation is initialized far away and not bracketing the optimum.
Moreover, the method is based on the spread of the population
and often many generations are needed for the linkage struc-
ture to be properly exposed by a population. Other methods
used to identify linkage, such as delta grouping and the ran-
dom grouping scheme [26], [41] are also unable to correctly
detect independent variables.

An alternative approach to identifying the linkage structure
of a problem is based on measuring the changes in fitness
values by perturbing certain variables. This method was first
introduced in combination with the greedy linkage learning
approach known as differential grouping [25], generally used
with cooperative co-evolution [19], [29]. Whilst this method
is able to correctly identify independent variables, it does not
allow for overlapping linkage sets nor does it define a compa-
rable measure on the dependence of variables. Finally, when
the problem consists mainly of decomposable subcomponents,
learning the linkage model is unnecessarily computationally
expensive, as all of the �(� − 1) possible pairs have to be
checked, even for completely decomposable problems.

In this article, we try to overcome the earlier stated draw-
backs of existing linkage learning methods by using the
fitness-based dependency strengths to build an adapted link-
age model based on the linkage tree as used in RV-GOMEA.
Two different linkage model building methods are proposed.
Both methods separate decomposable subproblems as much
as possible without separating nondecomposable variables that
are strongly dependent. The resulting linkage models are inte-
grated into RV-GOMEA, which has been proven to perform

excellently on real-valued benchmark problems when correct
linkage models are provided [5]. The introduced methods
will be compared with existing linkage learning methods in
combination with RV-GOMEA for a variety of benchmark
problems. The hypothesis is that the proposed method is able
to scale almost identically to offline learned linkage models
but without the need of problem-specific knowledge. In the
black-box domain, we expect a performance similar to that of
AMaLGaM, something that has not been achieved before.

As for various real-world applications of (RV-)GOMEA,
such as brachytherapy treatment planning [18], [20],
deformable image registration [6], [40], and more [15], the
optimal linkage model is not known and strong dependencies
are imposed through geometry, for example, deformation vec-
tor field nodes or potential windmill locations that are near
each other are strongly dependent, but those far apart are
weakly dependent. The provable added value of RV-GOMEA
for these real-world problems could be increased even further
if correct linkage models could be learned efficiently online.

The remainder of this article is structured as follows. In
Section II, we elaborate on the existing RV-GOMEA. Existing
methods to model the dependencies of an optimization
problem are discussed in Section III. In Section IV, our newly
proposed incremental approach for learning the linkage struc-
ture of a problem is introduced. The benchmark problems used
to validate the performance of our method are introduced in
Section V, and Section VI shows scalability results on these
problems. The implications of our work and further challenges
ahead are discussed in Section VII. Finally, we summarize and
draw conclusions about our findings in Section VIII.

II. RV-GOMEA

One of the key elements of GOMEA is its variation opera-
tor: the GOM method. This method uses a so-called family of
subsets (FOSs) to exploit the linkage structure of a problem.
The current version of RV-GOMEA [5] is a combination of the
existing GOMEA [3], which performs excellently in the dis-
crete domain, extended with a continuous sampling model as
employed in the state of the art for numerical optimization, the
adapted maximum-likelihood Gaussian model iterated density-
estimation EA (AMaLGaM) [1]. This section will explain
how linkage is modeled in RV-GOMEA by using a FOSs
(Section II-A) and how a new population is generated by using
GOM (Section II-B). Then, the application of RV-GOMEA in
the gray-box domain is justified in Section II-C.

A. Family of Subsets

The linkage structure of a problem is modeled in GOMEA
using a FOS, denoted as F . The set S = {0, 1, . . . , �−1} con-
tains all problem variables and every set Fi ∈ F is a subset of
S. The complete FOS F is a subset of the power set P(S) of S.
Finally, the FOS F is complete, meaning that every problem
variable is represented in at least one subset of F . There are
various methods for constructing a FOS. Different FOS struc-
tures have proven to work best on different problems [38].
Here, we partially focus on two types.
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1) Marginal Product FOS: A marginal product FOS is
defined as a set F where for every Fi, Fj ∈ F it holds that
Fi∩Fj = ∅. The univariate FOS is a special case of a marginal
product FOS with |F | = � and thus |Fi| = 1 for all Fi ∈ F .

2) Linkage Tree FOS: The linkage tree FOS is most com-
monly used and shown to be the most universal in discrete
optimization [37], [38]. The defining property of a linkage
tree FOS is that every set Fi ∈ F that contains more than one
set is the union of two other sets in F . Conceptually the link-
age tree is built by iteratively merging the two FOS elements
with the highest dependence Fi and Fj to form a new FOS
element Fk that is added to the FOS, thus Fi∪Fj = Fk. When
only pairwise dependencies are used, an implementation exists
that allows for an LT FOS to be built in O(n�2) time [12]. The
process of iteratively merging linkage sets is repeated until no
more merges are possible, i.e., the full set of variables is added
or the maximum linkage set size |Fk| = 100 is reached.

B. Gene-Pool Optimal Mixing

The core principle of GOMEA, GOM, mixes the population
following the FOS subsets represented in the linkage model.
Variables that are represented in the same FOS subset will be
recombined together. In the real-valued domain, recombination
alone does not suffice as one needs to sample values not cur-
rently present in the population and thus a continuous model is
needed. In the recently introduced RV-GOMEA [5], solutions
in the space represented by a FOS subset are sampled from
a multivariate Gaussian that is estimated with maximum like-
lihood based on the selection, as is done in AMaLGaM [1].
During one generation of RV-GOMEA, for every Fi ∈ F of
size |Fi| = k, a k-dimensional multivariate Gaussian is esti-
mated from the n · τ best individuals in the population P (τ
being the fraction of solutions selected from the population, in
this case 0.35 as used in the original AMaLGaM [1]). To cre-
ate new offspring, all linkage sets Fi are considered in random
order. For every individual in the population, |Fi| new values
are sampled from the multivariate Gaussian and inserted into
the existing individual. If the algorithm is run in a gray-box
setting, partial evaluations can be leveraged to evaluate this
new solution. In a black-box setting, a complete evaluation
is required to determine whether the fitness of the solution
has improved. If the change resulted in an increase in fitness,
the changes are accepted. If not, the change is accepted with
probability paccept = 0.05. The next linkage set is then consid-
ered. If an individual does not improve for a certain number
of generations, a method called forced improvement is applied
to alter the individual following a convex linear combination
of the parent solution and the elitist solution of the population,
i.e., by moving it closer to the elitist solution.

To obtain good performance in an EA, it is often important
to correctly set the population size parameter. However, the
best-suited population size is problem dependent and can thus
not be set without any problem specific knowledge. To avoid
needing to tune the population size parameter, RV-GOMEA
uses an interleaved multistart scheme (IMS) that runs multiple
independent EA instances with growing population sizes. As
smaller population sizes converge quicker but get stuck in local

optima, an instance will be terminated once it is outperformed
by another instance that has a larger population size.

C. Gray-Box Domain

Most of the research done on EAs is aimed at black-box
optimization problems where no knowledge about the problem
or its underlying structure is known. Other existing research
that does operate in the gray-box domain, such as [8], [10],
and [39], is fundamentally restricted to discrete optimization.
In this article, we consider a domain of gray-box optimization
problems where partial problem evaluations can be performed
as this is directly applicable to real-valued optimization [5].
Whilst partial evaluations can be applied, it does not impose
that the optimal problem structure is known and thus in both
domains, effective linkage learning plays an important part in
optimization. In a gray-box setting, partial evaluations allow
for the recalculation of fitness when there are only few, e.g.,
k, modified variables in O(g(k)) time, rather than incurring
the O(g(�)) overhead of full evaluations since these are only
needed when all variables are changed. With g() typically
being a polynomial function, e.g., g(�) = � or g(�) = �2. The
cost of one partial function evaluation is, therefore, counted
as (k/�) with k as the number of changed variables. Since the
optimal mixing phase of RV-GOMEA makes almost exclu-
sively partial modifications to existing solutions, RV-GOMEA
can very effectively leverage partial evaluations that makes it
an effective algorithm for gray-box problems.

D. RV-GOMEA

The earlier introduced RV-GOMEA [5] combines the
previously explained components into a real-valued EA that
exploits the linkage structure of a problem by iteratively apply-
ing GOM to different (sub)sets of problem variables in every
generation.

III. RELATED WORK

Multiple methods have been proposed to identify the struc-
ture of an unknown optimization function. In this section, two
of these methods will be discussed. First, a population-based
method that uses the spread of a population in the search space
to model dependencies is discussed. Second, a fitness-based
method, where the fitness values are directly used to mea-
sure linkage between variables, is discussed. Both of these
methods focus on pairwise dependencies. Once these depen-
dencies are known, dependencies between subsets of variables
are extrapolated from them.

A. Distribution-Based Methods

One of the methods used to extract dependencies based on
the distribution of a population is the MI method [16]. The
MI MIij of variables xi and xj defines how much information
about xi we can derive by knowing xj and vice versa. The MI is
computed based on the probability distribution associated with
the variables. In the case of real-valued variables, a paramet-
ric distribution is often used. In our case, as the AMaLGaM
model is essentially a normal distribution, to calculate the MI
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between two variables xi and xj, the Pearson product-moment
correlation coefficient rij can be used with rij ∈ [−1, 1]. A
high absolute value of r corresponds to a high linear correla-
tion between xi and xj. The MI between xi and xj is defined
as follows:

MIij = log

(√
1

1− (rij)2

)
(1)

where rij = �̂ij/
(
σ̂iσ̂j

) ∈ [−1, 1] (2)

where �̂i,j and σ̂i are obtained from a covariance matrix that
is estimated with maximum likelihood based on the selec-
tion. ri,j is only computed for pairs of variables. A FOS can
be built from these pairwise dependencies as described in
Section II-A2.

B. Fitness-Based Methods

The second method we consider to define whether two
variables interact is directly based on fitness values and clas-
sifies a pair of variables as either separable or nonseparable
specifically by comparing the difference in fitness whilst mak-
ing the exact same perturbation for xi for different values of
xj [22], [23]. A more recent application of this method is lever-
aged in differential grouping [25]. Four points in the solution
space are picked by combining all possible points that can be
created by picking two different values for each xi and xj. The
differences in fitness values for those points are used to cal-
culate the interaction between xi and xj by determining if the
change in fitness caused by a modification to xi is affected by
a modification to xj. Variables xi and xj are said to interact
when |�i−�i,j| ≥ ε for some user-defined small ε, where �i

and �i,j are defined as follows:

�i =
(
f (x)|xi = ai, xj = aj

)
(3)

− (
f (x)|xi = ai + bi, xj = aj

)
(4)

�i,j =
(
f (x)|xi = ai, xj = aj + bj

)
(5)

− (
f (x)|xi = ai + bi, xj = aj + bj

)
(6)

where ai and bi can be any real value as long as xi and xj

remain within the function bounds. In this method, ai and bi

are selected randomly such that for every xi, ai and ai+bi fall
within the bound for xi inside the current population. In our
experiments, ε is set to 0 where we rounded to the smallest
possible machine precision to ignore calculation errors.

IV. SCALED FITNESS-BASED LINKAGE LEARNING

To learn a linkage tree FOS, it is necessary to define a notion
of linkage, or dependency, strength between pairs of variables.
We denote di,j as the pairwise dependency strength between
xi and xj where:

di,j =
{

1−�i,j/�i, if �i ≥ �i,j

1−�i/�i,j, otherwise.
(7)

From di,j, a matrix D of size � × � can be constructed,
storing all pairwise dependency strengths of an �-dimensional
problem. By the definition of (7), the values of this matrix
will lie within [0, 1) with 0 for independent variables and

di,j > 0 indicating some interaction between xi and xj. It is
worth noting that even though di,j does not represent an abso-
lute dependency strength between variables, it can be used to
compare the relative pairwise dependency strength by com-
paring di,j and di,k. This property makes it possible to learn
a linkage tree FOS based on the information stored in D as
described in [5].

A. Analysis of Overhead

Filling matrix D requires ([�(�−1)]/2) dependency checks.
For each of these dependency checks, four evaluations are
needed, which results in a total number of 2�(� − 1) evalu-
ations. It is shown in [27] that it is possible to decrease the
number of evaluations to 1+ �+ ([�(�− 1)]/2) by using the
same ai and bi for every check and storing f (x)|xi=ai+bi for
every xi ∈ x. When partial evaluations can be leveraged, the
overhead can be decreased even further. Since only one vari-
able is changed for the evaluations done to compute di,j, the
number of changed variables k = 1 and therefore, it is pos-
sible to decrease the total number of evaluations even further
to 1+ (1/�)(�+ [(�(�− 1))/2]) = 2+ [(�− 1)/2].

1) Picking ai and bi: As described in Section III-B, ai

and bi can be picked randomly. However, for this method to
work, ai and bi should be set and should remain unchanged.
The values for ai and bi are estimated based on the current
population

ai = min(xi)+ ((max(xi)−min(xi)) · 0.35) (8)

bi = (max(xi)−min(xi)) · 0.35. (9)

The value of 0.35 has been empirically found to work well
for setting ai and bi but every value > 0 and ≤ 0.5 is accept-
able as the resulting values for xi will be within the current
population.

Employing the values of ai and bi for every pair of variables
will give us 1 + � + ([�(� − 1)]/2) new solutions with their
associated fitness values. However, these solutions are heavily
centered in one area of the solution space with � solutions
containing ai in all but one of the problem dimensions and
([�(�− 1)]/2) solutions with ai in all but two of the problem
dimensions. For this reason, these solutions will only be added
to the population if their objective value is lower than any
other solution in the population, i.e., if the solution is an elitist
solution.

B. Incremental Dependency Updating

It is plausible to assume that real-world high-dimensional
problems tend not to be fully dependent with strong dependen-
cies (e.g., a 1000-D rotated ellipsoid), but to be nondecompos-
able only to some extent. We, therefore, aim to slightly bias
our method toward the assumption of less-than-fully depen-
dent problems by decreasing the number of evaluations needed
on sparsely dependent problems. To this end, to spread the
computational load of filling the dependency matrix, every
dij is initially set to the default value of 0 (independent).
In each generation, � random pairs are evaluated and a new
FOS is learned. Since the right linkage model is not depen-
dent on the population size, the same linkage structure is used
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Algorithm 1 Incremental Dependency Updating
1: pairs← shufflePairs() 
 All possible pairs, randomly ordered
2: waitingCycles← 0 
 The number of waiting cycles
3: k← 0 
 The number of cycles that have take place
4: passedGenerations← 0 
 The generations that have taken place
5: totalDependencies← 0 
 The total dependencies found
6: while not terminated do
7: if waitingCycles = 0 then
8: Dependencies← evaluateLpairs(pairs) 
 Number of dependencies found
9: totalDependencies← totalDependencies+ Dependencies

10: passedGenerations← passedGenerations+ 1
11: if (Dependencies = 0 and totalDependencies ≤ 2 · passedGenerations) or all pairs are evaluated then
12: waitingCycles← 2k

13: k← k + 1
14: pairs← shufflePairs()
15: totalDependencies, Dependencies← 0

16: else
17: waitingCycles← waitingCycles− 1

18: continue RV-GOMEA
19: ...

for every population that is maintained with respect to the
IMS explained in Section II-B. We call this process incremen-
tal dependency updating. The pseudocode for this algorithm
can be found in Algorithm 1. The process of checking all
([�(�− 1)]/2) pairs will be called a dependency cycle. When
all pairs have been checked, no checks will happen for 2k gen-
erations where k is the number of cycles that have taken place
already. To better allocate the computational budget during
optimization of a problem that is suspected to be independent,
the dependency cycle is stopped prematurely and started again
after 2k generations with new random pairs. Specifically, the
dependency cycle is stopped whenever no dependencies are
found in one iteration (� checks) and if the average number
of found dependencies over all dependence cycles so far is
smaller than some minimum value. We used (2/�) as this was
empirically found to work well on a variety of problems. Since
the matrix is initialized with 0s, the computational resources
are geared more toward univariate optimization, which results
in a slight bias to decomposable problems. Yet, by restart-
ing the dependency cycle every 2k generations, changes in
function landscapes can be captured and the dependencies
can be updated accordingly by estimating ai and bi again
as described in Section IV-A1. This can result in a differ-
ent di,j for the same pair of variables xi and xj. As a result of
the initialization of the dependency matrix, all variables are
assumed to be independent and will only be considered to be
dependent once an actual dependency is detected. Stopping
the dependency detection when no dependencies are found is,
therefore, not expected to significantly change the outcome of
the dependency checks.

C. Pruning

Based on the information obtained from the scaled fitness-
based dependency detection, a pruning method for the linkage
tree FOS described in Section II-A2 can be used. The goal of

pruning is to eliminate unnecessary linkage sets. A smaller
FOS reduces the number of function evaluations and time
spent on GOM per generation. If only the linkage sets that
best capture the dependency between variables are correctly
maintained, the efficiency of GOMEA may very well improve.

Consider the moment during the learning of the FOS that
two linkage sets Fi and Fj are to be merged to create
Fk = Fi ∪ Fj. If all variables in Fk are pairwise dependent,
Fi and Fj are removed from the FOS. Since all variables in
Fk are dependent, mixing these variables together (which in
RV-GOMEA entails sampling from a joint Gaussian distri-
bution) will likely yield better results than separately mixing
the variables from Fi or Fj. Similarly, if there is no pairwise
dependence between any variable in Fi and any other variable
in Fj, Fk is not added to the newly learned FOS.

In case that there are some pairwise dependencies between
subsets, but not every variable in Fi is dependent on every
variable in Fj, the problem consists of nondecomposable over-
lapping subcomponents. For this case, we present two different
pruning approaches, resulting in different FOS structures.

1) (Partial) Linkage Tree: In this case, the two subsets Fi

and Fj are merged together into Fk and all linkage FOS sets
are kept in the FOS. This approach will result in a (partial)
linkage tree where the biggest linkage sets are the size of the
biggest nondecomposable subcomponents.

2) Marginal Product: The second approach ignores the
subset of dependencies between Fi and Fj and keeps only
the fully dependent linkage sets Fi and Fj in the FOS
without merging any more sets. Combined with the other prun-
ing steps, this will always create a marginal product FOS,
containing every variable exactly once.

D. FOS-Based Population Size

With the problem-specific knowledge obtained by our link-
age learning method, we can project a minimally required

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 14:16:17 UTC from IEEE Xplore.  Restrictions apply. 



OLIEMAN et al.: FITNESS-BASED LINKAGE LEARNING IN RV-GOMEA 363

TABLE I
ALL ALGORITHMS USED FOR OUR EXPERIMENTS

population size needed for RV-GOMEA to work well. If γ

is the size of the biggest linkage set in F , then following [2],
the minimal population size nbase needed can be calculated as
nbase = 17+ 3γ

√
γ . We combine this baseline with the IMS

described in Section II-B. Across all populations in the IMS,
one FOS is maintained since the linkage structure of a problem
is not dependent on the population size. The incremental
dependency updating as described in Section IV-B thus counts
every generation equally, i.e., if due to IMS multiple popula-
tions are maintained simultaneously, incremental dependency
updating is performed during every generation (regardless of
the population index). Since a single solution from one popu-
lation is used to perform the fitness difference testing for all
populations, the population size of each population in the IMS
is irrelevant. Every time a new FOS is built and the size of
the biggest fully dependent linkage set has increased, nbase is
recalculated and the populations with a population size smaller
than nbase are stopped.

A second use of population sizing is if the linkage tree
FOS is built, and not all variables in one linkage set are
pairwise dependent, e.g., if Fi = {1, 2, 3} and d1,2 = 0.5,

d1,3 = 0, d2,3 = 0.5. The population size is then not updated
as described earlier, but the FOS set Fi is only added to F
if |Fi| ≤ γmax, with γmax = ([n − 17]/3)(2/3) the maximal
acceptable linkage set size for a population in the IMS of
size n.

V. EXPERIMENTS

A. Benchmark Algorithms

To conduct our experiments, we compare the performance
of RV-GOMEA in combination with our two proposed meth-
ods for fitness-based linkage learning, described in Section IV,
to existing versions of RV-GOMEA and AMaLGaM. Table I
gives an overview of all versions of RV-GOMEA and
AMaLGaM that are used for our experiments, differing only
in how the linkage model is defined or learned.

For our newly proposed methods, we make a distinc-
tion between a fitness-based linkage tree (RV-GOMEA-
FBLT) and a fitness-based marginal product linkage structure

(RV-GOMEA-FBMP), of which the differences between the
resulting models are described in Section IV-C.

Because the second pruning approach of the fitness-based
linkage learning method will always create a marginal product
linkage structure, this method can also be used to create a
linkage structure for AMaLGaM, equipping it with a linkage
learning method for the first time. The MP linkage model is
used to restrict the covariance matrix of AMaLGaM, i.e., the
covariance is assumed to be 0 for variables in different FOS
elements. AMaLGaM-FB will be compared to the previously
described versions of RV-GOMEA.2

B. Benchmark Problems

To study the impact of different types of linkage learning
on the performance of RV-GOMEA, we first consider a set
of six optimization problems. Whilst some of these problems
are not decomposable, none of the used benchmark problems
are fully dependent, aligned with the idea that real-world high-
dimensional optimization problems are highly unlikely to have
a linkage structure where each variable is dependent on every
other variable. The problems we will consider are Sphere,
Michalewicz, Rastrigin, Rosenbrock, sum of rotated ellipsoid
blocks (SoREB), and an overlapping version of SoREB.

The first three benchmark functions exhibit no dependen-
cies. First, we consider the Sphere function, which is a widely
used benchmark for real-valued optimization. The Sphere
function has a smooth landscape and no local minima

fSphere(x) =
�−1∑
i=0

x2
i .

Second, we consider the Michalewicz function. In compar-
ison with the smooth Sphere function, it contains �! local
optima that are unevenly distributed throughout the search
space. The definition of the Michalewicz function is as follows,
with xi ∈ [0, π ]:

fMichalewicz(x) =
�−1∑
i=0

[
− sin(xi) · sin

(
(i+ 1)x2

i /π
)20

]
.

Next, the Rastrigin function is also a nonlinear and
multimodal function but its local minima are evenly spread
and superimposed on the Sphere function

fRastrigin(x) = 10�+
�−1∑
i=0

[
x2

i − 10 cos(2πxi)
]
.

The fourth benchmark function we consider is the
Rosenbrock function that contains a parabolic valley with one
global optimum and one local optimum for 4 ≤ � ≤ 100 [31].
Finding the global optimum in this valley is considered rel-
atively hard. Finding the valley is trivial, but converging to
the global minimum requires a search through this parabolic
valley that requires differently oriented covariance matrices at
different points during the search. By design, every consecu-
tive pair of optimization variables in this function is dependent,

2The C source code for these algorithms can be found at
https://github.com/chantal-olieman/rv-gomea.
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which results in �−1 overlapping dependent components. The
definition of the Rosenbrock function is as follows:

fRosenbrock(x) =
�−2∑
i=0

[
100

(
xi+1 − x2

i

)2 + (1− xi)
2
]
.

The SoREB function uses a rotation function Rθ that defines
the counterclockwise rotation of a vector around the origin by
an angle of θ and an ellipsoid function fEllipsoid. Due to the con-
struction of the SoREB function, the variables in every block
of k consecutive optimization variables have strong dependen-
cies, but are independent from any other optimization variables
outside of their block. For our benchmark, we use a block size
of k = 5 and a rotation of θ = 45◦. Partial evaluations can
only be performed by recalculating the fitness for all k vari-
ables present in the same block as xi. The ellipsoid function
and the SoREB function are defined as follows:

fEllipsoid(x) =
�−1∑
i=0

[
10

6�
�−1 x2

i

]

fSoREB(vecxx, k) =
�/k−1∑

i=0

[
fEllipsoid

(
Rθ

([
xki, . . . , xk(i+1)−1

]))]
.

The SoREB function is a problem containing only nonover-
lapping nondecomposable subcomponents of size k. We define
an overlapping version of this problem as OSoREB. In addi-
tion to the original SoREB problem, a second set of SoREB
blocks is used with blocks of length 2 for every pair of con-
secutive parameters in successive blocks of SoREB with k = 5
(e.g., for x4, x5 and x9, x10). For partial evaluations, every k
variables in the same block as xi need to be recalculated (at
a cost of k/l). If xi is either the first or last variable of a
block, and is thus part of a pair of consecutive parameters in
successive blocks, then that block of size 2 needs to be recal-
culated as well at a cost of 2/l. The definition of OSoREB is
as follows:

fOSoREB (x, k) = fSoREB(x, k)

+
�/k−1∑

i=1

[
fEllipsoid

(
Rθ

([
xki−1, xki

]))]
.

C. Setup

1) Evaluating Linkage Learning: We employ different
means to verify the validity and impact of different linkage
learning algorithms. The dependency matrices produced by
our fitness-based method is compared to the matrices produced
by the existing MI method. The dependency matrices give us
valuable insight into the pairwise dependencies found during
optimization, which is used to create the FOS structures used
for GOM. For all benchmark problems, the pairwise dependen-
cies are known and can thus be easily compared to the learned
dependency matrices. Average dependency matrices are com-
puted over 30 independent runs with � = 50 for all benchmark
problems. As our linkage learning approach builds a model
on the relative dependencies between variables, the heatmaps
shown are normalized according to min–max feature scal-
ing, such that all values range between [0, 1] without loss of

information. For all nonoverlapping benchmark problems, we
also verify whether the learned linkage sets correspond to the
combination of optimal linkage sets that capture all existing
dependencies but do not combine independent variables.

2) Evaluating Scalability: Another important aspect of our
evaluation is the scalability analysis of RV-GOMEA on a
subset of the benchmark functions. Scalability graphs are com-
monly used to benchmark the performance of optimization
algorithms because they summarize the most important aspects
of the algorithm’s performance as well as provide a prediction
regarding the performance on high-dimensional problems. We
compare the scalability of RV-GOMEA when using differ-
ent linkage learning models as described in Section V-A.
For a broader comparison of the previously existing versions
of RV-GOMEA with different state-of-the-art EAs, we refer
to [5]. For visibility, we have only plotted RV-GOMEA-FBMP
on nonoverlapping problems since RV-GOMEA-FBLT both
produce the same FOS structure and thus have the same
scalability.

For every benchmark problem, 30 independent runs are per-
formed with a time limit of 104 s (roughly 2 h and 45 min).
All experiments are performed on a 64-core (4×16-core AMD
Opteron Processor 6386 SE) server running Fedora 28 where
each run is performed on a single core. In every run the popu-
lation is randomly initialized between [−115,−100] for every
variable, i.e., definitely not bracketing the optimum, except
for fMichalewicz, where we initialize between [0, π ], which is
also its constrained range. A problem is considered to be suf-
ficiently minimized if the elitist solution reaches a value to
reach (VTR) of 10−10 if the optimum value is 0 (which is
the case for all problems except fMichalewicz) and 95% of the
optimum for fMichalewicz.

If all runs are solved within the time limit, the problem
size is doubled, until the maximum dimensionality of 104

is reached. Since various real-world optimization problems,
as well as all our benchmark problems, allow for partial
evaluations, we have decided to focus mainly on gray-
box optimization in order to obtain a realistic view of the
performance of our algorithm on most real-world optimization
problems.

VI. RESULTS

A. Dependency Matrices

Fig. 2 shows heatmaps of the dependency matrices for all
benchmark problems as calculated by RV-GOMEA-FBLT. For
the MI measure shown in Fig. 3, the dependency matrices for
SoREB and OSoREB become more specific and less noisy
after more evaluations, this becomes apparent in Fig. 3(h)
and (g). All heatmaps shown are zoomed in to the first 20
dimensions, making it easier to inspect the dependencies,
whilst still optimizing a 50-D problem. On the fully decom-
posable problems: Sphere, Rastrigin, and Michalewicz, the MI
measure is not able to correctly identify the independence
of the variables. Even if variables are independent, a cor-
relation is measured. In combination with the normalization
of the dependency matrices used to create a FOS, we can
conclude that this measure encounters high amounts of noise
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Fig. 2. Heatmaps over 30 runs for � = 50 with the fitness-based measure. (a) Sphere, Rastrigin, and Michalewicz. (b) Rosenbrock. (c) SoREB. (d) OSoREB.

Fig. 3. Heatmaps over 30 runs for � = 50 with the MI measure. (a) Sphere, 1e4 evaluations. (b) Rosenbrock, 1e4 evaluations. (c) SoREB, 1e4 evaluations.
(d) OSoREB, 1e4 evaluations. (e) Rastrigin, 1e4 evaluations. (f) Michalewicz, 1e4 evaluations. (g) SoREB, 1e5 evaluations. (h) OSoREB, 1e5 evaluations.

for decomposable problems. The fitness-based method is able
to correctly identify two independent variables, which results
in a matrix containing only 0s for all three decomposable
benchmark problems.

It is worth noting that the results obtained by our fitness-
based method cannot be compared to the MI-based results
without careful consideration. Whilst our fitness-based method
can easily detect separability of two variables (whilst ignoring
machine precision), it is close to impossible to detect separa-
bility whilst using the MI measure because selection causes
the solutions to align with the fitness contours in the search
space (Fig. 1). Furthermore, the MI needs to be normalized
because the absolute values have no real meaning. This makes
the actual values computed for the fitness-based and MI-based
approaches incomparable. However, the way our algorithm
uses information extracted from these two measures can be
used to compare the measures themselves. Specifically, both
measures are used to build a dependency structure (in our
case FOS) for the problem at hand by iteratively merging the
variables that are most closely linked according to the nor-
malized two measures are used. Thus, only relative values are
important within one measure as this drives which variables
are merged first.

By the definition of the SoREB and OSoREB problems, the
first two variables of a block exercise the highest influence
on the total sum and thus show the strongest dependen-
cies. This strong dependency can be seen in all Figs. 2(c)
and (d) and 3(c), (d), (g), and (h), but only the fitness-based
method [Fig. 2(c) and (d)] and the MI method on SoREB
after 105 evaluations have extracted the correct block struc-
ture without displaying noise between decomposable variables.
One of the main drawbacks of the MI method now becomes
immediately clear, because even though the dependencies will
eventually be found, RV-GOMEA is able to already solve this
instance of SoREB within 1e5 evaluations if a proper FOS is
provided [5].

B. FOS Structures

We can divide the benchmark problems into nonover-
lapping and overlapping optimization problems. Sphere,
SoREB, Michalewicz, and Rastrigin are nonoverlapping. The
Rosenbrock problem and the OSoREB problem contain over-
lapping components. To better visualize the FOS structures
produced by our methods, Figs. 4 and 5 show the elements
captured in a single FOS structure. In these figures, the hori-
zontal axis represents the index of the optimization variables.
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Fig. 4. FOS structures for � = 50 with every block representing a single
linkage set. (a) Sphere. (b) SoREB.

Fig. 5. Linkage structures for � = 20 with every block representing a
single linkage set. (a) Rosenbrock MP. (b) Rosenbrock LT. (c) OSoREB MP.
(d) OSoREB LT.

Every linkage set is represented in one row of the figure, the
highlighted x values mark the presence of that optimization
variable in that one linkage set. Colors are used to improve
visibility but do not contain any additional information.

1) Nonoverlapping Benchmarks: For the nonoverlapping
problems, the optimal FOS structures are known and can be
compared with the FOS structures generated by RV-GOMEA-
FB. We will look at the algorithm’s FOS structures created
for Sphere and SoREB. Rastrigin and Michalewicz are not
considered here, since for these problems, the dependency
matrix and thus the FOS structure are equal to that of Sphere.
The FOS structures found and used by RV-GOMEA-FB for
Sphere and SoREB that can be seen in Fig. 4(a) and (b) are
as expected, considering the dependency matrices discussed in
Section VI-A. For Sphere, it holds that a fully decomposable
problem can best be represented by a univariate FOS consist-
ing of exactly � subsets, each containing a single optimization
variable. As stated in Section V-B the SoREB function is
rotated in blocks of k consecutive optimization variables with
k = 5 in this case. Thus, the dependencies of SoREB should
be represented by a marginal product FOS containing blocks
of size k as is the case in Fig. 4(b).

2) Overlapping Benchmarks: The optimal FOS structures
for overlapping benchmarks are unknown because no marginal
product FOS can describe all dependencies without combin-
ing independent variables or leaving out dependencies. For
these overlapping problems, a distinction is made between
RV-GOMEA-FBLT and RV-GOMEA-FBMP. The latter link-
age learning method creates a marginal product FOS, whereas
the former continues to build a linkage tree, eventually con-
taining all nondecomposable linkage sets. Fig. 5 shows the
FOS structures created for Rosenbrock and OSoREB by
RV-GOMEA-FBLT and RV-GOMEA-FBMP where l = 20.

C. Scalability Analysis

Fig. 6 shows the performance of different linkage learn-
ing methods in combination with RV-GOMEA on all six
benchmark problems.

1) (Partially) Decomposable Problems: For the fully
decomposable problems Sphere, Rastrigin, and Michalewicz,
we can observe that RV-GOMEA-FBLT and RV-GOMEA-
FBMP scale as well as RV-GOMEA-UNI and better than
AMaLGaM-FB. Whilst RV-GOMEA is partially based on
AMaLGaM, the optimal mixing employed in RV-GOMEA
has not been shown to outperform the model-based EDA
approach used by AMaLGaM on all benchmark problems
before. In this article, suitable comparison has been made
between RV-GOMEA and AMaLGaM as both algorithms have
been provided with the same linkage learning method and bet-
ter results have been obtained by RV-GOMEA, implying that
the optimal mixing of (RV-)GOMEA has significant added
value in the real-valued domain.

The incremental dependency updates have minimal over-
head on the overall scalability as opposed to the original
differential grouping (RV-GOMEA-DG) where the number of
dependency checks needed to build a linkage model scales
quadratically with the problem size.

On SoREB, a nonunivariate linkage model is used as
RV-GOMEA baseline, containing blocks of five consecutive
optimization variables (RV-GOMEA-UNI5). RV-GOMEA-
FBLT and RV-GOMEA-FBMP find the same structure
[Fig. 4(b)], but in the gray-box setting, a small overhead is
noticeable as the problem size increases. This overhead is
caused by a decrease in the ratio of dependent to indepen-
dent pairs as the problem size increases. By the definition of
SoREB, every variable is dependent on the other k − 1 vari-
ables in its block and has no dependency on all other � − k
problem variables. If the dimensionality of SoREB increases,
the number of blocks increases, but the size of the blocks
will remain equal to k. In other words, as � grows larger, the
number of independent variables �−k becomes larger and the
number of dependency checks that result in a measured depen-
dency of 0 increases. Eventually, every possible pair will be
checked, which ultimately still causes a quadratic overhead
compared to the baseline RV-GOMEA-UNI5, which uses a
predefined structure, but still scales better than the original
fitness-based linkage learning used in RV-GOMEA-DG.

2) Nondecomposable Problems: As the Rosenbrock and
OSoREB problem contain nondecomposable subcompo-
nents, RV-GOMEA-FBLT and RV-GOMEA-FBMP generate
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Fig. 6. Medians of scalability experiments with each data point being the median of 30 successful runs.

different linkage models and their scalability should be eval-
uated independently. As shown in Section VI-B2, a full
linkage tree FOS is built in RV-GOMEA-FBLT to capture

the dependence between single parameters in different sub-
components, whereas a marginal product structure is used
by RV-GOMEA-FBMP. The former results in slightly better
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scalability on OSoREB implying that there is indeed added
value in bigger FOS elements that can capture the linkage over
partially dependent (sub)-components. On the Rosenbrock
problem, RV-GOMEA-FBLT and RF-GOMEA-FBMP show
similar scalability but are outperformed by RV-GOMEA-UNI,
implying that even though this problem contains dependen-
cies, it can still be efficiently solved by a univariate linkage
model.

VII. DISCUSSION

The method introduced in this article is able to learn
pairwise dependencies between variables online. There are,
however, certain issues left unaddressed in finding the optimal
linkage structure to any optimization problem. One of the
key questions left unanswered is how to deal with problems
containing overlapping subcomponents. The optimal linkage
structure to solve these benchmark problems is unknown, nor
do we know whether a universally optimal linkage structure for
these kinds of problems exists for RV-GOMEA. Whilst two of
our benchmark problems contain overlapping components, the
results between our two proposed linkage models did not vary
much and we did not manage to find a definitive optimal struc-
ture for these benchmark problems. It is of value to note that
recent efforts to move from marginal dependency models to
conditional dependency models are a very likely candidate to
overcome this issue [7]. The work in this article can readily be
combined with these novel dependency modeling techniques.

While RV-GOMEA was shown to perform well on noise-
free (real-world) problems [6], [18], [20], [40], future work
remains to study how well these algorithms fare in case
of noisy real-world problems and to find a suitable value
for ε when determining dependencies in noisy (real-world)
problems.

While our proposed approach defines relative dependen-
cies on pairs of variables, it does not provide an absolute or
relative minimal value to define nonseparability of subcom-
ponents. Moreover, there is no guarantee that variables that
have detectable linkage with our approach should always be
considered inseparable during optimization. More research is
required to determine whether it is possible to find a measure
that allows for the further decomposition of weakly dependent
subcomponents.

When focusing on the pairwise dependency checks done
on the Rosenbrock problem, it occurs that whilst the results
obtained from these checks are as expected, pairwise depen-
dencies might not be suitable to model the higher order
dependence of this nondecomposable problem. Even though
two variables xi and xi+2 are not pairwise dependent, their
optimal values both depend on the value of xi+1 and vice versa,
making them dependent to some extent. These higher order
dependencies cannot be captured by the pairwise dependency
checks done by the approach introduced in this article.

It would furthermore be interesting to explore
the use of more recent adaptations of differential
grouping [27], [33], [34] in combination with RV-GOMEA.
Also, it was recently shown that the mechanisms that drive
the estimation and sampling of the Gaussian distributions
as taken from AMaLGaM, can be replaced by that of

the leading Gaussian-based ES and CMA-ES. This gives
a different variant of RV-GOMEA that scales better on
selected problems such as SoREB [4], we expect all results
and comparisons between RV-GOMEA and AMaLGaM to
straightforwardly extend to that variant of RV-GOMEA and
CMA-ES with similar conclusions, but it would be interesting
to immediately combine this also with the different recent
adaptations of differential grouping.

Finally, the order in which pairs are currently checked
is random. As a consequence, our approach as proposed
here is invariant to permutations of coordinates. If problem-
specific knowledge indicates that certain pairs of variables
are more likely to be dependent than others, these pairs
can be evaluated first, which is likely to improve RV-
GOMEA-FBLT’s performance even more on specific prob-
lems. However, this will likely disrupt the coordinate per-
mutation invariance property, one of the currents strengths of
RV-GOMEA-FBLT.

VIII. CONCLUSION

We have introduced a fitness-based linkage learning
approach that can find pairwise dependencies between vari-
ables and build a linkage structure online without the need
for any problem-specific knowledge. The proposed method
has been evaluated on different well-known benchmark prob-
lems and has proven to be efficient in determining the
correct pairwise dependencies between variables. Two differ-
ent methods have been proposed based on estimated pairwise
dependencies to model the linkage structure of a problem.
These methods have been integrated into RV-GOMEA and
AMaLGaM and resulted in both algorithms being able to
exploit important dependencies online. RV-GOMEA-FBMP
and RV-GOMEA-FBLT have shown to outperform a state-of-
the-art (for black-box scenarios) EA known as AMaLGaM
upon which RV-GOMEA was based, whilst leveraging the
same linkage model. Because a comparison between RV-
GOMEA and AMaLGaM has never before resulted in better
performance of one algorithm on all benchmark problems, this
is the first time we can conclude that RV-GOMEA has out-
performed the model-based EA that it was partially based on
which clearly shows the added value of the optimal mixing
employed by RV-GOMEA.

Whilst the two methods used for RV-GOMEA have equal
performance on (partially) decomposable benchmarks, the
generated linkage models differ for benchmark problems with
overlapping subcomponents. The difference lies in whether a
(partial) linkage tree is built that captures all possible depen-
dencies, or a marginal product linkage model is used. Whilst
both methods have their strengths, RV-GOMEA-FBLT scales
better on problems with strong dependencies and overlapping
subcomponents, thus proving to be a more robust method for
large-scale real-world optimization problems with unknown
problem structures.

Given the overall scalability of RV-GOMEA-FBLT, we con-
clude that the proposed algorithm is able to learn a linkage
model online and scale as well as RV-GOMEA provided with
the optimal structure, the current state of the art for gray-box
optimization.
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