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Abstract

Purpose: Simulating low-dose Computed Tomography (CT) facilitates in-silico studies into the required dose for
a diagnostic task. Conventionally, low-dose CT images are created by adding noise to the projection data.
However, in practice the raw data is often simply not available. This paper presents a new method for
simulating patient-specific, low-dose CT images without the need of the original projection data.

Methods: The low-dose CT simulation method included the following: (1) computation of a virtual sinogram
from a high dose CT image through a radon transform; (2) simulation of a 'reduced'-dose sinogram with
appropriate amounts of noise; (3) subtraction of the high-dose virtual sinogram from the reduced-dose
sinogram; (4) reconstruction of a noise volume via filtered back-projection; (5) addition of the noise image to
the original high-dose image. The required scanner-specific parameters, such as the apodization window,
bowtie filter, the X-ray tube output parameter (reflecting the photon flux) and the detector read-out noise,
were retrieved from calibration images of a water cylinder. The low-dose simulation method was evaluated by
comparing the noise characteristics in simulated images with experimentally acquired data.

Results: The models used to recover the scanner-specific parameters fitted accurately to the calibration data,
and the values of the parameters were comparable to values reported in literature. Finally, the simulated low-
dose images accurately reproduced the noise characteristics in experimentally acquired low-dose-volumes.

Conclusion: The developed methods truthfully simulate low-dose CT imaging for a specific scanner and
reconstruction using filtered backprojection. The scanner-specific parameters can be estimated from
calibration data.

Keywords: Filtered Back Projection, Noise Power Spectrum, Bowtie Filter, Read-out Noise, Sinogram,

1 Introduction

Computed tomography (CT) has established itself as one of the most important medical imaging
modalities [1]. In fact, the number of CT examinations is still increasing [2]. An important
disadvantage of CT, however, is the exposure to ionizing radiation that is inherent to the technique



[1]. Accordingly, it is common practice to keep the radiation dose as low as reasonable achievable
(ALARA). Unfortunately, lowering the dose yields a lower signal-to-noise ratio and thus a poorer
image quality which may hamper subsequent diagnosis. Optimization of the dose/quality trade-off is
a far from trivial problem as one cannot simply expose subjects to a range of radiation doses for
ethical reasons. Alternatively, measurements on anthropomorphic phantoms allow real low dose
measurements [3] [4]. However, such phantoms may not capture the large variability in structures
that can be encountered in real life. Therefore, a lower-dose CT image is usually simulated by adding
noise to the underlying projection data, i.e. the sinogram [5] [6] [7] [8] [9] [10] [11]. Subsequently,
the lower-dose image is reconstructed from these noisy projections using the scanner's software.
However, this approach is not always achievable in practice as the projection data are often simply
not available. This paper studies a method to generate low-dose CT images based on existing image
data. Therefore, we introduce new methodology to determine key system parameters such as the
reconstruction kernel, bowtie filter, the X-ray tube output and the read-out noise by a simple
calibration procedure. These system parameters determine the noise properties of the simulated low
dose CT-images. Furthermore, retrospective investigation of the influence of low-dose imaging
might be permitted if one could generate such data directly from existing images.

1.1 Related Work

Mayo et al [9] and Frush et al. [10] were among the first to simulate low-dose CT images. They added
Gaussian noise to the projection data, after which the images were generated by means of the
scanner's reconstruction software. Any such approach assumes that the number of photons hitting
the detector is large. However, when only a low number of photons is detected, the properties of the
noise in the sinograms become much more complex. Then, the readout noise becomes significant
and the measured signal is best described by compound Poisson statistics [12] [13] [14]. Still, many
low-dose CT-simulators have merely added Gaussian noise to the raw projection data [8] [15] [16]
[7]. Zabic et al [17] extended the noise model to correctly reflect the noise (co)variances under
photon-starvation conditions and appropriately simulate detector noise artifacts. Furthermore, Wang
et al. combined the raw data acquired at two tube-voltages, which allowed also simulating
adjustments in the tube-voltage [16]. Similarly, Wang et al [18] present a method for generating
simulated low-dose cone-beam CT (CBCT) preview images. Essentially, correlated noise is injected
into the original projections after which images are reconstructed using both conventional filtered
backprojection (FBP) and an iterative, model-based image reconstruction method (MBIR).

Simultaneously, the need for meaningful characterization of image noise beyond that offered by
pixel standard deviation became increasingly important [10] [8] [7] [19]. Boedeker et al. [20] and
Faulkner et al. [21] proposed to use the NPS and the noise equivalent quanta (NEQ) to describe the
noise properties in CT images, whereas Joemai et al. [7] used the NPS and variance to validate their
low-dose CT model. Mieville et al. [22] investigated the spatial dependency and non-stationarity of
the NPS. Verdun et al. [23] provide a review on image quality characterization and the dependency of
the NPS and standard deviation on several scanner parameters.

The work that was done to describe the NPS of CT images also yielded techniques to estimate the
reconstruction kernel. This proved very valuable information, since manufacturers are often
reluctant to disclose the kernels. Other scanner-specific parameters, such as the bowtie filter and the
readout noise, were derived from the projection data [8] [14] [12]. To the best of our knowledge the
bow tie filter was never derived from actual image data.

In case projection data of the scanner is not available an approach based on simulated projection
data from existing image reconstructions can be used to simulate low dose CT-scans. Initially, Wang



et al. [24] and Kim and Kim [25] presented preliminary work on simulating low-dose CT scans from
the reconstructed images. Wang et al aimed to develop a simulation technique based on image data
such that it produced similar results as a method using the original projection data. Kim and Kim [26]
presented a comprehensive, image-based framework for reduced-dose CT simulation. The key
characteristics of the CT system are estimated in this work based on several measurements of a
tapered, cylindrical phantom: the reconstruction filter, noise parameters and the photon flux of the
X-ray tube. Subsequently, reduced dose CT noise images are generated from a synthesized
sinogram. The noise equivalent quanta (NEQ) is a key parameter that is used to determine the
system parameters. Essentially, it reflects the (squared) SNR in a CT image, measured from the noise
image of a uniform object. Kim and Kim adopt a linear relation between NEQ per detector element
and the NEQ per image to specify the amount of noise that has to be added. This relation was
derived (amongst others) by Wagner [27] and Hanson [28] assuming that the attenuation at the
varying projection angles is uniform.

1.2 Objective

This paper presents a new framework to simulate lower-dose CT imaging from existing CT images
without using the original projection data. We take a different approach to image-based low dose CT
simulation compared to Kim et al [26]. The most important additional value compared to their work
is that our approach enables estimation of all scanner-specific parameters directly from the
calibration scans without requiring technical information provided by the manufacturer. In particular
the estimation of the bowtie filter directly from the measurements is an important novelty of our
work. Another difference is that our method for estimating the system parameters relies on the
variance in signal intensity reflecting the noise level. While doing so we do not need to assume that
the noise properties of the projections are uniform. Additionally, Kim used a small region of interest
in the center (where the noise properties are uniform) of a tapered phantom to estimate the photon
flux and the read-out noise. Instead, we can use the complete phantom to estimate the system
parameters. As such, a larger region of the image is involved which should improve the precision of
the estimation.

The paper is organized as follows. Section 2 describes the materials and methods; Section 2.1
descibes the CT-examinations, Section 2.2, the actual low-dose simulation method and Section 2.3 .
Subsequently, Section 2.3 goes into how several system parameters can be estimated from CT
images. The outcome is discussed in Section 4.

2 Material and methods

2.1 Materials

CT images of a water cylinder 34 cm in diameter and an anthropomorphic pelvic phantom were
acquired on a Philips Brilliance 64 CT scanner at the Academic Medical Center in Amsterdam, The
Netherlands. A modified CT colon protocol was used, since the intended application is CT
colonography. The modifications only concerned the tube current, which was adjusted to control the
dose level and the acquisition mode, which was sequential for the water cylinder (i.e. imaging the
exact same plane) and the pelvic phantom. Table 1 list the parameter settings.

CT images of the water cylinder were used to estimate the unknown, scanner-specific parameters
(see Section 2.3). Here, the settings listed under 'Calibration/Training’ (Table 1) were used.



Subsequently, separate images of the water cylinder and images of the pelvic phantom were used to
validate the low-dose simulation model (settings listed under ‘Test’). Therefore, simulated and
measured noise characteristics were compared by means of the pixel variances and the NPS.

Scan protocol parameters

Phantom type

water cylinder

pelvic phantom

Acquisition mode sequential sequential
Kernel B B
X-ray tube Voltage (kV) 120 120
Slice Thickness 0.68 0.68
Collimation :w (mm) 40 x 0.625 64 x 0.625
Matrix 512 X512 512 X512
Diameter field of measurement: 500 500
Deom (mm)
Set type Calibration/ Test Test
Training
Field of view 350 350 350
Pixel sizes: d,.,(mm) 0.68 0.68 0.68
Exposure: IT (mAs) 250, 120, 60, 30 210, 170, 80, 40,15
120, 85, 60,
42, 30, 20, 15
Number of rotations 25 (except for 13 128
250 mAs: 100)
Copies per rotations 40 40 1
Number of slices 1000 (except for 520 128

250 mAs: 4000)

Table 1 Scan protocol parameters.

2.2 Lower-dose CT simulator

In our simulation method we first create a virtual sinogram from a high-dose CT image, which is
processed to yield one corresponding to a lower dose. Subsequently, the high-dose virtual sinogram
is subtracted from the lower-dose sinogram. The resulting noise sinogram is used to reconstruct a
noise volume via filtered back-projection. Addition of the noise volume to the original high-dose

image results in the lower-dose image.

Figure 1 presents an overview of the low-dose CT simulation steps,;




1. An attenuation image it e is constructed from a high-dose CT image Jen;

A virtual sinogram R, is generated from u . by means of the Radon transform [29] [30].
Note that computing the radon transform requires interpolation, hence this virtual sinogram
is slightly more blurred than the true sinogram ;

3. Avirtual, noiseless measurement of the number of detected photons N nien IS generated
from Ryign;

4. Avirtual, noisy measurement N, at reduced dosed is created with appropriate amounts of
Poisson and Gaussian noise — reflecting the quantum and readout noise components [1] as
well as the noise already present in the original high-dose image;

5. Avirtual, ‘reduced’-dose sinogram R., is computed from N.;

A noise sinogram R,.;. is obtained by subtracting the virtual sinogram Ry, from the reduced-
dose sinogram R... This ensures that all smoothing effects that are inherent to the discrete
radon transform (step 2) and the discrete inverse radon transform (step 7) do not impose
additional blurring to the object being imaged;

7. Anoise attenuation image y . is reconstructed by means of the inverse Radon transform --
-via filtered back-projection (FBP)--- from the noise sinogram R..;;

8. Anoise image J,.. is constructed from u ,.;..;

A low-dose attenuation image J,,, is formed by adding J..... ---which contains noise only--- to
the original high-dose CT image J.. (See Figure 2);

In the next subsections, we will detail steps 1—9; steps 1-3 in Section 2.2.1, steps 4-6 in Section
2.2.2.2 and steps 7-9 in Section 2.2.3

2.2.1 The virtual sinogram (Steps 1-3)

The attenuation image L, is calculated from the input, high-dose image J, in step 1 via:

_ luwater Jhi gh

luhigh - 1000 + Hater> (1)

in which we use for u.... the attenuation coefficient of water at the effective energy of an X-ray tube
of 80 keV [31] [32].

In step 2, the aggregate of such attenuation projections in a fan-beam scanner geometry Ryig(i,j) can
be approximated from the high-dose attenuation image using the parallel-beam Radon transform
followed by a reordering of the projections (Equation 130, page 93 [29]). Here, i represents a beam
offset angle with respect to a gantry angle j. Rug(i, j) should be considered an approximate, virtual
sinogram, particularly since the noise is strongly reduced due to all the interpolations and averaging
involved in its calculation. The associated, virtual transmission T.(i, j) and virtual noiseless
measurement Nyt nign(i,j) are respectively calculated by:

Ty (b ) =€, 2)
and

Ndet,high(i’j)=N0(i)T(isj)s (3)

in which Ny(i) is the number of incident photons defined as;



No(i)=%%(i), (4)

in which wis the collimation (width of the fan beam), d:.. the detector size in the fan angle direction
at the isocenter, ¢ the rotation time, M the number of gantry angles per rotation, I the tube
current, T,(i ) the transmission of the bowtie filter and Ka constant reflecting the X-ray tube output
in photons{mAs. mm?) . The parameters Kand 73,(i ) are scanner-specific and need to be estimated
using calibration scans (if not known a-priori), for which a procedure is detailed in Section 3.1. The
other parameters in Eq. (4) can be typically retrieved from the literature [33] [1] or are included in
the DICOM-header. Note that the radiation dose is steered via the exposure Iz . Essentially, step 3
consists of calculating N,., ., using Egs. (2), (3) and (4).

2.2.2 Adding noise to the virtual sinogram

2.2.2.1 Background
This section describes the procedure to add an appropriate amount of noise to the virtual noiseless
measurement in such a way that we account for the noise already present in the original image.

As such, the pixel variance of the low-dose image var[ 4 w.(7, m)] is given by

varl th,, (n,m)] = var[ g, (n,m)] + var{ g4, ;. (n,m)], (5)

where var[ y wa( 7, m)] and var[ g ...(72, m) ] are the pixel variances of the high-dose image and the
noise image, respectively. As a result of filtered back-projection, any attenuation image u (n, m) is a
weighted sum of attenuation projections R(i,j ) and since the noise in the projections is assumed
to be independent, the pixel variance equals

2y Ng-l
var[u(n, m)] =[%J 2 2 Colmmi, jy varlR(G, ). (6)

in which c;.; are the reconstruction filter coefficients incorporating all the filtering steps (e.g.
necessary interpolation steps) and 2N,,, the number of detector elements. According to Eq. (6), the
correct noise characteristics are created when each attenuation projection contains an appropriate
amount of noise, hence the following condition should be satisfied:

var[R,, (¢, )] = var[ R, (i, )]+ var[R .. (7, /)], (7)

in which var[ Ru( i,/ )] is the variance in the high-dose sinogram, var[ R..(i,j )] the variance in a
sinogram acquired at the specified dose and var[ R....(i ,j )] the variance in the zero-mean noise
sinogram. Rpgise(i,j) is defined as

Rnoise (l’ ]) = Iared (l’ .]) - Rhigh (l5 J)5 (8)

in which R4(i,j) is the reduced-dose sinogram with the noise characteristics so that Egs. (7) is
satisfied. Additionally, the variance of an attenuation projection var[R(i ,j ) ] can be approximated
by a first order Taylor series approximation [34] [35] [14] as:

1 o’
var[R(i, j)] = — (9)
Ndet(laj) Ndet(la_/)

Eqg. (9) consists of two terms. The first reflects the quantum (photon) noise, which obeys a Poisson
distribution. The second term represents the readout noise, which is modeled by zero-mean



Gaussian noise G(O, o ) with variance ¢ % Henceforth, the challenge is to simulate the reduced-

dose measurement N,.4, which consisted of adding two independent noise processes, namely
quantum noise N 4(i, j) and read-out noise N .q,.(/, j),

Nred (i5 j) = Nred,q (i’ ,j) + Nred,r (iﬁ j)' (10)

2.2.2.2 Model Implementation (Steps 4-6)
First, only the quantum noise is simulated by drawing samples from a Poisson distributions with
expectation value N . q(i, j). N q(i, j) is calculated using Egs. (3) and (4) at /..., which is the tube

current that yields the correct amount of noise to be used for creating the sinogram:

— Ihighllow (11)
Ihigh -1

red
low

in which /., and /., are the tube currents of the high-dose and the low-dose image to be simulated.
Eqg. (11) is obtained after substituting Eqgs. (3), (4) and the first term in the right hand side of Eq. (9)
into Eq. (7) and reshuffling the terms. Note that this equation essentially compensates for quantum

noise already present in the high-dose image.

Second, the readout noise is simulated by repeatedly drawing samples N..q (i, j) from a Gaussian
distribution with mean zero and variance o...>. Given that N, is calculated as described previously,
O.s is computed by substituting Egs. (3), (4), (11) and the first term in the right hand side of Eq. (9)
into Eq. (7), reshuffling the terms and dropping all redundant terms to yield:

2 2
o> :O'L?M. (12)

(Ihigh - [low )2

As before, this equation compensates for Gaussian noise already present in the high-dose data. The
virtual noisy measurement (step 4) is found by adding the read-out noise to the Poisson process as
specified in Eq. (10). We adjust N,.; and set it to one, whenever the equation delivers a number that
is smaller than one (photon starvation), which corresponds to a very small N,..(i, j) / No(i, j) as

N, > > 1. Hence, the virtual ‘reduced’ dose sinogram (step 5) becomes
Rred(i’j)z_ln(Nred(i’j)/NO(i’j))’ (13)

the noise sinogram (step 6) is obtained using Eq. (8).
2.2.3 Reconstructing the image from the noisy sinogram (Steps 7-9)

In step 7, we opt to reconstruct u(i, j) in a parallel-beam geometry , because it is computationally less
expensive and because our scanner uses such a reconstruction approach [29]. Therefore, the fan-
beam projections R....(i, j) are first reordered into parallel-beam projections (Equation 130, page 93,
[29]) Next, filtered back-projection is used to construct a noise image via:

My N —1
ﬂ“““["’m]:[ﬁji S Ry (o)) (nmi)). (14)

Jj=1i==Ng,



after which, u....(n, m) was scaled to Hounsfield units in step 8 by:

Jnojsc (l’l, m) — looo[lunoise (na m) - luwater ] (15)

‘water

Finally, the low-dose image can be obtained in step 9 as:

JIOW (n’m):']high (n’m)+Jnoise (n’m)' (16)

2.3 Parameter estimation

This section describes how the required scanner- and scan-specific parameters may be computed
from calibration scans:

The reconstruction filter coefficients in c.:(n, m, i, j)
The bowtie filter transmission T(i)

The X-ray tube output parameter K

W

The readout noise variance o.>

2.3.1 The reconstruction filter coefficients

Conventionally, the reconstruction filter c..(n, m, i, j) is derived from the NPS in a region of interest
(ROI) [26] [20] [21] [36]. If all fan-beam projections R(i, j) used to reconstruct the ROl contain white
noise (and aliasing is negligible), the NPS becomes radially symmetric [36]. This is approximately the
case in the center of a water cylinder that is placed in the center of the scanner [22].

Therefore, the volumes emanating from successive X-ray tube rotations at 250 mAs were pairwise
subtracted to yield 2000 zero-mean noise images (i.e. corresponding slices from successive
rotations). As such the attenuation profile of water cylinder is implicitly corrected and any structured
noise removed [20] [22]. The NPS was estimated in a small rectangular ROI consisting of 64x64 pixels
in the center of the images through the periodogram, which is defined by,

NESOIE

17
N (17)

N
F{J
NPS(,,,) = 3 1T s
i=1

in which N is the number of images used to estimate the NPS, @ , and  , are the frequencies in
Cartesian coordinates and F{} symbolizes the Fourier transform. In such a ROI, the modulation
transfer function of the scanner Hy:(w,) (e.i. F{cwt} ) is related to the radially averaged NPS via:

tot

B
NPS(w,) =~ 12 (@),), (18)
)

(3

where w, = /w,% + wjz,, Bconst is @ scaling constant and division over w, depicts the density of the

projections [37] [21]. In appendix C, we describe how to model Hy,; and its parameters are

determined by fitting the model to Eq. (18). Thereafter, c;o¢(/) = F {Hux(w,)}

2.3.2 The bowtie filter



We will now demonstrate how the bowtie filter transmission can be estimated from the pixel

variance measurements in a phantom.

Assuming that phantom images are acquired at a dose that is high enough to ignore the electronic
noise, then the pixel variance var[u(n, m)] can be rewritten by substituting Egs. (3) and (4) into Eq.

(6):

]Wd KT j=li==N, TB(Z)T(Z’]) .

fan

var[ u(n,m)] :[M—” )i i Cuo (11,1 ])” (19)

Apart from K and T,(i), the other parameters in this equation are known (c.: may be estimated
following the procedure from the previous section and T(i,j) is obtained via Eq. (2)). Writing this

equation in matrix notation yields:

var[p]= AWT,', (20)

. . . . M?m? .
where var[p] is an N, vector (with N, again the number of pixels); A = —T _isascalar; T, is an
IwdganKt
2N, vector representing the bowtie filter transmission and W is an Nixx2N matrix with elements

Wii ,

M N2
Wk[:z‘ctol(”k”‘?/lk.’l’.]) (21)
Jj=1 T(la.])

Clearly, Eq. (20) is a linear equation that might be solved analytically. Unfortunately, the system
matrix and the number of parameters are very large, and therefore such a purely analytic approach is

computationally very expensive. Therefore, we opt to model the bowtie filter’s transmission by:

2
T,()=o,, +(l—010w)[iaqcos[%j] . (22)
4=0

The summation in the equation represents a truncated fourth order Fourier series. Only cosines are
used as the bowtie filter is a symmetric function and the sum is squared to ensure that the
transmission is not negative. Furthermore, we assume that the transmission in the center of the
bowtie filter is one (T5(0) = 1), which is imposed by constraining a, =1 - 3,-.%a,. Furthermore, 0. is a

constant representing the minimal transmission.

We assert that T, is a monotonically decreasing function to both sides of the filter. Therefore, we

devised the following simple penalty term:

9T, (i,a) (0T, (i,a)
P(a)-% Py d[ P ] (23)

with u(-) the Heavyside function and a the 4 parameter vector of the model (c.f. Eq. (22)). Essentially,

Eqg. (23) sums all positive derivative values over half the filter (which is symmetric by definition).

Finally, the filter parameters are estimated by solving:



k=

a,A =argmin,_ , {i;{k (a,A k)+,b’P(a)} (24)

with
2
lk (aa A: k) = (Var[luk ]experimental - Var[luk -4, A]m(’del ) > (25)

where A is the scaling constant from Eq. (20) which is essentially a gain factor that needs to be

simultaneously estimated and 8 the weight of the penalty term

The required pixel variances to solve this equation are obtained from 4000 pairwise subtracted
images of a water cylinder at 250mAs (see Table 1 and Figure 3). Subsequently, samples were
collected from within the remaining region along 80 evenly distributed radial lines drawn outward
from the center (see Figure 3). The bowtie filter parameters a were estimated for each of the 80
radial segments separately (via Eqg. (24)), after which the associated bowtie filter transmissions were
averaged. The initial parameter setting for every estimation was a,,;; = 0.5, 0, 0, 0, which corresponds
to a single cosine (see below). 0., was set to 0.15, which is comparable to the minimum found in

other scanners [12] [8].

2.3.3 The X-ray tube output parameter and the readout noise level

Finally, we will demonstrate how the X-ray tube output parameter K and the variance of the readout
noise 0.’ can be estimated from the pixel variance var[u(n, m)] measured at different tube currents.

Therefore, Eq. (6) will be simplified in such a way that K and o.? can be derived from a linear fit.

First, substituting Eq. (9) into Eq. (6) yields:

var[u(n,m)] = [ ] i gcm(n m,i, j)’ ( i ) o, j (26)
Ny (4,

j=li=—N det(l J)

Subsequently, substituting Egs. (3) and (4) into (26) and reshuffling the variables yields

Yo e (mmi, ) (7o, Y& e, (nm,i, j)
var[u(n,m)] = (IMZ WK1 j;l;[ T.OTG) +(HQ\/[WZ'] 2 ; T TG (27)

Consequently, the next relation emerges when the exposure It, the X-ray tube output K, and the
variance of the readout noise o.’ are separated from all other variables of Eq. (27):

C,(n,m) L Cnm)

KIt K*I*cr ¢ (28}

var[ (n,m)] =

in which C,(n, m) and C.(n, m) are given by

_ 752 < ctot(n m’l’J) 29
Cp(n,m)—(Mzwjgltl: Y T,()TG,j) .

1N



and

j=li=—N (l)T(l.])

Ce(n,m) [ \JZ 2 Ctot(n mal,]) (30)

C,(n, m)and C.(n, m) can be calculated using the reconstruction filter weights c.. (from Section
2.3.1), the bowtie filter (from Section 2.3.2), and the transmission (calculated via Eq. (2)). Eq. (28) is
ill-posed whenever the variance is measured at a single exposure. Therefore, acquisitions are
obtained at multiple exposures. Next, the model is fitted in a least-squares sense using the following

non-linear model,

Noix N,
{K,0.} =argmin,_, {22;{,{’1.(1(,0':)}, (31)
k=l =l
with
2 2 2
Zk,i (K’ O-e ) = (Var[luk,i]measured —var I:luk,i | K’ O-e ]model) 4 (32)

in which the model is expressed by Eq. (28), N, and N, define the number of pixels and exposures
respectively. The variance per pixel was estimated from the water cylinder images for each exposure
level in the training set. The initial parameters are obtained by first solving a simpler problem that
emerges when Eq. (28) is approximated by two linear equations. If the tube current is very high, the
contribution of the read-out noise to the pixel variance is often neglected. In this case, the second

term in the right hand side of Eq. (28) is ignored, hence K can be approximated from :

C,(n,m)
var[u(n,m)] = K (33)

With K known, o.” can be estimated using new images that are acquired at a lower dose level.
Reshuffling Eq. (28) gives:
5 KZTZIZ
o =

- =" (34)
C,(n,m)

C (n,m)
[Var[ u(n,.m)]— pKI—T j

These estimates for K and o.” are the initial parameters for minimizing Eq. (31).

3 Results

3.1 Parameter estimation

3.1.1 The reconstruction filter coefficients

Figure 4 shows the estimated 2D-NPS. Subsequently, the parameters of the apodization window H.,,
were estimated by fitting our model (Appendix C) to the NPS. The left plot of Figure 5 demonstrates

how well the model fits the data, while the right plot shows in blue the apodization window which is



used in the remainder of the paper (Eq. (37)). In the same plot, the algorithmic transfer function, H.,
H, (@)

tot

which is defined by H.,(w) = [ @, ] and represents the total apodization, is depicted in pink.

3.1.2 The bowtie filter

Figure 6 shows the estimated bowtie transmission. The left plot gives the profile of the mean bowtie
transmission, its 95% confidence interval (all in blue) as well as the initialization (pink). Notice that

the bowtie transmission was estimated more precisely for the central detectors than for the ones at
the periphery (reflected in the smaller confidence interval). Particularly, the variance is large for the

range of |DetectorID| > 200, which corresponds to the edges of the water cylinder.

The right plot displays the variance measured (blue) along one of the radial segments depicted in
Figure 3. Additionally, the variance as a function of position was computed by means of Eq. (20) with
(pink) and without the bowtie filter (green). This shows that adding the bowtie filter to the model,

enabled it to describe the measured variance more accurately.

The shape of the transmission profile was similar to previously estimated bowtie filters of CT-

scanners [8] [12].

3.1.3 The X-ray tube output parameter and the readout noise level

Table 2 lists the estimated values of K and ¢.” at each exposure level. K was estimated using Eq. (33)
by fitting a line through all data points, after which the slope of the line corresponds to 1/ (/TK).
Clearly, the estimation of K stabilizes at higher exposure levels and increasingly deviates from
stability as the exposure level decreases. We attribute this to the increasing importance of the read-
out noise due to which Eq. (33) is not valid anymore. Henceforth, the estimated value for K at 250
mAs is used as an initialization to compute the initial value of 0.>.. The weighted average of estimates
of 0.? over all exposure levels is used to initialize the minimization procedure described by Eq. (31).

Here, the weights were inversely proportional to the variances in the estimations of .’

Exposure (mAs) | 250 120 60 30
K( % 100) 2.08+0.38 | 2.03+£0.37 | 1.98+£0.35 | 1.84+£0.35
o’ -1+85 11+40 11.8+20 15+11

Table 2 Estimates for K and oez at each exposure level. oez is computed using K estimated at 250 mAs. K is expressed in the
number ofphotons/(mmz. mAs.revolution).

The final values of K and o0.> were estimated using Eq. (31) Eq. (32) and the weighted mean of the
values in Table 2 as an initialization. They were found to be 2.17*10° photons / (mm?. mAs) and

23.3(average of the values at the lowest two exposures), respectively. Note that K and 2 are higher
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as all data were combined than for each tube current separately. These final values will be used in

the remaining experiments.

3.2 Validation of the low-dose CT model

The noise characteristics from simulated low-dose CT images were compared with those produced by
experimental low-dose CT-scans to validate our method. The scan parameters to do so are collated in
Table 1 (The 'Test’ column under ‘water cylinder’ and under ’pelvic phantom’). The highest exposure
level given in the table served as input to simulate low-dose images. The noise characteristics of all
generated low-dose CT images were assessed by means of the pixel variance describing the noise

’strength’, and the NPS quantifying the noise structure. Both were computed in a number of ROIs.

3.2.1 Water cylinder phantom measurements

Figure 7 shows a CT image indicating the positions of the ROls that were used to compute the NPS.

Each ROI had a size of 64x64 pixels.

Furthermore, Figure 8 shows the standard deviation as a function of the distance to the center at
different exposure levels: 60 mAs (lower three) and 15 mAs (upper three), respectively. The
simulations at 60mAs (bottom three curves) were obtained using images scanned at 250mAs
(bottom), 120mAs (middle) and 85mAs (top), while the simulations at 15mAs (top three curves) used
images obtained at 250mAs (bottom), 60mAs (middle) and 21mAs (top). The pink and blue lines

correspond to the angular averaged experimental and the simulated data.

Figure 8 shows that the differences between simulations and experiments are small. Only in the
centre of the 15 mAs simulations small differences of maximally 5% are noticeable. Notice that the
(small) deviation becomes larger in simulations from increasingly higher doses. This is because

increasingly more noise is added, yielding larger fluctuations in the simulations.

Figure 9 shows contour plots of the NPS calculated from ROIs depicted in Figure 7. The blue and pink
lines correspond to the experimental and the simulated NPS, respectively. The shape of the 2D noise

power spectra from the simulations closely approximates those encountered experimentally.

A global comparison of the noise in the simulations and the experimental data is contained in the

supplementary material.

3.2.2 Pelvic phantom

Fifteen ROIs were selected in which the noise properties were analyzed, see Figure 10. Each ROl was
composed of 41 x 41 pixels. The standard deviation in each ROl was determined for both the

experimental scans and the simulated scans at 80, 40 and 15 mAs. For the simulations at 40 and
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15 mAs, the scans at 80 mAs were used as the high-dose image. A validation at 80 mAs was possible
by computing the noise properties directly from the zero-mean noise image ... that was simulated
assuming the original image was acquired at infinite dose. For each slice and exposure level, 64
simulations were created to take variations in noise realizations into account. On average, the
standard deviation of the simulated images deviated 5.3%, 2.4% and 4.3% from the standard
deviation of the experimental images for the experimental acquired scans at 80, 40 and 15 mAs,

which was within the 95% confidence interval of the estimated standard deviation.

Exposure (mAs) | slope | offset | correlation

80 0.995 | 1.71 0.994
40 1.006 | 0.94 | 0.998
15 1.018 | 1.75 0.994

Table 3 The parameters and the correlation of the linear fit illustrated in Figure 11

Figure 11 and Table 3 show that the simulated scans closely approximated the noise strength in the
experimental scans. Nonetheless, the difference between the simulations and experimental scans
was larger for the measurements based on the pelvic phantom than the ones based on the water
cylinder. We attributed this to the presence of bone-like structures, that cause beam hardening

,which was not taken into account in our method.

Furthermore, the NPS was computed in four arbitrarily selected ROls from experimental and
simulated scans at 15 mAs, see Figure 12. Once more, the figures show how well the simulation

technique approximates the experimentally acquired low-dose images.

A global comparison of the noise in the simulations and the experimental data of the pelvic phantom

is contained in the supplementary material, just like the water cylinder phantom.

4 Discussion

We presented a novel method to simulate patient-specific, low-dose CT images from existing high-
dose images assuming reconstruction by parallel beam filtered backprojection. Scanner-specific
parameters i.e. the apodization window of the reconstruction filter, the bowtie filter, the X-ray tube
output parameter and the read-out noise were estimated using calibration images of a water
cylinder. Therefore, new estimators were developed that used reconstructed images and did not
require projection data. The low-dose simulation was evaluated by comparing the noise

characteristics of simulated low-dose images with experimentally acquired low-dose images.

One of the main strengths of our paper is that it allows scientists to simulate low-dose CT in a well-
documented and reproducible manner while not being dependent on the availability of raw

projections as well as scanner- and scanning-parameters. Note that it is not our purpose to improve
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on the simulation methods that are based on the raw-projection data. Instead, the aim is to simulate
low dose CT image from the higher dose images, which is useful whenever the raw projection data is
not shared by vendors. Additionally, it is relevant for retrospective CT-studies in which the raw data
is usually not stored. Moreover, it is important for the developers of image processing algorithms: it

gives them a realistic tool to study the robustness of their techniques under noisy circumstances.

We demonstrated that the models used to recover the scanner-specific parameters accurately
described the calibration data. The estimated reconstruction filter corresponded well to smooth
reconstruction kernels found earlier [20] [25] [26]. We recognize, however, that a more general
model such as an higher order cosine series may be necessary to describe the very sharp kernels. The
shape of the bowtie filter estimated by us closely resembles the bowtie filter used in a Siemens
scanner [12] [8] [38]. Furthermore, we estimated the X-ray tube output parameter at K = 2.17*10°
photons/mm? mAs and the read-out noise variance at 0.> = 23.2. These estimated values were of
the same order of magnitude as reported previously: Massoumzadeh et al. [8] estimated 2.7*10°
photons/mm?*.mAs for K and values from 40 through 200 for 0.% Faulkner et al. [21] estimated
4.15*10° and 6.46*10° photons / mm?>.mAs for K. Ma et al. [14] found 10 for o.’. Finally, we showed
that the simulated low-dose images accurately reproduced the noise in experimental low-dose

volumes.

A limitation of our approach is in the assumption that monochromatic photons are produced by a
virtual X-ray source. As such, our method does not take beam hardening effects into account, which
likely cause the encountered deviations in the noise characteristics between simulated and
experimental scans of the pelvic phantom. At the same time, the differences between the simulated
and experimental data were relatively small even in the presence of bony structures and at relatively
low exposures of 15 mAs. Essentially, a polychromatic approach would require a spectral dependency
in our framework, particularly concerning the x-ray tube output N, and the calculation of attenuation
projections. We consider this an important topic for further research. A study involving different

scanners .is another, obvious topic for future work.

A limitation is that our method does not take tube current modulation into account. The tube current
modulation essentially adjusts the tube current to the part of the body being imaged and the size of
the patient [39]. A variation per slice can be simply incorporated in our method by adjusting N, to the
actually used tube current /., which may be stored in the DICOM-header. However, it might not be

easy to recover complex variations of N,, e.g. as a function of the gantry angle.

Our method requires a full field of view which is the case for many protocols. Clearly, one could
always prospectively reconstruct full field images to satisfy this requirement. In our model, the
detector noise was approximated by zero-mean Gaussian noise, which is commonly used in literature

[25] [14] [8] [40] [24], but strictly speaking is not entirely correct [17].
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The techniques to extract the system parameters assumed in-plane, fan beam imaging and filtered
backprojection for tomographic reconstruction. This should be considered a calibration step. The
simulation method also focused on in-plane fan-beam imaging and image reconstruction by filtered
backprojection, particularly to demonstrate the feasibility of simulating low dose CT scanning from
higher dose images. As such, the effects of interslice noise correlations associated with helical
scanning were not considered. We hypothesize that these correlations are small, but might not be
negligible. An obvious next step will be to simulate cone-beam imaging and backprojection and fully
integrate helical scanning in the model. This would require a fairly straightforward adaptation of the

methods to generate the virtual sinogram and the technique to perform filtered backprojection.

Our methods are not applicable to iterative reconstruction methods as such methods violate crucial
model assumptions (e.g. the pixel noise is not a weighted sum of the projection data). Clearly, system
parameters may always be estimated with our methods based on images reconstructed with filtered
backprojection. However, simulating low dose-CT images from iterative algorithms requires a
method that can predict how the noise properties of such images evolve while the tube current is
lowered. This remains far from trivial, due to all the nonlinear steps of the reconstruction
procedures. This is perhaps the largest limitation of our work. Simultaneously, one could argue that
as long as filtered backprojection is offered on scanners, its image quality could serve as a reference

standard for iterative method. The proposed method is a valuable tool in this perspective.

4.1 Conclusion

The developed methods truthfully simulated low-dose CT imaging without requiring projection data.
Moreover, all scanner-specific parameters were estimated directly from the calibration scans of a
single phantom without requiring technical information provided by the manufacturer. This new
technology might facilitate large-scale studies into the diagnostic accuracy for lower CT dose. In turn,

it could aid in further reducing the radiation risks of CT-examinations.
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Figure 1: Schematic overview of the low-dose CT simulator
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Figure 2: A low-dose CT image J,,,, (right) is simulated by adding a patient-specific (zero-mean) noise
image Jpoise (middle) to the original high-dose image Jpigh (left).
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Figure 3: Variance image and all of the radial segments. The bowtie filter was calculated for each
such segment, i.e. for each separate line on either side of the center.
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Figure 4: The NPS calculated from a 64x64 ROl in the center of a 34cm water cylinder. The NPS was
normalized such that it ranged fromO0to 1
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Figure 5: Left: the (angular averaged) radial NPS calculated from the images of a water cylinder (pink)
and the fitted model, i.e. Eq. (38) (blue). Right: the ensuing apodization window H, (blue, Eq. (37))
and the algorithmic transfer function, H,,.
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Figure 6: left: The mean estimated bowtie filter (blue solid), the 95% confidence intervals(blue
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the diagonal of the variance image depicted in Figure 3, the analytically computed variance with
(pink) and without (green) bowtie filter. The variance was scaled by dividing the original by the mean.

Figure 7: Image depicting four ROIs that were used to validate the low-dose CT simulation.
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Figure 8: The standard deviation of the noise in a 34cm water cylinder as a function of the distance to
the center of the water cylinder for simulations of 15mAs data (top three lines) from images
obtained at (from top to bottom) 21, 60 and 250 mAs and for simulations of 60mAs data from images
obtained at (from top to bottom) 85, 120 and 250 mAs. An offset of -+20HU was added to separate
the three curves for display purposes. The pink lines resulted from experiments, the blue lines from
our simulations.
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Figure 9: Contour plots of the experimental (blue) and the simulated (pink) NPS at 15 mAs. The iso-
contours depict the same value for the pink and blue curves. Each line corresponds to an increase of
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Figure 10: Three slices of the pelvic phantom imaged at 80 mAs in which ROls were selected for the
assessment of the low-dose simulation method.
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Figure 11: Standard deviations obtained from the simulated images as a function of the ones
obtained from the experimentally acquired data at 80 mAs (top left), 40 mAs (top right) and 15 mAs
(bottom). Each point indicates the average standard deviation in one of the ROls depicted in Figure
10. The bars depict the 95% confidence interval of the estimation. The pink line represents the linear
fit, the parameters of the fit are listed in Table 3.
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Figure 12: Contour plots of the experimental (blue) and the simulated (pink) NPS from ROIs 3, 7, 12,
14 of the pelvic phantom (depicted in Figure 10) at 15 mAs. The iso-contours depict the same value
for the pink and blue curves. Each line corresponds to an increase of factor 2 while moving inwards;
the actual values for the outermost iso-contours are: 14 Hu’cm? (top left, ROI 3), 8 Hu’cm? (top right,
ROI 7), 18 Hu’cm? (left, ROI 12) and 7 Hu’cm® (right, ROI 14,)

5 Supplementary Material
Appendix A: List of variables

Cor: reconstruction filter coefficients incorporating all the filtering steps

dsan: detector size

H.o: : modulation transfer function of the scanner, fourier transform of the reconstruction filter
coefficients

Hsiter: apodized ramp filter
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Hpack: filter representing the interpolation due to backprojection

Htan2par: filter representing the interpolation due to resorting the fan-beam projection into parallel-
beam geometry

Hapo: apodized filter

I: general representation of the tube current

Ihigh : tube current of the high dose image

liow : tube current of the simulated low dose image

lreq : tube current of reduced dose image.

i: X-ray beam offset angle with respect to the gantry angle j

j: the gantry angle j

Jnign : original high dose image in HU

Jiow : low dose image in HU

Jhoise : Z€ro-mean noise image in HU

K: X-ray tube output in photons{mAs. mm?)

M: number of gantry angles per rotation

No: number of incident photons.

Ngethigh : €xpected number of detected photons at the exposure level of the high dose image
Nget : €expected number of detected photons at an arbitrary exposure It
N,eq: NumMber of photons underlying the reduced-dose measurement
Nreg,q : NUumMber of detected photons, drawn from a Poisson distribution
Nred, : Zero-mean read-out noise signal

N:an: Nnumber of detector elements

Npix: number of image pixels

N;: number of exposure levels

NPS: noise power spectrum

n,m: pixel coordinates

Ruigh : virtual high dose sinogram

Rwoise : Virtual zero-mean noise sinogram.

Rreq : virtual, ‘reduced’-dose sinogram.

Tg: transmission of the bowtie filter

Thigh: transmission of the object
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w: collimation (width of the fan beam)

Huigh - attenuation image calculated from the high dose image Jyign

Miow : Low dose attenuation image

Mnoise - ZEr0 mean noise, attenuation image

Mwater - attenuation coefficient of water at the effective energy of an X-ray tube of 80 keV
T : rotation time

0.’: the variance of the read-out noise

wy , Wy, w,: the frequency of image coordinates x,y of radial coordinate r

Appendix B: Scanners geometry parameters

Scanner’s geometry parameters
Number of detector rings 64
Source to isocenter distance, D (mm) 570
Source to detector distance, D, (mm) 1040
Field of measurement:Don (Mm) 500
Number of detectors, N 672
Detector size, du: (mm) 1.41
Detector size at iso-center, ds., (mm) ~0.77
Sampling after rebinning, d,.. (mm) d,.,
2
Number of gantry angles per revolution, M | 1160

Table 4 Scanner’s geometry parameters.

Appendix C: The reconstruction filter

H, consists of three elements, namely one apodized ramp filter and two interpolation filters. The
apodized ramp filter Hy.. ensures a mathematically correct reconstruction up to the cut-off frequency
of the apodization filter. Furthermore, one interpolation filter H...,.. represents the transformation of
the fan-beam rays to uniformly sampled parallel-beam rays, and the other one H.. reflects the
interpolation along the path during the back-projection. Consequently, when aliasing is ignored, H, is
given by:

Htot (wr) = Hﬁlter (wr)Hback (wr )Hfan2par (a) )’ (35)

(o

where H.. is the ‘core’ backprojection filter, which can be further decomposed into
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Hﬁlter (wr) = erapo (wr )’ (36)
In which H,, is a cut-off window. The goal is to determine the shape of H,., which we approximate by:

r

a+bcos

par

H, (0)= (37)

a+b
where a and b are two filter parameters. For some values of a and b, H,,(® ,) is equal to cut-off
windows found in literature [37]. Therefore, Eqg. (18) (main text) becomes (after filling in the previous
equations):

2 2
NPS(w,) = o, (Lbj a+beos| 22 || sinc* [ G ]sinc4 G (38)
a+

par fan par

in which f ., is the Nyquist frequency of the detector array with detectors of size d:., at the isocenter
and f .. is the Nyquist frequency of the rebinned detectors of size d,..

Essentially, the parameters a and b are estimated by fitting the model described in Eq. (38) for that
we use the Levenberg-Maquardt optimization algorithm.

Appendix D: global comparison between simulated and
experimental low-dose scans

The relative root-mean-squared difference between simulated and experimentally measured

standard deviation of the noise (€,) is an indication of the global performance of our method.

Table 5 and Table 6 show €, for varying exposures in the water cylinder and the pelvic phantom,
respectively. These tables demonstrate that the simulated noise level closely approximates the

experimental noise level in both phantom objects, as €, varies from 1-3 %.

Exposure (mAs) | 210 | 170 | 120 | 85 | 60 |42 |30 |21 |15

€,(107%) 19 {14 |15 (15|14 |21 |23|23 |25

Table 5: Relative RMS difference €, between simulated and experimentally acquired noise levels as a function of the
exposure for all the pixels inside the water cylinder phantom

Exposure (mAs) | 80 | 40 | 15

€,(107?) 34 (35|31

Table 6: Relative RMS difference €, between simulated and experimentally acquired noise levels as a function of the
exposure for all pixels inside the pelvic phantom
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