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A R T I C L E I N F O

Keywords:
Contact
Adhesion
Cylinder
Analytical solutions

A B S T R A C T

The Maugis analysis is applied to adhesive contact between a cylinder with various wave profiles and a
semi-infinite, elastic half-plane. We extend the analysis of Waters, Lee and Guduru, who consider the adhesive
contact of a Hertzian indenter on a semi-infinite, elastic half-space with axi-symmetric, wave profiles. This
work gives the closed-form contact mechanical solution for continuous, line contact without the need for
any approximation. The resulting semi-analytical model serves to complement existing (numerical) models of
adhesive line contact with the static load-area response as a reference. Herewith we analyse adhesion-induced
loading-unloading hysteresis and contrast semi-analytical and numerical result to assess the limit of the
former analysis. We confirm that roughness-induced dissipation vanishes with increasing wave roughness
and decreasing Maugis parameter due to an increase in the range of adhesion and cavitation. Instability and
cavitation are mutually exclusive at a given load-area locus yet occur successively in the same contact. An
interesting result is that the Johnson parameter, that is known to govern the amplification of adhesion in the
JKR-limit, bounds the load-area envelope irrespective of Maugis parameter. However, the Johnson parameter
does not control the occurrence of roughness-induced dissipation and thus interface toughening.
1. Introduction

The current push towards tunable adhesion has given rise to a
renewed interest in the contact mechanics of adhesives. Recent ap-
plications of tunable adhesion exploit its directional (Hwang et al.,
2023), force (Linghu et al., 2023) and texture (Badler et al., 2023)
dependence. As adhesion becomes dominant when the scale of con-
tacting bodies decreases, the omnipresent surface roughness plays an
increasingly large role (Waters et al., 2009). Small scale roughness is
known to increase the pull-off force in soft matter (Briggs and Briscoe,
1977). Microscale asperities snapping into or out of contact toughen
the interface as well (Guduru and Bull, 2007). More recently, Sanner
and Pastewka (2022), Sanner et al. (2024) show that pinning of the
contact perimeter retards both its advancement when coming into
contact and its retraction when pulling away for randomly rough
contacts with near-circular contact area. Most recently, the importance
of dissipative processes that occur at a distance from the interface
in soft matter contact is recognised (Müser and Nicola, 2022). The
observable adhesion depends not only on material properties, loading
history, direction and rate, but also on multi-scale roughness (Creton
and Leibler, 1996; Persson and Scaraggi, 2014; Dalvi et al., 2019; Wang
and Müser, 2023). One method of capturing these dependencies is
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to study rough surface contact mechanics using elementary body and
surface geometries (Waters et al., 2009).

The contact mechanics of smooth, adhesive axi-symmetric contact
has been well-understood for over three decades now. The load-area
and load–displacement response are governed by the Tabor parame-
ter (Tabor, 1977), which controls the transition from rigid-body to JKR
behaviour (Maugis, 1992; Johnson and Greenwood, 1997). Similarly,
axi-symmetric contact with wave profile is studied analytically and
experimentally by Guduru (Guduru, 2007; Guduru and Bull, 2007),
and extended to a cohesive zone model by Waters et al. (2009).
Guduru (2007) and Guduru and Bull (2007) show that waviness in-
troduces instabilities that dissipate mechanical energy; adhesive dis-
sipation and the pull-off force both increase with waviness, provided
contact is compliant. Waters et al. (2009) theorise that adhesion en-
hancement by dissipation depends on the Maugis parameter (Maugis,
1992), that controls the rigid-to-compliant transition of the contact.
The values of the Tabor and Maugis parameter depend on the cohesive
zone models (Lennard-Jones, 1931; Dugdale, 1960; Barthel, 1998) and
are proportional (Tabor, 1977; Maugis, 1992). The proportionality in
e.g. Maugis (1992), Johnson and Greenwood (1997), Zheng and Yu
(2007) and Zhu et al. (2021, 2022) depends on the choice one makes
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on the equivalence between the adhesive traction in the Lennard-Jones
(1931) and Dugdale (1960) model.

Research into the contact mechanics of adhesive line contact, that
is simpler than surface contact, starts a decade later. There are three
notable reasons for more interest in axi-symmetric than line con-
tact, namely: experimental convenience, because problems of orien-
tation and alignment are avoided (Johnson and Greenwood, 2008);
the contact area and indentation are the observable quantities (John-
son and Johnson, 1987; Barber, 2018); and, the availability of a
well-documented set of integral relations between the load, the in-
dentation and the contact area (Maugis, 2000). Nonetheless, also line
contact has its own merits, namely: studying a moving contact is
practicable with rolling cylinders (She et al., 1998; She and Chaudhury,
2000); and, it is representative for the many engineering materials
that display anisotropic roughness after polishing (Carbone and Pierro,
2012). Baney and Hui (1997), and Johnson and Greenwood (2008) are
the first to apply the Maugis analysis (Maugis, 1992, 2000) to smooth
cylindrical, line contact. The load-area relationship in the JKR-limit of
a cylinder with a wave profile is presented by Guduru (2007). Other
notable Maugis analyses are those of infinite, sinusoidal profiles (Jin
et al., 2016), and (periodic) slit(s) (Chumak et al., 2014; Chumak,
2016). The works (Johnson and Greenwood, 2008; Chumak et al.,
2014; Chumak, 2016; Jin et al., 2016) show that also for line contact
the load-area response is governed by the Maugis parameter (Baney
and Hui, 1997). However, unlike smooth (Baney and Hui, 1997; John-
son and Greenwood, 2008) and elementary (periodic) profiles (Jin
et al., 2016; Chumak et al., 2014; Chumak, 2016), wavy line contact
in Guduru (2007) is not extended to an exact Maugis analysis yet.

Continuous intimate contact is pre-requisite to the (Maugis) anal-
ysis (Maugis, 1992, 2000); the predictions in Baney and Hui (1997),
Guduru (2007), Johnson and Greenwood (2008), Waters et al. (2009),
Chumak et al. (2014), Chumak (2016), Jin et al. (2016) and Sanner
and Pastewka (2022) are only valid when surfaces/profiles come into
continuous intimate contact. Most recently, Zhu et al. (2021) show that
adhesive dissipation and the pull-off force decrease with Maugis param-
eter in sphere-axisymmetric wavy surface contact (Guduru, 2007), and
report an increased chance of cavitation with roughness. They (Zhu
et al., 2021) define ‘‘cavitation’’ as the appearance of a toroidal gap(s)
under tensile traction surrounded by intimate contact on either side.
The intimate contact can thus be discontinuous and the Maugis analy-
sis (Waters et al., 2009) cannot be applied. Numerical boundary-element
methods (Campaná and Müser, 2007; Bazrafshan et al., 2017) find
quasi-static, stable contact and fully self-consistent models (Attard and
Parker, 1992; Greenwood, 1997; Feng, 2000; Zhu et al., 2021) static
contact also when cavitation occurs. Hence the validity of Maugis anal-
yses has to be checked with numerical result. Wherefore we highlight
when cavitation occurs in line contact.

The influence of roughness on adhesion-induced hysteresis is cap-
tured by the Johnson parameter (Kesari et al., 2010), a geometrical
parameter that depends on the wave amplitude and length. It is well
known that the pull-off force increases with wave roughness for large
Maugis parameters (Maugis, 1992). The validity of the Johnson param-
eter is limited to waviness parameters where the asymptotic expansion
by Kesari et al. (2010) and Ciavarella (2016) holds, i.e. for large
contact areas and/or small wavelengths. The Johnson parameter is a
measure of the load-area envelope in wavy line contact (Jin et al.,
2016; Pérez-Ràfols et al., 2023) as well. Moreover, as the static equi-
librium path included in the envelope is wavy it cannot be followed
during approach and detachment, and there are unstable jumps to the
next-closest stable equilibrium (Guduru, 2007; Guduru and Bull, 2007;
Sanner and Pastewka, 2022). These instabilities dissipate potential
energy and cause toughening of the interface. In axi-symmetric contact
the Johnson parameter for single sinusoidal contact scales the energy
loss per loading-unloading cycle (Kesari et al., 2010; Kesari and Lew,
2011). The Johnson parameter is also a measure of roughness-induced

dissipation while the Maugis parameter has to be sufficiently large so

2 
that the JKR-limit is approached. Whether the Johnson parameter is
a measure of the load-area envelope and roughness-induced dissipa-
tion also for small Maugis parameters, for which there is a departure
from the JKR-limit, is currently unclear (Ciavarella, 2016). This we
investigate for line contact herein.

The difference between instabilities and cavitation is that the for-
mer is a dissipation mechanism that toughens the interface, while we
show that the latter is not. Zhu et al. (2021) state that contact weak-
ens because cohesive strength decreases with Maugis parameter, and
that the chance of cavitation increases with roughness. Furthermore,
they (Zhu et al., 2021) observe cavitation in the detachment process
for large roughness and finite Maugis parameter, demonstrating that
Guduru’s assumption (Guduru, 2007) on continuous contact does not
hold after the contact is pressed sufficiently. The toughness of wavy
axi-symmetric contact thus depends on the Maugis parameter as well.
Any observation on axi-symmetric contact does not necessary hold in
line contact (Baney and Hui, 1997; Johnson and Greenwood, 2008)
though. Hence it is to be established whether observations in Waters
et al. (2009), Kesari et al. (2010), Kesari and Lew (2011), Ciavarella
(2016) and Zhu et al. (2021) also hold for adhesive, line contact, as
this is currently unknown.

Herein, we study two-scale roughness by combining the Maugis
analysis for cylindrical contact (Baney and Hui, 1997; Maugis, 2000)
with wavy surface adhesion in plane strain (Waters et al., 2009). To
simplify the problem, roughness is modelled as a single-wavelength
wave superimposed on the profile of a rigid, infinite cylinder in con-
tact with a semi-infinite half-plane. Hence we remedy the lack of a
Maugis analysis of rough, line contacts. For two Johnson parameters,
we track the load and contact area with various wave amplitudes (or
wavelengths), and vary the range of adhesion between adhesionless
and JKR-type adhesion. This permits us to establish whether and/or
when the Johnson parameter controls adhesion and roughness-induced
dissipation towards adhesionless line contact. Wherefore we compare
the semi-analytical with boundary-element method (Van Dokkum and
Nicola, 2019) result, which also delimits the validity of our Maugis
analysis.

2. Problem statement

We consider the frictionless, adhesive contact of a rigid, infinite
cylinder with a wave profile in contact with an isotropic, linear elastic
solid. The cylinder profile

𝑓 (𝑥) = 𝐶 − 𝑥2

2𝑅
− 𝐴

(

1 − cos
(

2𝜋𝑥
𝜁

)

)

, (1)

where 𝑥 is the horizontal distance from the centreline of the cylinder,
𝑅 is the cylindrical radius, and 𝐴 and 𝜁 the amplitude and the wave-
length of the roughness, respectively. The constant 𝐶 depends on the
location of the coordinate origin of the cylinder profile. In Fig. 1, we
give a schematic representation of the problem considered herein. In
frictionless, symmetric continuous contact, the gradient of the surface
displacement (Sneddon, 1965):

𝜕𝑓
𝜕𝑥

≡ 𝜕𝑢
𝜕𝑥

= 2
𝜋𝐸∗ ∫

𝑎

−𝑎

𝑝(𝜉)
𝑥 − 𝜉

d𝜉, for, − 𝑎 < 𝑥 < 𝑎, (2)

where 𝑝(𝑥) is the traction and 𝐸∗ ≡ 𝐸∕
(

1 − 𝜈2
)

the effective mod-
ulus, with the isotropic, linear elastic modulus 𝐸 and Poisson’s ra-
tio 𝜈. The intimate contact area 𝑎 is defined as the area with zero
gap, i.e. 𝑔(|𝑥| ≤ 𝑎) = 0. We use the Dugdale-Maugis model (Dugdale,
1960; Maugis, 1992) to describe the adhesive interaction between
the rigid indenter and the elastic substrate with a constant work of
adhesion 𝛥𝛾. The traction 𝑝(𝑎 < |𝑥|) = 𝜎 is a positive constant whenever

the gap between the indenter and the elastic substrate 𝑔(𝑎 < |𝑥|) is
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Fig. 1. Schematic representation of a rigid indenter with radius 𝑅 in intimate contact
ith a semi-infinite, elastic substrate for an applied load 𝐿, with gap 𝑔(𝑥), intimate

ontact area 𝑎, adhesive strip |𝑐 − 𝑎| and interaction length 𝛿, that controls adhesion.

ositive but smaller than the interaction length 𝛿 ≡ 𝛥𝛾∕𝜎. We solve
mixed-boundary value problem, namely:

(|𝑥| ≤ 𝑎) = 0, 𝑝(|𝑥| ≤ 𝑎) < 𝜎, intimate contact;
< 𝑔(𝑎 < |𝑥| ≤ 𝑐) < 𝛿, 𝑝(𝑎 < |𝑥| ≤ 𝑐) = 𝜎, adhesive strip;
≤ 𝑔(𝑐 < |𝑥|) , 𝑝(𝑐 < |𝑥|) = 0, out of contact;

,

(3a)

ith the absolute value | ∙ | of scalar ∙, the total traction,

(𝑥) = 𝑝c(𝑥) + 𝑝a(𝑥) , (3b)

nd the gap,

(𝑥) ≡ 𝑓 (𝑥) − 𝑢(𝑥) , (3c)

here 𝑢(𝑥) is displacement of the substrate, 𝑝c(𝑥) and 𝑝a(𝑥) the adhe-
sionless and adhesive traction, respectively, and |𝑐 − 𝑎| the size of the
adhesive strip. The total substrate displacement

𝑢(𝑥) = 𝑢H(𝑥) + 𝑢w(𝑥) + 𝑢a(𝑥) + 𝐶, (4)

where the first and second term on the right-hand-side (RHS) are the
displacements due to frictionless, adhesionless continuous (Hertzian)
cylindrical contact (Baney and Hui, 1997; Johnson and Greenwood,
2008) and the wave roughness, respectively; and, the third term on the
RHS is due to the adhesive traction 𝑝a(|𝑥| ≤ 𝑐). The size of this adhesive
strip |𝑐 − 𝑎| is determined such that the stress singularity at the edges
of intimate adhesive contact, |𝑥| = 𝑐, is cancelled (Barenblatt, 1962) by
the constant adhesive traction 𝑝a(𝑎 < |𝑥| ≤ 𝑐) ≡ 𝜎 (Maugis, 1992, 2000).

According to the Maugis analysis (Maugis, 1992, 2000) in adhesive
elastic Hertzian contact, traction and displacement are the sum of the
Hertzian 𝑢H(𝑥) and 𝑝H(𝑥), and adhesive contributions 𝑢a(𝑥) and 𝑝a(𝑥).
The adhesive traction 𝑝a(𝑥) and displacement 𝑢a(𝑥) due to symmet-
ric, adhesive line contact are presented by Baney and Hui (1997),
and Johnson and Greenwood (2008), and apply to any symmetric and
continuous, adhesive line contact that makes use of the Dugdale-Maugis
model (Dugdale, 1960; Maugis, 1992). We summarise the main result
of Baney and Hui (1997) and Johnson and Greenwood (2008) in Ap-
pendix A. Guduru (2007) added an adhesionless traction, 𝑝w(𝑥), due to
the presence of the wave profile 𝑢w(|𝑥| ≤ 𝑎) in intimate contact, yet lim-
its the result to an infinitesimal range of adhesion, i.e. 𝑐 ≡ 𝑎. We revisit
Guduru’s (Guduru, 2007) derivation of, and firstly rewrite the expres-
sion for, the adhesionless traction 𝑝c(𝑥) = 𝑝H(𝑥) + 𝑝w(𝑥). Subsequently,
we derive, for the first time, the wave displacement 𝑢w(𝑥) caused by
adhesionless, wavy traction 𝑝w(𝑥) in line contact. Finally, we present
the load-area response for generic roughness parameters {𝐴∕𝑅,𝑅∕𝜁}
with a finite range of adhesion, i.e. 0 ≲ 𝛿 ≲ ∞.
3 
3. Maugis analysis

3.1. Adhesionless traction

Equation (2) is a Cauchy-type singular integral equation, which is
solved as in Barber (2018). The profile 𝑓 (𝑥) and adhesionless trac-
tion 𝑝c(𝜉) are expressed as Fourier series:

𝜕
𝜕𝜙

𝑓 (𝜙) =
∞
∑

𝑛=1
𝑓𝑛 sin(𝑛𝜙) , (5a)

nd,

c(𝜃) =
∞
∑

𝑛=0
𝑝c
𝑛
cos(𝑛𝜃)
sin(𝜃)

; (5b)

ith a change of variables,

= 𝑎 cos(𝜙); and, 𝜉 = 𝑎 cos(𝜃), (5c)

where 𝑝c
𝑛 and 𝑓𝑛 are the discrete Fourier transform coefficients of

the wavenumber 𝑛. Substituting the adhesionless traction (5b) and
coordinates (5c) in Eq. (2) and solving the integral by means of contour
integration, Guduru (2007) reproduces the pressure

𝐸∗

2𝑎
𝜕
𝜕𝜙

𝑓 (𝜙) =
∞
∑

𝑛=1
𝑝c
𝑛 ∫

𝜋

0

sin(𝜙) cos(𝑛𝜃)
cos(𝜃) − cos(𝜙)

d𝜃 =
∞
∑

𝑛=1
𝑝c
𝑛 sin(𝑛𝜙), (6)

e present the full derivation by Guduru (2007) of the adhesionless
raction 𝑝c(𝑥) in Appendix B. We simplify the equation (65) for the
dhesionless traction in Guduru (2007) to

c(𝜃) = −
𝐸∗𝑎 sin(𝜃)

2𝑅
−
𝜋𝐸∗𝐴 sin(𝜃)

𝜁 ∫

2𝜋𝑎
𝜁

0
J0(𝑡) cos

(

(

𝑡 − 2𝜋𝑎
𝜁

)

cos(𝜃)

)

d𝑡,

(7)

with the zeroth-order Bessel function J0(𝑡) (B.10). Noting that when
the amplitude 𝐴 = 0, and/or the wavelength 𝜁 ∼ 0 and ∞, and using
Eq. (5c), we reduce the traction (7) to that of adhesionless cylindrical
contact 𝑝H(𝑥) (Barber, 2018). We prefer the integral expression of the
adhesionless traction due to wave roughness in the second term on the
RHS of Eq. (7). The wave deformation gradient 𝜕𝑢w∕𝜕𝑥 then becomes
a definite, double integral that we can and will solve in the following.

3.2. Adhesionless substrate deformation

The total substrate deformation in the absence of adhesion

𝑢H(𝑥) + 𝑢w(𝑥) = ∫
𝜕𝑢H
𝜕𝑥

d𝑥 + ∫
𝜕𝑢w
𝜕𝑥

d𝑥 + 𝐶, (8)

where the first and second term, on the RHS and left-hand-side (LHS),
are the substrate deformation due to the Hertzian cylinder and the wave
profile, respectively. The deformation gradient 𝜕𝑢∕𝜕𝑥 outside of inti-
mate contact 𝑎 < |𝑥| is given by Eq. (2). Substituting the adhesionless
traction (7) in the deformation gradient (2), and rewriting the spatial
coordinate 𝑥 = 𝑎∕cos(𝜙), we solve the deformation gradient due to the
ylindrical contact 𝜕𝑢H∕𝜕𝑥, and the waviness 𝜕𝑢w∕𝜕𝑥 separately making

use of the sum rule (Abramowitz et al., 1988). The former is done
herein for illustrative purpose of the contour integral method C that
we employ in the following.

We obtain the integral on the RHS of Eq. (2) for the first (Hertzian)
term on the RHS of Eq. (7) by means of contour integration in Ap-
pendix C.1. Substituting the spatial coordinate 𝑥 in the integral (C.29),
we simplify the resultant Hertzian deformation gradient to

𝜕
𝜕𝑥

𝑢H(𝑥) =
𝑥
𝑅

−

√

𝑥2 − 𝑎2
𝑅

, for, 𝑎 < |𝑥|. (9)

his equation (9) is the well-known result that one finds in e.g. the
ompendia by Johnson and Johnson (1987) and Barber (2018). The
ertzian substrate deformation

(𝑥) = 𝑥2 − 𝑥 √

𝑥2 − 𝑎2 + 𝑎2 cosh−1
(𝑥) , (10)
H 2𝑅 2𝑅 2𝑅 𝑎
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that we obtain by integrating Eq. (9) and a change of variables (Barber,
2018). Substituting the second (wave) term on the RHS of the adhesion-
less traction (7) in the deformation gradient (2), we present the wave
deformation gradient as
𝜕
𝜕𝑥

𝑢w(𝑥) = (11a)

𝐴
𝜁 ∫

2𝜋𝑎
𝜁

0
𝐽0(𝑡)∫

2𝜋

0

cos(𝜙) sin2(𝜃)
1 − cos(𝜃) cos(𝜙)

cos

(

(

𝑡 − 2𝜋𝑎
𝜁

)

cos(𝜃)

)

d𝜃 d𝑡.

e obtain the double integral on the RHS of Eq. (11a) by means of
ontour integration in Appendix C.2. Using the inner integral (C.37)
nd substituting the outer integral (C.39a) in Eq. (11a), we find the
ave deformation gradient

𝜕
𝜕𝑥

𝑢w(𝑥) =
(

𝜋𝑎
𝜁

)2 2𝐴
𝑥

∞
∑

𝑘=0

1
Γ(𝑘 + 1)Γ(𝑘 + 2)

(−1)𝑘

1 + 2𝑘

(

𝜋𝑎
𝜁

)2𝑘
⋯ (11b)

⋯ 1F2

(

1
2
; 𝑘 + 1, 𝑘 + 3

2
; −

(

𝜋𝑎
𝜁

)2
)

2F1
(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

,

here Γ
(

∙1
)

is the Gamma function (Abramowitz et al., 1988),
F1
(

∙2, ∙3; ∙4; 𝑧
)

is the hypergeometric function (C.35b) and 1F2
(

∙5, ∙6; ∙7; 𝑧
)

the generalised hypergeometric function (C.39b), with scalars ∙(1,…,7).
Solving the second integral on the RHS of Eq. (8) in Appendix D,
substituting the integral (D.41a) in Eq. (D.40), and noting that the
substrate deformation is real-valued, we find the wave displacement

𝑢w(𝑥) =
𝐴
√

𝜋

(𝜋𝑎
𝜆

)2 ∞
∑

𝑘=0

(−1)3𝑘

Γ(2𝑘 + 2)

(

2𝜋𝑎
𝜁

)2𝑘
⋯ (12)

⋯ 1F2

(

1
2
; 𝑘 + 1, 𝑘 + 3

2
; −

(

𝜋𝑎
𝜁

)2
)

ℜ

(

G2,2
3,3

(

−
( 𝑎
𝑥

)2 |
|

|

|

|

0, 1
2
− 𝑘, 1

0, 0,−𝑘 − 1

))

,

where ℜ
(

∙1
)

is the real part of the complex scalar ∙1 and G𝑙,0
𝑖,𝑗
(

∙2
)

the
Meijer-G function (D.41b). Substituting the substrate deformations (10)
and (12) back into Eq. (8) and taking the central crest of the rigid
punch as the origin {𝑥, 𝑦} = {0, 0}, we find that the integration constant
vanishes, and use 𝐶 = 0 in the total substrate displacement (4) as well.

3.3. Load-area response

In the following, we use the normalisation:

𝐴 = 𝛼 3

√

𝛥𝛾2𝑅
(𝐸∗)2

; 𝜁 = 𝛽 3

√

𝛥𝛾2𝑅
(𝐸∗)2

;
√

2𝛥𝛾𝜁
𝜋2𝐴2𝐸∗

=
√

2𝛽
𝜋2𝛼2

; (13a)

𝑎 = �̄�
3

√

𝛥𝛾𝑅2

𝐸∗ ; 𝐿 = �̄� 3
√

𝐸∗𝛥𝛾2𝑅; 𝑥 = �̄� 3

√

𝛥𝛾2𝑅
(𝐸∗)2

; 𝑢 = �̄� 3

√

𝛥𝛾2𝑅
(𝐸∗)2

;

𝑔 = �̄� 3

√

𝛥𝛾2𝑅
(𝐸∗)2

; 𝛿 = 𝛿 3

√

𝛥𝛾2𝑅
(𝐸∗)2

; and, 𝑝 = �̄�𝜎 = �̄�𝜆
3

√

(𝐸∗)2 𝛥𝛾
𝑅

,

where 𝛼 and 𝛽 are the normalised wave amplitude and wavelength,
respectively,

√

𝛽∕𝛼2 the scaled Johnson parameter (Johnson, 1995), �̄�
the normalised intimate contact area, �̄� the normalised total load, �̄�
the normalised 𝑥-coordinate, �̄� the normalised displacement, �̄� the nor-
malised gap, 𝛿 the normalised interaction range and �̄� the normalised
traction. The Maugis parameter 𝜆 is a dimensionless parameter that
overns the transition from rigid cylindrical behaviour, 𝜆 < 1∕4, to

JKR behaviour, 3 < 𝜆, in which pull-off occurs discontinuously from
a finite contact area (Johnson and Greenwood, 2008). Note that our
notation of the Johnson parameter

√

2𝛽∕(𝜋𝛼)2 differs with e.g. the
symbol ‘‘𝛼’’ in Johnson (1995), Kesari et al. (2010), Ciavarella (2016)
and Pérez-Ràfols et al. (2023). The ratio of the adhesive strip,

𝑚 ≡ 𝑐
𝑎
, (13b)

here we follow the notations for the integer index 𝑚 by Guduru
2007) before; and, in the following, the ratio 𝑚, by e.g. Baney and
4 
Fig. 2. Normalised load �̄� as a function of the intimate contact area �̄� for Maugis
parameters 𝜆 ∼0 and ∞, with normalised amplitude and wavelength {𝛼, 𝛽} =

{
√

2∕3, 2
}

.
he medium dashed, grey-shaded lines indicate the (M-)DMT (E.43a) and JKR (E.42a)
esponse, and the long-dashed lines the (M-)DMT (E.43d) and JKR (E.42b) envelope.

ui (1997), Johnson and Greenwood (2008), and Waters et al. (2009).
he total normalised load

̄M = �̄�c(�̄�) + �̄�M
a (�̄�) = 𝜋�̄�2

4
− 2𝜆�̄�

√

𝑚2 − 1 + 𝜋2𝛼�̄�
𝛽

J1

(

2𝜋�̄�
𝛽

)

. (14)

where 𝐿c(𝑎) is the adhesionless load (B.13) and 𝐿M
a (𝑎) the adhesive

oad (A.4c). Substituting Eqs. (A.5b), (10) and (12) in the definition
f the gap at the edges of contact

(|𝑥| = 𝑐) ≡ 𝛿, (15a)

e give this normalised gap as,

= (15b)
4
𝜋
𝜆2�̄�

(√

𝑚2 − 1 cosh−1(𝑚) − 𝑚 ln(𝑚)
)

+ 1
2
𝜆�̄�

(

𝑚
√

𝑚2 − 1 − cosh−1(𝑚)
)

⋯

⋯ − 2𝛼𝜆 sin2
(

𝜋𝑚�̄�
𝛽

)

+ 𝛼𝜆
√

𝜋

(

𝜋�̄�
𝛽

)2 ∞
∑

𝑘=0

(−1)3𝑘

Γ(2𝑘 + 2)

(

2𝜋�̄�
𝛽

)2𝑘
⋯

⋯ 1F2

(

1
2
; 𝑘 + 1, 𝑘 + 3

2
; −

(

𝜋�̄�
𝛽

)2
)

ℜ

(

G2,2
3,3

(

−
( 1
𝑚

)2 |
|

|

|

|

0, 1
2
− 𝑘, 1

0, 0,−𝑘 − 1

))

.

Finally, the size of the adhesive strip 𝑚 is obtained numerically by ap-
proximating the infinite series on the RHS of Eq. (15b) with 𝑘 = 0,… , 𝑘m
terms of the same sum, because no closed-form analytical solution is
found. Closed-form analytical solutions do exist in the JKR (Johnson
et al., 1971) and M-DMT (Maugis, 1992; Greenwood, 2022) limit,
which we summarise in Appendix E and outline in Fig. 2.

In Fig. 2, the load-area response is presented for wave param-
eters {𝛼, 𝛽} =

{
√

2∕3, 2
}

(scaled Johnson parameter
√

𝛽∕𝛼2 = 3)
with Maugis parameters 𝜆 ∼ 0 and ∞; the closed-form analytical
M-DMT (E.43a) and JKR (E.42a) response are indicated by medium-dash
light- and dark-shaded grey lines, respectively, and their (DMT and
JKR) envelopes (E.43d) and (E.42b) by long-dashed lines. The prefix
‘‘M-’’ is dropped for brevity sake. The Johnson parameter is the scaled
inverse of the amplitude in the asymptotic expansion of the 𝑘′th-order
Bessel function (B.10) by a sinusoid (Abramowitz et al., 1988) and
the size of the load-area envelope in the DMT- and JKR-limit. In the
following, figures of the load-area response use the limit representation
in Fig. 2 as a reference. We present the influence of intermediate
Maugis parameters 0 < 𝜆 < ∞, and the assumption of a continuous
intimate contact area on the load-area response next.

4. Methods & approach

In this study, we combine (semi-)analytical and numerical analy-
sis. The semi-analytical results are obtained by means of numerical
rootfinding (Inc., 2023) with Eq. (15b) of the adhesive strip 𝑚 for
intimate contact areas 0 < �̄� ≤ 6. The infinite sum on the RHS
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Fig. 3. Normalised load �̄� as a function of the intimate contact area �̄� for Maugis parameters 𝜆 =1∕10, 1∕4, 1∕2, 1, 3 and 6, in smooth cylindrical contact with normalised
mplitude and wavelengths {𝛼, 𝛽} = {0,−}. The medium dashed, grey-shaded lines indicate the (M-)DMT (E.44) and JKR (E.42) response with Maugis parameters 𝜆 =1∕10 and ∼ ∞,
espectively. The results for intermediate Maugis parameters 𝜆 =1 and 3 are omitted from (b) for clarity sake.
-

t
r
n

s
n
a
T
a

d
t
i
s
m
2
s
s
w

2
}

,

a

f Eq. (15b) is approximated by a finite sum with 𝑘max = 103. The
umerical model adopted is the one presented by Van Dokkum and
icola (2019) and Pérez-Ràfols et al. (2023), that employs the Green’s
unction Molecular Dynamics (GFMD) technique and discrete Fourier
ransform (Frigo and Johnson, 2005) to achieve an efficient algorithm.
he GFMD technique is a boundary-element method that permits one
o reduce the dimensions of the problem such that only the profile
f the substrate is modelled. Each dimensionless time-step, the posi-
ion (Störmer-)Verlet algorithm (Störmer, 1912) is used to compute,
hrough damped dynamics, the new displacement 𝑢(𝑥) of 𝑛𝑥 equis-
aced nodes, that discretise the profiles. The (wavy) cylinder is first
oaded to the total load �̄�max = 20, that is subsequently reduced till

jump-out of contact at the tensile load −�̄�p. The attractive traction
s described by the Dugdale-Maugis model (Dugdale, 1960; Maugis,
992) in our numerical analysis as well. Adhesion is here implemented
sing a first-order approximation in the gap, in a manner similar
o that presented by Medina and Dini (2014). Here, we present the
emi-analytical and numerical result for smooth cylindrical contact
irst. The (semi-)analytical results are validated with, and offset by,
umerical results for the mixed-boundary value problem (3). By con-
rasting the result for smooth cylinders, we present the differences
etween methods, i.e. where instabilities occur, and provide validation
o the semi-analytical method here derived. Moreover, we will use
hese results to compare smooth and wavy contact and isolate the
haracteristics of waviness.

In Fig. 3, the load-area response is presented for Maugis param-
ters 𝜆 = 1∕10, 1∕4, 1∕2 1, 3 and 6, in smooth cylinder contact with
ave parameters {𝛼, 𝛽} = {0,−} during unloading; the JKR and

DMT limits (E.42) and (E.44) are indicated with medium dashed,
grey-shaded lines, with Maugis parameters 𝜆 ∼ ∞ and 1∕10, respec-
ively; the semi-analytical and numerical result, that we obtain via the
FMD method, are indicated by solid and dashed, coloured lines, re-

pectively. The solid-coloured, square markers are guides to the eye of
he numerical result. The numerical coincides with the semi-analytical
esult over the whole load-area response except for jump-out of contact,
hat is appreciable for Maugis parameters 𝜆 = 3 and 6. As expected (John
on and Greenwood, 2008), the limit responses (E.42) and (E.44)
verlap the semi-analytical curves for Maugis parameters 𝜆 = 1∕10,
nd 3 and 6, respectively. The latter is visible in Fig. 3b. We will
nvestigate in the following whether the overlap of analytical and
umerical result also hold with roughness, as this is debatable (Zhu
t al., 2021).

In order to present contact instability, the load-area response near
ump-out of contact is presented again in Fig. 3b, with a shorter range
f intimate contact area 0 < �̄� ≤ 2; the area of the plot is indicated
y a light grey, dashed rectangle in Fig. 3a. Jump-out of contact is

ecognisable by the dashed, horizontal line of the numerical result

5 
hat deviates from the same coloured, solid line of the semi-analytical
esult. Under load control, a mechanical instability occurs because
o stable equilibrium is attainable once the load-area gradient 𝜕𝐿∕𝜕𝑎

becomes negative (i.e. at a turning point); no additional external work
is necessary to reduce the contact area. The minimum intimate contact
area �̄� increases with decreasing Maugis parameter 𝜆 ≪ 3 because the
ize of the adhesive strips |𝑐 − 𝑎| becomes of the same order of mag-
itude; while the adhesive traction 𝜎 decreases for a constant work of
dhesion 𝛥𝛾, the total load 𝐿 for intimate contact area �̄� ≪ 1 increases.
he semi-analytical method enforces intimate contact area 0 ≈ �̄� < 1
nd hence unstable, static equilibrium.

We perform the numerical simulations with the cylindrical ra-
ius 𝑅 = ∕10, where  is the periodic width. We intend to model
he response of an isolated cylinder, by reducing the effects of the
nherent periodicity of the discrete Fourier transform (Frigo and John-
on, 2005), whilst retaining computational tractability. We show by
eans of Fig. 3 that the numerical model (Van Dokkum and Nicola,
019; Pérez-Ràfols et al., 2023) is suitable for comparison with the
emi-analytical result of wavy contact. Moreover, the spatial discreti-
ation 𝑛𝑥 = 215 ensures convergence for the loads −𝐿p ≤ 𝐿 ≤ 𝐿max, and
ave parameters {𝛼, 𝛽} = {0, 9∕8} ,… ,

{
√

2∕3, 2
}

for different Maugis
parameters 𝜆 = 1∕10,… , 6, that we present in the following.

5. Wavy contact

We start by analysing the effect of geometry of the waviness that
is characterised by the normalised amplitude 𝛼 and wavelength 𝛽,
and the Johnson parameter

√

2𝛽∕(𝜋𝛼)2 that depends on them. In
Figs. 4a, b and c, the load-area response is given for the Maugis parame-
ters 𝜆 = 1∕10, 1∕4, 1∕2, 1 and 3, with wave parameters {𝛼, 𝛽} =

{

2
√

2∕8,
{
√

2∕3, 2
}

and
{

2
√

2∕8, 9∕8
}

; the DMT envelope with the Maugis
parameter 𝜆 ∼0 and JKR envelope with ∼∞ are represented by long
dashed, grey-shaded lines and differ slightly between Figs. 4a, and b
and c. The scaled Johnson parameter

√

𝛽∕𝛼2 = 4 and 3 in Fig. 4a, and b
nd c, respectively, the normalised amplitudes 𝛼 = 2

√

2 and 2
√

2∕8
varies, and the normalised wavelength 𝛽 = 2⋯ 9∕8 decreases from
Fig. 4a to c. We restrict our observations to the load-area response
limits of the semi-analytical result first.

As expected, the semi-analytical load-area trajectory for Maugis
parameter 𝜆 = 3 is very close to the JKR-limit response 𝜆 ∼ ∞ of
Eq. (E.42a), that is indicated by a dark-grey shaded, medium-dashed
line in Fig. 4. We observe that the difference between the load-area
trajectory with the Maugis parameter 𝜆 = 3 and the JKR response
with 𝜆 ∼ ∞ increases with scaled Johnson parameter

√

𝛽∕𝛼2 = 4⋯ 3
and normalised wavelength 𝛽 = 2⋯ 9∕8. Hence it is most noticeable
in Fig. 4c for the lowest Johnson parameter

√

2𝛽∕ 𝜋𝛼 2 = 3
√

2∕𝜋.
( )
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Fig. 4. Normalised load �̄� as a function of the contact area �̄� for Maugis parameters 𝜆 =1∕10, 1∕4, 1∕2 and 3, with wave parameters (a,d) {𝛼, 𝛽} =
{

2
√

2∕8, 2
}

, (b)
{
√

2∕3, 2
}

and (c,d)
{

2
√

2∕8, 9∕8
}

. The numerical results during loading are indicated by dotted, coloured lines and diamond-shaped markers, and during unloading by dashed, coloured
lines and square markers. The medium and long, grey-shaded lines indicate the limit responses (E.42a) and (E.43a), and the upper and lower envelopes (E.42b) and (E.43d), with
Maugis parameters 𝜆 =1∕10, ∼ ∞, and ∼ 0 and ∼ ∞, respectively. The result for Maugis parameter 𝜆 = 6 is added in (d) for comparison sake.
Only when the Maugis parameter 3 ≪ 𝜆, i.e. 𝜆 = 6 in Fig. 4d, do
the semi-analytical and JKR response coincide. These observations are
in line with the reasoning by Zhu et al. (2021), who state that as
the interface toughens with roughness the Maugis parameter 𝜆 needed
to approach the JKR-limit increases. The semi-analytical response for
Maugis parameters 𝜆 = 1∕10 and 1∕4 approach the DMT-limit re-
sponse 𝜆 ∼ 0 in Eq. (E.43d), as indicated by a light-grey shaded,
medium-dashed line in Fig. 4. We note that, in general, the load-area
response is bound by the upper and lower envelope, (E.42b) and
(E.43d), respectively. We deliberately ignore the scaled intimate con-
tact area 2𝜋�̄�∕𝛽 that approach zero, where the asymptotic expansion of
the Bessel function fails (See Appendix E).

In Fig. 4, the numerical result during loading is indicated with
dotted lines and diamond-shaped markers; and during unloading, with
dashed lines and square markers. The solid-coloured markers are guides
to the eye of the numerical result. The fraction of the load-area tra-
jectory where semi-analytical and numerical result coincide increases
with Maugis parameter 𝜆, Johnson parameter

√

2𝛽∕(𝜋𝛼)2 and dimen-
sionless wavelength 𝛽 (here, we ignore mechanical instabilities). Only
for the Maugis parameters 𝜆 = 3 and 6 there are roughness-induced
mechanical instabilities as indicated with horizontal, dashed lines in
Figs. 4b, c and d, without markers. The instabilities start, as expected,
at turning points. Instabilities thus occur at higher(/lower) load �̄�
during loading (/unloading) when the amplitude 𝛼 increases and/or
the wavelength

√

𝛽 decreases (Kesari et al., 2010). At low Maugis
parameter, no instabilities are observed.

We observe a disparity between numerical and semi-analytic result.
This is most noticeable in Fig. 4c for wave parameters
{𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

and Maugis parameters 𝜆 = 1∕4,… , 1; in-
stead of a roughness-induced mechanical instability, a monotonic and
6 
Fig. 5. The normalised load �̄� as a function of the intimate contact area �̄� with
wave parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

for Maugis parameters 𝜆 =1∕4 and 6. The
medium and long, grey-shaded lines indicate the limit responses (E.42a) and (E.43a),
and the upper and lower envelopes (E.42b) and (E.43d), with Maugis parame-
ters 𝜆 =1∕4 and ∼ ∞, respectively. The minimum and maximum continuous, intimate
contact area, that border the mechanical instability and cavitation, are indicated by
Delta- and gradient-symbols during loading, and vice versa during unloading.

continuous change of the total, numerical intimate contact area is
observed. These are marked by dashed-dotted lines with square and
diamond-shaped markers. Even so, we find that our numerical result
corroborates our semi-analytical solution in Section 3 for a broad
range of roughnesses {𝛼, 𝛽} and loads �̄�. To better visualise contact
behaviour, we present in Fig. 5 two of the cases with wave parame-
ters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

in Fig. 4c but for a shorter range of intimate
contact area 2 ≤ �̄� ≤ 4; the Maugis parameters are 𝜆 = 1∕4 and 6; the
limit responses (E.42a) and the upper bound of the envelope (E.43d)
correspond with the Maugis parameter 𝜆 = 1∕4; and, are indicated
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Fig. 6. The semi-analytical, normalised displacement �̄� and normalised traction �̄� as a function of the normalised position |�̄�| with roughness parameters {𝛼, 𝛽} =
{

2
√

2∕8, 9∕8
}

nd Maugis parameter 𝜆 = 6, during (a) loading and (b) unloading. The intimate contact area (a) �̄� ≈ 2.71 and 3.40, and (b) 3.16 and 2.47 as indicated by blue coloured, open
elta- and gradient-shaped marker, respectively, on the load-area trajectory in Fig. 5. The grey solid line indicates the profile of the rigid punch and the green lines the profiles
f the substrate.
p
d
t

t
H
m
(
n
t
O
t
l
c
t
g
n
o
w
t
l
j
a

p
c

y medium and long dashed, light-grey lines, respectively. The nu-
erical result for Maugis parameter 𝜆 = 6 shows a discontinuous,

nd for 𝜆 = 1∕4 a continuous, change in total intimate contact area.
he numerical load-area trajectory of the latter Maugis parameter is
onotonous and a single-valued function. These two cases exemplify

wo distinct behaviours, which are discussed in detail in the following
wo sections.

.1. Mechanical instabilities

The blue curves with triangle-shaped markers in Fig. 5, which
orrespond to a high Maugis parameter, exhibit mechanical instabilities
t intimate contact area �̄� = 2.71 and 3.16 during loading and during
nloading, respectively. The semi-analytical load-area response with a
egative slope is unstable and hence inaccessible to the quasi-static,
umerical solution (See Section 4). The minimal(/maximal), contin-
ous intimates contact area past the given instability is indicated
ith a gradient-shaped marker in Fig. 5. The wave profile leads to

oading-unloading hysteresis and energetically irrecoverable deforma-
ion. Adhesive dissipation in wavy contact is the total energy loss by
nstabilities on the Hertzian (See Section 4) and wave length scale.

ith Equation (3b) and the normalisation (13a), combining Eqs. (7)
nd (A.4b), we give the normalised total traction as

�̄�(�̄�) = 2
𝜋
tan−1

⎛

⎜

⎜

⎝

�̄�

√

𝑚2 − 1
�̄�2 − �̄�2

⎞

⎟

⎟

⎠

⋯ (16)

⋯ −

√

�̄�2 − �̄�2
2𝜆

⎛

⎜

⎜

⎜

⎝

1 + 2𝜋𝛼
𝛽�̄� ∫

2𝜋�̄�
𝛽

0
𝐽0(𝑡) cos

(

�̄�𝑡
�̄�

− 2𝜋�̄�
𝛽

)

d𝑡

⎞

⎟

⎟

⎟

⎠

,

nside the intimate contact area at |�̄�| ≤ �̄�; unity inside of the adhesive
trip at �̄� < |�̄�| ≤ 𝑚; and, zero outside of contact at 𝑚 < |�̄�|. We
resent the semi-analytical substrate 𝑢(𝑥) and traction 𝑝(𝑥) profile just

before and just after the given instability during loading in Fig. 6a and
unloading in b. The solid and dashed line correspond with the intimate
contact areas �̄� just before and after the given instability, that are 2.71
and 3.40 during loading, and 3.16 and 2.47 during unloading; and, the
Delta- and gradient-shaped makers are guides to the eye. The rigid
punch profile is indicated by a grey, solid line and the semi-analytical
result with solid and dashed lines. Note that the difference in intimate
contact before and after the given instability is the same during loading
and unloading for Maugis parameter 3 ≪ 𝜆 in Fig. 4d, and is 𝛥�̄� ≈ 0.69
in this specific case.

The loci of the mechanical instabilities during unloading in the
JKR-limit are discussed qualitatively by Guduru (2007): when the edges
of contact at 𝑥 = |𝑎| approach wave crests, an additional decrease in

load, d𝐿 < 0, is necessary compared with smooth contact to reduce the

7 
Fig. 7. Normalised load �̄� as a function of the intimate contact area �̄� with wave
arameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

for Maugis parameters 𝜆 =3∕2 and 6. The medium
ashed, dark grey line indicates the JKR-limit (E.42a) and the long, dashed lines
he upper and lower envelopes (E.42b) and (E.43d), with Maugis parameters 𝜆 =3∕2

and ∼ ∞, respectively. The minimal and maximum continuous, intimate contact area,
that border the mechanical instabilities, are indicated by open, square markers during
loading and unloading, respectively.

contact area, d𝑎 < 0, because the pressure just inside of contact, i.e.
he adhesive load 𝐿a, increases with the total traction, 0 < d𝑝

(

|𝑥| ⪅ 𝑎
)

.
ere, the definition of crests and valleys follows the classical, contact
echanical Cartesian coordinate system used by Guduru and Bull

2007), Guduru (2007) and Waters et al. (2009), where the positive
ormal displacement compresses the substrate. Furthermore, solely in
he JKR-limit the intimate contact and total contact area are synonyms.
nce the edges of contact at 𝑥 = |𝑎| traverse the crests, the total

raction just inside contact decreases, d𝑝
(

|𝑥| ⪅ 𝑎
)

< 0, and the total
oad increases, 0 < d𝐿. Meanwhile the total traction far inside the
ontact area 𝑝(|𝑥| ≪ 𝑎) is approximately constant. Under load control,
he stored, potential (i.e. elastic) energy per unit contact area is then
reater than the work of adhesion 𝛥𝛾; no additional external work is
ecessary to reduce the contact area. Hence a mechanical instability
ccurs. We find the same mechanism acts during loading (See Fig. 6a)
here now the edges of contact at 𝑥 = |𝑎| traverse a valley, the total

raction just inside contact decreases, d𝑝
(

|𝑥| ⪅ 𝑎
)

< 0, and the total
oad increases, 0 < d𝐿. The traction just inside of contact 𝑝

(

|𝑥| ⪅ 𝑎
)

,
ust prior the instability, thus reaches a minimum during indentation
nd a maximum during retraction in Figs. 6a and b, respectively.

In Fig. 7, the load-area response is given for a case with Maugis
arameter 𝜆 = 3∕2 and wave parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

; the
ase with Maugis parameters 𝜆 = 6 coincides with the JKR solution,

while that with 𝜆 = 3∕2 departs from it. Furthermore, for Maugis
parameter 𝜆 =3∕2, the intimate contact area jumps 𝛥𝑎 caused by an
instability during loading and unloading differ. These jumps start at
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Fig. 8. (a) Normalised traction �̄� as a function of the normalised position �̄� with intimate contact areas �̄� = 12∕5 and 79∕25 as marked by dashed grey, vertical lines, and open
circular and triangle-shaped markers, respectively, for the same Maugis parameters 𝜆 =3∕2 and 6 in Fig. 7. (b) Normalised traction �̄� as a function of the normalised position |�̄�|,
nd (c) normalised gap �̄� as a function of the scaled, normalised position |�̄�|∕�̄� for the intimate contact areas �̄� ≈2.60, 2.71, 2.77 and 3.16 as indicated by open square-shaped
arkers in Fig. 7.
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ntimate contact areas �̄� = 2.60 and 2.77 during loading and dur-
ng unloading, respectively, as indicated by red, open-square markers
n Fig. 7.

From Fig. 7 it is apparent that the intimate contact area traversed
n a mechanical instability, 𝛥𝑎, is larger during loading than dur-
ng unloading for Maugis parameter 𝜆 = 3∕2; the jump in contact
rea 𝛥𝑎 during loading(/unloading) decreases(/increases) with Maugis
arameter 𝜆. Hence the area traversed during a given instability for
augis parameter 𝜆 < 3 depends on the loading direction. We ad-

ress the decrease in intimate contact area from �̄� = 3.16 to 2.77
ith decreasing Maugis parameter 𝜆 = 6 and 3∕2 during unloading

irst. Subsequently, we discuss the asymmetry in intimate contact area
ump 𝛥𝑎 between loading and unloading, that increases with decreasing
augis parameter 𝜆 (3∕2 herein).

We present the semi-analytical traction profiles 𝑝(𝑥) before and after
he given instabilities for Maugis parameters 𝜆 = 3∕2 and 6 in Fig. 8a.
hese loci on the load-area trajectories with intimate contact ar-
as �̄� = 12∕5 (= 2.4) and 79∕25 (= 3.16) are indicated in Fig. 7 by circular
nd Delta-shaped markers, respectively, and vertical light-grey, dashed
ines. In Figs. 8b and c, we give the traction 𝑝(𝑥) and gap 𝑔(𝑥) pro-
ile, respectively, for Maugis parameters 𝜆 = 3∕2 and 6 just before
he turning point of the given instability during loading (top) and
nloading (bottom). These loci with the intimate contact areas �̄� ≈ 2.60
nd 2.77, and �̄� ≈ 2.71 and 3.16 for Maugis parameters 𝜆 = 3∕2
nd 6, respectively, are indicated with open, square markers on the
oad-area trajectories in Fig. 7 as well. The semi-analytical solution
nd the numerical result in Figs. 8b and c are indicated by solid,
nd medium-dashed and dotted, coloured lines, respectively. The open
arkers in Fig. 8a correspond with the different loci on the load-area

esponse in Fig. 7, and are guides to the eye of the numerical result
n Figs. 8b and c. Note that only the traction profiles with intimate
ontact areas �̄� = 3.16 and 2.77 for the Maugis parameter 𝜆 = 3∕2
hange between the bottom halves of Fig. 8a and b, and predominantly

ear the edges of intimate contact. (

8 
Comparing the traction profile 𝑝(𝑥) for the Maugis parameter 𝜆 = 3∕2
ith intimate contact areas �̄� ≈ 2.77, in Fig. 8b, with that for Maugis
arameter 𝜆 = 6 and intimate contact area �̄� = 3.16 in Figs. 8a and b,

we find that the adhesive strips |𝑐 − 𝑎| increase with a decreasing
Maugis parameter 𝜆 during unloading. Only the intimate contact 𝑎
decreases and the contact area 𝑐 remains approximately constant for
the Maugis parameter 𝜆 = 3∕2, which one observes comparing Figs. 8a
and b for the intimate contact areas �̄� = 3.16 and 2.77. Secondly,
the local profile gradient 𝜕𝑓∕𝜕𝑥 decreases between the local valleys
and crests (See Fig. 1). Whereby in combination with a higher total
load 𝐿, the gap gradient 𝜕𝑔(𝑎 < |𝑥| ≤ 𝑐) ∕𝜕𝑥 decreases with Maugis pa-
rameter 𝜆 = 6⋯ 3∕2 in Fig. 8c. The scaling of the normalised position �̄�
with the normalised contact area �̄� does not change succession in gap
gradient 𝜕𝑔∕𝜕𝑥 with Maugis parameter 𝜆. Hence, while the adhesive
traction 𝜎 decreases with Maugis parameter 𝜆, the width of the adhesive
strip |𝑐 − 𝑎| increases with a decreasing gap outside of the intimate
contact, 𝑔(𝑎 < |𝑥| ≤ 𝑐). Thirdly, we observe that the traction at the
edges of contact, inside of the intimate contact area, 0 < 𝑝

(

|𝑥| ⪅ 𝑎
)

≈ 𝜎
s the maximum traction inside of contact ∝ 𝛼∕(𝜆𝛽) (See Eq. (16));
nd, increases with decreasing Maugis parameter 𝜆 = 6…3∕2. An ad-
itional decrease in the total load, d𝐿 < 0, thus is necessary to
educe the intimate contact area, d𝑎 < 0. Wherefore the intimate
ontact areas �̄� ≈ 3.16⋯ 2.77, just before a mechanical instability during
nloading, decrease with Maugis parameter 𝜆 = 6⋯ 3∕2 in Fig. 7.
oreover, the intimate contact areas 𝑎 ≈ 2.42 and 2.45 differ less

uring unloading after the given instability (between Maugis param-
ters 𝜆 = 3∕2 and 6, respectively) than before. Hence the jump in
ntimate contact area 𝛥𝑎 decreases with Maugis parameter 𝜆 during
nloading.

The asymmetry between loading and unloading for Maugis param-
ter 𝜆 = 3∕2 occurs because the surface gradient 𝜕𝑓∕𝜕𝑥 in adhesive
ontact is larger during loading, when the contact edges pass crests,
nd smaller during unloading when the contact edges pass valleys

See Fig. 1). This is in line with the differences in profiles between
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Fig. 9. The normalised displacement �̄� and normalised traction �̄� as a function of the normalised position |�̄�| with roughness parameter {𝛼, 𝛽} =
{

2
√

2∕8, 9∕8
}

and Maugis
parameter 𝜆 = 1∕4 during (a) loading and (b) unloading. The intimate contact area (a) �̄� ≈ 2.59 and (b) 3.47 as indicated by red coloured, star-shaped markers on the load-area
response in Fig. 5. The light grey, dashed lines indicate the adhesive strip 𝑎 < |𝑥| ≤ 𝑐.
oading and unloading, which we show in Fig. 8c. Secondly, the ad-
esive strip before the instability is smaller during loading than during
nloading (See Fig. 8b), which has an appreciable effect as the adhesive
trips becomes generally wider with decreasing Maugis parameter 𝜆.

We find that the asymmetry in intimate contact area jump 𝛥𝑎 is because
f the finite range of adhesion 𝛿. In JKR-theory adhesive and intimate
ontact coincide, 𝑎 ≈ 𝑐 for Maugis parameter 𝜆 = 6. Instabilities
hus are insensitive to the gap gradient 𝜕𝑔∕𝜕𝑥 outside of intimate
ontact, i.e. of pure geometrical origin. In contrast, for finite-range
dhesion (here 𝜆 = 3∕2), the difference in local surface 𝜕𝑓∕𝜕𝑥 between
oading and unloading makes the area traversed 𝛥𝑎 in a given instability
oading-direction dependent.

.2. Cavitation

With Maugis parameter 𝜆 = 1∕4, as indicated by the red curves
ith star-shaped markers in Fig. 5, the contact cavitates between

ntimate contact areas �̄� ≈ 2.59 and 3.47. Here, cavitation is defined
s the occurrence of gaps under tensile traction over strips that are
urrounded by intimate contact on either side. Cavitation is indicated
y red, dashed-dotted lines with solid, red-coloured markers in Fig. 5.
or the wave roughness herein, both the semi-analytical and numerical,
ntimate and adhesive contact areas vary continuously with cavita-
ion. Cavitation leads to a monotonic, numerical load-area response,
.e. without any turning point. The minimum(/maximum) and maxi-
um(/minimum) continuous, intimate contact areas in Fig. 5, prior and
ast the given cavitation, are indicated by Delta- and gradient-shaped
arkers, respectively, during (un)loading. The numerical load-area

rajectories coincide and the deformation is energetically recoverable.
ote that cavitation prevents a potential mechanical instability because

he semi-analytical result for Maugis parameter 𝜆 = 1∕4, which cannot
apture cavitation, exhibits a region with negative load-area gradient
𝐿∕d𝑎 < 0. There instability would occur under load control when
ontinuous intimate contact is enforced.

We present in Fig. 9 the substrate 𝑢(𝑥) and traction profile 𝑝(𝑥)
with roughness parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

and Maugis param-
ter 𝜆 = 1∕4 just before and after cavitation in Fig. 5, i.e. with the
ontinuous intimate contact area �̄� = 2.59 in Fig. 9a and 3.47 in b;
he numerical result during loading is indicated with dotted lines and
iamond-shaped markers; and during unloading, with dashed lines
nd square markers. These markers are guides to the eye of the nu-
erical result. The semi-analytical result is indicated with solid lines

nd void of markers. The vertical, light-grey dashed lines indicate the
izes of the adhesive strips |𝑐 − 𝑎|. The semi-analytical and numerical

result, and the loading and unloading trajectory coincide in Fig. 9
9 
Fig. 10. The normalised displacement �̄� and normalised traction �̄� as a function of the
normalised position |�̄�| with roughness parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

and Maugis
parameter 𝜆 = 1∕4 during loading and unloading. The intimate contact area �̄� ≈ 3 as
indicated by a red, open-square marker on the numerical load-area response in Fig. 5.

as expected. Notable though is that the size of contact 𝑐 is approx-
imately constant during cavitation, whereby the total intimate con-
tact area 𝑎 increases(/decreases) and thus the adhesive strips |𝑐 − 𝑎|
decrease(/increase) during (un)loading.

Upon loading, the contact cavitates when the adhesive strips
𝑎 < |𝑥| ≤ 𝑐 encompass the two adjacent crests and valleys at each site
with 𝑔(𝑎 < |𝑥| ≤ 𝑐) < 𝛿 for intimate contact area �̄� ≈ 2.59. The gap
on the crests nearest the edges of intimate contact, yet outside of
intimate contact, vanishes 𝑔(3 < |�̄�| < 3.5) ∼ 0 in Fig. 9a. When the
load increases further, 0 < d𝐿, these crests come into intimate contact,
while the adjacent valleys remain separated. Hence the inner valleys
form cavities. Continuous contact is attained again, once these gaps at
valleys are closed in Fig. 9b. During unloading in Fig. 5, the maximum
traction inside of intimate contact, which occurs in the valleys, with
2.5 < |�̄�| < 3 in Fig. 9b, nearest the edges of intimate contact, keeps
increasing. Eventually, it matches the adhesive traction 𝑝(|𝑥| < 𝑎) ∼ 𝜎
for intimate contact area �̄� ≈ 3.47. When the load decreases fur-
ther, d𝐿 < 0, the valleys just inside of intimate contact cavitate, while
the surrounding crests remain in intimate contact. Continuous contact
is attained again once the outer crests go out of intimate contact in
Fig. 9a. During cavitation the position of the outer most edge of the
adhesive strips |𝑥| = 𝑐 thus moves little while the total, intimate contact
area 𝑎 changes significantly.
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The disparity in load-area trajectory of Figs. 4 and 5 between
semi-analytical and numerical result during cavitation is of interest. We
thus present in Fig. 10, the substrate 𝑢 (𝑥) and traction profile 𝑝(𝑥) for
one such case, i.e. with roughness parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

and Maugis parameter 𝜆 = 1∕4 for the total, intimate contact area �̄� ≈ 3;
the profiles 𝑢(𝑥) and 𝑝(𝑥) correspond with the intersects of the
semi-analytical and numerical result, and the dashed light-grey vertical
line of �̄� = 3, where the numerical result in Fig. 5 is marked with a
red, open-square marker. The semi-analytical gap 𝑔

(

𝑎 ⪅ |𝑥| < 𝑐
)

< 0
in Fig. 10 is negative on the crests nearest to the edges of intimate
contact because the Maugis analysis does not prevent interpenetration
inside of the adhesive strip. Furthermore, the maximum traction of
the semi-analytical result exceeds the adhesive traction 𝜎 < 𝑝

(

|𝑥| ⪅ 𝑎
)

.
The traction boundary condition is not enforced for all contact areas 𝑐
as a continuous, intimate contact area 𝑎 is the only requirement.
The Maugis analysis does not limit the adhesive traction inside of
intimate contact 𝑝(|𝑥| < 𝑎) either (See Section 2). With continuous
intimate contact, the displacement 𝑢

(

|𝑥| ⪅ 𝑎
)

in valleys just inside of
intimate contact increases, and hence traction 𝑝(𝑎 < |𝑥| ≤ 𝑐) exceeds
the maximum traction 𝜎. Wherefore the gradient of the semi-analytical
load-area trajectory 𝜕𝐿∕𝜕𝑎, e.g. in Fig. 5 for Maugis parameter 𝜆 = 1∕4,
switches sign with of the excess tensile traction 𝜎 < 𝑝

(

|𝑥| ⪅ 𝑎
)

on the
valleys in intimate contact and the large semi-analytical contact area 𝑐.
The semi-analytical result thus is incorrect during cavitation.

For the numerical results, the morphology of the contact area is an
outcome of the mixed boundary-value problem (3). The inequality (3a)
is ensured, the crests at 3 < |�̄�| < 3.5 in Fig. 10 come in repulsive, inti-
mate contact, and the valleys at 2.5 < |�̄�| < 3 remain in tensile, adhesive
contact. At locations where the semi-analytical traction 𝜎 < 𝑝

(

𝑎 ⪅ |𝑥|
)

,
intimate contact is destroyed and local separation (i.e. cavitation) oc-
curs with a numerical gap 0 < 𝑔 < 𝛿 (See the insert in Fig. 10). This
numerical result thus appears to be the only correct solution during
cavitation.

Upon loading, the contact cavitates when crests inside the adhesive
strips come into intimate contact. The adhesive strip must thus span
at least a valley and a crest outside of intimate contact; and, upon
unloading, valleys inside of intimate contact go out of intimate contact.
Inside of intimate contact, a valley thus is under maximum tension and
an adjacent crest remains in more compressive intimate contact. Hence
during loading cavitation occurs because the crests adjacent to inti-
mate contact prevent interpenetration outside of continuous contact;
and during unloading, because the tensile traction is limited by the
adhesive strength in the valleys. Both occur prior the semi-analytical
load-area gradient 𝜕𝐿∕𝜕𝑎 becomes negative in Fig. 5 and thus prevents
instabilities.

5.3. Continuous stable contact

Instabilities are typically associated with high Maugis parameter
and cavitation with low Maugis parameter, and intermediate Maugis
parameter displays both, either and neither. The transition from contin-
uous contact with instabilities to continuous contact without is trivially
observed in e.g. Fig. 4b; turning points on the load-area trajectory van-
ish with decreasing Maugis parameter 𝜆 away from JKR-type contact.
The load-area trajectory fails to describe the transition from continuous
contact with(out) instabilities to cavitation. We present in Fig. 4b two
of the cases of wave parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

in Fig. 4(b) but for
a shorter range of intimate contact area 2.5 ≤ �̄� ≤ 4.5.

For Maugis parameter 𝜆 = 1∕10, the contact cavitates between the
intimate contact areas �̄� ≈ 2.96 and 3.63 as indicated by a red, square
and circular markers, respectively; for 𝜆 = 1∕2, the intimate contact
area is continuous between the same contact areas �̄� = 29∕10⋯ 39∕10
as indicated by vertical, light-gray dashed lines. According to the
semi-analytical results, the slope 𝜕𝐿∕𝜕𝑎 is always positive for Maugis
parameter 𝜆 = 1∕2 but sometimes negative for 1∕10. In the former case,

indeed, no instability occurs; in the latter, the contact cavitates instead, b

10 
Fig. 11. Normalised load �̄� as a function of the intimate contact area �̄� with
wave parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

for Maugis parameters 𝜆 =1∕10 and 1∕2. The
edium dashed, light grey line indicates the M-DMT limit (E.43a) with Maugis
arameter 𝜆 = 1∕10, and the long, dashed lines the upper and lower envelopes (E.42b)
nd (E.43d), with Maugis parameters 𝜆 =1∕10 and ∼ ∞, respectively.

hich leads to an always positive, static load-area gradient, 0 ≤ 𝜕𝐿∕𝜕𝑎,
of the numerical result. The latter cavitation prevents instabilities.
Hence both cases with Maugis parameters 𝜆 = 1∕10 and 1∕2 are
energetically recoverable.

In Fig. 12, the displacement 𝑢(𝑥) and traction profile 𝑝(𝑥) are given
or the Maugis parameter 𝜆 = 1∕10 and 1∕2 with roughness parame-
ers {𝛼, 𝛽} =

{
√

2∕3, 2
}

; the load-area loci with the intimate contact
areas �̄� ≈ 2.96, 3.25 and 3.63 are indicated with square, Delta-shaped
nd circular markers, respectively, in Fig. 11. The displacement 𝑢(𝑥)

is shifted such that the displacement is zero at the edges of intimate
contact, i.e. 𝐶 ≡ �̄�(|𝑥| = 𝑎). The vertical light-grey, dotted and dashed
lines indicate the sizes of the contact 𝑚�̄� ≈ 6.30 and 4.35 for Maugis
parameters 𝜆 = 1∕10 and 1∕2, respectively; and, the horizontal lines
the normalised interaction ranges 𝛿 = 10 and 2 at the edges of
contact |𝑥| = 𝑐, respectively.

At the intimate contact area �̄� ≈ 2.96 in Fig. 12a, the adhesive
strip 𝑎 < |𝑥| ≤ 𝑐 for Maugis parameter 𝜆 = 1∕10 encompasses four
valleys and two enclosed crests; and, for 𝜆 = 1∕2, two valleys and
crests. With increased intimate contact area �̄� = 2.96⋯ 3.25 in Fig. 11
between Figs. 12a and b, the contact remains continuous for Maugis
parameter 𝜆 = 1∕2 and cavitates for 𝜆 = 1∕10; the valleys nearest
intimate contact close from the side of intimate contact for Maugis
parameter 𝜆 = 1∕2, while crests prior in adhesive contact come into
compressive contact for 𝜆 = 1∕10. Meanwhile the traction 𝑝

(

|𝑥| ⪅ 𝑎
)

in-
reases with intimate contact area, 0 < d𝑎. Subsequently, with intimate
ontact areas �̄� = 3.25⋯ 3.63 in Fig. 11, as Figs. 12b and c show, the
alleys initially out of intimate contact with �̄� ≈ 2.96 closes up for both
augis parameters 𝜆 = 1∕10 and 1∕2. Meanwhile the traction 𝑝

(

|𝑥| ⪅ 𝑎
)

ecomes tensile with intimate contact area, 0 < d𝑎, between intimate
ontact areas �̄� ≈ 2.96 and 3.63 in Figs. 12b and c. Note again that the
ize of contact 𝑐 is approximately constant, 0 ⪅ d𝑐, for both Maugis
arameters 𝜆 = 1∕10 and 1∕2. Hence contact does not necessarily have
o display instabilities at moderate Maugis parameters 1∕2 ≤ 𝜆 ≤ 3 to
avitate with lower 𝜆, while the adhesive strips 𝑎 < |𝑥| ≤ 𝑐 encompasses
valley and a crest. The difference between continuous contact without

nstabilities and cavitation is whether the maximum tensile traction
xceeds the adhesive traction.

Both instability and cavitation are deviations from the semi-analytica
esult, cavitation occurs for large roughness and smaller Maugis pa-
ameter, and is up to here captured only by the numerical analysis.
heir difference is remarkable, as instability gives rise to hysteresis
nd roughness-induced dissipation, while cavitation does neither. It is
oteworthy that in Fig. 5 cavitation appears to occur when contacts are
tiffer and instability when they are softer. This might seem capricious,

ut we find that cavitation occurs when contact stiffens because the
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Fig. 12. Shifted, normalised displacement �̄�− 𝐶 and normalised traction �̄� as a function of the normalised position |�̄�| with roughness parameters {𝛼, 𝛽} =
{
√

2∕3, 2
}

and Maugis
arameters 𝜆 = 1∕10 and 1∕2 by dashed and solid lines, respectively. The intimate contact area (a) �̄� ≈ 2.96, (b) 3.25 (c) 3.63 as indicated by square-, Delta-shaped and circular
arkers in Fig. 11, respectively. The gray dashed and dotted, and dashed-dotted lines indicate the size of the contact 𝑐 and gap size 𝛿, respectively.
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dhesive traction to retain intimate contact increases with decreas-
ng Maugis parameter. Vice versa, more compliant contact remains
n intimate contact for higher wave roughness and thus instabilities
ccur. Note that the maximum traction inside of intimate contact
cales with wave roughness 𝛼∕𝛽 in Eq. (16). This is in line with the
indings by Zhu et al. (2021) for axi-symmetric contact, however the
ole of interpenetration at crests 𝑔(𝑎 < |𝑥| ≤ 𝑐) < 0 and the negative,
emi-analytical load-area gradient 𝜕𝐿∕𝜕𝑎 were not reported. The valid-
ty of any analysis based on continuous contact areas thus depends on
he Maugis parameter 𝜆 and the wave parameters {𝛼, 𝛽}, as together
hey control the connectivity of the intimate contact area.

.4. Effect of wave profile on the load-area response

In agreement with previous works (Kesari et al., 2010; Ciavarella,
016), the Maugis analysis of cylindrical contact with wave profiles
pproaches the JKR-limit as presented by Guduru (2007) with Maugis
arameter 3 ≪ 𝜆 (See e.g. Figs. 4d and 7). We show that the Maugis
nalysis approaches the M-DMT limit with Maugis parameter 𝜆 ≪ 1
See e.g. in Fig. 11 for Maugis parameter 𝜆 = 1∕2) but not when
avitation occurs. In the former cases, the load-area response is con-
ined within an envelope

√

𝛼2∕𝛽
√

�̄� that is controlled by the Johnson
parameter

√

2𝛽∕(𝜋𝛼)2 (See Fig. 2 and Appendix E). These observations
re all limited to a single set of wave parameters {𝛼, 𝛽} and limiting
augis parameters 𝜆 ∼ 0 and ∼ ∞ and exclude cavitation. It is however

f interest whether the local envelope, that depends on at least the
ohnson parameters

√

2𝛽∕(𝜋𝛼)2, encloses also the load-area response
for Maugis parameters 1∕2 ≤ 𝜆 ≤ 3.

We reason that when a sufficient number of wave asperities is in
contact the mean load-area response is controlled by smooth cylindrical
 f

11 
contact. This already holds in the DMT- and JKR-limits. We thus give
the local envelope as

�̄� ∼ �̄�H
M ± 𝜋

√

𝛼2

𝛽

√

�̄�, (17a)

with the Hertzian load,

�̄�H
M ≡ �̄�M(�̄�, {𝛼 = 0, 𝛽 = −}) , (17b)

where the changes in load 𝐿w (B.13) and gap 𝑔w(𝑎 < |𝑥| ≤ 𝑐) due to the
ave roughness are neglected, with the functional dependence ({∙}) on
ariables ∙.

In Fig. 13, the load-area response is presented for Maugis parame-
ers 𝜆 = 1∕2, 1 and 3∕2, with wave parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

and

2
√

2∕8, 9∕8
}

; the local envelope (17) is indicated by dark-grey, medium
dashed lines and marked with symbols ∼𝐿({𝜆}). The Maugis parame-
ters 𝜆 = 1∕2⋯ 3∕2 increase from Figs. 13a to c, and the scaled Johnson
arameter

√

𝛽∕𝛼2 = 3. The numerical load-area response in Fig. 13 is
ncompassed by the local envelope ∼𝐿({𝜆}) for all wave parameters.

For Maugis parameter 1 ≪ 𝜆, the contact area remains continu-
ous and the load-area responses overlap the local envelope ∼𝐿({𝜆})
ear their turning points. For wave parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

nd
{
√

2∕3, 2
}

, and Maugis parameters 1∕2 ≤ 𝜆 ≤ 1, the approxima-
tion (17) overestimates the true size of the local envelope. These
overestimates, where the load-area response does not intercept the local
envelope ∼𝐿({𝜆}) (17), coincide with the roughness for which we will
show cavitation in Fig. 14. Roughness-induced adhesion is still better
approximated when one uses the correction provided by Eq. (17a)
than the smooth contact solution for Maugis parameters 𝜆 ≤ 1. The
ohnson parameter

√

2𝛽∕(𝜋𝛼)2 might thus be a good approximation
or the contribution of roughness to adhesive dissipation. In Figs. 14a
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Fig. 13. Normalised load �̄� as a function of the contact area �̄� for wave parameters {𝛼, 𝛽} ={
√

2∕3,2 } and { 2
√

2∕8, 9∕8 }, with Maugis parameter (a) 𝜆 = 1∕2, (b) 1 and (c) 3∕2.
The medium-dashed, dark grey lines indicate the local envelope (17) as a function of Maugis parameter 𝜆, and the long, dashed lines the JKR (E.42b) and (M-)DMT (E.43d)
envelope.
a
c
t
w
e

c

d
N

and b, the load-area response is presented again for Maugis param-
eters 𝜆 = 1∕2, 1 and 3∕2, with wave parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

and
{

2
√

2∕8, 9∕8
}

, respectively, for a restricted range of intimate con-

act area 2.4 ≤ �̄� ≤ 3.6; the results of wave parameters {𝛼, 𝛽} =
{
√

2∕3, 2
}

and
{

2
√

2∕8, 9∕8
}

are shown in Figs. 14a and b, respectively; the plot
ange of each load-area trajectory is indicated with light grey, dashed
ectangles in Fig. 13; the load �̄� is translated along the vertical axis
y a constant 𝐶({2𝜆 = 1}) = 2.3, 𝐶({𝜆 = 1}) = 1 and 𝐶({2𝜆 = 3}) = −1

for clarity sake. In Figs. 14c and d, the numerical substrate 𝑢 (𝑥) and
traction profile 𝑝(𝑥) are given for the Maugis parameters 𝜆 = 1∕2 and 1
with roughness parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

and
{

2
√

2∕8, 9∕8
}

for
the intimate contact area �̄� = 3; the loci with the intimate contact
areas �̄� ≈ 3 are indicated with coloured, Delta-shaped markers in
igs. 14a and b. The result for Maugis parameter 𝜆 = 3∕2 in Figs. 14a

and b is not shown in c and d because no stable quasi-static contact is
attained at intimate contact area �̄� = 3.

For the largest given amplitude 𝛼 =
√

2∕3 and longest wave-
length 𝛽 = 2, the intimate contact area is continuous in Figs. 14a
and c; for the smallest given amplitude 𝛼 = 2

√

2∕8 and shortest
avelength 𝛽 = 9∕8, the semi-analytical and numerical results no

onger coincide in Fig. 14b and the contact cavitates via adhesive strips
n d. For Maugis parameter 𝜆 = 3∕2, we observe that mechanical
nstabilities occur both during loading and unloading. With Maugis
arameters 𝜆 = 1 and 1∕2 for roughness parameters {𝛼, 𝛽} =

{
√

2∕3, 2
}

the intimate contact area remains continuous. This observation cor-
responds with the traction profiles in Fig. 14c. For Maugis parame-
ter 𝜆 ≤ 1, the intimate contact cavitates at the valleys of the wavy
profile, that border the outermost crests in intimate contact in Fig. 14d.
We find notable that mechanical instabilities and cavitation do occur
successively for a particular range of Maugis parameter (herein 𝜆 = 1
with wave parameters {𝛼, 𝛽} =

{

2
√

2∕8, 9∕8
}

). This confirms that
12 
mechanical instability and cavitation are mutually exclusive at a given
load-area locus but not across the whole load-area trajectory. Note that
during instabilities cavities might appear and then disappear, yet our
numerical method does not provide for this, because it solves for stable
quasi-static equilibrium. Once the Maugis parameter is small enough,
here with 𝜆 ≤ 1∕2, the substrate no longer conforms to the wave
roughness and mechanical instabilities are absent.

For the given scaled Johnson parameter
√

𝛽∕𝛼2 = 3 all three regimes
re observed in Fig. 14; the Johnson parameter alone does not uniquely
apture adhesive dissipation. Inspecting the load-area trajectory with
otal intimate contact area �̄� < 2 and Maugis parameters 𝜆 = 1∕2 and 1,
e find that the intimate contact area cavitates for roughness param-
ter {𝛼, 𝛽} =

{
√

2∕3, 2
}

with a decreasing Maugis parameter as well.
The sections of the load-area curves we considered here are marked
with dashed, pink coloured ellipses in Figs. 13a and b. Connectivity of
the intimate contact area thus also depends on the locus of the load-area
curve one considers.

The numerically obtained deformations outside of contact in Figs. 14
and d differ little between normalised amplitudes 𝛼 =

√

2∕3 and 2
√

2∕8,
respectively, for the intimate contact area �̄� ≈ 3 with the given
Maugis parameters 𝜆 = 1 and 1∕2. Hence the Maugis parameter 𝜆
for which the adhesive behaviour during retraction changes from
continuous to fragmented intimate contact mainly depends on dimen-
sionless wave traction 𝛼∕(𝛽𝜆) = 3∕

(

9
√

2𝜆
)

and 4∕
(

9
√

2𝜆
)

in Figs. 14a
and c, and 14b and d, respectively. This argument suffices during both
loading and unloading because cavitation prevents loading-unloading
hysteresis and thus the need to consider the gap in the adhesive
strips, 𝑔(𝑎 < |𝑥| ≤ 𝑐), during loading. Hence the contact toughness
epends on the inverse wave traction 𝛽𝜆∕𝛼 (See Section 5.2 as well).
ote that the dimensionless parameter 𝛽𝜆∕𝛼 appears to control the

occurrence of instability/cavitation with finite Maugis parameter 𝜆 yet
is not a quantitative measure of roughness-induced dissipation.
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Fig. 14. (a,b) Normalised load �̄� as a function of the intimate contact area �̄� for Maugis parameters 𝜆 =1∕2, 1 and 3∕2, with wave parameters (a) {𝛼, 𝛽} =
{
√

2∕3, 2
}

nd (b)
{

2
√

2∕8, 9∕8
}

. (c,d) The numerical normalised displacement �̄� and normalised traction �̄� as a function of the normalised position |�̄�| with roughness parameters (c)

𝛼, 𝛽} =
{

2∕
√

3, 2
}

and (d)
{

2
√

2∕8, 9∕8
}

for Maugis parameters 𝜆 = 1∕10 and 1∕2. The intimate contact area (c,d) �̄� ≈ 3 is indicated by Delta-shaped markers in (a,b).
t
t
b
M
m
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To summarise, the Maugis parameter 𝜆 is the relative measure of
the substrate elastic compliance scaled with the adhesive strength 𝜎
that accounts for the system size 𝑅∕𝛿, i.e. the size-dependent contact
compliance. The maximum positive traction inside of intimate contact
is proportional to 𝛼∕(𝛽𝜆); the amplitude of the sinusoidal expansion of
the integral on the RHS of the adhesive traction (16) is of order 𝛼∕(𝛽𝜆)
when the wavelength 𝛽 ≪ �̄�. The maximum adhesive traction nec-
essary to maintain intimate contact at valleys thus increases with
decreasing Maugis parameter 𝜆. Hence, for a given Maugis parameter,
the contact toughens with instabilities for decreasing wave roughness;
the contact weakens via cavitation and increasing wave roughness.
Here, (interface) toughness is used synonymously with the additional
work necessary to form or break intimate contact compared to smooth
contact (Guduru and Bull, 2007; Guduru, 2007; Waters et al., 2009).
Furthermore, the chance of cavitation increases with normalised ampli-
tude 𝛼 and decreases with normalised wavelength 𝛽. The gap outside
of intimate contact 𝑔(𝑎 < |𝑥) decreases with Maugis parameter 𝜆, while
the size of the adhesive strips |𝑐 − 𝑎| increases. Hereby the chance of
crests adjacent to intimate contact to come into compressive contact
during loading increase. Instability at high Maugis parameter 𝜆 or
adhesive strips 𝑎 < |𝑥| ≤ 𝑐 that encompass a valley and a crest are not
prerequisite for cavitation with decreasing 𝜆. Hence contact cavitates
because with decreasing Maugis parameter 𝜆 = 1∕2⋯ 1∕10, the contact
stiffens, all before a semi-analytical mechanical instability can occur.
Mechanical instability and cavitation thus appear mutually exclusive
at a given load-area locus.

We observe the following three, adhesive response regimes: con-
tinuous intimate contact without mechanical instabilities; continuous
intimate contact with mechanical instabilities; and, cavitation. In the
JKR-limit 𝜆 ∼ ∞, the substrate conforms to the wave roughness
inside contact. Energy is then dissipated when a mechanical instability

occurs between two stable, static equilibria (See Section 5.1). We agree w

13 
with Guduru (2007) that for a sufficient initial load and finite rough-
ness, continuous (intimate) contact is maintained during retraction.
Intimate contact solely cavitates when the wave traction 𝑝(|𝑥| < 𝑎)
surpasses the traction 𝛥𝛾∕𝛿 (See Section 5.2). In the JKR-limit the
interaction range vanishes, i.e. 𝛿 ∼ 0, and adhesive traction 𝜎 ∼ ∞.
Hence the (intimate) contact area remains continuous during retraction
for any finite, wave roughness because cavitation is prevented. The
contact mechanical response depends on applied load for high, yet
finite, Maugis parameters, which is in agreement with the statement
by Guduru (2007) and previous works (Zhu et al., 2021; Pérez-Ràfols
et al., 2023). Notable is that there is a minimum amplitude 𝛼 and
maximum wavelength 𝛽 for Maugis parameters 1 ≪ 𝜆, below and above
which, respectively, no roughness-induced dissipation is observed ei-
ther (See Fig. 4a with roughness parameters {𝛼, 𝛽} =

{

2
√

2∕8, 2
}

and
Maugis parameter 𝜆 = 3). When the Maugis parameter 𝜆 decreases
he contact stiffness increases whereby the substrate still conforms
o the wavy profile but the difference in intimate contact area 𝛥𝑎
etween static equilibria becomes loading direction dependent. With
augis parameters 1∕2 ≤ 𝜆 < 3∕2, continuous contact with and without
echanical instabilities, and cavitation are observed. Finally, when

ne reduces the Maugis parameter even further, with 𝜆 < 1, solely
ontinuous contact without mechanical instabilities and/or cavitation
s observed. With vanishing Maugis parameter 𝜆 ≪ 1∕2, intimate
ontact must cavitate because no tensile traction is sustained at wave
alleys in intimate contact as the substrate stiffens. The successive
dhesive response regimes we find with decreasing contact compliance
hus are: continuous contact without mechanical instabilities then only
avitation; continuous contact with mechanical instabilities and/or
avitation, then solely cavitation; and, not presented herein, cavitation
ith high wave parameters.
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6. Concluding remarks

In this work, we perform the Maugis analysis of the adhesive line
contact between a cylinder with various wave profiles and an elastic,
semi-infinite half-plane. We show that the adhesive contact mechanics
depends on the Maugis parameter as a measure of the size-dependent
contact compliance, and on the profile geometry: the amplitude and
the wavelength. Whether the Johnson parameter is a measure of the
envelope that encloses the load-area response for small Maugis pa-
rameters is hitherto unknown. We find that the maximum envelope of
the load-area response is captured by the Johnson parameter, where
smooth adhesionless and JKR contact give the maximum and minimum
bound of the load-area response. However, the Johnson parameter
does not uniquely determine roughness-induced dissipation for a finite
Maugis parameter as the amplitude (or wavelength) is also necessary.

With a given wave profile and a decreasing Maugis parameter, the
adhesive response changes from a load-area trajectory with discon-
tinuous, mechanical jumps in intimate contact area to a continuous
decrease of the total contact area. For moderate Maugis parameters,
equivalent maximum traction inside and adhesive traction outside of
intimate contact, and the simultaneous increase in the range of adhe-
sion allow for smaller intimate contact areas during unloading than
JKR. For sufficiently low Maugis parameters, cavities under tensile
traction inside of contact appear because the wavy substrate becomes
too stiff for a continuous intimate contact. Adhesive dissipation thus
decreases when there is an increase in the range of adhesion and
the adhesive traction decreases. Similarly, contact toughness vanishes
above a critical wave roughness. Notable is that during indentation
and retraction both mechanical jumps and cavitation can occur. While
mechanical instabilities and cavitation are mutually exclusive they thus
do coexist at different loci on the given load-area curve. Intimate
contact does remain continuous though for low Maugis parameters and
sufficiently low wave roughness, and for high Maugis parameters and a
sufficiently high (maximum) load. These findings are obviously limited
to cylindrical indenters with single scale roughness.

In macro- and mesoscopic adhesive contacts the Maugis parameter
is typically large enough that our semi-analytical analysis is valid in the
presence of microscale roughness. Recent experiments show that rough
Hertzian contact predominantly peels at the edge of contact (Lyashenko
and Pohrt, 2020), i.e. without cavitation. Furthermore, our analysis is
useful in the model interpretation of soft matter contact where adhesion
and viscoelasticity act simultaneously, and the intimate contact area
might remain continuous (Pérez-Ràfols et al., 2023). For sufficiently
high roughness amplitudes and short-enough wavelengths, the chance
of cavitation increases though. The Maugis analysis then allows inter-
penetration inside of the adhesive strips, which limits the range of
validity of our semi-analytical solution, and advanced analysis (Zhu
et al., 2021) is necessary. The exact functional dependence of the
transitional value of the Maugis parameter and load hysteresis, for
which contact cavitates, remains unknown, hence a good starting point
for future work.
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Appendix A. Symmetric adhesive line contact

Adhesive contact corresponds with the (singular) JKR-theory by John
son et al. (1971) when the interaction range vanishes, i.e. 𝛿 ∼ 0, and
the adhesive traction

𝑝a
JKR(𝑥) =

𝐿JKR
a

𝜋
√

𝑎2 − 𝑥2
, (A.1a)

for |𝑥| ≤ 𝑎, where 𝐿JKR
a = −

√

2𝜋𝐸∗𝛥𝛾𝑎 is the adhesive contribution
to the total load 𝐿(𝑎), which ensures that the energy release rate
(

𝐾JKR
I±𝑎

)2
∕𝐸∗ is equal to the work of adhesion 𝛥𝛾, with the Mode I stress

intensity factor,

𝐾JKR
I±𝑎 ≡ lim

𝑥→𝑎−
𝑝a

JKR(𝑥)
√

2𝜋 (𝑥 − 𝑎) =
𝐿JKR

a
√

𝜋𝑎
. (A.1b)

The adhesive traction (A.1a) with generic load 𝐿JKR
a = 𝐿′

a(𝑎) leads to a
uniform deformation within the contact area, that is zero at the edges of
adhesionless contact (Johnson and Johnson, 1987). The total traction
that results in zero external load (Baney and Hui, 1997) when one
applies the Dugdale-Maugis traction (Dugdale, 1960; Maugis, 2000) to
an external crack under plane strain condition is given by Tada et al.
(1973):

𝑝a
Dugdale(𝑥) = (A.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜎
𝜋

(

tan−1
(
√

𝑐2 − 𝑎2

𝑎2 − 𝑥2

)

−
√

𝑐2 − 𝑎2

𝑎2 − 𝑥2

)

, |𝑥| ≤ 𝑎 ;

𝜎, 𝑎 < |𝑥| ≤ 𝑐 ;
0, 𝑐 < |𝑥| ;

.

he condition that governs the cancellation of stress singularities
t |𝑥| = 𝑎 is expressed as
Dugdale
I±𝑎 ≡ 𝐾JKR

I±𝑎 , (A.3a)

ith stress intensities:

Dugdale
I±𝑎 = 2𝜎

√

𝜋𝑎

√

𝑐2 − 𝑎2; and, 𝐾JKR
I±𝑎 =

𝐿′
a(𝑎)

√

𝜋𝑎
, (A.3b)

where 𝐾Dugdale
I±𝑎 is the Mode I stress intensity factor when loading exter-

nal cracks with a constant traction 𝜎 in an infinite elastic solid under
plane stain condition (Maugis, 2000), and 𝐾JKR

I±𝑎 the Mode I stress in-
tensity factor of said external cracks under a far-field load 𝐿′

a(𝑎), which
s not necessarily equal to the adhesive load 𝐿JKR

a . Using Eqs. (A.3), we
ive the adhesive traction inside of the intimate contact area due to the
ar-field load 𝐿′

a(𝑎) as

a
𝐿′

a
(𝑥) = 2𝜎

𝜋

√

𝑐2 − 𝑎2
√

𝑎2 − 𝑥2
, (A.4a)

and via Eq. (A.3), find the total adhesive traction

𝑝a(𝑥) ≡ 𝑝a (𝑥) + 𝑝a (𝑥) = (A.4b)
Dugdale 𝐿′
a
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𝑢a(𝑥) =
4𝜎
𝜋𝐸∗

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, |𝑥| ≤ 𝑎 ;

𝑐 cosh−1
(

|𝑥|
𝑎

√

𝑐2 − 𝑎2

𝑐2 − 𝑥2

)

− |𝑥| cosh−1
(
√

𝑐2 − 𝑎2

𝑐2 − 𝑥2

)

−
√

𝑐2 − 𝑎2 cosh−1
(

|𝑥|
𝑎

)

, 𝑎 < |𝑥| < 𝑐 ;

𝑐 sinh−1
(

|𝑥|
𝑎

√

𝑐2 − 𝑎2

𝑥2 − 𝑐2

)

− |𝑥| sinh−1
(
√

𝑐2 − 𝑎2

𝑥2 − 𝑐2

)

−
√

𝑐2 − 𝑎2 cosh−1
(

|𝑥|
𝑎

)

, 𝑐 ≤ |𝑥| ;

(A.5a)

Box I.
t
o
t

𝑝

t
o

𝑝

t
B
a
∑

w

𝑝

U

J

w
∑

w
t
i

4

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜎
𝜋

tan−1
(
√

𝑐2 − 𝑎2

𝑎2 − 𝑥2

)

, |𝑥| ≤ 𝑎 ;

𝜎, 𝑎 < |𝑥| ≤ 𝑐 ;
0, 𝑐 < |𝑥| ;

;

and, the adhesive load,

𝐿M
a (𝑎) ≡ −∫

∞

−∞
𝑝a(𝑥) d𝑥 = −2𝜎

√

𝑐2 − 𝑎2. (A.4c)

he displacement due to adhesion in symmetric, line contact (Johnson
nd Greenwood, 2008) is reproduced in Box I and the displacement at
he edge of the adhesive strips:

a(|𝑥| = 𝑐) = 4𝜎
𝜋𝐸∗ 𝑐 ln

( 𝑐
𝑎

)

− 4𝜎
𝜋𝐸∗

√

𝑐2 − 𝑎2 cosh−1
( 𝑐
𝑎

)

, (A.5b)

where the first term on the RHS is due to the adhesive traction 𝜎 over
the adhesive strips |𝑐 − 𝑎| (Tada et al., 1973) and the second term on
the RHS due to a far-field load 𝐿′

a ≡ 𝐿M
a (Baney and Hui, 1997; Johnson

and Greenwood, 2008).

Appendix B. Wavy surface contact in plane strain

Substituting the surface gradient (5a) in Eq. (6), we find the Fourier
coefficients of the adhesionless traction

𝑝c
0 = −

𝐿c(𝑎)
𝜋𝑎

, (B.6a)

ith the middle term of Eq. (B.13); and,

c
𝑛 =

𝐸∗𝑓𝑛
2𝑎

, for, 1 ≤ 𝑛. (B.6b)

e note here the difference of the factor half between Eq. (B.6b) and
he expression (54) on page 367 in Guduru (2007), which both depend
n the type of discrete Fourier transform. Taking the derivative of the
rofile (1) and using the change of variables (5c), we rewrite the profile
radient as

𝑎2

2𝑅
sin (2𝜙) + 2𝜋𝐴𝑎

𝜁
sin(𝜙) sin

(

2𝜋𝑎
𝜁

cos(𝜙)
)

=
∞
∑

𝑛=1
𝑓𝑛 sin(𝑛𝜙) . (B.7)

Multiplying the gradient (B.7) with sin(𝑚𝜙) and integration over
−𝜋 ≤ 𝜙 ≤ 𝜋, using the identity (Abramowitz et al., 1988):

∫

𝜋

−𝜋
sin(𝑛𝑡) sin(𝑚𝑡) d𝑡 =

{

0, for, 𝑛 ≠ 𝑚;
𝜋, for, 𝑛 = 𝑚;

, (B.8)

we give the Fourier coefficients of the gradient of the profile, at
positions |𝑥| < 𝑎, by

𝑓0 = 𝑓1 = 0; 𝑓2 =
𝑎2

2𝑅
+ 2𝐴𝑎

𝜁 ∫

𝜋

−𝜋
sin(𝜙) sin(2𝜙) sin

(

2𝜋𝑎
𝜁

cos(𝜙)
)

d𝜙;

𝑚 = 2𝐴𝑎
𝜁 ∫

𝜋

−𝜋
sin(𝜙) sin(𝑚𝜙) sin

(

2𝜋𝑎
𝜁

cos(𝜙)
)

d𝜙, for, 2 < 𝑚 ∈ 2Z;

else, 𝑓𝑚 = 0. (B.9a)

Here, Z indicates the set of real-valued integers. The integral repre-
sentation of the Bessel function of order 𝑘′ (Abramowitz et al., 1988):

J𝑘′ (𝑧) =
1 𝜋

cos
(

𝑘′𝜃 − 𝑧 sin(𝜃)
)

d𝜃, (B.10)

𝜋 ∫0

15 
with the complex-valued scalar 𝑧. The prime ∙′ is used to distinguish be-
ween indices ∙. Using the integral representation of the Bessel function
f order 𝑘′ (B.10), we rewrite the Fourier coefficient of the adhesionless
raction (B.6) as

c
0 = −

𝐿c(𝑎)
𝜋𝑎

; 𝑝c
1 = 0; 𝑝c

2 =
𝐸∗𝑎
4𝑅

+ 2𝐸∗𝐴
𝑎

J2

(

2𝜋𝑎
𝜁

)

;

and, 𝑝c
𝑚 = 𝐸∗𝐴

2𝑎
i𝑚+2

(

1 + i2𝑚
)

𝑚 J𝑚

(

2𝜋𝑎
𝜁

)

, for 2 < 𝑚, (B.11)

where i ≡
√

−1 is the imaginary number. Combining the definition of
he Fourier transform of the traction (5b) and its coefficients (B.11), we
btain the adhesionless traction as

c(𝜃) = −
𝐿c(𝑎)

𝜋𝑎 sin(𝜃)
+
𝐸∗𝑎 cos(2𝜃)
4𝑅 sin(𝜃)

+ 2𝐸∗𝐴
𝑎 sin(𝜃)

∞
∑

𝑛=1
(−1)𝑛+1𝑛 J2𝑛

(

2𝜋𝑎
𝜁

)

cos(2𝑛𝜃) .

(B.12)

Note that in this equation (B.12) the integer 𝑛 is no longer the wavenum-
ber but an index. The adhesionless load (Guduru, 2007):

𝐿c(𝑎) ≡ 𝐿H(𝑎) + 𝐿w(𝑎) = −∫

𝑎

−𝑎
𝑝c(𝑥) d𝑥 = 𝜋𝐸∗𝑎2

4𝑅
+ 𝜋2𝐸∗𝐴𝑎

𝜁
J1

(

2𝜋𝑎
𝜁

)

,

(B.13)

with the Hertzian load, 𝐿H(𝑎), and the load provided by the waviness of
he cylinder profile, 𝐿w(𝑎), where 𝐽𝑘′ (∙), with scalar ∙, is the (ordinary)
essel function (B.10) of order 𝑘′. Using the adhesionless load (B.13)
nd the summation (Abramowitz et al., 1988):
∞

𝑛=1
(−1)𝑛𝑛 J2𝑛

(

2𝜋𝑎
𝜁

)

= −𝜋𝑎
2𝜁

J1

(

2𝜋𝑎
𝜁

)

, (B.14)

e rewrite the adhesionless traction (B.12) as

c(𝜃) = −
𝐸∗𝑎 sin(𝜃)

2𝑅
− 𝜋𝐸∗𝐴

𝜁 sin(𝜃)
J1

(

2𝜋𝑎
𝜁

)

⋯ (B.15)

⋯ − 2𝐸∗𝐴
𝑎 sin(𝜃)

∞
∑

𝑛=1
(−1)𝑛𝑛 J2𝑛

(

2𝜋𝑎
𝜁

)

cos(2𝑛𝜃) .

sing the recurrence relationship (Abramowitz et al., 1988):

𝑚+1(𝑧) =
2 𝑚
𝑧

J𝑚(𝑧) − J𝑚−1(𝑧), (B.16)

e rewrite the series on the RHS of Eq. (B.15) as
∞

𝑛=1
(−1)𝑛𝑛 J2𝑛(𝐷) cos(2𝑛𝜃) = (B.17)

1
4

∞
∑

𝑛=1
(−1)𝑛𝐷 J2𝑛−1(𝐷) cos(2𝑛𝜃) + 1

4

∞
∑

𝑛=1
(−1)𝑛𝐷 J2𝑛+1(𝐷) cos(2𝑛𝜃) ,

ith a scalar 𝐷 ≡ 2𝜋𝑎∕𝜁 . Using the angle addition and subtraction
heorem, we expand the infinite series on the RHS of (B.17) into four
nfinite series as
∞
∑

𝑛=1
(−1)𝑛𝑛 J2𝑛(𝐷) cos(2𝑛𝜃) = (B.18)

𝐷
∞
∑

(−1)𝑛J2𝑛−1(𝐷) cos
(

(2𝑛 − 1)𝜃
)

−
𝐷 sin(𝜃) ∞

∑

(−1)𝑛𝐽2𝑛−1(𝐷) sin(2𝑛𝜃)

cos(𝜃) 𝑛=1 cos(𝜃) 𝑛=1
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+ 𝐷
sin(𝜃)

∞
∑

𝑛=1
(−1)𝑛J2𝑛+1(𝐷) sin

(

(2𝑛 + 1)𝜃
)

−
𝐷 cos(𝜃)
sin(𝜃)

∞
∑

𝑛=1
(−1)𝑛𝐽2𝑛+1(𝐷) sin(2𝑛𝜃).

The expansion of the Schwarz function into series of Bessel func-
tions (Luke, 2014):

∫

𝑧

0
𝑒−i𝑡 cos(𝜃)J𝑣(𝑡) d𝑡 =

2𝑒−i𝑧 cos(𝜃)
sin(𝜃)

∞
∑

𝑘=0
i𝑘J𝑘+𝑣+1(𝑧) sin

(

(1 + 𝑘) 𝜃
)

, (B.19)

for ℜ(𝑣) > −1, where ℜ(∙) the real part of the complex scalar ∙. We
ewrite the expansion of the Schwarz function (B.19) in its even (i.e.
eal valued) terms as

2𝐷
sin(𝜃)

∞
∑

𝑘=0
(−1)𝑛J2𝑛+1(𝐷) sin

(

(2𝑛 + 1)𝜃
)

= ∫

𝐷

0
J0(𝑡) cos

(

(𝑡 −𝐷) cos(𝜃)
)

d𝑡;

(B.20)

and, the generating function (Abramowitz et al., 1988):

2
∞
∑

𝑛=0
(−1)𝑛J2𝑛+1(𝑧) cos

(

(2𝑛 + 1)𝜃
)

= sin
(

𝑧 cos(𝜃)
)

. (B.21)

Using Eqs. (B.18), (B.20) and (B.21), the angle addition and subtraction
theorem and well-known properties of the Bessel function (Abramowitz
et al., 1988), we obtain the definite integral
∞
∑

𝑛=1
(−1)𝑛𝑛 J2𝑛

(

2𝑎𝜋
𝜁

)

cos(2𝑛𝜃) = (B.22)

− 𝜋𝑎
2𝜁

J1

(

2𝜋𝑎
𝜁

)

+
𝜋𝑎 sin2(𝜃)

2𝜁 ∫

2𝜋𝑎
𝜁

0
𝐽0(𝑡) cos

(

(

𝑡 − 2𝜋𝑎
𝜁

)

cos (𝜃)

)

d𝑡.

ubstituting the definite integral (B.22) in Eq. (B.15), we obtain the ad-
esionless traction (7). Using the convolution type integral (Abramowitz
t al., 1988):

∫

𝑧

0

J𝑘(𝑡) J𝑣(𝑧 − 𝑡)
𝑡

d𝑡 =
J𝑘+𝑣(𝑧)

𝑘
, (B.23)

with ℜ(𝑘) > 0; and ℜ(𝑣) > −1, we obtain the adhesionless load (B.13)
by Guduru (2007) as well.

Appendix C. Substrate deformation gradient

For the integration of trigonometric convolutions with multiple
poles we use a change of variables:

𝑤 = 𝑒i𝜙; 𝑧 = 𝑒i𝜃 ; and, d𝜃 = d𝑧∕(i𝑧) . (C.24)

where i ≡
√

−1 is the imaginary number. Subsequently, using the
residue theorem, we find the convolution integral as the sum of
residues in the unit disk, on the complex plane, when the spatial
coordinate 𝑎 < |𝑥|,

𝐼 =
∑

𝑙
Res

(

𝑧𝑙
)

, (C.25)

ith the residues of the complex function Res
(

𝑧𝑙
)

at poles |𝑧𝑙| < 1.

C.1. Hertzian deformation gradient

The Hertzian deformation gradient

𝜕
𝜕𝑥

𝑢H(𝑥) =
𝑎

𝑅 cos(𝜙)
+ 𝑎

2𝜋𝑅 ∫

2𝜋

0

tan2(𝜙)

cos(𝜃) − 1
cos(𝜙)

d𝜃, (C.26)

ith the angle 0 ≤ 𝜙 < 𝜋∕2. Using the change of variables (C.24), we
ewrite the integral on the RHS of Eq. (C.26) as

H = 2i

(

𝑤2 − 1
)2

(

2
) (

2 2 2 2
) d𝑧. (C.27)
∮

|𝑧|=1 𝑤 + 1 𝑤 𝑧 + 𝑧 − 4𝑤𝑧 +𝑤 + 1

16 
The simple poles are

𝑧1 =
2𝑤 +

√

−𝑤4 + 2𝑤2 − 1
𝑤2 + 1

; and, 𝑧2 =
2𝑤 −

√

−𝑤4 + 2𝑤2 − 1
𝑤2 + 1

. (C.28)

Using Eqs. (C.24), (C.25) and (C.28), we find the integral in Eq. (C.26)
as

𝐼H = 2𝜋iRes
(

𝑧2
)

= −2𝜋 tan(𝜙). (C.29)

.2. Wave deformation gradient

We rewrite the inner integral of Eq. (11a) as

w = (C.30)

1
i ∮

|𝑧|=1

(

𝑤2 + 1
) (

𝑧2 − 1
)2

4𝑧2
(

𝑤2𝑧2 + 𝑧2 − 4𝑤𝑧 +𝑤2 + 1
)

⎛

⎜

⎜

⎜

⎝

𝑒
−
1
2
i𝐵

(

𝑧+
1
𝑧

)

+ 𝑒

1
2
i𝐵

(

𝑧+
1
𝑧

)

⎞

⎟

⎟

⎟

⎠

d𝑧,

with a scalar 𝐵 ≡ 𝑡 − 2𝜋𝑎∕𝜁 . The simple poles are given by Eq. (C.28)
and the double pole 𝑧3 = 0. The residual of this simple pole

Res
(

𝑧2
)

=

√

𝑎2 − 𝑥2
𝑎

cos
(𝐵𝑥

𝑎

)

. (C.31)

For the double pole at 𝑧3 = 0, we use the infinitive series (Abramowitz
t al., 1988):

𝑧 =
∞
∑

𝑘′=0

𝑧𝑘′

𝑘′!
, (C.32)

that we substitute into the integrand in Eq. (C.30), which we give as

1
4i

(

𝑤2 + 1
) (

𝑧2 − 1
)2

(

𝑤2𝑧2 + 𝑧2 − 4𝑤𝑧 +𝑤2 + 1
)

𝑧2

( ∞
∑

𝑘′=0

1
𝑘′!

(𝐵
2i

(

𝑧 + 1
𝑧

))𝑘′

⋯

⋯ +
∞
∑

𝑘′=0

1
𝑘′!

( i𝐵
2

(

𝑧 + 1
𝑧

))𝑘′
)

. (C.33)

Taking the Taylor series expansion of Eq. (C.33) around zero, collecting
the coefficients of 𝑧−1 and multiplying them by 2𝜋i, we find the residue
of the 𝑘′ = 0,… , 8 non-zero terms

2𝜋iRes
(

𝑧3
)

≈ (C.34a)
2𝜋𝑥
𝑎

+ 𝜋𝑥
2𝑎3

(

𝑎2 − 2𝑥2
)

𝐵2 − 𝜋𝑥
96𝑎5

(

𝑎4 + 4𝑎2𝑥2 − 8𝑥4
)

𝐵4 ⋯

⋯ + 𝜋𝑥
5760𝑎7

(

𝑎6 + 2𝑎4𝑥2 + 8𝑎2𝑥4 − 16𝑥6
)

𝐵6 ⋯

⋯ − 𝜋𝑥
2580480𝑎9

(

5𝑎8 + 8𝑎6𝑥2 + 16𝑎4𝑥4 + 64𝑎2𝑥6 − 128𝑥8
)

𝐵8 + … ,

of the infinite series:

2𝜋iRes
(

𝑧3
)

= (C.34b)

− 𝜋𝑥
𝑎

∞
∑

𝑘=0

(−1)𝑘

Γ(1 + 2𝑘)

(𝐵𝑥
𝑎

)2𝑘 𝑘
∑

𝑚′=0

Γ
(

𝑚′ − 1
2

)

√

𝜋Γ(1 + 𝑚′)

(𝑎
𝑧

)2𝑚′

,

where Γ (∙) is the Gamma function of scalar ∙. We rewrite the inner sum
n the RHS of Eq. (C.34b) as

𝑘
∑

𝑚′=0

Γ
(

𝑚′ − 1
2

)

√

𝜋Γ (1 + 𝑚′)

( 𝑎
𝑥

)2𝑚′

= (C.35a)

−
Γ
( 1
2
+ 𝑘

)

√

𝜋

( 𝑎
𝑥

)2(𝑘+1)
2F1

(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

− 2
√

1 −
( 𝑎
𝑥

)2
,

ith the hypergeometric function (Abramowitz et al., 1988):

F1(∙1, ∙2; ∙3; 𝑧) =
∞
∑

𝑘′=0

Γ(∙1 + 𝑘′)Γ(∙2 + 𝑘′)Γ(∙3)
Γ(∙1)Γ(∙2)Γ(∙3 + 𝑘′)

𝑧𝑘′

𝑘′!
. (C.35b)

Substituting the residues (C.31) and (C.34b) in Eq. (C.25), using the
definition (C.35a), and noting that

cos(𝑧) =
∞
∑ (−1)𝑘

𝑧2𝑘, (C.36)

𝑘=0 Γ(2𝑘 + 1)
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we find the inner integral

𝐼w = 𝜋𝑎
𝑥

∞
∑

𝑘=0

(−1)𝑘

Γ(𝑘 + 1)Γ(𝑘 + 2)

(𝐵
2

)2𝑘
2F1

(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

. (C.37)

ubstituting Eq. (C.37) in Eq. (11a), we give the wave deformation
radient

𝜕
𝜕𝑥

𝑢w (𝑥) = 𝜋𝐴𝑎
𝜁𝑥

∞
∑

𝑘=0

(−1)𝑘

Γ(1 + 𝑘)Γ(2 + 𝑘)2(2𝑘)
⋯ (C.38)

⋯ 2F1

(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

∫

2𝜋𝑎
𝜁

0
J0 (𝑡)

(

𝑡 − 2𝜋𝑎
𝜁

)2𝑘
d𝑡.

e solve the integral on the RHS of Eq. (C.38) as

∫

2𝜋𝑎
𝜁

0
J0(𝑡)

(

𝑡 − 2𝜋𝑎
𝜁

)2𝑘
d𝑡 = (C.39a)

2𝜋𝑎
𝜁

1
2𝑘 + 1

(

2𝜋𝑎
𝜁

)2𝑘

1F2

(

1
2
; 𝑘 + 1, 𝑘 + 3

2
; −

(

𝜋𝑎
𝜁

)2
)

,

with the generalised hypergeometric function (Abramowitz et al., 1988):

1F2(∙1; ∙2, ∙3; 𝑧) =
∞
∑

𝑘′=0

Γ(∙1 + 𝑘′)Γ(∙2)Γ(∙3)
Γ(∙1)Γ(∙2 + 𝑘′)Γ(∙3 + 𝑘′)

𝑧𝑘′

𝑘′!
. (C.39b)

Appendix D. Wave deformation

Integrating the deformation gradient (11b), we give the wave de-
formation as

𝑢w(𝑥) = 2𝐴
(𝜋𝑎

𝜆

)2 ∞
∑

𝑘=0

1
Γ(𝑘 + 1)Γ(𝑘 + 2)

(−1)𝑘

(2𝑘 + 1)

(

−𝜋𝑎
𝜆

)2𝑘
⋯ (D.40)

⋯ 1F2

(

1
2
; 𝑘 + 1, 𝑘 + 3

2
; −

(

𝜋𝑎
𝜁

)2
)

∫

( 1
𝑥

)

2F1

(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

d𝑥.

We solve the integral on the RHS of Eq. (D.40) as

∫

( 1
𝑥

)

2F1

(

1, 𝑘 + 1
2
; 𝑘 + 2;

( 𝑎
𝑥

)2
)

d𝑥 = (D.41a)

Γ(𝑘 + 2)

2Γ
(

𝑘 + 1
2

)
G2,2
3,3

(

−
( 𝑎
𝑥

)2 |
|

|

|

|

0, 1
2
− 𝑘, 1

0, 0,−𝑘 − 1

)

,

with the Meijer-G function,

G𝑙,0
𝑖,𝑗

(

𝑧| ∙1,… , ∙𝑖
∙1,… , ∙𝑗

)

, (D.41b)

where ∙(𝑖,𝑗) are scalars, and 𝑙 and 𝑜 integers (Abramowitz et al., 1988).

Appendix E. Load-area response limits

The well-known JKR-theory for Hertzian contact in the presence of
waviness is given by Guduru (2007):

�̄�JKR = 𝜋�̄�2

4
+ 𝜋2𝛼�̄�

𝛽
J1

(

2𝜋�̄�
𝛽

)

−
√

2𝜋
√

�̄�, (E.42a)

which corresponds with the limit 𝜆 ∼ ∞, and approaches 3 ≤ 𝜆 in
mooth contact (Johnson and Greenwood, 2008). Using the asymptotic
xpansion of the Bessel function for large arguments (Abramowitz
t al., 1988), Kesari et al. (2010) give the JKR-envelope of the load-area
esponse:

̄ JKR ∼ 𝜋�̄�2

4
± 𝜋

√

𝛼2

𝛽

√

�̄� −
√

2𝜋
√

�̄�. (E.42b)

he lower branch of the envelope (E.42b) can be thought of as the min-
mum load limit. Similarly, we use the postulate by Maugis (1992), i.e.
he M-DMT theory as discussed by Greenwood (2022):

̄ DMT ≡ �̄�c − �̄�′
p = 𝜋�̄�2 + 𝜋2𝛼�̄� J1

(

2𝜋�̄�
)

− �̄�r
p, (E.43a)
4 𝛽 𝛽

17 
where the adhesive load equals the pull-off load for a rigid substrate
�̄�r

p; and, corresponds with the limit 𝜆 ∼ 0, and approaches 𝜆 < 1∕10
in smooth contact (Johnson and Greenwood, 2008). Setting the gap at
the edge of the adhesive contact (1) equal to the interaction range, i.e.
𝑓 (𝑐) ≡ 𝑔(𝑐) = 𝛿, we give the adhesive strip as

1 = 1
2
𝜆 (𝑚�̄�)2 + 2𝛼𝜆 sin2

(

𝜋𝑚�̄�
𝛽

)

, (E.43b)

and using the middle expression in Eq. (A.4c), the pull-off load by

�̄�r
p ≡ −�̄�a = 2𝜆𝑚�̄�. (E.43c)

n the presence of waviness, the size of the adhesive strip 𝑚�̄� at pull-off
s obtained numerically, because no closed-form analytical solution is
ound. We give the M-DMT envelope of the load-area curve as

̄ DMT ∼ 𝜋�̄�2

4
± 𝜋

√

𝛼2

𝛽

√

�̄� − �̄�r
p. (E.43d)

he upper branch of the envelope (E.43d) for Maugis parameter 𝜆 ∼ 0
an be thought of as the maximum load limit. For smooth contact, i.e.
ave parameters {𝛼, 𝛽} = {0,−}, substituting Eq. (E.43b) in Eq. (E.43c),
e reformulate the M-DMT load

̄H
DMT = 𝜋�̄�2

4
− 2

√

2
√

𝜆, (E.44)

with the pull-off load �̄�r
p = 2

√

2
√

𝜆 as presented by Johnson and Green-
wood (2008). Comparing the envelopes of the JKR- and the M-DMT
theory (E.42b) and (E.43d), respectively, we find these are equal in size
and independent of the Maugis parameter 𝜆 ∼ 0 and ∞. Moreover, the
pull-off load vanishes in the limit 𝜆 ∼ 0, which stands in stark contrast
with the finite pull-off force for axi-symmetric contacts (Johnson et al.,
1971; Maugis, 1992, 2000). This is notable because waviness is not
necessarily present in the load-area response for all Maugis parameters
and roughness parameters 0 < 𝛼 and 0 < 𝛽 < ∞ (Zhu et al., 2021).
Note though that these observations are limited to continuous intimate
contact, and the soft- and adhesionless limit.
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