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Abstract
In this study, we conduct a comprehensive history matching study for the FluidFlower 
benchmark model. This benchmark was prepared and organized by the University of Ber-
gen, the University of Stuttgart, and Massachusetts Institute of Technology, for promoting 
understanding of the complex physics of geological carbon storage (GCS) through in-house 
experiments and numerical simulations. This paper synthesizes the experiences of history 
matching the benchmark data encountered by the Delft-DARTS and CSIRO participants. 
History matching is first performed based on a low-dimensional-zonated structured model 
using a simple Poisson-like solver. The permeability of six facies and two faults is inferred 
in this stage to match the digitized concentration data. The history matching is then further 
enhanced to richer spatial and physical models to capture the spatial variation of perme-
ability and buoyancy effects, using an unstructured grid. Efficient adjoint methods are used 
to evaluate the gradient used in the optimization of data misfits or equivalent Bayesian log-
likelihoods. With efficient optimization methods available for both maximum a posteriori 
model inference and Randomized Maximum Likelihood methods for model uncertainty, 
we perform history matching using both binary and continuous concentration observations. 
The results show that the tracer plumes in the enriched model match the experimental 
plumes more accurately compared with the results from the parsimonious-zonated model. 
The history matching results based on the concentration observations provide more similar 
plume shapes compared with the case based on the binary observations. The permeabil-
ity difference between the model before and after history matching reveals that the tracer 
plume zone and the high permeable zone are the regions of high sensitivity in terms of 
data misfit between the model response and observations. Surprisingly, CO

2
 concentration 

plume forecasts based on these history-matched models were not especially sensitive to the 
improvements observed in the enhanced model.
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1 Introduction

Escalating greenhouse gas concentrations in the atmosphere and their effect on climate 
have become an urgent and global concern. Extensive CO2 emissions are a pervasive aspect 
of modern industrialised society and its dependence on fossil fuels. Large reductions in 
CO2 emissions are mandated by the most recent IPCC reports, and virtually all the con-
ceivable pathways require engineered removal of new carbon pollution sources (IPCC 
2022; IEA 2020a). Carbon capture and storage (CSS) has been proven to be one of the 
most promising solutions to this environmental issue. Typically, CCS can reduce 85–90% 
CO2 emissions from large point emission sources (Leung et al. 2014), for example, power 
plants, cement kiln plants, etc. It is also very likely that carbon-removal technologies—
direct air capture or bioenergy with CCS—will be required because emissions of CO2 can-
not otherwise be reduced in time to avoid dangerous global warming (IEA 2020b). The 
IEA models require a rapid scale-up of CCS, from 40 Mt p.a. now to a Gt p.a. by 2030 
(IEA 2020c).

There are several ways to store CO2 into the geological formations (Chiaramonte et al. 
2011; White et al. 2003; Lyu et al. 2021b; House et al. 2006; Schaef et al. 2010). Of these 
possibilities, CO2 storage in saline aquifers is considered to have the largest potential for 
the storage of CO2 . This is because saline aquifers can be widely found in both onshore 
and offshore areas. The usual four CO2 trapping mechanisms, with varying characteristic 
time scales, are expected to apply: structural, residual, solubility, and mineral trapping, in 
increasing order of time scale.

To understand and quantify the flow dynamics of CO2 storage process, numerical simu-
lation is essential for modelling the process based on the governing equations and equa-
tions of state. However, the numerical simulation of CO2 storage is challenging because of 
the complexity of the fluid thermodynamics and the unfolding of multiscale physics.

To assist in these challenges, the FluidFlower benchmark project  (Nordbotten et  al. 
2022) has been constructed to accelerate progress in the field of CO2 storage modelling 
in geological settings. This project has closely inspired the 11th Society of Petroleum 
Engineers Comparative Solution Project (SPE 2023). The central component of the bench-
mark is an experimental rig emulating a typical geological scenario for CO2 injection, 
constructed by the University of Bergen. Several international research groups were then 
invited to perform numerical simulation of this benchmark, where the dominant processes 
are associated with multiphase flows, capillarity, dissolution, and convective mixing. The 
benchmark experiments furnish tracer images and pressure observations to serve as cali-
bration data for the spatial model of petrophysical properties. Details of these experiments 
are described at length in Nordbotten et al. (2022). The efforts in history–matching follow-
ing in this paper were motivated by the natural and reasonable belief that this would lead 
to the most accurate forecasts of the CO2 injection. Hence, this study focuses on the history 
matching of the tracer and pressure tests of this benchmark, but we consider also the issue 
of forecasting uncertainty under CO2 injection.

Inversion of geophysical data very often reduces to an optimization problem where 
some misfit measure between the observations and model predictions is minimized. 
Depending on whether model gradients are available, optimization methods are then 
classified into gradient-free and gradient-based methods. For problems with challenging 
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nonconvexity or multimodality in the misfit function, gradient methods may be of lim-
ited use, as they are vulnerable to trapping in inferior local minima. In such cases gra-
dient-free global methods like simulated annealing  (Kirkpatrick et  al. 1983), genetic 
algorithms (Holland 1984), or particle swarm algorithm (Eberhart and Kennedy 1995) 
are popular. Their efficiency is always vastly inferior to gradient methods, if applied 
to a problem that has a single or dominating global optimum. For such problems, 
where gradients can be obtained, the most efficient methods are usually variants of the 
Gauss–Newton method if the second-order (Hessian) information can be obtained or 
well approximated, or varieties of conjugate-gradient or sparse quasi-Newton methods 
(e.g. l-BFGS) where only the gradient is available, as is typical in high dimensional 
model settings (Nocedal and Wright 2006). Even in non-convex settings, gradient-based 
methods are very often the techniques of choice, if combined with graduation or contin-
uation strategies for smoothing out the nonconvexity in the early phases of the optimisa-
tion. This paper uses exclusively gradient based techniques, which approach Newton-
like (quadratic) efficiency when the model dimensionality is very low and the Hessian 
is well approximated via use of the explicit Jacobian, as per the Marquardt method, 
but reduce to linear-only efficiency when only the adjoint-based gradient is used in the 
high-dimension cases.

When the model dimensionality is high and the forward physics is generated by a set 
of PDEs that are differentiable in the model parameters, which is typical of geo-energy 
systems, the most efficient way to compute gradients is the adjoint method. It allows for 
the efficient calculation of the gradient by reusing the solution of the governing equations, 
since the solution of the adjoint problem is usually very closely related to the forward prob-
lem, often by a time-reversal procedure. In the field of geo-energy reservoir engineering, 
adjoint methods have been applied to perform history matching (Chen et al. 1974; Oliver 
et al. 2008), petroleum recovery processes (Mehos and Ramirez 1989; Fathi and Ramirez 
1984; Ramirez et al. 1984), thermal recovery processes (Wei et al. 1993) and so on. Later, 
with the advent of “smart well" and “smart field" concepts, adjoint-based optimization and 
optimal control ideas have been widely studied and applied in the field of reservoir engi-
neering and reservoir management  (Brouwer and Jansen 2004; Sarma et al. 2005, 2006; 
Volkov and Voskov 2016).

In this study, we will utilize the open-source Delft Advanced Research Terra Simulator 
(open-DARTS) framework (Voskov et al. 2023) designed for modelling energy transition 
applications (Khait and Voskov 2018b; Wang et  al. 2020; Lyu and Voskov 2023). This 
implementation features an efficient forward reservoir simulation but also inverse model-
ling capability based on the adjoint gradient method. The adjoint implementation for multi-
component, multi-phase system in petroleum-related reservoir simulation problems are 
described in Tian et  al. (2021), and both the forward and inverse modelling capabilities 
have been extended into generic energy transition applications (Tian and Voskov 2023). 
This extension allows for the incorporation of various effects, such as energy transfer, grav-
ity, diffusion, and chemical reaction, through corresponding operators.

This paper presents a two-stage approach for history matching tracer test image data, 
using first a simple Poisson-like solver in a very parsimonious zonated model, then escalat-
ing to an adjoint-based framework for a much richer model with ≈ 72000 transmissibility 
parameters. The simple zonated model uses structured grids, but we move to unstructured 
grids for the high dimensional model. The adjoint method uses operator-based lineariza-
tion (OBL) for the development of the misfit gradient, and its efficiency makes possible the 
modelling of heterogeneity and computation of uncertainties in the history matching pro-
cess. To estimate the uncertainty of the model inference, we use the standard Randomized 
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Maximum Likelihood (RML) method (Oliver et al. 2008), and a spatial model of heteroge-
neity in lognormal permeability is added to the geological model.

The structure of this paper is as follows. In Sect. 2, we give a short description of the 
FluidFlower benchmark setup. In Sect.  3, history matching is performed using a simple 
zonated model using buoyancy-free Poisson-like physics. To further improve the history 
matching results and account for permeability uncertainty and buoyancy effects, enhanced 
history matching using a two-stage approach with richer physics is described in Sect. 4. 
Section 5 discusses the results of this enhanced method, including uncertainty estimates 
and forecasting behaviour. Discussion and conclusions then follow in the usual way.

2  FluidFlower Benchmark Description

The FluidFlower experimental rig (Nordbotten et al. 2022) comprises an engineered het-
erogeneous sand pack assembled within a thin (25 mm) vertical “filled" Hele-Shaw cell, 
about 2.8 m wide by 1.3 m high. The layered heterogeneous structure is filled using sands 
filtered into different grain sizes: the sand is placed in a layered fashion between the front 
glass panel and a sealed back panel with perforations for ports that can be used as injectors, 
producers, or pressure gauge locations. A sketch of the experimental rig with colored lay-
ers is shown in Fig. 1.

Experimentally, the sand facies have been sieved into groups labelled ESF, C, D, E, F, 
G, and there are 3 “fault” regions manufactured in the model.

Permeability and porosity measurements for the different types of sand have been per-
formed in independent sand-pack experiments  (Nordbotten et  al. 2022). We expect that 
the in-situ values of sand layer parameters may vary due to non-uniform sand distribu-
tion and boundary effects. The tracer tests have generated tracer data in the form of time-
stamped camera images. These images are digitized and mapped on to grid representations 

Fig. 1  The sketch of the experimental rig geometry following FluidFlower benchmark description
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as needed. Pressure data are measured at gauges attached to ports in the rig, but the gauges 
are some distance from the ports, on narrow feed plumbing.

Since the principle objective of the FluidFlower comparison project is to predict the 
flow of CO2 in a controlled study, and because this flow will depend strongly on the flow 
properties of the media to leading order, it is sensible to use all experimental informa-
tion to estimate permeability and porosity. Apart from the sand-pack experiments, the rich-
est source of such information is the history matching of the tracer experiments. Section 3 
describes a simple and fast way to invert the tracer data for leading-order estimates, and 
this is augmented to richer models and full-physics simulation in Sect. 4.

3  History Matching Based on Zonated Model and Simple Poisson‑Like 
Solver

In this section, we describe a fast, parsimonious, but approximate baseline history match 
using a simple single-phase flow model. The closely similar densities of the tracers, 
together with the extremely rapid pressure communication in the system, are exploited to 
write down a fast approximate forward model which can be exploited for inversion.

3.1  Governing Forward Model

For the tracer tests, flow is presumed to be single phase, isotropic, the density-independent 
of tracer, and governed by the averaged thickness (2D model) diffusion equation

where p is the pressure, h the cell thickness, � the porosity, kw the endpoint permeability 
of the media for water, �w the water viscosity, ct the total (rock plus water) compressibility, 
and Q the volume rate of water injection at the ports as a function of time. The porosity � 
and thickness h are taken as “known"—from sample measurement and thickness measure-
ment bilinear interpolations. Given the experimental care in the sieving process and sand-
pack porosity measurements, and the relative insensitivity of unconsolidated porosity val-
ues, it was deemed unnecessary to model porosity variation with extra parameters. The 
sample measurements for (endpoint) permeability, for the labelled facies, are notated kw,l in 
the below, for facies l.

The digitized and rasterized model of the facies is shown in Fig. 2, with labels 1,… 9 for 
the facies {1=ESF, 2=C, 3=D, 4=E, 5=F, 6=G, 7=Fault1, 8=Fault2, 9=Fault3}. Fault 2 
(facies 8) is designed to be impermeable, and no inferences for its properties are performed 
in the below. The digitization process uses a linear mapping between intensity and tracer 
concentration, accounting for labelled porosity and local thickness, and calibrated using 
known injection volumes and mass conservation. The computed values map closely to the 
interval [0, 1], but are clipped before use in inversion.

From the digitized and interpreted images of facies labels Fi ∈ L = {1, 2, ..7, 9} , in 
voxel i, for facies {ESF, C, D, E, F, G, Fault1, Fault3}, the absolute permeabilities are 
modelled by kw,i = uFi

kFi
 in gridblock i, where the model is u = {ul} , l ∈ L . The supplied 

“core” sample absolute permeabilities kl are taken as per Table 1.
The model parameters ul , l ∈ L are expected to be O(1) correction factors, and the res-

caling is designed to make the inversion as well-scaled as practically reasonable. The 

(1)ct�h
�p

�t
− ∇.(kw∕�w)h(r)∇p = Q(r, t)
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characteristic time scale for diffusion t = ��ctL
2

k sc

 , for the experiment box size L, is very 
short, typically t ≈ 5  ms using scaling � = .45 , �w = 10−3 Pa.s, ct ≈ 0.7310−9 Pa−1 , 
L = 1m , k sc = 6.9874 × 10−10m2 . All pressures are rescaled to dimensionless pressure 
using a scaling P sc = Q sc �w∕(k sc h0) , with additional chosen constants h0 = 0.025  m 
(typical cell width), Q sc = 6.25 × 10−7 m3∕ s (the water injection rate) yielding scaling 
pressure P sc = 35.778 Pa.

For this reason, the forward modelling has approximated the response as steady state 
on the time scale of the experiment, with the pressure corresponding to the steady-state 
solution of Eq. (1) at each instant of time. During the experiment, the rates Q are sustained 
as constant over 30-min interval chunks, so the overwhelming majority of the data are col-
lected with the system equilibrated in terms of pressure. In the experimental data, we see 
the measured pressures respond virtually instantly to the applied Q when it changes.

Table 1  Endpoint permeabilities 
and fixed porosities for modelling

The experimental values are taken from sand-pack experiments docu-
mented in Nordbotten et al. (2022)

Facies Index l Permeability [D] 
( k

l
)

Porosity �
l

ESF 1 39 0.44
C 2 293 0.43
D 3 424 0.44
E 4 708 0.45
F 5 258 0.43
G 6 488 0.46
Fault1 7 488 0.46
Fault2 8 0 0
Fault3 9 488 0.46

0

1

2

3

4

5

6

5

1

4

3
2

7

8

9

Fig. 2  Digitised and interpreted facies-label (green codes) image used as the basis for the parameterization. 
The labelled ports (red) 0, 1,… 5 are used in the inversion, corresponding to ports {5_3(0),5_7(1),9_3(2),15
_5(3),17_7(4),17_11(5)}
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The implication of the assumption of constant density is that the fluid configuration 
remains fixed as long as there is no water injection. The triple-injection tracer experiment 
was split into 3 successive injections/tranches, each of three 30 min constant-rate injections 
with rest intervals:

The upshot of this is that for the first 6 h of the tracer experiment, about 3 h are injecting, 
and 3 h waiting. After Day 1, there is a ≈ 16 h wait till the third tranche of tests on Day 2, 
during which buoyancy rise in the tracer becomes evident in the comparison of the images 
at the end of tranche 2 and the start of tranche 3. Since the gravity effects are slow, we 
expect this effect in the first two tranches to be relatively weak, but the effect is clear in 
the 3rd tranche images, especially around the 9_3 port injection. The Poisson-like model 
neglects this buoyancy effect, but for small buoyant drift we expect the residual error at the 
tracer front to end up symmetrically distributed around the prediction of the constant-den-
sity model, so we believe the approximation is reasonable, especially for profiles formed 
around newly-injected ports. Roughly speaking, we expect the approximation to increase 
the variance of the predictive model to the leading order, but not the bias. Similarly, disper-
sion is treated as a minor effect, and probably confounded with 3D effects and heterogene-
ity. During injection, the Peclet number is estimated from the tracer velocity and grain size 
to be Pe ≈ 50 , so advection should be more dominant, but dispersion will smear the front 
and the sharp modelled tracer front from the Poisson model should fit the mildly dispersed 
experimental front at a middle value corresponding to an average velocity.

Thus, on the basis that time-stepping the diffusion equation was unnecessary, we solve 
the steady-state Poisson equation with Q at two different places (ports 9_3, 17_7), cor-
responding to the experiment performed. The resulting fixed pressure fields and velocities 
are then steady over the period where the injection rate is held steady, and are sufficient 
to compute the advection of the tracers over this interval and the observed pressure fields. 
The model was based on a 5 mm grid ( Nx = 568 , Ny = 300 ), with upper boundary condi-
tion set as fixed (atmospheric) pressure in the water column, and no-flow Neumann condi-
tions on the left, right, and lower edges of the model. A typical pressure solution for injec-
tion at port 17_7 is shown in Fig. 3.

To model the tracer movement, tracers were advected along streamlines using the fixed 
velocities computed from the Poisson solves, continuing for the correct time corresponding 
to each tracer color. The tracer advection was implemented using the upwinding scheme 
described in Vreugdenhil and Koren (1993). The time-stepping in the tracer computation 
was adjusted so the number of time steps divided the total tracer time exactly, which has 
the merit that any computed quantities from the tracer image are a smooth differentiable 
function of the parameters in the PDE.

3.2  History Matching

For inversion, the data available consisted of the injection port and monitor port pres-
sures during the injections, and colour tracer images at the end of the injection peri-
ods. The cross-port pressures were conspicuously noisy and clearly close to the noise 
floor of the instruments. Significant drift was evident in these measurements, and even 
the stable values showed the curious property of the amplitude not diminishing in a 

(Port17_7) 5.19 − 5.49 pm(clear) 6.20 − 6.50 pm(clear) 7.20 − 7.50 pm(clear) (Day1)

(Port9_3) 8.52 − 9.22 pm(clear) 9.52 − 10.22 pm(clear) 10.52 − 11.22 pm(clear) (Day1)

(Port9_3) 2.48 − 3.18 pm(blue) 3.48 − 4.18 pm(blue) 4.48 − 5.18 pm(blue) (Day2)
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consistent way with the distance from the injection port. This has implications in the 
inversion if this data is weighted very heavily. The injection pressures were strong sig-
nals but measured some way away (20 cm or more) from the actual injection face and 
subject to unknown frictional and other losses in the feed plumbing. This makes them 
not very useful for inversion. By contrast, the tracer images were very clearly interpret-
able, rich in spatial content, and not obviously contaminated by an experimental artifact 
of any significant kind.

The cell is initially filled with a blue tracer. Injections were modelled at Q = 2250 ml/h 
( 6.25 × 10−7 m3∕ s) for 3 ×30 min at port 17_7 (with clear water), then 3 × 30 min at port 
9_3 (more clear water), then 3 × 30 min at 9_3 with blue tracer. The forward modelling 
operation, which implements standard tracer advection under an upwinding scheme, is 
expressed below as a function f t(u) which generates concentration profiles, which are very 
close to unity inside the swept region, and fall rapidly to zero at the tracer front. The tracer 
advection is stepped forward for precisely the number of time steps needed for the injec-
tion, and numerical integrations of the total tracer mass over the modelling grid at the end 
of the simulation agree very closely with the mass known to be injected from Q in the 
tracer source. Under the assumptions of the single-phase PDE and the fast equilibration 
time, the experimental 30 min wait time between injections does not need to be modelled, 
as nothing happens in the Poisson model if the sources are switched off since the velocities 
are then instantly zero and no advection occurs. The modelled tracer positions at the end of 
each 30 min injection period are compared to digital image experimental data for inversion.

The inversion of this data was couched as a Bayesian inverse problem with a 
likelihood P(d obs |u) formed as a joint probability using pressure and tracer data 
d obs = {P obs , c tracer } . The model was taken to be multiplier modifiers of the permeabil-
ity parameters, per facies, and applied in a “paint-by-numbers” fashion over the labelled 
facies model. The thickness and porosity data were considered to be sufficiently precise 
and experimentally stable to be fixed for the purposes of model prediction and inver-
sion. The Bayesian framework was completed with the provision of a weak prior for the 
modifier parameters, of Gaussian form P(ul) ∼ N(1, �2) with � = 5 for each parameter. 

0

1

2

3

4

5

1.20
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1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
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0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Fig. 3  Typical (dimensionless) pressure solution of steady-state Poisson problem for injection at 17_7 port 
(indexed 4)
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The associated prior covariance is Cp = diag {�2} . The model point estimate at the 
global maximum of the posterior probability is referred to as the MAP (maximum a 
posteriori) inversion.

The inversion is performed using a Levenberg–Marquardt routine (Nocedal and 
Wright 2006; Madsen et al. 2004), which requires the Jacobian J = {�f∕�u} of the for-
ward response with respect to the unknown model parameters. Since the model dimen-
sionality was very low and the forward model speed very fast (measured in seconds), 
this was computed using simple forward differences.

The negative log posterior E(u) ∼ − log(P(d obs |u)P(u)) used in the optimization step 
was written as a standard l2 misfit energy

where the cross–port pressure misfit, accumulated over only stable average measurements 
at ports p5.3_1, p5.7_1, p9.3_1, p15.5_1, p17.7_1, p17.11_1 is

and the trace image mismatch is written as

The weights �p, �t are adjusted so the tracer data is dominant in the likelihood as this data 
is much more abundant and artifact-free. The prior Bayesian term amounts to

and has a very benign influence on the inversion, except that the likelihood term from the 
tracer image is expected to be sensitive to permeability ratios only, i.e. has a null space 
associated with a global scalar multiplier. If no pressure data are used, the weak prior will 
have the effect of producing a MAP point as the nearest point in the likelihood null space 
to the prior mean point u = 1 , i.e. the core measurements. In dimensionless units, the pres-
sure data P obs are O(1) numbers, but rather noisy, so setting �p = 1 seems appropriate. The 
tracer data c are processed from the digital images to have concentration values ranging 
over 0 < y < 1 . Since the associated l2 norm has a very large number of voxels, �t is scaled 
such that the tracer misfit energy is E tracer (u) = 1000∕2 for a model that produces no tracer 
concentration ( ft(u) = 0 ), i.e. the information content is equivalent to 1000 measurements. 
In practice since the volume in which experimental and forward-modelled concentrations 
differ is only a small fraction of the image, the misfit energy from this term ends up being 
O(10), perhaps equivalent to putting 10-fold the emphasis on the tracer images as the 
crosswell pressure data.

One possible approach was to assert that the inconsistencies in the crosswell pressure 
data were too problematic to warrant their inclusion, and that the inversion should be 
performed on the basis of the 3-injection tracer data alone. It was also considered rea-
sonable to merge the parameters for regions 5 and 6, since region 6 is at the edge of the 
modelling region and will have a more fragile permeability inference.

The corresponding parameter inferences are as per Table  2 (Model A). The table 
shows the dimensionless scaled model inference and corresponding actual uni-
tized values. The final column is the dimensionless uncertainty estimate �2

l
= H−1

ll
 for 

E(u) = E pressure (u) + E tracer (u) + Ep(u)

E pressure (u) =
1

2
�p||P obs − fp(u)||22

E tracer (u) =
1

2
�t||c tracer − ft(u)||22

Ep(u) = − log(P(u)) ∼
1

2

∑

l∈L

(ul − 1)2∕�2
p
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each parameter formed from the inverse Hessian matrix at the final optimum, where 
H = JTJ + C−1

p
 . The final inversion forward model images and associated data snapshots 

are depicted in Fig. 4.
A more optimistic approach was to include the crosswell data, but down-weighted in the 

sense previously described, and allow independence in zone 5 and 6 scaled permeabilities. 
The result of this inversion is shown in Table 2 (Model B). One sees that the parameters differ 

Table 2  Inversion results from 3-tracer inversion

Model A: regions 5 and 6 merged to a common parameter, no crosswell data. Model B: model with facies 
5,6 independent, including crosswell data

Facies Index l Model A Model B

ul Permeability[D] 
( ulkl)

�l u
l

Permeability[D] 
( u

l
k
l
)

�
l

ESF 1 0.67 26.2 0.235 0.89 34.6 0.24
C 2 0.60 176 0.65 1.08 317 0.65
D 3 0.73 309 0.78 0.78 332 0.78
E 4 0.96 678 1.0 1.2 840 1.0
F 5 4.18 1080 0.61 5.7 1477 0.61
G 6 4.18 1080 0.61 2.43 1186 0.84
Fault1 7 2.74 1340 0.84 4.27 2082 0.84
Fault2 8 – 0 – – 0 –
Fault3 9 3.23 1575 0.84 2.41 1176 0.84

Fig. 4  Tracer data image and associated MAP forward models. Greyscale is [0,1]=[white,black]
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from the previous inversion but within the estimated standard deviation associated with the 
estimated “statistical power” of the data embedded in the likelihood weightings. Since perme-
ability is usually a sensitive parameter, the differences between these inverted values and the 
core estimates could be due to many factors, including significant experimental variability in 
the core experiments, modelling error, inversion sensitivity, or other reasons.

4  History Matching of FluidFlower Benchmark Using Two‑Stage 
Approach

The preceding model fits show clear systematic structure in the tracer misfit residuals due to 
the simplistic physics, and neglect of zone-internal heterogeneity. This can only be addressed 
by escalating the forward physics to a model that includes buoyancy, but also with adjoint 
capabilities to manage the increased dimensionality that will inevitably follow upon an 
increased spatial resolution in the model. The capabilities of the open-DARTS code meet 
these needs very well, but it is helpful to rehearse the basic conservation and flow laws that are 
implemented in this code.

4.1  Governing Equations for Forward Simulation

The mass conservation equations describe a flow dynamic system bounded in the domain with 
volume Ω and surface Γ . The conservation equation can be written as:

where Mc is the accumulation term for the cth component ( c = 1,… , nc , index of the mass 
components [e.g., water, CO2]), Fc is the flux term of the cth component, n is the unit nor-
mal direction pointing outward to the domain boundary, and Qc is the source/sink term of 
the cth component.

For the accumulation term Mc for a given component c, it can be written as:

where � is porosity, sj is the saturation of phase j, �j is the density [kmol∕m3] of phase j, 
and xcj is the molar fraction of component c in the jth phase.

The mass flux Fc for a given component c is written as:

Here v is the velocity and follows Darcy’s law including gravity effects for the given phase 
j:

(2)
�

�t ∫Ω

McdΩ + ∫Γ

Fc
⋅ ndΓ = ∫Ω

QcdΩ,

(3)Mc = �

np∑

j=1

xcj�jsj, c = 1,… , nc,

(4)Fc =

np∑

j=1

xcj�jvj, c = 1,… , nc.

(5)vj = −K
krj

�j

(∇pj − �j∇z),
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where K is the permeability tensor [mD] , krj is the relative permeability of phase j, �j is 
the viscosity of phase j [mPa ⋅ s] , pj is the pressure of phase j [bar], �j = 𝜌jḡ is the specific 
weight [N∕m3] (where ḡ is the gravity acceleration), z is the depth vector [m]. The source/
sink term Qc mainly includes terms related to chemical reactions, which are absent in this 
study.

Based on the finite volume method using two-point flux approximation, the discretized 
form of Eq. (2) for the ith reservoir gridblock can be written as:

Equation (6) shows the residual form of discretized Eq. (2). We introduce Vi is the volume 
of the ith gridblock and �i is the state variables at the current time step. In addition, �i(k−1) 
is the state variables at the previous time step and Δt is the time step. The term al is the 
contact area of the interface l between neighbouring elements.

The resulting highly nonlinear system of equations is linearized using the Operator-
Based Linearization approach (Voskov 2017; Khait and Voskov 2018a; Lyu et al. 2021a), 
and a modified Newton–Raphson method is employed at each nonlinear iteration. For mod-
elling of tracer experiments, we used the same CO2-brine physics used in the benchmark 
with the concentration of CO2 in the injected stream below the solubility limit and a linear 
dependency of density on CO2 concentration.

4.2  Initial Model Tuning

Based on interpreted high-resolution images of the rig, we built an unstructured mesh grid 
model, shown in Fig. 5.

Following the experimental description of unconsolidated layering in the rig, the mesh 
grid model is divided into multiple zones/layers filled with nine different types of sand 
in total. Different layers are assigned to different permeability and porosity values. The 
permeability anisotropy is modelled using a vertical/horizontal anisotropy ratio, per zone. 
This anisotropy ratio models the laminations clearly visible in high-resolution images, 
mostly related to sorting of fine-grain sands. Within the same layer, the same type of sand 
is maintained, and the petrophysical values of the grid cells are kept constant.

(6)

gc
i
= Vi

(
Mc

i
(�i) −Mc

i
(�i(k−1))

)
− Δt

(∑

l

alF
c
l
(�) + ViQ

c
i
(�)

)
= 0, c = 1,… , nc.

Fig. 5  The unstructured mesh grid of FluidFlower model
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The petrophysical properties of the layers in Fig.  1 including permeability are ini-
tially estimated from the sand-pack experiments. These measurements will differ from 
the in-situ properties due to experimental variations in sand deposition/assembly, load-
ing, and boundary effects. For the fitting procedure, we keep the porosity unchanged, 
while the permeability and the anisotropy of the layers are taken as the free parameters. 
A significant decision was taken to also introduce the density of the clear water as an 
additional parameter. The optimization was again based on Gauss–Newton methods in 
low dimensions from finite differences of efficient forward simulations. Specifically, the 
objective function is defined as:

where E is the objective function, u are the model variables, G is the model response, and 
dobs is the observation data.

Instead of using the original tracer concentration of the experimental images as the 
observations, we process the experimental tracer images into several binary images, cor-
responding to the end of each 3 × 30 minute tracer injection group; see Fig. 6. The first 
row of this figure demonstrates the experimental images of the tracer plumes at the 3rd, 
6th, and 9th “macro” time steps. The second row shows the associated digitized binary 
map of each time step. The value of the red colour is set as 1, while the blue colour is 
0. A threshold of �t = 7 × 10−5 tracer concentration (mole fraction and unitless) is used 
to binarise the response G(u) to either 0 or 1. Although the objective function defined 
by the binarised model response and observations is mathematically non-differentiable, 
empirically, the numerical implementation is robust to this discontinuity. These binary 
maps delineate the boundaries of the tracer plumes and will be utilized as the observa-
tions in the initial stage of model tuning. This simple image processing technique will 
be later compared with the more accurate image recognition shown in Fig. 4.

The initial model parameters are obtained from Table  2 (Model A, except anisot-
ropy). They are the permeability of layers C, D, E, F, Fault1, Fault3, G, and the anisot-
ropy factor of the layer ESF in the z-direction. These eight parameters are updated in the 
history matching iterations. The optimal values of these eight parameters are shown in 
Table 3. Note that Table 3 also includes placeholder information for the water layer W.

(7)E(u) = ||G(u) − dobs||22

Fig. 6  The experimental images of tracer plumes and the associated digitized binary maps
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Figure 7 shows the corresponding forward model of the last time step (i.e. the 9th 
time step in Fig. 6) based on the tuned petrophysical properties of Table 3. In Fig. 7, 
the left figure is the tracer concentration map of the model response. The middle figure 
is the binary plot based on a given threshold of the tracer concentration (i.e. red col-
our if concentration > 𝜖t ; otherwise, blue). The right figure is the experimental result 
of the tracer test at the last time step. It is evident that the position of the simulated 
tracer plume (the left and middle figure) is systematically shifted from the experimental 
results. Assuming the forward physics is adequate, and that the optimization has found 
a global minimum, this indicates that the spatial model needs to be enriched in order to 
better match the experimental results. In the next section, we enlarge the model with 
additional parameters to address the underfitting problem. Spatial variation of the petro-
physical properties will also be introduced as an attempt to model the variation caused 
by the manual sand deposition process in the experimental rig.

Table 3  The petrophysical 
properties of the model layers

Facies Porosity[-] Permeability[D] Anisotropy[x, z]

ESF 0.43 34.6 [1, 0.316]
C 0.44 302 [1, 1]
D 0.44 1016 [1, 1]
E 0.45 549 [1, 1]
F 0.45 1976 [1, 1]
G 0.44 1743 [1, 1]
Fault1 0.44 2554 [1, 1]
Fault3 0.44 739 [1, 1]
W 0.44 10000 [1, 1]

Fig. 7  The tracer test results at the last time step
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4.3  The Generation of the Prior Ensemble

In the previous sections, nine types of sand are “painted” into the model to represent the differ-
ent layers and faults. This forms homogeneous petrophysical properties within a single layer. 
However, since the sand is manually filled into the rig, it is difficult to maintain homogeneous 
properties within the same layer. Moreover, compaction is observed in the course of pre-injec-
tion flushing, environmental temperature fluctuations, water injection, etc, which is certain to 
be non–uniform, and the tracer profiles exhibit visual features probably caused by internal het-
erogeneity. We concluded that it is necessary to include spatial heterogeneity into the model.

To this end, a high dimensional permeability field K is introduced to the model, equipped 
with a prior distribution log(K) ∼ N(log(Kt),CM) , where Kt is the spatially mapped tuned 
permeability from Table 3, and CM = diag {�2} , with � = 0.02 . Samples may be drawn from 
this model in many standard ways, such as sequential Gaussian simulation, as depicted in 
Fig. 8.

4.4  History Matching Framework Using Randomized Maximum Likelihood (RML)

The enriched model is now equipped with some regularization apparatus, which behaves in a 
very similar way to explicit Bayesian prior declarations. Further, the high dimensionality of 
this model ( n = 72262 parameters) means that dense Jacobian methods are no longer possi-
ble, and efficient gradient methods must be sought. The new objective function reads

where R is the regularization term. Posterior samples of this model, associated with the 
Gibbs distribution P(u|d obs ) ∼ exp(−E(u)∕2) , are generated using the Randomized Maxi-
mum Likelihood (RML) technique, briefly summarised in the Appendix.

In the gradient-based optimization method, we take all n transmissibilities of the grid cell 
interfaces as the model variables to do the history matching. In this study, we use the adjoint 
method in the DARTS framework to evaluate the gradient. The idea of the adjoint method is 
to introduce a Lagrange multiplier �T to combine the objective function E with the governing 
equation g of the forward simulation. The new augmented objective function Ē can be written 
as:

(8)E(u) = ||G(u) − dobs||22 + R(u),

(9)Ē(�, u,�) = E(�, u) + �Tg(�, u),

Fig. 8  A sample from the prior 
distribution for K with spatial 
lognormal variation
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where � is the state variable. The term �T is the transposed form of the Lagrange multi-
plier. Following Tian et  al. (2021) and Tian and Voskov (2022), the discretized adjoint 
method can then be written as:

where K is the total number of the simulation time steps, jk is the misfit between the model 
response and the observation data at the given simulation time step k. Therefore E(�, u) 
can also be defined as:

The Lagrange multiplier �T can be solved from Eqs. (11) and (10) recursively in a back-
ward manner. Finally, the gradient 𝜕Ē

𝜕u
 can be obtained from Eq. (12).

5  History Matching Formulation and Results

The history matching approach described below commences with binarized tracer images. 
Particular reformulations of the likelihood function proved to be efficacious in handling 
the data in this form, involving the hinge loss. We sketch this below, before surveying the 
inversion results generated using this measure.

5.1  Hinge Loss Function

As per the approach in Sect. 4.2, instead of using the original tracer plumes of the images 
as the observations, we digitized the original images into binary maps, e.g. the second row 
of Fig. 6. Based on the information of the binary maps, we replaced the misfit term of Eq. 
(8) (i.e. the first term at the right-hand side in this equation) with the hinge loss function. 
The updated objective function reads:

where H(u) is the hinge loss function. If the given cell is located at the red region in Fig. 6, 
the hinge loss function is defined as:

(10)�T
k+1

�gk+1

��k

+ �T
k

�gk

��k

+
�jk

��k

= 0,

(11)�T
K

�gK

��K

+
�jK

��K

= 0,

(12)𝜕Ē

𝜕u
=

K∑

k=1

(
�T
k

𝜕gk

𝜕uk
+

𝜕jk

𝜕uk

)
,

(13)E(�, u) =

K∑

k=1

jk + R(u).

(14)E(u) = ||H(u)||2
2
+ R(u),

(15)H(u) =

{
0 if G(u) > ϵt

G(u) − dobs if G(u) ≤ ϵt
.
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Similarly, when the given cell is located at the blue region in Fig. 6, the hinge loss function 
is defined as:

5.2  Regularization and Randomized Maximum Likelihood

The regularization term R(u) in Eq. (8) is defined as:

where �R is the scaling coefficient, and uref is the reference of the model variables (i.e. 
transmissibility at the grid cell interfaces). The covariance matrix CM is modelled here as a 
diagonal, since the experimental rig is artificially filled, with few of the usual spatial cor-
relations associated with deposition or consolidation.

In the Randomized Maximum Likelihood (RML) sampling method, uref is a realiza-
tion from the prior. The details of the generation of these priors are described in Sect. 4.3. 
Using the digitized binary observations in the RML method, we implemented multiple his-
tory matchings using sampled reference models uref . Figure 9 demonstrates two samples 
of the history matching results of the tracer concentration at the last time step. These two 
samples correspond to the realizations of P10 and P90 of the accumulated mobile CO2 in 
Box B, which will be demonstrated in Fig. 11. Their associated changes of the permeabil-
ity after history matching are shown in Fig. 10.

Compared with the tracer concentration result in Fig. 7, the results in Fig. 9 match the 
experimental plume observations more accurately, especially for the top right plume. The 
total misfit error of the inferred model ensemble is reduced by around 39%. Figure 10 illus-
trates two RML samples of the permeability difference between the model before and after 
history matching. These two samples correspond to the realizations from Fig. 9. It is clear 
from Fig. 10 that the permeabilities in the tracer plume zone and the high permeable zone 
have more permeability adjustment compared with the rest of the region; large parts of 
the permeability of the sands are barely adjusted in Fig.  10 because the tracer does not 
reach them. Specifically, mathematically speaking, regions where the tracer does not reach 
exhibit zero gradient with respect to that particular zone, implying that no useful informa-
tion can be gathered from those regions in the course of calibration. Thus, this calibration 
result is likely not transferable to another injection scenario. In this sense, we believe con-
ducting more tracer tests at various injection locations would help capture sensitivity across 
the entire domain. However, in reality, multiple field experiments or geophysical tests can 
be very expensive or sometimes infeasible, making it difficult to cover the entire domain. 
Therefore, the primary concern should be whether the calibrated model can predict results 
to an acceptable degree. While a more detailed characterization would result in more accu-
rate predictions, we must strike a balance between the accuracy of our predictions and the 
cost of calibration. In this FluidFlower project,  the aim was to simulate a practical CO2 
storage project, in which a tracer test has been conducted, albeit with limited tracer test 
scenario and data collection. Our subsequent analysis suggests that our predictive model is 
highly effective in forecasting the CO2 plume, as illustrated in our co-authored publication 
“The FluidFlower International Benchmark Study: Process, Modelling Results, and Com-
parison to Experimental Data."

(16)H(u) =

{
0 if G(u) < ϵt

G(u) − dobs if G(u) ≥ ϵt
.

(17)R(u) = �R(u − uref)
TC−1

M
(u − uref),
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Utilizing the inferred model ensemble, we performed numerical simulations using 
100 realizations of CO2 injection, all with identical CO2 injection rates and thermody-
namic conditions. The ensemble outcomes of the CO2 plumes at the last time step (after 
120  h of CO2 injection), as illustrated in Fig.  11, illustrates the variability associated 

Fig. 9  Figure a and b represent two samples of the history matching results based on the binary observa-
tions. Figure c and d are their associated threshold data. Figure e is the binary map of experimental results. 
These figures demonstrate tracer test results at the last time step

Fig. 10  Two samples of the changes of the permeability distribution after the history matching based on the 
binary observations
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with the fingering phenomenon. The majority of uncertainty is concentrated in the areas 
exhibiting fingering.

For comparison, we present profiles depicting the temporal evolution of mobile CO2 
mass within Box A and B from Fig. 1. The variations in CO2 quantities among different 
realizations within Box A and B, as illustrated in Fig. 12, emerge naturally from the pos-
terior uncertainty in permeability. In Fig. 12, we observe that the zonal matched model 
overpredicts the mass of CO2 in Box B. This is due to the zonal model’s assumption of a 

Fig. 11  The forward predictions of CO
2
 plumes at the last time step (after 120 h of CO

2
 injection). Figure a 

and b show the CO
2
 plumes of the 10th and 90th percentiles of the entire ensemble of 100 inferred models 

calibrated to binary observations, respectively. Figure c shows the forward predictions of plumes based on 
the inferred zonated model. The solid and dashed boxes represent Box A and B, respectively

Fig. 12  The mobile gaseous CO
2
 of Box A (left figure) and Box B (right figure) in Box B based on the 

inferred models calibrated to binary observations. The blue and grey curves represent the results based on 
the inferred zonated model and the inferred model ensemble, respectively
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uniform thickness for the experimental rig, potentially introducing inaccuracies in esti-
mating the model’s total volume.

5.3  Regularization and RML Based on the Concentration Interpreted from Images

An alternative strategy of history matching was also conducted based on the concentration 
data interpreted from experimental images, as per the Tracer 1, 2, and 3 data in Fig. 4. In 
this case, we use the original objective function Eq. (8) to infer the model, instead of apply-
ing the hinge loss to the binary observations in Eq. (14). Based on the same realization 
ensemble uref  and RML method, the history matching results of the tracer concentration 
and the changes of permeability are shown in Figs. 13 and 14.

The error of the inferred model ensemble is reduced by around 16%. The misfits 
associated with the parsimonious layer models are not discussed here. Figure  13 has 
more similar plume shapes to the experimental images compared with the results in 
Fig.  9. Figure  14 shows more intensive adjustments of permeability by the optimizer 
in comparison to Fig. 10. This disparity can be attributed to the digitised concentration 
observations derived from the image, which provide additional "concentration gradient" 

Fig. 13  Figure a and b represent two samples of the history matching results based on the tracer concen-
tration observations. Figure c and d are their associated threshold data. Figure e is the binary map of the 
experimental results. These figures depict tracer test results at the last time step
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information to the optimizer. Conversely, the binary observation and the implementa-
tion of the Hinge loss function tend to attenuate this "gradient" information.

We also conducted the simulations of CO2 injection based on the ensemble of 100 
realizations of inferred models. The obtained results of the 10th and 90th percentiles 
of the entire ensemble are presented in Fig. 15. The CO2 mass within Box A and B, as 
observed across the 100 realizations, is shown in Fig. 16. The curves in Figs.  16 and 
12 show that the CO2 mass within Box A remains relatively insensitive to variations in 
model calibration. This is primarily due to its substantial coverage of the CO2 injection 
formation, where CO2 concentrations significantly outweigh those in regions exhibiting 
fingering patterns characterized by lower CO2 concentration. In essence, the concen-
tration within the injected formation exerts a dominant influence on the mass of CO2 , 
rendering the mass of CO2 within Box A rather indifferent to adjustments in the model 
calibration. While there is an improvement in the history matching results when com-
pared to those of Fig. 9, the prediction outcomes of CO2 injection do not exhibit signifi-
cant enhancements. This observation suggests that the model predictions are not exces-
sively sensitive to the selection of observations in the inversion. The ensemble results 
appear to be a reasonable quantification of the uncertainty associated with the fingering 
phenomenon.

Fig. 14  Two samples of the changes of the permeability distribution after the history matching based on the 
tracer concentration observations

Fig. 15  The forward predictions of CO
2
 plumes at the last time step (after 120 h of CO

2
 injection). Figures 

a and b show the CO
2
 plumes of the 10th and 90th percentiles of the entire ensemble of 100 inferred mod-

els calibrated to concentration observations, respectively. The solid and dashed boxes represent Box A and 
B, respectively
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6  Discussion

In this study, we have performed history matching of the FluidFlower benchmark using 
a two-stage approach. In the first stage of history matching, a zonated model and a sim-
ple Poisson-like solver were utilized to infer the petrophysical parameters for each layer. 
The inferred model parameters are used in the second stage of history matching, which 
achieved notable improvements through the use of multiple high-dimensional spatial 
model realizations and adjoint methods. The misfits for both binary and concentration 
observations were reduced by 39% and 16%, respectively.

Naturally, the computational time for the simple-physics zonated model is much 
lower compared to the high-dimensional spatial model. Running a single-zonated model 
only takes approximately 5 seconds due to the assumption of steady-state pressure, and 
the Marquardt method converges in O(10) iterations; for comparison, the high-dimen-
sional spatial model forward model takes around 70 seconds on CPU, and the optimiza-
tion typically around 100 times of iterations.

However, the simple zonated steady-state model does not account for the geological 
uncertainty within the layers associated with the dynamic changes in tracer behavior. 
The high-dimensional spatial model is better suited to quantifying this uncertainty, and 
more realistically models the complexity of real geological reservoirs and fluid dynam-
ics. In the simulations of CO2 injection using the inferred ensemble of high-dimensional 
spatial models, variability in the fingering phenomenon emerges from permeability 
uncertainty in the posterior. The percentile plot of CO2 plumes of the entire ensemble 
show that the majority of uncertainty is concentrated in regions where fingering occurs.

In comparing the CO2 injection simulations based on the model ensemble calibrated 
to binary and concentration observations, we observed an improvement in the history 
matching results when using the concentration observation. Somewhat paradoxically, 
the flow prediction outcomes of CO2 injection did not exhibit significant enhancements. 
These findings indicate that the model predictions are not excessively sensitive to the 
selection of observations during the model inference process, at least within the context 
of the FluidFlower project.

Fig. 16  The mobile gaseous CO
2
 of Box A (left figure) and Box B (right figure) based on the inferred mod-

els calibrated to concentration observations. The blue and grey curves represent the results based on the 
zonated model and the inferred model ensemble, respectively
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The FluidFlower benchmark employs a relatively modest and small-scale experimen-
tal configuration. Nevertheless, in the context of real field-scale CO2 storage projects, it 
is important to assess the transferability of the findings from this FluidFlower study. The 
geological and physical conditions in field-scale projects may differ substantially from the 
experimental setup used in our study. A thorough program of numerical simulations, as 
detailed in the simulation study for the FluidFlower benchmark (Wapperom et al. 2023), 
will highlight the importance of physical conditions when extending the FluidFlower 
methodology to actual CO2 storage projects. A crucial issue is the substantial difference 
in physical properties such as density and viscosity between surface and typical reservoir 
conditions. Surface conditions introduce very strong buoyancy and marked nonlinearity 
into the system, thus posing computational challenges for both linear and nonlinear solvers. 
One symptom of this is the inability of the CPR preconditioner to operate effectively for 
the FluidFlower problem. In more representative reservoir conditions, smaller variations in 
physical properties result in comparatively fewer computational difficulties.

The methodology of this paper may be applied for practical scenarios resembling the 
shallow FluidFlower experimental conditions. The use of an unstructured mesh for discre-
tization provides high flexibility in representing diverse features encountered in practical 
field-scale settings. Further, it is realistic to expect that real geological scenarios introduce 
increased uncertainty, such as channels, faults, and other complexities. A comprehensive 
approach to uncertainty quantification via simulation, based on a sizable ensemble of both 
geological scenarios and realizations, is a necessity. For a wider range of models and sce-
narios, the history matching procedure will naturally be more computationally intensive. 
These challenges underscore the importance of an efficient approach to history matching in 
real field-scale applications. To mitigate the computational burden in cases where available 
computational resources are more limited, one may consider implementing proxy methods 
or dimensionality reduction approaches to optimize computational efficiency.

7  Conclusion

A comprehensive history matching for the FluidFlower experimental results has been 
described in this study. Several stages of model tuning and inference have been imple-
mented to improve the history matching results and estimate a spatial uncertainty range 
in permeability from the FluidFlower tracer tests. The pressure data were of limited use 
in this experiment due to noise and unknown frictional losses, but since the salient issues 
were unrepresentative of field measurements, we do not believe this reduces the impor-
tance of pressure data in the context of field-scale CO2 injection. For example, in the case 
of the Ketzin pilot site’s onshore CO2 storage project, pressure and temperature are con-
tinuously monitored by sensors over the entire project lifetime (Martens et al. 2013). Fur-
thermore, the mining authority has mandated an operating pressure threshold for this pilot 
project. Their monitoring data reveals a positive correlation between the injection rate and 
reservoir pressure.

Compared with the pressure data collected in this experiment, the tracer images were 
of high quality and a rigorous test of model choices and fitting. The history matching was 
first conducted utilizing a fast single-phase physics model without buoyancy effects, using 
a simple Poisson-like solver. A structured grid and digitized concentration data were uti-
lized in this stage to infer the permeability of six facies types and two faults. The numerical 
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framework of this approach is a simple finite difference code with upwind tracer advection, 
using Marquardt methods for gradient-based optimisation.

To improve the model fit and address the issues around buoyancy and heterogeneity, 
enhancements in two stages were added, first for physical modelling, and later, signifi-
cant model inflation to capture spatial heterogeneity. For the physics enhancements, the 
forward physics was switched to an unstructured grid with a facility for modelling buoy-
ancy. Eight petrophysical parameters (including permeability and anisotropy) for model 
variables and simplified binary tracer images were used. Inversions were performed using 
the Gauss–Newton method with explicit Jacobians obtained by finite differences. This low-
dimensional inversion was then taken as the reference model of the next stage of history 
matching using the adjoint-based gradient method as the workhorse in a Randomized Max-
imum Likelihood (RML) approach, with a richer and high-dimensional spatial model to 
account for heterogeneity. The coarse-scale morphology of the tracer images was remarka-
bly well predicted by the low dimensional models, but fine detail could only be well repro-
duced by significant inflation of the spatial model space.

The high–dimensional spatial model is naturally better suited to representing typi-
cal geological heterogeneities, and has enough freedom to fit the finer spatial detail in the 
tracer data. We found that forward predictions of CO2 distribution and fingering patterns 
are sensitive to this heterogeneity, but the uncertainties of these forecasts were not sensitive 
to whether the tracer data were transformed in the history matching process. The forward 
prediction of CO2 mass within a specified area (e.g., Box A and B) demonstrates differing 
outcomes when accounting for the influence of buoyancy, despite the CO2 plume contour 
exhibiting minimal sensitivity to the buoyancy effect.

We have demonstrated the cost and value of an escalating range of history matching 
models on the FluidFlower CO2 storage benchmark model. The simple parsimonious mod-
els are fast and efficient but do not fit all the details of the experimental data due to sim-
plifications in the physics and lack of resolution in the spatial models. The heterogeneous 
models are a successful demonstration of an adjoint method derived from operator–based 
linearization of multiphase physics in a very high dimensional model, and persuasively 
capture effects related to buoyancy and heterogeneity. In the predictive regime, the RML 
ensemble method produces a very useful uncertainty forecast of CO2 injection behaviour. 
This is particularly evident in the fingering regions, which are strongly influenced by per-
meability fluctuations.

Appendix

To estimate the posterior uncertainty of the model after history matching, it suffices to gen-
erate an ensemble of approximate samples from the posterior PDF. From Bayesian exten-
sions to the usual theory of parametric bootstrapping, it can be shown that a sample may be 
generated by solving

where E(u) is defined by

(A1)uc = argmin
u

E(u)

(A2)E(u) =
1

2
(u − uref)

TC−1
M
(u − uref) +

1

2
(G(u) − dobs + �)TC−1

D
(G(u) − dobs + �),
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where C−1
D

 is the inverse of the covariance matrix of the combined measurement and for-
ward modelling error process, � ∼ N(0,CD) is a “bootstrap” sample from that noise distri-
bution, and uref ∼ N(ū,CM) is a sample from the geostatistical prior. Note that in this study, 
the experimental measurement error data is not available, so the approach has been simpli-
fied by setting � = 0 ; most of the model uncertainty is controlled by the prior rather than 
experimental noise in this sort of problem. Finally, we get the modified objective function 
shown in Eq. (8) (omitting the coefficient 1

2
 ). A single sample of the posterior PDF can be 

obtained by solving Eq. (A1).
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