
 
 

Delft University of Technology

Phenotype prediction using biologically interpretable neural networks on multi-cohort
multi-omics data

van Hilten, Arno; van Rooij, Jeroen; Ikram, M. Arfan; Niessen, Wiro J.; van Meurs, Joyce B.J.; Roshchupkin,
Gennady V.; More Authors
DOI
10.1038/s41540-024-00405-w
Publication date
2024
Document Version
Final published version
Published in
npj systems biology and applications

Citation (APA)
van Hilten, A., van Rooij, J., Ikram, M. A., Niessen, W. J., van Meurs, J. B. J., Roshchupkin, G. V., & More
Authors (2024). Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-
omics data. npj systems biology and applications, 10(1), Article 81. https://doi.org/10.1038/s41540-024-
00405-w
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41540-024-00405-w
https://doi.org/10.1038/s41540-024-00405-w
https://doi.org/10.1038/s41540-024-00405-w


npj | systems biology and applications Article
Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-024-00405-w

Phenotype prediction using biologically
interpretable neural networks on multi-
cohort multi-omics data

Check for updates

Arno van Hilten 1,19 , Jeroen van Rooij2,19, BIOS consortium*, M. Arfan Ikram 3, Wiro J. Niessen1,3,
Joyce. B. J. van Meurs2,4 & Gennady V. Roshchupkin1

Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is
essential for precisionmedicine. In this study, we developed interpretable predictivemodels for multi-
omics data by employingneural networks informedbyprior biological knowledge, referred to as visible
networks. These neural networks offer insights into the decision-making process and can unveil novel
perspectives on the underlying biological mechanisms associated with traits and complex diseases.
We tested the performance, interpretability and generalizability for inferring smoking status, subject
age and LDL levels using genome-wide RNA expression and CpGmethylation data from the blood of
the BIOS consortium (four population cohorts,Ntotal = 2940). In a cohort-wise cross-validation setting,
the consistency of the diagnostic performance and interpretation was assessed. Performance was
consistently high for predicting smoking status with an overall mean AUC of 0.95 (95%CI: 0.90–1.00)
and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and
LRRN3. LDL-level predictions were only generalized in a single cohort with an R2 of 0.07 (95% CI:
0.05–0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97–6.35) years with the genes
COL11A2, AFAP1, OTUD7A, PTPRN2, ADARB2 and CD34 consistently predictive. For both
regression tasks, we found that using multi-omics networks improved performance, stability and
generalizability compared to interpretable single omic networks. We believe that visible neural
networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are
interpretable, and generalize well to data from different cohorts.

Over the last decades, association studies have uncovered numerous
genes and CpGs to be associated with hundreds of traits and diseases1.
This has led to tools for identifying high-risk individuals and biomarkers
for early disease detection. For example, blood-based methylation bio-
markers are currently used for early diagnosis of various forms of
cancer2,3. However, for most complex diseases and traits, the combined
effects, within and between different omics types, are still largely
unexplored. For a more comprehensive understanding of human health
and diseases and for more accurate prediction models, it is therefore
necessary to study omic types in relation to one another. Thanks to
recent technological improvements for high throughput sequencing and
arrays technologies, the acquisition of multi-omics datasets has become

more feasible, providing opportunities for new multi-omics analysis
tools4,5.

Recently, novel statistical frameworks and machine learning techni-
ques have been published that integrate multi-omics data in a single
analysis6,7. These studies show the potential for multi-omics analysis to
improve prediction for various disorders while providing insight into dis-
ease biology4,8. Integrating different types of omics data in a single analysis is
a challenging task, as each type has different, procedures, preprocessing
steps and analytical requirements9. Combining omics data presents addi-
tional challenges, as each omic has unique dimensions, and it is essential to
consider correlation structures both within and between the different omics
types. Thus, for the combined analysis of multiple omics types, methods
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need to be flexible and be able to deal with the high dimensionality of these
datasets.

Neural networks have demonstrated such flexibility and have been
widely successful in fields such as image classification10, speech
recognition11, and protein modelling12. In contrast to most tasks in image
analysis and speech recognition, the focus ofmulti-omics frameworks is not
only on predictive performance but also on understanding the underlying
aetiology. To facilitate this, a new field in machine learning, coined visible
machine learning13 emerged, in which prior biological knowledge is
embedded in a neural network’s architecture to create interpretable neural
networks14–19. Recent examples of these kinds of neural networks applied in
genomics are GenNet20 and P-net21. In the GenNet framework, gene and
pathway annotations were used to create interpretable neural networks for
genetic risk prediction from genotypes. In P-net, methylation, gene
expression and copy number variants were fed to an interpretable neural
network to differentiate between primary or metastatic prostate cancers.
Importantly, recent work evaluating the reliability of the interpretations of
P-net found that the interpretations can be strongly affected by different
weight initializations19. Other examples of visible neural networks include,
PasNet22, which integrated pathways information to predict survival for
glioblastoma multiforme, a primary brain cancer. DrugCell23 integrated
GeneOntology knowledge in a network topredict drug response for various
cancers andParsVNN24 continued on thiswork andpruned the network for
increased performance and better interpretability.

In this study,we employ visibleneural networks to analysemulti-omics
data. We extend the GenNet framework to create interpretable neural
networks for multiple omics inputs and apply it to a dataset with tran-
scriptomics and methylomics data. We validate the method using four
cohorts in the BIOS consortium for the application of predicting age, low-
density lipoproteins (LDL) levels and smoking status. Age prediction from
methylation or gene expression data has been an active research area
popularized by the work of Hannum et al. and Horvath25,26. Additionally, it
has been shown that these clocks show an asymptote for older participants
and strong biological sex differences, making age prediction particularly
interesting to study with neural networks27. Smoking status and LDL level
predictions are well-suited to evaluate the performance, stability and
interpretation of the method. Methylation and gene expression are highly
predictive for smoking status and predictive genes are well-documented28,29.
On the other hand, low lipid lipoprotein cholesterol levels are a complex
outcome with both environmental and genetic factors30.

We present the following contributions to this work. First, we have
extended GenNet to create visible neural networks that can predict out-
comes from multi-omics data while quantifying the importance of each
omic type, gene, and pathway. In the proposed network, we merge each
omic at the gene level, enabling gene-wise extraction of the importance of
each omic for prediction. Secondly, we investigate the robustness of the
performance and interpretations of these visible neural networks across
three different phenotypes. By leveraging the multi-cohort setting of the
BIOS consortium in cohort-wise cross-validation, we can examine the
stability of these networks across different random seeds and cohorts.

Finally, we perform additional analyses to identify omic-specific informa-
tion, gene-covariate interactions, and group-specific patterns learned by the
visible neural networks.

Results
In this study, multi-omics data gathered by the Biobank-based Integrative
Omics Study (BIOS) consortium was used to predict smoking status, age
and low-density lipoprotein levels. Specifically, we used transcriptome and
methylome data from BIOS's four largest cohorts: LifeLines (LL), Leiden
Longevity Study (LLS), Netherlands Twin Register (NTR), and Rotterdam
Study (RS) to evaluate the performance and the interpretations of the cre-
ated neural networks in a cohort-wise cross-validation. Importantly, all
cohorts within the BIOS consortium followed the same procedure in
gathering and processing data (see “Methods”). An overview of the char-
acteristics of each cohort can be found in Table 1.

Network design
Neural network architectures were created using principles from theGenNet
framework20. This framework uses prior knowledge (e.g. gene and pathway
annotations) to connect input data to the neurons in the next layer of the
neural network. CpG methylation sites were annotated using Genomic
Regions Enrichment of Annotations Tool (GREAT)31 and connected to the
closest genebasedongenomicdistance (inbasepairs) resulting in17,283gene
annotations for 481,388 methylation sites. These gene annotations were
intersected with the 14,248 remaining gene expression measurements left
afterpreprocessing, resulting inanoverlapof10,404genesbetweenbothomic
types. This set of overlapping genes was used in all analyses. Themethylation
gene layerwas built using these genes and their corresponding 324,295CpGs.
For the creation of pathway layers, the set of overlapping genes was grouped
into KEGG’s functional pathways32 from ConsensusPathDB33. Out of the
10,404 genes, 4813 genes were annotated for at least one pathway.

The gene expression network (GE network, Fig. 1a) is the simplest
network and consists of the gene expression input connected straight to the
output node similar as in LASSO regression. Themethylation network (ME
network, Fig. 1b) consists of the input methylation data, a gene layer with
neurons representing gene methylation made and an output node. The
methylation and gene expression network (ME+GE network, Fig. 1c)
combines both networks. In a similar way as in the ME network, CpGs are
fed to the first layer of the network and reduced to one node per gene using
gene annotations. In contrast tomost othermethods, gene expression is not
concatenated to the input but is used as a separate input in the gene level of
the network. In this layer, gene expression is combined with the neurons
representing genes bymethylation. Finally, a single nodewas used to predict
the target phenotype.

The activation function transforms the output signal for each neuron.
For classification tasks, such as predicting if an individual smokes or not, a
sigmoid activation functionwas used to scale the output to the range [0, 1] in
the last neuron. Arctanh activation functionswere used for all other layers to
introduce non-linearities, increasing the modelling capabilities of the net-
work. For regression tasks, such as predicting continuous traits such as age

Table 1 | Main characteristics for all cohorts used in this study

Rotterdam study LifeLines Leiden longevity study Netherlands Twin Register Total of all cohorts

Abbreviation RS LL LLS NTR

Individuals 693 727 646 874 2940

Sex, male|female 397|296 421|306 340|306 577|297 1735|1205

Smokers*, current|never 75|231 107|337 75|184 155|500 412|1252

Age [years], mean+ 95% CI 67.6 (67.1–68.0) 45.4 (44.4–46.3) 58.8 (58.3–59.3) 38.3 (37.3–39.3) 51.4 (50.9–52.0)

LDL [mmol/L], mean+ 95% CI 3.32 (3.26–3.39) 3.19 (3.12–3.25) 3.36 (3.29–3.43) 2.90 (2.84–2.96) 3.17 (3.14–3.2)

Note, the age differences between the cohorts; participants of the NTR were on average 29 years younger than the participants of the RS.
CI confidence interval.
*Former smokers were excluded in this study.
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andLDL levels, ReLuactivation functionswithoutput range [0,∞)wereused
for all layers. For a better initialization of the network, the bias of the last
neuronwas set to themeanvalueof thepredictedoutcome in the training set.

Deeper neural networks
For more complex modelling of the interactions between expression,
methylation andphenotypes,we also evaluateddeeperneural networks. First,
using KEGG’s functional pathways32,33 as prior knowledge, three hierarchical
pathway layers were created (Fig. 2b). The first layer groups genes into 321
functional pathways such as: insulin secretion, thyroid hormone synthesis
and PPAR signalling pathway. The aforementioned pathways are all part of
the endocrine system group which, in turn, is a subgroup of organismal

systems. The mid and global-level pathway layers were created adopting this
hierarchical structure, consisting of 44 and 6 groups, respectively. Each
pathway is representedby itsownneuronresulting in three layerswith321,44
and 6 nodes each. Not all genes were annotated by the KEGG functional
pathway annotations, 5591 genes did not receive a functional pathway
annotation. To ensure connectivity to the output for all genes, connections
that skip the pathway layers (skip connections)were added fromeach gene to
the output node (see Supplementary Fig. 2 for the distribution).

Additionally, a deepernetworkwas constructedwithout any additional
prior biological knowledge to compare with the KEGG pathway network
(Fig. 2d). Similarly, theME+GEnetwork served as a basis for this network
and three densely connected layers, 321, 44 and 6 nodes each, were added

Fig. 1 | Schematic overview of the main neural
network architectures used in this study. First, the
methylation data is annotated using GREAT. The
intersection of this gene set and genes in the gene
expression data (10,404 genes) is used to construct
all neural networks. In the ME network (a), DNA
methylation data (CpGs) are grouped and con-
nected using these gene annotations. The resulting
gene nodes are directly connected to the output
node. Combining the ME network and the GE net-
work (b), results in theME+GE network (c). In the
ME+GE network, each gene has a node per omic
and a combined gene representation where infor-
mation from both omics is merged.

Fig. 2 | Overview of other visible neural network
architectures used in the additional analyses. The
ME+GE network base (a) serves as a basis for all
networks displayed. b Pathway layers are added to
this base by grouping genes and connecting them to
their corresponding KEGG pathway. The KEGG
functional pathways consist of a three-layer hier-
archical structure with 321, 44 and 6 nodes each. To
compare this network to an equivalent regular dense
network (d) fully connected layers with the same
dimensions were attached to the ME+GE base.
Covariates were integrated in the network by adding
a single layer with the covariates (c) to the base, or by
adding the covariates to each combined gene
representation in the ME+GE network (e).
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between the gene layer and the output node. The resulting network has thus
the same number of neurons as the KEGG pathway network but has fully
connected layers instead of layers based on KEGG pathway information.

Cohort-wise cross-validation
An overview of the performance for each cohort and for the three different
architectures can be found in Table 2. It shows the mean predictive per-
formance and standard deviation for each fold for tennetworks trainedwith
the same hyperparameters but with different random seeds. The corre-
sponding hyperparameters, chosen on the best performance in the valida-
tion set, can be found in Supplementary Table 3.

Predicting smoking status. Both gene expression andmethylation were
highly predictive of smoking status in all folds. The best performance was
achieved by theME+GE network, thus with bothmethylation and gene
expression input, in the fold with the RS as the test cohort (all other
cohorts were used for training and validation). In this fold, the network
achieved a near-perfect classification with the area under the receiver
operating curve (AUC) of 0.98 (95%CI: 0.98–0.98). Overall folds, theME
networks and ME+GE networks performed best with a mean AUC of
0.95 (95% CI: 0.93–0.98) and 0.95 (95% CI: 0.90–1.00) respectively. The
GE network, based solely on gene expression input, performed sub-
stantially worse with a mean AUC of 0. 0.85 (95% CI: 0.80–0.90). Sur-
prisingly, the mean test performance overall folds for the ME+GE
network was lower for deeper networks with three fully connected layers,
achieving a mean AUC of 0.91 (95% CI: 0.85–0.96) (see Supplementary
Table 4). In general, each fold obtained good predictive performance for
predicting smoking status, the GE network in the fold with NTR as the
test cohort achieved the worst overall predictive performance with a
meanAUCof 0.80 (95%CI: 0.80–0.80). Themean test performance of the
multi-omic visible neural network was better than the multi-omic
baseline network which achieved an AUC of 0.92 (95% CI: 0.84–1.00),
mostly due to poorer generalization to the NTR test cohort (see Sup-
plementary Table 2).

The ME+GE networks exhibit a stable performance, with small CIs
for the area under the curve and standard deviations not exceeding 0.03.
However, there may be significant variations in the underlying weights due
to stochastic processes used for network initialization and training, resulting
in different starting points and optimization paths for all weights across
runs. As the weights within a neural network operate relative to each other
and cannot be directly compared between networks, we compared the
relative contributionof eachgene instead. Figure 3demonstrates that certain
genes are consistently utilized by the network to differentiate between
current smokers and non-smokers across all folds, although there can be
notable differences in the percentage of total weight each gene holds. In each
fold, GPR15 is the most or second most predictive gene for smoking status,
its signal is mainly driven by gene expression as visualized in Fig. 3. Speci-
fically, 79.8 ± 33.3% (mean and standard deviation over all folds) of the
weights that drive the signal for this gene are from the gene expression input.
The next gene, AHRR, is important for prediction in three out of four
cohorts. This signal is driven by both gene expression (44.3%) as well as
methylation (55.6%). Other consistently highly predictive genes (i.e. genes
with a weight contribution higher than 1% in three out of four cohorts) are
SEMA6B, PID1, LRRN3, P2RY6, CDKN1C, CLEC10A and KCNQ1. (See
Supplementary Table 5 for more details). All these consistently highly
predictive genes were found before in association studies for smoking in
gene expression and methylation34–36. A graphical overview of important
pathways for smoking prediction can be found in Supplementary Fig. 3.

To investigate the interplay between the omic types and to find omic-
specific information, two additional analyses were conducted where either
gene expression or methylation gene representations were penalized (see
Supplementary Figs. 4–6). Without penalization, the weights for gene
expression and methylation were nearly equally divided after training.
Weights connected to gene expression input occupied 51.6 ± 1.3% of the
weights over all the ME+GE networks, with the remainder used forT
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methylation. In these experiments, we found that an omic-specific L1
penalty of 0.01 for gene expression reduced the contribution of the weights
associated with gene expression to 0.69 ± 1.16% while a similar threshold
reduced the weights associated with methylation to 2.56 ± 1.73%. A more
severe omic-specific L1 threshold of 0.001 for methylation reduced the use
of methylation in the top genes nearly completely, only for LRNN3
methylation input is still used in the second and third foldwith (respectively
~41% and 16% of the weights for this gene). However, with the same
threshold gene expression inputs are responsible for 15% of the weights for
AHRR in the first fold, nearly 29% of theGPR15weights in the second fold
and 39% of RER1 in the fourth fold (see Supplementary Figs. 3 and 4).
Interestingly, the importance of AHRR was severely impacted by the
methylation penalty, its gene expressionwas barely used to predict smoking
status when methylation was penalized.

Predicting age. Networks trained with both methylation and gene
expression data (ME+GE) achieved a mean error of 5.16 (95% CI:
3.97–6.35) years overall folds for age prediction (see Table 2). Between
folds, there were large differences in performance for predicting age.
Most notably, networks did not generalize well in folds that have either
the RS (ranging between 52 years and 80 years) or the LLS (ranging
between 30 years and 79 years) as test cohorts, the two cohorts with the
oldest population. For these cohorts, the explained variance in the test set
was substantially lower than in the validation set: RS test 0.40 (95% CI:
0.37–0.43), 0.94 (95% CI: 0.93–0.94) validation, LLS test 0.95 (95% CI:

0.95–0.95), 0.61 (95% CI: 0.60–0.63) validation. Aside from being older,
these cohorts also have a smaller spread in age distribution compared to
the two other cohorts (See Fig. 4a and Supplementary Fig. 7). The NTR
cohort ranges between roughly 18-years-old and 80-years-old while
individuals from the LL cohort were between 18-years-old and 81-
years-old.

Differences between omics and network types were also larger for age
prediction than for smoking status prediction. The ME+GE network
consistently outperformed the single-omic networks with substantial
margins: the mean explained variance over all folds was 0.72 (95% CI:
0.36–1.07) for theME+GE network, 0.30 (95%CI:−0.26 to 0.86) for gene
expression, while the ME networks did not find any predictive pattern that
translated to the test cohort. Training and validation performance was
generally poor for theME network, and although the GE network obtained
good validation performance in terms of explained variance for each fold,
this did not translate in folds with the RS and LLS as test cohorts. The
baseline network performed substantially better than the visible neural
network for the methylation data with an error of 4.10 years (95% CI:
2.73–5.46) versus that of 15.00 (95% CI: 4.31–25.69) for the ME network.
However, the performance of the ME+GE network was slightly better
(rootmean squared error (RMSE) of 5.16 years, 95%CI: 3.97–6.35) than the
multi-omic baseline network (RMSE of 5.90 years, 95% CI: 4.59–7.21).

Interpretation of theME+GE network revealed that many genes had
a small contribution to age prediction (see Supplementary Fig. 7). The
neural network found amoremultifactorial solution for age prediction than

Fig. 3 | Overview of the important genes for predicting smoking status for
each fold. For each gene the mean contribution as a percentage of the total weight
assigned to each gene is shown together with a bar indicating the standard deviation
over ten runs with different weight initializations. For each gene, the pie chart shows

themean contribution ofmethylation and gene expression. Each quadrant shows the
variation of different runs for a single test cohort while each quadrant shows the
variation across different cohort splits.
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for smoking, the most important gene over all folds only occupied 0.68% of
all weights for predicting age compared to 3.76% for smoking. The most
predictive genes with a weight contribution higher than 0.30% of the total
weight in three out of the four folds were COL11A2, AFAP1, OTUD7A,
PTPRN2, ADARB2 and CD34 (Supplementary Table 6). These most pre-
dictive genes were not part of Hannum et al. and Horvath’s epigenetic
clocks25,26. The first principal components of the activation patterns of the
ME+GE network revealed distinct activation patterns for the different
sexes with a gradient in each cluster (see Fig. 4b). However, there is no
significant difference in the absolute error between the sexes (Wilcoxon
rank-sum, p-value of 0.98, Supplementary Figs. 8 and 9), the first principal
component clusters perfectly for males and females while the second
principal component is strongly related with age. Additional experiments
showed that the clustering of the sexes is mainly driven by genes on the X
chromosome (see Supplementary Fig. 10). Including sex as a covariate in the
last layer of themodel did not improve the performance of themodel (mean
RMSEoverall folds of 7.31 [95%CI: 2.89–11.73]). Including sex information
to each gene also did not lead to a better performance (mean RMSE overall
folds of 10.64 [95% CI: 4.12–17.15]). However, inspecting the weights
between the covariate and the genes for the best-performing network
revealed strong sex-specific weights for, among others: KLF13, ANO9 and
HECA (for more details see Supplementary Fig. 11). For these genes the
network needed strong weights to model sex-specific effects for age
prediction.

After applying an omic-specific L1 penalty formethylation of 0.01, the
networkonly used themethylation input for geneNEDD1 in the second fold
with nearly 33% of the weight contribution for this gene frommethylation,
while in the third foldMAD1L1 had amethylation contribution of 23% (see
Supplementary Fig. 14). With the same threshold for penalizing gene
expression inputs,DNAJB6 had the largest gene expression use with 31% of
the weight for this gene assigned to gene expression input (Supplementary
Fig. 15). The deeper neural network architectures quickly overfitted,
reaching high performance on the training data which did not generalize to
the validation and test set. These networks were consistently outperformed

by the ME+GE network (Supplementary Table 7). The best-performing
network built with KEGG pathway information had the pathway: “envir-
onmental information processing” as the most predictive global pathway
because of the high contributions of membrane transport (ABC transpor-
ters), signal transduction, and signalling molecules and interaction (see
Supplementary Fig. 16).

Predicting low-density lipoprotein levels. ME+GE and GE networks
explained up to 17% of the phenotypic variance in the validation set but
these networks only generalized in the second fold to an explained var-
iance of 0.07 (95% CI: 0.05–0.08) for the ME+GE network and 0.04
(95% CI: 0.04–0.05) for the GE network in the LL test cohort (see Sup-
plementary Table 8). In this fold, the largest gene, FAM53A only occupied
0.052% of the total weight (Supplementary Fig. 17). The weights for all
genes in the ME+GE network were small and evenly spread, indicating
that the network did not find individual genes with a strong effect for
predicting LDL levels. Additional layers, be it pathways or densely con-
nected layers, did not improve predictive performance.

Discussion
In this paper, we evaluated the performance, interpretability and stability of
visible neural networks for single andmulti-omics data. Interpretability was
achieved by embedding prior biological knowledge such as gene and
pathway annotations in the neural network architecture. We applied these
models to predict smoking status, age and low-density lipoprotein levels in a
cohort-wise cross-validation using methylation and gene expression data.
For smoking, single omic networks and multi-omic networks performed
consistently high across all cohorts for predicting smoking status. Predicting
smoking status is a relatively simple task, since smoking is a powerful
inducer of DNAmethylation and gene expression alterations37. This is also
reflected by the mean AUC of 0.95 overall folds that the ME+GE andME
networks achieved. It is slightly better than the performance of Maas et al.
who reported an AUC of 0.90 in an external dataset with a weighted
combination of just thirteen CpGs. Inspection of the weights of the ME+

Fig. 4 | Test predictions and activation analysis. a Test predictions for the ME+
GE network for all folds (each cohort) with corresponding distributions (see Sup-
plementary Fig. 12 for the GE and ME networks). b Activation of the ME+GE
trained for age prediction. A principal component analysis clearly shows twodistinct

activation patterns corresponding to the different sexes. Principal component 1 is
related to the sex differences, and principal component 2 to the age of the
participants.
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GE network revealed GPR15, AHRR and LRRN3 as the most important
genes for prediction, which is consistent with existing literature28,29,37,38. In
the ME+GE network, the contribution of both omics types was nearly
equal (in terms of weights), while the gene expression-based network by
itself was less predictive than themethylation-based networks. Applying an
omic-specific penalty for methylation input showed that the ME+GE
network needed some methylation input to achieve similar performance
with expression information.

For predicting age, theME+GEnetwork outperformed the singleME
or GE networks. The performance of this network in the test cohorts varied
between an R2 of 0.40 (95% CI: 0.37–0.43) and 0.91 (95% CI: 0.90–0.92).
This difference in performance is probably caused by the different dis-
tributions in age in the cohorts, depending on the cohorts in the training set
the networks are shown fewer examples of older or younger individuals.
Similar effects were also seen in traditional methods9. Based on the pre-
dictive performance shown in Table 2 one could conclude that for age
prediction, usage of the twoomics types increased stability andperformance
for these types of neural networks compared to the single omic networks.
Additionally, we have evaluated whether the network used sex information
in the decision process for age prediction. The first principal component of
the activations of the neural network showed a perfect separation between
the sexes, mostly caused by genes on the X chromosome, while the second
principal component had a clear correlation with age. Owing to the shal-
lowness of the networks, the activation pattern will therefore closely
resemble the underlying data, especially if it has some relation with the
outcome. For deeper networks, a PCA on the activation may reveal more
detailed information (such as different patient subtypes or mediating fac-
tors) since the network applies more complex transformations to the data.
The inclusion of genes on the X-chromosome allowed the network thus to
separate between the sexes but it didnot have the capacity tomodel different
effects independently from the input for each sex. To help themodel to find
a sex-specific effect we modified the network with sex information as an
extra input to each gene node. After, training the network found the
strongest sex-specific gene effects for KL13, ANO9 and HECA. However,
this addition to the network architecture did not improve performance.

An earlier EWAS in only the RS did not find significant associations
betweenDNAmethylation in blood and LDL cholesterol39. Another EWAS
using BIOS data found only three significant associations, demonstrating
that there is a very weak relation between methylation and LDL measure-
ments from blood which makes the prediction task more complex40. The
neural networks did find patterns in the training set that were also found in
the validation set (up to an R2 of 0.17 [95% CI: 0.16–0.18]) but this pattern
did not generalize to the test cohorts with the exception of the Lifeline
cohort. In this cohort themethod achieved anR2 of 0.07 (95%CI: 0.05–0.08)
in the test set, substantially lower than the performance of the validation set
0.13 (95%CI: 0.12–0.14). suggesting that themodel had trouble generalizing
to data from an unseen cohort. Overall, the low prediction performance
might also indicate that the studied omic data (gene expression and
methylation from blood) might not contain enough information to accu-
rately predict LDL levels.

In general, we found that including multiple omics inputs in the net-
work improved performance.Thesemulti-omic networks had amore stable
performance and generalized better to the test cohorts. Surprisingly, deeper
networks did not lead to better performance. Generally, one would expect
deeper networks to perform better since they can model more complex
interactions. Thus, it is possible that the optimal hyperparameter values for
deeper networks lie outside the considered hyperparameter range or that
more training examples are required to train these deeper networks.
Interpreting the ME+GE networks revealed well-known genes such as
GPR15 and AHRR for smoking that validate the results. However, we also
saw that the interpretation can vary between different random initializa-
tions, and it is therefore recommended to train networks with different
random seeds for amore complete overview of important predictors. As for
all prediction models, it is important to consider that predictive genes and
pathways found are not necessarily causal genes and pathways as effects can

bemediated.However, these genes andpathways doprovide insight into the
decision process of the neural network and may be used in follow-up.

For good interpretation, proper regularization is important as it forces
the network to use the most predictive input features. For example, an L1
penalty on the weights will force the network to learn sparse weights,
resulting in a less complex model. In the absence of an L1 penalty on the
weights, the network hasmore freedom to choose its weights. This does not
necessarily harm performance but may harm interpretability. In this work,
we use the L1 penalty to regularize the network, but other regularization
methods could have been chosen. For example dropout41, this method
drives the network to find a more stable solution by deactivating random
sets of neurons during training. Another important factor for interpretation
in visible neural networks is the quality of the prior knowledge used in
creation. In this study, the annotations for the CpG sites were based on
genomic distance. Potential improvements could come from using tissue-
specific and functional annotation databases such as ENCODE42.

We believe that visible neural networks have great potential for
genomic applications, especially for multi-omics integration. These inter-
pretable neural networks can combinemulti-omics data elegantly in a single
prediction model and provide the importance of each gene, pathway and
omic input for prediction. Additionally, we found that using multi-omic
networks generally improved performance, stability and generalizability
compared to interpretable single omic networks.

Methods
BIOS data
Transcriptome and methylome data from the four largest cohorts in the
Biobank-based IntegrativeOmicsStudy (BIOS) consortium—LL, LLS,NTR
and RS—were used to train the models in a cohort-wise cross-validation
setting. In the BIOS consortium, all cohorts adhered to the same procedure
in gathering and processing data. For each participant, the transcriptome
and the methylome were measured in whole blood samples taken from the
same visit. DNAmethylation was profiled according to the manufacturer’s
protocol using the Infinium Illumina HumanMethylation 450 k arrays,
while blood was first depleted from globin transcripts for RNA sequencing.
A detailed description of all data generation and preprocessing steps for the
RNA sequencing and DNA methylation data can be found in refs. 43,44.
Using the BBMRI-NL’s Integrative Omics analysis platform45, all indivi-
duals that had both RNA-seq andmethylation data (β-value) available were
selected, resulting in a dataset with 2940 individuals. Y-chromosomal data
was excluded, and X-chromosomal and autosomal measurements were
included. Finally, RNA-seq expression data was filtered using an expression
inclusion criterion of one count permillion on average across all samples or
higher9.

Training and evaluation
The neural networks were evaluated in a cohort-wise cross-validation setup
(Supplementary Fig. 1) to assess the generalizability of the models across
cohorts. In each fold, one cohort is held out as a test set, while the three other
cohortswereused for training andvalidation (leave-one-outmethod). From
these three cohorts, 75% of the individuals were randomly selected for the
training set while the remaining 25% was used in the validation set to tune
the hyperparameters. For all methods, the same combinations of hyper-
parameters were tuned on the validation set. Combinations included
learning rates of [0.01, 0.001, 0.005, 0.0001] andL1 penalty on theweights of
the combined gene and/ormethylation gene layer of [0.01, 0.001, 0.0001]. A
higher L1 penalty increases the cost for the network to include more con-
tributors topredict theoutcome (seeSupplementaryNote1).TheL1penalty
thus enforces sparsity over the weights, so that most inputs get assigned a
(near) zero weight while important inputs still get assigned a high weight.
This L1 regularization on theweights helps prevent overfitting and increases
interpretability.

Themean squared error (MSE) was used as a loss function to optimize
for regression tasks. For classification tasks, weighted binary cross-entropy,
with a weighted inverse to the ratio of the class imbalance, was used as a loss
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function. The loss function quantifies the difference between the current
outcome and the true label and is optimized during training. The perfor-
mance of the resulting network is evaluated using theAUC for classification
tasks, and the RMSE and explained variance (sci-kit learn, explained_var-
iance_score) for regression tasks. For each fold the hyperparameters of the
best-performingmodel in the validation setwere selected to evaluate the test
cohort. Since neural networks use stochastic processes that can influence the
outcome, we trained the network with the best hyperparameters ten times
with a different random seed to investigate its stability.

Interpretation
The contribution scores for interpreting the importance of each input and
node are calculated using the absoluteweights in the network. For each path
between the output and the inputs, the product of all absolute weights along
the path is computed. The total contribution of an input is retrieved by
summing the products of all paths that converge on it. The proportion of
each input’s contribution relative to the total contribution of all inputs is the
final score.Todetermine the contribution of nodes in hidden (intermediate)
layers, this proportion is multiplied by all the weights along the path from
the input to the hidden node. Again, the final contribution percentage is
calculated as the contribution of the hidden node divided by the total
contribution of all hidden nodes in the same layer.

Baselines
To compare the performance of visible neural networks to more traditional
neural networks a baseline network with a locally connected layer followed
by two dense layers was trained (see Supplementary Note 2). The locally
connected 1D layer has been successfully used in various applications in
genomics46–48 and can be seen as a hybrid between convolutional and fully
connected layers49. For the multi-omics data, the methylation and gene
expression data were first concatenated before feeding to the network.
Hyperparameters, loss functions and activation functions were optimized
and configured in the same manner as for the visible neural networks.

Additional analyses
Neural networks are flexible methods and with the inclusion of prior bio-
logical knowledge different architectures can be explored to provide more
insight into the interaction between omics types, the contribution of cov-
ariates and the gene-specific contribution of covariates. For each of these
analyses, we made small changes to the ME+GE networks.

Omic-specific information. Gene expression and methylation data
contain redundant information with respect to each other. However, not
all information that is present in the one may be present in the other data
type. To evaluate the independent contribution of each omics to the
prediction we add a L1 penalty for one omics type in the model. This
introduces a trade-off for the neural network: the gain in performance for
including information on the penalized omic (i.e. RNA expression of a
single gene or the methylation representation of a single gene) must
outweigh its penalty. If the model uses only the non-penalized omic type
without loss of prediction performance, it is likely that there was no omic-
specific information.However, if themodel still decides to use parts of the
penalized omics data, this information is most likely unique to the
penalized omic type and was therefore required for prediction.

Covariate-gene interaction. Including covariates in the model, for
example, sex and age for smoking can improve performance and inter-
pretation. Commonly, the covariates are included as an extra layer at the
end (Fig. 2c). However, by adding a covariate for each gene, more specific
information on how a covariate affects a single gene can be obtained (see
Fig. 2e). For eachphenotypewe tested both, amodelwith covariates in the
last layer and a model with covariates for each gene.

Subtyping with activation patterns. In contrast to fully connected
neural networks, the visible neural network architectures used in this

study are constructed based on prior biological knowledge that can be
interpreted by inspecting the weights of the incoming and outgoing
connections. The strength of the weights (e.g. between CpGs and genes,
expression and genes, genes and pathways), all express the importance of
these biological elements for the predicted outcome. The weights of a
neural network are a result of an optimization over the population it was
trained on and are thus a result of the population characteristics of the
training set. However, neural networks may learn different patterns for
the same outcome. By inspecting the weights general information is
learned about the importance of each element but this does not show
differences between groups or individuals. Based on differences between
individuals, some neurons can activate for a certain group of individuals,
while others do not for others. To gain an overview of the different
patterns that are learned by the network we applied principal component
analysis50 (PCA) over all the activations for all (gene-level) nodes for each
individual (see Supplementary Note 3). In this PCA, individual-level
differences may cluster and provide groups of individuals for which the
neural network used a similar activation pattern.

Data availability
BIOS datasets are available from the European Genome-Phenome Archive
by accession number EGAS00001001077 (https://ega-archive.org/studies/
EGAS00001001077). Alternative options to access the data are available
through the BIOS website; https://www.bbmri.nl/acquisition-use-analyze/
bios/. All trained networks are available on request.

Code availability
The code is available on GitHub: https://github.com/ArnovanHilten/
GenNet-multi-omic.
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