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Summary

A new aviation legislation makes it mandatory for air-carrier pilots to go through stall recov-
ery training on simulators. New aerodynamic models are required and because of complex
non-linear stall dynamics also more advanced system identification techniques are needed.
Therefore a Control and Simulation Department task-force was set-up. In recent years multi-
ple non-linear system identification techniques are researched but none has proven itself to be
a true solution. In 2005 a promising true general splines method, the Multivariate Simplex
B-Splines was developed. In combination with the recent physical-splines transformation a
major shortcoming is solved. The transformation makes it possible to physically interpreted
the aerodynamic model and the model structure. In this research project the properties of
the new physical-splines are explored. Subsequently the aerodynamic modelling process is
updated and the physical-splines formulation is added to this process forming a new toolbox.

The aircraft to be modelled is the Cessna Citation II. Experimental flights are performed,
with the PH-LAB the Cessna Citation II co-owned by the Delft University of Technology,
creating a flight-test dataset with measurements. The flight-test data is filtered and the flight
path is reconstructed. The flight-test dataset will be used to create a full-flight envelope
aerodynamic model of the Cessna Citation II.

The process of creating an aerodynamic model using the Multivariate Simplex B-Splines
method will be divided in four parts: data selection, the geometric model structure, polyno-
mial model structure selection and the parameter estimation. Creating a geometric model
structure is not a trivial process. The amount and distribution of the flight-test will have in-
fluence on the outcome and high dimensional spaces are quite large and empty. Also, certain
parts of the triangulation domain can require higher approximation power an continuity. The
consequence is an overall dense triangulation and high order basis functions. This introduces
problems such as over fitting the model and divergent behaviour on triangulation boundaries.
The triangulation is created using multi-dimensional hyperrectangles containing simplices.
The polynomial model structure selection is performed in physical space using the Barycentric-
Cartesian space transformation. The importance of model terms is expressed in the signifi-
cance they have in reducing the model error. Using a forward orthogonal stepwise regression
method their error reduction ratio can be calculated. Different (stopping) rules can be con-
sidered for including or excluding terms in the model while decreasing model storage size and
prevent overfitting the data. Physical-Splines make use of a linear transformation that trans-
forms from the barycentric coordinate space to the Cartesian coordinate space, giving the
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MSBS a physical interpretation. The physical transformation is introduced to the optimiza-
tion process in the form of equality and inequality constraints. This way a-priori aerodynamic
information can form a bound on the aerodynamic stability derivatives. Promising results
show that they are robust, prevent over-fitting, prevent propagation of erroneous data, remove
divergent behavior on triangulation boundaries, and that they can be used for extrapolation
of sparse datasets.
Finally the model parameters are estimated using a optimisation algorithm. Important for
not breaking the geometric model structure is that terms cannot be excluded from regression
matrix used during the parameter optimisation process. Hence the optimisation is subjected
to constraints. Constraints are subdivided in equality, inequality and/ or bounded constraints.
The estimation can be performed using the well known linear ordinary least squares method
or the generalised least squares method. Inequality and bounded constraints require iterative
methods which can be solved in polynomial time. Overall, the physical constraints make it
possible to adjust model approximation power locally and alter the B-net via the physical
parameters without breaking them.
This process will be an iterative process and multiple models are created and compared. Their
quality will be assessed based on the outcomes of a raw validation by comparing the model
output and the measured output using the validation set, a global model inspection of the
physical parameters, a model residuals analysis, stability analysis and statistical analysis.

The outcome of this thesis, the new physical-splines formulation, is used to create and aero-
dynamic model. This model is compared to the current base-line model. In the future the
aerodynamic models created, using the physical-splines formulation, can be used on simula-
tors that will train air-carrier pilots in stall recovery. This will result in an increased safety
in aviation.
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Research question, aims and objectives

In this MSc research project the new formulation of multivariate Physical-Splines is researched
and implemented in order to create an aerodynamic model of the full flight envelope of the
Cessna Citation II. The recent results of the task force will be used and the new model will be
compared with the current baseline-local-linear aerodynamic model. This section introduces
the research question, including the sub-questions. Using these questions the project aim is
elaborated and the objectives of the project are given. Finally the motivation and feasibility
will substantiate the project aim and objectives.

Research Question

The research question of the project is formulated as follows:

How can the Physical-Splines formulation be used to create an aerodynamic

model of the Cessna Citation II aircraft?

The research question is supported by the following sub-questions:

1. How does the new Physical-Splines formulation differ from the Multivariate Simplex B-
Splines formulation and what does this mean for the system identification process and
the aerodynamic model?

2. What improvements can be made to the current non-linear aerodynamic model (DAS-
MAT) and how can the Physical-Splines contribute to this?

3. Which geometric and polynomial model structure should be used for aerodynamic mod-
elling and what is the dimension and degree of this model structure and the size of the
triangulation?

4. What flight-test data is available and how can this data be used to create the Physical-
Splines model?

Project Aim

The project aim is to implement a full-flight envelope aerodynamic model of the Cessna
Citation II in the simulator framework using physical-splines. This physical-splines model
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will be continues over the full flight-envelope and can be physically interpreted. The stall and
post-stall dynamics in the flight envelope can be used on (full-motion) flight simulators to train
pilots on stall recovery according to the new aviation legislation. The continuity of the splines
makes the aerodynamic model more appropriate for developing (adaptive) model based control
allocation methods. Overall the physical-splines aerodynamic model will increase the fidelity
of the current baseline aerodynamic model of the Cessna Citation II in terms of approximation
power, applicability, continuity, physical interpretation and computational efficiency.

Research Objectives

The main goal of this research project is projected in the objectives listed below. The objective
states the main goal of this research project and is subdivided into multiple sub-objectives
explaining how this objective will be achieved.

• Create a Physical-Splines formulation of the full-flight envelope aerodynamic model of
the Cessna Citation II aircraft, using flight-test data by

1. comparing the new physical-splines formulation with the Multivariate Simplex B-
Splines formulation and explore new possibilities,

2. creating a new methodology which integrates the physical-splines into the Multi-
variate Simplex B-Splines aerodynamic modelling process including other newly
obtained possibilities,

3. measuring the performance of physical-splines in terms of model output, compu-
tational efficiency, numerical stability, interpretation and continuity, compared to
current base-line model.

Motivation and Feasibility

Full flight envelope modelling became more popular in recent years. Non-linear aircraft dy-
namics and full flight envelope models (including stall and post stall dynamics) require more
complex modelling techniques. The increase of computational power makes it possible to
process larger datasets and increase model complexity. Different modelling techniques are
researched in the previous years, all having certain advantages and disadvantages. None of
these methods distinguish itself featuring all advantages. A promising method was introduced
in 2005, a general spline formulation called the Multivariate Simplex B-Splines (MSBS). In
combination with the physical-splines transformation it is a general function approximator
that can fit any scattered non-linear dataset. It is compatible with linear regression methods
and the final model coefficients can be physically interpreted. In the previous years many
research is performed on the MSBS by the C&S department. This research will continue with
the new physical-splines formulation and solve a major disadvantage of the MSBS. The C&S
department has an unique expertise in this developing field. Furthermore measurements from
the experimental flights are generated by the PH-LAB aircraft co-owned by the TU-Delft.
This and the unique combination with the SIMONA Research Simulator (SRS) makes it fea-
sible to create and test an aerodynamic model of the Cessna Citation II. The new high fidelity
model can be used to train air-carrier pilots in stall recovery. This contribution to aviation
will increase the safety.
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Acronyms

AHRS Attitude and Heading Reference System
c.m. Centre of Mass
C&S Control & Simulation
CAD Computer-Aided Design
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NRL Netherlands Aerospace Centre
OLS Ordinary Least Squares
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Full Flight Envelope Aerodynamic Modeling of the Cessna
Citation II using Physical-Splines

F.J.A. Huisman∗ and C.C. de Visser†
Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

A new aviation legislation makes it mandatory for air-carrier pilots to go through stall re-
covery training on simulators. As a result, new aerodynamic modeling techniques are required
to model complex non-linear behavior of the aircraft flight envelope. In 2005, the Multivariate
Simplex B-Splines method was developed. MSBS are a true general function approximator
and are easily integrated in standard identification routines. Their downside is that the basis
functions and B-coefficients, forming the B-net, do not have a straightforward physical interpre-
tation. Also creating the triangulation is not a trivial process. Parts of the triangulation domain
can require higher approximation power and continuity. The consequence is an overall dense
triangulation and high order basis functions. This introduces problems such as over fitting
the model and divergent behavior on triangulation boundaries. Physical-Splines make use of a
linear transformation that transforms from the barycentric coordinate space to the Cartesian
coordinate space, giving the MSBS a physical interpretation. The physical transformation is
introduced to the optimization process in the form of equality and inequality constraints. This
way a-priori aerodynamic information can form a bound on the stability derivatives. Promis-
ing results show that they are robust, prevent over-fitting, prevent propagation of erroneous
data, remove divergent behavior on triangulation boundaries, and that they can be used for
extrapolation of sparse datasets. Also a stepwise orthonormalization can create physical model
structure constraints and set unimportant physical model terms to zero. Overall, the physical
constraints make it possible to adjust model approximation power locally and alter the B-net
via the physical parameters without breaking them.

Nomenclature

Ax, Ay, Az Specific forces around the body X,Y,Z axis, m/s2

b Barycentric coordinate
B Global data location B-matrix
C General dimensionless coefficient with aerodynamic forces X,Y, Z and moment l,m, n subscripts
c̄,b Mean aerodynamic chord and wingspan, m
cb Global B-coefficient vector
cκ Individual B-coefficient
cp Global physical coefficient vector
d Spline polynomial degree
d̂ Total number of polynomial terms in basis function
err Error Reduction Ratio
Fn,d
d

Kronecker substituted convolution function expanding multinomial polynomial of degree d, dimension n
F Kronecker Substituted convolution matrix
g gravity constant, m/s2

G, ge Cartesian equality constraint matrix and vector
Gl,u , gl,u Upper and lower bound Cartesian inequality constraint matrix and vector
He, he Barycentric equality constraints matrix and vector
Hi , hi Barycentric inequality constraints matrix and vector
Ixx, Iyy, Izz, Ixz Moment of inertia around the body and cross body axis, kg · m2

∗M.Sc. student, Department of Control and Simulation, Faculty of Aerospace Engineering.
†Assistant Professor, Department of Control and Simulation, Faculty of Aerospace Engineering.



i Complex number
j, k General indexers
M Mach number
L, M, N Combined aerodynamic and thrust moments around the body X,Y,Z axis, n · m
m mass, kg
n Spline model dimension
p(b), p(x) Polynomial function with barycentric and Cartesian coordinates respectively
p, q, r roll, pitch and yaw rates around the body X,Y,Z axis, rad/s
r Spline model continuity
Sr
d

Spline space of degree d and continuity r
T Triangulation formed by a set of simplices
T1 Cartesian to barycentric coordinate transformation matrix
tj Individual simplex j
V Airspeed, m/s
Xb Global data location Barycentric B-matrix
Xp Global data location Physical B-matrix
X,Y, Z Combined aerodynamic and thrust forces around the body X,Y,Z axis, F
Symbols
α, β, γ Angle of attack, angle of sideslip, and flightpath angle, rad
δ Control surface deflection with a, e, r aileron, elevator and rudder subscripts, rad
ε Residual vector
κ, κ Multi-index and multi-index matrix
λ Bias term
Λ Barycentric to Cartesian coordinate transformation matrix
ρ Air density, kg/m3

ν Cartesian coordinate of simplex vertex

I. Introduction

From 2019, a new aviation legislation makes all air-carrier pilots obliged to go through flight simulator-based stall
recovery training [1]. A ’task force’ was formed by the division of the Control & Simulation (C&S) group as result of

this new aviation legislation. The implication of this legislation is that current flight simulation models must be updated
regarding accurate pre-stall, stall, and post-stall dynamics. Recently, a new methodology is derived for high-fidelity
aircraft stall behavior modeling and simulation, and a new high-fidelity flight simulation model of the Cessna Citation II
laboratory aircraft has been developed. This model is made up of sets of local linear models which must be interpolated
in order to adequately cover the flight envelope. The current Delft University Aircraft Simulation Model and Analysis
Tool (DASMAT), [2], model will eventually be replaced by this model.

Performing this interpolation is not trivial. For example, naive database interpolation can result in significant
discontinuities and other artifacts which may influence simulator fidelity. A promising alternative approach uses
Multivariate Simplex B-Splines (MSBS) to accurately model non-linear aerodynamic models, [3] and [4],over the entire
flight envelope and are easily integrated into standard identification routines. While the multivariate B-splines are
powerful function approximators, their downside has been that their basis functions and B-coefficients do not have a
straightforward physical interpretation due to the use of a local coordinate system.

Very recently, a new formulation of the MSBS was developed. These physical B-splines or Physical-Splines are a
modification of standard multivariate B-splines in which the B-coefficients have a physical interpretation, i.e. they are
transformed from barycentric coordinate space into Cartesian space under a linear coordinate transformation. This has
removed the primary disadvantage of the MSBS method, and will allow its much more widespread use as a tool in
aircraft system identification.

In this paper the Physical-Splines are elaborated and new possibilities and methods are researched. These methods
are thereafter implemented in the aerodynamic modeling process. This paper concludes with an experiment, where flight
test data is used to create a Physical-Splines moment Cm model. The experimental outcome measures the performance
of the Physical-Splines and delivers a comparison to the MSBS.
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II. Multivariate Simplex B-Splines
The MSBS is a general function approximator. It can fit any scattered non-linear dataset, is compatible with linear

regression methods and has local basis functions. Furthermore it requires a geometric support structure called a
triangulation. A disadvantage is that the B-coefficients, to be estimated, do not have a straightforward physical meaning.
In this section the theory of the Multivariate Simplex B-spline is explained briefly by introducing simplices, barycentric
coordinates and the barycentric Bernstein basis polynomials.

A. Simplex
A hypercube triangulation is created using simplices. A simplex is a generalization of a point, line, triangle,

tetrahedron, etc. An n-dimensional n-simplex will have n + 1 vertices. The vertices are connected to each other via so
called edge facets. Each simplex forms a convex hull with n + 1 independent vertices. Furthermore, a n-simplex is
affinely independent ∈ Rn. A single simplex tj with n + 1 vertices ν is defined in Eq. (1)

tj := 〈ν0, ν1, . . . , νn〉 (1)

This property makes the simplex very popular tool in graphical computer animations and modeling. The number of
n-facets in a simplex can be determined using Pascal’s triangle making the simplex creation recursively. Aligning the
n − 1 facets of adjacent simplices will create a triangulation. A Kuhn triangulation, [5], [6], generalizes the creation of
the triangulation by adding multiple n-simplices together and aligning their facets. This type-1 triangulation forms a
n-dimensional, n-hypercube of J non-overlapping simplices tj , partitioning a certain domain. Multiple n-hypercubes
can be aligned together in each dimension. This will increase the density of the triangulation for this dimension. The
triangulation is defined by Eq. 2, with the edge facets of a k-simplex given by t̃ with 0 ≤ k ≤ n − 1.

T :=
J⋃
i=1

ti, ti ∩ tj ∈ {∅, t̃} , ∀ti, tj ∈ T (2)

B. Barycentric Coordinates
Since a n-simplex is affinely independent, an affine coordinate system can be used for the location of a point in a

simplex. A point within a simplex is determined relative to the vertices of this simplex. One can say that a point is
represented by the "mass" each vertex has, hence the word barycenter which is another word for center of mass. The
barycentric coordinates used in MSBS are normalized, i.e.

1 =
n∑
i

bi (3)

Basically, this means that when a point is located on a vertex, the corresponding barycentric coordinate equals one.
A relation between the Cartesian coordinates and the barycentric coordinates is determined by the simplex size and
location in Cartesian space. This linear transformation is given by[

b1 b2 . . . bn
]T
= A−1

tj
·

(
xT − νT0

)
, (4)

with

Atj =
[
(ν1 − ν0)

T (ν2 − ν0)
T . . . (νn − ν0)

T
]
, (5)

and for b0

b0 = 1 −
n∑
i=1

bi, (6)

where Atj is the transformation matrix of simplex j transforming the Cartesian coordinates x ∈ Rn to barycentric
coordinates b ∈ Rn+1 using the Cartesian coordinates of the simplex vertices ν ∈ Rn. Equations (4), (5), and (6) can be
parameterized as an affine function, [7], given by
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b0

b1
...

bn


=


k0 a01 a02 . . . a0n

k1 a11 a12 . . . a1n
...

...
...

...

kn an1 an2 . . . ann





1
x1

x2
...

xn


or similar b = T1

[
1
x

]
(7)

and a simplified notation given by Eq. 8.

b = btj (x) ∀x ∈ tj (8)

For the determination if a data point x is within a simplex tj a simple rule can be applied using the barycentric
coordinates, i.e.

bi > 0→ x ∈ tj , ∀i

bi < 0→ x < tj , 0 ≤ i ≤ n
(9)

C. Barycentric Bernstein Basis
For MSBS a barycentric Bernstein basis is used. The Bernstein basis of degree d ≥ 0 are determined using a

multinomial expansion given by Eq. 10. The multinomial theorem is a generalized form of the binomial theorem.

(b0 + b1 + . . . + bn)d =
∑
|κ |=d

d!
κ!

bκ0
0 · b

κ1
1 · . . . · b

κn
n

=
∑
|κ |=d

d!
κ!

bκ

=
∑
|κ |=d

Bd
κ (b)

= 1

(10)

In Eq. (10) the multi-index κ is given by

κ := (κ0, κ1, . . . , κn) ∈ N
n+1, (11)

with properties

|κ | = κ0 + κ1 + . . . + κn,

κ! = κ0! · κ1! · . . . · κn!,
(12)

and elements of κ are sorted lexicographically such that,

κ ∈ {(d, 0, 0, . . . , 0), (d − 1, 1, 0, . . . , 0), (d − 1, 0, 1, . . . , 0), . . . , (0, . . . , 0, 1, d − 1), (0, . . . , 0, 0, d)} . (13)

Total number of permutations valid for κ, and also the number of basis terms, equals

d̂ =
(
d + n

n

)
=
(d + n)!

n!d!
(14)

The barycentric Bernstein basis has some pleasant properties, including partition of unity, non-negativity, symmetry
and, recursively. The partition of unity, i.e. the summation to one, is the result of the normalized barycentric coordinates.
Together, these properties make the basis function stable. This implies that in barycentric space all simplices are equal,
no matter if they differ in size in Cartesian space. By definition the basis functions are only locally active in a simplex
and zero elsewhere, making the barycentric Bernstein basis besides stable also local.
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D. B-Form
The Cartesian to barycentric coordinate transformation, Eq. (8), and the barycentric Bernstein basis, Eq. (10), are

combined into the so called B-form. De Boor proved, [8], that any polynomial p(x) of degree d can be written in the
B-form:

p(x) =
∑
|κ |=d

ctj
bκ

Bd
κ (btj (x)) ∀x ∈ tj, (15)

and by definition
p(x) = 0 ∀x < tj . (16)

An interesting and very important feature of the B-coefficients cb is their unique spatial location within a simplex.
The barycentric coordinate system makes it possible to ask the question: where is my B-coefficient located? This
property will be very important to generate continuity within the spline model but also for validation. Other properties
of the B-form include: easy change of formulation to vector notation, the simplex creates end-point values and bounds
for the polynomial, the derivative can be expressed in original B-from, the integral is equal to a constant multiplied to
the sum of all B-coefficients, variation of diminishing makes root isolation possible, and it is determined by a recursive
algorithm. The theory of this section makes it possible to create MSBS models with the spline space defined in [9] by
Eq. 17,

Sr
d(T ) := {s ∈ Cr (T ) : s |t ∈ Pd, ∀t ∈ T } , (17)

where s is a n-simplex spline function with degree d and continuity of order r on triangulation T . The space of all
polynomials with degree d is defined by P. A more comprehensive review of the MSBS is given in [9]

III. Multinomial Expansion using Kronecker Substituted Convolution
Univariate polynomial multiplications can be performed in a numerical fashion using a discrete convolution. Since

the multinomial theorem is a polynomial multiplication, d-times with itself, discrete convolution can be used to expand
this polynomial. However since the multinomial polynomial is multivariate a Kronecker Substitution is required first,
separating the terms sufficiently such that they do not conflict each other during convolution, see [10]. The multinomial
theorem was introduced in Eq. 10. The multi-index κ, used in the multinomial, can be written in a matrix notation as
follows

κ =



d 0 0 . . . 0
d − 1 1 0 . . . 0
d − 1 0 1 . . . 0
...

...
...

...

0 . . . 0 1 d − 1
0 . . . 0 0 d


=


κ0,•
...

κ d̂,•

 ∈ R
d̂×n+1 , with property


| |κ0,• | |1

...

| |κ d̂,• | |1

 =

d
...

d

 (18)

In the remainder of this section, an alternative approach is introduced to expand the multinomial polynomial using a
Kronecker substitution in combination with a discrete convolution. The multinomial polynomial to be expanded is
represented in a vector notation. The Kronecker Substitution conditioner is given by G. Multiple convolution methods
are available. In Eq. 19 convolution is performed as a multiplication in the frequency domain. The preconditioned
multinomial polynomial is transformed to the frequency domain by using a Discrete Fourier Transform (DFT) given
by W . The DFT is a linear transformation matrix. Fast algorithms exist for the creation of W , [11] and [12]. The
preconditioning and DFT are combined in a single matrix operation F. The Kronecker Substitution and inverse DFT are
reversed with FI . Both matrices only depend on the dimension n and degree d. This combination creates a fast reduced
matrix transform.

(b0 + . . . + bn)d =
( [

b0 . . . bn
]

GW
) �d

WIGI

=
( [

b0 . . . bn
]

F
) �d

FI

= Fn,d
d
(b)

(19)
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This method can also be used to multiply two different multinomial polynomials, for example β1(b) and β2(b) as is
shown in Eq. 20.

(b0 + . . . + bn1 )
d1 · (b0 + . . . + bn1 + . . . + bn2 )

d2 =

(( [
b0 . . . bn1 . . . 0

]
F
) �d1

�

( [
b0 . . . bn2

]
F
) �d2

)
FI

= Fnmax,dmax
d1,d2

(β1(b), β2(b))
(20)

The Kronecker substitution depends on the model degree d and model dimension n and the scheme is given by the
function:

γ( j) =
⌊
(2 · d + 2)j−1⌋ . (21)

Its reverse, including the preservation of the lexicographical order, can be determined by using a vectorized version of
the multi-index κ introduced in Eq. 18.

g(κ j,•) =

n∑
l=1

(
κ j,l · γ(l)

)
(22)

Next the Kronecker substitution is combined with the DFT in matrix form. The matrix is indexed by j for its rows and k
for its columns and the elements are determined with Eq. 23.

F =
(
ωγ(j)·k

)
j=0,...,n , k=0,...,N−1

(23)

The reverse of the Kronecker substitution is combined with an inverse DFT, where the elements are given by Eq. 24.

FI =
©«
∗
ω

g(κ j,•)·k

N
ª®¬j=0,..., d̂−1 , k=0,...,N−1

(24)

In equations Eq. (23) and Eq. (24) the primitive N th root of unity, in which i =
√
−1, is given by

ω = e−2πi/N

and its conjugate
∗
ω = e2πi/N

and
N = d · γ(n) + 1

(25)

What becomes clear is that mainly the dimensions n is driving the F-form. When d →∞ all columns of the multinomial
expansions > d̂ are equal to zero. The dimension is essential to determine the regrouping of terms to lexicographical
order. When the value output of the expansion is of importance only it does not matter which degree or dimensions is
set, provided that the dimension and degree are equal or larger to the dimension and degree of the expansion.

IV. Physical-Splines
When using MSBS for Aerodynamic Model Identification, the estimated parameters cannot be physically interpreted.

The B-coefficients do not have a straightforward physical interpretation. The model structure of every simplex is in the
form of a polynomial in the barycentric coordinates system. The physical parameters, or stability derivatives, form
a very important part of the flight dynamics. They are studied extensively and are used to analyze the stability of
an aircraft. Therefore a transformation from the barycentric space to physical space will be very advantageous. For
example to transform the B-coefficients to P-coefficients.

A. Physical Multinomial Polynomials
In search for the physical equivalent Eq. 19 is substituted first into the B-form of Eq. 15, such that

p(b) =
( [

b0 . . . bn
]

F
) �d

FI cb

= Fn,d
d
(b) · cb .

(26)

6



By using the Cartesian to Barycentric coordinates transformation matrix, Eq. 7 a relation between the barycentric
B-form and physical B-form is obtained.

p(x) =
(
T1

[
1 x1 . . . xn

]
F
) �d

FI cb (27)

The latter equations reveals the multinomial polynomials. Next we are in search for the pseudo physical coefficients c̃p
such that the transformation is removed from the multinomial expansion and Eq. 27 equals Eq. 28.

p(x) =
( [

1 x1 . . . xn
]

F
) �d

FI c̃p (28)

The coefficients are pseudo physical since the the multinomial coefficients are still included in the multinomial expansion.
The relation between these pseudo coefficients and physical coefficients is given by

cp =Mc c̃p (29)

where the multinomial coefficient matrix is calculated with

Mc =



d!
κ0,•! 0 . . . 0
0 d!

κ1,•! . . . 0
...

. . .
...

0 . . . 0 d!
κ d̂,•!


and M−1

c =



κ0,•!
d! 0 . . . 0
0 κ1,•!

d! . . . 0
...

. . .
...

0 . . . 0
κ d̂,•!
d!


Mc = diag

(( [
1 . . . 1n+1

]
F
) �d

FI

)
(30)

Hence the true physical B-form is obtained, after substituting Eq. 29 in Eq. 27, resulting in Eq. 31.

p(x) =
( [

1 x1 . . . xn
]

F
) �d

FI M−1
c cp

= Fn,d
d
(x) · cp

(31)

Basically the term C−1
m removes the multinomial coefficient after the multinomial expansions and includes them into the

physical coefficients. Equation 31 yields the equivalent physical formulation of the B-form. The physical B-form with
physical P-coefficients is now given by

p(x) =
∑
|κ |=d

d!
κ0! . . . κn

c̃pκ′1
κ0 xκ1

1 . . . xκnn

=
∑
|κ |=d

cpκ′1
κ0 xκ1

1 . . . xκnn

with multi-indexes:

κ := (κ0, κ1, . . . , κn) ∈ N
n+1

κ′ := (κ1, κ2, . . . κn) ∈ N
n

with properties:
|κ | = κ0 + κ1 + . . . + κn,

κ! = κ0! · κ1! · . . . · κn!,

(32)

B. Barycentric Space to Physical Space Transformation
A simple conversion between the B-form and physical B-form is described in [13]. This reference uses a "Bézier

simplex" for root finding and degree reduction and shows that there is a one-to-one relation between the multinomial
physical B-form, Eq. (32), and the barycentric B-form, Eq. (15) . However this conversion is only applicable for a
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single standard simplex, where the vertices are located along the coordinate axes in a positive direction at a unit distance
from the origin. In this section a method for a generalized creation of the physical-splines transformation matrix is
suggested. It is given as a matrix operation and makes use of the Kronecker Substituted DFT method introduced in
section III. First, the relation between the MSBS and the physical-splines is elaborated. Subsequently we are interested
in a linear relation between the B-coefficients cb and physical coefficients cp. Starting with the B-form, Eq. 15, and
substituting the relation between the physical variables and barycentric variables, the following relation is obtained

p(b) =
∑
|κ |=d

d!
κ0! . . . κn!

cbκ bκ0
0 . . . bκnn

p(x) =
∑
|κ |=d

d!
κ0! . . . κn!

cbκ (k0 + a01x1 + . . . + a0nxn)κ0 . . . (k0 + a01x1 + . . . + a0nxn)κn

=
∑
|κ |=d

d!
κ0! . . . κn!

cbκ Fn,d
κ (T1

0,•, . . . ,T
1
n,•)

(33)

Expanding and regrouping terms in Eq. 33 yields a relation between the physical variables and the B-coefficients.
Taking a closer look, Eq. (33) appears to have multiple multinomial expansions within the multinomial expansion itself.
The equation can be rewritten to a vector equation using the Kronecker substituted DFT in order to obtain a generalized
expression for this linear barycentric to physical space relation.

p(x) =
∑
|κ |=d

d!
κ0! . . . κn!

cbκ

((
T0,• �

[
1 x1 . . . xn

]
F
) �κ0
� . . . �

(
Tn,• �

[
1 x1 . . . xn

]
F
) �κn )

FI (34)

Previous equation is rewritten in such a way that the physical variables are separated from the inner multinomial
expansion. The physical variables appear to be independent from the multi-index κ, i.e. they remain the same throughout
the main multinomial expansion.

p(x) =
∑
|κ |=d

(( [
1 x1 . . . xn

]
F
)d

FI

)
M−1

c

( (
T0,• F

) �κ0 � . . . �
(
Tn,•F

) �κn ) FI
d!

κ0! . . . κn!
cbκ

=
∑
|κ |=d

Fn,d
d
(x)Λn,d

κ (T
1) cbκ

(35)

After grouping the terms it becomes clear that the transformation is given by Λn,d
κ (T1) and the B-form regression matrix

by Fn,d
d
(x). By defining the multi-index κ as a matrix, the transformation can be rewritten to a single multinomial DFT

expansion depending on the dimension, degree, and triangulation only.

Λn,d =
(( (

1 T0,• F
) � κ•,0 � . . . � (

1 Tn,• F
) � κ•,n

)
FI Mc

)>
= Λ

n,d
κ (T

1)

where

1 ∈ Nd̂×1

T1 ∈ Rn+1×n+1

F ∈ Cn+1×N

FI ∈ C
d̂×N

Mc ∈ R
d̂×d̂

(36)

An application of this transformation is, for example, to transform B-coefficients cb to P-coefficients cp. This
transformation is stated in Eq. (37).

cpt j = Λtj cbt j
, (37)

where Λtj ∈ R
d̂×d̂ is symmetric and non-singular for any non-degenerate simplex. Hence the inverse transform is

equal to
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Table 1 Longitudinal and Lateral Model

Model Limited to moderate Significant
non-linearities non-linearities

Longitudinal
M, h, δe, Te α̂, Û̂α, q̂

(X, Z, m)

Lateral
M, h, δa, δr β̂, Û̂β, p̂, r̂(Y, l, n)

cbt j
= Λ−1

tj
cpt j . (38)

The individual transformations Λtj can be determined for all simplices and can be combined in a a large sparse
transformation matrix valid for the complete triangulation

cp =


Λt1 0 0 0
0 Λt2 0 0
...

...
. . .

...

0 0 0 Λtj


cb

= Λcb .

(39)

V. Aerodynamic Model Identification with Physical-Splines
Aerodynamic modeling is a system identification process in creating an aerodynamic model of the flight dynamics

of an aircraft. In essence, system identification relates to the procedure of giving an input while measuring the output
and subsequently determining the model. Modeling certain flight envelopes, for example stall, show high non-linear
behavior, requiring advanced modeling technique such as the physicals-splines method. This section explains how the
filtered and reconstructed flight-test data can be used in creating an aerodynamic model with physical-splines and how
the properties of the physical-splines can contribute to the MSBS method.

A. Equations of Motion
An aerodynamic model of an aircraft is governed by the equations of motion (EOM). The EOM describe the flight

dynamics in the form of aerodynamic force and moments. In this section the final EOM are stated. For a more extensive
derivation, [14] is recommended. An assumption is made that they can be described using analytical polynomial
functions. A general definition in aerodynamic modeling is that the aerodynamic forces and moments are a function of
the state variables and the control variables δ. The variables used for modeling the six different dimensionless force
and moment equations are given by (40). In this equation M is the Mach number, h the altitude, α the angle of attack,
β the side-slip angle and p, q, r the rotational rates in the body-frame. δa, δe, δr are the aileron, elevator and rudder
deflections respectively. The dot indicates a time derivative.

Ci =
(
M, h, α, Û̂α, β, Û̂β, p̂, q̂, r̂, δ

)
for i = X, Y, Z, l, m, n and δ = (δa, δe, δr ) (40)

Furthermore, it is assumed that the aerodynamic forces and moment are decoupled in longitudinal and lateral
direction. This decoupling is given in table 1, where for the different states the expected (non-)linearities of a model is
given.

For consistency and better general understanding of the estimated parameters, the state variables are made
dimensionless (indicated with a hat symbol) by using the definition

M :=
V
a0
, p̂ :=

pb
V
, q̂ :=

qc̄
V
, r̂ :=

rb
V
, Û̂α :=

Ûαc̄
V
, Û̂β :=

Ûβb
V

(41)
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The dimensionless forces and moments are given by Eqs. 42 - 44

CX =
X

1
2 ρV2S

=
m(AX − λax ) − Tx

1
2 ρV2S

, (42)

CY =
Y

1
2 ρV2S

=
m(AY − λay )

1
2 ρV2S

, (43)

CZ =
Z

1
2 ρV2S

=
m(AZ − λaz )

1
2 ρV2S

, (44)

and the dimensionless moments are given by Eqs. 45 - 47

Cl =
L

1
2 ρV2Sb

=
ÛpIxx + (q − λp)(r − λr )

(
Izz − Iyy

)
−

(
(p − λp)(q − λq) + Ûr

)
Ixz

1
2 ρV2Sb

, (45)

Cm =
M

1
2 ρV2Sc̄

=
ÛqIyy + (r − λr )(p − λp) (Ixx − Izz) +

(
(p − λp))2 − (r − λr )2

)
Ixz − MT

1
2 ρV2Sc̄

, (46)

Cn =
N

1
2 ρV2Sb

=
Ûr Izz + (p − λp)(q − λq)

(
Iyy − Ixx

)
+

(
(q − λq)(r − λr ) − Ûp

)
Ixz

1
2 ρV2Sb

. (47)

A bias term is obtained during the flight path reconstruction using an earlier toolbox developed by the task-force [15].
This bias term is indicated by λ in Eqs. 42 - 47.

B. Constraint Least Squares Estimator
Since the sparse B-regression matrix, Eq. (48), in barycentric space is normalized, and therefore reducing its

condition number, the identification will take place in barycentric space. The estimated B-coefficients are transformed
to P-coefficients afterwards. Transforming this regression matrix to physical space can introduce numerical problems
during identification and will therefore be used only for a model structure selection. Equation 48 holds both the
B-regression matrix, [16], of the triangulation and the to be optimized B-coefficients.

Xb =


Bd(bt1 (xtj )) 0 0 0

0 Bd(bt2 (xt2 )) 0 0
...

...
. . .

...

0 0 0 Bd(btj (xtj ))


, cb =


ct1
b

ct2
b
...

ctj
b


(48)

Each element in Eq. (48) represents a simplex and can be determined with vector-notation of the B-form stated in
Eq. (15).

Bd(btj (x)) =


Bd
d,0,0(btj (x1t j )) Bd

d−1,1,0(btj (x1t j )) . . . Bd
0,1,d−1(btj (x1t j )) Bd

0,0,d(btj (x1t j ))

...
...

...
...

...

Bd
d,0,0(btj (xMt j

)) Bd
d−1,1,0(btj (xMt j

)) . . . Bd
0,1,d−1(btj (xMt j

)) Bd
0,0,d(btj (xMt j

))

 , (49)

where x indicates the M number of flight-test data measurements, belonging to simplex tj . The B-coefficient vector
to be estimated is given by

ctj
b
=

[
ctj
d,0,0 ctj

d−1,1,0 . . . ctj0,1,d−1 ctj0,0,d

]T
. (50)

Together they form the linear model to be optimized, with respect to the B-coefficients, by minimizing the residuals
ε . In Eq. 51 y is the vector of the measured output and the hât indicates an estimation.

y = Xb ĉb + ε (51)
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The function approximator is compatible with linear regression methods such as the Ordinary Least Squares (OLS)
[17] and the Generalized Least Squares (GLS) estimators [18]. Very important for the MSBS is the so called B-net
structure formed by the B-coefficients. The B-net structure is unique for a MSBS model and can only be adjusted by
changing the model dimension and model degree. B-coefficients cannot be deleted, hence removing columns from the
regression matrix Eq. 49 will break the B-net structure! However, in physical space it is possible to influence the model
structure, since the coefficients do not have a spatial location. A desired physical model structure can be imposed in the
form of equality and inequity constraints and transformed to the barycentric space using the transformation matrix.
Thereafter the constraints are subjected to the optimization function creating a constraint optimization. This way it is
possible to interact with model optimization process, besides adjusting the dimension and degree only, without breaking
the B-net structure. The optimization function, subjected to constraints, is summarized in Eqs. 52 - 56. They are known
as the KKT-conditions, [19], [20].

argmin
cb

J = | |y − Xb ĉb | |2 Optimization Function (52)

subjected to H(cb) = he Barycentric equality constraints (53)
G(cp) = ge Physical equality constraints (54)

Gu(cp) ≤ gu Physical inequality constraints, upper bound (55)
Gl(cp) ≥ gl Physical inequality constraints, lower bound (56)

In the remainder of this section a method is introduced that solves optimization functions subjected to constraints
and useful physical constraints are introduced. These constraints are created in both barycentric space and physical
space and are equality constraints or bounded inequality constraints. Barycentric constraints are indicated with the letter
H and physical constraints with the letter G. Subscripts e and i indicate equality and inequality constraints respectively.
The upper and lower bound are indicate by subscripts u and l in the given order. The lower bound inequality constraints
is transformed in a virtual lower bound constraint by multiplying the constraint with −1. The constraints are summarized
in Eq. 57.

He =

[
H

GΛ−1

]
, he =

[
he

ge

]
, Hi =

[
GuΛ

−1

−GlΛ
−1

]
, hi =

[
gu
−gl

]
, (57)

such that
Hecb = he and Hicb ≤ hi . (58)

Different methods are possible to solve the constraint optimization, among them are the active-set method and
interior-point methods. A promising solver is the Mehrotra predictor-corrector method [21], which is a specific
interior-point method. Initially this method was designed to solve linear programming, but it can be very easily rewritten
to solve a quadratic programming optimization such as Eq. (52). The KKT-conditions are transformed to Lagrangian
form given in Eq. 59 with λ the Lagrangian multipliers and s slack variables transforming inequality constraints into
equality constraints.

∇J =
(
XT

bXb

)
cb − XT

bycb −HT
e λ1 −HT

i λ2 = 0

Hecb − he = 0
Hicb − hi − s = 0

Sλ2 = 0
s ≥ 0

λ1, λ2 ≥ 0

(59)

The idea of the Mehrotra predictor-corrector method is that the search direction is updated by a predictor based
on solving the Newton-Raphson step update of Eq. (60). Equation (60) can be rewritten to a symmetrical matrix and
therefore a Cholesky decomposition. This simplifies the computation time required to determine the inverse required for
the Newton step. In order to maintain a "centered position" [22] a centering step is calculated. The corrector step is
required to satisfy the complementarity conditions rc . After the corrector step, the step size used can be adjusted to find
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a better step. This makes it possible to reuse the Cholesky decomposition again reducing the required iterations to solve
the optimization and decreasing the computational cost.


XT

b
Xb −HT

e −HT
i 0

He 0 0 0
Hi 0 0 I
0 0 S λ2



∆cb
∆λ1

∆λ2

∆s


= −



(
XT

b
Xb

)
cb − XT

b
ycb −HT

e λ1 −HT
i λ2

Hecb − he

Hicb − hi − s
Sλ2


=


rd
re
ri
rc


(60)

C. Smoothness and Continuity Conditions
The B-coefficients have a unique spatial location within each simplex. This spatial location makes it possible to

generate continuity constraints between the simplices and make the splines-model continuous. The continuity of order
Cr between the simplex polynomials can be important for several reasons. First zero order continuity makes sure no
inner "gaps" in the model between simplices exist. When the aerodynamic model is used in a full-motion simulator this
will prevent excessive and possibly damaging movements. Higher order splines-models can be required in applying
control allocation methods. Also increasing the continuity will let the simplices influence each other and makes the
splines-model more smooth. Hence the barycentric parameter variances decreases, see [16]. However, the parameters
variances are propagate to the boundary of the triangulation and can introduce divergent behavior at these boundaries.
Also poor performing simplices are likely to influence other surrounding simplices. The equality constraints for r th

order continuity are created using Eq. (61) and are in Barycentric space coordinate system, [23].

ctjκ0,m,κ1 =
∑
|γ |=m

cti
(κ0,0,κ1)+γ

Bm
γ (ν∗), 0 ≤ m ≤ r

κ0 + m + κ1 = d

(κ0 + m + κ1) + (γ0 + γ1 + γ2) = d

(61)

In this equation the order of the continuity is smaller than the degree, i.e. r < d. With a multi-index γ independent
of κ and ν∗ the out-of-edge vertex of tj .

D. Physical Model Structure Selection Constraints
The initial basis polynomial model structure of the MSBS in barycentric space can be determined by the degree only.

Using the multinomial theorem the basis model is expanded to individual terms. Increasing the degree and as a matter
of fact the number of terms, the approximation power of the model increases and the model error decreases. However,
by doing so the possibility of over-fitting increases, i.e. instrumentation noise and measured turbulence will be modeled.
Also some simplices can require a more difficult model structure because of local non-linearities. In physical space it is
possible to determine an optimal model structure or to decouple the model variables on a per-simplex domain. Deleting
physical model terms is accomplished by creating physical equality constraints and transform them to the barycentric
space afterwards. The importance of physical model terms can be determined per simplex. Transforming the regression
matrix to physical space yields

Xp = XbΛ
−1. (62)

When the columns of Xp are independent J orthogonal bases (for each simplex) Wtj exists. This orthogonal basis
makes it possible to calculate the so-called error reduction ratio (err) for individual terms. The err determines the
significance of a term in reducing the model error. In order to take the influence of the order of appearance of terms into
account an orthogonal regression procedure based on stepwise regression algorithm is used, [24] and [25].

In the initial stage all terms k = (1, 2, . . . , d̂) in the regression matrix Xpt j
are considered possible candidates for the

orthogonal matrix Wtj . For each term k the err is calculated according to Eq. 63

err1 = maxd̂k=1

(
ĝ2
k

wT
k

wk

yT y

)
where wk = xpk and ĝk =

wT
k

y
wT
k

wk

. (63)
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The first term to select is k1 = kmax with the highest err, i.e. err1 = max{errk , 1 ≤ k ≤ d̂} and in combination
with wk1 , gk1 the following relation holds

yk1 = wk1 ĝk1 + εk1. (64)

For the second iteration all terms are considered as possible candidates again except k1 from the first iteration,
i.e. k = (1, 2, . . . , d̂) ∀ k , k1. First the candidate column of Xp is orthogonalized with respect to wk1 using the
Gram-Schmidt process given by

wk = xpk − αk1 k wk1 where αk1 2 =
wT
k1 xpk

wT
k1 wk1

. (65)

Similar as in Eq. 64 the subsequent err for wk is calculated. Again select term k2 = kmax with the highest err, i.e.
err2 = max{errk , 1 ≤ k ≤ d̂ , ∀ k , k1} with wk2 = xk2 − αk1 k2 wk1 and gk2 and err2
Equation (64) is updated by adding the sequential term k2

y = wk1 ĝk1 + wk2 ĝk2 + εk1 + εk2. (66)

Because of the orthogonalization process not only are the terms orthogonal to each other, but also the individual
residual terms ε . Hence εk1 does not change when εk2 is added. This is similar for the orthogonal parameters. When
gk2 is added gk1 does not change. This process in equations continues until the err of last column kd̂ is determined and

y = wk1 ĝk1 + wk2 ĝk2 + · · · + wkd̂ ĝkd̂ + εk1 + εk2 + · · · + εkd̂ (67)

At this point the order of appearance is saved and the final individual term significance is known. This process is
repeated for all simplices and is summarized in the err vector for each simplex tj given by (68). The sum of the ERRtj

is between 0 and 1 and tells something about the quality of the polynomial structure for a simplex tj . Higher sums are
better.

errtj =
[
err1 err2 . . . errd̂

]
. (68)

The Error Reduction Ratio errtj vector in (68) can be used to create physical model constraints in order to reduce
the model size, constraint certain terms per simplex and prevent model over-fitting. Per-simplex physical polynomial
model structure constraints can be created using the errtj using for example a stepwise introduction of terms, based on
their error reduction ratio and order of appearance, see [26] and [27]. Terms are added to the model until the validation
set reaches its minimum, i.e. adding more terms does no decrease the validation error but increases it. When this point
kp is reached all the remaining terms, not included in the model, are hard constraint to zero with the rule in Eq. 69

Geerr (cp) = 0 ∀ {k | k ∈ (1, 2, . . . , d̂) , k > kp} (69)

E. Physical Stability Derivative Bounded Inequality Constraints
The well known aircraft stability derivatives, also known as control derivatives, are based on first order partial

differential equations. In aeronautical engineering these derivatives are studied extensively. Signs and bounds are often
known for an aircraft [28]. These stability derivatives appear mostly as constants, because a linearized first order Taylor
expansion of the equation of motions is used as model structure. In order to model non-linear dynamical behavior,
while physically interpreting the derivatives, a scaling table is often used. For this method multiple aerodynamic models
are estimated and all stability derivatives are stored in large lookup tables. The models are interpolated after estimation.
Physical-Splines does not make use of these lookup tables. Also one of the considerations is to increase the degree
of the model structure. By doing so the stability derivatives do not have their familiar ”engineering” interpretation
anymore but are now formed by a function depending on one variable or multiple variables when physical parameters
are not decoupled per simplex domain. However, the stability derivatives can still be studied and play an important
role in the Physical-Splines method. The stability derivatives can be determined throughout a simplex domain using a
grid. This approach has some similarities to the first order Taylor expansion linearizion. The first order m = 1 physical
derivatives with respect to all physical variables are created using a degree reduction algorithm called the de Casteljau
algorithm. The directional derivative for a physical function p(x) with respect to term i is defined by
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∇xi p(x1, x2, . . . , xn) , 1 ≤ i ≤ n (70)

In order to maintain the linear optimization, constraints are required to be linear in the parameters as well. Therefore,
the stability derivative inequality constraints are applied to grid points. Since the triangulation exists of simplices it is
very easy to create points within the domain of these simplices. This uniform per-simplex grid xgrid can be created for a
certain density τ using Eq. 71, where ν indicates the vertices of a simplex tj .

xgrid =
⋃
|β |=τ

(
1
τ
β0 ν0t j +

n∑
i=1

1
τ
βi νit j

)
where ν = 〈ν0, ν1, . . . , νn〉 ∈ R

n

where β = (β0, β1, . . . , βn) ∈ R
n+1 is the multi-index

with property |β| = (β0 + β1 + · · · + βn)

(71)

The inequality constraints that are created are now linear in parameters. For the bound two pairs of inequality constraints
are created, one for the lower bound l and one for the upper bound u. They are expressed in form given in Eq. 72.

Hiu cb ≤ hiu and −Hil cb ≤ −hil (72)

In Eq. 72 Hi is a block diagonal matrix with M differential constraints. The vector cb is the B-coefficients vector and
di ∈ R

M×1 is the vector with the values to constraint the differentials to. The matrix Hi can be formed for all simplices
tj using the differential constraints theorem of [29], given in Eq. 73.

Hi = diag
(
Dtj

m(u, xgrid), 1 ≤ j ≤ J
)
∈ RM×J ·d̂ (73)

where Dtj
m(u, xgrid) is defined as

Dtj
m(u, xgrid) :=

d!
(d − m)!

Bd−m(b(Xgrid)Pd,d−m(b(u)). (74)

In Eq. 74 Pd,d−m(u) is the degree reduction matrix using the de Casteljau algorithm, d the degree, m the order of the
differential constraints, u is the physical normalized directional coordinate vector. For example when n = 2 and i = 1
the direction derivative coordinate is equal to [1 0]. The constraint direction is applied for the physical coordinates in
xgrid. The directional coordinates and location are transformed to barycentric space and therefore the constraints do not
have to be transformed afterwards.

VI. Experimental Setup
Prototyping and aerodynamic modeling with physical-splines is divided in four phases. In Fig. 1 a flow diagram of

the aerodynamic modeling process, using physical-splines, is given with each phase indicated. The first phase is to
collect and reconstruct flight test data, select candidate state and control variables and determine the aerodynamic model
dimension. After the physical-splines initialization (gray color) where the degree, continuity triangulation density is
set, the second phase starts. This phase (green color) generates the geometric support structure, also known as the
triangulation and the corresponding physical transformation matrix. During the third phase (blue color) the physical
polynomial model structure is determined and physical constraints and continuity conditions constraints are created. In
the fourth and final phase (red color), the aerodynamic model is estimated and validated. This process is repeated with
different model settings until an optimal or adequate model is found. The remainder of this section elaborates each of
the different phases and explains the experimental setup. The outcome of the experiment will be the moment model Cm

of the Cessna Citation II aircraft using the aforementioned methods and an elaboration how physical-splines perform
and influence the aerodynamic modeling process. The experimental results are compared to the ordinary MSBS and a
simple linear polynomial model.
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A. Cessna Citation II
The method presented in this publication is applied to flight test data collected with the Cessna Citation II aircraft.

The aircraft aerodynamic model is governed by the Equations of Motion (EOM) of Sec. A. They are used to identify
the aerodynamic model describing the dynamics of the aircraft. Experimental flights are performed and during these
flights different types of maneuvers are executed, such as the 3211 and doublet maneuvers. Reference [30] gives a
comprehensive review on these maneuvers. The flight test data is recorded and stored. In Fig. 2 the flight envelope
of the Cessna Citation II is plotted including the available flight test data, note the sparse regions in the data. The
Cessna Citation II, sometimes called the Cessna 550, is a small business jet developed in the 70s and upgraded in the
90s. Almost 1000 Citation II are built. The Cessna 550 used for the test flights has the registration PH-LAB and is
co-owned by Delft University of Technology and the Netherlands Aerospace Centre. The aircraft was built in 1993
and is converted to a flying laboratory. It has a modern glass cockpit and fly-by-wire flight controls. Flight test data is
measured using special high-fidelity flight test instruments such as vertical gyroscopes for measuring axis-rotation,
rate gyroscopes measuring axis rotational rates, IMU measuring accelerations, static-probe for the altitude, pitot-static
probes for the true airspeed, AHRS, GPS for location and ground-speed, alpha vane for the angle of attack and other
aircraft systems via the FMS. Furthermore a boom is available for better measurements of the angle of attack and the
side-slip angle. The instruments including their specifications are listed in Tab. 11. The properties and performance of
the PH-LAB are tabulated in Tab. 10.

B. Flightpath Reconstruction and Flight-Test Data
Experimental test flights are performed and measurements are made. The flight test measurements are stored in

a HDF5 data format and are converted to a MATLAB data file, a .mat file, using the especially developed software
HEFTIG. An earlier developed toolbox by the task-force is used to reconstruct the flightpath using these measurements.
This toolbox pre-processes the data first. Tab. 11 shows the different instruments and indicates that the instruments have
different sampling rates. Hence re-sampling is required for unification. Estimations of the inertia tensors Ixx , Iyy , Izz
are taken into account and also the aircraft empty mass, fuel mass, passenger (pax) mass and cargo mass. For the fuel
mass it is important to know the rate of fuel burn, including the fuel tank dimensions and location. Moments caused by
pax and cargo have to be corrected. For the flightpath reconstruction an Unscented Kalman Filter (UKF) is used. The
UKF yields good results for systems with moderate to high non-linearities. The states estimates are improved in terms
of accuracy and robustness by using this filter. The author refers to [15] for more background information and results
about the flightpath reconstruction and the UKF.

At the moment of writing flight test data of multiple experimental flights is available, including a test flight with 38
stalls. In order to select the flight test data a candidate set is created. A candidate set includes the state and control
variables that have a significant meaning to the specific forces or moments aerodynamic model of the Cessna Citation II
to be created. Hence it should make sense to use them for the system identification process. A candidate set and therefore
the initial aerodynamic model dimension for the Cessna Citation II was created in [31] and [32]. The candidates are
determined using a method called the occurrence of hysteresis. For this experiment the candidate set for the pitching
moment model Cm equals to

Cm(α, q̂, δe, M) (75)

For the pre-data selection a toolbox was developed. This toolbox uses a triangulation based clustering algorithm which
can detect clusters and outlying data points. Outliers are mostly sparse data points situated in more extreme regions
of the flight envelope. Sometimes these measurements are erroneous. These extremes can stretch the triangulation
domain too much influencing the data distribution in simplices negatively. The toolbox also checks for "islands of
simplices". Islands are single or multiple simplices separated and not connected to other "islands". This is the effect of
empty simplices in the triangulation caused by missing data. Earlier research showed the minimal influence of the Mach
number M to the aerodynamic model. Therefore it was decided to introduce this term as a global variable "outside" the
splines model. The splines model has now a model dimension of n = 3.

C. Initialization
The initialization, indicated by the gray color in the flow diagram 1, sets the model degree d, triangulation density

T (nTRI), continuity order r and the stability derivative bounds. The tested models will have a triangulation density
of T(1, 1, 1),T(2, 2, 2),T(3, 3, 3) and degrees of d = 2, d = 3, d = 4 and d = 5. The tested continuities Cr are: no
continuity (C−1), C0 and C1. Also when d − r − 1 < 1 the model losses the majority of its approximation power and
will be skipped. With this information the B-form for a single simplex can be determined. The B-form terms include
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the barycentric variables and their, to be estimated, B-coefficients. The spatial location of the B-coefficients form the
B-net. The total size of B-net depends on the triangulation and number of simplices.

D. Geometric Model Structure Selection
The process of the geometric model generation is given by the green box in flow diagram 1. The creation of an

optimal triangulation is a non-linear process. For this experiment it is assumed that the triangulation only exists of
type-1 simplices, forming together a hypercube. These hypercubes are created with the Kuhn triangulation algorithm.
The density of the triangulation can be influenced by appending multiple hypercubes in such a way that adjacent
simplex faces are aligned correctly. This action can be performed in each dimension individually. The size/ domain
of the triangulation is determined by the extremes of the identification dataset. This ensures that all data points are
in the convex hull of the triangulation. A challenge for high dimensional triangulations is that they can let the model
complexity explode. A citation by Tarentol [33]: "There is one problem with large-dimensional spaces that is easy to
underestimate: they tend to be terribly empty." High dimensional models, i.e. when many state and control variables
are included, will introduce voids and empty simplices in the triangulation. Simplices count as empty when no data
points or insufficient (Xtj < 2 · d̂) data points are available within the simplex domain. Insufficient data will cause
rank deficiency and high condition numbers. Removing simplices results in a non-rectangular domain and requires
extrapolation. For this triangulation the final B-net and therefore the barycentric parameters (basis functions including
the to be estimated B-coefficients) are created.

The triangulation has a corresponding physical transformation matrix ans is created with a Kronecker substituted
convolution algorithm of Sec. B. With this transformation it is possible to transform from the barycentric coordinate
space to the Cartesian coordinate space, for example to determine the physical-coefficients or the equivalent physical
model structure of of the B-form. The transformation is also very important for the generation of physical constraints.

E. Physical Constraints and Continuity Conditions
During this phase constraints are created as indicated by the blue box in flow diagram 1. Continuity conditions

between simplices are created in the form of barycentric constraints, see Sec. C. Continuity is often an initial model
requirement, based on the prospective model use. However, this requirement reduces the overall approximation power
of the splines model and for that reason often an increase of the degree is necessary.

The B-net and barycentric parameters are considered as a base for the model structure selection. For this set the
B-form regression matrix is transformed to the physical space. In the physical space the regression matrix is normalized
and the significance of individual model parameters is determined per-simplex. The stepwise orthonormalization
process and determination of the error reduction ratio creates a favorable order of appearance of the terms per simplex
as clarified in Sec. D. The acquired order is used in the subsequent step where per-simplex the terms are introduced
one-by-one to a single simplex model structure. The MSE of the validation set is monitored after a term is introduced
and compared to the MSE of the previous step. When the MSE increases after a term is introduced the process is
stopped. An increasing MSE indicates the possibility of over-fitting the model, i.e. adding too many terms. Physical
Model Structure equality constraints are created for the terms not introduced to model. These constraints make sure the
P-coefficients of these terms are equal to zero by hard constraining them during the optimization. The removal of the
physical terms is only possible after optimization in order to prevent breaking the B-net structure.

Physical information of the Cessna Citation II aircraft is introduced to the model as physical bounded inequality
constraints. The physical information is based on the stability derivatives acquired by the Citation II stability
characteristics and earlier identified aerodynamic models. In Eq. 76 the bounds utilized for this experiment are given.
Preliminary results indicate that the bound for Cmq was too tight and is therefore widened.

− 2 ≤ Cmα ≤ 0 , −22 ≤ Cmq ≤ −1.5 , −3 ≤ Cmδe
≤ −0.5 (76)

In following sections the Model Structure equality Constraints are abbreviated to MS constraints and similar the Stability
Derivative Physical Bounded inequality constraints are abbreviated to PB constraints. The two mentioned constraints
are physical constraints and is what makes the Multivariate Simplex B-Splines a Physical-Splines. In addition to the
MSBS models, without constraints other tested models with physical constraints will be: MS constraints and PB and
MS constraints combined. The final, best performing physical-splines, model is compared to a MSBS and a simple
linear polynomial model.
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F. Estimation
After setting the KKT-conditions, the parameters are estimated with the Mehrotra predictor-corrector method. To

prevent an infeasible solution only model terms higher than degree one are considered in the MS constraints. Also a
maximum number of terms to be constraint was set. When the solution turns out to be infeasible it is decided to deleted
terms with coupled variables only. Optimization is performed in barycentric space, hence all physical constraints are
transformed with the transformation matrix. The normalized barycentric coordinate system can prevent numerical
issues and lowers the regression matrix condition number. The models are compared to each other using their residual
Root Mean Squared (RMS) error, the coefficient of determination R2, and the maximum residual error found. These
statistical metrics are calculated for both the identification set and validation set. Also the percentage of deleted model
terms are compared. A stability analysis between the linear model, MSBS and physical-splines is performed based
on the per-simplex stability derivative values based on grid points. The grid point method has some similarities to a
first order Taylor expansions or linearizion relative to that point. Finally, model slice plots will test the stability and
divergent behavior at boundaries and the model output is compared for a global quality assessment. Models including
PB constraints will be extrapolated and compared to the non-extrapolated models. The extrapolated simplices are given
PB constraints to avoid rank deficiency and continuity constraints in order to maintain the same order of continuity with
the interpolated simplices.

VII. Results and Discussion
The results of the experiment are presented with a similar structure as the flow diagram of 1. Each phase discusses

and elaborates the influence of the physical-splines on the aerodynamic modeling process. For this experiment multiple
physical-splines models are created using the aerodynamic modeling process. For all estimated models the Root Mean
Squared (RMS) Error, the coefficient of determination R2 and the absolute maximum RMS error is determined for both
the identification set and the validation set. The best performing physical-splines model, S1

4 (1, 1, 1), is selected and
analyzed. A thorough analysis is performed by comparing the physical-splines model with a MSBS and simple linear
least squares model in the sub section estimation and validation.

A. Flight-Test Data
A pre-selection of the available flight test data includes data where only maneuvers are executed on the elevator. A

three dimensional dense triangulation is created, and plotted in a matrix graph, on top of this flight test data in Fig. 3.
The diagonal histograms show the number of data points and the distribution of these data points within the domain
of a state/ control variable. The dimension of this domain is determined by the maximum and minimum value of the
measured data in this dimension. In Fig. 3 erroneous data is obtained for the angle of attack α. Unrealistic large
negative values are measured causing a very sparse and large range domain for the angle of attack. Including these
wrong measurement in the physical-splines model will create large voids in the triangulation and a poor distributions of
the data points between the simplices. The first step in the clustering algorithm is removing all empty simplices, see Fig.
4. The second step, in Fig. 5, is to delete all simplices with a low data density of Xtj < 2d̂. These are clearly the remote
data point as indicated by the distribution plots and histograms. A distinct large "main island" of simplices is obtained,
see Fig. 6. The majority of the data points are located within the convex hull of this cluster. The domain and data within
this cluster will serve the aerodynamic modeling process for physical-splines. The clustering process results in a dataset
of 127,102 measurements. This is 98.5% of the initial data before clustering. Finally The dataset is randomly divided in
an identification set (60%) and validation set (40%).

B. Initialization
During the initialization the model degree, triangulation density, continuity order and stability derivatives upper

and lower bound are set. With the candidates, spline dimension and model degree the B-form basis functions for each
simplex can be created. The B-form also has an equivalent physical representation that is obtained with the physical
transformation matrix. As an example the physical B-form of the Cm pitching moment model for a degree d = 4 model
is stated in Eq. 77. Each line indicates a "degree group". The model term coefficients have the letter m as subscript
combined with the model variable degrees of that specific term. Each model term is numbered for clarification and
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uncoupled model terms are boxed.
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+
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In Sec. E a slightly different interpretation of a stability derivative is deemed necessary. Otherwise the well known
individual per term coefficients become very difficult to interpreted. Higher degree models will result in many individual
physical coefficients for each simplex. This makes the interpretation a tedious process. Also a universal link between
different model degrees is missing. A better and more appropriate approach of interpreting the physical-splines
coefficients is obtained by taking the splines model partial derivative with respect to the stability derivative variable.
The mth derivative of a physical-splines model, using Eq. 77, is a physical-splines model itself, with degree d − m. The
model is expressed in the already estimated parameters. This stability derivative splines model can be monitored for
different locations within the triangulation domain. The output of these locations can be analyzed and tell something
about the aircraft stability and characteristics for these parts of the flight envelope. This way a true generalized and easy
to interpreted physical interpretation is given to physical-splines. An example of a stability derivative physical-splines
model is given in Eq. 78. The first order partial derivative with respect to the angle of attack α is calculated yielding the
stability derivative Cmα . Note that all physical-coefficients shift up, depending on the derivative order.

Cmα (α, q, δe) =
∂Cm
∂α
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(78)
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C. Geometric Model Structure

1. Triangulation
Remote areas in the triangulation show poor data distribution and (near) empty simplices, see Fig. 6. Insufficient

data coverage in the hypercube triangulation domain makes it necessary to extrapolate the model. In Tab. 2 the
percentage of simplices to be extrapolated, in combination with the flight test data, per triangulation and degree is
tabulated. Increasing the triangulation density and degree clearly shows an increase in the percentage of simplices to be
extrapolated. The S1

4 (2, 2, 2) model has 36 extrapolated simplices. This is 25% on a total of 48 simplices. The simplices
are extrapolated at the same time when the physical-splines model is optimized. One can conclude from Tab. 6 that the
effect of the extrapolated simplices on the interpolated simplices is minimal.

d = 4 d = 2 d = 3 d = 4 d = 5

T(1, 1, 1) 0% 0% 0% 0%

T(2, 2, 2) 17% 23% 25% 29%

T(3, 3, 3) 36% 48% 52% 60%
Table 2 Percentage of simplices that require extrapolation.

Extrapolated simplices can also include measurements. They are deleted, because the number of measurements
was too low. Table 3 lists the percentage of data points in extrapolated simplices. In contrast to the number of deleted
simplices this is minimal. Hence the deleted simplices almost hold no data using the flight test dataset.

d = 2 d = 3 d = 4 d = 5

T(1, 1, 1) 0% 0% 0% 0%

T(2, 2, 2) 0% 0% 0% 1%

T(3, 3, 3) 0% 1% 2% 3%
Table 3 Percentage of deleted data points as a result of (near) empty simplices

.

2. Physical Transformation
Convolution can be implemented in different manners. For this publication, a script was build that creates the

linear physical transformation matrix described in Sec. B. Instead of using a DFT matrix, convolution is performed by
multiplying entries while shifting over two vectors. This type of convolution is more numerical stable compared to the
DFT. The DFT matrix can yield complex remainders due to rounding errors. The different algorithms are tested in terms
of computational time required while determining the transformation for different dimensions and degrees. The first
"algorithm 1" is the algorithm in use, at the moment of writing, in the MSBS toolbox. "Algorithm 2" is an algorithm
that uses the available de Casteljau algorithm to determine degree reduction matrices. "Algorithm 3" uses convolution
in combination with a Kronecker Substitution to determine the physical transformation matrix. The results are tabulated
in table 4. The results show that all algorithms perform well for lower degrees. For higher degrees However, there
is a significant difference in computational time. The convolution algorithm is much faster and creates a n = 4 and
d = 6 transformation matrix in 2.1 seconds. The current algorithm takes 156 seconds to calculate the same matrix.
Overall the best performance is given by algorithm 3 using convolution. Further improvement is possible by creating an
algorithm that can convolute sparse vectors. High dimensions Kronecker Substituted vectors become very sparse and
many multiplications during convolution can be skipped.
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Table 4 Difference between the current algorithm 1 determining the physical transformation matrix and
algorithm 2 and the new algorithm 3 using convolution.

d=2 d=3 d=4 d=5 d=6

Algorithm 1 , n=2 0.0074 s 0.0026 s 0.0076 s 0.0240 s 0.0841 s

Algorithm 2 , n=2 0.0109 s 0.0181 s 0.0496 s 0.1027 s 0.2189 s

Algorithm 3 - n=2 0.0031 s 0.0012 s 9.15×10−4 s 0.0012 s 0.0019 s

Algorithm 1 , n=3 0.0025 s 0.0017 s 0.1103 s 0.6882 s 4.1054 s

Algorithm 2 , n=3 0.0170 s 0.1069 s 0.4209 s 1.3376 s 3.5667 s

Algorithm 3 , n=3 8.38×10−4 s 0.0018 s 0.0044 s 0.0098 s 0.0258 s

Algorithm 1 , n=4 0.0194 s 0.2068 s 2.0822 s 18.5848 s 156.1977 s

Algorithm 2 , n=4 0.1215 s 1.0856 s 5.8026 s 23.6154 s 83.0631 s

Algorithm 3 , n=4 0.0062 s 0.0352 s 0.1521 s 0.5881 s 2.1196 s

D. Physical Constraints Creation

1. Model Structure Constraints
For the normalized dataset and triangulation the optimal order of appearance is determined by calculating the

error reduction ratio of individual terms per simplex. The order of appearance in combination with an stepwise
orthogonalization process resulted in insignificant terms to be hard constraint from the physical-splines model. In the
histogram of Fig. 7 is the percentage of each term given, indicating how often they are constraint to zero, i.e. are deleted
from the physical-splines model afterwards. The color blue is assigned to linear terms, yellow to second order terms,
green third order terms and red fourth order terms. The darker colors indicated coupled model terms. The model term
relates to a number stated in Eq. 77. The terms hard constraint the most often are
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. (79)

The majority of the terms in Eq. 79 are coupled model terms and higher order model terms that includes the pitch rate q
and angle of attack α. The terms the least hard constraint are
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All of the terms, except number 7, are decoupled model terms. The decoupled model terms are the most meaningful to
the physical model. They often have the highest significance in increasing the approximation power and the prevention in
over fitting. In figure 8 the percentage of deleted model terms via hard constraints is plotted for different physical-splines
models in multiple plots for different degrees. Each column plots a triangulation density and each row different order of
continuity conditions. A diamond symbol indicated when coupled terms are hard constraints only. A distinct increase
of percentage deleted terms is observed for higher triangulation densities and degrees. For the T(1, 1, 1) triangulation
very few of the terms are deleted. Interesting for this triangulation is the higher percentage of deleted terms for degree
three. Apparently the Cm model is not fitted well with third order terms. Also despite the percentage of deleted physical
terms the physical-splines model yields slightly better statistical metrics compared to the MSBS model and therefore
prevents over fitting the model when higher degrees are selected.

2. Physical Bounded Constraints
The PB constraints are created on a grid with the density equal to the degree, i.e. the grid points Cartesian coordinates

is equivalent to the spatial locations of the B-coefficients.
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Table 5 The percentage of stability derivatives out of bound including the percentage of these out of bound
stability derivatives located on the boundary.

Model d = 4, T(2, 2, 2), C1 Out of Bound Out of Bound on Boundary

Cmα

MSBS 48% 91%
MS Constraints 29% 93%

Cmq

MSBS 84% 84%
MS Constraints 76% 84%

Cmδe

MSBS 59% 91%
MS Constraints 49% 98%

The PB constraints have a positive performance on the identification process. They remove divergent behavior and
deal very well with sparse and poorly distributed data. A slice plot confirms the extreme divergent behavior present in
MSBS, Fig. 18. The same slice plot is created for a physical-splines model, Fig. 20. PB constraints completely removes
the divergent behavior in the triangulation.

A stability analysis is performed using the stability derivatives of Cmα , Cmq , and Cmδe
of the Cm moment model to

asses the effect of the physical MS and PB constraints on the physical-splines model. For each of the stated stability
derivatives the outcome is plotted respectively in Figures 9, 10, and 11. Each figure represents the output of a stability
derivative on multiple grid points per-simplex, for the S1

4 (2, 2, 2)MSBS model without constraints and Physical-Splines
models with MS, and MS and PB constraints combined. In these plots divergent behavior of the stability derivatives
become apparent. The figures clearly show a divergent behavior for the models without PB constraints. For example in
Fig. 9 poor performing simplices include simplex number 9, 26, and 30. However, MS constraints indicate some over
all improvement in reducing the divergence. The physical bound set for Cmα is appropriate. The bottom graph in Fig. 9
shows that most of the stability derivative points stay well within the bound, especially the lower bound. This is also
true for stability derivative Cmδe

in Figure 11. Stability derivative Cmq is more troublesome. The bottom graph in 10,
indicates that most of the simplices have stability derivatives located on the upper and lower bounds. This can be caused
by numerical errors, since the measured values for q are relatively small.

In order to identify the location and the simplices containing out of bound, and therefor divergent, stability derivatives
the locations and values of stability derivatives is plotted in the three dimensional (n = 3) triangulation. The stability
derivatives are determined for the S1

4 (2, 2, 2)MSBS model without constraints. This plot is created for each stability
derivative, Cmα , Cmq , and Cmδe

, in Figures 12, 13, and 14 respectively. The green color indicates that a stability
derivative at that specific location is within its preset bound, the color red indicates that the stability derivative is outside
the bound. Figure 13 confirms the poor performing stability derivative Cmq . For the other two stability derivatives Cmα

and Cmδe
, in Figures 12 and 13 respectively, the poor performing parts of the triangulation are clearly the boundary areas.

This divergent behavior at boundaries is also known as Runge’s Phenomenon. Oscillation/ divergent behavior occur at
the boundary of the domain for higher degree polynomials. This effect is also amplified by the continuity constraints
where this behavior of other simplices are propagated to the boundaries of the triangulation. Table 5 summarizes for
the S1

4 (2, 2, 2) models the percentage of stability derivative grid points outside the bound set and what percentage of
these points are located on the boundary of the triangulation. For Cmα and Cmδe

these results clearly confirm that the
majority of the out of bound points are located on the triangulation boundary.

Overall one can conclude that the PB constraints performance is very good. They remove the divergent effect of the
tested stability derivatives completely and play an important role in extrapolation.

E. Estimation and Validation
The model with the highest statistical quality assessments are the models with T(2, 2, 2) triangulation. The best

performing physical-splines model is S1
4 (2, 2, 2). The calculation time for the physical model equals 1 second. The

extrapolated model required 5.6 seconds and includes approximately 10,000 PB constraints to the optimization. This
model is compared to the MSBS (with equal degree, triangulation and continuity) and a simple linear model.

The statistical metrics of the pitching moment Cm for all three different types of modeling techniques, in Tab. 6 show
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Type Constraints RMS(ε) R2 max(|RMS(ε)|)

Linear Model - 8.3 × 10−3 0.83 0.09

S1
4(2, 2, 2)MSBS - 7 × 10−3 0.88 0.06

S1
4(2, 2, 2)

Physical-Splines

MS 6.4 × 10−3 0.89 0.06
MS and PB 6.7 × 10−3 0.88 0.08

MS and PB Extrapolated 6.9 × 10−3 0.88 0.08
Table 6 Validation results of models with S1

4 (2, 2, 2) property. The MSBS model is compared to the Physical-
Splines model and the extrapolated Physical-Splines models.

Linear LS θ̄

Cm0 -0.04
Cmα -0.40
Cmq -10.30
Cmδe

-1.06
CmMg

0.17
Table 7 Stability derivative coefficients statistics for the simple linear leasts squares model.

adequate outcomes. The MSBS and physical-splines models yield better results than the linear LS model, especially for
the coefficient of determination. The MS constraints has the capability to prevent over-fitting of higher degree models
by hard constraining insignificant physical model terms from the physical-splines model. This is confirmed by the lower
RMS validation error even tough the number of terms is decreased by 15% compared to the MSBS model. The PB
constraints and extrapolation slightly increases the RMS error, but is still less compared to the linear LS and MSBS
model.

The average stability derivatives of the Cm moment model are tabulated in 7, 8, and 9 for the linear LS, MSBS
and physical-splines models respectively. The B-coefficient of the MSBS are transformed to the physical space for
comparison only. No other constraints were applied to the MSBS model. The splines models include the minimum
and maximum stability derivatives obtained in the interpolated triangulation domain and the corresponding mean and
standard deviations of the these stability derivatives. Again the immense divergent behavior on the boundaries in the
MSBS model reveals itself. The obtained values in Tab. 8 are very unrealistic and deprive the possibility to physically
interpreted the stability derivatives at all. The physical-splines show a much more stable and robust behavior. They
outperform the MSBS model in realism and physical interpretation. The linear LS model, Tab. 7, compared to the
physical-splines model reassembles similar outcomes. However, the difference in stability derivative mean of Cmα and
the standard deviation of the physical-splines model, Tab. 9, hints to possible non-linearities in the flight test data and
therefore the physical-splines model.

These non-linearities are confirmed by the slice plots fixing two of the three dimensions. In these figures the
linear LS model, the physical-splines model, and the validation data is plotted in blue, green, and orange respectively.
Especially in Fig. 15 the angle of attack validation data and physical-splines model demonstrated non-linear behavior,
between 0.08 and 0.12 radians, obviously missed by the linear model. Figure 16, plotting the pitch rate q, indicates
on some non-linear behavior near the domain boundaries. The presence of the simplex splines is noticeable, the
physical-splines model clearly follows the trend of local data points. Whereas the linear model identifies global trends.
The elevator deflection δe in Fig. 17 show the control variable has an evident linear influence on the pitching moment in
the measured part of the flight envelope. The output of the linear model, physical-splines mode, and validation data are
close together.

A two dimensional slice plot of the angle of attack, elevator deflection and model output Cm calculated with the
linear model is given by Fig. 19 and the physical-splines model by Fig. 20. The latter figure is characterized by the
small amount of non-linearities. To visualize the actual non-linearities the two graphs are subtracted from each other to
concede the differences, see Fig. 21. The deficiency of the linear model is very slim and mostly exist in more extreme,
i.e. larger values of the angle of attack and elevator deflection, regions of the flight envelope.
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MSBS θ̄ θmin θmax σ(θ)

Cm0 9.38 -18.16 128.36 29.96
Cmα 0.91 -857.35 556.99 52.55
Cmq 57.94 −1.16 × 104 2.23 × 104 1.43 × 103

Cmδe
7.14 -907.46 4.42 × 103 178.57

CmMg
0.11 0.11 0.11 0

Table 8 Stability derivative coefficients statistics for the MSBS model S1
4 (2, 2, 2).

Physical-Splines θ̄ θmin θmax σ(θ)

Cm0 8 × 10−3 0.16 -0.72 0.14
Cmα -0.60 -1.95 -0.02 0.4
Cmq -10.59 -21.91 -1.52 5.89
Cmδe

-1.24 -3.00 -0.51 0.57
CmMg

0.19 0.19 0.19 0
Table 9 Stability derivative coefficients statistics for the extrapolated Physical-Splines model S1

4 (2, 2, 2).

VIII. Conclusion
The advent of MSBS in system identification, and specific advanced aerodynamic modeling, opens up a world of

new possibilities. Experiments demonstrate that the Physical-Splines addition is a more robust method for aerodynamic
modeling compared to the MSBS. The Physical Bounded inequality constraints introduce a-priori physical information
to the optimization process. In combination with the physical Model Structure constraints they reduce the model size,
prevent over-fitting and propagation of erroneous data, and remove inherent MSBS divergent behavior at triangulation
boundaries. The divergent behavior is mostly caused by the sparsity in the flight-test data, resulting in empty simplices
and simplices with poorly distributed data and therefore problems with the estimation of remote B-coefficients. However,
too many constraints can make the optimization infeasible. A good practice is to limit the number of terms to be
constraint based on the d − r − 1 rule. Furthermore, it is preferable not to constraint any linear model terms. If the
optimization is found to be infeasible, removing coupled model terms from the constraints will most likely solve the
in-feasibility problem. Important is to verify if the bounds set on the PB constraints are not too tight. Creating grid
points, for the PB constraints, equal to the B-net density is sufficient to make these constraints work. Increasing the grid
density has little effect. Applying continuity constraints and PB constraints to the simplices to be extrapolate makes it
possible to add the extrapolation process to the initial optimization process. By doing so, the effect of extrapolation on
the interpolated simplices is minimal. This way, a complete hypercube triangulation domain is created, which is much
easier to interpreted. The pitching moment Cm model is very linear and applying physical-splines improves the model
marginally. However, promising results can be expected for modeling extreme regions of the flight envelope with highly
non-linear dynamics.
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Appendix

A. Cessna Citation II

Table 10 Aircraft details of PH-LAB

PH-LAB

Manufacturer Cessna
Type Citation II Model 550

Dimensions

Length 14.39 m
Wingspan b 15.90 m
Wing Area S 30.00 m2

Wing Chord Length c̄ 2.06 m
Height 4.57 m

Mass Properties

Empty Weight 3,906 kg
Maximum Payload 1,400 kg
Maximum Fuel Load 2,250 kg
Maximum Takeoff Weight 6,715 kg
Ixx,empty 12,392 kg·m2

Iyy,empty 31,501 kg·m2

Izz,empty 41,908 kg·m2

Ixz,empty 2,252 kg·m2

Performance

Engine 2× Pratt & Whitney JT15D-4 turbofan
Maximum Thrust 2 × 11.1 kN
Maximum Cruise Speed 710 km/h
Maximum Operating Altitude 13,000 m
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Table 11 Instrumentation of the PH-LAB

Parameter Unit Fs [Hz] 1σ std Source

Xb-axis rotation [rad] 1 8.70 × 10−3 Sperry Vertical Gyro
Yb-axis rotation [rad] 50 8.70 × 10−3 Sperry Vertical Gyro
Zb-axis rotation [rad] 50 1.73 × 10−3 Gryosyn Compass
Xb-axis rotational rate [rad/s] 100 2.00 × 10−3 LITEF µFORS Rate Gyro
Yb-axis rotational rate [rad/s] 100 2.00 × 10−3 LITEF µFORS Rate Gyro
Zb-axis rotational rate [rad/s] 100 5.00 × 10−3 LITEF µFORS Rate Gyro
Xb-axis linear acceleration [m/s2] 100 2.00 × 10−2 Q-Flex 3100 Accelerometer
Yb-axis linear acceleration [m/s2] 100 2.00 × 10−2 Q-Flex 3100 Accelerometer
Zb-axis linear acceleration [m/s2] 100 3.00 × 10−2 Q-Flex 3100 Accelerometer
Altitude [m] 1 3.00 × 10−1 Static Probe
True Airspeed [m/s] 50 1.00 × 10−1 Pitot-Static Probe
Angle of Attack [rad] 1000 3.50 × 10−3 Alpha Vane
Angle of Sideslip [rad] 1000 3.50 × 10−3 Beta Vane
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Fig. 2 The Flight Envelope of the Cessna Citation II showing the the TAS and altitude where flight test
measurements were performed
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B. Flight Test Data

Fig. 3 Clustering of the measured flight test data in a matrix plot. The data distribution is visualized by the
green dots. The blue triangulation indicates the domain of the data. The plots on the diagonal are histograms
plots of the number of data points.
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Fig. 4 Cluster plot after deleting the empty simplices in the triangulation.
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Fig. 5 Cluster plot after deleting near empty simplices from the triangulation.
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Fig. 6 The largest data triangulation cluster is obtained and data within the convex hull will be used in the
aerodynamic modeling process.
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C. Model Structure
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Fig. 7 Histogram of the percentage of individual terms constraint to zero from the physical-splines model for
the entire triangulation.
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Fig. 8 The percentage of deleted physical model structure terms of the total number of terms. Plotted for
triangulations T(1, 1, 1), T(2, 2, 2), and T(3, 3, 3) with different degrees and continuity.
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D. Stability Derivatives Analysis Figures

Fig. 9 Per simplex output of the stability derivative Cmα using a grid with data points.
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Fig. 10 Per simplex output of the stability derivative Cmq using a grid with data points.
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Fig. 11 Per simplex output of the stability derivative Cmδe
using a grid with data points.
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E. Triangulation Stability Derivative Figures

Fig. 12 Triangulation plot of the S1
4 (2, 2, 2)MSBSmodel with tested stability derivative Cmα grid points. Green

dots indicate that the stability derivative is within the preset bounds, red indicates the stability derivative is out
of bound.
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Fig. 13 Triangulation plot of the S1
4 (2, 2, 2)MSBSmodel with tested stability derivative Cmq grid points. Green

dots indicate that the stability derivative is within the preset bounds, red indicates the stability derivative is out
of bound.
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Fig. 14 Triangulation plot of the S1
4 (2, 2, 2)MSBSmodel with tested stability derivativeCmδe

grid points. Green
dots indicate that the stability derivative is within the preset bounds, red indicates the stability derivative is out
of bound.
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F. Slice Plots
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Fig. 15 Angle of attack×Cm. The blue line plots the output of the simple linearmodel, the green line the output
of the physical-splines S1

4 (2, 2, 2) model and the orange dots are output of the validation dataset. q = 1 × 10−3 −,
δe = −0.03 rad and M = 0.3.
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Fig. 16 Pitch rate × Cm. The blue line plots the output of the simple linear model, the green line the output
of the physical-splines S1

4 (2, 2, 2) model and the orange dots are output of the validation dataset. α = 0.1 rad,
δe = −0.08 rad and M = 0.3.
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Fig. 17 Elevator deflection × Cm. The blue line plots the output of the simple linear model, the green line
the output of the physical-splines S1

4 (2, 2, 2) model and the orange dots are output of the validation dataset.
α = 0.1 rad, q = 1 × 10−3 −and M = 0.3.
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Fig. 18 Slice plot of a MSBS S1
4 (2, 2, 2), no constraints, angle of attack × elevator deflection. q = 0− and

M = 0.3.
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Fig. 19 Slice plot of a simple linear model, angle of attack × elevator deflection. q = 0− and M = 0.3.
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Fig. 20 Slice plot of a physical-splines S1
4 (2, 2, 2)model with MS and BD constraints, angle of attack × elevator

deflection. q = 0− and M = 0.3.
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Fig. 21 Slice plot of the difference between the simple linear model and physical-splines S1
4 (2, 2, 2)model, angle

of attack × elevator deflection. q = 0− and M = 0.3.
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Chapter 1

Introduction

From 2019 a new aviation legislation makes all air-carrier pilots obliged to go through flight
simulator-based stall recovery training (Federal Aviation Administration, n.d.). A ’task force’
was formed by the division of the Control & Simulation (C&S) group as result of this new
aviation legislation. The implication of this legislation is that current flight simulation models
must be updated regarding accurate pre-stall, stall, and post-stall dynamics. Recently a new
methodology is derived for high-fidelity aircraft stall behaviour modelling and simulation
and a new high-fidelity flight simulation model of the Cessna Citation II laboratory aircraft
has been developed. This model is made up of sets of local linear models which must be
interpolated in order to adequately cover the flight envelope. The current Delft University
Aircraft Simulation Model and Analysis Tool (DASMAT) model will eventually be replaced
by this model.

Performing this interpolation is not trivial. For example, naive database interpolation can
result in significant discontinuities and other artefacts which may influence simulator fidelity.
A promising alternative approach uses MSBS to accurately model nonlinear aerodynamic
models over the entire flight envelope and are easily integrated into standard identification
routines. While the multivariate B-splines are powerful function approximators, their down-
side has been that their basis functions and B-coefficients do not have a straightforward
physical interpretation due to the use of local coordinate systems.

Very recently, a new formulation of the MSBS was developed. These physical B-splines or
Physical-Splines (P-Splines) are a modification of standard multivariate B-splines in which
the B-coefficients have a physical interpretation, i.e. they are transformed from barycentric
coordinate space into Cartesian space under a linear coordinate transformation. This has
removed the primary disadvantage of the multivariate spline method, and will allow its much
more widespread use as a tool in aircraft system identification.
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Chapter 2

Physical-Splines and back again

In the early days, before the time of computers, splines were used as drafting tools to draw
curves. This gave drafts men and woman special capabilities. Especially in the in the engi-
neering field of shipbuilding splines were used in the form of flexible, long and thin strips of
wood. Often balsa wood. While drawing ship plans the crafts tperson gave form to the spline
on the paper and weights were attached to keep the spline in place. The weights are called
ducks, because of their shape. With the ducks in place, the splines are secured. Now a line
with great curvature can be drawn accurately.

Besides ships, curved lines are very important for another famous streamlined object, the
aircraft. The aforementioned thin wooden strips are used again to create these lines. In the
field of aviation this drafting technique is known as lofting. This technique is later replaced
by mathematical tables, used, among other aircraft, for designing the P-51 Mustang, and
eventually replaced by computers.

Curved objects have always played an important and fascinating role for mankind, whether
this is for wheels, streamlined design of ancient Roman ships or modern aircraft. It can be
no surprise mathematicians got interested by splines. One of the first reference of splines in
mathematics was made by the Romanian born American Iscaac Jacob Schoenberg. After the
Second World War he published a paper (Schoenberg, 1946). In this paper he describes the
spline as a piecewise smooth polynomial approximation. Figure 2-2 shows a spline function
with five piecewise linear polynomials.

With computer technology getting better, faster and more advanced the potentials in
Computer-Aided Design (CAD) became clear. CAD software gives the possibility to de-
sign interactively and create for example curves displayed graphically on a monitor. In the
automotive industry a lot of research was performed on splines. Among them was Citroën,
one the first companies to see the importance of splines. Researchers as de Casteljau and
Boor played an important role in developing splines methods in search of a true generalised
multivariate form of splines functions. Methods developed and used for CAD proved to be
very promising in other fields and nowadays they are used in for example data fitting and sys-
tem identification tasks. In the remainder of this chapter an introduction to different splines
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Figure 2-1: Two man lofting, (Cecil Beaton, Ministry of Information, 1943)

methods is given in order to get a better understanding what let to the MSBS. During this
introduction some attention is given to the very important and beautiful mathematical basis
they share. The introduction will started with the physical wooden splines and ends with the
formulation of the Physical MSBS or P-Splines.

2-1 Bernstein Polynomials

This section introduces a polynomial basis. Because of the mathematic expression the splines
are becoming from this point onwards less physical. The polynomials used are called the
Bernstein Polynomials. These polynomials are named after the Russian Sergei Natanovich
Bernstein. The univariate Bernstein polynomials are defined by (2-1)

bν,d(x) =

(
d
ν

)

= xν (1− x)d−ν , ν = 0, . . . , d (2-1)

where the binomial coefficient is given by

(
d
ν

)

=
d

ν!(d− ν)!
(2-2)

This equation produces d + 1 Bernstein polynomials of degree d. The binomial coefficient
can look familiar since it produces the famous Pascal’s triangle. The univariate formulation
of the Bernstein Polynomial’s in (2-1) will play an important role in the MSBS. Later on a
general formulation is given, which can be seen as a general multivariate formulation of the
Bernstein polynomials and therefore for the Pascal’s triangle.
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Figure 2-2: One dimensional linear spline function with no continuity, approximating non-linear
data.
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2-2 Bézier Curves

One of the first curve drawing methods where the Bernstein Polynomials are used are the
Bézier Curves. In this section an example how the Bézier Curves works is given. Figure 2-3
shows a cubic Bézier curve S with four control points P0, P1, P2, P3. The curve S is defined
as a function of t where t by definition equals 0 ≤ t ≤ 1. In other words a point on the
curve is given by function S(t). In vector notation a point on the curve is expressed as s̄0.
For a better understanding how a Bézier curve works the vector s̄0 is rewritten in a weighted
combination of r̄0 and r̄1.

s̄0 = (1− t)r̄0 + tr̄1 (2-3)

In a similar fashion r̄0 and r̄1 are rewritten in a weighted combination of q̄0, q̄1 and q̄2.

r̄0 = (1− t)q̄0 + tq̄1

r̄1 = (1− t)q̄1 + tq̄2
(2-4)

and once more q̄0, q̄1 and q̄2 are rewritten in a weighted combination of the control points p̄0,
p̄1, p̄2, p̄3.

q̄0 = (1− t)p̄0 + tp̄1

q̄1 = (1− t)p̄1 + tp̄2

q̄0 = (1− t)p̄2 + tp̄3

(2-5)

To find a relation between the curve and the control points equations (2-4) and (2-5) are
substituted in (2-4) and after simplifying (2-6) is obtained

s̄0 = (1− t)3 p̄0 + 3(1− t)2 t p̄1 + 3(1− t) t2 p̄2 + t3 p̄3 (2-6)

Note that in equation (2-6) the curve s̄0 is a relation between Bernstein polynomials of degree
three and the control points. The degree three Bernstein polynomials are

((1− t) + t)3 = (1− t)3 + 3(1− t)2 t+ 3(1− t) t2 + t3 = 1 (2-7)

The Bernstein polynomials have the nice property that they sum to 1 and are positive for
0 ≤ t ≤ 1. In Figure 2-3 the control points P0, P1, P2, P3 are vertices of a quadrilateral.
The curve S is in this convex combination of P0, P1, P2, P3 and a point on this curve is the
Centre of Mass (c.m.) of the quadrilateral where the weights are determined by the Bernstein
polynomials. In other words when t = 0 all the mass is at control point P0 when t increases
the mass of the other control points increases and the mass of control point P0 decreases.
When t = 1 all the mass is at control point P3.

To evaluate the Bézier curves Paul de Casteljau developed a recursive algorithm. At that time,
1959, he was working at the car manufacturer Citroën. These astounding results were kept
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Figure 2-3: A quadratic Bézier Curve

secret by Citroën because of the company’s policy. Later the the algorithm was formalized and
made popular by Pierre Bézier himself. It was until 1974 when Paul de Casteljau published
a paper about his algorithm and was acknowledge for his work. De Casteljau’s algorithm is
given by

S(t) =
d∑

i=0

pibi,d(t) (2-8)

where S(t) is the Bézier curve, p the control point, d+ 1 the number of control points, d the
degree and b(t) the Bernstein polynomials.

2-3 B-Splines

Bézier curves have certain shortcomings when a more complex-shape curve has to be approx-
imated. They do not have local control and there is a strict dependency between the degree
of the curve and the number of control points. So what if a complex-shaped curve has to be
approximated. An option is to use a higher degree Bézier curve, but the disadvantage is that
higher degree Bézier curves are computational expensive to compute and hard to control.
When a small change is made to whole Bézier curve has to be recalculated. To overcome
this disadvantage it would be great to join the ends of several Bézier curves together into one
curve, i.e. piecewise polynomial functions, and make this ends tangent with a certain order
of continuity. This is what B-Splines are. Rather than having a single higher degree Bézier
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curve, multiple lower degree Bézier curves are joined onto each other. The first appearance
of B-Splines, or Basis-Splines was in the paper of Schoenberg (Schoenberg, 1946). However
Schoenberg said that they were known to LaPlace. It was until 1966 that this paper was
published that the B-Splines were given their name. In this paper (Curry & Schoenberg,
1966) the importance of B-Splines is acknowledge and was intended to show that B-Splines
are truly basic splines. Later this is promoted by de Boor as well in (C. D. Boor, 1976).
Similar to the Bézier curves the B-Spline is given as a linear combination of a control point
p and a basis function N(t).

S(t) =
n∑

i=0

piNi,d(t) (2-9)

The major difference compared to Bézier curves is that the domain of a B-Spline is divided
by knots t and that the entire interval of basis functions are not non-zero. The knots are
determined by the knot-vector. A vector with m+ 1 non-decreasing numbers. A knot-vector
with equally spaced knots is called uniform and trivially a knot vector with non-equally spaced
knots is called non-uniform. The knots is what give B-splines their local control. The knots
span certain segments, the so called knot-span. Each segment can be seen as a Bézier curve
with its own basis functions Ni,d(t). The number of knots is equal to m + 1, the number
of control points to n + 1 and the degree is d. By definition there is a relation between the
knots, degree and control points: m = n+ d+1. What this relation tells is that for a second
degree spline (i.e. d = 2) and five control points there will be eight knots. The number of
knot-spans or segments is given by subtracting the degree from the number of control points
or n+ 1− d. For the latter situation this results in 5− 2 = 3 segments.

Knots may re-appear k number of times. This is called multiplicity. The multiplicity of the
knots however decreases the continuity. The continuity of the B-spline is given by Cd−k.

In 1972 Cox and de Boor derived at the same time recursive algorithm that calculates the
basis functions, which is explained in (Cox, 1975) and (C. de Boor, 1972) respectively. The
Cox - de Boor algorithm is given by (2-11).

S(t) =

n∑

i=0

Bi,d(t)ci (2-10)

Ni,0(t) =

{

1 if ti ≤ t ≤ ti+1

0 otherwise

Ni,d(t) =
t− ti

ti+d − ti
Ni, d−1(t) +

ti+d+1 − t

ti+d+1 − ti+1
Ni+d, d−1(t)

(2-11)

The t’s in (2-11) with subscript are not the parameters t but the knots. The one in (2-11)
indicates in which segment t is in. Different forms of the B-Splines exist and using knot
multiplicity a closed or open B-Splines can be created. The nice properties of the B-Splines
initiated the start in search for a multivariate general formulation.
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2-4 Multivariate Splines

In continuation to find a true generalisation for the multivariate splines many research is per-
formed in this field. Finding a multivariate generalisation turned out to be rather difficult.
Multiple formulation have been generated, among them are the tensor splines, polyhedral
splines, thin-plate splines and simplex splines. The different formulations all have some ad-
vantages and shortcomings regarding the use of local or global basis functions, computational
efficiency, and very important for aerodynamic modelling if they can be used to fit a scattered
dataset. The simplex splines method is very promising. It uses triangular patches called the
Bézier patch. Only since recent years the simplex splines increased in popularity and more
research is performed. It was until 2005 before they were used in aerodynamic modelling
and system identification. In the next section the MSBS method is elaborated on how they
can be used for system identification on a scattered dataset and how to give them a physical
interpretation.

2-5 (Physical) Multivariate Simplex B-Splines

The MSBS is a general function approximator. It can fit any scattered non-linear dataset,
is compatible with linear regression methods and has local basis functions. Furthermore it
requires a geometric support structure called a triangulation and a disadvantage is that the
B-coefficients, to be estimated, don’t have a straightforward physical meaning. In this section
the theory of the Multivariate Simplex B-splines is explained in three parts. The first part is
about the simplex, used to create the geometric support structure, the second part is about
the barycentric coordinate system and the last part about the Bernstein basis polynomials in
barycentric space.

2-5-1 Simplex

A simplex is a generalisation of a point, line, triangle, tetrahedron, etc. An n dimensional
n-simplex has n + 1 vertices. The vertices are connected to each other with edges. Each n-
simplex forms a convex hull of n+1 independent vertices. A 0-simplex has one vertex and is
therefore a point. A 1-simplex is a line-segment, a 2-simplex forms a triangle and a 3-simplex
a tetrahedron. A n-simplex is affinely independent ∈ R

n. An affine space is a generalization
of the properties of the Euclidean space. In the affine space no origin exists. For example a 2-
simplex, a triangle with 3 vertices, is two dimensional affine space or an affine plane. Because
of this property simplices can be used to approximate any n-dimensional shape. Therefore
they are often used for creating 3D (n = 3) graphical computer animations and modelling.
The number of n-faces can be determined with Pascal’s triangle and are given for 1-simplex
up to a 6-simplex in table 2-1. In this table an important property of the simplex faces can be
obtained, namely they are simplices as well only with dimensions lower than n. This makes
the simplex recursively. An example of a 2-simplex is given in Figure 2-5. Figure 2-4 displays
a 3-simplex, also known as a tetrahedron. Multiple simplices can be combined. When aligning
the facets of these adjacent simplices a triangulation is created.
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Figure 2-4: An example of a 3-simplex, or tetrahedron, with four vertices, six edges and four
2-faces.
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Table 2-1: Faces of n-simplex

n 0-faces 1-faces 2-faces 3-faces 4-faces 5-faces 6-faces
(vertices) (edges)

0 point 1
1 line 2 1
2 triangle 3 3 1
3 tetrahedron 4 6 4 1
4-simplex 5 10 10 5 1
5-simplex 6 15 20 15 6 1
6-simplex 7 21 35 35 35 21 1

2-5-2 Barycentric Coordinate System

Each simplex has its own local coordinated system called the Barycentric Coordinates. The
Barycentric coordinates are introduced in 1827 by Möbius. A barycentre is an other word for
Centre of Mass (c.m.). A coordinate within a simplex is determined relative to the vertices of
the simplex. One can say that a coordinates or location of the barycentre is represented by
the ”mass” each vertex has. The barycentric coordinates used for the MSBS are normalised
so

1 =
n∑

i=0

bi (2-12)

Where bi is a vertex in barycentric space. So when a single barycentric coordinate equals 1
all the ”mass” is located at this vertex. Hence the point within the simplex is located on
this vertex. Before the barycentric coordinate system can be used, the coordinates of points
within a simplex given in the Cartesian system need to be transformed first. This linear
transformation is given by equation (2-13)

b0 = 1−
n∑

i=1

bi

[
b1 b2 . . . bn

]T
= A−1

tj
·
(
xT − νT

0

)

Atj =
[

(ν1 − ν0)
T (ν2 − ν0)

T . . . (νn − ν0)
T
]

(2-13)

In the previous equations the locations of the vertices in Cartesian coordinates for a n-simplex
tj are given by (ν0, ν1, . . . , νn). A point x = (x1, x2, . . . , xn) is transformed using the non-
singular matrix Atj to normalised barycentric coordinates (b0, b1, . . . , bn). When this point x
is outside the simplex tj the Barycentric coordinates are negative. In equation (2-14) a short-
hand notation is introduced for the Cartesian to Barycentric coordinate transformation. In
Figure 2-5 a 2-simplex indicates the barycentric coordinates of the vertices and a point located
exactly in the middle.

b = btj (x) ∀ x ∈ tj (2-14)
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Figure 2-5: Two dimensional 2-simplex, indicating the normalised n = 3 barycentric coordinates
of the vertices and a point. The axis are in Cartesian coordinates.
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2-5-3 Multivariate Bernstein Basis Polynomials

The MSBS polynomials are formed using the summation of n+ 1 barycentric coordinates as
variables raised to a certain degree d.

p (b0, b1, · · · , bn) = (b0 + b1 + · · ·+ bn)
d (2-15)

Using the multinomial theorem in (2-16) the polynomial in (2-15) can be expanded in indi-
vidual terms, i.e. a linear summation of basis functions.

(b0 + b1 + · · ·+ bn)
d =

∑

κ0+κ1+···+κn=d

d!

κ0!κ1! · · ·κn!
bκ0

0 bκ1

1 . . . bκn
n

=
∑

κ0+κ1+···+κn=d

Bκ0,κ1,··· ,κn(b0, b1, . . . , bn)

where d ≥ 0 and (κ0 + κ1 + · · ·+ κn) ∈ N

(2-16)

In the previous equation κ = (κ0, κ1, . . . , κn) and is called the multi-index. The multi-index
is given the following properties

|κ| = κ0 + κ1 + · · ·+ κn

κ! = κ0!κ1! . . . κn!
(2-17)

Using these properties in (2-17) and the short-hand notation in (2-14), equation (2-16) is
simplified

(b0 + b1 · · ·+ bn)
d =

∑

κ0+κ1+···+κn=d

d!

κ0!κ1! · · ·κn!
bκ0

0 bκ1

1 · · · bκn
n

=
∑

|κ|=d

d!

κ!
bκ0

0 bκ1

1 · · · bκn
n

=
∑

|κ|=d

d!

κ!
bκ

=
∑

|κ|=d

Bd
κ (b)

= 1

(2-18)

In (2-18) the summation to 1 is the result of the normalised barycentric coordinates, making
the basis functions stable. What this implies is that in barycentric space all the simplices are
equal no matter if they differ in size in Cartesian space. The basis functions are active only
locally and 0 elsewhere, this makes the basis local. Together they form a Stable Local Basis.

Full Flight Envelope Aerodynamic Modelling of the Cessna Citation II using Physical Splines F.J.A. Huisman



66 Physical-Splines and back again

2-5-4 de Boor’s Theorem

The de Boor’s theorem states that it is possible to express any polynomial p(x), given in
Cartesian coordinates, by using the B-form (2-18) in combination with B-coefficients c, see
(2-19).

p (x) =
∑

|κ|=d

c
tj
κ B

d
κ

(
btj (x)

)
∀ x ∈ tj (2-19)

and by definition a simplex spline is only locally active

p (x) = 0 ∀ xi /∈ tj (2-20)

An interesting and very important feature of the B-coefficients is their unique spatial location
within a simplex. The barycentric coordinate system makes it possible to ask the question:
where is my coefficient located? This property will be very important to generate continuity
within the spline model but also for validation. The basics for the de Boor’s theorem are given
in the publication (C. de Boor, 1987). For a more comprehensive derivation, (De Visser, 2011)
is recommended.

2-5-5 Transformation to Physical Space

When using MSBS for Aerodynamic Model Identification the estimated parameters cannot
be physically interpreted. The B-coefficients don’t have a straightforward physical interpre-
tation. The model structure of every simplex is in de form of a polynomial in the Barycentric
Coordinates system. The physical parameters, or stability derivatives, form a very important
part of the flight dynamics. They are studied extensively and are used to analyse the stability
and handling characteristics of an aircraft. Therefore a transformation from the Barycentric
parameters to physical parameters will be very advantageous.

Let’s start with this transformation. For example a two dimensional, second degree model is
created of the pitching moment coefficient Cm(α, δe) using the MSBS method. The polynomial
using the de Boor’s formulation of the B-form, (2-19), has the form of equation (2-21) and
includes physical variables transformed to barycentric coordinates, i.e. physical input values
such as α and δe are transformed first to b0, b1, b2. Latter formulation is given for a single
simplex tj and is written in matrix form first and for clarity expanded to an equivalent single
equation using the multinomial expansion of (2-16).

Cm(α, δe) =
∑

|κ=2|

B2
κ(btj (α, δe)) · c

tj
κ ∀(α, δe) ∈ tj

=
[
B2

2,0,0(btj (α, δe)) B2
2−1,1,0(btj (α, δe)) · · · B2

0,0,2(btj (α, δe))
]
·









c
tj
2,0,0

c
tj
2−1,1,0
...

c
tj
0,0,2









= c
tj
200b

2
0 + c

tj
1102b0b1 + c

tj
1012b0b2 + c

tj
020b

2
1 + c

tj
0112b1b2 + c

tj
002b

2
2

(2-21)
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The idea is to use the Physical (Cartesian) to Barycentric coordinates transformation and find
the relation between the Barycentric variables and the Physical variables. The transformation
is given by (2-22) where Atj and ktj depend on the geometry of the Simplex.

b(α, δe) = Atj ·
[
α
δe

]

+ ktj (2-22)

Rewritten in matrix form the relation between the Physical variables and the Barycentric
variables for simplex tj is given by





b0
b1
b2



 =





a11 a12
a21 a22
a31 a32



 ·
[
α
δe

]

+





k1
k2
k3



 (2-23)

which equals

b0 = a11α+ a12δe + k1

b1 = a21α+ a22δe + k2

b2 = a31α+ a32δe + k3

(2-24)

Substitute these terms into equation (2-21) yields 2-25

Cm(α, δe) = c
tj
200(a11α+ a12δe + k1)

2 + c
tj
1102(a11α+ a12δe + k1)(a21α+ a22δe + k2)

+ c
tj
1012(a11α+ a12δe + k1)(a31α+ a32δe + k3) + c

tj
020(a21α+ a22δe + k2)

2

+ c
tj
0112(a21α+ a22δe + k2)(a31α+ a32δe + k3) + c

tj
002(a31α+ a32δe + k3)

2

(2-25)
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by grouping each variable the physical coefficients reveal themselves in 2-26

Cm(α, δe) = c200k
2
1 + 2c110k1k2 + 2c101k1k3 + c020k

2
2 + 2c011k2k3 + c002k

2
3

︸ ︷︷ ︸

Cm0

+ 2 (c200a11k1 + c110(a11k2a+21k1) + c101(a11k3 + a31k1) + c020a21k2+
︸

c011(a21k3 + a31k2) + c002a31k3)
︷︷ ︸

Cmα

α

+ 2 (c200a12k1 + c110(a12k2 + a22k1) + c101(a32k1 + a12k3) + c020a22k2+
︸

c011(a32k2 + a22k3) + c002a32k3)
︷︷ ︸

Cmδ

δe

+
(
c200a

2
11 + 2c110a11a21 + 2c101a11a31 + c020a

2
21 + 2c011a21a31 + c002a

2
31

)

︸ ︷︷ ︸

Cmα2

α2

+ 2 (c200a11a12 + c110(a11a22 + a12a21) + c101(a11a32 + a12a31)+
︸

c020a21a22 + c011(a21a32 + a22a31) + c002a31a32)
︷︷ ︸

Cmαδ

αδe

+
(
c200a

2
12 + 2c110a12a22 + 2c101a12a32 + c020a

2
22 + 2c011a22a32 + c002a

2
32

)

︸ ︷︷ ︸

Cmδ2

δ2e

(2-26)

Rewriting the previous equation in matrix notation gives the transformation matrix Λtj













Cm0

Cmα

Cmδ

Cmα2

Cmαδ

Cmαδ

Cmδ2













tj

= Λtj ·











c200
c110
c101
c020
c011
c002











tj

(2-27)

where the transformation matrix equals

Λtj =











k21 2k1k2 2k1k3 k22 2k2k3 k23
2a11k1 2(a11k2 + a21k1) 2(a11k3 + a31k1) 2a21k2 2(a21k3 + a31k2) 2a31k3
2a12k1 2(a12k2 + a22k1) 2(a32k1 + a12k3) 2a22k2 2(a32k2 + a22k3) c002a32k3
a211 2a11a21 a11a31 a221 2a21a31 a231

2a11a12 2(a11a22 + a12a21) 2(a11a32 + a12a31) 2a21a22 2(a21a32 + a22a31) 2a31a32
a212 2a12a22 2a12a32 a222 2a22a32 a232











(2-28)
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The physical transformation Λ is determined for all simplices and can be combined in a single
large sparse transformation matrix, see (2-29)

cp = Λ · cb

=








Λt1 0 0 0
0 Λt2 0 0
...

...
. . .

...
0 0 0 Λtj







· cb

(2-29)

With the linear transformation Λ the MSBS model can now be physically interpreted. This
transformation is reversible, so inverting Λ makes it possible to transform from physical space
to barycentric space. The order of appearance of the physical terms is given by the generalized
equation (2-30)

p(x1, x2, . . . , xn)tj =
∑

|κ|=d

cpκ · 1κ0 · xκ1

1 xκ2

2 . . . xκn
n

where κ = (κ0, κ1, κ2, . . . , κn) ∈ N is the multi-index

with property |κ| = (κ0 + κ1 + κ2 + · · ·+ κn)

(2-30)

In this equation are the physical variables given by (x1, x2, . . . , xn) with degree d and physical
parameters cp. In equation (2-31) an example for a two dimensional n = 2 and third degree
d = 3 physical polynomial is given. Such a polynomial exist for all simplices tj and ∀ x ∈ tj

p(x1, x2) =cp00

cp10 · x1 + cp01 · x2
cp20 · x21 + cp11 · x1 · x2 + cp02 · x22
cp30 · x31 + cp21 · x21 · x2 + cp12 · x1 · x22 + cp03 · x32

(2-31)
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Chapter 3

Aerodynamic Modelling

Aerodynamic modelling is a system identification process in creating an aerodynamic model
for the flight dynamics of an aircraft. In essence system identification relates to the procedure
of giving an input u while measuring the output y and subsequently determining the model
or plant s. Harry Greenberg was one of the first to publish about aerodynamic modelling
in (Greenberg, n.d.). He used various methods to determine the longitudinal stability
parameters of an idealised simplified aircraft. One of the methods is the least squares curve
fitting. In (Shinbrot, 1951) Marvin Shinbrot describes about the application of the least
squares method to the calculation of stability coefficients. Research and applications on
aerodynamic modelling increased significantly in the 60s. The use of computers made it
possible to measure and process large amounts of (flight test) data.

An aircraft can have highly non-linear behaviour, especially high performance aircraft
such as the F-16 (Morelli, 1998) and the Eurofighter (Bava, Hoare, Garcia-Mesuro, &
Oelker, 1999). Also in certain envelopes, for example stall, unsteady aerodynamic models are
required. Overtime the necessity for non-linear aerodynamic models became clear and more
research is performed in this field. According to (Jategaonkar, 2006) the process of deriving
a model can be classified in two categories: phenomenological models and behavioural
models. Phenomenological models require a high a-priori knowledge and can get complex.
The models are derived from the Equations of Motion (EOM) and give physical insight of
the dynamics of the system. This can simplify the validation of the model. The behavioural
models are created by using the input and output without looking at the internal process.
Less a-priori knowledge is required. This makes the model easier to identify, but much harder
to verify. It also lacks a physical interpretation. This classification reflects on earlier research
in modelling of non-linear aerodynamics. The latter classifications can be extended from a so
called white-box model via a grey-box model to a black-box model. Where the white-box is
phenomenological and the black-box the behavioural. Examples of black-box models involve
neural-networks and fuzzy logics. The MSBS are considered a grey-box model because of
the not straightforward physical interpretation. A physical transformation of the parameters
can change the MSBS method into a white-box model. Another white-box model example
is an aerodynamic model using (non-)linear polynomial basis functions which are linear in
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model terms. Multiple polynomial models can be created and are connected with blending
techniques. This results in large aerodynamic database tables. Together they cover a wide
range of the flight envelope (Da Ronch, Ghoreyshi, & Badcock, 2011). A downside of the
tables is the difficulty to physical interpret the dynamics of the aircraft (Müller, 2006).

System identification using fuzzy logics is described in (Takagi & Sugeno, 1985). Two
possibilities exist in using fuzzy logics, the first is a fuzzy set composed of membership
functions that mimics the process of decision making of a human. A disadvantages is that the
approximated function is zero order continuous. The other approach is modelling based on
multidimensional fuzzy reasoning. Multiple internal functions, mostly linear in parameters,
are weighted using membership functions. The internal function creates the fuzziness of the
model. The grading of the membership functions is on an interval from 0 to 1, where 0 is no
influence and 1 full influence. Next cells are formed by using a membership function from
each input variable. The output of the model is a weighted average of the output of all cells.
Aerodynamic modelling using this approach is published in (Brandon, 1998) and (Brandon &
Morelli, 2016). The membership functions blend the fuzzy logic internal polynomial functions
into one model making the method capable for modelling non-linear dynamics. A problem
is that this blending is non-trivial making the operation hard to automate and rely on
expert knowledge. Also the physical interpretation is lost because of the black-box model type.

Neural networks is another example of a black-box model/ behavioural model. Again,
the consequence is that the internal dynamics are unknown and no physical interpretation of
the model is possible. It uses a general non-linear function approximator with global basis
functions. Multiple layers with neurons are weighted to model a set of scattered data. The
input layer is a combination of the state inputs and the control inputs. The output of the
input layer, is the input of the hidden layer. Multiple hidden layers are possible with different
number of neurons. The final layer is the output layer. Each neuron is a summation of the
weighted inputs. This summation passes through a threshold function, often a sigmoid func-
tion. The sigmoid function has the property that it acts like a step-function while remaining
differentiable. The derivative of a sigmoid function can be expressed in terms of the function
itself. System identification with neural networks is an non-linear optimisation problem. An
often used and successful training algorithm is the Levenberg-Marquardt Backpropagation
algorithm (Yu, M., & Wilamowski, 2011). Except that it is a black-box model the neural
networks approach is successfully used in (non-linear) aerodynamic modelling (Kirkpatrick,
May Jr, & Valasek, 2013), control allocation tasks (Lee & Kim, 2001), aerodynamic design
(Rai & Madavan, 2000), pattern recognition (Shahbandi & Lucidarme, n.d.) and mission/
trajectory planning.

All of the aforementioned system identification techniques have certain advantages
and disadvantages. System identification capable of modelling high non-linear dynamics
are often black-box models lacking a physical interpretation of the model. The global basis
functions give them inner model continuity, but make them very computational intensive
because of the non-sparse solution systems. A better and more general solution for modelling
high non-linear aircraft is the Multivariate Simplex Splines (De Visser, 2011) and the
corresponding physical transformation. Splines are piecewise polynomial functions. The
MSBS is a general function approximator using local basis functions to fit a scattered
dataset. It is compatible with linear regression methods. A minor disadvantage is that it
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requires a geometric support structure called a triangulation. The local basis functions make
them computational efficient and introduces the property to adjust the model locally. This
system identification technique is successfully used in the aerodynamic modelling process
for both linear (C. de Visser, Mulder, & Chu, 2010) and non-linear aerodynamic modelling
(C. de Visser, Mulder, & Chu, 2009) and also in solving Partial Differential Equations
(PDE) by transforming them into differential algebraic equations and control allocation
tasks (Tol, Visser, Sun, Kampen, & Chu, 2016). Other possible application will be efficient
flight envelope prediction and adaptive non-linear control. Also the physical transformation
to Cartesian space, a formulation for global coordinates, is implemented in an interval
analysis (C. C. de Visser, Kampen, Chu, & Mulder, n.d.). The triangulation creation
is involved in the optimisation process, i.e. the triangulation doesn’t have to be defined
a-priori. The interspline formulation solves the triangulation optimisation by optimising the
vertex locations of simplices. Recently a physical-splines formulation is developed. This
transformation gives the MSBS and its coefficients a physical interpretation making it a
promising method for non-linear aerodynamic modelling.

In the remainder of this chapter a mathematical description of the aircraft dynamics
is derived and the aircraft to be modelled, the flying laboratory aircraft PH-LAB including
its instruments, is introduced. Thereafter it is explained how flight-test measurements
are processed and used for reconstructing the flight path. In the subsequent chapter the
aerodynamic modelling process is elaborated using the MSBS process in combination with
the new formulation of the physical transformation.

3-1 Equations of Motion

The aircraft model used in this thesis is governed by the EOM. They describe the dynamics
of an aircraft. The EOM will be used to identify an aerodynamic model using a mathematical
description of aerodynamic forces and moments. Newton’s Second Law is used to this. In
this chapter a brief explanation is given how the EOM are derived by giving the translational
motion, the rotational motion with respect to the Earth-Centered, Earth-Fixed (ECEF) frame
and the vehicle body frame. An overview of the reference frames is given in appendix F.
Finally the attitude equations are derived. As mentioned before Newton’s Second Law is
used to derive the EOM. Newton’s Second Law only holds in an inertial reference system and
is given by

F =

∫

dF =
d

dt
(Vpdm) (3-1)

and for a constant mass m

F = m
dVG

dt
= mAG (3-2)

During the derivations it is assumed that the aircraft is a rigid body and the aircraft has a
plane of symmetry.
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3-1-1 Equations of Translational Motion

The general formulation of the equations of translational motion in the inertial frame with
variable mass m subjected to external forces is given by

FI
ext = m

d2rIcm
dt2

+ 2ΩI
bI ×

∫

m

δr̃

δt
dm+

∫

m

δ2r̃

δt2
dm (3-3)

The terms respectively in (3-3) represent the acceleration of the centre of mass with respect
to the inertial-frame, the Coriolis force due to changing mass and the relative force due
to changing mass. The d

dt
(·) indicates a derivative of a vector quantity taken in inertial

space and δ
δt
(·) indicates a derivative in the local frame. Using the principle of solidification,

(e. a. Mulder J. A., 2000), equation (3-3) can be rewritten for a rigid body with mass m
at time t using translational and rotational equations, given the true external forces and
moments together with the Coriolis and relative forces and moments (the apparent forces
and moments). Consider a vehicle, again with variable mass, moving with respect to the
ECEF frame indicated by index C. It has a velocity VC and a rotation w.r.t. the inertial
plantocentric frame of Ωb

bI . The distance to the centre of the central body is indicated with
rCcm and the vehicle is subjected to external forces FC

ext given by

FC
ext = m

dVC
C

dt
+ 2mΩC

CI ×VC
C +mΩC

CI ×
(
ΩC

CI × rCcm
)

(3-4)

Equation (3-4) can be solved for the dynamic equations of translational motion in the the
North-East-Down reference frame indicated by index E

V̇N =
FE
x

m
− 2ΩtVE sinδ − Ω2

tR sinδ cosδ − V 2
E tanδ − VNVD

R
(3-5)

V̇E =
FE
y

m
+ 2Ωt (VD cosδ + VN sinδ) +

VE

R
(VN tanδ + VD) (3-6)

V̇D =
FE
z

m
− 2ΩtVE cosδ − Ω2

tR cos2δ − V 2
E − V 2

N

R
(3-7)

In these equations the velocities north, east and down are given by VG = [VN VE VD]
respectively. The definition of spherical position is used, where R is the distance to the
centre of the the central body and δ the latitude. The angular velocity of the central body is
given by Ωt. For Earth this is approximately 7.29× 10−5 rad/s.

Flight test data is measured with different sensors and the sensors are attached to the
aircraft. Hence the measurements are made in the body-frame. Therefore it is desirable to
have the aforementioned translational equations solved in the body frame.

Fb
ext = m

dVG

dt

∣
∣
∣
∣

b

E

= m
dVG

dt

∣
∣
∣
∣

b

b

+mΩb
bE ×Vb (3-8)
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Where the velocity components in the body frame are given by Vb = [u v w]T and the
rotational components by Ωb

bE = [p q r]T . They represent the the X, Y and Z axis, of the
aircraft, respectively. External forces subjected to the aircraft are aerodynamic forces Faero

and a gravitational force Fgravity. The gravitational force is given in the ECEF reference
frame and has to be transformed to the body-frame first.

Fb
gravity = TbE · FE

gravity

= TbE ·





0
0
mg





=





−sin θ
sinφ cos θ
cosφ cos θ





(3-9)

The aerodynamic forces are given by Faero =
[
Xb Y b Zb

]T
. Substituting Faero and (3-9) in

equation (3-8) gives





−sin θ
sinφ cos θ
cosφ cos θ



+





Xb

Y b

Zb



 =





u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu



 (3-10)

Solving for the forces in the body frame yields

X = m(u̇+ qw − rv) +mg sinθ (3-11)

Y = m(v̇ + ru− pw)−mg sinφ cosθ (3-12)

Z = m(ẇ + pv − qu)−mg cosφ cosθ (3-13)

3-1-2 Equations of Rotational Motion

Next the moment equations, based on the moments acting on the aircraft with respect to the
c.m., are determined. The general formulation of the total external moments acting on the
c.m. of an aircraft in the body frame are given by

Mb
cm =

∫

m

r̃×
(
dΩb

bI

dt
× r̃

)

dm+

∫

m

r̃×
[

Ωb
bI ×

(

Ωb
bI × r̃

)]

dm+

+ 2

∫

m

r̃×
(

Ωb
bI ×

δr̃

δt

)

dm+

∫

m

r̃× δ2r̃

δt2
dm

(3-14)

After solving the previous equations the so-called Euler equations are found. Without going
into detail of deriving them they are given by
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Ω̇
b

bI = I
−1
(

Mb
cm −Ωb

bI × IΩb
bI

)

(3-15)

With Mb
cm = [L M N ]T and the rotation vector expressed in the body frame w.r.t inertial

frames Ωb
bI = [p q r]T . The last term in equation (3-15) is the time derivative of the angular

momentum of a vehicle and is defined in (3-16).

Bcm = Icm ·Ωb
bE (3-16)

I is the inertia tensor of the vehicle given by

Icm =





∫
(r2y + r2z)dm −

∫
(rxry)dm −

∫
(rxrz)dm

−
∫
(rxry)dm

∫
(r2x + r2z)dm −

∫
(ryrz)dm

−
∫
(rxrz)dm −

∫
(ryrz)dm

∫
(r2x + r2y)dm



 =





Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz



 (3-17)

Applying the assumption an aircraft has a plane of symmetry in the Xb Zb plane, hence
Jxy = Jyx = 0 and Jyz = Jzy = 0. Equation (3-17) reduces to

Icm =





Ixx 0 −Jxz
0 Iyy 0

−Jzx 0 Izz



 (3-18)

Substituting equations (3-18) in (3-15) gives





ṗ
q̇
ṙ



 =





Ixx 0 −Jxz
0 Iyy 0

−Jxz 0 Izz





−1

·











L
M
N



−





p
q
r



×





Ixx 0 −Jxz
0 Iyy 0

−Jxz 0 Izz



 ·





p
q
r










(3-19)

The latter matrix equation is solved for the moments acting on the c.m. of the vehicle given
in the body frame

L = Ixxṗ+ (Izz − Iyy)qr − Jxz(pq + ṙ) (3-20)

M = Iyy q̇ + (Ixx − Izz)pr + Jxz(p
2 − r2) (3-21)

N = Izz ṙ + (Iyy − Ixx)pq + Jxz(qr − ṗ) (3-22)
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3-1-3 Dimensionless Forces and Moments

The forces and moment equations can be made dimensionless. This gives a better under-
standing and interpretation of the stability derivatives, because they become dimensionless
as well. The dimensionless form for the force equations is defined by

CX =
X

1
2ρV

2S
=

maX − Tx

1
2ρV

2S
(3-23)

CY =
Y

1
2ρV

2S
=

maY
1
2ρV

2S
(3-24)

CZ =
Z

1
2ρV

2S
=

maZ
1
2ρV

2S
(3-25)

and the dimensionless moment equations by

Cl =
L

1
2ρV

2Sb̄
=

ṗIxx + qr (Izz − Iyy)− (pq + ṙ) Jxz
1
2ρV

2Sb
(3-26)

Cm =
M

1
2ρV

2Sc̄
=

q̇Iyy + rp (Ixx − Izz) +
(
p2 − r2

)
Ixz

1
2ρV

2Sc̄
(3-27)

Cn =
N

1
2ρV

2Sb
=

ṙIzz + pq (Iyy − Ixx) + (qr − ṗ) Jxz
1
2ρV

2Sb
(3-28)

3-2 Flight Test Data

The aircraft to be modelled is the Cessna Citation II. The aircraft model in this project is
governed by the EOM and are used to identify the aerodynamic model describing the dynamics
of the aircraft. Experimental flights are performed using different types of manoeuvres, such
as the 3211 and doublet manoeuvres. They are described in (J. A. Mulder, 1986). During
these experimental flights the flight-test data is recorded. In appendix G the flight envelope
of the Cessna Citation II is given including the available flight test data at the moment of
writing.

3-2-1 PH-LAB

The aircraft used to perform test flights and collect measurements is a Cessna Citation II,
model 550 aircraft, see Figure 3-1. The flight test data will be used to create a full flight
envelope aerodynamic model of this aircraft using P-Splines. The Cessna Citation II is a small
business jet developed in the 70s and upgraded in the 90s. Almost 1000 Citation II are built.
The Cessna 550 used for the test-flights is the PH-LAB and is co-owned by Delft University
of Technology (DUT) and the Netherlands Aerospace Centre (NRL). The aircraft was built
in 1993 and is converted so it can be used as a flying laboratory. It has a modern glass
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Alpha vane

Static pressure ports

Pitot tube

IMU

Magnetometer

Elevator synchro

Rudder synchro

GPS antennae
Aileron synchro

Temperature probe

boom with
alpha and beta vane

Autopilot computer
Gyrosyn compass
Flight Director
FMS
ADC
AHRS

Figure 3-1: PH-LAB Cessna Citation II aircraft

cockpit and fly-by-wire flight controls. Flight test data is measured using special high-fidelity
flight test instruments such as vertical gyroscopes for measuring axis-rotation, rate gyroscopes
measuring axis rotational rates, Inertial Measurement Unit (IMU) measuring accelerations,
static-probe for the altitude, pitot-static probes for the true airspeed, Attitude and Heading
Reference System (AHRS), GPS for location and ground-speed, alpha vane for the angle of
attack and other aircraft systems via the Flight Management System (FMS). Furthermore
a boom is available for better measurements of the angle of attack and the side-slip angle.
The instruments including their specifications are listed in Table 3-2. The properties and
performance of the PH-LAB are tabulated in Table 3-1.

3-2-2 Flight-Path Reconstruction

The measurements are stored in a Hierarchical Data Format (HDF5) and are converted to a
Matlab data file, a .mat file, using the software HEFTIG. An earlier developed toolbox by
the task-force is used to reconstruct the flight-path using these measurements. This toolbox
pre-processes the data first. Table 3-2 shows that instruments have different sampling rates.
Hence re-sampling is required for unification. Estimations of the inertia tensors Ixx, Iyy, Izz
are taken into account and also the aircraft empty mass, fuel mass, passenger (pax) mass and
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Table 3-1: Aircraft details of PH-LAB

PH-LAB

Manufacturer Cessna
Type Citation II Model 550

Dimensions

Length 14.39 m
Wingspan b 15.90 m
Wing Area S 30.00 m2

Wing Chord Length c̄ 2.06 m
Height 4.57 m

Mass Properties

Empty Weight 3,906 kg
Maximum Payload 1,400 kg
Maximum Fuel Load 2,250 kg
Maximum Takeoff Weight 6,715 kg
Ixx,empty 12,392 kg·m2

Iyy,empty 31,501 kg·m2

Izz,empty 41,908 kg·m2

Ixz,empty 2,252 kg·m2

Performance

Engine 2× Pratt & Whitney JT15D-4 turbofan
Maximum Thrust 2× 11.1 kN
Maximum Cruise Speed 710 km/h
Maximum Operating Altitude 13,000 m

Table 3-2: Instrumentation of the PH-LAB

Parameter Unit Fs [Hz] 1σ std Source

Xb-axis rotation [rad] 1 8.70× 10−3 Sperry Vertical Gyro
Yb-axis rotation [rad] 50 8.70× 10−3 Sperry Vertical Gyro
Zb-axis rotation [rad] 50 1.73× 10−3 Gryosyn Compass
Xb-axis rotational rate [rad/s] 100 2.00× 10−3 LITEF µFORS Rate Gyro
Yb-axis rotational rate [rad/s] 100 2.00× 10−3 LITEF µFORS Rate Gyro
Zb-axis rotational rate [rad/s] 100 5.00× 10−3 LITEF µFORS Rate Gyro
Xb-axis linear acceleration [m/s2] 100 2.00× 10−2 Q-Flex 3100 Accelerometer
Yb-axis linear acceleration [m/s2] 100 2.00× 10−2 Q-Flex 3100 Accelerometer
Zb-axis linear acceleration [m/s2] 100 3.00× 10−2 Q-Flex 3100 Accelerometer
Altitude [m] 1 3.00× 10−1 Static Probe
True Airspeed [m/s] 50 1.00× 10−1 Pitot-Static Probe
Angle of Attack [rad] 1000 3.50× 10−3 Alpha Vane
Angle of Sideslip [rad] 1000 3.50× 10−3 Beta Vane
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cargo mass. For the fuel mass it is important to know the rate of fuel burn, including the fuel-
tank dimensions and location. Moments caused by pax and cargo have to be corrected. For
the flight-path reconstruction an Unscented Kalman Filter (UKF) is used. The UKF has good
results for systems with moderate to high non-linearities. The states estimates are improved
in terms of accuracy and robustness by using this filter. The author refers to (Hoek, Visser, &
Pool, 2017) for more background information and results about the flight-path reconstruction
and the UKF. At the moment of writing flight-test data of multiple experimental flights is
available, including a test-flight with 38 stalls.

3-3 Simulation Framework

The software used for this thesis is Matlab including additional toolboxes, for example the
aerospace toolbox, and toolboxes created by the C&S department. For simulation Simulink
is used. The TU Delft provides an academic Matlab licence. The C&S department uses
the simulation framework DASMAT (Linden, 1998). DASMAT is divided in multiple blocks:
airdata, wind model, gravity model, EOM, aerodynamic forces and moments, engine forces
and moments, landing gear model and observation model. Despite some deficiencies it forms
a good basis for a simulation framework. The task-force earlier performed a feasibility study
of upgrading DASMAT where an overhaul importance label was assigned to the individual
blocks. At the moment of writing a start was made and some blocks are upgraded using
a preferable embedded Matlab function representation. In this thesis the new simulation
framework is used and the P-Splines model will update the aerodynamic forces and moments
block.
For the MSBS a Matlab toolbox was created by the C&S Department. As part of the mod-
elling process the toolbox creates a triangulation based on the scattered dataset and the
physical-splines transformation.
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Chapter 4

Aerodynamic Modelling with
Physical-Splines

This chapter continues with the aerodynamic modelling process while using the MSBS for
system identification in combination with the reconstructed scattered flight-test data. The
earlier explained physical transformation is used and added to this process. The properties of
the physical transformation are investigated and their contribution to the modelling process
is elaborated.

Creating a model structure for regression is an important step in the system identifi-
cation process. This mathematical structure should describe the aerodynamic forces and
moments explained in 3-1 accurately. However it is not always evident what the form of this
model structure is and what terms to include or exclude. Adding more terms can increase the
approximation power of the model, but also lead to an over-fit when turbulence or noise in
the dataset are modelled. This reduces the accuracy. Also the dimension of the model, what
states/ variables to include in the model, determines the model complexity. Especially high
dimensional simplex triangulation used in spline models let the model complexity explode. A
citation by Tarentol (Tarantola, 2005): ”There is one problem with large-dimensional spaces
that is easy to underestimate: they tend to be terribly empty.” For a high dimensional models
(n > 10) millions of data points should be available.

Prototyping and system identification using the MSBS method is divided in three
phases: geometric model structure selection, polynomial model structure selection and
model estimation and validation. This iterative process is repeated with different model
settings until an optimal or adequate model is found. In the following sections this process
of prototyping is explained and the physical-splines formulation is used to merge new and
existing aerodynamic modelling techniques into the simplex spline modelling process. An
overview of this process is summarised in a chart appended to this preliminary report in
appendix H.
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4-1 Geometric Model Structure Selection

In this part of the process the model dimension is determined by selecting an appropriate
candidate set that is capable of identifying the model. With the candidate set and dimension
known the geometric support structure (triangulation) is created.

4-1-1 Candidate Sets

A general definition in aerodynamic modelling is that the aerodynamic forces and moments
are a function of the state variables and the control variables δ. The variables used for
modelling the six different force and moment equations are given by (4-1).

Ci =
(

M, h, α, ˆ̇α, β,
ˆ̇
β, p̂, q̂, r̂, δ

)

for i = X, Y, Z, l, m, n

δ = (δa, δe, δr)
(4-1)

In this equation M (−) is the Mach number, h (m) the altitude, α (rad) the angle of at-
tack, β (rad) the side-slip angle and p, q, r (rad/s) the rotational rates in the body-frame.
δa (rad), δe (rad), δr (rad) are the aileron, elevator and rudder deflections respectively. The
dot indicates a time derivative. For consistency the state variables are made dimensionless
(indicated with a hat symbol) by using the definition

M ≡ V

a0
, p̂ ≡ pb

V
, q̂ ≡ qc̄

V
, r̂ ≡ rb

V
, ˆ̇α ≡ α̇c̄

V
,
ˆ̇
β ≡ β̇b

V
(4-2)

Determining the candidate set is part of the geometric model structure selection. Creating an
aerodynamic model requires flight test data with measurement in the complete flight enve-
lope. The number of measurements needed, depend on the non-linear behaviour of the aircraft
and the size of the flight envelope. By taking all state and control variables in consideration
all combinations within the flight envelope have to measured. This is a high dimensional
space and requires many flight hours. In order to decrease the large multidimensional space a
commonly used and accepted assumption, based on an aircraft symmetry, is to decouple the
aerodynamic model into a longitudinal (symmetrical) and lateral (asymmetrical) model. No
correlation between the longitudinal and lateral models exist any more. The symmetric lon-
gitudinal forces and moment are (X,Z and m) and the asymmetric lateral force and moments
are (Y and l, n). This is tabulated in 4-1 in combination with the corresponding state and
control variables. This assumption can only be made for smaller amplitude disturbances and
deviations. For larger amplitude both angle of attack and slide-slip angle should be considered
in the candidate set for the longitudinal and lateral models.

A candidate set can be determined with multiple methods. The first assumption is that the
candidates, the state and control variables, do have a significant meaning to the dynamics of
the Cessna Citation II. Hence it should make sense to use them for the system identification
process. A candidate set for the Cessna Citation II was created in (De Visser, 2011). The
candidates and therefore the dimension of the models were determined using a method called
the occurrence of hysteresis. In this research thesis the obtained candidate sets will be used.
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Table 4-1: Longitudinal and Lateral Model

Model Limited to moderate Significant
non-linearities non-linearities

Longitudinal M, h, δe, Te α̂, ˆ̇α, q̂
(X, Z, m)

Lateral M, h, δa, δr β̂,
ˆ̇
β, p̂, r̂

(Y, l, n)

4-1-2 Triangulation

A triangulation is based on multiple n-dimensional simplices. The simplices are ordered in
such a way they form a n dimensional rectangle while the n dimensional faces of neighbouring
simplices are aligned. The multivariate simplex spline polynomials will be defined on these
simplices. A triangulation is created around the convex hull of the data-points used for
identification, i.e. all identification data-points are in the convex hull of the triangulation T .
In order to determine if a single data point x is within a certain simplex tj the barycentric
coordinates, described in (2-13), are used with the simple rule

bi > 0 → x ∈ tj , ∀i
bi < 0 → x /∈ tj , 0 ≤ i ≤ n

(4-3)

Creating a triangulation is a non-trivial process and many possibilities exist. The triangula-
tion can be created based on the aerodynamic behaviour of the aircraft. More information
about functions on 3D simplices and multivariate simplices is found in (Lai & Schumaker,
2007). An inter-spline method for optimising the triangulation is researched in (C. C. de
Visser et al., n.d.). The shape of a simplex within a triangulation does also have influence
on the final model and can cause numerical problems. One simplex metric is called sliver. A
sliver matrix has a high circumsphere radius compared to the shortest edge. Also the smallest
angle between two edges is very low. The simplex will have a high skewness value and ex-
pands a much larger domain for some dimensional directions compared to other dimensional
directions and other simplices. The process of creating an optimised triangulation is beyond
the scope of this thesis. Therefore from this point onward the triangulation is based on a
single or multiple attached hyperrectangles. This assumption has a postive effect that slivered
simplices do not occur within the triangulation.

With the triangulation T defined a convenient notation to use for a spline space according,
(De Visser, 2011), is

Sr
d(T ) := {s ∈ Cr(T ) : s|t ∈ Pd, ∀t ∈ T } (4-4)

where s is a n-simplex spline function with degree d and continuity of order r on triangulation
T . The space of all polynomials with degree d is defined by P.
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Table 4-2: n-hyperrectangle Properties

n n-simplices aligned (n-1)-faces

1 1 0
2 2 1
3 6 6
4 24 36
5 120 240
6 720 1800
7 5040 15120

4-1-3 Hyperrectangle

As mentioned in the previous section, a triangulation will be created within a hyperrectangle.
A hyperrectangle is an n-dimensional analogue of a rectangle (n = 2). Multiple equal sized n-
simplices will fill the hyperrectangle while the faces of neighbouring simplices keep alignment
to each other. The last property is very important to guarantee continuity between the
splines-model and not breaking the splines geometric structure. The process used for creating
n-hyperrectangles with n-simplices is the Kuhn Triangulation (Kuhn, 1960). An alternative
algorithm is the Delaunay triangulation. In many programming languages this algorithm uses
the Qhull c-library. However it was found that a bug creates an incorrect non-simplicial facets
for adjacent simplices, i.e. the faces of neighbouring simplices are not aligned properly when
the dimension is n ≥ 3. This bug is reported end 2006 and is at the moment of writing (2017)
not solved. How to fix this bug is still unknown.

Multiple hyperrectangles can be joined together in any of the n-dimensions. The faces of sim-
plices aligned with the hyperrectanlge boundaries are equally aligned to other hyperrectangle
boundary simplex faces, creating continuity between simplices of different hyperrectangles. In
this way a more complex triangulation can be created in the dimension of one of the variables.
In Figure 4-1 and Figure 4-2 examples of hyperrectangle triangulations are visualised.

The hyperrectangle-assumption does introduce a problem. The number of simplices within
the hyperrectangle expands with n!. Higher dimension models will have a large number of
simplices and require many data points. High dimensions become large voids! In table 4-2
the number of simplices and number of aligned faces, of different n-dimensional triangulations
are tabulated.

The hyperrectangle dimensions and position in Cartesian Space are determined by the maxi-
mum and minimum values of the identification dataset of each variable included in the model.
The identification data points are in the convex hull of the simplices and therefore the hy-
perrectangle. This way the triangulation spans the whole domain of measured flight envelope
flight data. The latter statement is only valid when the density of flight test data is sufficient
enough in combination with an evenly spatial data distribution throughout the domain of
the triangulation. However in real-life this is not always the case. Measurements in extreme
flight conditions are mostly sparse and are located in remote, boundary areas of the flight
envelope. The low density can cause some simplices to be empty or near empty. This will
create poor performing simplices or unwanted inner-model discontinuities.
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Figure 4-1: An example of multiple two dimensional hyperrectangles forming together a trian-
gulation
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Figure 4-2: A three dimensional triangulation with a 3× 2× 1 combined hyperrectangles
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4-1-4 Data & Optimising the Triangulation

As described in 4-1-2 finding an optimal triangulation is not a trivial process. The orientation
and size of the simplices is limited to the number of hyperrectangles. Ideally data points are
scattered nice and evenly over a simplex. In a non-optimal triangulation data-points within
a simplex can be clustered or are scattered non-uniformly. On the other hand simplices can
also be empty because of voids created by outliers introducing inner-model discontinuity.
This means that empty simplices at boundaries or within the triangulation can exist. Also
some simplices, after validation, can have a poor performance. A solution is to delete outliers
decreasing the domain size or find clusters within the dataset and create separate models for
each cluster. To visualise flight-test data for high dimensional triangulations a matrix-plot
can be created. This n× n matrix-plot visualises a pair-wise relation between the state and
control variables included in the model. A scatter plot of the data-points gives an indication of
the distribution of the data measured in this dimension. The diagonal plots show the variables
univariate histogram of the distribution of the measurements in the measured domain. This
way flight envelope regions can be indicated very easily as well the regions with missing or
badly distributed measurements. Also searching for clusters in the flight-test data or the
individual state and control variables can be helpful to get more insight of the flight-test
data and triangulation quality. A cluster algorithm such as the k-means, (Jain, 2010), can
be used for this. Validating the cluster is very important, because clusters can be identified
while they are not convincing. A silhouette as described in (Rousseeuw, 1987) can be used for
this. The silhouette plot shows how well the measurements belong to a certain cluster based
on their tightness and separation, i.e. which state or control variable clusters the dataset.
Understanding the flight-test data working with is important for a better understanding of
the final results. Using and interpreting the data is not a trivial task, while having a large
influence on the aerodynamic model created. The remainder of this section will introduce
methods that can be used in situations triangulation problems occur because of the flight-
test data

Hyperrectangle Rotation

In this section a method is introduced that can increase the performance of the triangula-
tion by making use that a n-hyperrectangle does not have n-axis of symmetry, hence when
performing for example τ = 90 degrees planar rotations on the coordinates of vertices of
the triangulation, a new rotated triangulation is obtained. One can see this rotation as a
transformation of the vertices of the simplices and therefore a rotation of simplices within
the triangulation. The transformation matrix for a planar rotation spanned by dimensions
n1 and n2 is given by

ν̄n1,2 =

[
cos(τ) −sin(τ)
sin(τ) cos(τ)

]

· νn1,2 (4-5)

where ν are the vertices with coordinates in the plane spanned by {n1, n2}. Simplices in
the triangulation will be rotated relative to dimensions n1 and n2 with an angle of τ . The
triangulation is normalised first between -1 and 1 to make sure that the hyperrectangle has
a symmetric/ rectangular shape and the middle of the hyperrectangle is aligned with the

Full Flight Envelope Aerodynamic Modelling of the Cessna Citation II using Physical Splines F.J.A. Huisman



88 Aerodynamic Modelling with Physical-Splines

Table 4-3: Number of planes per dimension

Dimension n 2 3 4 5 6
Number of planes 1 1 2 2 3

origin, hence no translation is required. After the rotation the normalisation is undone. The
result is that only a transformation is performed on the vertices making the simplices rotate
within a hyperrectangle. A planar rotation has the property that the plane is mapped to
itself. The number of planes per dimension n is given by equation (4-6) and in table 4-3 this
is summarised for dimension 2 to 6.

⌊n

2

⌋

(4-6)

Together with the normalisation, the orthogonality between the planes make sure that a
partial coordinates rotation of vertices in the dimensions spanning the plane does not influence
any coordinates of vertices in other dimensions. Rotations of 90 degrees can be applied to
the triangulation in search for an optimal orientation. The rotation can be repeated in
other dimensions until a satisfactory orientation of the triangulation is found. Rotations for
other angles τ , except 90 , 180, 270 degrees, changes the orientation of the convex hull of
the triangulations and can cause identification data-points to be outside of the triangulation
convex hull. The optimal orientation can be subjected to different objectives. One objective
for an optimal orientation is where the most simplices are filled. Another objective is to find
an orientation where the data is evenly distributed over the different simplices. Afterwards
with an algorithm the number of adjacent n − 1 faces of the simplices can be counted in
order to verify a successful rotation. An interesting side note is to think about the situation
when performing 1-dimensional transformations to vertices on hyperrectangle boundaries.
Effectively this means that the convex hull of the triangulation can be adjusted to remove
voids. This can be visualised with the matrix-plot introduced earlier.

Extrapolation

As described in the previous section, a problem to expect is that the distribution of data
within the hypercube triangulation is not ideal. Missing measurements are mainly caused
because of physical limitations of the aircraft and aviation restrictions. Physical limitations
include parts of the flight envelope that introduces an increased safety risk, for example
stall. Aviation restrictions can be air traffic control related, for example speed and altitude
restrictions. For the overall increase of model quality it can sometimes be better to delete
these simplices and extrapolate the model in these regions afterwards or interpolate when
more measurements are available. Extrapolation techniques can make use of neighbouring
simplices or by using differential constraints (C. C. de Visser, Chu, & Mulder, 2011). Also
states, often the velocity and altitude, with less influence on the dimensionless force and
moment equations can be made global model terms. They are removed from the splines
formulation reducing the dimension of the triangulation.
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4-2 Parameter Estimation

For a better understanding of the polynomial model structure selection phase of the modelling
process, the parameter estimation section is elaborated first. The estimation of the parameters
is an important step in a system identification process. For aerodynamic modelling the
coefficients are determined using the flight test measurements and sub-sequentially they can be
used for observing the stability derivatives when they are transformed to physical-coefficients.
For now the assumption is made that a certain P-Splines polynomial model structure is
selected using the selection procedure elaborated that will be elaborated in the next section.

Recalling the multinomial theorem used for MSBS, for convenience repeated in (4-7). The
terms are formed by the multinomial expansion of the polynomial in this equation. The
polynomial is in Barycentric space. Each term will have a multinomial coefficient and a
corresponding parameter to be estimated. The multinomial coefficient and parameter form
after estimation the coefficient of a term. Note that when n = 1 equation (4-7) equals
the binomial theorem and the binomial coefficients are given by the famous Pascal’s triangle.
Hence the multinomial theorem can be interpreted as the generalised form of Pascal’s triangle.

p(x) =

tj∑

j=1

∑

|κ|

(

c|k|
d!

κ0!κ1! . . . κn!
bκ0

0 bκ1

1 . . . bκn
n

)

tj

∀ x ∈ tj

with

d ≥ 0

(κ0, κ1, . . . , κn) ∈ N

|k| = κ0 + κ1 + · · ·+ κn = d

(4-7)

and with the Boor’s theorem any physical polynomial p(x) can be expressed in the B-form.
The short-hand notation of (4-7) is given by (4-8)

p(x) = Bd(btj (x)) · ctj (4-8)

In (4-9) an example of a two dimensional n = 2 and third degree d = 3 expansion of a B-form
polynomial is given for a single simplex tj . The spatial location of the B-coefficients is shown
in Figure 4-3.

B3(btj (x1, x2)) · ctj =c300b
3
0 + 3c210b

2
0b1 + 3c201b

2
0b2 + 3c120b0b

2
1 + 6c111b0b1b2

+ 3c102b0b
2
2 + c030b

3
1 + 3c021b

2
1b2 + 3c012b1b

2
2 + c003b

3
2

(4-9)

The polynomial structure for each simplex tj is initially determined by the dimension n and
degree d in barycentric space and later on by the polynomial model structure phase in the
equivalent representation of this polynomial in physical space. The formed B-net structure
is very important and gives the unique spatial location property to the B-coefficients. With
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Figure 4-3: A single 2-simplex with a degree d = 3 B-form polynomial. The B-coefficients, ten
in total, have a unique spatial location in the barycentric space.
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the flight-test data the so-called B-form matrix of a simplex can be created. Each column
represents a model term (one of the basis functions). The number of rows is determined by
the number of measurements M . It is very important all model terms are presented and
ordered correctly. If otherwise the B-net will break and modelling fails. This makes the
splines system identification technique different to other techniques using linear regression
methods. The B-matrix is given by (4-10)

Bd(btj (x)) =









Bd
d,0,0(btj (x1tj )) Bd

d−1,1,0(btj (x1tj )) . . . Bd
0,1,d−1(btj (x1tj )) Bd

0,0,d(btj (x1tj ))

Bd
d,0,0(btj (x2tj )) Bd

d−1,1,0(btj (x2tj )) . . . Bd
0,1,d−1(btj (x2tj )) Bd

0,0,d(btj (x2tj ))
...

...
...

...
...

Bd
d,0,0(btj (xMtj

)) Bd
d−1,1,0(btj (xMtj

)) . . . Bd
0,1,d−1(btj (xMtj

)) Bd
0,0,d(btj (xMtj

))









(4-10)

and the b-coefficient vector to be estimated by (4-11)

c
tj
b =

[

c
tj
d,0,0 c

tj
d−1,1,0 . . . c

tj
0,1,d−1 c

tj
0,0,d

]T

(4-11)

The B-form matrix created for all simplices tj can be written in a single sparse regression
matrix. The regression matrix is formed by (4-12) and the coefficients to be estimated by
(4-13). The subscript b indicates that the regression matrix is in barycentric space and the
B-coefficients are estimated. The regression matrix Xb has a sparse solution system. Per-
forming parameter estimation in barycentric space is favourable over parameter estimation
in physical space. Transforming the regression matrix to physical space using the transfor-
mation described in Chapter 2-5-5 increases the condition number significantly introducing
numerical errors. The better condition number of Xb is because the Barycentric coordinate
system is a normalised coordinate system.

Xb =








Bd(bt1(xtj )) 0 0 0
0 Bd(bt2(xt2)) 0 0
...

...
. . .

...
0 0 0 Bd(btj (xtj ))








(4-12)

θb =
[

ct1b ct2b . . . c
tj
b

]T

(4-13)

The matrix and vector in (4-12) and (4-13) above is written in a shorter form in equation
(4-14) and is called the regression model. With system identification the parameters θb are
estimated using the regression matrix Xb (with independent columns) and a model output
vector y. The error, or residuals, is given by ǫ and is defined by the difference between the
output y and the modelled output ŷ. During regression the residuals are minimised. The
hat, ·̂, indicates estimated values.

ŷ = Xbθ̂b

y = ŷ + ǫ

y = Xbθ̂b + ǫ

(4-14)
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4-2-1 Ordinary Least Squares

Remember the MSBS method is compatible with linear regression methods. A famous linear
regression method to solve for the parameters θ is the Ordinary Least Squares (OLS) method.
In this method a cost function J will sum the residuals squared and minimises it to find the
solution. A quick derivation is given.

J = ||y − ŷ||2
= ||y −Xbθ̂b||2

=
1

2

(

y −Xbθ̂b

)T

·
(

y −Xbθ̂b

)
(4-15)

The optimisation function J is linear in the parameters and can be minimised by solving for
the derivative equal to zero as follows.

min
θ

= ||y −Xbθ̂b||2

min
θ

=
1

2
θ̂
T

b ·
(
XT

b ·Xb

)
· θ̂b − θ̂

T

b ·XT
b · y +

1

2
yT · y

∂J

∂θ̂b
=
(
XT

b ·Xb

)
· θ̂b −XT

b · y = 0

θ̂b =
(
XT

b ·Xb

)−1 ·XT
b · y

(4-16)

Note that the estimator implies certain properties

• The observations of the flight test data in the regression matrix Xb is uncorrelated with
the residuals, using (4-16) it is derived as follow

(
XT

b ·Xb

)
· θ̂b = XT

b · y
(
XT

b ·Xb

)
· θ̂b =

(
XT

b ·Xb

)
θ̂b +XT

b · ǫ
XT

b · ǫ = 0

(4-17)

• Similar the output y is uncorrelated with the residuals

When performing regression in physical space the following properties also hold because of
the constant Ca0 parameter.

• The column with the ”constant” term has a column of ones. Because of the minimization
of the sum of the residuals squared, the sum of the residuals

∑m
1 ǫm = 0.

• From the above it follows that the sample mean of the residuals equals zero, i.e. ǭ =∑
ǫ

m
= 0

• With the sample mean ǭ = 0 the sample mean ȳ equals the sample mean ¯̂y.
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These properties indicate the assumptions based on the Gauss-Markov theorem, forming the
OLS estimator. The assumptions state that

• A linear relationship exists between the regression matrix Xb and the output ŷ, i.e. the
model is linear in the parameters.

• The identification condition states that when the columns of the regression matrix are
linear independent, there is no multicollinearity. Xb is full rank

• The expected value for the residuals for any value xi equals zero. E{ǫi|xi} = 0

• The correlation of residuals in the covariance matrix equal zero, i.e. E{ǫiǫj |xi} =
cov{ǫi, ǫj |xi} = 0 ∀ i 6= j These are the off diagonal terms

• The variance ∀ i equals: var{ǫTi |xi} = σ2. This is the assumption of homoscedasticity
and states there is no autocorrelation and the variance of the residuals is constant. Note
that the variance of the residuals are the terms of the diagonal of the residual covariance
matrix, cov{ǫ|x} = σ2I

4-2-2 Generalised Least Squares

When using the MSBS method for aerodynamic modelling the assumption is made that
the aerodynamic behaviour of an aircraft can be described by polynomials. In real live the
behaviour of an aircraft is much more complex and the polynomial model is an approximation
of this aircraft. The model will have a certain error. When highly non-linear aircraft are
modelled or non-linear regions of the flight envelope such as stall a more complex (time
variant) polynomial structure is necessary. A problem can arise that because of the increasing
complexity the residuals are not homoscedastic any more, indicating there is a correlation
between the residuals. For these situations it is more appropriate to use the Generalised
Least Squares (GLS) method. The assumptions made for GLS method are similar to the
assumptions made for OLS, except the assumption for the covariance matrix. The basics of
GLS were published in 1936 by Alexander Aitken (Aitken, 1936). There exists a covariance
matrix given by (4-18) and which is positive definite and non-singular.

cov{ǫ|x} = Σ (4-18)

The cost function of the GLS method is now given by

JGLS =
1

2

(

y −Xbθ̂b

)T

·Σ−1 ·
(

y −Xbθ̂b

)

(4-19)

In an analogous fashion as (4-16) equation (4-19) is solved for the parameters

θ̂b =
(
XT

b ·Σ−1 ·Xb

)−1 ·XT
b ·Σ−1 · y (4-20)

The problem arise that the covariance is not known a-priori. A suggested option in literature is
to use a two-step hybrid approach. First an OLS regression is used to determine an estimate
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of the residual covariance matrix, see (Klein & Morelli, 2006). This will be elaborated in
Chapter 4-4. This approach however has to be used with caution, see (Maddala, 1971). A
problem is that the computational time for the covariance matrix can be large. Also this
matrix has to be inverted in the GLS method. Values in the estimated covariance matrix can
be small making the matrix badly conditioned and close to singular after inversion.

4-2-3 Constraint Optimisation

Earlier it was mentioned that columns of the regression matrix cannot be deleted, because
it will break the important B-net structure. A model term in barycentric space cannot be
deleted. In the next chapter will be explained how to enforce a certain physical model struc-
ture to the splines. For this a different method for regression is required. The desired model
structure is subjected to the optimisation problem in the form of constraints. Constraints
can be hard, soft (weighted/ penalised) and relaxed. Classifications of hard constraints are
equality constraints (4-22) and (4-23), inequality constraints (4-24) and (4-25) and bounded
constraints (4-26).

argmin
cb

J(cb) Optimisation Function (4-21)

subjected to H(cb) = cbe Equality Constraint (4-22)

G(cp) = 0 Equality Constraint to delete terms (4-23)

Gl(cp) ≤ cpu Inequality Constraint upper bound (4-24)

Gu(cp) ≥ cpl Inequality Constraint lower bound (4-25)

cpl ≤ Gb(cp) ≤ cpu Bounded Constraint (4-26)

Numerous methods are used and developed to solve for non-linear, quadratic and linear opti-
misation functions subjected to aforementioned constraints. Well known methods for solving
the Karush-Kuhn-Tucker (KKT) conditions are: Trust-region method, Active-set method and
Interior Point method.
The KKT conditions are given by (4-27) and published for the first time in (Kuhn & Tucker,
1951). They allow the optimisation function to be subjected to linear equality constraints by
using Lagrange multipliers. In fact the KKT conditions are a generalised method of Lagrange
multipliers.

[
XT

b ·Xb HGT
b

HGb 0

]

·
[
θb

λ

]

=

[
XT

b · y
0

]

(4-27)

In equation (4-27) the regression matrix Xb is similar to (4-12). The equality constraints in
barycentric space are given by H and the physical equality constraints transformed to the
barycentric space by G. Combined they form HGb. If the KKT matrix is positive definite
the coefficients θb can be solved directly using the inverse of the KKT matrix

[
θb

λ

]

=

[
XT

b ·Xb HGT
b

HGb 0

]−1

·
[
XT

b · y
0

]

(4-28)
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However the regression matrix Xb and the constraints matrix in barycentric space HGb are
often large and sparse. Preferably inversion of these matrices is avoided. Large and sparse
matrices are often ill-conditioned, meaning that they are very sensitive and increase the output
error because of numerical errors. These matrices are often close to singular when inverted,
see (Gould & Hribar, n.d.). When the constraints in the KKT matrix are rank-deficient, i.e.
rank of HGb < row HGb, the KKT matrix is singular. In order to inverse the matrix the
Moore-Penrose pseudo inverse can be used. However this also results in a high condition
number. The KKT matrix is again ill-conditioned, has a high condition number and the
inverse is close to singular. Recommended is to use a numerical approach. For example the
pre-conditioned conjugate or an iterative solver, see (Awanou & Lai, 2005) and (Awanou,
Lai, & Wenston, 2005). The iterative solver is given by equations (4-29) and (4-30) and is
based on the augmented Lagrangian method. It was found that this iterative solver has a
fast convergence rate.

θ̂
1
b =

(

2XT
b ·Xb +

1

ǫ
HGT

b ·HGb

)−1

·
(

2XT
b · y −HGT

b · λ̂(0)
+

1

ǫ
·HGT

b

)

(4-29)

θ̂
l+1
b =

(

2XT
b ·Xb +

1

ǫ
HGT

b ·HGb

)−1

·
(

2XT
b · θ̂(l)

b +
1

ǫ
·HGT

b

)

(4-30)

Equation (4-29) is used for initialization. For the subsequent iterations l, equation (4-30) is
used. A good value for ǫ = 10−6 and λ̂(0) = 1.

Subjecting the optimisation problem to inequality and bounded constraints requires a differ-
ent approach. One method that can solve for inequality constraints is the active-set method.
Different implementation of this method exist. An efficient way of solving and implement-
ing the active-set method is described by (Kuindersma, Permenter, & Tedrake, 2014) and
(Harkegard, 2002). This algorithm verifies first if the inequality constraints are violated. The
active-set is an iterative method starting with transferring inequality constraints to equality
constraints to become part of the ”active-set”. The method is initialised by creating an active-
set containing the equality constraints only. This optimisation is solved using the (iterative)
KKT method, explained in the previous paragraph. The estimated coefficients are used to
determine if any of the non-active inequality constraint are violated. If so, they are added to
the active-set as equality constraint equal to its upper or lower bound and the next iteration
starts. An advantage of the active-set method is that only violated inequality constraints
become part of the set active solving the optimisation problem. When only a few of the
inequality or bounded constraints are violated the optimisation can be solved fast and is less
computational expensive. A disadvantage is that for every step the matrix holding the con-
straints changes. Also when many constraints are violated the method can become slow. For
quadratic programming and linear constraints this method can be solved in polynomial time.
The iterative solver is successfully applied and implemented in the active-set method handling
both equality and inequality constraints. A summary of the active-set method including a
Matlab script example is appended in appendix J.

The interior-point method is an iterative method and is sometimes called the barrier method,
see (Robere, 2012). It can be used to solve convex optimisation problems, such as quadratic
optimisation. A barrier function in combination with slack variables will prevent violation of
the inequality constraints. Lagrangian multipliers λ are used for equality constraints. The
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barrier function variable becomes each iteration l smaller and is approaching zero when l → ∞
forming the barrier. It is necessary to rewrite/ augment the constraints to standard form such
that they are equal to 0 or ≥ 0. The interior point method can only be solved iteratively. For
example Newton’s method can be used for this, but in literature it is advised, for a quadratic
optimisation, to use the affine scaling algorithm. The optimisation function, in (4-15) has a
quadratic form and is linear in the parameters. The affine scaling algorithm is proven to have
a polynomial time convergence for convex optimisation (Monteiro, Adler, & Resende, 1990)
and has a fast convergence rate. Initial the affine scaling method is developed in the Soviet
Union by I.I. Dikin and published in 1967. In the eighties more research and attention was
given to this method, see (Vanderbei & Lagarias, 1990). Overall the interior-point method can
be used to solve large optimisation problems and has a fast convergence rate. A disadvantage
is that all inequality constraints are used when computing the search direction, even when
some inequality constraints are not violated. The solution can only be obtained iteratively.
More details of the interior-method can be found in appendix K.

In the end both solvers give good results. The reason to choose one above the other mainly
depends on computation time. For on-line modelling the solver with lowest computational
time will be favourable.

4-3 Polynomial Model Structure Selection

When a candidate set is chosen the initial basis polynomial model structure of the MSBS in
Barycentric space is determined by the degree. Using the multinomial theorem, see (4-7),
the basis model is expanded into individual terms. Increasing the degree and as a matter
of fact the number of terms, the approximation power of the model increases and the model
error decreases. However by doing so the possibility of over-fitting increases, i.e. instrumen-
tation noise and measured turbulence will be modelled. Also some simplices can require a
more difficult model structure because of local non-linearities. The physical transformation
will be used to introduce a polynomial model structure selection to the MSBS aerodynamic
modelling process. Remember deleting terms from the regression matrix will break the B-net
structure. With the linear transformation from Chapter 2-5-5 the simplex basis polynomials
in Barycentric space can be transformed to Cartesian space. At this point the initial physical
polynomial for each simplex is available. The simplices together still form the triangulation
based on a hyperrectangle. In the remainder of this chapter a method is introduced to deter-
mine the importance/ significance for all physical model terms in each simplex and how this
information can be used in creating the polynomial model structure and the corresponding
constraints.

4-3-1 Model Term Significance

The parameters of the basis polynomials for each simplex will be estimated by the data
points of the dataset within that simplex. The complexity, e.g. the non-linearity, of the
data points between simplices can differ making the significance of individual terms for each
simplex different. With the basis polynomials as starting point a method to determine the
significance of individual model terms will be explained in this section. The regression matrix,
see Chapter 4-2, is used in order to do this. The columns of this matrix, sometimes called the
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explanatory variables are the model terms. However the significance of the polynomial terms
in physical space are of interest, but the regression matrix is formed in Barycentric space,
see (4-12). Using the same linear transformation defined in (2-28) the regression matrix is
transformed to Cartesian space

Xp = Xb ·Λ−1 (4-31)

Before the significance can be determined an extra transformation is required. The physical
regression matrix is transformed to the orthogonal domain. This makes the residuals of
the physical model terms independent. Hence every time when a model term is added, the
previous calculated model term significance and its corresponding influence on the residuals
does not change. When the columns of Xp are independent there exists an orthogonal basis
Wp. This orthogonal matrix has the following properties

• let W be a q × r matrix, the columns of W ∈ R
r, i.e. W has full column rank and are

linear independent

• therefore the columns of W are orthogonal, i.e. wk ·wl = 0 ∀ k = (1, 2, . . . , r) and l =
(1, 2, . . . , r) when k 6= l

• when the columns of W are normalised then WT ·W = I where I is the identity matrix

The columns of Xp are orthogonalised using a forward orthogonalisation process called the
Gram-Schmidt process. For each column k of the orthogonalized regression matrix W the
significance, in the form of the Total Error Reduction Ratio (ERR), of a term can be deter-
mined. Also an orthogonal coefficient vector g exist such that the output y is determined
while the residuals ǫ are minimum, see (4-32). The parameter estimation process, e.g. to
obtain g is explained in more detail in Chapter 4-2

y = W · g + ǫ (4-32)

The general principle of calculating the ERR is given by (4-33) and (4-34). This process
can be repeated for all tj simplices. the symbols ◦ and ⊘ are the Hadamard product and
Hadamard division respectively. These products are element wise operation on matrices or
vectors with the same dimension.

gtj = yT
tj
·Wtj ⊘ diag

(

WT
tj
·Wtj

)T

(4-33)

errtj =
g◦2
tj

◦ diag
(

WT
tj
·Wtj

)T

yT
tj
· ytj

(4-34)

The ERR is the significance of a term to the model. The k number of columns of W are
analysed individually on their Individual term Error Reduction Ratio (err). Rewriting (4-32)
for a column wk yields
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y = gk ·wk + ǫk (4-35)

So what is the ERR exactly? The Mean Squared Error (MSE) of the estimator measures
the average of the squared residuals ǫk, i.e. the difference between the estimator gkwk and
the expected output value y. For a dataset using M measurements this is given by (4-36),
including a formulation using a vector notation.

MSE =
1

M

M∑

l=1

ǫk(l)
2 =

1

M
· ǫTk · ǫk (4-36)

Next the influence of a term on the reduction of MSE yields important information about the
model structure. Especially when the terms are orthogonal to each other. The Reduction of
the MSE Reduction of Mean Squared Error (R-MSE) is calculated as follows, (4-37)

R-MSE =
1

M

M∑

l=1

g2kwk(l)
2 =

1

M
· g2k ·wT

k ·wk (4-37)

Similar the Total R-MSE Total Reduction of Mean Squared Error (TR-MSE) for M measure-
ments is calculated using (4-38)

TR-MSE =
1

M

M∑

l=1

y(l)2 =
1

M
· yT · y (4-38)

When the R-MSE and the TR-MSE are known the reduction of the MSE when a term k is
included can be expressed in a percentage of the TR-MSE. This is called the ERR and for a
term k given by (4-39).

errk =
1
M

∑M
l=1 g

2
kwk(l)

2

1
M

∑M
l=1 y(l)

2
=

g2k ·wT
k ·wk

yT · y (4-39)

However it was found that the location of a term within the regression matrix changes its
ERR. Terms that appear earlier often have a higher err compared to other terms. So the
order of terms has influence on the err. An undesirable order of terms may produce incorrect
significance of terms. The model structure may be determined incorrectly when one does not
take this into account. In the following paragraph an algorithm is introduced that determines
the order of appearance of terms within the estimator based on the err value. The algorithm
uses an orthogonal regression procedure based on stepwise regression, introduced by (Billings
& Voon, 1986) and (Billings, Korenberg, & Chen, 1988). Using this procedure the order of
the terms is determined by their significance.

In the initial stage all terms k = (1, 2, . . . , r) in the regression matrix Xp are considered
possible candidates for the orthogonal matrix W. For each term the err is calculated.
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err1 = maxrk=1

(
g2k ·wT

k ·wk

yT · y

)

where

wk = xpk and gk =
wT

k · y
wT

k ·wk

(4-40)

The first term to select is k1 = kmax with the highest err, i.e. err1 = max{errk , 1 ≤ k ≤ r}
and in combination with wk1 , gk1 the following relation holds

ŷk1 = wk1 · gk1 + ǫk1 (4-41)

For the second iteration all terms are considered as possible candidates again except k1 from
the first iteration, i.e. k = (1, 2, . . . , r) ∀ k 6= k1. First the candidate column of Xp is
orthogonalised with respect to wk1 using the Gram-Schmidt process given by

wk = xpk − αk1 k ·wk1 (4-42)

where the orthogonalisation is given by

αk1 2 =
wT

k1 · xpk

wT
k1 ·wk1

(4-43)

Similar as before the err is calculated

err2 = maxrk=1

(
g2k ·wT

k ·wk

yT · y

)

∀ k 6= k1

where

gk =
wT

k · y
wT

k ·wk

(4-44)

Again select term k2 = kmax with the highest err, i.e. err2 = max{errk , 1 ≤ k ≤ r , ∀ k 6=
k1} with wk2 = xk2 − αk1 k2 ·wk1 and gk2 and err2
Equation (4-41) is updated by adding the sequential term k2

ŷ = wk1 · gk1 +wk2 · gk2 + ǫk1 + ǫk2 (4-45)

Because of the orthogonalisation process not only are the terms orthogonal to each other,
but also individual residual terms ǫ. Hence ǫk1 does not change when ǫk2 is added. This is
similar for the orthogonal parameters. When gk2 is added gk1 does not change. The process
in (4-42), (4-43) and (4-44) continues until the err of last column kr is determined and

ŷ = wk1 · gk1 +wk2 · gk2 + · · ·+wkr · gkr + ǫk1 + ǫk2 + · · ·+ ǫkr (4-46)
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At this point the order of appearance is saved and the final individual term significance is
known. This process is repeated for all simplices and is summarised in the ERR vector for
each simplex tj given by (4-47). The sum of the errtj is between 0 and 1 and tells something
about the quality of the polynomial structure for a simplex tj . Higher sums are better.

errtj =
[
err1 err2 . . . errr

]
(4-47)

The Error Reduction Ratio errtj vector in (4-47) will be used to create physical model con-
straints in order to reduce the model size, constraint certain terms per simplex and prevent
model over-fitting. The real advantage of this orthogonal procedure combined with stepwise
regression compared to stepwise regression only is that the effect that terms have on each
other is removed. Without orthogonalization a term can become insignificant when other
terms are introduced.

4-3-2 Physical and Barycentric Splines Constraints

Next possibilities are explored how the term significance and the constraints can be used in
both the MSBS and the Physical-Splines method. Different types of constraints, repeated in
(4-48), are introduced. They will subject the optimisation process for the parameters in such
a way that continuity between the simplices is created and the desired physical polynomial
structure is imposed.

argmin
cb

J(cb) Optimisation Function (4-48)

subjected to Hc(cb) = c
tj
b Continuity of simplices (4-49)

Gdc(cp) = 0 Decoupling of terms (4-50)

Gerr(cp) = 0 Error Reduction Ratio (4-51)

Gpl(cp) ≤ cubp Physical Upper Bound (4-52)

Gpu(cp) ≥ clbp Physical Lower Bound (4-53)

clbp ≤ Gpb(cp) ≤ cubp Physical Bounded (4-54)

4-3-3 Smoothness & Continuity in Barycentric space

The B-coefficients have a unique spatial location within each simplex. This spatial location
makes it possible to generate continuity constraints between the simplices and make the
splines model continuous. The continuity of order r between the simplex polynomials can
be important for several reasons. First zero order continuity makes sure no inner ”gaps” in
the model between simplices exist. When the aerodynamic model is used in a full-motion
simulator this prevents excessive and possibly damaging movements. Higher order splines
models can be required in applying control allocation methods. Increasing the continuity
will let the simplices influence each other and makes the splines model more smooth. The
barycentric parameter variances decreases, see (C. C. de Visser, Chu, & Mulder, 2009). The
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equality constraints for rth order continuity are created using equation (4-55) and are in
Barycentric space.

c
tj
κ0,m,κ1

=
∑

|γ|=m

cti(κ0,0,κ1)+γ
Bm

γ (ν∗), 0 ≤ m ≤ r

κ0 +m+ κ1 = d

(κ0 +m+ κ1) + (γ0 + γ1 + γ2) = d

(4-55)

In this equation the order of the continuity is smaller than the degree, i.e. r < d. With a
multi-index γ independent of κ and ν∗ the out-of-edge vertex of tj .

4-3-4 Decoupling between physical parameters

Gdc(cpκ)tj =
∑

|κ|=d

cpκ = 0

where κ = (κ0, κ1, κ2, . . . , κn) ∈ N
⋉ is the multi-index

with property {|κ| = (κ0 + κ1 + κ2 + · · ·+ κn) ∧ κ ∈ (κ0, κ1, κ2, . . . , κn) 6= δ}

(4-56)

Higher degree MSBS models have coupled model parameters. A coupled model variable, for
example α·δe, indicates a relation between these two variables. In other words when α changes
δe changes and vice versa. The corresponding model parameter Cmαδ

are difficult physically
to interpret. In general for a f(x, y) non-splines model this means that x or y do not change
outside their dimension. The one dimensional views of these variables stay the same. In the
case of the MSBS method this is holds for each simplex as well. However between simplices
this will differ.

4-3-5 Error Reduction Ratio Constraint on physical parameters

Recalling the Error Reduction Vector errtj in (4-47). In this vector the significance of each
term is listed taking the order of terms into account. This information will be used to create
physical parameter constraints based on the ERR. These physical constraints Gerr(cp), see
(4-51), are created on the physical-coefficients (cp) and are constraint to zero. Multiple
stopping rules exist to determine the polynomial model structure and prevent over-fitting.
Some of these rules are elaborated in (Klein & Morelli, 2006) and (Lombaerts, Chu, Mulder,
& Joosten, 2007). In this section three methods are introduced and how to use them in
combination with Physical-Splines in creating the constraints using errtj and a stopping rule

1. The first method is to set a threshold value on the errtj . Terms with an errtj ≤ errtr
are assumed to be insignificant to the model. According to (Billings & Voon, 1986) a
typical value for a threshold is between 0.001 and 0.05. With these threshold sufficient
terms are included to reduce the prediction errors to a sequence of white noise. Terms
are constrained with the following rule

Gerr(cpk)tj = 0 ∀ {k | k ∈ (1, 2, . . . , r) , (errktj ≤ errtr)} (4-57)
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2. The second method is to introduce an over-fit penalty as is introduced by (Klein &
Morelli, 2006). Recalling the MSE in (4-36). Every time a term is added the MSE
decreases. This can result in over-fitting the model and adding too many insignificant
terms. A stopping rule that can be used is the Predicted Square Error (PSE) given by

PSE =
1

M
· ǫT · ǫ+ σ2

max ·
pk
M

= MSE + σ2
max ·

pk
M

(4-58)

Terms are added to the estimator in the order determined by the err. Every time a
term enters the estimator p increases with one. In equation (4-58) M is the number
of measurements and σ2

max is the a-priori upper-bound estimate of the squared error
determined by the output variance

σ2
max =

1

M

M∑

i=1

(y(i)− ȳ)2 =
1

M
· (y − ȳ)T · (y − ȳ) (4-59)

where the mean ȳ of y is given by

ȳ =
M∑

i=1

= y(i) (4-60)

The over-fit penalty gives the PSE a minimum when k number of terms are added to
the model, i.e. the over-fit penalty increases faster than the MSE decreases. When this
point is reached all the remaining terms, not included in the model, are constraint to
zero with the rule

Gerr(cpk) = 0 ∀ { k | k ∈ (1, 2, . . . , r) , k /∈ pk} (4-61)

3. This method constraints all terms when the orthogonalisation process reaches a fit-error
based on a certain threshold set on either the MSE, determined with (4-36) or when
the sum of the errtj reaches its threshold. All the terms k not included at this point
are removed from the physical-splines polynomial.

Gerr(Cpk) = 0 ∀ { k | k ∈ (1, 2, . . . , r) , k /∈ errtr ≥ 1−
∑

k

errk} (4-62)

The system identification process in aerodynamic modelling is iteratively and different models
with model settings are created. Part of the model settings are the previous introduced
rules and different threshold. The decision of which stopping rule to choose depends on the
validation of the different models in terms of model output but also computational time and
model size. Other stopping rules not mentioned include using the Coefficient of Determination
R2 and the Predicted Sum of Squares (PRESS). In aerodynamic modelling researched is
performed on different stopping rules and according to (Lombaerts et al., 2007) the predicted
squared error gives the best results for off-line modelling.
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4-3-6 Physical Bounded Constraints

Working in the Cartesian coordinates system (Physical space) gives the possibility to physi-
cally interpret the parameters of the model. As explained in Chapter 2-5-5 a linear transfor-
mation is used to transform the model parameters of the simplices from Barycentric coordinate
system to the Cartesian coordinate system. Besides the easier understanding of the aircraft
dynamics, potential identification errors can also be noticed. An estimated aerodynamic
model operates within certain physical bounds. When the realistic physical range of these
physical bounds are known in advance they can be imposed to the parameter estimation pro-
cess in form of inequality constraints. The inequality constraints are based on the the control
derivatives, see (e. a. Mulder J. A., 2000). Control derivatives give an indication on how forces
and moments change due to certain variables such as angle of attack α or side-slip angle β.
An example of a control derivative, or sometimes called a stability derivative, is Cmα . This
non-dimensional parameter indicates the change of the dimensionless pitch moment Cm, the
moment around the y-axis, with respect to the angle of attack α. For a statical stable aircraft
this well known stability derivative has to be smaller than zero. When the aircraft to be
identified and modelled is known to be stable an inequality constraint can be created. This
inequality constraint in the latter example is the partial derivative of the pitching moment
Cm with respect to α, i.e. ∂Cm/∂α < 0. Latter inequality constraint will serve as upper
bound.

Stability Derivative Functions

The well known stability derivatives, or control derivatives, are based on PDE. In aeronautical
engineering these derivatives are mostly studied as constants, because a linearised first order
Taylor expansion of the equation of motions is used as model structure. In order to model non-
linear dynamical behaviour, while physically interpreting the derivatives, an earlier mentioned
method is often used. For this method multiple aerodynamic models are estimated and all
stability derivatives are stored in large lookup tables. The models are blended together after-
wards. The other method, while keeping physical interpretation, is the physical-splines. Using
physical-splines one of the considerations is to increase the degree of the model structure. By
doing so the stability derivatives do not have their familiar ”engineering” interpretation any
more but are now formed by a function depending on one variable or multiple when physical
parameters are not decoupled. Beside that a lookup table with stability derivatives in the
form of constants also can be considered as a function, four methods are mentioned briefly to
keep the simplified form, i.e. ”engineering” interpretation.

1. After parameter estimation, the splines model can be linearised for each simplex, just
for the sake to have an estimate of a stability derivative in the form of a constant.

2. Limit the spline model degree to a maximum of one and increase the number of simplices
instead to model non-linearities. All the non-linearities of the model are still captured.
The disadvantage of this method is that the order of continuity has a maximum of zero.

3. Create numerous models based on the purpose and application. Create a high degree
splines model used for control allocation or simulation and a one degree splines-model
for physical interpretation.
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4. Applying the physical parameter decoupling constraints, described in Chapter 4-3-4,
makes the control derivatives of a higher degree splines model easier to interpreted
without loosing the approximation power of higher degree polynomial model structures.

Since a stability derivative is a derivative of the model function the inequality constraints
can be based on root finding algorithms. A problem with these algorithms is that they are
non-linear, making the linear solver used for parameter estimation useless. As an example to
show this ”breakage” a very simple univariate derivative function, (4-63), is used where x is
a variable and a, b and c are unknown parameters.

f ′(x) = ax2 + bx+ c (4-63)

The well known root finding algorithm is the one used for univariate quadratic equation, the
quadratic formula.

x1,2 =
−b±

√
b2 − 4ac

2a
(4-64)

where a, b and c are parameters of the equation. Assume possible solutions in real coordinate
space R only, i.e. there is one real solution when b2 − 4ac = 0, two real solutions when the
discriminant b2 − 4ac > 0 and no solution when b2 − 4ac < 0. When the control derivative is
positive the corresponding inequality constraint is (take note of the non-linearity)

b2 − 4ac < 0 (4-65)

The latter inequality constraint is an example. The constraints will be different for each
control derivative depending on the physical bounds and the interval formed by the simplices.
However it reveals a difficulty. Even a simple straightforward univariate root solving algorithm
creates non-linear inequality constraints, requiring a non-linear solver for the multivariate
simplex splines. Also the constraint in (4-65) is not bounded by the domain of simplex tj ,
i.e. the physical bounded constraint can be violated when

b2 − 4ac ≥ 0 ∀ x /∈ tj (4-66)

Models with a degree higher than four will have a derivative to the power three. Solving for
root locations often requires a numerical approach. Shortcomings with the previous example
are summarised in the list below:

• Non-linearity in the constraints

• Root finding algorithms are difficult for higher degree functions

• Problem when extending from univariate to multivariate

• Difficult to limit constraints to the domain of a simplex only
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Linearising Stability Constraints using a Grid

This section introduces a method how to overcome the aforementioned problems and imple-
ment and apply non-linear equality, bounded and inequality constraints to the parameter
optimisation process. The idea is straightforward. The derivative of the polynomial model
structure is determined and for this derivative model ”virtual” data-points will be created.
This is done for a domain, determined by a simplex tj , and an equalized spaced grid with
points in this simplex. The density of grid points can be changed. The location of each point
in this grid is given by a n-dimensional coordinate given in Cartesian space. Each grid point is
substituted in the model derivative and represent an (in)equality constraint. Equation (4-67)
shows a generalisation used for creating a equally spaced grid Xgrid in Cartesian coordinates.

χgrid =
⋃

|β|=τ

(

1

τ
β0 · ν0tj

+
n∑

i=1

1

τ
βi · νitj

)

where χ = (χ1, χ2, . . . , χn) ∈ R
n

where ν = (ν0, ν1, . . . , νn) ∈ R
n

where β = (β0, β1, . . . , βn) ∈ R
n+1 is the multi-index

with property |β| = (β0 + β1 + · · ·+ βn)

(4-67)

In this equation the grid density is determined by τ ≥ 1. The location of the n + 1 vertices
of a n-simplex by the matrix ν = (ν0, ν1, . . . , νn) with νi an individual coordinate vector
of a vertex. An example of the grid creation is plotted in figure 4-4. All these points are
substituted into the model derivative forming Mg inequality constraints based on the grid
density. The constraint optimisation can be solved using for example the active-set method
described in Chapter 4-2. In this method the inequality constraints are not active when they
are not violated decreasing the computation time. The general idea behind the grid-method
is when Mg → ∞ all points within the domain do not violate the inequality constraints any
more. The assumption is that a dense enough grid will be sufficient enough to approach a non-
violating constraint optimisation while keep the constraints linear. Hence the regression stays
linear. However Mg approaching ∞ is impossible and merely a mathematical notation. The
question arises: what is an adequate density of a grid? The minimum distance between roots
can give answer to this question, but rely on the not yet determined parameters. Another
suitable solution is assume a grid density τ and confirm afterwards if the constraint for the
domain are not violated. Either by solving the root locations of the with inequality constraints
identified model and compare with the simplex domain or determine the number of roots in
the simplex domain. Another option is to determine the minimum distance between the roots
and compare with the density, see (Rump, 1979). This will verify if or if no roots exists on
the simplex domain. Using the ”grid approach” does not need a non-linear solver, hence the
function approximation is still compatible with the linear regression method.

Sturm’s sequence is a method to count the number of roots on a pre-determined interval. The
exact location of these roots is unknown. For the application of physical bounded inequality
constraints this is sufficient. When there is no root on the interval there is no sign change.
With this sequence it is possible to verify after regression if the control derivative constraints
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Figure 4-4: An n = 2 example with two simplices demonstrating the creation of a uniform grid
in physical space with density τ = 10
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are not violated. Sturm’s sequence is given by

f0(x) = f(x) (4-68)

f1(x) = f ′(x)

f2(x) = −rem(f0, f1) = f1(x)q0(x)− p0(x)

f3(x) = −rem(f1, f2) = f2(x)q1(x)− p1(x)

...

0 = −rem(fm−1, fm)

In this sequence f is the polynomial function, i.e. the control derivative, we want to find the
roots of in some interval. Start with the original function f , the second step is to determine
the derivative of this function f ′. The subsequent steps are obtained by dividing the previous
two functions using polynomial long division and using the remainder rem of this division.
Multiply this remainder with −1. When f has no repeated roots, i.e. square free, the last
step is reached, the polynomial fm which is a non-zero constant. This constant fm is the
greatest common divisor of f . The obtained chain is called the Sturm’s chain. With the
Sturm’s chain it is possible to count the number of roots on the interval. For all elements in
the chain substitute the lower bound of the range and take note of the signs. Repeat this for
the upper bound. Next look at the number of sign changes for both the upper and the lower
bound. Subtracting the number of sign changes yield the number of roots on the interval. A
multivariate Sturm’s sequence is described in (Pedersen, 1991) and (González-Vega & Trujillo,
1997).

If after regression it was confirmed that the density τ was insufficient, τ will be increased and
the parameter estimation process for constraint optimisation is repeated.

Conclusion

Control derivatives are used in a great extent. For example to judge an aircraft’s flight dy-
namics, stability, handling, control etc. This physical interpretation is very useful and with
the physical space to Barycentric space transformation this information can be used when
models are created with the MSBS method. Because flight test data is used, information
about the aircraft to be modelled is known in advance. Hence physical bounds can be ap-
plied to the identification process. Models with a degree larger than one will have control
derivatives in the form of an univariate or multivariate function. This in combination with
their operating simplex domains can make applying the physical bounds a complex process.
Using the physical bounds is a part of Semidefinite Programming (SDP), which is a subfield
of convex optimization. The inequality constraints form the SDP. Problems encountered by
applying the physical bounds in the form of inequality constraints are the non-linear be-
haviour they produce. To find a solution requirements were set: multivariate support, only
applicable on a pre-defined domain, linear in constraints. A solution was found in the form
of a grid. The points in the grid are determined by the domain which in turn is determined
by the simplex. The grid points can be multivariate. All these points are used as linear
inequality constraint belonging to a control derivative. At this point the final model can still
have unpredictable behaviour. Since the grid size Mg cannot go to infinity it is unknown what
the model does within the unconstrained area in between the points, i.e. a possibility exists
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the physical bounds are violated. This is why the model afterwards is verified with a root
counting algorithm on a domain: the Sturm’s sequence, or other root finding algorithms.

4-3-7 Differential Constraints

The differential constraints can be used for extrapolation and improve the quality of the
model on the boundaries. The boundaries of higher degree polynomial models, with poor data
coverage, will often show divergent behaviour. B-coefficients differentials, on the boundary of
the triangulation, can be constraint in a certain direction reducing this divergent behaviour.
The differential constraints, (C. C. de Visser et al., 2011), are expressed in the form

Db · cb = d (4-69)

Where Db is a block diagonal matrix with N differential constraints. The vector cb is the
B-coefficients vector and d ∈ R

N×1 is the vector with the values to constraint the differentials
to. The matrix Db can be formed for all simplices tj using

Db = diag
(

D
tj
m(a,b), 1 ≤ j ≤ J

)

∈ R
M×J ·d̂ (4-70)

where D
tj
m(a,b) is defined as

D
tj
m(a,b) :=

d!

(d−m)!
Bd−m(b)Pd,d−m(a) (4-71)

where Pd,d−m(a) is the de Casteljau matrix, d the degree, m the order of the differential
constraints, a the directional coordinate of the constraint direction u at location b. The
directional coordinates and location are given in barycentric space.

The differential constraints can also be created in the physical space using the the physical
space to barycentric space coordinate transformation to transform the constraints to the
barycentric space. An example of the physical differential constraints are the physical bounded
constraints of previous section. Effectively it means that the constraint are created using a
directional derivative. The directional derivative for a physical function p(x) in the constraint
direction u is defined by

∇u p(x1, x2, . . . , xn) (4-72)

For a certain location v equation (4-72) becomes

∇u p(v) = Dp · cp = d (4-73)

The direction coordinate and location are now given in physical space using the Cartesian
coordinate system. Equation (4-69) becomes

Dp · cp = Dp ·Λ · cb = Db · cb = d (4-74)

The location of the differential constraints v can be the location of vertices, B-coefficients
or arbitrary points. A uniform per-simplex grid vgrid can be created using the same method
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from Chapter 4-3-6, repeated below for convenience

vgrid =
⋃

|β|=τ

(

1

τ
β0 · ν0tj

+
n∑

i=1

1

τ
βi · νitj

)

where ν = (ν0, ν1, . . . , νn) ∈ R
n

where β = (β0, β1, . . . , βn) ∈ R
n+1 is the multi-index

with property |β| = (β0 + β1 + · · ·+ βn)

(4-75)

Using the physical formulation and a grid the differential constraints can also be introduced
as inequality constraints. These constraints can be used on the stability derivatives of an
aircraft, such as Cmα < 0. The inequality constraints will have the form of

∇u p(vgrid) = Dp · cp ≤ d (4-76)

4-4 Splines Model Validation and Quality Assessment

Validation of the Aerodynamic Splines Model is important in order to give an assessment
of the model created. Different methods are available. In this chapter convenient methods
often used for the MSBS, presented in (De Visser, 2011), are elaborated. The role of the
physical-splines in these methods is explained. After estimating an aerodynamic model and
validation, the quality of the model is assessed using several aspects based on the outcome of
the validation methods.

Recalling that the dataset with measurements was divided in an identification set and a
validation set. A convex hull, EX is formed by this identification set. The convex hull is
determined by the extreme points of the identification set in such a way that the smallest
convex set is formed which contains all Xident. In this convex hull linear interpolation is
possible.

EX = 〈Xident〉 (4-77)

Only within this convex hull it is possible to perform a proper validation. In order to this the
validation dataset will be used. The validation dataset is the share of the dataset not used
for the identification and that is within the space of the splines model, i.e. validation points
outside this convex hull of the splines model space are not used, see (4-78)

Xval =

Mval⋃

i=1

Xi ∈ R
n (4-78)

However since the triangulation is created around the convex hull of the identification dataset,
the possibility exists that the convex hull of the triangulation is larger compared to the
identification set. Hence some B-coefficients are not within this convex hull EX . Important
to remember is that during validation of the aerodynamic model these B-coefficients and this
part of the domain can be expected to have a worse quality assessment. Also when someone
extrapolates the model quality cannot be guaranteed.
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The model validation is divided in several parts including a raw validation for comparing
model output and measured output using the validation set. Furthermore a global model
inspection of the physical parameters, analysing the model residuals, stability analysis and
statistical analysis. Finally all the individual outcomes are used to give a quality assessment
of the aerodynamic model created.

4-4-1 Residual Analysis

For the model validation the validation dataset is used. This dataset is not used to identify the
aerodynamic model. The states are given as input to the aerodynamic model. The output of
the model is compared to the measured output. Graphs can be created that plot both outputs.
Extra attention is given to sections with the experimental flight manoeuvres, because of the
higher complexity. Subsequently the model residuals, given by (4-79) are analysed.

ǫ(Xval) = Yv − Ŷv (4-79)

with Yv the validation output and Ŷv the model output.

First the Coefficient of Determination is calculated. The coefficient of determination has a
value between 0 and 1 and is calculated using the MSE.

MSE(ǫ) =
1

M

M∑

i=1

ǫ(i)2 =
1

M
ǫT · ǫ (4-80)

and the Total Squared Error (TSE)

TSE(ǫ) =
1

M

M∑

i=1

(Yv(i)− Ȳv)
2 =

1

M
(Ŷv + Ȳv)

T · (Ŷv + Ȳv) (4-81)

The relation of the coefficient of determination is now given by (4-82)

R2 = 1− MSE

TSE
(4-82)

The relation can give an indication on how well the model is fitted in terms of predictability,
where R2 = 1 indicates a perfect fit. On the contrary it is not a guarantee that the model
quality is good. Hence noise can be fitted or the candidate set used is incorrect.

Next the quality of the fit is determined by calculating the Root Mean Squared Error (RMS)
using the MSE

RMS(ǫ) =
√

MSE(ǫ) =

√
√
√
√ 1

M

M∑

i=1

ǫ(i)2 =

√

1

M
ǫT · ǫ (4-83)

the RMS however depends on the magnitude of the input variables. In order to have a better
interpretation of the RMS they are converted to a relative scale by using
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RMSrel(ǫ) =
RMS(ǫ)

max(Yv)−min(Yv)
(4-84)

The RMSrel gives an indication of the quality of the regression by using an estimation of the
variance. Hence can the model determine the correct output. A low RMSrel means the the
output is close to the expected output of the validation dataset.

As mentioned in Chapter 4-2 the assumption is made that the residuals are uncorrelated with
each other. This is tested by estimating on a large scale the validation residual autocorrelation
as follows.

R̂tj (k) =
1

Mtj

Mtj
−k

∑

i=1

ǫtj (i)ǫtj (i+ k) , k = 0, 1, . . . ,Mtj (4-85)

For this estimation the autocorrelation for each simplex tj is determined. Assumed is that sim-
plices do not have influence on each other. This is not always true since the use of smoothness
constraints will create continuity between simplices. The residual of each individual simplex
is said to be uncorrelated when for 95% of all k > 0 the following relation holds

|R̂tj (k 6= 0)|
R̂tj (0)

≤ N0.95
√
Ntj

(4-86)

When correlation exists between the residuals the Gauss-Markov assumption is violated and
the OLS method cannot be used. As mention in Chapter 4-2-1 and Chapter 4-2-2 the GLS
has to be used. For the GLS a covariance matrix Σ is required. This covariance matrix is
not available a-priori. Therefore a two step approach is introduced. First the parameters
are estimated using the OLS method and when the residuals are correlated using (4-86) the
covariance matrix is estimated. This estimation of the covariance matrix will be used in the
GLS method. Determining this matrix is not a trivial process, using (Klein & Morelli, 2006),
an estimation of the residual covariance is given by

Σtj =
1

Mtj

Mtj
−k

∑

i=1

ǫ(i)ǫtj (i+ k) , k = 1, 2, . . . ,Mtj (4-87)

In this residual matrix the assumption is made again that the residuals only have a covariance
within the an individual simplex. No covariance exists outside a simplex so

Σ =









Σt1 0 . . . 0

0 Σt2

. . .
...

...
. . .

. . .
...

0 . . . 0 Σtj









(4-88)

Determining the inverse is a tedious process. The small values of ǫ introduces numerical
problems and badly conditioned matrices. The advantage of the assumption made is that the
residual covariance matrix becomes a sparse matrix simplifying the calculation of the inverse.
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Now the inverse is determined of multiple (Mtj × Mtj ) matrices instead of matrix with the
size of all data points (M ×M).

Σ−1 =









Σ−1
t1

0 . . . 0

0 Σ−1
t2

. . .
...

...
. . .

. . .
...

0 . . . 0 Σ−1
tj









(4-89)

Next the residuals of model are analysed for each simplex tj individual. Using the residuals
the empirical confidence bounds are determined using the Chebyshev’s inequality.

Pr
(
|ǫtj − µ(ǫtj )| ≥ aσtj

)
≤ 1

a2
(4-90)

Because the simplices are analysed individually a moving average of the of standard deviation
σ of the per-simplex residuals ǫtj is used. Hence, the mean value of the residuals µ(ǫtj )
equals zero because of the Gauss-Markov assumption. The confidence bound changes for
each interval and is determined by aσ-units. In (4-90) the probability of the norm is given.
The bound has a symmetric deviation around the mean µ. An often used bound equals
6σ-units. This corresponds to a bound with 97.22% confidence within the standard deviation
of the mean.

4-4-2 Stability Analysis

The bounds used for the stability analysis dependent only on the B-coefficients and the degree
of the spline model. This proof is presented in (Lai & Schumaker, 2007). This makes the
stability of the splines-model relatively easy to determine. The stability analysis is used to
validate the behaviour of the splines-model given by the bound (4-91)

||cb||
K

≤ ||p|| ≤ ||cb|| (4-91)

In this equation the lower bound is given by dividing the b-coefficients by a constant K. The
lower bound is not analysed and will be skipped. ||p|| indicates the polynomial norm. The
upper bound ||cb|| is by definition the maximum B-coefficient in the vector of B-coefficients
is given by

||cb|| ≡ max
|κ|=d

|cκ| (4-92)

Since the upper bound is analysed only, rewriting (4-91) yields (4-93)

||p|| ≤ ||cb|| (4-93)

As mentioned before not all B-coefficients are in the validity region of convex hull EX . The
b-coefficients do not have a global influence on the spline model because of the local basis
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functions. Therefore the stability analysis is given by the measure of the ratio, given in (4-94),
using only the B-coefficient in EX .

REX
=

range{cb ∈ EX}
range EX

(4-94)

4-4-3 Statistical Analysis

Parameter collinearity occurs when two or more variables within the candidate set have a high
correlation. This means that one variable could predict the other variable. For regression this
can mean that the model is very sensitive for minor changes. This decreases the reliability of
the final model. Multicollinearity can be determined with the Variance Inflation Factor (VIF)
(Stine, 1995). The VIF is calculated using three steps and is repeated for each simplex. The
linear transformation, (2-29), is used to transform the barycentric regression matrix, (4-12),
to physical space. Rewriting this matrix to an equation form gives for example a per-simplex
linear in parameters four dimensional polynomial.

p(x1, x2, x3, x4)tj = cp0 + cp1x1 + cp2x2 + cp3x3 + cp4x4 + ǫ (4-95)

Next if the VIF is determined of x1, (4-95) is rewritten where x1 becomes a function of the
other explanatory variables

x1 = cp0 + cp2x2 + cp3x3 + cp4x4 + ǫx1
(4-96)

Using OLS, the previous regression is solved. The VIF can now be determined with

VIF1 =
1

1−R2
1

(4-97)

Where R1 is coefficient of determination and can be calculated using (4-82). Values for VIF
smaller than 4 are assumed no multicollinearity exist (Obrien, 2007). This is repeated for the
other variables for each simplex. Please note when higher degree, non-linear, model terms
are added for example c2x

2 there will be a high multicollinearity with the term c1x.

Next the model parameters covariance matrix is determined. When enough data-points are
available the parameter covariance is calculated using the pseudo inverse from (4-28)

cov(ĉb) = σ2
(
XT ·X

)−1
(4-98)

with σ2 the global variance of the residuals. An estimation of the per-simplex residual variance
is given earlier in this section by (4-87). A more conservative approach is when the global
residuals variance is used instead of the per-simplex residual variance. Rewriting (4-87) yields
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σ2 =
1

M

M∑

i=1

(ǫ(i)− ǭ)2

=
1

M

M∑

i=1

(ǫ(i))2

(4-99)

when the GLS method is used the parameter covariance is given by

cov(ĉb) =
(
XT ·X

)−1
(4-100)

The diagonal of the covariance matrix in (4-98) and (4-100) are the parameter variances, so

var(ĉb) = diag(covb(ĉb)) (4-101)

Multiple methods are available to determine a confidence bound. A conservative method, the
Simultaneous Bonferroni method, is presented in (Kyriakides & Heydt, 2006) and given by

|cb − ĉb| ≤ t α
2p

, N−p

√

var(ĉ)b (4-102)

with the Student’s t-distribution given by t α
2p

, N−p where N − p are the degrees of freedom

and α
2p the significance level.

Remember that the parameters in Barycentric space, the B-coefficients, have a unique spatial
location. This spatial location can give an indication where in the convex hull, and in which of
the measured part of the flight envelope, the aerodynamic model has a high variance. While
creating the model extra attention can be given to these regions. Data can be added or the
triangulation can be adjusted. Expected is that B-coefficients on the boundary will have a
higher variance. The convex-hull of the triangulation 〈T 〉 can be larger than the convex-hull
of the identification dataset 〈Xid〉, resulting in B-coefficients locations outside 〈Xid〉. The
variance of the physical-parameters are calculated using the barycentric to physical space
transformation Λ

cov(ĉp) = σ2
(
(X ·Λ−1)T ·X ·Λ−1

)−1

= σ2
(
(Λ−1)T ·XT ·X ·Λ−1

)−1

= σ2Λ ·
(
XT ·X

)−1
ΛT

= σ2Λ · cov(ĉb) ·ΛT

(4-103)

similar as before the physical parameter variances are given by

var(ĉp) = diag(cov(ĉp)) (4-104)

Equation (4-102) can be used to determine the confidence interval of the physical parameters.
The stability analysis, in Section 4-4-2, can be repeated for the physical coefficients.
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4-4-4 Global Model Inspection

After parameter estimation, described in Chapter 4-2, the Barycentric B-coefficients are trans-
formed to physical coefficients. For clarity this is repeated in (4-105). This way the model
output can be analysed and interpreted.

ĉp = Λ · ĉb (4-105)

The physical coefficients are used for the global model inspection. Do coefficients or stability
derivatives represent the expected dynamic behaviour of the aircraft modelled. The symmetric
and asymmetric modes of vibrations, such as the short period and phugoid oscillations and
aperiodic roll, spiral motion and the Dutch roll, can be analysed using the stability derivatives.
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Chapter 5

Conclusion

From 2019 all air-carrier pilots are obliged to go through flight simulator-based stall recovery
training. Therefore a task-force was formed by the C&S department. The implication of this
new legislation is that flight simulator aerodynamic models need to be updated. Stall and post
stall dynamics of an aircraft are very non-linear requiring high-fidelity flight simulation mod-
els. Different system identification techniques, for modelling complex non-linear dynamics,
are compared. Many of these techniques have shortcomings such as lacking a physical inter-
pretation of the aerodynamic model. Neural networks and fuzzy logics system identification
techniques are black-box models and have global basis functions. The non-sparse solution
system in combination with non-linear regression methods make them very computational
intensive.

A better technique for aerodynamic modelling is the MSBS. Since 2005 the MSBS have
proven to be a true general function approximator. They are used successfully for modelling
highly non-linear aircraft dynamics. The MSBS method uses local basis functions to fit any
scattered dataset. The local basis functions also increase the computational efficiency and give
the property to locally adjust/ update the model. MSBS are compatible with linear regression
methods, but require a geometric support structure. Creating the triangulation is not always
a trivial process. Another shortcoming is that the B-coefficients do not have a straightforward
physical interpretation. This makes the modelling process and model validation more difficult.
In the introduction of this preliminary a brief overview of splines was given. It all started
with physical splines and it ended with the physical-splines formulation. This new formulation
makes it for example possible to linearly transform B-coefficient from the Barycentric Space
to the Physical Space and physically interpreted them. The new physical transformation used
in combination with the MSBS are called the physical-splines.

The aircraft to be modelled with physical-splines is the Cessna Citation II. Experimental
flights are performed using the PH-LAB, the Cessna Citation II co-owned by the TU-Delft,
creating a flight-test dataset with measurements. The flight-test data is filtered and the flight
path is reconstructed. The task force did research on filtering of flight-test data and the
reconstruction of the flight-path. A toolbox is created for this. The equation of motions are
used to form the six forces and moments equations and are made dimensionless. Other earlier
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work performed by the task-force is the labelling of the overhaul importance of the DASMAT
simulation framework blocks. Preferably the blocks are updated to the embedded Matlab
function representation. The physical-splines model will be part of the aerodynamic block.

The process in creating an aerodynamic model with MSBS is subdivided in three parts: the
geometric model structure selection, polynomial model structure selection and the parameter
estimation. This process is iteratively creating multiple aerodynamic models. All these model
are compared and validation is used to asses the quality.

During the geometric model structure selection different candidate sets of variables are se-
lected. The candidate sets for the Cessna Citation II were determined in a previously per-
formed research using the occurrence of hysteresis. The number of state and control variables
in a candidate set determines the model dimension and also the dimension of the triangu-
lation. High dimensional spaces have the tendency to become very large and empty. This
introduces problems when not enough flight-test data is available or the distribution of the
flight-test data over the measured domain is insufficient. This is mainly caused by physical
limitation of the aircraft or aviation restrictions. The missing flight-test data will create voids
in high dimensional spaces resulting in empty simplices, poor performing simplices because
of bad data distribution and inner model discontinuities. Therefore it was decided to reduce
the size of the candidate set by using the assumption that some model states and control
variables are independent. This decoupling creates two groups of variables: longitudinal and
lateral. Another option is to remove a variable from the MSBS process and introduce it as
a global variable. More research and experiments will be performed on physical-splines, on
how they can contribute and help identifying sparse datasets and making the method more
robust.
Creating a triangulation is not a trivial process and is difficult to visualise for dimensions
n > 3. For this research project it is decided to use n-hyperrectangles as a basis and include
simplices inside the hyperrectangle so they form together the triangulation. The multiple n-
simplices keep alignment to each other such that all (n− 1)-faces are aligned. This alignment
is very important for creating continuity in the splines model. An algorithm used for creating
the geometric support structure is called the Kuhn Triangulation and will be used in this
research project. The complexity of the triangulation can be changed by adding more hyper-
rectangles per dimension. As mentioned before the quality of the triangulation depends on
the flight-test data used. Methods were introduced in this preliminary thesis to visualise the
multidimensional data and optimise the triangulation. A matrix-plot visualises the pair-wise
relation between the variables of a candidate-set and the distribution of the flight-test data.
Outlying measurements in the flight-test data and regions with low number of measurements
can be indicated. K-means clustering in combination with a silhouette validation can be used
to determine if clustering occurs in the flight-test dataset. Quality improvement options,
due to problems caused by the flight-test data, that can be considered are 1) delete outlying
measurements, 2) create multiple spline models based on clusters, 3) delete simplices and
use extrapolation techniques such as differential constraints afterwards, 4) use physical con-
straints and 5) change the orientation of simplices in the hyperrectangle. The latter method
makes use of a 2-dimensional transformation, or planer rotation, of the coordinates of vertices
and therefore effectively rotating the simplices within the triangulation. Multiple rotations in
different dimensions are possible. As a results a different triangulation is obtained. Including
the rotation in the aerodynamic modelling process an optimal orientation of the triangulation
can be found. Also a consideration is to perform 1-dimensional transformations of vertices
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on the hyperrectangle boundaries and therefore effectively changing the convex hull or the
triangulation to reduce voids in boundary regions.

The polynomial model structure selection is very important in order to not over-fit the aero-
dynamic model and to select the most important model terms. The disadvantage of the
MSBS method is that the polynomial model structure selection is very limited. First because
of the lack of physical meaning of the B-coefficients and second because removing model
terms in the B-form will break the b-net structure and therefore the splines model. Basically
the polynomial model structure for the MSBS is determined by the splines model degree.
Changing the degree is the only manner how to influence the model structure. This can
cause problems especially when the non-linearities differ per simplex. Simplices with low
non-linearities will tend to over-fit quicker. Before implementing the physical-splines method
to the polynomial model structure selection, an initial model structure is created first. These
initial polynomials terms forming the structure are created by setting the degree. Next the
global B-form regression matrix can be transformed to a physical regression matrix using the
physical transformation. With the physical regression matrix the model terms can be anal-
ysed and (aerodynamic) modelling techniques can be implemented. The importance of model
terms, i.e. their significance, can be obtained by a forward orthogonal stepwise regression
method. For each step and each simplex the significance of al remaining, not yet selected,
terms are considered based on their significance. The significance is calculated as ERR. The
term with the highest ERR is the term selected because the ratio in reducing the error in the
model is the highest. The stepwise process continues until the error reduction of all terms
is known. The orthogonalisation process makes sure that the previous calculated ratios do
not change and the residual terms for each step are independent of each other. The main
difference, compared to conventional linear interpolation techniques, using a stepwise model
term selection approach is that terms cannot be deleted from the regression matrix. With
MSBS all terms form a part of the parameter optimisation process. Constraints have to be
created for each simplex and subjected to the optimisation process in order to influence or
delete terms. These constraints can be equality, inequality and bounded constraints.
Equality constraints created are the smoothness constraints in Barycentric space for splines
model continuity between simplices, decoupling of terms constraints and model selecting/
deleting terms constrains based on the ERR. The last two constraints are both created in
physical space. The decoupling of terms can make the physical interpretation of the model
easier and reduces the overall model size. The ERRs and optimal order of terms can be used
to 1) exclude physical terms with a ERR lower than a certain threshold, 2) after a certain
fit-error is reached all remaining physical terms are excluded and 3) the PSE introduces a
penalty for every physical term added and will result in an optimal number of terms, other
terms are hard constraint.
Inequality or bounded constraints can be created based on the a-priori knowledge of the dy-
namics of the Cessna Citation II to be modelled. For example, some stability derivatives
are known to be negative or bounded in certain regions. Stability derivatives in engineering
perspective are known as constants. However degree > 1 models will lose the engineering
perspective and have functions as stability derivatives. These partial stability derivatives will
create non-linear constraints. Furthermore the outcome of stability derivatives within the
domain of a simplex are of importance only. In order to maintain the linear in parameters
optimisation process and subject the stability derivative constraints to the simplex domain
only, a grid method is introduced. This grid method creates multiple data-points depending
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on the grid size within a simplex domain. All these data-points are substituted in the partial
derivatives and form individual inequality constraints. Afterwards the grid density assump-
tion can be verified by using root finding methods and check if the inequality constraints are
not violated. The constraints, except the continuity constraints, can be different for each
simplex.

After the constraints are created the last phase, the parameter estimation, starts. First the
physical constraints are transformed to barycentric space using the inverse of the physical
transformation. Performing regression in barycentric space is preferable because of the nor-
malised coordinate system. This reduces the condition number and numerical problems. Next
a cost function is created using the OLS optimisation. For modelling highly non-linear dy-
namics, when correlation between the residuals cannot be assumed zero, GLS are advised.
Optimisation problems with equality constraints only, can be solved with the KKT conditions.
For very large matrices an iterative solver exists. For inequality constraints multiple methods
are researched. Two of them are the active-set method and the interior-point method. Both
methods have good results, but their performance depends on the number of inequality con-
straints violated. When computational time is important, for example in on-line modelling,
one of the methods can be favourable. Finally the aerodynamic model created is validated
and an assessment of the quality is given. To support the assessment the model residuals are
analysed, the physical parameters and outcome of the validation dataset are analysed and a
stability and statistical analysis is performed.

The aerodynamic modelling process using the MSBS in this preliminary thesis was researched
and combined with the physical-splines transformation. The new formulation is compared to
the current aerodynamic process and new possibilities were explored. This has resulted in
that new and conventional aerodynamic modelling techniques, requiring a physical interpre-
tation, are added to the modelling process. With the physical interpretation a per-simplex
polynomial model structure can be created that not only reduces the overall model size, but
also prevents over-fitting. In future work the new high-fidelity Cessna Citation II model will
be created and integrated to current flight simulation framework. The new aerodynamic
model will be compared to the base-line model in terms of continuity, model approximation
power, computational efficient and applicability in (adaptive) model based control allocation.
With help of the newly developed methodology the stall dynamics will be integrated into the
aerodynamic model. This research work will contribute in the form of a new methodology and
finally a new high-fidelity full flight envelope aerodynamic model of the Cessna Citation II.
This high-fidelity model will help air-carrier pilots train on flight simulators and will increase
safety in aviation.
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Test Case One - Non-Linear
Performance

This test case measures the performance of the MSBS technique using the method described
in Chapter 2-5, and the tools developed in this thesis. In search for a high non-linear dataset
the author came across some pictures of mountains and thought of Digital Elevation Model
(DEM) data. This DEM data is available on the internet for free, (Ferranti & Christoph Hor-
mann, n.d.). The source of this data is NASA Shuttle Radar Topographic Mission (SRTM).
Specifically the data used in this test case is part of the SRTM30 dataset, meaning it consists
of measuring points in a grid form every 30 metres lateral and longitudinal. The elevation,
measured perpendicular from the lateral and longitudinal plane, has an accuracy of 1” which is
approximately 2.5 cm. From the DEM file data points where extracted where the Matterhorn
is located. The Matterhorn is a high (4.478 m), iconic mountain in Switzerland, Figure A-1.
A two dimensional n = 2 model will be created with input the lateral and longitudinal GPS
coordinates and output the elevation.

In this test case the influence of the degree, triangulation size (nTRI), continuity and setting
a limit on the error reduction ration (ERR) are examined. Models with degree 1, 2 and 3 are
created together with a continuity of C−1, C0 and C1, quadrilateral shaped equal sized trian-
gulation of 1x1 up to 15x15 and 5 limits for the ERR. This forms a total of 810 combinations.
Other model information is saved as well, such as the calculation time and the estimated
parameters. A scatter plot shows that the data is nicely distributed over the the trian-
gulation. Hence there is no need to optimise or rotate the hyperrectangle based on the dataset.

Figure A-2 shows how the triangulation influences the decrease of the the retaliative
root mean square error (RMS). The three plots belong to degree 1, 2 and 3 models with
no continuity constraints. The degree 2 and 3 models drop below 5% RMS when the
triangulation size is around 2x2. The linear model requires a larger triangulation size before
the same RMS error is reached. Increasing the triangulation size clearly shows a saturation,
i.e. possible indication of overfitting, at around the size of 7x7. Based on this result the test
continues with a model of degree 3 and a triangulation size of 7x7.
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Figure A-1: The Matterhorn
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Figure A-2: This graphs shows how the triangulation influences the decrease of the the retaliative
RMS error. The three plots belong to degree 1, 2 and 3 models with no continuity constraints.
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Next the limits on the ERR are introduced. For each simplex it is determined what the ERR
per parameter is using the orthogonalisation method. This method gives the opportunity
to use higher degree models with a large variation in non-linearity. A high variation in
non-linearity requires for some simplices to have a high degree model where other simplices
suffice with a lower degree model. This method prevents over-fitting the ”lower” non-linear
simplices by introducing physical hard constraints on low-influential parameters, i.e. with
a low ERR. An additional benefit is the reduction of the model size in terms of storage.
Figure A-3 shows the influence of no continuity constraints (C−1) and 0th and 1st order
continuity constraints in combination with hard constraints on physical parameters with a
low error reduction ratio (ERR). The purple line indicates the relative physical constraint
count (PCcount), i.e. the percentage of parameters hard constraint to zero depending to the
ERRlimit set. The model is of degree 3 with a 7x7 triangulation. Notice the propagating
effect in between simplices due to the increasing continuity constraints in combination with
the increasing PCcount physical constraints. Increasing continuity either requires an increase
of model degree or decrease for the ERR limit. Based on this results the optimal Matterhorn
model with zero order continuity will have a degree of 3, a triangulation size of 7x7 and 20% of
its physical parameters hard constraint. This model is identified using a dataset with a total
of 38701 elevation measurements and has 752 non-zero physical parameters. The calculation
time equals 1.75 seconds. A plot of the Matterhorn using the MSBS model is displayed in
Figure A-4.
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Figure A-3: The graphs shows the influence of no continuity constraints (C−1) and 0th and
1st order continuity constraints in combination with hard constraints on physical parameters
with a low error reduction ratio (ERR). The purple line indicates the percentage of parameters
hard constraint to zero depending to the ERR limit set. The model is of degree 3 with a 7x7
triangulation.

Figure A-4: The Matterhorn using multivariate simplex splines
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Test Case Two - Aerodynamic
Moment Cm

This test case is performed to determine the dimensionless moment model Cm around the
y-axis. States selected for the two initial model structures are (α, q, M , δe) and (α, q, M ,
δe, h). Making it a 4-dimensional and 5-dimensional model respectively. These states are
chosen in order to make a comparison to the baseline model. Other combination of states and
dimensions are possible. Test runs are performed for degree 1 and degree 2, no continuity and
C1 continuity, 8 triangulations and 5 minimum err values. Furthermore when some simplices
are empty the triangulation is rotated to find an optimal orientation. For degree 2 models
the decoupling of terms is also tested.

The data set used has 3211 and Hardover inputs on the elevator. It has more than 100,000
measurement points. The measurements are between Mach 0.2-0.6. The data is plotted in a so
called 4D matrix plot in Figure B-1. This matrix plot shows the distribution of measurements
between the states. The measurements of states α, q and δe are distributed normally over
the measured range. However measurement for a higher Mach numbers, > 0.35, are limited.
Matrix plot (4,3) shows clearly that many manoeuvres were executed between Mach 0.2 and
approximately Mach 0.37 and around Mach 0.4. Other Mach numbers will create voids in the
hypercube based triangulation because of missing measurements. Therefore it was decided
for this model to omit measurements of Mach 0.4 and higher. Eight different triangulation
types are tested. Type 1 is a single 4D hypercube. Other triangulation types have extra
hypercube(s) on certain axis. Table B-1 gives a summery of the total number of simplices
per triangulation type in the second column. In the third column the number of empty
simplices and the fourth column the number of empty simplices after an ”optimal” rotation
are tabulated. After rotating triangulations types 1 to 5 all have data points in all simplices.

Next two plots (Figure B-2 and Figure B-3) are created to see the performance, measured in
the relative root mean square error (rmsrel), for each triangulation type. The models in plot
B-2 do not have continuity. The green lines represent S−1

1 (TnTRI), the blue lines S−1
2 (TnTRI)

and the red lines S−1
2 (TnTRI) where terms are decoupled. The dotted lines indicated the

optimal rotation triangulation. The colour representation in plot B-3 is similar only the
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Figure B-1: 4D plot of flight test data

Table B-1: The number of simplices and empty simplices for different triangulation sizes and
the influence of rotating the triangulation

nTRI Number of Simplices Empty Simplices Empty after Rotation

1: [1 1 1 1] 24 0 0
2: [2 1 1 1] 48 6 0
3: [1 2 1 1] 48 12 0
4: [1 1 1 2] 48 9 0
5: [2 2 1 1] 96 21 0
6: [2 1 1 2] 96 24 3
7: [1 2 1 2] 96 32 8
8: [2 2 1 2] 192 80 29
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models have C0 continuity. When there is no continuity a small performance increase
can be seen when the triangulation size is increased. For C0 continuity there is minimal
difference between the triangulations for the degree 1 model and the decoupled degree
2 model. Neither of the models is convincing. To prevent over-fitting the degree 1 with
[1 1 1 1] triangulation model is used in this demo. An interesting note is that the optimal ro-
tation triangulation of this particular model performs better than the ”original” triangulation.

In Figure B-4 the influence of hard constraints based on the error reduction ratio (err)
of terms is plotted. When increasing the minimum level of err almost no terms are hard
constraint. However with err level #6 this increases. While the RMSrel almost doesn’t
change the the coefficient of determination drops to almost zero. In the final model it was
decided not to hard constraint any terms. The final model is Cm(α, q, M , δe) ∈ S0

1(T1111=24)

In Table L-1 (appendix) individual simplex information and statistical analysis is tabulated.
Two simplices, 3 and 13, have high maximum variances. One explanation can be the rela-
tively low data density of this simplex. It is checked that it is neither caused nor solved by
”removing” the continuity. Other simplices which require extra attention are simplex 1 and
2. Both have a low ERR value, meaning that the available terms do not have a high enough
approximation power. An explanation can be that these simplices cover a more non-linear
part of the flight envelope. A solution is to use a more complex model structure for these
simplices. But one has to be careful and needs to check for data errors or noise first to prevent
unwanted modelling.

Tables L-2 and L-3, in appendix L, show the physical model parameters of the initial triangu-
lations and the optimal rotation triangulation respectively. While rotating the simplices are
placed differently within the hypercube, this creates other neighbouring simplices compared
to other rotations. This in combination with continuity gives different results for ”poor”
performing simplices. The poor performing simplices are again simplex 3 and 13 in Table L-2
(appendix) and 1 and and 2 in Table L-3 (appendix) . These simplices have extreme high
parameters for Cmq , but less high compared to the rotated triangulation. Something else
that requires attention is that some parameters Cmα are positive. The results of the 5
dimensional model are not plotted. They did not differ very much and the parameter related
to the altitude h was estimated to be zero. Indicating it has almost no influence.

To conclude the model created for Cm is very linear. The simplex parameters are very sim-
ilar. Increasing the dataset used and the flight envelope will probably change this. Another
point of interest is to change the initial model structure and add states like the side-slip
angle β. Also some simplices need extra attention. In order to improve the quality of these
simplices additional constraints are required or they are extrapolated afterwards. It will be
advantageous when outlier data points can be included or empty simplices can be modelled
to guarantee inner model continuity. A solution is to extrapolate into these simplices us-
ing modelled surrounding simplices and outlying data-points. Also a dataset with multiple
clusters can be modelled by individual hypercubes triangulations. The void between these
clusters can be extrapolated by stretched hypercubes using the modelled neighbouring hy-
percubes. Overall the physical-spline model parameters performed good compared with the
existing baseline model. In Table B-2 the estimated parameters, including mean and variance
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Figure B-2: nTRI x RMSrel with no continuity

is given. Table B-3 compares the results with the current base-line model from (Hoek et al.,
2017). Figure B-5 shows the plot of the validation output and the model output using the
validation dataset.
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Figure B-3: nTRI x RMSrel with C0 continuity

Table B-2: Estimated parameters mean and variances for n = 4, d = 1, r = 0, [1 1 1 1]

θ̄ θmin θmax σ̄(θ)2 σ(θ)2min σ(θ)2max

Cm0
-0.06 -0.14 -0.03 3.51 ×10−5 1.74 ×10−6 2.10 ×10−4

Cmα -0.4 -0.53 -0.34 4.67 ×10−5 1.74 ×10−5 8.61 ×10−5

Cmq -10.42 -12.96 -8.88 3.35 ×10−2 2.62 ×10−2 5.15 ×10−2

CmM
0.21 0.13 0.56 2.41 ×10−4 1.55 ×10−5 1.40 ×10−3

Cmδ
-1.11 -1.49 -0.95 3.35 ×10−4 4.08 ×10−5 1.70 ×10−3

Table B-3: Validation fit statistics compared to the base-line model, using 20% of the data as
validation set

RRMSE (%) RRMSEB (%) R2 R2
B

Cm 2.1 5.8 0.84 0.76

Full Flight Envelope Aerodynamic Modelling of the Cessna Citation II using Physical Splines F.J.A. Huisman



130 Test Case Two - Aerodynamic Moment Cm

Figure B-4: ERRlim × RMSrel with C0 continuity and nTRI 1: [1 1 1 1]
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Figure B-5: Model output of Cm when using validation dataset. Blue is the output of the
validation and orange the output of the model using the validation dataset
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Appendix C

Differential Constraints Boundary
Direction

This section contains a description of the proposed solution to determine the correct normal
direction (sign) of the differential constraints on the triangulation boundary facets of simplices.

The vectors û and p̂ are unit vectors, hence the hat symbol. The vectors are origi-
nated somewhere on the edge of a (n-1)-face of a n-simplex. û indicates the direction of the
differential constraints and is by definition perpendicular to the edge. p̂ indicates the direction
to the out of edge vertex, see figure 1. The Matlab function bsplinen_calcEdgeNormals.m

is used to create the constraints. However the vector direction û has to be verified if it is
pointing outward, away from the simplex. For a n-simplex the out of edge vertex is always on
one side of the extend (n-1)-face. Therefore the angle θ, between p̂ and the inward pointing
direction vector −û, is always 0 < θ < 90. Since unit vectors are used two isosceles triangles
can be formed with two different bases. The base length is determined by the magnitude of
θ and 180− θ. Using the properties of an isosceles it is possible to prove that one base length
is always longer than the other and corresponds to the direction vector pointing outward,
away from the simplex.

This is illustrated in the figure where ν1 ν2 is the 1-face of the 2-simplex ν0, ν1, ν2. The out
of edge vertex is ν0. In the figure this 1-face is a line. n1 and n2 are forming the bases of the
isosceles triangles. Their length is calculated using

n1 = ||p̂− û|| (C-1)

n2 = ||p̂− (−û)|| (C-2)

Using the properties of an isosceles in combination with the property 0 < θ < 90 it is easy
to verify that one base, n1, is longer than the other base. This base with the longest length
corresponds the the correct direction vector û.
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Figure C-1
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Matlab Code

The aforementioned method is applied using the Matlab code below

1 mid = sum(phie)/n; % Mid-point of simplex edge normal

2 phio = setdiff(PHI(TRI(i,:),:),phie,'rows'); % Out of edge vertex

3 po = (phio-mid)/norm(phio-mid); % norm direction of out of edge vertex

4 ne1 = norm(normvect - po);

5 ne2 = norm(normvect.*-1 - po);

6 if ne2 > ne1

7 normvect = normvect .* -1;

8 end
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Test Case Three - Differential
Boundary Constraints

Measured and instrument noise in aircraft test-data results in divergent behaviour on the
triangulation boundaries. Poor data distribution in boundary simplices in combination with
the higher barycentric Bernstein terms located on triangulation edges are found to be the
main cause for this problem. This is illustrated by figure D-1 This problem was partially
solved by introducing differential constraints on the location of B-coefficients normal to the
edge facets boundaries. The differential constraints of B-coefficients shared by multiple sim-
plices will have the mean direction of the different normal directions edge facets. Figure D-2
shows the location and direction of the differential constraints on the used triangulation. The
differential constraints set the second order derivatives to zero. Figure D-3 shows the effect
of using differential constraints. The divergent behaviour still exists. However the magni-
tude of the divergence is significantly lower compared to the no-constraints experiment. For
the experiment involving physical inequality constraints two bounds are set on the stability
derivatives Cmα and Cmδe

with grid density τ = d. The bounds are based on earlier created
models of the Cessna Citation II aircraft and test flights and are given by

−2 ≤ Cmα ≤ 0 (D-1)

−3 ≤ Cmδe
≤ −0.5 (D-2)

The result is plotted in figure D-4. The divergent behaviour on the boundaries completely
disappear. This example shows clearly the advantage of having a physical interpretation of
model. Not only are they used to obtain more knowledge, they also remove errors and control
the flight-test data in a more appropriate way. Beside removing the divergent behaviour
on the boundaries, the physical inequality constraints also contribute in a more realistic
aerodynamic model. The physical inequality constraints only control the derivatives on the
grid points location. Between the grid points it is possible that the constraints are violated.
Therefore the physical inequality constraints can be considered as a relaxation method. Root
finding algorithms for higher degree and dimensional models are highly non-linear. Since
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Figure D-1: Spline model of Cm(α, δe) using flight-test data with no constraints added to the
optimisation process
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Figure D-2: The triangulation including the differential constraints location and direction. Or-
ange vectors indicate shared differential constraints.
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Figure D-3: Spline model of Cm(α, δe) using flight-test data with second order boundary facets
differential constraints added to the optimisation process
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Figure D-4: Spline model of Cm(α, δe) using flight-test data with bounded physical inequality
constraints added to the optimisation process. The physical inequality constraints are based on
advance aerodynamic information of the aircraft using the stability derivatives.
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the convex optimisation problem is preferable it is decided to use the grid-approach. In the
experiment the grid density of τ = d was found to be appropriate. The grid, in combination
with this density, controls the stability derivatives of the aerodynamic model very well during
the optimisation process.
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Test Case Four - Physical Constraints

To obtain better insight knowledge what the physical constraints actually do and how they
influence the parameter estimation process and other constraints, a test is set up. A Franke
function is created and noise is introduced to the data. The dataset is split in a 60% identi-
fication set and a 40% validation set. Before noise is added to the data, a MSBS model was
created with degree d = 5 and no continuity using a T (6, 6) hypercube triangulation. The
derivative with respect to the physical variables x1 and x2 was calculated. These derivatives
are used to determine the derivative values based on grid-points on a per-simplex basis. These
derivative values are used later on to create bounded physical derivative inequality constraints
for each simplex and serve as physical a-priori information. Eight different models are created
using the noisy data and compared afterwards. All models have degree d = 5, a T (6, 6) hyper-
cube triangulation and no continuity or C0 continuity. Models 1 and 2 have no constraints,
models 3 and 4 have physical derivative bounded inequality constraints, models 5 and 6 have
model structure equality constraints based on a stepwise orthogonalisation methods and a
per-simplex validation over-fit check and models 7 and 8 have both constraints combined.

E-1 Results and Discussion

The statistical results are tabulated in E-1. Comparing model 2 with model 1 the influence
of continuity is clearly visible. Continuity smooths the model while decreasing the variance
and therefore reducing the effect of noise. The other results show that the constraints have a
positive effect in improving the model. Especially the model structure constraints prevent the
model from over-fitting. Table E-2 shows information about global derivative values, including
their maximum, minimum, mean and variance. For comparison the derivative values of the
Franke function is given in the bottom row. An interesting observation is that all physical
constraints have the ability to lower the variance of the derivative significantly and obtain a
near identical mean compared to the reference Franke function without noise. The previous
is also clearly visible in figures E-1, E-2, E-3 and E-4, plotting the results for model 1 & 2,
model 3 & 4, model 5 & 6, and model 7 & 8 respectively. Smoothness constraints are able
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to suppress the noise to a certain extent, however high variance and divergent behaviour on
triangulation boundary still exists. Adding physical information in the form of constraints
have a great advantage as is visible in the variance plots E-5, E-6, E-7 and E-8, again plotting
the results for model 1 & 2, model 3 & 4, model 5 & 6, and model 7 & 8 respectively.

E-1-1 Conclusion

In general over-fitting the model depends on certain aspects. Among them is the triangulation
density, i.e. how many hypercubes are combined. Optimising for an optimal triangulation is
a difficult non-linear process. Using a Kuhn triangulation and combining multiple hypercubes
makes this process easier. However sometimes some parts of the domain do require a more
dense triangulation with the consequence other parts of the domain are too dense. Another
aspect is the degree of the basis functions. In barycentric space the degree determines the
very important B-net. Influencing the model structure in barycentric space is only possible
by changing the degree. The continuity, often determined by a model requirement, also
influences the degree. Higher order continuity requires a higher degree. A relation between
the real approximation power, degree and continuity was found to be d− r−1. Similar to the
triangulation density a dynamic approximation power for different parts of the domain can
be required. The physical-splines formulation turns out to have favourable properties. The
B-net can be adjusted via a physical model structure selection using orthogonalisation and
therefore a prevention of over-fitting. Furthermore physical information can be introduced to
the optimisation in the form of bounds. For aerodynamic modelling these bounds are based
on the extensively studied stability derivatives. The latter inequality constraints lower the
model parameter variance, prevent over-fitting, removes and prevents propagating erroneous
data and introduces a more easy single-optimisation extrapolation approach. Researching the
newly obtained properties of the physical-splines the following conclusions are made:

• a good practice for the maximum number of model structure constraints was found to
be d̂r,

• it is better to not constraint linear terms,

• if the optimisation is infeasible a good practice to constraint coupled terms only,

• continuity presses the bound of the derivatives,

• therefore do no tighten the derivative inequality bounds too much or,

• stretch these set bounds when increasing the continuity and check afterwards if deriva-
tives are on the bounds,

• the grid used to determine the linear derivative inequality constraints based on the
B-net location has a better performance than randomly creating this grid,

• grid points equal to the B-net density turned out to be sufficient to make the derivative
constraints effective,

• increasing the grid density showed little effect,
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Table E-1: Statistical results using the validation dataset, where R2 is the coefficient of deter-
mination and RMSE and RRMSE the root mean squared error and relative root mean squared
error.

Model R2 RMSE RRMSE

No constraints
Model 1, C−1 0.98 4.2 3.2%

Model 2, C0 0.99 3.0 2.3%

Physical derivative
bounded constraints

Model 3, C−1 0.99 2.9 2.3%

Model 4, C0 0.99 3.0 2.3%

Physical Model Structure
constraints

Model 5, C−1 0.99 3.2 2.5%

Model 6, C0 0.99 2.9 2.2%

Combined constraints
Model 7, C−1 0.99 3.0 2.3%

Model 8, C0 0.99 2.9 2.2%

• test for over-fit, using validation data, per simplex individual, without constraints yields
good results,

• the stepwise orthogonalisation preferable order determination shows better results using
a normalised dataset,

• derivative bounded constraints can be used for extrapolation,

• by doing so, the extrapolated simplices in combination with continuity constraints have
a small influence on the interpolated simplices,

• physical based constraints perform better in terms of over-fit prevention, lowering pa-
rameter variance and smoothing compared to continuity constraints,

• physical derivative constraints remove and prevent propagating erroneous data and
divergent behaviour at the triangulation boundaries.

• too many constraints can make the optimisation infeasible or will results in a trivial
solution, i.e. a constant model or all simplices individual models are equal,

• the Kuhn triangulation can also be used for cluster detection in the flight-test data.
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Table E-2: The output of the derivative spline functions with respect to x1 and x2 using grid data
points on top of the triangulation. The maximum, minimum, mean and variance are calculated.

Model dx1max
dx1min

¯dx1 var(dx1) dx2max
dx2min

¯dx2 var(dx2)

Model 1, C−1 44.75 -17.85 -0.16 15.65 23.47 -73.06 -0.55 19.84

Model 2, C0 44.75 -21.51 -0.33 7.98 10.79 -67.77 -0.51 10.84

Model 3, C−1 2.59 -3.27 -0.41 1.03 2.41 -3.24 -0.33 1.23

Model 4, C0 2.59 -3.27 -0.41 1.03 2.41 -3.24 -0.32 1.22

Model 5, C−1 14.06 -10.26 -0.42 1.61 2.71 -14.24 -0.34 1.57

Model 6, C0 4.08 -5.02 -0.43 1.41 3.81 -10.48 -0.29 1.73

Model 7, C−1 2.39 -3.22 -0.42 0.96 2.29 -3.14 -0.33 1.15

Model 8, C0 2.57 -3.25 -0.41 0.99 2.41 -3.24 -0.32 1.20

Franke Function 2.58 -3.28 -0.40 1.00 2.41 -3.23 -0.32 1.19

Figure E-1: Franke function containing noise with no constraints and no continuity left and no
constraints and 0th order continuity right.
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Figure E-2: Franke function containing noise with no continuity left and 0th order continuity
right. Both models have physical bounded derivative inequality constraints.

Figure E-3: Franke function containing noise with no continuity left and 0th order continuity
right. Both models have physical model structure selection equality constraints.
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Figure E-4: Franke function containing noise with no continuity left and 0th order continuity
right. The two models have both constraints combined.

Figure E-5: Variance of Franke function containing noise with no constraints and no continuity
left and no constraints and 0th order continuity right.
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Figure E-6: Variance of Franke function containing noise with no continuity left and 0th order
continuity right. Both models have physical bounded derivative inequality constraints.

Figure E-7: Variance of Franke function containing noise with no continuity left and 0th order
continuity right. Both models have physical model structure selection equality constraints.
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Figure E-8: Variance of Franke function containing noise with no continuity left and 0th order
continuity right. The two models have both constraints combined.
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Reference Frames
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Xb
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Figure F-1: Aircraft body-fixed reference frame Fb
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Figure F-2: Aircraft stability reference frame Fs
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Figure F-3: Relation between the inertial reference frame FI , Earth-Centred-Earth-Fixed (ECEF)
reference frame FC and the vehicle-carried normal Earth reference frame FE
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Flight Envelope
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Figure G-1: The Flight Envelope of the PH-LAB Cessna Citation II Aircraft. The blue dots
indicate the measured flight test data.
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Work Flow Block Diagram
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Figure H-1: Block diagram indicating the work flow for aerodynamic modelling with Multivariate
Physical Simplex B-Splines
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Appendix I

Matlab Code Physical Transformation
based on convolution

1 function [Lambda, iLambda] = LambdaF(TRIANG,d)

2

3 n = size(TRIANG.PHI,2);

4 T = size(TRIANG.TRI,1);

5

6 % Calculate polynomial basis function multi-index permutations

7 [pbasis, basisKt] = bsplinen_constructBasis(n, d);

8 dhat = size(pbasis, 1);

9

10 Lambda = zeros(dhat*T,dhat*T);

11 iLambda = zeros(dhat*T,dhat*T);

12

13 % Gamma Indexer

14 g = (2*d+2).ˆ((1:n)-1)+1;

15 g = [1,g];

16

17 % Indexer reversing Kronecker Substitution

18 kp = pbasis(:,2:end);

19 ig = zeros(dhat,1);

20 for i = 1:size(kp,1)

21 ig(i) = ig(i) + sum(kp(i,:).*(g(2:end)-1)) + 1;

22 end

23

24 for t = 1:T

25 % Create Cartesian to Barycentric transformation matrix

26 % such that b = A*x + k

27 simplex = TRIANG.PHI(TRIANG.TRI(t, :), :);

28 v0 = (simplex(1, :))';

29

30 [~, An] = bsplinen_cart2bary(simplex, ones(1, n));

31

32 A0 = -ones(1, size(An, 1)) * An;

33
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34 Kn = -An*v0;

35 K0 = 1 - ones(1, size(Kn, 1)) * Kn;

36

37 Axb = [A0; An];

38 kxb = [K0; Kn];

39

40 % Create Kronecker substituted cells representing the barycentric

variables

41 Ag = cell(n+1,1);

42 for i = 1:(n+1)

43 Ag{i} = zeros(2*((2*d+2)ˆ(n-1)+1),1);

44 Ag{i}(g) = [kxb(i),Axb(i,:)];

45 end

46

47 % Perform convolution for each column of Lambda using pbasis

48 Lambda_t = zeros(dhat,dhat);

49 for i = 1:dhat

50 Lambda_tc = [];

51 % The next two for-loops have d iterations, i.e. |pbasis | = d

52 for j = 1:(n+1)

53 for k = 1:pbasis(i,j)

54 if ~isempty(Lambda_tc)

55 Lambda_tc = conv(Lambda_tc,Ag{j});
56 else

57 Lambda_tc = Ag{j};
58 end

59 end

60 end

61 % Undo Kronecker Substitution and write to Lambda t

62 % and multiply with multivariate coefficient

63 Lambda_t(:,i) = basisKt(i).*Lambda_tc(ig);

64 end

65

66 % Write to global transformation matrix and determine the inverse

67 Lambda(((t-1)*dhat+1):(t*dhat),((t-1)*dhat+1):(t*dhat)) = Lambda_t;

68 iLambda(((t-1)*dhat+1):(t*dhat),((t-1)*dhat+1):(t*dhat)) = Lambda_t\eye(
dhat);

69

70 end

71

72 Lambda = sparse(Lambda);

73 iLambda = sparse(iLambda);

74

75 end
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Active-Set Method

Another method to solve a minimization problem subjected to inequality problems and equal-
ity problems is the active-set method. Recalling the minimization problem used to solve for
the B-coefficients

min
c

1

2
‖ B · c−Y ‖ (J-1)

subjected to

H · c = 0 (J-2)

Λ ·G · c = GB = 0 (J-3)

Λ · F · c ≥ v (J-4)

There are different ways how to use the active-set method. Assumed is that the inequality
constraints, regarding the aerodynamic coefficient, are most of the time met without con-
straints. An efficient way of solving and implementing the active-set method is described by
(Kuindersma et al., 2014) and (Harkegard, 2002). This algorithm verifies first if the inequality
constraints are violated. For the first iteration, k = 0, setup the KKT matrix with only the
equality constraints included

[
~cBk=0

~λk=0

]

=

[
~BTB ~HGT

B
~HGB

~0

]−1 [
~BTY
~0

]

(J-5)

next check if any inequality constraints are violated by solving for cBk
and check if

Λ · F · cBk=0
− v ≥ 0 (J-6)

The inequality constraints that are violated are added to the next active-set, k = 1, as
equality constraints. This process is repeated until none of the inequality constraints are
violated anymore. This process is explained in the pseudo code below

Full Flight Envelope Aerodynamic Modelling of the Cessna Citation II using Physical Splines F.J.A. Huisman



162 Active-Set Method

Data: When cBk
, containing only equality constraints, violates inequality constraints

use active-set method to solve for the minimization problem.
Result: An optimal solution for cB when subjected to constraints
while cBk

violates do
Solve for cBk

using KKT and active-set HGbFj ;
if Λ · F · cBk

− v ≥ 0 then
add violating constraints j to active-set HGbFj ;

else
if cBk

all satisfy then
break;

end

end

end
Algorithm 1: Active-Set Algorithm

The active-set method is successfully implemented in Matlab and can be selected within the
framework. An advantage of this algorithm is that it transforms into an “ordinary” KKT
matrix when there are no inequality constraints. Assumed is that on forehand not many
of the inequality constraints are violated, making it a fast method since less iterations are
required.

J-1 Matlab Code ExampleActive-Set Method

1 function coefs = qpActiveSet(X,Y,A,b,Aeq,beq,iter)

2 f = -X'*Y;

3

4 ciq = false(size(A,1),1); % Check IneQualities

5 ciqi = ciq; % Check IneQualities Index

6 ceq = true(size(Q,1)+size(Aeq,1),1); % Check EQualities

7 stopOpt = false; % Stop optimization

8 KKT = [Q Aeq' A';

9 [Aeq; A] zeros(size(Aeq,1)+size(A,1))];

10 BT = [-f; beq; b];

11 ep = 1*10ˆ-6;

12 k = 100; % Number of iterations

13 Xm3 = zeros(size(BT)); % Solution

14

15 while ~stopOpt

16 if iter == 1 % Use iterative solver

17 la = ones(size(Aeq,1)+size(A(ciq,:),1),1);

18 Xm3 = (2*Q + (1/ep)*[Aeq;A(ciq,:)]'*[Aeq;A(ciq,:)]) \ ...

19 (2*X'*Y - [Aeq;A(ciq,:)]'*la + (1/ep)*[Aeq;A(ciq,:)]'*[beq;b(

ciq,:)]);

20 for i = 1:k

21 Xm3 = (2*Q + (1/ep)*[Aeq;A(ciq,:)]'*[Aeq;A(ciq,:)]) \ ...

22 (2*Q*Xm3(1:size(Q,1)) + (1/ep)*[Aeq;A(ciq,:)]'*[beq;b(ciq

,:)]);

23 end

24 else

25 Xm3 = KKT([ceq; ciq],[ceq; ciq])\BT([ceq; ciq]);
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26 end

27 % Check for violating constraints

28 ciq(~ciq,:) = A(~ciq,:)*Xm3(1:size(Q,1))-b(~ciq,:)>0;

29 if sum(ciq(~ciqi,:)) <= 0

30 stopOpt = true;

31 else

32 ciqi = ciq;

33 end

34 end

35 coefs = Xm3(1:size(Q,1));

36 end
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Appendix K

Interior Point Method

The interior point method, sometimes called the barrier method, can be used to solve convex
optimization problems, both linear and non-linear subjected to constraints. To prevent vio-
lation of the inequality constraints a barrier term and Lagrangian multipliers λ for equality
constraints are added to the objective function J . It is necessary to rewrite/ augment the
constraints to standard form such that they are equal to 0 or ≥ 0. By introducing slack vari-
ables z, the inequality constraints are transformed into equality constrains ~S and the slack
variables form the inequality constraints. µ is a variable becoming each iteration k smaller
and approaching 0 when k → ∞ forming the barrier. The interior method introduced is
described by (Robere, 2012). First create the following matrix






~Wk ∇c
~S(ck) ~−I

∇c
~S(ck)

⊤ ~0 ~0
~Zk

~0 ~λk











~dck
~dλk
~dzk




 = −






∇ ~J(ck) +∇~S(ck)~λk

~S(ck)
~λkZke− µke




 (K-1)

where,
~Wk = ∇2

cc
~L
(

~ck, ~λk, ~zk

)

= ∇2
cc

(

~J(ck) + ~S(ck)− ~zk

)

(K-2)

and the Lagrangian with the multipliers and the slack variables is given by

L(c, λh, λm, µn) =
1

2
(Y −B · c)⊤(Y −B · c)+λ⊤

h ·H · c+ λ⊤
m · (M · c− v) + µ⊤

n · (N · c− z)

(K-3)

~λk =






λ1 0 0

0
. . . 0

0 0 λn




 , ~Zk =






z1 0 0

0
. . . 0

0 0 zn




 (K-4)

The objective function is minimized for c iteratively for k = 0, 1, . . . l After each iteration c,
the Lagrangian multiplier and the slack variables are updated according to

~ck+1 = ~ck + α ~dxk (K-5)

~λk+1 = ~ck + α ~dλk (K-6)
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~zk+1 = ~zk + α ~dzk (K-7)

Each iteration µ and step size α are updated. This, however, is a non-trivial process. A
method that can be used is the predictor-corrector technique.

Before the iteration process can start c has to be initialized first. Initialize c0, such that
c0 = feasible. An option is to initialize at zero, i.e. ~c0 = 0, ~λ0 = 0 and ~z0 = 0. If one decides
not to initialize at zero, λ0 and z0 can be calculated with

[
~I ∇c

~S(c0)

∇c
~S(c0)

⊤ ~0

] [
~w
~λ0

]

= −
[
∇ ~J(c0)− ~zL,0 − ~zu,0

~0

]

(K-8)

z0 =
µ

xo

(K-9)

An option is to rewrite equation K-1 into a linear symmetric system

[
~Wk + ~Σk ∇c

~S(c0)

∇c
~S(c0)

⊤ ~0

][
~dck
~dλk

]

= −
[

∇ ~J(c0) +∇~S(ck)~λk

~S(ck)

]

(K-10)

where
~Σk = ~X−1

k
~Zk (K-11)

After solving for ~dxk,
~dzk is calculated with

~dzk = µ~S−1
k ~e− ~zk − ~Σk

~dck where ~e = [1, . . . , 1]⊤ (K-12)

Next c, the Lagrangian multipliers and the slack variables are updated using the same equa-
tions (K-5), (K-6) and (K-7).

K-1 Interior Point Method for Multivariate B Simplex Splines

In this section the interior point method is used to solve for the B-coefficients. The following
multivariate B simplex spline function is minimized, where B is the B-matrix, c are the
B-coefficients and Y is the output data

min
c

1

2
‖ B · c−Y ‖ (K-13)

The spline function is subjected to equality and inequality constraints, where ~H are the equal-
ity constraints determined by the continuity/ smoothness, ~Λ ·G the hard equality constraints
on the parameters in physical space transformed to Barycentric space and ~Λ · F the inequality
constraints on the parameters in physical space transformed to Barycentric space as well. Λ
is transformation matrix between physical space and Barycentric space

H · c = 0 (K-14)

Λ ·G · c = 0 (K-15)

Λ · F · c ≥ v (K-16)
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The constraints are rewritten/ augmented to standard form and slack variables ~cs are in-
troduced next to the ~c-coefficients in order to rewrite the inequality constraints to equality
constraints. Combined they form the new ~cr vector.

Hr · cr = 0 (K-17)

Λ ·Gr · cr = 0 (K-18)

Λ · Fr · cr − v = 0 (K-19)

cs ≥ 0 (K-20)

The size of other matrices are changed according to the number of slack variables. Creating
new matrices and vectors with subscript r

~Hr =
[

~H ~0
]

, ~G =
[

~G ~0
]

, ~Fr =
[

~F −~I
]

, ~cr =

[
~c
~cs

]

(K-21)

The slack variables are introduced in the cost function (K-22)

~J(c) =
1

2
‖ Br · cr −Y ‖= 1

2

(

~Y −Br · c
)⊤ (

~Y −Br · cr
)

(K-22)

where
~Br =

[

~B ~0
]

(K-23)

The first derivative of the cost function is taken with respect to c

∇c
~J(c) = ~−B⊤ · Y +B⊤ ·B · c (K-24)

and the second derivative with respect to c.

∇2
cc
~J(c) = ~B⊤ ·B (K-25)

Note that the second derivative is constant for our minimization problem.

[
~B⊤
s Bs + ~Σk

~HGFs

~HGF⊤
s

~0

][
~dck
~dλk

]

= −
[

~−B⊤
s Y +B⊤

s Bscs +HGFsλk

~0

]

(K-26)

After each iteration the coefficients, the Lagrangian multipliers and the slack variables are
updated using equations (K-5), (K-6) and (K-7). An algorithm of the interior point method
described above is created in Matlab and successfully applied during regression.
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Results Aerodynamic Model Cm

Detailed
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Table L-1: Simplex information and statistical analysis, Cm(α, q, M , δe) ∈ S0

1
(T1111=24)

Simplex Data Points ERR σ(θ)min σ(θ)max Condition Number

1 737 0.77 8.31×10−06 7.88×10−03 13
2 11420 0.69 7.28×10−07 7.88×10−03 16
3 289 0.95 1.10×10−05 1.53 60
4 12 0.99 1.10×10−05 6.77×10−03 52
5 3085 0.87 8.04×10−07 6.17×10−03 9
6 202 0.97 2.99×10−06 2.68×10−03 15
7 1030 0.95 8.26×10−06 4.77×10−03 8
8 5479 0.94 6.61×10−07 4.77×10−03 12
9 894 0.97 5.02×10−06 4.77×10−03 12

10 3674 0.98 1.93×10−06 4.77×10−03 15
11 2432 0.92 6.25×10−07 4.77×10−03 19
12 2800 0.94 1.93×10−06 4.77×10−03 17
13 55 0.98 0 1.53 78.38
14 5 1.00 0 4.67×10−03 49723
15 829 0.96 0 7.84×10−03 16
16 3271 0.96 0 7.84×10−03 15.47
17 424 0.98 0 2.68×10−03 14
18 20876 0.81 0 2.97×10−03 24
19 3266 0.93 6.63×10−07 6.17×10−03 8
20 886 0.92 1.71×10−06 2.68×10−03 6
21 4100 0.88 4.49×10−07 8.71×10−03 16
22 10678 0.87 1.93×10−06 8.71×10−03 26
23 1206 0.93 6.03×10−07 2.68×10−03 8
24 16254 0.85 1.16×10−06 2.97×10−03 18
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Table L-2: Parameter coefficients of model Cm(α, q, M , δe) ∈ S0

1
(T1111=24)

Simplex Cm0
Cmα Cmq CmM

Cmδ

1 -0.1 -0.44 -10.29 0.36 -1.22

2 -0.04 -0.44 -10.29 0.18 -1.07

3 -0.81 -0.44 -43.77 2.65 -1.22

4 -0.87 -0.44 -10.00 2.65 -3.13

5 -0.04 -0.44 -9.12 0.18 -1.13

6 -0.06 -0.44 -10.00 0.24 -1.13

7 -0.1 -0.50 -9.14 0.36 -1.22

8 -0.04 -0.50 -9.14 0.18 -1.07

9 -0.04 -0.31 -9.14 0.12 -1.22

10 -0.04 -0.36 -9.14 0.12 -1.17

11 -0.04 -0.51 -9.14 0.18 -1.06

12 0.01 -0.36 -9.14 -0.01 -1.06

13 -0.26 1.43 -43.77 0.21 -1.22

14 -0.32 1.43 -10.00 0.21 -3.13

15 -0.07 -0.31 -10.42 0.21 -1.22

16 -0.06 -0.36 -10.42 0.21 -1.17

17 -0.04 -0.51 -10.00 0.21 -1.03

18 -0.06 -0.36 -12.89 0.21 -1.03

19 -0.03 -0.53 -9.12 0.18 -1.03

20 -0.05 -0.53 -10.00 0.24 -1.03

21 -0.03 -0.51 -9.62 0.18 -1.03

22 0.01 -0.36 -9.62 -0.01 -1.03

23 -0.04 -0.51 -10.00 0.21 -1.03

24 -0.06 -0.36 -12.89 0.21 -1.03
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Table L-3: Parameter coefficients of model Cm(α, q, M , δe) ∈ S0

1
(T1111=24) with optimal

rotation

Simplex Cm0
Cmα Cmq CmM

Cmδ

1 -0.15 0.29 -24.16 0.26 -1.07

2 -0.14 0.29 -24.16 0.22 -1.1

3 -0.17 0.29 -10.63 0.26 -1.84

4 -0.2 0.29 -9.13 0.36 -1.84

5 -0.48 0.29 -7.63 1.35 -1.1

6 -0.47 0.29 -9.13 1.35 -1.02

7 -0.07 -0.41 -10.63 0.26 -1.07

8 -0.06 -0.41 -10.63 0.22 -1.1

9 -0.09 -0.31 -10.63 0.26 -1.18

10 -0.03 -0.43 -10.63 0.11 -1.18

11 0.02 -0.58 -10.63 0.01 -1.1

12 0 -0.43 -10.63 0.01 -1.26

13 -0.07 -0.42 -10.63 0.26 -1.06

14 -0.1 -0.42 -9.13 0.36 -1.06

15 -0.08 -0.31 -12.72 0.26 -1.06

16 -0.02 -0.43 -12.72 0.11 -1.06

17 -0.02 -0.58 -9.13 0.16 -1.06

18 -0.04 -0.43 -11.92 0.16 -1.06

19 -0.01 -0.64 -7.63 0.13 -1.1

20 0 -0.64 -9.13 0.13 -1.02

21 -0.01 -0.58 -8.92 0.13 -1.1

22 -0.03 -0.43 -8.92 0.13 -1.26

23 -0.01 -0.58 -9.13 0.13 -1.09

24 -0.03 -0.43 -11.92 0.13 -1.09
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