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A B S T R A C T

Numerical study on crack propagation are of great importance for structure design and assessment. In this
contribution, the floating node method (FNM) is combined with the symplectic analytical singular element
(SASE) to form a new crack-tip element. The four node quadrilateral crack-tip element contains a SASE for the
crack tip area to account for the singularity issue. Floating nodes are used to form a smooth transition mesh to
full fill the other area of the element automatically once the SASE has been generated. Delaunay triangulation is
used to guarantee the quality of the transition elements. Strong discontinuity resulted from complex crack
networks with multiple cracks is treated by the FNM. Criteria for crack nucleation, propagation angle and length
of new crack segment are given. Interaction between cracks and between crack and defect can be readily
modelled without any prior knowledge of crack path. The fracture process of crack propagation can be modelled
without remeshing. Inherited from the FNM, the proposed crack-tip element is especially suitable to be im-
plemented in the form of a user defined element. Completed fracture processes with crack nucleation, propa-
gation and interaction are modelled in the numerical examples.

1. Introduction

Cracks due to defects, repair, corrosion or other reasons arise fre-
quently in engineering applications, and it may significantly reduce
fatigue life of the structure or even lead to catastrophic failure. With the
development of computational methods for fracture, numerical mod-
elling has emerged as a powerful tool in engineering practices to aid the
design against failure. Due to the existence of strong discontinuity and
the singularity issue in crack problems, special numerical methods such
as enriched elements and crack-tip elements are needed to efficiently
and effectively model these problems.

For the modelling of arbitrary crack propagations, continuous re-
meshing is generally required in conventional finite element method
(FEM) and the modelling is time-consuming as a result. Although ex-
tensive efforts were devoted, this problem was not solved satisfactorily
until the emergence of the Extended Finite Element Method (XFEM)
[1]. In XFEM, the use of Heaviside enrichment allows a crack within an
element to be represented without remeshing. In this way, modelling of
crack propagations can be conducted on a fixed regular mesh. Since
developed, XFEM has drawn extensive attentions and has been adopted

for various crack problems such as bimaterial interface crack [2], three-
dimensional (3D) crack [3–8], cohesive crack [9–11], fatigue crack
growth [12], fracture of structures with complex geometry [13], failure
of composite material [14–16], kinked crack [17], crack propagation in
the material with micro defects [18], etc. A popular variant of XFEM,
namely Phantom Node Method (PNM), is essentially equivalent to
XFEM with only the Heaviside enrichment [19]. In PNM, strong dis-
continuity is represented by activating additional phantom nodes and
forming overlapping sub-elements with partial integration domains
[20–22]. The nodal Degree-of-Freedoms (DoFs) of the PNM are com-
patible with those of conventional elements and hence it can be readily
implemented into a standard finite element code. PNM has been further
developed in numerous studies for modelling of cohesive cracks
[23–25], 3D cracks [26], failure in composite laminates [27–29], dy-
namic crack problems [30], and other fracture problems [31–33]. Based
on the development of XFEM and PNM, the floating node method
(FNM) was proposed where additional nodes are introduced for the
representation of discontinuity in an element [34]. Unlike in PNM, the
locations of additional nodes do not need to be fixed. They are moved to
the crack-edge intersections to form fully-integrated sub-elements.
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Complex crack networks with multiple cracks in an element can be
represented directly by forming sub-elements that are conforming to
the cracks. So far, applications of FNM on fracture problems have been
reported in numerous publications, ranging from single-crack to many-
crack problems on isotropic and composite materials [35–45].

For brittle fracture, the analytical solution under Linear Elastic
Fracture Mechanics (LEFM) indicates that the stress field is singular in
the vicinity of the crack tip. A general approach in FEM for considering
the singularity issue is using the crack-tip element. The earliest crack-tip
elements are the quarter point singular element [46] and the enriched
element [47]. The singular stress fields around the crack tip can be re-
produced in the crack-tip elements and the mixed-mode stress intensity
factors (SIFs) can be calculated through a post-processing such as the J-
integral. A more representative example of the crack-tip element is XFEM
[1], in which the displacement field in the crack-tip element is defined by
a mix of standard Lagrange shape functions and the eigen solution (Ir-
win’s solution) of the crack problem with low order terms. Menouillard
et al., investigated the enrichment strategy for XFEM in dealing with
dynamic crack propagation [48], Bayesteh and Mohammadi studied the
effect of crack tip enrichment functions in XFEM for plate and shell
structures [49], Bouhala et al., proposed an XFEM enrichment for the
crack terminating at a bimaterial interface [50], Song and Wolf proposed
a special enrichment scheme by using a scaled boundary finite element
method (SBFEM) [51,52]. Kumar et al., proposed crack tip enrichment
schemes for dynamic crack problem under blast loading and ductile
crack problem, only a few additional DoFs are added to the crack tip
nodes which slightly increases the computational cost [53,54]. Although
in many studies only low order terms of the eigen solution of the crack
problem are used, it is found that an enrichment with higher order terms
can improve the solving accuracy as stated in the studies of Karihaloo
and Xiao [55,56]. Similar conclusions can also be found in Refs.[57–59].
In the previous studies, Hu proposed a series of crack-tip elements in
which the physical fields are defined purely by the eigen solutions where
not only the singular terms but also the higher order terms are employed.
Due to the fact that the eigen solutions are solved by using a symplectic
analytical approach, this type of element is termed as “symplectic ana-
lytical singular element (SASE)”. The SASE has been applied for many
basic crack problems such as, general cracks [60], fatigue crack growth
[61,62], bimaterial crack [63,64], viscoelastic cracks [65], thermal
conduction for crack [66,67], dynamic crack problem [68] and cohesive
cracks [69]. The solving accuracy and stability of the SASEs have been
shown to be highly satisfactory. With the SASEs, fracture parameters
such as SIFs and heat flux intensity factors (HFIFs) can be calculated
accurately without mesh refinement around the crack tip or any post-
processing. However, the SASEs would require remeshing when dealing
with crack propagation problems [61,62], making the models compu-
tationally expensive.

2. Motivation

The purpose of this work is to enhance the SASE method by com-
bining it with an enriched element technology for handling crack pro-
pagations without remeshing. Due to the flexibility of assigning addi-
tional (floating) nodes in elements, the ease of handling different types
of discontinuities and the stability of the sub-elements thanks to their
full-domain integration, FNM is chosen as the candidate for this pur-
pose. Subjected to external loadings and constraints, the original crack
propagates and forms the new crack surfaces new and a new crack tip as
shown in Fig. 1. In dealing with the crack problem by using numerical
methods such as the conventional FEM, it is faced with two main
challenges. The first one is the discontinuous fields across the new crack
surfaces (also known as the strong discontinuity). It therefore requires
the remeshing technique to fit to each new crack segments. The other
challenge is the crack tip singularity issue. According to LEFM, the
value of stresses approach infinite at the vicinity of a crack tip. In this
study, the SASE is combined with FNM for crack propagation in two-

dimensional (2D) domain. The crack tip area is occupied by using a
SASE to describe the singular stress field accurately. The FNM is used to
treat the strong discontinuity. Additional floating nodes are assigned to
the new crack surfaces to fit to the changing crack geometry during
propagation. Meanwhile, floating nodes are also assigned to the SASE
around the moving crack tip to form a smooth transition mesh with the
surrounding regular elements. The assignments of additional floating
nodes are conducted automatically such that remeshing can be elimi-
nated with the proposed method. Taking advantages of each method,
the singular stress fields at the crack tips can be modelled accurately
and crack propagations handled efficiently. A few numerical examples
are given to verify and validate the proposed method.

After defining the discussed problem with the basic equations in
Section 3, the two main aspects of the proposed method are discussed in
Section 4 for the strong discontinuity and Section 5 for the singularity
issue. The combination of the FNM and the SASE is also discussed in
Section 5. The solving procedure, criteria and other relevant aspects are
discussed in Section 6. A few representative numerical examples are
provided in Section 7, and a conclusion is given in Section 8.

3. Basic equations

Let consider a cracked two-dimensional (2D) plate as shown in
Fig. 1, the relationship between stress and displacement under plane
stress assumption is specified by
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where r( , ) is the polar coordinate system. The notations r , and r
represent stress components. ur and u are displacement components
along the r - axis and - axis, respectively. E and are Young’s modulus
and Poisson’s ratio, respectively. The stress equilibrium equations are
given by
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where F1 and F2 are body forces. The boundary conditions at the crack
surfaces are

= =r r( ), ( ), atr r c (3)

where r( ) and r( )r are prescribed.

Fig. 1. A cracked two dimensional domain with arbitrary shape.
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4. Strong discontinuity and floating node method

Let consider an element which is cut through by a crack segment as
shown in the left sub-figure of Fig. 2, the strong discontinuity formed by
the crack is treated by using the floating node method (FNM) [34,37].
In the FNM, additional floating nodes are introduced which are moved
to the two ends of the crack if an element is cut through as shown in
Fig. 2. The formed two sub-elements are

Element #1: 1, 2, 6, 5, Element #2: 8, 7, 3, 4 (4)

The formed two sub-elements are still standard elements and their
formulations are

= =P K d P K d,1 1 1 2 2 2 (5)

where =d u v u v u v u v[ , , , , , , , ]T
1 1 1 2 2 6 6 5 5 and =d2 u v u v u v u v[ , , , , , , , ]T

8 8 7 7 2 2 3 3
are the nodal displacement vectors of the two sub-elements, P1 and P2
are the nodal force vectors, K1 and K2 are the stiffness matric. Hence, the
integration of the stiffness matric of the sub-elements are conducted
following the standard Gauss quadrature schemes on their domains.
Assembling the stiffness matrix as well as the nodal force vector into the
global FEM system, the crack problem can be solved. For cases where
the sub-element is a polygon, it can be partitioned into a few standard
elements. For cases where an element is cut through by multiple cracks,
it is only required to arrange the nodal connectivity arrays properly to
form the corresponding sub-elements that conform with the crack
boundaries. Different scenarios of crack interaction in an element and
the arrangement of node connectivity are shown in Fig. 3, indicating
the generality of the method. More details about the FNM and the
comparison among FNM, XFEM and PNM are referred to Refs.[34].
More applications of the FNM are referred but not limited to Refs.
[35,36,40]. The FNM is employed for the strong discontinuity in the
present study for modelling crack propagation.

5. Singularity issue and a crack-tip element

5.1. Eigen solution of the crack problem

The analytical solution of a crack problem in the domain
r: {0 ; } is normally investigated under the polar

coordinate system r( , ) as shown in Fig. 4. The 2D elasticity problem
can be transformed from Lagrangian system into Hamiltonian system
[70]. For that purpose, the following generalized variables should be
introduced

= = = =r S r S r S rln , , , .r r r r (6)

where is essentially a generalized coordinate and Sr , S and Sr are
generalized stresses. With the generalized variables, the two-field
(stress and displacement) Hellinger-Reissner (H-R) variational principle
of plane stress problem can be expressed as
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The variation of the functional in Eq. (7) for an arbitrary change S
gives the following relationship

= + +S E u u Sr r (8)

Substituting S back into Eq. (7) transforms the H-R variational
principle into
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There are four independent variables in the new variational prin-
ciple and they are termed as the configuration variables (ur and u ) and
the dual variables (Sr and Sr ). The variation of the functional in Eq. (9)
for arbitrary changes of ur , u , Sr and Sr gives a first order differ-
ential equation set

=Z HZ
(10)

where =Z u u S S[ , , , ]r r r
T. It is proven that H is a Hamiltonian op-

erator matrix, it is specified by

=
+
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E E

E E
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2

2
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By means of separation of variables, the solution of Z is considered
to take the form =Z µexp( ) ( ) where µ and are eigenvalue and
the corresponding eigenvector. The eigenvector is given by = [ ( )u ,

( )v , ( )r , ( )]r
T in which ( )u , ( )v , ( )r and ( )r are dis-

placements and generalized stresses after separation of variable. A si-
milar notation ( ) is used for S in the rest of the paper. Substituting
Z back into Eq. (10), the problem is transformed into an eigenvalue
problem

Fig. 2. Representation of strong discontinuity in an
element by using the floating node method.

Fig. 3. Representation of interaction of cracks by using the floating node
method. (a) A T shaped crack [34], (b) two crossing cracks, (c) six cracks [40].

Fig. 4. Illustration of a crack under the polar coordinate system.
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=H µI( ) ( ) 0 (12)

The eigenvalue can be solved by letting =Hdet µI( ) 0 and the
analytical solutions are specified by

= =µ n n
2

, 0, 1, 2, 3, .... (double root) (13)

Substituting the eigenvalues back into Eq. (12), the corresponding
eigenvectors can be solved with the traction free condition at the crack
surfaces

+ + = = = ±E u u S S0, 0,r r r (14)

It is noteworthy that all the eigenvalues are double roots, and it can
be proven that there are two independent eigenvectors corresponding
to an eigenvalue. One of them represents symmetric deformation while
the other one anti-symmetric deformation. For zero eigenvalue, the
eigenvectors are given by

= =[cos sin 0 0] , ( ) 0s
T

s
(1)

,
(1)

(15)

= =[sin cos 0 0] , ( ) 0a
T

a
(2)

,
(2)

(16)

The subscripts “s” and “a” represent symmetric and anti-symmetric
deformations, respectively. The general solutions of the eigenvectors
corresponding to nonzero eigenvalue are specified by
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= + + =+ B µ D µ j( ) sin(1 ) sin(1 ) , 3, 5, 7, ...a
j

s s,
( 1)

(20)

where the explicit expressions of the 20 coefficients A B C, , , ...u u u are
referred to [60,70]. The analytical solution to the original problem can
be expressed in terms of an eigen expansion

=
=

Z a e ( )
j

j
µ j

1

( )j( )

(21)

where the superscript j indicates the jtheigen expanding term and aj is
the expanding coefficient.

5.2. Formulation of a circular singular element [60]

In the construction of a singular element, the eigen expansion (21)
with the unknown expanding coefficients is the best choice to define the
fields around the crack tip since the singular terms (3 and 4) and other
higher order terms are included. A circular singular element termed as
the SASE (as illustrated in Fig. 5) which is constructed in this way is
available in [60], and its formulation is briefly listed here. In practice,
Eq. (21) is truncated to include finite numbers of the expanding terms

=
=

Z a e
j

M

j
µ j

1

( )j( )

(22)

Rewriting it in form of matrix gives

= = = =A Ap u u a q S S a[ , ] , [ , ]r
T

r r
T (23)

where =a a a a[ , , ... ]M1 2
T is the vector of the unknown expanding

coefficients. Substituting Eq. (23) back into Eq. (9) makes the only

independent function be a in the variational principle. In view of the
fact that the eigen functions have satisfied all the interior fundamental
equations and the crack surface boundary conditions, the variational
principle can be simplified into

=
=

p q1
2

( ) d 0T

ln (24)

The variational principle can be rewritten in form of matrix

= ==A Aa R a R1
2

| 0 where dT T T
ln (25)

Denoting =d u u u[ , , ... ]r N,1 ,1 ,
T the nodal displacement vector, the

relationship between the eigen expanding coefficients and the nodal
displacement is given by

=d TB a B T da =or 1 1 (26)

where = =B A ( ln ) and the matrix

=T
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In order to ensure thatT is a square matrix, N2 expanding terms are
selected in Eq. (22) (i.e., =M N2 ) if N nodes are used in the singular
element. In this way, the fields of displacement and the generalized
stress can be represented by using the nodal values of displacement as
in standard elements

= AB T du u[ , ]r
T 1 1 (28)

= AB T dS S[ , ]r
T 1 1 (29)

Essentially, AB T1 1 is the standard shape function which relates
the displacement field with the nodal values of displacement. At least
three differences between the SASE and the XFEM can be found from
the definition of the shape function. (1) both of displacement and stress
(stress can be calculated with the generalized stress) are defined with
shape functions directly in the SASE. This is different from XFEM in
which only displacement is defined with shape function while the stress
is calculated from the spatial gradient of the displacement. (2) The
SASE employs many nodes on which the DoFs are just standard dis-
placement components. On the contrary, the XFEM uses less nodes but
extra DoFs are introduced on these nodes. It makes the D.O.Fs being
physically meaningless. (3) Higher order eigen expanding terms besides
the low order singular terms are employed in the definition of the SASE,
it is known that the benefit by doing this is that the size of the element
can be even bigger for the required accuracy [64]. In the early version
of XFEM in which only singular terms are included, refined mesh should
be used to get a satisfactory prediction.

Based on the obtained relationship, the variational principle can be
rewritten as

Fig. 5. Schematic illustration of the circular singular element.

Q. Fu, et al. Theoretical and Applied Fracture Mechanics 105 (2020) 102422

4



=d T T dR1
2

0T T 1
(30)

Hence, the stiffness matrix is of the singular element is

= T TK Rs
T 1 (31)

Although the finite element formulation is derived under the polar
coordinate system, it should be transformed into the Cartesian co-
ordinate system to match to the regular elements which are normally
derived under the Cartesian coordinate system. The coordinate trans-
formation technique is readily available in most finite element books, it
is not introduced here.

5.3. Formulation of a new regular shaped crack-tip element

Considering the singularity issue around the crack tip, one has to
insert the circular singular element around the crack tip. However, the
irregular shape of the circular singular element has brought difficulties
in modelling crack propagation with a regular mesh. For this reason, a
four-node crack-tip element is formulated to have better compatibility
when modelling on a fixed regular mesh. The new crack-tip element
contains a circular singular element in the center and some other reg-
ular sub-elements in the transition domain as shown in Fig. 6. The
singular element and the regular elements are formed with the existing
four real nodes and additional floating nodes assigned to the element in
the preprocessing. Delaunay triangulation is used to partition the
transition domain to ensure the quality of the sub-elements. A shared
source code for the implementation of Delaunay triangulation is em-
ployed in this study [71]. Once the position of the circular singular
element is determined (see Section 6.2), the topological configuration
of the transition area is obtained as well. The right sub-figure of Fig. 6
depicts the triangle sub-elements. In fact, other meshing strategies can
also be used to generate quadrilateral sub-elements in the transition
area. The meshing process generates a set of local node numbers which
should be related to the real and floating nodes assigned to the element.
It is noted that all the floating nodes on the edges except the two on the
crack segment are eliminated by multiple point constraint (MPC). The
formulation of the new crack-tip element is obtained by assembling the
stiffness matric as well as the force vectors of the sub-elements and the
singular element

=K K K K K( , , , , ...)el s 1 2 3 (32)

=P P P P( , , , ...)el 1 2 3 (33)

where is the assembly operator. The force vector of the singular
element is zero if the domain is free from external loading such as crack
surface traction. Otherwise, the force vector of the singular element
should be calculated and assembled. Just like in other adaptive mesh
refinement techniques, hanging nodes are generated at the edges of the
four-node singular element as shown in Fig. 6. In this study, the hanging
nodes are constrained to the two real nodes of the edge through the
means of MPC.

=d T dhan mpc r (34)

where dhan is the vector of the hanging nodes and dr is the vector of the
real and the rest floating nodes. Tmpc is the transformation matrix. The
formulation of the crack-tip element should be updated

=K T K Tel
new

mpc
T

el mpc (35)

=P T Pel
new

mpc
T

el (36)

6. Discussions

6.1. Solving procedure

For a quasi-static problem, the external loading is cut into several
increments Pg. The following equation is solved at each load increment

= +d K u P P( )( )g g g g
1 (37)

where K u( )g is the global stiffness matrix and it depends on the current
configuration of the structure. dg and Pg are global nodal displacement
and force vector. For a cracked structure as shown in Fig. 7, a circular
singular element is put at the original crack tip at “step 1” and the
element becomes a crack-tip element. It is noteworthy that the transi-
tion elements as well as the floating nodes are hidden in the figure for a
clear illustration. With the increment of external loading, the crack
propagates into the next element at “step 2” and the element becomes a
crack-tip element. After a few loading increments, the crack enters an
element far away at “step n” as shown in Fig. 7 and several elements are
cut through by the crack during the crack propagation process. The
element is cut through when the crack tip leaves it, and only a few
floating nodes are left to represent the strong discontinuity using the
FNM discussed in Section 4 and it is illustrated by the crack trajectory of
“step n” in Fig. 7.

6.2. Length of the new crack segment

In the numerical modelling, crack propagation trajectory is com-
posed of several consecutive segments. Each crack segment is a straight
line which links the old and the new crack tips. When the direction of a
new crack segment is determined, its length must also be determined. In
order to guarantee the quality of the mesh inside the proposed regular
shaped crack-tip element, the new crack tip should be placed properly
to keep it away from the edges of an element. A simple method is in-
troduced to find the proper area for quadrilateral element. For other
elements, such a proper area can also be found with a similar method.
Generally, a quadrilateral element has two inscribed circles with three
edges as shown in Fig. 8(a). The extension of the upper and lower edge
of the element intersect at the point 5 and form an angle. The origins of
the two inscribed circles must locate on the angular bisector of the
angle, and their radius R1 and R2 can be determined. The origins of the
two inscribed circles form a path (red line), and all the circles origin at
the red line form the green area (note that part of the green area is
overlapped by the pink area) shown in Fig. 8(a). Shrinking the radii of
the two inscribed circles of the green area with a parameter k such thatFig. 6. Schematic illustration of a four-node crack-tip element.

Fig. 7. Illustration of the solving procedure with the crack-tip element.
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= = =R
R

R
R

k k, 0.7 is chosen in this paper1

1

2

2 (38)

gives a pair of smaller radii R1 and R2. Making two circles orgin at
the two ends of the red line with R1 and R2 further forms the pink area
in the figure which is considered as the proper area for the new crack
tip.

A stepwise procedure for choosing the length of a new crack seg-
ment is provided as follows. For the elements in the area around the old
crack tip as shown in Fig. 8(b), the crack tip proper area should be
determined during the modelling. There are mainly two typical cases in
choosing the proper crack segment length. In case 1, the crack tip
moves from element #1 to the adjacent element #3 along a direction
such that the crack tip can be put into the pink area. In case 2, the crack
propagates from element #1 to element #2. However, one can find that
there isn’t a proper place along the potential crack path in element #2
to put the crack tip. In this case, the crack segment should be extended
to element #4 in which the crack tip can be placed properly. Once the
crack segment length is determined, the load increment Pg for this step
is adjusted such that the equivalent SIF (defined in Section 6.5) equals
to the critical value. In practice, a trial value of the load increment Pg
is used to get a temporary solution. The real value of Pg and the so-
lution can be scaled from the temporary solution with the ratio between
the calculated SIF and the desired SIF. A flow chart of stepwise solving
procedure is given in Fig. 9.

6.3. Fracture parameters

In the analytical solution (21), the first two expanding terms (zero
eigenvalue) represent rigid body transitions along the x - axis and
y - axis, respectively. These two terms have no contribution to the
stresses. The third and fourth expanding terms are singular terms re-
lated to the eigenvalue =µ 1/2, and the other expanding terms are
higher order terms. In the limit of r going to zero, contributions from
the higher order terms are negligible and the stresses are expressed as

= = +S
r

a r a r( ) ( )r
r

r s r a3
1/2

,
(3)

4
1/2

,
(4)

(39)

= = +S
r

a r a r( ) ( )r
r

r s r a3
1/2

,
(3)

4
1/2

,
(4)

(40)

= = +S
r

a r a r( ) ( )s a3
1/2

,
(3)

4
1/2

,
(4)

(41)

In fracture mechanics, an standard definition of the SIFs is given by

= = = =K r K rlim 2 ( 0), lim 2 ( 0)I
r

II
r

r
0 0 (42)

From the above equations, the relationship between the SIFs and the
expanding coefficients is given by

= + =K a A C a E2 ( ) 2I s s3 3 (43)

= + =K a B D a E2 ( ) 2II rs rs4 4 (44)

It is seen that the SIFs KI and KII are proportional to the expanding

coefficients a3 and a4, respectively. The fifth expanding term a r s5
(5)

( =µ 1) represents a constant transverse stress distribution parallel to
the crack. It is essentially the well-known T-stress and it is proportional
to a5. Now, it is clear that solving the values of the expanding coeffi-
cients plays a crucial role. In the most cases, they are solved numeri-
cally.

6.4. Crack nucleation criterion

For an intact material, a new crack is nucleated when the maximum
principal stress reaches to the material tensile strength

S1 (45)

The new crack is perpendicular to the direction of 1, as shown in
Fig. 10. In the absence of crack, the load increment Pg is adjusted such

Fig. 8. (a) Proper area of the new crack tip, (b) choosing the length of new crack segment.

Fig. 9. Flow chart of the solving procedure.
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Fig. 10. Nucleation of crack.

Fig. 11. Schematic illustration of an edge cracked plate (mm) subjected to mode I loading and the mesh during the modelling at (a) u = 0.1591 mm, (b)
u = 0.7852 mm.

Fig. 12. Contours of the first principle stress and the interior meshes of the crack-tip element at (a) u = 0.1591 mm, (b) u = 0.7852 mm.
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that the maximum value of 1 of the structure is equal to S, and a new
crack is then inserted in the element. In practice, an attempt value of

Pg is used to calculate the stresses. Since this step is linear elastic, the
desired value of Pg can be determined directly without iteration since
it is proportional to the trail one, and the ratio is determined by the
maximum value of 1 of the structure and S.

6.5. Crack propagation criterion

For an existing crack tip, the crack propagation angle 0 is calcu-
lated through the SIFs,

= ± +K
K

K
K

2 arctan 1
4

80
I

II

I

II

2

(46)

In this direction, the equivalent SIF Keff is

=K K Kcos
2

cos
2

3
2

sineff
0

I
2 0

II 0 (47)

The crack propagates if

K Keff IC (48)

where KIC is the critical model I SIF which has the following relation-
ship with the critical energy release rate

=K EG , for plane stressIC IC (49)

=K EG
1

, for plane strainIC
IC

2 (50)

7. Numerical examples

7.1. Edge crack (mode I)

An edge cracked plate as illustrated in the left sub-figure of Fig. 11 is
investigated for the verification of the proposed method. The boundary
condition and loading condition are also shown in Fig. 11. The Lame
constants = ×1.2 10 MPa4 , = ×µ MPa8 103 and the fracture energy

=G mm1N/C . The initial mesh of the plate has 1891 rectangular ele-
ments (isoparametric quadrilateral element). The plate is subjected to
mode I loading condition, and the crack is anticipated to propagate
along the original crack path. During the modelling, it is found that the
absolute value of mode II SIF is negligible in comparison with mode I
SIF. Hence the predicted crack propagation angle is always close to zero
according to Eq. (46). As shown in the right sub-figures of Fig. 11, the
predicted crack trajectory is a straight line indicating the modelling
result is correct. The contours of the first principle stress over the whole
plate at different loading stages are shown in Fig. 12(a) and (b), in
which a clear stress concentration around the crack tip is observed.
Besides, clear stress concentrations are also found at the locations of the
applied boundary and loading conditions. These two stress concentra-
tions are resulted by the computational model in which the loading and
constraint are applied directly on the nodes. In practice, these two areas
can be neglected when applying crack nucleation criterion. The local
mesh of the proposed crack-tip element is also shown. Taking the ad-
vantage of Delaunay triangulation, the quality of the formed triangular
elements is satisfactory.

For the extreme case where the crack tip is close to the boundary of
the plate, other methods which use domain integral for the calculation
of SIFs [43] may be limited since it is very hard to select a proper do-
main. The problem does not exist in the present method which does not
require any post-processing for the calculation of the SIFs. As shown in
Fig. 12(b), the mesh quality inside the proposed crack-tip element is
still satisfactory. The predicted load–displacement curve is shown in
Fig. 13, in which the result obtained by using VCCT [72] is also given
for comparison. It is seen that the two methods agree well with each

Fig. 13. Load-displacement curve of the mode I edge crack (mm).

Fig. 14. Schematic illustration of an edge cracked plate (mm) subjected to mixed mode loading and the meshes at (a) u = 0.3065 mm, (b) u = 1.5105 mm.
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other, but the present prediction is smoother.

7.2. Edge crack (mixed mode)

Let us consider the edge cracked plate again but with different
loading and constraint conditions as depicted in Fig. 14. The material
properties are identical with the ones in the numerical example 1. The
plate is initially divided into 7200 rectangular elements. The external
loading has generated a mixed mode crack and the crack propagation
path drifts off from the straight line of the mode I crack path. The
meshes at different loading stages are also shown in Fig. 14. The con-
tours of stress as well as the interior mesh of the crack-tip element are
shown in Fig. 15. The extreme case, where the crack tip arrives at the
last element to the boundary of the plate depicted in Fig. 15(b), can still
be modelled, indicating the robustness of the proposed method.

Two other methods ie., the VCCT and the XFEM from the com-
mercial FE package Abaqus [72] are also employed to study the pro-
blem. The Abaqus implementation of XFEM is essentially the PNM with

a cohesive zone model for fracture. The predicted crack paths with
different methods and meshes on the un-deformed structure are de-
picted in Fig. 16. All the predictions are generally in line with each
other except XFEM-1 which uses 1800 elements. Nevertheless, the nu-
merical prediction with the XFEM is improved after mesh refinement,
ie., XFEM-2 and XFEM-3. The load–displacement curves with different
methods are depicted in Fig. 17. It is found that the results obtained
using VCCT with different mesh sizes do not agree with each other.
Moreover, significant disagreements are found between the results of
VCCT-1 and VCCT-3 and those of other methods. For a fracture process
under mixed mode loading condition, those observations indicate that
VCCT gives qualitatively correct predictions in terms of crack path but
fails in giving quantitatively accurate predictions in terms of the
load–displacement response. According to numerical example 1, it is
shown that VCCT is more suitable for mode I cracks, and this might be
due to the fact that VCCT originally assumes a self-similar crack pro-
pagation path. Results obtained with the XFEM in which new segments
of a crack are based on cohesive zone model are more reliable. With

Fig. 15. Contours of first principle stress and the interior mesh of the mixed mode crack at (a) u = 0.3065 mm, (b) u = 1.5105 mm.

Fig. 16. Predicted crack paths using different methods and meshes. The numbers of elements for different meshes are: present method 7200, VCCT-1 1800, VCCT-2
7200, VCCT-3 28800, XFEM-1 1800, XFEM-2 7200 and XFEM-3 28800.
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mesh refinement, the prediction of the load–displacement curve with
the XFEM approaches the present prediction. The present results are
generally more smooth then all the other results.

7.3. Plate with two cracks

Now let us consider a plate with two existing cracks as shown in
Fig. 18. The material properties are identical with the ones in the nu-
merical example 1. The plate is initially divided into 7381 rectangle
elements. The plate is subjected to mode I loading condition and hence
the deformation of the structure is symmetric. In the beginning, the left
crack which is perpendicular to the loading path starts to grow until it
reaches the vertical crack as shown in Fig. 19(a). The two cracks coa-
lesce and the edge crack is arrested. At this instant, the two crack tips of
the vertical crack are loaded. Since the vertical crack is parallel to the
loading path, the two crack tips are mode II dominated. The predicted
crack propagation path of the two crack tips are inclined to the original
crack as shown in Fig. 19(b). For any crack tip, the crack propagation
angle keeps changing until the propagation path is normal to the
loading path as shown in Fig. 19(c). The load increment from Fig. 19(b)
to (c) is quite small, indicating the fracture process which happens in an
instant is unstable. The fracture process between Fig. 19(b) and (c)
forms a blunt corner of the crack trajectory. Upon further increase of
the external loading, the crack direction remains unchanged until the
plate is fully separated. Contours of the first principle stress at different
loading stages are shown in Fig. 20.

7.4. Three point bending (TPB) specimen

A TPB test is investigated in this example. The untested specimen
has three holes and a crack in it as shown in Fig. 21. The geometric
information as well as the locations of the holes and the crack are also
illustrated in Fig. 21. The material properties are: Lame constants

= ×1.2 10 MPa4 , = ×µ MPa8 103 and the fracture energy
=G mm1N/C . According to the experimental observations [73], it is

Fig. 17. Load-displacement curves obtained with different methods and me-
shes. The numbers of elements for different meshes are: present method 7200,
VCCT-1 1800, VCCT-2 7200, VCCT-3 28800, XFEM-1 1800, XFEM-2 7200 and
XFEM-3 28800.

Fig. 18. Geometric information of a plate with two cracks (mm).

Fig. 19. Mesh at different loading stages, (a) u = 0.020948814 mm, (b)
u = 0.095688240 mm, (c) u = 0.095688243 mm.

Fig. 20. Plate with two cracks. The first principal stress field at displacements,
(a) u = 0.020948814 mm, (b) u = 0.095688240 mm, (c) u = 0.095688243.

Fig. 21. Cracked panel with three holes. (a) Sketch of specimen, (b)
Experimental observation of crack path.
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known that the crack eventually propagates into the middle hole. The
crack path observed in the experiment is shown in the right of Fig. 21.
During the modelling, the specimen is originally divided into 11,421
elements, rectangular elements cannot be ensured due to the existence
of the holes. The crack trajectory at different loading stages are de-
picted in Fig. 22, in which only the area close to the crack is shown in
the sub-figures (b)-(e). It may also be noted that the results in Fig. 22
are given on the un-deformed topology of the plate to better show the
crack trajectory. In the early stage, the crack is attracted by the defects
(holes) of the plate and is eventually arrested by the middle hole of the
plate. The experimental result of the crack path is also marked in the
sub-figures, and the modelling results agree excellently with the

experimental observation. Contours of the first principle stress are
provided in Fig. 23. When the crack is arrested, the stress concentration
in Fig. 23(b) is mainly caused by the hole as the plate is temporarily free
from crack tip. A new crack is nucleated with increasing loading when
the criterion Eq. (45) is satisfied. The new crack is initiated from the
edge of the middle hole as shown in Fig. 22(d) or Fig. 23(c). After that,
the new crack keeps growing until the separation of the specimen.

7.5. Compact tension (CT) specimen

A CT specimen is considered in this example. The geometric in-
formation as well as the constraint conditions are shown in Fig. 24. A

Fig. 22. Crack path at different loading stages, (a) u = 0.1704 mm, (b) u = 0.2162 mm, (c) u = 0.2375 mm, (d) u = 0.2414 mm, (e) u = 0.6950 mm. Experimental
result is referred to [73]

Fig. 23. Contours at different loading stages, (a) u = 0.2162 mm, (b) u = 0.2375 mm, (c) u = 0.2414 mm, (d) u = 0.6950 mm.
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hole is placed in the center of the plate in prior to the test. The material
properties are given as follows: the Lame constants = ×1.94 10 MPa3 ,

= ×µ MPa2.45 103 and the fracture energy =G mm2.28N/C . The plate
is originally divided into 2886 elements and the elements on the po-
tential crack path are refined to improve the modelling efficiency.
Crack patterns are shown in Fig. 25 in which the zone of possible crack
paths observed in the experiment [74] is marked in the sub-figures, and
the present prediction is in line with the experimental result. When the
crack propagates close to the hole, the stress in the area between the
crack tip and the hole is raised as depicted Fig. 26. The correlation
between the propagating crack and the existing defect has a strong
impact on the local response of the fracture process. The crack propa-
gation direction is changed as a result. After the crack enters the hole,
the structure is temporarily safe from been cracked until the first
principle stress reaching to the critical value.

8. Conclusion

In this contribution, a crack-tip element is proposed for modelling
crack propagation. Take the advantages of the symplectic analytical
singular element (SASE) and the floating node method (FNM), accurate
crack tip fields (displacement and stress) can be captured and multiple
crack propagations can be modelled without remeshing. This is essen-
tially because of the use of the crack tip asymptotic analytical solution
with higher order expanding terms. Another benefit of the proposed
method is that the stress intensity factors (SIFs) can be solved without
any post-processing. In comparison with other methods which use do-
main integral for the calculation of SIFs, the proposed method is not
limited in dealing with the extreme case where the crack tip is propa-
gating close to the boundary of a structure. The results of the present
work have demonstrated the potential of the proposed SASE-FNM
method for the accurate and robust modelling of arbitrary crack pro-
pagation problems in structures of complex geometries.

Fig. 24. Cracked panel with a hole. (a) Sketch of specimen.

Fig. 25. Deformation of the specimen at different loading stages, (a) u = 0.3723 mm, (b) u = 0.4290 mm, (c) u = 0.9107 mm, (d) u = 5.5707 mm. Experimental
result is referred to [74].

Fig. 26. Contours of the first principle stress at (a) u = 0.4290 mm, (b)
u = 0.9017 mm.
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