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Abstract

Keywords: Cerebrovascular Reactivity, Image Registration Pipeline, Image Analysis, Radio-
therapy, MRI, CT

Introduction: Radiation is an effective treatment to increase the overall mean survival of
patients with metastatic brain tumours, however, damage to healthy tissue is inevitable. Radi-
ation can cause dysfunction of the cerebrovasculature, which is hypothesised to induce cognitive
decline in patients after radiotherapy (RT). A new method, the cerebrovascular stress test, is
able to visualise cerebrovascular reactivity (CVR), which is the ability of the vessels to dilate
after a vasoactive stimulus. Research suggests a link between reduced CVR and cognitive im-
pairment in patients, however, current studies have not yet shown if CVR is reduced in patients
with metastatic brain tumours. This thesis aims to assess CVR in patients with metastatic
brain tumours at baseline and after RT.
Methods: In this thesis, 13 patients with metastatic brain metastases were included and
underwent a magnetic resonance imaging (MRI) scan with a vasoactive stimulus at baseline
and three months after the same MRI scan with stimulus. On the same day as the baseline
MRI scan, the patients received RT. CVR maps were calculated using the MRI scan with the
vasoactive stimulus. An additional computed tomography scan was obtained from each patient
prior to their first MRI scan. All scanning data was brought into spatial correspondence with
a developed image registration pipeline. After the scanning data was registered image analysis
was performed using a VOI- and dose-based analysis.
Results: The performance of the image registration pipeline was close to optimal for the MRI
scans, and 69% for the baseline CT scan. The image analysis found a significant increase of
CVR at an increasing distance from the tumour for white matter (WM) (p = 0.050). For grey
matter (GM) and WM, a significant increase of CVR was found at 14 pixels away from the
tumour in comparison to 2 pixels away from the tumour (WM: p = 0.039, and GM: p = 0.046).
In the dose-based analysis, a nonsignificant decrease of mean CVR was found after RT. The
decrease in CVR after RT did also not depend on the received dose.
Conclusions: This thesis developed an image registration pipeline that can be used in further
analysis with this specific patient group and scanning data. The image analysis showed a
significant increase in CVR at a distance from the tumour for GM and WM. These results

indicate that BM influences the CVR of these patients. However, no conclusions can be drawn
based on the dose-based analysis. Additional research needs to be done to relate changes in
CVR to cognitive decline in patients with metastatic brain tumours.



Brain metastases (BM) occur in 20% to 40% of patients with cancer [1, 2] and are most com-
monly caused by melanoma, lung cancer, and breast cancer [3]. The most common treatment
options are radiotherapy (RT), an operation, chemotherapy, or a combination of these treat-
ments [4]. The choice of treatment depends on various aspects, such as the characteristics of
the tumour, medical history of the patient, and the general state of health of the patient [2,5].

The mainstay treatment is RT, and the treatment options for RT can be divided into
whole-brain RT (WBRT) and stereotactic radiosurgery (SRS) [6, 7]. WBRT irradiates the
entire brain to sterilise potential not yet visible BMs [8]. SRS delivers the treatment dose
locally in a single fraction and reduces the exposure of healthy brain tissue [7]. Although both
treatment options have an equal overall mean survival, cognitive decline is more common in
patients that received WBRT. [9–11]. Cognitive decline can have a devastating impact on
patients’ quality of life [12–14] because it can manifest itself as memory loss, loss of attention
span or other cognitive ability loss [15, 16]. These patients have an average mean survival of
only seven months if they receive treatment [17]. Therefore, maintaining a good quality of life
in these last months is important and should influence the treatment of these patients.

Radiation-induced cognitive decline occurs in up to 50-90% of the brain tumour patients
that survived six months after their irradiation treatment [18]. The cause of radiation-induced
cognitive decline is not yet fully understood. However, evidence suggests that one of the factors
that could cause radiation-induced cognitive decline is vascular insufficiency. This insufficiency
is caused by early forms of radiation-induced damage that can lead to ischemia and induce
neuronal death [19].

Irradiation treatment causes cerebrovascular injury that can alter the vasculature and its
function [18]. These alterations can include blood vessel dilation, endothelial cell damage,
and capillary loss, which can lead to disruption of the blood-brain barrier, increased blood-
brain barrier permeability and oedema in the brain [18, 20–22]. Additionally, RT can cause
cerebral microvascular rarefaction in structures that are important for cognitive functions [23].
Microvascular rarefaction is the loss of or decrease in capillary density [24] and might also
be associated with the development of cognitive impairment in patients after RT [25]. The
function of cerebrovasculature can be measured with a new technique: the cerebrovascular
stress test [26, 27]. This technique measures the ability of the vasculature to regulate blood
flow after a vasodilatory stimulus, which is also referred to as the cerebrovascular reactivity
(CVR) [28].

The measurements of this test can be visualised in a CVR map that can be acquired with an
advanced magnetic resonance imaging (MRI) technique while delivering an external vasoactive
stimulus. This stimulus aims to increase carbon dioxide (CO2) concentration in blood to
stimulate the cerebrovasculature to dilate. CVR maps may explain the connection between
cognitive function and brain vascular function because diminished vascular function may depict
itself as a reduced CVR in a CVR map [27]. Evidence suggests a link between a reduced CVR
and mild cognitive impairment [29]. Another study also showed that reduced CVR is related
to lower cognitive testing scores in participants [30].

Research suggests a link between reduced CVR and cognitive decline. However, it is not yet
established if BM influences the CVR in surrounding vasculature in patients with BM and if
CVR is reduced after RT in patients with BM. This research aims to assess this by evaluating
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the CVR of patients with BM at baseline and after RT. This is accomplished by obtaining CVR
maps of patients with MRI while they are undergoing an external breathing stimulus before
(baseline) and three months after RT (follow-up). The obtained data is analysed in a developed
image analysis pipeline that registers the data, removes certain artefacts, and analyses the CVR
data.

This report will give background information on basic brain anatomy, the workings of an
MRI scanner, the MRI sequences used in this study, CVR, and image registration. Afterwards,
the development of the image analysis pipeline and the process of the CVR analysis is discussed.
Subsequently, results of the image registration pipeline and the CVR analysis will be presented
and limitations will be discussed. Finally, the report will elaborate on prospects for future
research on this subject.
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2 Preliminaries

This chapter will provide background information on basic brain anatomy, the workings of MRI,
the three MRI sequences that were used in this thesis, and the mechanics behind the cerebral
vascular stress test. In the last section of this chapter, information about image registration
will be explained.

2.1 Brain anatomy

Fig. 1. MRI scan of the brain where dif-
ferent anatomical structures are specified.

The brain can be divided into two matters,
white (WM) and grey matter (GM). Surround-
ing the brain is a clear fluid that is called cere-
bral spinal fluid (CSF). This fluid is also lo-
cated inside the ventricles of the brain [31].
Figure 1 shows an example of an MRI scan of
the brain. GM is composed of neuron cell bod-
ies, non-neuronal cells that support the neu-
rons, and blood vessels. WM mainly consist of
fibre bundles and is responsible for communi-
cation between cerebral areas [31]. The den-
sity of capillaries is much lower in WM than in
GM [32]. Therefore, most of the expected re-
sponse during the cerebral vascular stress test
is from GM.

align with this field. In Figure 2, the precession of a dipole in the direction of B0 of a magnetic
dipole is illustrated [33].

When a patient is placed inside the MRI scanner, protons inside the body will align with
B0. This alignment in the direction of B0 means that the net magnetisation (M0) is in the
longitudinal direction. To create an image, the longitudinal net magnetisation needs to be
flipped into the transverse plane. This can be accomplished by producing a radiofrequency (RF)
pulse that tips the net magnetisation partially (¡90◦) or completely (90◦) into the transverse
plane. After the RF-pulse, the net magnetisation is flipped into the transverse plane, and
the protons start to precess in phase (see Figure 3a and 3b). The net magnetisation in the
transverse plane creates a signal that can be picked up by the MRI scanner [34]. The precession

4

2.2 Magnetic Resonance Imaging
Certain atomic nuclei become magnetised when placed in an external magnetic field. In MRI,
the focus is typically on hydrogen nuclei. These hydrogen nuclei have spin, which is a funda-
mental property of nature. The protons in the nuclei will behave like tiny rotating magnets and
have two different rotations, one around its axis and one around the second axis. The latter ro-
tation is also referred to as precession. The sum of all these tiny magnets is net magnetisation.
When the tiny magnets are placed inside a large external magnetic field (B0), the spins will



Fig. 2. Illustration of a mag-
netic dipole that is precessing in
the direction of the main mag-
netic field. The ring visualises
the precessing motion of the mag-
netic dipole. This image is repro-
duced and adapted from a book
written by Buxton et al. [34]

frequency of the spins (v0) is proportional to the mag-
netic field it is experiencing (B) and the gyromagnetic
ratio (γ), which is different for each nucleus (Equation
1). [34]

vo = Bγ (1)

After the net magnetisation is flipped into the trans-
verse plane, the RF-pulse (also referred to as the excita-
tion pulse) is switched off. The protons start to dephase,
and the net magnetisation will return to the longitudinal
direction. This process is called T1 relaxation. The dis-
appearance of the magnetisation in the transverse plane
is referred to as T2 relaxation. The differences between
T1 and T2 relaxation times for each type of tissue allows
for physiological contrast in MRI images. Water has a
long T1 and T2 time, and fat has a short T1 and T2
time.

Part of the T2 relaxation is due to the recovery of the
longitudinal magnetisation, but most of the relaxation is
caused by dephasing of the spins in the transverse plane.
Dephasing is caused by molecular interaction between
the spins (pure T2-relaxation) and field inhomogeneities
in the magnetic field (T2*-relaxation). The dephasing
caused by molecular interaction is random and cannot
be influenced. The field inhomogeneities are constant and will not change as long as the patient
is inside the scanner. [34, 36]

The process of relaxation is quick, and the signal of the spins in the transverse plane decay
exponentially. Fast exponential decay of the signal does not provide sufficient time for the
MRI scanner to sample all data within one repetition time (TR). A TR is a time between each
RF-pulse. This issue can be combatted with the generation of echoes. An echo is created by
returning the signal after it has been decayed by reversing the dephasing of the spins. The time
between the RF-pulse and the echo is called the echo time (TE).

There are two main types of methods to generate these echoes, the spin echo and the
gradient echo technique. Spin echo techniques involve the application of a 180◦ pulse after the
90◦ RF-pulse to refocus the dephasing of the spins. This results in an echo that has a slightly
weaker signal than the signal after the 90◦ RF-pulse. Conversely, the gradient echo uses a single
RF-pulse followed by the application of a gradient to generate the echo. The spin and gradient
echo are visualised in Figure 4 [37]. In this study, both techniques are used. The T1-weighted
(T1) scan and the BOLD scan uses the gradient technique, and the T2-weighted FLAIR (Fluid
attenuated inversion recovery) scan makes use of the spin echo technique.

Additionally, other gradients are used to provide spatial information. These gradients vary
linearly in strength, and the strength depends on the position and the area that is being scanned.
The spatial information is obtained with three separately positioned gradients in the x-, y- and
z-direction. A slice selection gradient is used to select an anatomical volume of interest. This
gradient, for example, creates a lower magnetic field in the neck of the patient that linearly
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Fig. 3. Recovery of longitudinal magnetisation after an RF-pulse of 90◦. A) The protons are
aligned with B0 in the z-direction. B) The net magnetisation is flipped into the transverse plane,
and the protons precess in-phase (depicted with one red vector in the circle). C) The protons
start to precess out of phase, the longitudinal magnetisation starts to recover and transverse
magnetisation decreases (depicted by the circle with multiple red vectors). D) Recovery of the
longitudinal magnetisation is also referred to as T1 relaxation and disappearance of magneti-
sation in the transverse plane (T2 relaxation). This image is reproduced from a book written
by Currie et al. [35]

increases, and the higher magnetic field is in the top of the skull. The precession frequency of
the spins will vary depending on the gradient, and the RF-pulse needs to match this frequency
to flip the spins into the transverse plane. Therefore, only the spins in the selected volume of
interest will generate a signal.

Slice is selected with the slice selection gradient. The second step in spatial encoding is
applying a frequency encoding gradient to alter the main magnetic field in the selected slice
by changing the precessing frequency slightly more or less than the slice average. The final
step of spatial encoding is phase encoding. In this step, the gradient is turned on for a short
amount of time. During this time, the spins that are in the higher magnetic field will precess
with a higher precession frequency than spins that are in the location with the lower magnetic
field. When the phase encoding gradient is switched off the spins will start to spin with the
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Fig. 4. Schematic illustration of the sequences of a spin echo and a gradient echo technique.
In the equation S0 is the signal after the RF-pulse, S is the decaying signal, TE is the echo
time in ms, T2 is the T2 relaxation time in ms, and T2∗ is the T2∗ relaxation time in ms. This
figure is adapted from a book by Stroman et al. [37].

same precession frequency but maintain a different phase. The process of frequency and phase
encoding is visualised in Figure 5.

The MRI collects the spatial frequency and
phase information about every pixel in K-space. An
image can be generated by performing a Fourier
transform on the K-space. K-space is defined by
the space covered by the phase and frequency en-
coding information [39]. The phase encoding allows
you to go up and down in K-space, and the fre-
quency encoding determines if you go right or left
in K-space.

In this study, all patients undergo an MRI pro-
tocol with a T1, T2-weighted FLAIR (T2FLAIR),
and BOLD scan. In the sections below, all three
sequences will be explained.

2.2.1 T1-weighted scan

A T1-weighted scan is produced using short TE and
TR times. The contrast and brightness of the scan
will mainly be determined by the T1 properties of
the tissue. A T1 scan is acquired with a gradient
echo sequence. On Philips MRI scanners, this is
called the Turbo Field Echo (TFE) sequence. In

7

Fig. 5. Visualisation of the frequency
and phase encoding to obtain spatial
information. The spatial information
of the blue voxel can be found with
the specific frequency and phase dif-
ference at that location. This image
is reproduced from Elster et al. [38]



Fig. 6. TFE sequence of the T1-weighted MRI scan and an example slice of a T1-weighted
MRI scan

2.2.2 T2-weighted FLAIR scan

A typical T2-weighted scan is acquired with long TR and long TE times. The contrast and
brightness of the scan are predominantly characterised by the T2 properties of tissue. In these
images, cerebral spinal fluid normally gives a high signal because it has long T1 and T2 times.
However, in a T2FLAIR scan, an inversion pulse is given to remove the effects of these fluids
from the scan.

Fig. 7. TIR FLAIR sequence of the T2-weighted FLAIR scan and an example slice of a
T2FLAIR scan. The sequence starts with a 180◦ inversion pulse, followed by TI until the α
pulse and then followed by a fast spin echo sequence that is depicted as the train of 180◦ pulses
after the α pulse. In the line below, the obtained echoes are depicted. This Figure is reproduced
and adapted from the article by Ross et al. [41]. In the example of an T2FLAIR on the right,
oedema can be distinguished by the hyperintensities in the lower part of the brain.

The standard FLAIR sequence starts with a 180◦ RF inversion pulse to flip the longitudinal
magnetisation in the opposite negative direction. The net magnetisation in the negative lon-
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followed by several rapidly acquired gradient echos that are obtained using a short TE and
small flip angles (α). The sequence uses a three-step cycle: 1) the inversion pulse to prepare
magnetisation for contrast control, 2) data acquisition with several rapidly acquired gradient
echos with a short TR and TE and a small flip angle (α), and 3) recovery of magnetisation
for additional contrast control [40]. The time between step 1 and step 2 is called the inversion
time (TI).

Figure 6, the sequence and an example of a T1-
weighted image are shown. This sequence consists of an initial 180◦ pulse (inversion pulse)



gitudinal direction will return to the positive longitudinal direction while passing through the
null value. After a specific TI, a 90◦ excitation pulse is applied to suppress liquids and measure
the other tissues in the transverse plane. A typical TI to suppress water signal is approximately
2000 ms [42]. Nowadays, a fast spin echo sequence is used in combination with the inversion
recovery sequence to speed up the acquisition time. An example of a fast T2FLAIR sequence
and of an T2FLAIR image is given in Figure 7. On a Philips MRI scanner, this fast sequence
is called the Turbo Inversion Recovery (TIR) FLAIR sequence.

2.2.3 Functional MRI scan

Functional MRI allows for the detection of changes in neural activity. This method is based on
detecting the changes in blood flow and blood oxygen concentration in the brain. This change
is also referred to as the blood oxygenation level-dependent (BOLD) signal change. The BOLD
method depends on the difference in susceptibility between deoxygenated haemoglobin and
oxygenated haemoglobin. Oxyhaemoglobin is diamagnetic, and deoxyhaemoglobin is paramag-
netic. The magnetic property of haemoglobin changes when it loses oxygen, which alters the
susceptibility of blood. Therefore, the signal is different depending on the levels of oxygen in
the blood. [43]

The BOLD sequence is sensitive to changes in susceptibility of blood, which is caused by the
difference in oxygen consumption and oxygen delivery. The ratio between oxygen consumption
and oxygen delivery is the oxygen extraction fraction (OEF ) and is defined in Equation 2.
The changes in OEF will change the balance of oxygenated hemoglobin and deoxygenated
hemoglobin, which depends on the cerebral metabolic rate of oxygen (CMRO2), cerebral blood
flow (CBF ) and oxygen content (CO) in the blood [44].

OEF =
oxygen consumption

oxygen delivery
=

CMRO2

OC · CBF
(2)

An active region of the brain will increase CBF to support that region with more oxygen.
CBF increases much more than CMRO2 and this will reduce the OEF . The signal of a BOLD
scan is the reduction of OEF during an increase in neural activity [43]. If a vessel loses the
ability to increase the CBF , the CBF and the CMRO2 will stay equal. This leads to more
deoxyhemoglobin and a lower BOLD signal in that area. This is how the change in BOLD
signal could translate to vessel damage.

Echo Planar Imaging
Image acquisition of the BOLD scan is performed with echo planar imaging (EPI), which is

a fast acquisition technique but has a limited spatial resolution. All lines in K-space are filled
within one or more TRs. These TRs are referred to as shots, one TR is single-shot EPI, and
more TRs is multishot EPI. The phase encoding and frequency encoding gradients are turned
on and off very rapidly, to allow a fast filling of K-space (see Figure 8a and 8b) [42]. Figure 8c,
shows an example of a BOLD image of one of the patients in this study.

The EPI technique can create several artefacts in the BOLD scan. An artefact that was
visible in all the BOLD images of this study was the geometric distortion artefact. These
distortions are caused by inhomogeneities in B0 and inhomogeneities induced by other factors.

9



(a) (b) (c)

Fig. 8. Illustration of the gradient echo EPI sequence, the filling of K-space, and an example
of a BOLD image. a) Shows the gradient echo EPI sequence where Gss, Gpe, and Gfe resemble
the gradient for slice selection, phase encoding and frequency encoding, respectively. The echo
spacing is the interval between two consecutive echoes. This image is reproduced and adapted
from an article by Gianelli et al. [45]. b) Shows the filling of K-space during the sequence. c)
Represents an example of a BOLD image of one of the patients from this study.

The inhomogeneities are particularly prominent on the interfaces between air and tissue, such as
the skull base and the nose. In these areas, the protons feel a different magnetic field and start to

Fig. 9. Illustration of
the geometric distortion
artefact that is common
with the EPI technique.

precess in a different frequency. This leads to misplacement of
signal and causes the geometric distortion artefacts in the image
along the phase encoding direction [46]. In neuroimaging, this
mostly leads to distortions in the front of the brain (see Figure
9) and at the base skull. This artefact can be minimised by per-
forming multishot EPI but this will also increase the acquisition
time.

2.3 Cerebrovascular Reactivity

As mentioned before, CVR is the ability of a blood vessel to dilate
to respond to a vasoactive stimulus. The CVR of a blood vessel
is measured with a cerebrovascular stress test, where the patient
undergoes a breathing stimulus during a BOLD scan in the MRI
scanner. In this study, patients receive a breathing stimulus de-
livered by a computer-controlled air blender that delivers a higher
concentration of CO2 to patients during the BOLD scan.

The vasoactive stimulus is delivered in a breathing protocol,
where the baseline of the patient is measured for five minutes,
afterwards, a block of CO2 is administered, and subsequently, the baseline of the patient is
measured again (see Figure 10). The computer-controlled air blender measures the level of
CO2 and O2 in the exhaled air, which are referred to as end-tidal CO2 or O2 traces. The
measured end-tidal traces closely resemble the arterial gas concentrations of CO2 and O2, and
therefore, the end-tidal traces are a suitable surrogate for measuring the magnitude of the
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vasoactive stimulus.

Fig. 10. Protocol of the breathing stimulus and an example of the breathing trace of one
patient. The target depicts the targeted end-tidal CO2 trace, and the breathing trace represents
the measured end-tidal trace of CO2. First, the baseline breathing traces of the patient is
measured, then the block of extra CO2 is given, and afterwards, the baseline is measured again.

This artificially increased concentration of CO2 in blood has a vasodilating effect and also
increases CBF [47]. In this case, the oxygen consumption (CMRO2) stays equal, the vessel
dilates to increase the CBF to supply the brain with a continuous supply of oxygen. This
process increases the OEF and therefore also increases the BOLD signal [48]. If a vessel is
not able to dilate anymore, for example, due to irradiation damage, the CBF is not able to
increase in that area and the measured BOLD signal will be low.

2.4 Image Registration

In the study, data is obtained at different time points, with different scanning modalities and
with multiple MRI sequences. All these scans are not in the same space due to the movement
of the patient between sequences or pose differences in the baseline MRI, follow-up MRI, and
computed tomography (CT) scanner. These scans need to have spatial correspondence to be
able to compare them with each other. The images are aligned using image registration. Image
registration determines the best geometric alignment between a reference image and a moving
image. During the registration, the geometrical transformation is determined that maximises
the similarity between the moving and the reference image. This geometric transformation
is represented in a transformation matrix which needs to be applied to the moving image to
register it to the reference image. During the registration with the transformation matrix, the
moving image is resampled and will have the same field of view as the reference image.

Three types of transformations can be applied during registration and depend on the degrees
of freedom (DOF). The following transformations will be discussed: rigid and affine registra-
tion. A rigid transformation has 6 DOF and can translate and rotate the image. The affine
transformation has 12 DOF and can scale and shear the image in addition to the rigid trans-
formations [49]. Another type is nonlinear (or nonrigid) registration, which has unlimited DOF
and can cause tiny local changes in the to be registered image. This study does not use nonrigid
transformation methods, and therefore, this will not be discussed further.

Cost functions are used to quantify and find the transformation that maximises the similarity
between the moving and the reference image. There are different cost functions, some are based
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on geometrically defined features within an image and others work on the intensity values in
the images. The intensity-based cost functions are more reliable and accurate [50] hence these
cost functions will be used in this study and discussed in the following section.

2.4.1 Cost Functions

Intensity-based cost functions can be divided into intra- and inter-modal functions. Intra-modal
cost functions are least squares (leastsq) and normalised correlation (normcor) and can be used
with images that are from the same modality or the same MRI sequence. Some inter-modal cost
functions are mutual information (mutualinfo), normalised mutual information (normmi), and
correlation ratio (corratio). These cost functions can be used between different MRI sequences
and some also between different modalities. The definitions of the cost functions are listed in
Table 1. In the equations, X and Y are the images that are being registered. In the following
paragraphs, an explanation will be given of the five cost functions.

Table 1. The definitions of the intensity-based cost functions: leastsq, normcorr, mutualinfo,
normii, and corratio. This table is adapted and reproduced from an article by Jenkinson et
al. [51]

Cost function Equation Minimum Maximum

leastsq Σ(Y −X)2 0 ∞

normcorr
Σ(X · Y )√
ΣX2
√

ΣY 2
-1 1

mutualinfo H(X, Y )−H(X)−H(Y ) -∞ 0

normmi
H(X, Y )

H(X) +H(Y )
0 1

corratio
1

V ar(Y )

∑
k

nk
N
V ar(Yk) 0 1

Least squares
The two images are being subtracted from each other. These values are squared to ensure a
positive number to ensure that negative and positive values do not cancel each other out (see
Table 1). The resulting value needs to be minimised to get the best image registration. This
cost function is suitable for intra-modal images with the same sequence because this function
can not manage large intensity changes between the images.

Normalised Correlation
This cost function calculates the correlation between the two images. The intensities are mul-
tiplied and mean intensity values are subtracted (see Table 1). The values of this cost function
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need to be maximised to find the maximum correlation and optimal registration of the two im-
ages. This option is an intra-modal function and can manage linear intensity changes between
two images. The images have to be generated with the same MRI sequence, e.g., a T1-weighted
and T1-weighted scan with different contrast/brightness.

Fig. 11. Visualisation of en-
tropy and shared mutual infor-
mation. The blue circle is the en-
tropy of X (H(X)), the red circle
is the entropy of Y (H(Y )) and
both circles together are the joint
entropy of X and Y (H(X, Y )).
The shared grey space is the mu-
tual information where both cir-
cles are overlapping.

Mutual Information
The entropies of the individual images (H(X) and
H(Y )) is subtracted from the joint entropy of the im-
ages (H(X, Y )) (see Table 1). The results of this cost
function need to be maximised to find the best image
registration. With Equation 3 the entropy of X or Y
can be calculated. In this equation, I can be image X
or Y and p(i) is the probability of a certain intensity
in image X or Y . The joint entropy is calculated with
Equation 4, where pij represents the joint probability
distribution of image X and Y . Mutual information is
calculated with distributions and allows registering im-
ages from multiple modalities.

H(I) = −
∑
i

pi log pi (3)

H(X, Y ) = −
∑
ij

pij log pij (4)

Normalised Mutual Information

Fig. 12. Illustration of the
BBR cost function. The
red segmentation is the WM
segmentation and the yellow
dots represent a sample at
either side of the segmenta-
tion.

This cost function normalised the mutual information to scale
the results between 0 (no correlation) and 1 (highest corre-
lation) is the normalised version of mutual information. The
joint entropy is divided by the summed H(X) and H(Y ).
This cost function can be used to register inter-modal im-
ages.

Correlation Ratio
Correlation ratio measures the functional dependence be-
tween X and Y , where 0 is no functional dependence and
1 is high functional dependence. The functional dependence
is a relationship between two features such as the intensity
and the position. [52] In the equation in Table 1, the variance
is calculated of Y and Yk. Yk is the kth set defined as a set
of intensities in image Y at positions where the intensity in
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X is in the kth intensity bin of the histogram. This cost function is also able to be used for
inter-modal registrations but preferably between MR modalities [53].

Boundary-Based Registration
This cost function is specially created for scans that were generated with the EPI technique.
The input is a T1 scan, a WM segmentation of the T1, and an EPI scan with grey-white
intensity contrast. The WM segmentation is overlapped with the EPI image and then samples
are taken at a distance from either side of the segmentation. The intensity difference between
the two samples needs to be large to have a good registration. This boundary-based registration
(BBR) only uses samples at either side of the WM segmentation [54]. This process is visualised
in Figure 12.

2.4.2 Interpolation Methods

When the moving image is registered to the reference image, the matrix of the moving image
does not match up perfectly with the reference image. To match the matrix of the registered
moving image, interpolation is needed to fill in values between the grid points. This process
is visualised in Figure 13, where the white grid is the original image and the yellow grid is
the registered image. The value of the yellow dot in the grid needs to be determined, which
is calculated with interpolation functions such as nearest neighbour (NN), trilinear and spline
interpolation [53].

(a) Nearest Neighbour (b) Trilinear (c) Spline

Fig. 13. Illustration of three interpolation techniques: a) NN selects the closest grid point, b)
Trilinear selects the surrounding grid points and calculates a weighted average, and c) Spline
includes more surrounding points to determine the value of the yellow dot. The original image
is represented with the white grid and the registered image is represented with the yellow grid.
The value of the bold yellow dot needs to be determined. This value is calculated with the
selected grid points shown in red. This figure is reproduced from the FSL course by FMRIB [53]

Nearest Neighbour
Figure 13a, represents NN interpolation, this method finds the nearest white grid point (high-
lighted in red) and copies this value to the yellow grid point. This method is fast and it does not
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create new values, only the values that were already in the original image are copied. Images
that are interpolated with this method have ’blocky’ edges and can look more pixelated than
the original image. [53,55].

Trilinear
This is a linear interpolation technique that is applied in three dimensions. For 2D images, this
function is referred to as bilinear. This method is shown in Figure 13b, where the surrounding
white grid points are selected (highlighted in red) and a weighted average of those points is
calculated to define the yellow grid point. The average is weighted according to the distance
of the red points to the yellow grid point. This method is quite fast but can also slightly blur
the image. [53,55].

Spline
This interpolation method includes even more points around the yellow grid point, to determine
the value of the yellow dot in Figure 13c. This method creates sharper images and is good for
modelling larger boundaries, and the interpolated image will look similar to the original image.
The downside of this method is that it does not constrain the limits of the output and can
create values that were lower or higher than the maximum or minimum of the original image.
If the image has artefacts or if the patient has abnormalities, these abnormalities can be spread
out with a spline interpolation method [53,55].

Interpolation methods are never perfect and change the original image. Interpolation adds
artificial values to the data and this results in values that were not exactly measured during
the scan. Therefore, the number of interpolations performed on an image should be minimised.
If an image needs to be registered multiple times then the transformation matrices can be
combined to perform one resampling step [53].
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3 Methods

This thesis is reporting the data of the APRICOT (Assessing and Predicting Radiation Influence
on Cognitive Outcome using the cerebrovascular stress Test) study that is carried out at the
University Medical Center (UMC) Utrecht. The APRICOT study investigates the relationship
between baseline CVR and changes in cognitive test results for patients with BM at baseline
and three months after RT (follow-up).

All included patients of the APRICOT study were also included in this thesis. All patients
have BM and received SRS as part of their treatment plan. One to two weeks before irradiation
treatment, each patient underwent a CT scan. This CT scan was used to delineate tumours
and organs at risk and plan the dose distribution of the irradiation treatment plan. On the
same day, but before their irradiation treatment, all patients underwent the MRI scan with the
breathing stimulus. Three months after irradiation, all patients came back for the follow-up
and underwent the same MRI scan with the breathing stimulus. The journey of the patient
during the APRICOT study is depicted in Figure 14.

All acquired scanning data of each patient was anonymised and given an APRICOT patient
code (e.g., APP003 for the third included patient). The baseline scanning data is stored in a
folder with the APRICOT patient code name. The follow-up data is stored in a separate folder
named the APRICOT patient code with an added ‘b’ to avoid confusion (e.g., baseline stored
in folder ‘APP003’, and follow-up stored in ‘APP003b’).

Fig. 14. Overview of the journey of each patient. The first block depicts the CT scan that
each patient underwent before irradiation treatment. One or two weeks after the CT scan,
the patient underwent an MRI scan with a breathing stimulus which is shown in the second
block. The radiation sign depicts the irradiation treatment that patients receive on the same
day as their first MRI scan. Subsequently, three months after irradiation treatment, the patient
underwent the same MRI sequence with the breathing stimulus.

3.1 Ethics

The APRICOT study was carried out under the research protocol of the APRICOT study with
the METC (Medical Ethics Review Committee) number: 18-747. The APRICOT study was
conducted in accordance with the principles of the Declaration of Helsinki (64th WMA General
Assembly, Fortaleza, Brazil, October 2013) and according to the WMO Act (Medical Research
Involving Human Subjects Act).

All potential participants had an appointment with one of the researchers of the APRICOT
study, where they received information about the study and had the chance to ask questions
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regarding the study. The patients had three days to consider if they wanted to participate
in the APRICOT study. If the patient decided to participate, an appointment for the MRI
scan was scheduled on the same day before their RT appointment. Before the MRI scan, the
informed consent was signed by the patients.

3.2 Patient Inclusion

In total, 15 patients were enrolled in the APRICOT study. Two patients had to be excluded be-
cause the breathing challenge could not be finished (APP004), or there were too many artefacts
in the BOLD scan (APP002). Five of the residual 13 patients underwent the follow-up scan
at this moment. The follow-ups of the other patients will be performed after the conclusion of
this thesis. Additional relevant clinical information about the patient is given in Appendix A.

3.3 CT acquisition and pre-processing

The CT data was obtained from the clinical radiotherapy servers of the UMC Utrecht in the
Netherlands. For each patient, the dose distribution was recalculated into an equivalent dose
distribution per 2 Gy fractions (EQD2). Subsequently, masks of the BM were created with the
delineated tumours. A more detailed explanation of the EQD2 calculation and the creation
of the tumour masks is given in Appendix B. After collecting the CT data (CT scan, tumour
mask, and dose distribution), the data was transferred to the research servers of UMC Utrecht.

3.4 MRI Acquisition and breathing stimulus

MRI data was obtained with a 3 Tesla MRI scanner (Philips Medical Systems, Best, The
Netherlands) using a 32-channel head coil. The MRI scanning protocol for this study contained
a T1, T2FLAIR, and 17 min long BOLD scan. In Appendix C, the MRI acquisition parameters
are given. The patients underwent the same scanning protocol before and three months after
their irradiation treatment.

The MRI data was directly saved on the research server of the UMC Utrecht after scanning
the patient. The MRI scanner is a Philips scanner that stores the data in a PAR and a REC
file. The PAR file is a text file that contains the scan parameters and the REC file contains the
actual scanning data. These PAR/REC files were converted to NIfTI format with the dcm2niix
convertor.

In order to make the CVR maps, the patients had to undergo a breathing stimulus during
the BOLD scan. This stimulus was delivered to the patients with a computer-controlled gas
blender (RespirAct™, Thornhill Research Institute, Toronto, Canada). The RespirAct is able to
deliver precise and repeatable changes in oxygen and carbon dioxide concentrations in arterial
blood. The amount of carbon dioxide and oxygen that is dissolved in blood is also referred to as
PCO2 (partial pressure CO2) and PO2(partial pressure O2), respectively. During the stimulus
the Respiract targets to increase of end-tidal PCO2 with a 10 mmHg above the patient’s baseline
value.

Prior to the MRI scan, the patients were fitted with a facemask that was later attached to
the RespirAct. Tegaderm™ film was used to stick the facemask to the patient’s face and to
assure gasses could not leak out. During the entire MRI protocol, the patient’s PCO2 and PO2
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were measured by the RespirAct [56]. In Figure 10 of Section 2.3, the breathing protocol is
shown together with an example of the measured end-tidal PCO2 of a patient.

3.5 Development of Analysis Pipeline

All obtained scans need to be brought into spatial correspondence to be able to compare the
baseline CVR with the follow-up CVR. This was executed with an image analysis pipeline that
registers the data to the baseline T1 scan. The following sections will describe the process of
the development of this pipeline. The data that needed to be registered by this pipeline is
a baseline CT scan with dose distribution and tumour mask, baseline BOLD scan, baseline
T2FLAIR scan, follow-up T1 scan (T1b), follow-up T2FLAIR (T2FLAIRb), follow-up BOLD
(BOLDb). The pipeline is created using one ideal patient (APP003) with scanning data with
no artefacts and sufficient breathing traces during the breathing stimulus. In Figure 15, the
data that is acquired for each patient is visualised. In the following sections, the development
of the pipeline is discussed shortly, and in Appendix D a more detailed explanation can be
found.

Fig. 15. The data that is acquired of each patient. The left side shows the baseline scans and
the right side shows the follow-up scans. All the scans need to be registered to the T1 scan,
this is depicted with the red square.

The pipeline was built on the research server of the UMC Utrecht and consists of two
separate bash scripts, one for baseline and one for follow-up data. The pipeline makes use of
FSL (The Analysis Group, FMRIB, Oxford, UK.), which is a library of analysis tools for brain
imaging data. The bash scripts of the baseline and follow-up registration pipeline can be found
in Appendix G.

All scans need to be registered to one reference scan, ideally, this scan has the best resolution
and contrast of all scans [53]. The CT has the best resolution, and the T1 and T2FLAIR have
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the best contrast. The T1 scan was selected as the reference image, this scan has good contrast
and the image intensities are more relatable to the CT scan in comparison with the T2FLAIR.
E.g., the intensity of the ventricles of the brain and oedema in CT and T1 are both lower than
brain tissue. This might make the registration of CT with an MRI scan easier. Prior to the
registration of the anatomical MRI scans (T1, T1b, T2FLAIR, and T2FLAIRb), the brain in
each scan was extracted using FSL BET(Brain Extraction Tool). The extracted brains are
registered to each other, which helps the registration tool to focus on the registration of the
brain and not the surrounding tissue.

For every registration the cost function, DOF and interpolation method needs to be selected.
The ideal parameters were selected by performing the registration multiple times with the
applicable cost functions and rigid (6 DOF) and affine (12 DOF) registration. The results were
visually analysed using ITK-SNAP, and the best option was selected. The interpolation method
was selected based on the type of data and the function of that scan in the data analysis.

3.5.1 Baseline Registration Pipeline

This part of the pipeline needs to register all the baseline data, CT scan with dose distribution
and tumour mask, T2FLAIR scan, and BOLD scan. The following paragraphs will describe
how the different scans were registered to the T1 scan. A flowchart of the baseline pipeline can
be seen in Figure 16. A more detailed description of every baseline registration can be found
in Appendix D

CT registration
The CT registration was performed using FSL FLIRT (FMRIB’s Linear Image Registration
Tool). This function is a fully automated function in FSL for rigid and affine registration [51,57].
The CT to T1 coregistration is inter-modal and requires an inter-modal cost function. The inter-
modal cost functions that are available for FLIRT are corratio, mutualinfo, and normcorr. The
cost function normmi, gave the best result and was selected as the cost function for the CT
to T1 registration. The CT registration was performed with affine registration and trilinear
interpolation. The resulting transformation matrix was used to register the tumour mask and
dose distribution to the T1 scan with NN interpolation.

T2FLAIR Registration
As mentioned before, the brains of the anatomical scans (T1 and T2FLAIR) were extracted
before registration. The registration was first performed with both extracted brains and af-
terwards, the whole T2FLAIR scan was registered to the T1 scan. The intensities of T1 and
T2FLAIR are different and therefore the applicable cost functions were corratio, mutualinfo,
and normmi. Leastsq and normcorr are not sufficient for these intensity differences.

All three cost functions registered the T2FLAIR sufficiently, and no differences between
the scans could be observed. The cost function normmi was selected arbitrarily. The affine
registration resulted in a T2FLAIR that was scaled down in comparison to the T1 scan. The
rigid registration gave optimal results and was selected for the baseline T2FLAIR registration.
Trilinear was selected as the interpolation method.

19



Fig. 16. Flowchart of the baseline image registration pipeline. The CT scan, BOLD scan,
and T2FLAIR scan need to be registered to the T1 space. The CT data can be registered
directly without any adjustments. The T1 is segmented into a CSF, WM, and GM mask, and
the brain is extracted. The BOLD image is corrected for motion and the geometric distortion
artefact. Subsequently, the WM mask and extracted brain of T1 is used to register the BOLD
to T1 space. The T2FLAIR brain is extracted and together with the T1 brain, the T2FLAIR
is registered to T1 space.

BOLD registration
At first, there were some difficulties with the registration of the BOLD scan to the T1 scan.
The edges of the BOLD scan could not line up with the T1. This problem was caused by the
geometric distortion artefact that is explained in Section 2.2.3. This artefact is removed using
FSL function topup, which creates a coefficient correction field that can be used to correct the
BOLD scan [58,59]. The process of FSL topup is explained in Appendix D.

The registration of the BOLD scan to baseline T1 space is achieved with the FSL function
epi reg. This function is a specialised FLIRT function specially made for EPI images and
uses the BBR cost function that was discussed in Section 2.4.1. Epi reg was run with the T1
scan, BOLD scan, field correction of the topup, WM segmentation, echo spacing, and phase
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encoding direction to perform this registration. The WM segmentation was generated with
FSL FAST (FMRIB’s Automated Segmentation Tool), and this function segments a 3D brain
scan into three different tissue types (GM, WM, and CSF) [60]. The registration parameters
of epi reg cannot be specified and are already predefined. The epi reg function uses the BBR
cost function, rigid registration, and spline interpolation.

3.5.2 Follow-up Registration Pipeline

In this section, the development of the follow-up registration pipeline is discussed. As mentioned
before, the patient does not undergo a second CT scan during the follow-up. Therefore, this
developed pipeline needed to register the BOLDb, T2FLAIRb and T1b scan to the baseline T1
scan. The interpolation method trilinear was selected for all MRI scans, and NN interpolation
was selected for categorical masks such as a WM or GM segmentation. An overview in the form
of a flowchart is given in Figure 17. The development of the follow-up registration pipeline is
discussed in more detail in Appendix D.

T1b Registration
Before registration, the brain was extracted from the T1b scan using FSL BET. This registration
is an intra-modal registration and can be performed with leastsq and normcorr. The T1b scan
of the test patient has some intensity differences between the T1 and T1b scan. Therefore, the
cost function normorr is selected for this registration. Rigid registration is performed because
affine registration slightly shrunk the T1b scan. Trilinear was used as the interpolation method.

T2FLAIRb Registration
The brain of the T2FLAIR scan is also extracted prior to the registration with FSL BET.
The registration of T2FLAIRb needed to be performed with a cost function that can manage
intensity differences such as mutualinfo, normmi, and corratio. The cost function normii was
selected for this registration. Again, trilinear interpolation is used during this rigid registration.

BOLDb Registration
Before registration to T1 space, the BOLDb is corrected for the geometric distortion artefact.
The same process with FSL topup is used as described in the paragraph about the BOLD
registration (Section 3.5.1) to remove the distortions.

Two options were considered for this registration. The first option uses the epi reg function
to register the BOLDb directly to T1 space. The downside of this option could be that it
would be sensitive to changes in the brain of the patient at follow-up in comparison to the
baseline scans. An example can be seen in Figure 15, where the follow-up T2FLAIR scan
clearly shows less oedema than the baseline T2FLAIR scan of APP003. The second option is
to divide the registration into three steps: 1) register BOLDb to T1b with epi reg, 2) multiply
this transformation matrix with the transformation matrix of T1b to T1 registration and 3)
use the combined matrix to directly register the BOLDb to the T1 with normii and spline as
the interpolation method.

The WM segmentation for registration with epi reg in the first step of option two is generated
with FSL FAST.Both options resulted in a similar registration, the second option was selected
since it is less sensitive to changes in the anatomy in the follow-up scans.
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Fig. 17. Flowchart of the follow-up image registration pipeline. The T1b scan, BOLDb scan,
and T2FLAIRb scan need to be registered to T1 space. The T1b and T2FLAIRb first undergo
brain extraction and are then registered to T1 space with the baseline T1 brain. The T1b is
also segmented and divided into a CSF, WM, and GM segmentation using FAST. The BOLDb
scan is corrected for motion and the geometric distortions, and afterwards, registered to the
T1b using the T1b WM segmentation and T1b extracted brain. The matrix of the T1b to T1
registration is multiplied with the matrix of BOLDb to T1b. This combined matrix is used to
directly register BOLDb to T1.

3.5.3 CVR calculation

The CVR calculation was performed in BOLD space to obtain the baseline CVR map and
in BOLDb space to obtain the follow-up CVR (CVRb) map. The CVR map calculation is
executed with the seeVR toolbox (seeVR, Utrecht, The Netherlands) [61]. The CVR maps
are generated with the BOLD motion correction parameter, tracked end-tidal CO2 trace, and
segmentations of WM, GM, and CSF. In the paragraphs below, the calculation of the CVR
maps will be explained

First, data points that are three standard deviations above the end-tidal CO2 trace are
considered outliers and removed from the breathing trace. Secondly, the BOLD data and end-
tidal CO2 trace are aligned with each other. The CO2 block in the end-tidal CO2 trace is
selected, and the same block is selected in the BOLD data. This selected part of the end-tidal
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CO2 trace will now be referred to as the regressor.
Some blood vessels might dilate slower or are less sensitive to CO2 than other vessels, and for

these vessels, the end-tidal CO2 might not provide an accurate model for the CVR calculation.
Hemodynamic response functions (HRF) are used to model the dispersion of the signal that
might be present in some of these vessels inside the brain. The HRF is convolved with the
regressor to take into account the slower or less sensitive vessels.

(a) genGS (b) scrubData

Fig. 18. Visualisation of the functions genGS (a) and scrubData (b). Figure a shows the
BOLD data (original data), HRF convolved with the regressor (data probes), rescaled nuisance
regressors, explained data and residual data. The nuisance regressors and regressors are used
to explain the original data. The nuisance regressors that could not be explained in the original
BOLD data are taken into one new parameter, the residual data. Figure b shows the breathing
trace (data probe), rescaled nuisance regressors with residual data included, original BOLD
data, nuisance mean, and original data with the nuisance mean subtracted (clean data).

Thirdly, a new parameter is generated, the nuisance regressors. The nuisance regressors rep-
resent factors that could have influenced the BOLD data. The motion correction and Legendre
polynomials are included in the nuisance regressors. The Legendre polynomials correct for drift
caused by the scanner that is heating up during the acquisition. The drift can be characterised
as signal degradation and intensity changes in the scan. The function called genGS is used to
take the information of the nuisance regressors and regressor to explain the BOLD data. The
BOLD data that could not be explained with the convolved HRF data probes and nuisance
regressors is summed up into one new parameter, the residual data. This process is shown in
the graph in Figure 18a. The residual data is also included in the nuisance regressor.

Afterwards, the nuisance regressors are used to clean up the BOLD data with the function
scrubData. The mean of the nuisance regressors is subtracted from the BOLD data to end up
with a ’cleaned’ version of the BOLD dataset (see Figure 18b). Finally, a linear regression is
executed with the original end-tidal CO2 regressor against every BOLD voxel. This means that
the regressor is plotted against the BOLD voxels, and a line is fitted through it. The slope of
the fitted line is the CVR in percentage BOLD change per mmHg CO2.
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CVR Registration
The CVR calculation with the seeVR toolbox needs as input the end-tidal CO2 traces of the
patient, BOLD scan, BOLD brain mask, and CSF, WM, and GM segmentation. The masks
and BOLD scan all need to have the same spatial correspondance. Additional registrations were
performed using the transformation matrices of the image registration pipeline. The BOLD to
T1 matrix is inversed to register the CSF, WM, and GM segmentations from T1 space to the
BOLD space. The brain mask of the BOLD was created with FSL BET that extracts the brain
and generates a mask of the brain. The same process was performed for the follow-up scans.
In Figure 19, a flowchart depicts the steps that were performed before the CVR calculation.

Fig. 19. Flowchart of the steps before the CVR calculation. The transformation matrix of
BOLD to T1 is inversed to be able to register the CSF, WM, and GM segmentation to BOLD
space. A BET is performed on the BOLD to generate a brain mask. The CVR calculation
is performed with the brain mask, BOLD scan, breathing traces and CSF, WM, and GM
segmentations. The same process is repeated for the follow-up CVR calculation.

3.5.4 Additional Registration for Data Analysis

The data analysis of the CVR maps is performed in baseline BOLD space. The considerations
that led to this decision are discussed in Section 3.6. To perform the analysis, some scans or
segmentations needed to be brought into baseline BOLD space. These scans were the dose
distribution, tumour mask, CVRb map, and CSF, WM, and GM segmentation. The steps that
were needed to register these are visualised in the flowchart of Figure 20.
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Preferably, the data analysis always needs to be performed with the original data. In the
case of this study, this would mean that the original BOLD and BOLDb data are used to
calculate the CVR maps and that the CVR maps should not be interpolated. However, to
perform the BOLD registration, the BOLD needed to be corrected for geometric distortions
and additionally the data analysis of the CVR maps needed to be executed in the same space.

The corrected BOLD scans were used to calculate the CVR maps. It could be argued that
the original BOLD data is not used for this calculation and that this makes the CVR maps less
reliable. Conversely, if the corrections were not executed then the data in these distorted areas
would have been built up, especially in the front of the brain. This would also have resulted
in artefacts in these regions which would also make the CVR maps less reliable. The decision
is made to calculate the CVR maps with the corrected BOLD to have fewer artefacts in the
CVR maps.

Fig. 20. Flowchart of the registrations that were needed to perform the CVR analysis in
baseline BOLD space. This analysis needed the dose distribution, tumour mask, CVRb map and
CSF, WM, and GM segmentations to be registered to baseline BOLD space. The registrations
were accomplished by using the transformation matrices of the baseline (Fig. 16) and follow-
up pipeline (Fig. 17). The red arrows depict the combined matrices that were combined for
the analysis. The black arrows depict the registrations that were performed in the baseline or
follow-up pipeline.

To know the location of the tumour and the dose distribution in the brain, the dose map
and the tumour mask needed to be resampled into baseline BOLD space. This is accomplished
by resampling the tumour mask and dose distribution with a combined transformation matrix.
This matrix is created by multiplying the inversed transformation matrix of the BOLD to T1
registration with the transformation matrix of CT to T1 registration. The data analysis was
performed separately for the WM and GM to determine the CVR in these different types of
tissues. As mentioned in Section 2.1, GM consist of more blood vessels and therefore most of
the response is expected to come from GM. The CSF, WM and GM are resampled to BOLD
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space with the inversed BOLD to T1 transformation matrix.
Finally, to compare the baseline CVR with the follow-up CVR, CVRb needs to be in spatial

correspondence with the baseline BOLD scan. This means that CVRb needs to be interpolated,
which induces some uncertainty into the CVRb map. This registration is accomplished by com-
bining the BOLDb to T1, T1b to T1, and inversed BOLD to T1 transformation matrices. The
interpolation method that is used is NN to ensure that all CVR values stay equal and no artifi-
cial values are introduced into the data. Trilinear and spline interpolation interpolates between
values, which results in artificial values that were not in the data set before interpolation.

3.6 Data Analysis and Statistics

With an in-house written script using MATLAB, data analysis was performed with the baseline
and follow-up data. A VOI-based analysis is performed on the baseline data and a dose-based
analysis is performed to compare the follow-up data to the baseline data after irradiation.
The analysis for both methods was executed in baseline BOLD space instead of baseline T1
space. The MATLAB scripts that were developed for the creation of the segmentations and
the calculation of the average CVR in the segmentations can be found in Appendix H.

When a moving image is registered to the reference image, it will be resampled into the
field of view of the reference image. In this case, the matrix of the T1 scan is much larger
(240x240x180) than the matrix of a BOLD scan (51x96x96). The resampling would create
many more CVR values than that were originally in the CVR maps. For this reason, the
decision was made to perform the analysis in BOLD space.

For the VOI-based analyses, VOIs around the tumour were created that expand with 2 to
14 pixels from the tumour. For the dose-based analysis, the treatment dose was divided into
sections of <5 Gy, 5-8 Gy, 8-12 Gy, 12-16 Gy, and ≥16 Gy. These specific dose groups were
selected after a discussion in the research group with a radiation oncologist. The reasoning
behind this is that most of the change will happen close to the tumour which receives at least
more than 16 Gy, and the least expected change is in the tissue that received less than 5 Gy.
Other values were chosen in between these two dose values. An example of the VOI- and dose-
segmentation of APP003 is given in Figure 21. Both segmentations were divided into WM and
GM segmentation to find the average CVR in each type of tissue of the brain.

3.6.1 WM and GM Segmentations

The WM and GM segmentations were created in the registration pipeline using FSL FAST
described in Section 3.5.1 and 3.5.2. The function automatically creates a GM, WM, and CSF
segmentation. However, most of the patients in this study have regions with abnormal anatomy
due to BM and oedema. For these patients, FAST includes oedema in the GM segmentation.
A real GM mask is created by extracting an oedema mask from the GM segmentation. This
oedema mask was made for each patient separately with a semi-automatic method using LST
(Lesion Segmentation tool) and ITK-SNAP. LST is an open-source toolbox in SPM (Statistical
Parameter Mapping Software, University College of London, UK) that automatically segments
lesions using a T1 and T2FLAIR scan [62]. The false positives and false negatives from the
LST segmentation were manually adjusted using ITK-SNAP. In Appendix E, an explanation
is given on how the segmentations were generated.
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Fig. 21. Illustration of the segmentations of the VOI-based (left figure) and the doses-based
(right figure) analysis. For illustrative purposes, each VOI around the tumour and dose section
is given a different colour.

Oedema in the GM segmentation by FAST was corrected by extracting the oedema mask
from the GM segmentation to create a real GM segmentation. This new GM segmentation was
used to divide the VOI- and dose-based segmentations into a WM and real GM segmentation.
There is no expected response from CSF since it does not contain cerebrovasculature, therefore,
CSF was removed from the VOI- and dose-based segmentations. The brain tumours were also
removed in both segmentations because the interest is in the reactivity of the cerebrovasculature
and not in vessels inside the BM. Subsequently, the segmentations (VOI- and dose-based) are
divided into GM and WM segmentations.

3.6.2 Statistical Analysis

The statistical analysis was performed using IBM SPSS Statistics for Windows, Version 27.0.
(Armonk, NY: IBM Corp.). The statistical significance was set at a p-value of equal or less
than 0.05. To assess the VOI-based results, a non-parametric repeated measures ANOVA
(Friedman test) was used. In addition, a Wilcoxon signed-rank test was used to assess the
differences between two VOIs (the VOI closest to the tumour and the VOIs at a distance).
The results of the dose-based analysis were assessed with 1) a Wilcoxon signed-rank test to
test if the difference per dose groupe between baseline and follow-up groups was significant, 2)
a Friedman test to assess the significance between baseline and follow-up, and 3) a Wilcoxon
signed-rank test to compare the weighted mean CVR in each dose group in the baseline and
follow-up. The mean CVR in each dose group was weighted by dividing the average CVR per
group by the total amount of pixels in that group.
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4 Results

4.1 Image Registration Pipeline

As described in the Methods, the pipeline is built for one ideal patient (APP003). After finishing
the pipeline for the test patient, the pipeline is run for the other patients (13 in the baseline,
five in the follow-up). The image registration pipeline performed well for most of the patients
and most of the scans. The performance of the image registration is listed in Table 2. The
pipeline did not have an optimal performance for four of the CT scans (APP005, APP009,
APP0013, APP0014) and one T2FLAIRb scan (APP001). For these patients, adjustments had
to be made to register the CT and T2FLAIRb accurately.

Table 2. Performance of the image registration pipeline. The baseline pipeline is run 13 times
for 13 different patients and the follow-up pipeline is run five times for five follow-up patients.

Scan Baseline Follow-up

CT 9/13 (69%) -

T1 - 5/5 (100%)

T2FLAIR 13/13 (100%) 4/5 (80%)

BOLD 13/13 (100%) 5/5 (100%)

In Figure 22, two examples are shown of the misregistration of a CT scan and the T2FLAIRb
scan. All misregistrations of the CT registration would result in a completely flipped CT scan
(Figure 22a). This problem could be resolved for two CT scans by lowering the value of the
finesearch parameter to 2◦. This reduction did not solve the misregistation of two other CT
scans, and therefore, weighted volumes were generated and used during the registration. The
weighted volume influences the cost function by setting some areas in the weighted volume
to zero, these parts of the image will be ignored during the registration. For these two CT
registrations a brain mask was generated in ITK-SNAP were the brain had a value of one
and rest a value of zero. This volume helped with the registration algorithm to focus on the
brain instead of other structures in the head. The misregistration of the T2FLAIRb scan (see
Figure 22b), could be resolved by first registering T2FLAIRb to T1b and registering T2FLAIRb
to T1 by combining the matrix from the T2FLAIR to T1b registration with the T1b to T1
registration. These adjustments were used to resolve the misregistered scans.

4.2 VOI-based Analysis

The average CVR is calculated for each segmentation around the tumour independent of GM
and WM (see Table 3). These segmentations contain the brain without CSF and oedema. The
oedema was extracted since it is unclear which type of tissue is in these areas. The average
CVR increases slightly with an increasing distance from the tumour, however this increase is
not significant (p = 0.347). The result of the WM and GM analysis is shown in Figure 23. The
average CVR signal is significantly higher in the GM and lower in the WM (p = 0.018) . At an
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(a) CT (b) T2FLAIRb

Fig. 22. Misregistrations of a CT (a) and a T2FLAIRb (b) scan. The reference image is show
in grey values and the registered image is shown in red.

increasing distance from the tumour, the average CVR slightly increases. This increase is not
significant in GM and WM since the p-values are 0.156 and 0.050, respectively. The VOI 2 to 7
are compared to VOI 1 and the furthest VOI (VOI 7) was significantly different from VOI 1 for
GM (p = 0.046) and WM (p = 0.039). The average CVR increase in the other VOIs was not
significant in comparison with VOI 1. In Appendix F, the CVR maps of all baseline patients
are shown. The average CVR signal was similar between patients, except for patient APP015.
This patient had an really high CVR in comparison to the other patients. The overall spread
of CVR in the sections is quite high between patients which leads to large standard deviations.

Table 3. The average CVR in percentage BOLD signal change per mmHg CO2 per VOI
around the tumour.

Distance Average
CVR

SD

VOI 1 (2 pixels) 0.112 0.055

VOI 2 (4 pixels) 0.110 0.047

VOI 3 (6 pixels) 0.115 0.043

VOI 4 (8 pixels) 0.121 0.052

VOI 5 (10 pixels) 0.127 0.059

VOI 6 (12 pixels) 0.130 0.057

VOI 7 (14 pixels) 0.130 0.060
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Fig. 23. The average CVR in GM and in WM in the different VOIs at increasing distance
from the tumour. The error bars show the standard deviation of each bar.

4.3 Dose-based Analysis

In the dose-based analysis, the baseline CVR maps is compared to the follow-up CVR maps.
The baseline and follow-up CVR maps of all patients in this analysis can be seen in Appendix
F in Figure 32 and 33. The average CVR per dose group is calculated using the baseline and
follow-up CVR maps of each patient, the results can be seen in Figure 24. The average CVR
in the follow-up was higher for two patients (APP005 and APP007), equal for one patient
(APP003), lower for two patients (APP001 and APP006).

In Figure 24, the follow-up scan of APP001 stands out the most. The follow-up scan
is declining rapidly with an increasing received dose and the CVR becomes negative. This
patient has surgical clips inside the brain that stayed there after surgery. These clips cause
artefacts in the BOLD scan and led to this decrease of CVR values. In Figure 25, an example
is shown of the BOLDb scan with the tumour and the CVRb map. This figure shows signal
loss in the BOLDb scan at the right side and the bottom of the image. In the CVR map,
this loss of BOLD signal resulted in an area with negative CVR. These artefacts are close to
the tumour and inside the higher dose groups, which causes the CVR value in these groups to
become negative. The artefacts in the BOLDb scan result in unrealistic CVR values in that
area. Therefore, the decision is made to exclude APP001 from the the dose-based analysis.

The dose-based analysis is performed with APP003, APP005, APP006, and APP007. THe
average CVR is calculated per dose group and in GM and WM. The results of this are shown
in Figure 26. The average CVR is slightly lower in GM in follow-up scans in comparison to
the baseline scans. In WM, the average CVR in the follow-up is almost equal for the <5 Gy,
5-8 Gy and 12-16 Gy group, higher for the 8-12 Gy group and lower in the ≥16 Gy group
in comparison to the baseline. The difference in CVR in the follow-up and baseline was not
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Fig. 24. The average CVR per patient per dose group in GM and WM combined.

Fig. 25. The CVR map and the mean BOLD scan of APP001. This patient has surgical clips
inside the brain. In the BOLDs scan loss of signal can be seen at the site of these clips in the
right side and bottom of the image. This artefact resulted in negative CVR signal in that area.

significantly different in GM (p = 0.627), WM (p = 0.185), and combined (p = 0.493). The
CVR in baseline and follow-up per dose group is also compared to each other and the difference
between the follow-up and baseline was not significant. The p-values per dose group and per
tissue type are listed in Table 4.

The follow-up and baseline values are compared regardless of the dose group. This was
executed by calculating weighted follow-up and baseline CVR values. The CVR values are
weighted by dividing the CVR value in the dose group by the number of pixels in that dose
group. The follow-up and baseline did not differ significantly based on the weighted average
CVR values per dose group. The p-values are 0.881, 0.263, and 0,627 for GM, WM, and the
combined GM and WM, respectively.

An interaction plot is created to visualise a potential interaction between the received dose
and time. In Figure 27, the average CVR values at baseline and at follow-up per dose group
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Fig. 26. The average CVR signal in GM and WM per dose group. The error bars depict the
standard deviation per bar.

Table 4. p-values of the comparison between baseline and follow-up per dose group in GM
and WM

Dose Groups Grey Matter White Matter

(p-value) (p-value)

<5 Gy 0.715 0.715

5 - 8 Gy 0.715 0.715

8 - 12 Gy 1.000 0.715

12 - 16 Gy 0.715 0.715

≥16 Gy 1.000 0.465

are plotted for GM and WM. The response is higher in GM than in WM, which was expected.
The CVR in GM in the dose groups 5-8 Gy and ≥16 Gy seems to decrease more than the <5
Gy group. The decrease in the <5 Gy, 8-12 Gy, and 12-16 Gy groups are decreasing slightly.
In WM the CVR in the baseline and follow-up is similar in the <5 Gy, 5-8 Gy, and 12-16 Gy
groups. The CVR signal decreases the most in the ≥16 Gy group and increases in the 8-12 Gy
group.
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Fig. 27. Interaction plot with average CVR at baseline and follow-up per dose group in GM
and WM.

33



5 Discussion

This thesis developed an image registration pipeline with close to optimal performance for
most of the scans. The pipeline performed less well for the CT registration and the T2FLAIRb
registration, where the pipeline registered the images in 69% and 80% of the cases, receptively.
This image registration pipeline is ideal to be used by the researchers of the APRICOT study
to improve efficacy by quickly registering all the scans of the baseline scans as well as the
follow-up scans. In addition to the image registration pipeline, an analyses script is written
that performs a VOI- and dose-based analysis.

The VOI-based analysis found that CVR was significantly increased at an increasing distance
from the tumour in WM, where the p-value was precisely 0.05. The slight increase at an
increasing distance from the tumour was not significant in GM for all VOIs. However, the
first VOI (VOI 1) around the tumour was significantly lower than the latest VOI, 14 pixels
from the tumour (VOI 7) in GM and WM. These results show that BM affects the CVR of
the cerebrovasculature, which can be measured with the cerebrovascular stress test for patients
with BM. The slight increase of CVR at an increasing distance from the tumour in the VOI-
based analysis could be explained by the abnormal anatomy of vasculature around tumours.
The blood vessels often are irregular structured, are more permeable, and have chaotic flow
patterns [63,64]. This might lead to a poor function of vessels which will depict itself as a lower
signal in a CVR map.

The dose-based analysis found a small decrease in follow-up CVR in comparison to baseline
CVR in GM in patients with BM that received SRS. The difference was minuscule and not
statistically significant. These results suggest a slight decrease in CVR, however, based on
these results no conclusions can be yet be derived. The changes in CVR are related to the
cognition of the patient [65]. Cognitive changes were observed by Chang et al. in 24% of the
patients at four months after RT [66]. A review found little to no cognitive decline four months
after SRS [67]. It might be the case that these patients do not have cognitive decline yet three
months after RT, and therefore, no significant changes could be seen between baseline and
follow-up CVR. The damage induced by radiation is cumulative, and the effects might develop
in a later stage [68]. These things might have affected the results and can explain why no
significant changes could be seen between baseline and follow-up CVR.

The results of this thesis are limited due to some limitations. All results were based on a
small cohort of patients that underwent baseline (n=13) and follow-up (n=4), and therefore,
the results are less reliable. A larger patient cohort is needed to further evaluate the outcomes.
Moreover, especially the dose-based analysis is performed on a rather small data set. Thereby,
two of the patients in this data (APP001 and APP005) set already received previous cranial RT.
This could have already induced some damages in the vasculature and resulted in a lower base-
line CVR measurement. The damage of radiation dose is cumulative and stochastic, therefore,
the damage might occur in a later period.

The accuracy of the GM, WM, and CSF segmentations were also limited and specifically
the GM segmentation. The GM segmentation sometimes included areas that did not contain
any GM, this mostly occurred around the ventricles and the brain stem. These segmentations
could be improved with other segmentation tools or a tool that gives probability segmentation
maps [69]. Moreover, the GM segmentations also included oedema in the brains of the patients,
which was extracted with a semi-automatic tool. Thereby, the false positives and false negatives
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of the automatic segmentation had to be adjusted manually which can result in human errors
and less accurate oedema segmentation. An alternative for the semi-automatic tool might be
to use algorithms that are based on machine or deep learning that can accurately segment
oedema and/or the tumour [70–72]. A more accurate WM, GM and CSF segmentation will
lead to more reliable results.

The baseline analysis was executed with segmentations around the tumour (VOI-based),
while generating the segmentation, the location of the tumour is not taken into account. For
example, if the tumour is on the border of the right hemisphere, then the circular segmentations
will also include the left hemisphere. This creates uncertainty in the data because the vessels
in the unaffected hemisphere are not affected by the tumour in the affected hemisphere.This
limitation could have been avoided by limiting the VOIs around the tumour to only expand in
the affected hemisphere.

The registration is an additional limiting factor, where the interpolation methods introduced
uncertainty in the data. The uncertainties due to interpolation methods are restricted by only
interpolating an image once with a combined matrix instead of two or three times. Uncertainty
due to registration is limited by visually inspecting all registrations to check the performance
of the image registration pipeline.

The performed analysis is conducted with a categorical approach based on segmentations.
This analysis can be broadened in future research by performing a voxel-wise analysis to look
for potential correlations between CVR in patients with BM and the received dose. This study
showed that CVR was not significantly reduced after RT. If these patients undergo cognitive
decline after RT is uncertain at this moment in time. Therefore, additional research needs to
be performed to relate CVR in BM patients with cognition. The APRICOT study performs
this additional research by carrying out neurocogntive assessments of each patient at baseline
and three months later at follow-up. The CVR maps together with neurocognitive assessments
could potentially demonstrate a relationship between a reduced CVR and cognitive function in
patients with BM that underwent RT.

Additional cognitive data could help to discover if the cognition of the patient changes
three months after RT with SRS. A reduction of cognition can have a devastating effect on the
patient’s quality of life [73]. It would be optimal to determine the possible cognitive decline
after RT to inform the patient of the possible cognitive decline. CVR provides information
about the workings of the vasculature in the brain. If the CVR is already lower then the
average, it could be possible to predict a further decline due to RT. Future prospect could be
to test if baseline CVR is a feasible tool to predict the cognitive function of a patient after RT.

Patients with BM are already more likely to have or develop cognitive decline then other
healthy persons [74]. Hence, cognitive decline is related to a lower CVR signal, additional
research can be performed by comparing the CVR maps of healthy volunteers and patients
with BM. This additional study create more understanding into CVR in patients with BM
in comparison to healthy persons. In addition, it could potentially give more insight into the
cognitive decline of patients with BM regardless of radiation-induced damage.

Although the performance of the pipeline is already ideal for the T2FLAIR, BOLD, BOLDb,
and T1b registrations, the pipeline could be improved for the CT and T2FLAIRb scans. First,
the reasons behind the misregistrations need to be investigated. The results of this could help
to resolve the misregistrations of CT and T2FLAIRb and these solutions can be implemented
into the image registration pipeline.
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This thesis developed an accurate and high performance image registration pipeline that cor-
rects for geometric distortion artefacts and registers a CT, T1-weighted, T2-weighted FLAIR,
and BOLD scan. Subsequently, an analysis script is developed to evaluate the CVR in the cere-
brovasculature of patients with BM. The results showed an increase of mean CVR at a distance
from the tumour in GM and WM. These results indicate that BM influences the CVR of these
patients. The CVR was slightly lower in GM after radiotherapy, but this difference was not
significant. No major conclusions can be drawn based on these results. Further research needs
to be conducted on a larger patient cohort to find out if CVR decreases after RT in patients
with BM.

6 Conclusion

This thesis showed a slightly increasing CVR at a distance from the tumour, which could
indicate that BM influences the CVR of the cerebrovasculature of these patients. Additional
results showed a small difference between average baseline CVR and follow-up CVR in patients
with brain metastases after stereotactic radiosurgery. The differences between the baseline
CVR and follow-up CVR were too small to draw conclusions based on these results. Further
research with a larger patient cohort needs to be conducted, to evaluate if CVR is reduced in
patients with BM after stereotactic radiosurgery.
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Appendix A Supplementary Patient Information

Table 5. Characteristics of the included patients. The brain metastases column refers to the
number of BM patients received treatment for. All patients received SRS, which means that
the treatment dose is given in one fraction. Some patients already received previous cranial
RT in the form of SRS or primary radiation treatment with three fractions. Only the first five
included patients underwent the follow-up scan.

Patients Brain metastasis Treatment Dose Previous RT Follow-up

APP001 4 18 Gy 2x yes

APP003 7 24 Gy - yes

APP005 1 21 Gy 4x yes

APP006 2 21 Gy - yes

APP007 11 24 Gy - yes

APP008 2 18 Gy - -

APP009 12 24 Gy - -

APP010 5 24 Gy - -

APP011 8 24 Gy - -

APP012 9 24 Gy - -

APP013 2 24 Gy - -

APP014 4 24 Gy 1x -

APP015 2 18 Gy 2x -
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Appendix B CT-data pre-processing

The CT data was obtained from the clinical radiotherapy servers of the UMC Utrecht in
the Netherlands. The dose distributions of the patients are recalculated to obtain the same
equivalent dose per 2 Gy fractions (EQD2). The Linear Quadratic (LQ) Model (Equation 5)
is used to calculate the the EQD2 for each patient.

EQD2 = n · d ·
(d+ α

β
)

(2 + α
β
)

(5)

where d is the dose per fraction, n is the number of fractions, and α/β is a ratio. The LQ model
describes a relationship between cell survival and delivered dose. The α/β ratio is a measure of
the sensitivity to fractionation of the cells, where a high ratio is less sensitive, and a low ratio
is more sensitive to the effect of fractionation of RT [75, 76]. Tumours in the central nervous
system, such as BM are classified as late responding tissue and typically have a α/β ratio of
2 [77].

On a CT scan, the BM and the organs at risk are delineated by the clinician and are
referred to as planning VOIs. The tumour tissue is delineated as a gross tumour volume
(GTV), clinical target volume (CTV), and planning target volume (PTV). The GTV describes
the visible tumour. The CTV contains the GTV and a margin for the microscopic extent of the
tumour. The last volume, the PTV, contains the GTV and CTV and allows for uncertainties
in the treatment delivery. [78]

The brain tumours in the UMC Utrecht are mostly delineated with a GTV and a PTV. A
mask of the baseline tumour were created for all the included patients. This mask is made by
giving the background and the brain a value of 0, PTV a value of 3, and GTV a value of 1.

After obtaining the CT-scan, tumour mask and dose distribution of a patient, the data is
converted from DICOM to NIfTI format with the dcm2niix convertor. NIfTI format stands
for Neuroimaging Informatics Technology Initiative and is a globally used data format for
neuroimaging. Subsequently, the CT data is transferred to the research servers of the UMC
Utrecht.
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Appendix C MRI Scanning Parameters

Table 6. MRI parameters of the MRI scanning protocol

MRI-sequence Parameters

3D TFE T1-weighted TR 8 ms, TE 3.25 ms, flip angle 10◦, slices 180, slice
thickness 1 mm, matrix size is 240x240

3D TIR T2-weighted FLAIR TR 4800 ms, TE 340 ms, flip angle 90◦, slices 182, slice
thickness 1.123 mm, matrix size is 256x256

BOLD EPI TR 1050 ms, TE 30 ms, flip angle 65◦, slices 51, slice
thickness 2.5 mm, matrix size is 96x96
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Appendix D Pipeline Development

This appendix will explain the development of the analysis pipeline. This image analysis
pipeline was built to bring all acquired scans in spatial correspondence to be able to perform
a data analysis of the baseline CVR map and the follow-up CVR maps. This pipeline accom-
plishes this by removing certain artefacts from the scans and registering the scans into one
corresponding space. The pipeline was built first for one ideal patient (APP003). This patient
had scanning data with no artefacts and performed the breathing challenges sufficiently. The
image analysis pipeline needs to register the following data sets to the baseline T1 scan: base-
line CT scan with dose distribution and tumour mask, baseline BOLD scan, baseline T2FLAIR
scan, follow-up T1 scan, follow-up T2FLAIR, follow-up BOLD.

The pipeline is built on the research servers of the UMC Utrecht and consists of two separate
bash scripts, one script for the baseline and one script for the follow-up data. The bash scripts
work with scans in NIfTI format files, which stands for Neuroimaging Informatics Technology
Initiative and is a globally used data format for neuroimaging. The data is processed and
registered using the FSL analysis toolbox for brain imaging data.

In Section 2.4, it was mentioned that for every registration, the cost function, the DOF, and
interpolation method needs to be selected. The cost functions were selected by registering the
moving images to the reference images with all applicable cost functions. The registrations were
performed using six or 12 DOF to select the most optimal number of DOF. The interpolation
method was chosen per registration based on the type of data (scan or mask/segmentation)
and the function of that type of data in the data analysis. The results of all registrations
were visually analysed using ITK-SNAP, and the best option was selected for the pipeline
registration.

Prior to the registration of the anatomical scans (T1, T1b, T2FLAIR, and T2FLAIRb),
the brain is extracted using FSL BET (Brain Extraction Tool). The extracted brains are
registered to each other, which helps the registration tool to focus on registering the brain
perfectly. Afterwards, the resulting transformation matrix is used to resample the whole scan
to T1 space.

D.1 Baseline Registration Pipeline

The baseline pipeline needed to register the CT scan with dose distribution and tumour mask,
baseline BOLD scan, and baseline T2FLAIR scan to the baseline T1 scan. The following
sections will describe the process of these three registrations.

D.1.1 CT Registration

The registration of the CT to T1 scan, is executed using FSL FLIRT (FMRIB’s Linear Image
Registration Tool). This registration requires an inter-modal cost function and the available
inter-modal cost functions for FLIRT are correlation ratio (corratio), mutual information (mu-
tualinfo), and normalised mutual information (normcorr).

At first, all tried options did not result in an optimal registration of CT to T1 space,
because the registration tool had flipped the CT scan in an inaccurate position. The amount
that the moving image can rotate during the registration can be defined in FLIRT with the
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option finesearch (input needs to be in degrees). The input for finesearch is chosen by visual
inspection of the CT and T1 data. The orientation of the CT and T1 scans was quite similar,
however, the CT scan was slightly tiled upwards in comparison to the T1 scan. Therefore, the
finesearch parameter was set at a small angle (5◦), and the registration was run again for all
three cost functions. The results were visually analysed by comparing the registered CT scans
to each other and to the T1 scan. The histograms and images of the three registered CT scans
were comparable. In Table 7, the results of these three registrations are described. The cost
function normmi, gave the best result and was selected as the cost function for the CT to T1
registration.

After visual inspection, the CT scan seemed to be nicely registered in some areas but slightly
off in other areas. The registration was run again with an affine registration instead of a rigid
registration, which resulted in a nicely registered CT scan. Therefore, the decision was made
to implement an affine registration for the CT scans into the baseline bash script.

The resolution or look of the registered CT scan was not of concern because the CT will
not be used in the CVR analysis. Hence, trilinear interpolation was used for the CT to T1
registration. The transformation matrix of this registration was most important since it is
needed to register the dose distribution and tumour mask to T1 space. The values in the
tumour mask should stay integers, and therefore, NN interpolation is selected to register the
tumour mask to T1 space. The dose distribution is also registered with NN interpolation to
ensure to keep the original dose values. Spline was not selected, since it can create values that
are higher or lower than the maximum or minimum of the original image. This would make
the dose distribution less reliable.

Table 7. The results of the registration of the CT scan to the T1 scan while making use of
different cost functions

Cost Function Description

corratio The head of the patient was tilted downward in the CT scan in compar-
ison to the T1 scan

mutualinfo CT scan and T1 scan aligned quite well, however, there was a slight tilt
backwards in the CT scan

normmi The CT scan and T1 scan aligned well

D.1.2 T2FLAIR Registration

First, the brains of the T2FLAIR and T1 are coregistered, and afterwards, the tranformation
matrix is used to register the entire T2FLAIR to T1 space. There are intensity differences
between the T1 and T2FLAIR, and therefore, the cost functions leastsq and normcorr are
not sufficient. The inter-modal cost functions, corratio, mutualinfo, and normmi, need to be
used. All three optioned registered the T2FLAIR scan sufficiently, and no differences could be
observed between the scans and their histograms (see Table 8). The cost function normmi was
arbitrarily selected as the cost function for this registration.
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The registration of T2FLAIR with normmi was repeated with affine and rigid registration.
Affine registration scaled down the T2FLAIR brain in comparison to the T1 brain. In addition,
the two scans were acquired after each other, and therefore, the movement between both scans
is minimal. Rigid registration in combination with trilinear interpolation is selected for this
part of the image registration pipeline. NN interpolation resulted in ’blocky’ edges and created
line artefacts in the image. In the T2FLAIR of all patients, abnormalities are visible such as
the BM and oedema, and these abnormalities could be spread out with spline interpolation.

Table 8. The results of the registration of the T2FLAIR scan to the T1 scan while making
use of the the cost functions: corratio, mutualinfo, and normmi.

Cost Function Description

corratio The T2FLAIR looks well registered to the T1

mutualinfo This cost function also registered the T2FLAIR to the T1 quite well

normmi No difference could be obsevered between mutualinfo and normmi. Nor-
mmi registered the T2FLAIR well with the T1.

D.1.3 BOLD registration

The first tries of the BOLD to T1 coregistration did not register the BOLD scan because borders
of the brain in the BOLD scan could not line up the T1. This problem was caused by geometric
distortions that were induced in the phase encoding direction (see Section 2.2.3). The section
below will describe how this distortion is corrected in the analysis pipeline. Subsequently, the
following sections will describe the baseline registration of the corrected BOLD to the baseline
T1 scan.

Removing geometric distortions in BOLD scan
Inhomogeneities in the main magnetic field cause geometric distortions in the BOLD image
and can lead to difficulties when registering the BOLD to the T1 scan. FSL has a function
called topup that is able to correct for these distortions by using two data sets with reversed
phase encoding directions. The phase encoding of the 17-minute long BOLD scan is in the
anterior-posterior (AP) direction. After this long scan, a short acquisition is performed with
the phase encoding in the reversed posterior-anterior (PA) direction. The topup function will
use both scans to calculate a susceptibility-induced off-resonance field and create one corrected
scan [58,59].

Before topup is applied, the BOLD scan is motion-corrected. The scan is considerably long
and the patient is undergoing breathing challenges, which makes it more likely for the patient
to move during the scan. To perform the motion correction, the FLS function MCFLIRT is
used [79]. Afterwards, the first time volume of the long BOLD scan (B dn) and short acquisition
(B up) is taken and merged into one file (B all) with the two time points after each other. Topup
uses B all to calculate a volume of field correction coefficients that the function will give as
output. This volume of field correction coefficients is applied to the motion-corrected BOLD
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scan with the FSL applytopup function. In Figure 28, an example of the distortions and the
corrected result can be seen.

Fig. 28. This figure shows the distortions that were seen in the BOLD scans. The top row
gives an axial view of the brain, and the bottom row shows the brain in a sagittal view. Image
A and D, are taken with phase encoding direction AP. The distortions can be seen at the
front of the brain, where there are ‘dips’ visible. The front of the brain looks like it has been
pressed inwards (A). Image B and E, are taken in the reverse phase encoding direction, PA.
This results in a brain that looks ‘stretched’. The last column shows the results after topup is
applied (image C and F).

BOLD Registration
The registration of the baseline BOLD scan is achieved with the FSL function epi reg. This
function is a specialised FLIRT function specially made for EPI images and uses the BBR
cost function (see Section 2.4.1). Epi reg needs the input of a structural scan with clear white
matter boundaries and an EPI scan that contains intensity differences between white and grey
matter. The function needs a WM segmentation as input or will calculate a WM boundary.

Before running epi reg, a WM segmentation and a brain extraction of the T1 scan is created
using FAST (FMRIB’s Automated Segmentation Tool) and BET (Brain Extraction Tool),
respectively. FAST generates segmentations of the GM, WM and CSF [60] and BET extracts
the brain from the 3D scan and generates a mask of the brain [80]. In the epi reg function, the
interpolation method and DOF cannot be specified. However, the field correction of the top
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up and the phase encoding direction can be specified to assist the function to make a sufficient
registration. Epi reg uses rigid registration and spline as the interpolation method.

D.2 Follow-up Registration Pipeline

The follow-up registration pipeline needs to register the T1b, T2FLAIRb, and BOLDb to the
baseline T1 scan. In the sections below, the development of this part of the pipeline is discussed.

D.2.1 T1b Registration

This is the only registration were an intra-modal cost function can be used. Therefore, two reg-
istrations were performed using leastsq and normcorr. In Table 9, the results of the registration
with both intra-modal cost functions is described. There was no visible difference between both
cost functions and histograms looked similar. The cost function normcorr is selected because
it performs better with intensity differences between the scans. There might be some intensity
differences between the T1 and T1b scans of the other included patients, and normcorr is more
reliable in generating good registrations for scans with these differences.

The registration is repeated with an affine and rigid registration. The affine method elon-
gated the brain in the vertical direction (front to back) and shrunk the brain in the horizontal
direction (left to right). The rigid method made a better registration and was chosen for this
part of the pipeline. As already mentioned, abnormalities in the brain can be spread out
with spline interpolation, and NN interpolation can make the image look ’blocky’ or create
line artefacts in the image. Trilinear interpolation was, therefore, selected as the interpolation
method.

Table 9. The results of the registration of the T1b scan to the T1 scan while making use of
the two intra-modal cost functions: leastsq and normcorr

Cost Function Description

leastsq After visual inspection the T1b looks well registered to the T1.

normcor This cost funtion also registered the T1b to T1 well and no differences
could be seen with the registraiton with leastsq.

D.2.2 T2FLAIRb Registration

This registration has to be executed with one of the three inter-modal cost functions. The
results of the registrations are described in Table 10. No difference could be seen between
corratio and normmi. The normmi cost function is selected again, since normmi is already used
for all other registrations.

The registration was repeated with affine and rigid registration. Affine registration caused
the brain to deform, and therefore, rigid is chosen for this registration. Trilinear interpolation
is selected for this registration using the same reasoning that was given in the T1b registration.
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Table 10. The results of the registration of the T2FLAIRb scan to the T1 scan while making
use of the the cost functions: corratio, mutualinfo, and normmi.

Cost Function Description

corratio This cost function registered the T2FLAIRb well with the T1.

mutualinfo This function slightly rotated the T2FLAIRb brain in the coronal view
of the brain.

normmi The T2FLAIRb was well registered to the T1 and there was no difference
visable between the registered T2FLAIRb with corratio.

D.2.3 BOLDb Registration

Before BOLDb is registered to T1, the scan is corrected for motion and geometric distortions.
This is performed with the same process that is described in the baseline BOLD registration.

For this registration, there were two possible options. The first option registered BOLDb
directly to T1 with epi reg. The second option has three different steps. First, BOLDb is
registered to T1b with epi reg. Secondly, the resulting matrix is multiplied with the transfor-
mation matrix of the T1b to T1 registration. Finally, the combined matrix will directly register
BOLDb to T1 with normii and spline as the interpolation method. The cost function normmi
is selected because it performed best most of the other registrations and spline interpolation
was selected because this was also performed on the baseline BOLD with epi reg.

For the test patient, both options gave a good registration. However, option one could result
in problems when there are more anatomical differences between the follow-up and the baseline
scans. Most patients have an increase or reduction in oedema at follow-up. For this reason,
option two seemed more reliable and was selected for the BOLDb registration. The resulting
matrix of this registration can be used to register BOLDb derivatives such as the CVR map to
the baseline T1 space.
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Appendix E Grey Matter Segmentation

As described in Section 3.6.1, most of the patients have oedema in the brain that leads to
errors in the GM segmentation of the T1 scan that are generated with FSL FAST. These
GM segmentations are corrected by extracting an oedema mask that is created with a semi-
automatic segmentation tool using LST and ITK-SNAP. LST is a toolbox for SPM that can
segment hyperintense legions using T2FLAIR scans. This tool was originally developed for
the segmentation of multiple sclerosis lesions and has been shown to successfully segment other
types of brain lesions such as legions from Alzheimer’s disease [62]. LST has two tools the lesion
growth algorithm (LGA) and the lesion prediction algorithm (LPA). LGA uses T2FLAIR and
T1 scans to segment the lesions.

For each patient, the T1 and T2FLAIR scan are loaded into the LST program and an initial
threshold (κ) is specified. The best κ for the data is obtained by visually inspecting the results.
After running the program with several κs from 0.1 to 0.3, the κ that gave the best oedema
segmentation was a κ of 0.14. The LST algorithm returns a mask with the segmented lesions.
An example of a segmentation that was made by this tool can be seen in Figure 29. The
false positives that were generated with this tool were manually erased and the places that the
tool missed were manually adjusted in ITK-SNAP. The resulting oedema masks were extracted
from the GM segmentation in the data analysis MATLAB script. The scripts can be found in
Appendix H.

(a) (b)

Fig. 29. Illustration of the automatic segmentations generated by the LST tool LGA. a) Shows
the T2FLAIR of APP003 and b) Shows the segmentations in pink in the same T2FLAIR scan.
The oedema is mostly segmented, however, there are also several false positives and false
negatives.
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Appendix F Supplementary Results

F.1 Baseline CVR maps of all included patients

Fig. 30. CVR maps of the baseline patients APP001 to APP009, excluding patients APP002,
and APP004.
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Fig. 31. CVR maps of the baseline patients APP010 to APP015
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F.2 Baseline and Follow-up CVR maps of all patients with a follow-
up scan

(a)

(b)

(c)

Fig. 32. Baseline and Follow-up CVR maps of APP001, APP003, and APP005
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(a)

(b)

Fig. 33. Baseline and Follow-up CVR maps of APP006, and APP007
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Appendix G Scripts for Image Registration Pipeline

G.1 Baseline pipeline

Listing 1: Baseline pipeline

#!/bin/bash

##Pipeline takes 1 hour and 30 min.

##ensure nii files with correct names and location

##T1 folder with T1.nii.gz, T2FLAIR folder with T2FLAIR.nii.gz

##BOLD folder with BOLD.nii.gz and BOLDAPA.nii.gz

##CT folder with CT.nii.gz, dosemap.nii.gz and mask.nii.gz

##input APRICOT patient ID (e.g. bash pipeline.bash APP001)

VDIR=$PWD
cd ${VDIR}/$1

##REGISTRATION CT to T1w

##CT to T1

flirt -in CT/CT -ref T1/T1 -out CT/CTtoT1 -omat CT/CTtoT1.mat -

cost normmi -v -dof 12 -finesearch 2 -interp trilinear

##Dosemap to T1

flirt -in CT/dosemap -ref T1/T1 -out CT/dosetoT1 -init CT/CTtoT1.

mat -applyxfm -v -interp nearestneighbour

##Mask to T1

flirt -in CT/mask -ref T1/T1 -out CT/masktoT1 -init CT/CTtoT1.mat

-applyxfm -v -interp nearestneighbour

##REGISTRATION FLAIR to T1

cd ${VDIR}/$1
##Extract brain FLAIR

bet T2FLAIR/T2FLAIR T2FLAIR/T2FLAIR_brain -R -f 0.4 -g 0 -m

##Extract brain T1

bet T1/T1 T1/T1_brain -R -f 0.4 -g 0 -m

#Create restored bias field for edema segmentation

fast -B -t 2 --nopve T2FLAIR/T2FLAIR.nii.gz

##FLAIR to T1

flirt -in T2FLAIR/T2FLAIR_brain -ref T1/T1_brain -out T2FLAIR/

T2FLAIRtoT1_brain -omat T2FLAIR/T2FLAIRtoT1_brain.mat -cost

normcorr -v -dof 6 -interp trilinear

flirt -in T2FLAIR/T2FLAIR -ref T1/T1 -out T2FLAIR/T2FLAIRtoT1 -

init T2FLAIR/T2FLAIRtoT1_brain.mat -applyxfm -cost normcorr -v

-dof 6 -interp trilinear

##TOPUP for BOLD

cd ${VDIR}/$1/BOLD
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##Motion correction

mcflirt -in BOLD -out BOLD_mcf -bins 256 -cost leastsquares -dof

12 -plots -report

##Apply topup to motion corrrected timeseries with first volume

fslroi BOLD_mcf B_dn 0 1

fslroi BOLDAPA B_up 0 1

fslmerge -t B_ALL B_dn B_up

##Make parameter file (010 phase encoding direction in y

direction , minus - or + blip and 0.030 total read out time)

printf "0 -1 0 0.030\ n0 1 0 0.030"> acq_params.txt

##Do the topup and apply

topup --imain=B_ALL --datain=acq_params.txt --out=

my_topup_results --config=b02b0_1.cnf

applytopup --imain=BOLD_mcf --datain=acq_params.txt --inindex =1

--topup=my_topup_results --method=jac --datatype=float --out=

BOLD_applytopup

##Create new mean brain image after topup

fslmaths BOLD_applytopup -Tmean BOLD_mean

bet BOLD_mean BOLD_mean_brain -f 0.2 -m

fslmaths BOLD_mcf -Tmean BOLD_pretopup_mean

rm B_ALL.nii.gz B_dn.nii.gz B_up.nii.gz

##REGISTRATION BOLD to T1

cd ${VDIR}/$1
#Create segmentations

fast -t 1 -I 6 -g -B --nopve -o T1/T1 T1/T1_brain

##Registration

epi_reg --epi=BOLD/BOLD_mean --t1=T1/T1 --t1brain=T1/T1_brain --

out=BOLD/BOLDtoT1_epi --gdc=my_topup_results_fieldcoef --

echospacing =0.00060 --pedir=-y --noclean --wmseg=T1/T1_seg_2 -

v

##Remove eyes in BOLD with T1 brain mask

fslmaths T1/T1_brain_mask -mul BOLD/BOLDtoT1_epi BOLD/

BOLDtoT1_epi_noeyes

##CONVERT T1 segmentations to BOLD space

cd ${VDIR}/$1
#Inverse matrix for epi_reg

convert_xfm -omat BOLD/T1toBOLD.mat -inverse BOLD/BOLDtoT1_epi.

mat

#Registrations of seg to BOLD space

flirt -in T1/T1_seg_0 -ref BOLD/BOLD_mean_brain -out BOLD/

seg0toBOLD -init BOLD/T1toBOLD.mat -applyxfm -v -dof 6 -interp

nearestneighbour

flirt -in T1/T1_seg_1 -ref BOLD/BOLD_mean_brain -out BOLD/
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seg1toBOLD -init BOLD/T1toBOLD.mat -applyxfm -v -dof 6 -interp

nearestneighbour

flirt -in T1/T1_seg_2 -ref BOLD/BOLD_mean_brain -out BOLD/

seg2toBOLD -init BOLD/T1toBOLD.mat -applyxfm -v -dof 6 -interp

nearestneighbour

##Convert dose and mask (CT) to BOLD space

cd ${VDIR}/$1
##Multiply matrices CTtoT1 and T1toBOLD

convert_xfm -omat CT/CTtoBOLD.mat -concat BOLD/T1toBOLD.mat CT/

CTtoT1.mat

##Register mask and dose to BOLD space

flirt -in CT/mask -ref BOLD/BOLD_mean_brain -out CT/masktoBOLD -

init CT/CTtoBOLD.mat -cost normmi -applyxfm -v -dof 6 -interp

nearestneighbour

flirt -in CT/dosemap -ref BOLD/BOLD_mean_brain -out CT/dosetoBOLD

-init CT/CTtoBOLD.mat -cost normmi -applyxfm -v -dof 6 -

interp nearestneighbour

G.2 Follow-up pipeline

Listing 2: Follow-up pipeline

#!/bin/bash

##PIPELINE FOR FOLLOWUPSCANS

##RUN ONLY AFTER PIPELINE.BASH

##ensure nii files with correct names and location

##T1 folder with T1.nii.gz, T2FLAIR folder with T2FLAIR.nii.gz

##BOLD folder with BOLD.nii.gz and BOLDAPA.nii.gz

##input APRICOT patient ID without b (e.g. bash pipeline_followup

.bash APP001)

VDIR=$PWD
cd ${VDIR}/$1b

##REGISTRATION T1b (follow -up) to T1

cd ${VDIR}/$1b
##Extract brain

bet T1/T1 T1/T1_brain -R -f 0.4 -g 0 -m

##T1b to T1sub

cd ${VDIR}/
flirt -in $1b/T1/T1_brain -ref $1/T1/T1_brain -out $1b/T1/

T1btoT1_brain -omat $1b/T1/T1btoT1_brain.mat -v -dof 6 -cost

normcorr -interp trilinear
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flirt -in $1b/T1/T1 -ref $1/T1/T1 -out $1b/T1/T1btoT1 -init $1b/
T1/T1btoT1_brain.mat -applyxfm -v -dof 6 -cost normcorr -

interp trilinear

##TOPUP for BOLDb

cd ${VDIR}/$1b/BOLD
##Motion correction

mcflirt -in BOLD -out BOLD_mcf -bins 256 -cost leastsquares -dof

12 -plots -report

##Apply topup to motion corrrected timeseries with first volume

fslroi BOLD_mcf B_dn 0 1

fslroi BOLDAPA B_up 0 1

fslmerge -t B_ALL B_dn B_up

##Make parameter file 010 phase encoding direction , minus - or +

blip and 0.030 total read out time

printf "0 -1 0 0.030\ n0 1 0 0.030"> acq_params.txt

##Do the topup and apply

topup --imain=B_ALL --datain=acq_params.txt --out=

my_topup_results --config=b02b0_1.cnf

applytopup --imain=BOLD_mcf --datain=acq_params.txt --inindex =1

--topup=my_topup_results --method=jac --datatype=float --out=

BOLD_applytopup

##Create new mean brain image after topup

fslmaths BOLD_applytopup -Tmean BOLD_mean

bet BOLD_mean BOLD_mean_brain -f 0.2 -m

rm B_ALL.nii.gz B_dn.nii.gz B_up.nii.gz

##REGISTRATION BOLDb to T1

cd ${VDIR}/$1b
##Step1 register BOLDb to T1b

epi_reg --epi=BOLD/BOLD_mean --t1=T1/T1 --t1brain=T1/T1_brain --

out=BOLD/BOLDbtoT1b_epi --echospacing =0.00060 --pedir=-y --

noclean --wmseg=T1/T1_seg_2 -v

##Step2 combine matrix T1b to T1 and BOLDb to T1b

convert_xfm -omat BOLD/BOLDbtoT1_basline.mat -concat T1/

T1btoT1_brain.mat BOLD/BOLDbtoT1b_epi.mat

##Step3 regiser BOLDb to T1

cd ${VDIR}/
flirt -in $1b/BOLD/BOLD_mean -ref $1/T1/T1_brain -init $1b/BOLD/

BOLDbtoT1_basline.mat -out $1b/BOLD/BOLDbtoT1 -applyxfm -v -

dof 6 -cost normmi -finesearch 5 -echospacing 0.00060 -pedir

-2 -interp spline

##Remove eyes in BOLD with T1 brain mask

fslmaths $1/T1/T1_brain_mask -mul $1b/BOLD/BOLDbtoT1 $1b/BOLD/
BOLDbtoT1_noeyes
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##REGISTRATION T2FLAIRb to T1

cd ${VDIR}/$1b
##Extract brain T2FLAIR

bet T2FLAIR/T2FLAIR T2FLAIR/T2FLAIR_brain -R -f 0.4 -g 0 -m

##T2FLAIRb to T1

cd ${VDIR}/
flirt -in $1b/T2FLAIR/T2FLAIR_brain -ref $1/T1/T1_brain -out $1b/

T2FLAIR/T2FLAIRbtoT1_brain -omat $1b/T2FLAIR/
T2FLAIRbtoT1_brain.mat -v -cost normmi -dof 6 -interp

trilinear

flirt -in $1b/T2FLAIR/T2FLAIR -ref $1/T1/T1 -out $1b/T2FLAIR/
T2FLAIRbtoT1 -init $1b/T2FLAIR/T2FLAIRbtoT1_brain.mat -

applyxfm -v -dof 6 -interp trilinear

##FOR SEGMENTATIONS SeeVR

cd ${VDIR}/$1b
##Extract seggmentations brain T1b

fast -t 1 -I 6 -g --nopve -o T1/T1 T1/T1_brain

##CONVERT T1b segmentations to BOLDb space

cd ${VDIR}/$1b
##Inverse matrix for epi_reg

convert_xfm -omat BOLD/T1btoBOLDb.mat -inverse BOLD/

BOLDbtoT1b_epi.mat

##Registrations of seg to BOLD space

flirt -in T1/T1_seg_0 -ref BOLD/BOLD_mean -out BOLD/seg0toBOLD -

init BOLD/T1btoBOLDb.mat -applyxfm -v -interp nearestneighbour

flirt -in T1/T1_seg_1 -ref BOLD/BOLD_mean -out BOLD/seg1toBOLD -

init BOLD/T1btoBOLDb.mat -applyxfm -v -interp nearestneighbour

flirt -in T1/T1_seg_2 -ref BOLD/BOLD_mean -out BOLD/seg2toBOLD -

init BOLD/T1btoBOLDb.mat -applyxfm -v -interp nearestneighbour
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Appendix H Scripts and Functions for Data Analysis

H.1 Data Analysis

Listing 3: Data Analysis Script

1 c l o s e a l l ; c l e a r a l l ;
2

3 numPT = 15 ; %number o f t o t a l p a t i e n t s
4 numPTfollow=7; %number o f p a t i e n t s that have a fo l l ow −up
5

6 %Create PT l i s t f o r b a s e l i n e
7 PTnumbers=s t r c a t ( ’APP’ , c e l l f u n (@( x ) s p r i n t f ( ’%03d ’ , x ) , num2cel l ( 1 :numPT) ,

’ UniformOutput ’ , f a l s e ) ) ; %make APP l i s t
8

9 %Remove PT with i n s u f f i c i e n t data
10 PTnumbers (2 ) = [ ] ; %A r t e f a c t s in CVR APP002
11 PTnumbers (3 ) = [ ] ; %no BOLD data APP004
12

13 %Create PT l i s t f o r fo l l ow −up
14 PTnumbersfollow=s t r c a t ( ’APP’ , c e l l f u n (@( x ) s p r i n t f ( ’%03d ’ , x ) , num2cel l ( 1 :

numPTfollow ) , ’ UniformOutput ’ , f a l s e ) ) ; %make APP l i s t
15

16 %Remove PT with i n s u f f i c i e n t data
17 PTnumbersfollow (2) = [ ] ; %A r t e f a c t s in b a s e l i n e t h e r e f o r e cannot compare

these two
18 PTnumbersfollow (3) = [ ] ; %No fo l l ow −up , PT could not do the BOLD scan . .
19

20 %%
21

22 %BASELINE ANALYSIS OF SEGMENTATIONS AROUND TUMOUR MASK (BOLD SPACE)
23 %Create segmentat ions around the tumour ( i n c r e a s i n g with 2 p i x e l s )
24

25 f o r m=1:numel (PTnumbers )
26 vnumber = char (PTnumbers (m) )
27 [ var , voigm , voiwm , vo i noed ] = stepstumourmask bold ( vnumber ) ;
28 [ meanCVRgmvoi(m, : ) , meanCVRwmvoi(m, : ) , meanCVRallvoi (m, : ) ,

meanCVR noedvoi (m, : ) ] = meanCVRtumourseg bold ( var , voigm , voiwm ,
voi noed , vnumber ) ;

29 end
30

31 %Create new d i r to save r e s u l t s
32 d i r . an l = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ j a m i l a a n a l y s i s / ’ ] ;
33

34 d i r . voimeancvr = [ d i r . anl , ’voimeanCVR/ ’ ] ;
35 i f ˜ e x i s t ( d i r . voimeancvr , ’ d i r ’ )
36 mkdir ( d i r . voimeancvr )
37 end
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38

39 %Save r e s u l t s in new d i r
40 wri tematr ix ( meanCVRallvoi , [ d i r . voimeancvr , ’ meanCVRallvoi . csv ’ ] ) ; save ( [

d i r . voimeancvr , ’ meanCVRallvoi . mat ’ ] )
41 wri tematr ix (meanCVRgmvoi , [ d i r . voimeancvr , ’meanCVRgmvoi . csv ’ ] ) ; save ( [ d i r .

voimeancvr , ’meanCVRgmvoi . mat ’ ] )
42 wri tematr ix (meanCVRwmvoi , [ d i r . voimeancvr , ’meanCVRwmvoi . csv ’ ] ) ; save ( [ d i r .

voimeancvr , ’meanCVRwmvoi . mat ’ ] )
43 wri tematr ix ( meanCVR noedvoi , [ d i r . voimeancvr , ’ meanCVR noedvoi . csv ’ ] ) ; save

( [ d i r . voimeancvr , ’ meanCVR noedvoi . mat ’ ] )
44

45 %%
46

47 % % COMPARISON FOLLOW UP AND BASELINE dose segmentat ions (BASELINE BOLD
SPACE)

48 % %This f o r loop c r e a t e s dose segmentaions and the average CVR value per
vo i per pa t i en t

49 f o r j =1:numel ( PTnumbersfollow )
50 vnumber = char ( PTnumbersfollow ( j ) )
51 [ t h r e s d o s e a l l , thresdosegm , thresdosewm , thresdose noed , tot gm ( j , : ) ,

tot wm ( j , : ) , to t noed ( j , : ) ] = voidoseCVR ( vnumber ) ;
52 [ meanCVRgmdose( j , : ) , meanCVRwmdose( j , : ) , meanCVRalldose ( j , : ) ,

meanCVRgmdoseb( j , : ) , meanCVRwmdoseb( j , : ) , meanCVRalldoseb ( j , : ) ,
meanCVRnoeddose ( j , : ) , meanCVRnoeddoseb ( j , : ) ] = voidoseCVRcal (
t h r e s d o s e a l l , thresdosegm , thresdosewm , thresdose noed , vnumber ) ;

53 end
54

55 %save r e s u l t s in new d i r
56 d i r . an l = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ j a m i l a a n a l y s i s / ’ ] ;
57

58 d i r . dosevoimeancvr = [ d i r . anl , ’ dosevoimeanCVR/ ’ ] ;
59 i f ˜ e x i s t ( d i r . dosevoimeancvr , ’ d i r ’ )
60 mkdir ( d i r . dosevoimeancvr )
61 end
62

63 %Save b a s e l i n e data
64 wri tematr ix (meanCVRgmdose , [ d i r . dosevoimeancvr , ’meanCVRgmdose . csv ’ ] ) ; save

( [ d i r . dosevoimeancvr , ’meanCVRgmdose . mat ’ ] )
65 wri tematr ix (meanCVRwmdose , [ d i r . dosevoimeancvr , ’meanCVRwmdose . csv ’ ] ) ; save

( [ d i r . dosevoimeancvr , ’meanCVRwmdose . mat ’ ] )
66 wri tematr ix ( meanCVRalldose , [ d i r . dosevoimeancvr , ’ meanCVRalldose . csv ’ ] ) ;

save ( [ d i r . dosevoimeancvr , ’ meanCVRalldose . mat ’ ] )
67 wri tematr ix ( meanCVRalldose , [ d i r . dosevoimeancvr , ’ meanCVRnoeddose . csv ’ ] ) ;

save ( [ d i r . dosevoimeancvr , ’ meanCVRnoeddose . mat ’ ] )
68

69 %Save fo l lowup data
70 wri tematr ix (meanCVRgmdoseb , [ d i r . dosevoimeancvr , ’meanCVRgmdoseb . csv ’ ] ) ;

save ( [ d i r . dosevoimeancvr , ’meanCVRgmdoseb . mat ’ ] )
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71 wri tematr ix (meanCVRwmdoseb , [ d i r . dosevoimeancvr , ’meanCVRwmdoseb . csv ’ ] ) ;
save ( [ d i r . dosevoimeancvr , ’meanCVRwmdoseb . mat ’ ] )

72 wri tematr ix ( meanCVRalldoseb , [ d i r . dosevoimeancvr , ’ meanCVRalldoseb . csv ’ ] ) ;
save ( [ d i r . dosevoimeancvr , ’ meanCVRalldoseb . mat ’ ] )

73 wri tematr ix ( meanCVRalldoseb , [ d i r . dosevoimeancvr , ’ meanCVRnoeddoseb . csv ’ ] ) ;
save ( [ d i r . dosevoimeancvr , ’ meanCVRnoeddoseb . mat ’ ] )

74

75 %Save number o f voxe l s in dose groups
76 wri tematr ix ( tot gm , [ d i r . dosevoimeancvr , ’ tot gm . csv ’ ] ) ; save ( [ d i r .

dosevoimeancvr , ’ tot gm . mat ’ ] )
77 wri tematr ix ( tot wm , [ d i r . dosevoimeancvr , ’ tot wm . csv ’ ] ) ; save ( [ d i r .

dosevoimeancvr , ’ tot wm . mat ’ ] )
78 wri tematr ix ( tot noed , [ d i r . dosevoimeancvr , ’ to t noed . csv ’ ] ) ; save ( [ d i r .

dosevoimeancvr , ’ to t noed . mat ’ ] )

H.2 Creation of Volume of Interests

Listing 4: Create VOIs around Tumour

1 f unc t i on [ var2 , voigm , voiwm , vo i noed ] = stepstumourmask bold ( vnumber )
2 %This s c r i p t c r e a t e s segmentat ions or 2 p i x e l s around the tumour (max i s

14 p i x e l s away from GTV)
3

4 %Load data
5

6 %Load CT data
7 d i r . c t = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /CT/ ’ ] ;
8 [ mask , i n f o . mask , header . mask ] = loadImageData ( d i r . ct , ’masktoBOLD . n i i . gz

’ ) ; %Load mask o f tumours
9

10 %Load CVR brainmask
11 d i r . cvr = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/

CO2BLOCK GS0 WD1 CO2pr1/ ’ ] ;
12 [ brainmask , i n f o . brainmask , header . brainmask ] = loadImageData ( d i r . cvr , ’

mWBmask∗ . n i i . gz ’ ) ;
13

14 %Load CSF and WM informat ion
15 d i r . bold = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/ ’ ] ;
16 [wm, i n f o .wm, header .wm] = loadImageData ( d i r . bold , ’ seg2toBOLD . n i i . gz ’ ) ;
17 [ c s f , i n f o . c s f , header . c s f ] = loadImageData ( d i r . bold , ’ seg0toBOLD . n i i . gz ’ )

;
18

19 %Load T1 d i r
20 d i r . t1 = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /T1/ ’ ] ;
21

22 i f i s f i l e ( [ d i r . t1 , ’gmtoBOLD. n i i . gz ’ ] )
23 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ;
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24 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;
%Load edema in BOLD space

25 e l s e
26 %Load edema and GM informat ion in T1 space
27 [ edema , i n f o . edema , header . edema ] = loadImageData ( d i r . t1 , ’

edema semiauto . n i i . gz ’ ) ;
28 [ gm, i n f o .gm, header .gm] = loadImageData ( d i r . t1 , ’ T1 seg 1 . n i i . gz ’ ) ;
29 %Load tumour mask in T1 space
30 [ maskt1 , i n f o . maskt1 , header . maskt1 ] = loadImageData ( d i r . ct , ’

masktoT1 . n i i . gz ’ ) ;
31

32 newgm= gm.∗ not ( edema ) .∗ not ( maskt1 ) ;
33 saveImageData (newgm , header .gm, d i r . t1 , ’newgm . n i i . gz ’ , 64)
34

35 %Reg i s t e r the newgm in BOLD space and re l oad
36 cmd = [ ’ bash ’ , ’ ’ , ’newgmtoBOLD . bash ’ , ’ ’ , vnumber ] ; %you can

check the segmentat ion in T1 d i r e c t o r y
37 system (cmd) ;
38 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ; %Load new GM ( no edema , no tumour ) in BOLD space
39 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;

%Load edema in BOLD space
40 end
41

42 %%
43

44 %Create segmentat ions around the tumor mask
45 A=[2 4 6 8 10 12 1 4 ] ; %i n c r e a s i n g s t ep s o f 2 p i x e l s
46 evmask=mask ; %c r e a t e newmask
47 evmask (mask>1)=0; %only us ing GTV not PTV
48 var=s t r u c t ( ’ vo i1 ’ ,{0} , ’ vo i2 ’ ,{0} , ’ vo i3 ’ ,{0} , ’ vo i4 ’ ,{0} , ’ vo i5 ’ ,{0} ) ;
49 var2=s t r u c t ( ’ vo i1 ’ ,{0} , ’ vo i2 ’ ,{0} , ’ vo i3 ’ ,{0} , ’ vo i4 ’ ,{0} , ’ vo i5 ’ ,{0} ) ;
50

51 f o r i =1: l ength (A)
52 SE( i )=s t r e l ( ’ sphere ’ ,A( i ) ) ;
53 vo i=s p r i n t f ( ’ vo i%d ’ , i ) ; voimin=s p r i n t f ( ’ vo i%d ’ , i −1) ;
54 var . ( vo i )=imd i l a t e ( evmask , SE( i ) ) ;
55 i f i==1
56 var2 . ( vo i )=var . ( vo i )−evmask ;
57 e l s e
58 var2 . ( vo i ) =(( var . ( vo i )−var . ( voimin ) ) ) ;
59 end
60 end
61

62 voigm = var2 ;
63 voiwm = var2 ;
64 vo i noed = var2 ;
65
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66 f o r i =1: l ength (A)
67 vo i = s p r i n t f ( ’ vo i%d ’ , i ) ;
68 %Create GM and WM the masks
69 voigm . ( vo i ) ( seggm==0)=0; voiwm . ( vo i ) (wm==0)=0;
70 %Exclude p i x e l s ou t s id e the bra in
71 var2 . ( vo i ) ( brainmask==0)=0; voigm . ( vo i ) ( brainmask==0)=0; voiwm . ( vo i ) (

brainmask==0)=0; vo i noed . ( vo i ) ( brainmask==0)=0;
72 %Exclude p i x e l s i n s i d e CSF
73 var2 . ( vo i ) ( c s f ==1)=0; voiwm . ( vo i ) ( c s f ==1)=0; voigm . ( vo i ) ( c s f ==1)=0;

vo i noed . ( vo i ) ( c s f ==1)=0;
74 %exclude Edema f o r ’ All ’ mask
75 vo i noed . ( vo i ) ( ed==1)=0;
76 end
77

78 %Check segmentat ions to see i f they are c o r r e c t
79 %Save in CT d i r
80 s e g m e n t a t i o n s a l l=var2 . vo i1+var2 . vo i2 .∗2+ var2 . vo i3 .∗3+ var2 . vo i4 .∗4+ var2 .

vo i5 .∗5+ var2 . vo i6 .∗6+ var2 . vo i7 . ∗ 7 ;
81 saveImageData ( s egmenta t i on s a l l , header . mask , d i r . ct , ’ s e g m e n t a t i o n s a l l .

n i i . gz ’ , 64)
82 segmentations gm=voigm . vo i1+voigm . vo i2 .∗2+voigm . vo i3 .∗3+voigm . vo i4 .∗4+

voigm . vo i5 .∗5+voigm . vo i6 .∗6+voigm . vo i7 . ∗ 7 ;
83 saveImageData ( segmentations gm , header . mask , d i r . ct , ’ segmentations gm .

n i i . gz ’ , 64)
84 segmentations wm=voiwm . vo i1+voiwm . vo i2 .∗2+voiwm . vo i3 .∗3+voiwm . vo i4 .∗4+

voiwm . vo i5 .∗5+voiwm . vo i6 .∗6+voiwm . vo i7 . ∗ 7 ;
85 saveImageData ( segmentations wm , header . mask , d i r . ct , ’ segmentations wm .

n i i . gz ’ , 64)
86 segmentat ions noed=voi noed . vo i1+voi noed . vo i2 .∗2+ voi noed . vo i3 .∗3+

voi noed . vo i4 .∗4+ voi noed . vo i5 .∗5+ voi noed . vo i6 .∗6+ voi noed . vo i7 . ∗ 7 ;
87 saveImageData ( segmentat ions noed , header . mask , d i r . ct , ’

segmentat ions noed . n i i . gz ’ , 64)
88

89 end

H.3 Calculation VOI-Based Analysis

Listing 5: Calculate Mean CVR in VOIs

1 f unc t i on [ meanCVRgmvoi , meanCVRwmvoi , meanCVRallvoi , meanCVR noedvoi ] =
meanCVRtumourseg bold ( var , voigm , voiwm , voi noed , vnumber )

2 %This s c r i p t c a l c u l a t e s the mean CVR in each VOI around the tumour
3

4 %Load b a s e l i n e data
5

6 %Load r e g i s t e r e d BOLD data
7 %Load CVR data
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8 d i r . cvr = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/
CO2BLOCK GS0 WD1 CO2pr1/corrLAG/CVR/ ’ ] ;

9 [CVR, i n f o . cvr , header . cvr ] = loadImageData ( d i r . cvr , ’bCVR map . n i i . gz ’ ) ;
10

11 d i r .bm = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/
CO2BLOCK GS0 WD1 CO2pr1/ ’ ] ;

12 [ brainmask , i n f o . brainmask , header . brainmask ] = loadImageData ( d i r .bm, ’
mWBmask∗ . n i i . gz ’ ) ;

13

14 %%
15

16 CVR( brainmask == 0) = nan ;
17

18 %%
19 %Calcu la te mean CVR value per segmentat ion
20 f o r i = 1 : l ength ( f i e ldnames ( var ) )
21 vo i=s p r i n t f ( ’ vo i%d ’ , i ) ;
22

23 cvrgm . ( vo i ) = voigm . ( vo i ) .∗CVR; cvrgm . ( vo i ) ( voigm . ( vo i ) == 0) = nan ;
24 cvrgm . ( vo i ) = cvrgm . ( vo i ) (˜ i snan ( cvrgm . ( vo i ) ) ) ;
25 meanCVRgmvoi( i ) = mean( cvrgm . ( vo i ) ) ;
26

27 cvrwm . ( vo i ) = voiwm . ( vo i ) .∗CVR; cvrwm . ( vo i ) (voiwm . ( vo i ) == 0) = nan ;
28 cvrwm . ( vo i ) = cvrwm . ( vo i ) (˜ i snan (cvrwm . ( vo i ) ) ) ;
29 meanCVRwmvoi( i ) = mean(cvrwm . ( vo i ) ) ;
30

31 cvr noed . ( vo i ) = voi noed . ( vo i ) .∗CVR; cvr noed . ( vo i ) ( vo i noed . ( vo i )
== 0) = nan ;

32 cvr noed . ( vo i ) = cvr noed . ( vo i ) (˜ i snan ( cvr noed . ( vo i ) ) ) ;
33 meanCVR noedvoi ( i ) = mean( cvr noed . ( vo i ) ) ;
34

35 c v r a l l . ( vo i ) = var . ( vo i ) .∗CVR; c v r a l l . ( vo i ) ( var . ( vo i ) == 0) = nan ;
36 c v r a l l . ( vo i ) = c v r a l l . ( vo i ) (˜ i snan ( c v r a l l . ( vo i ) ) ) ;
37 meanCVRallvoi ( i ) = mean( c v r a l l . ( vo i ) ) ;
38 end
39

40 %save r e s u l t s in new d i r
41 d i r . bold = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/ ’ ] ;
42 d i r . ca l cu = [ d i r . bold , ’ CVRcalculat ions / ’ ] ;
43 i f ˜ e x i s t ( d i r . ca lcu , ’ d i r ’ )
44 mkdir ( d i r . ca l cu )
45 end
46

47 save ( [ d i r . ca lcu , ’ meanCVRallvoi . mat ’ ] )
48 save ( [ d i r . ca lcu , ’meanCVRgmvoi . mat ’ ] )
49 save ( [ d i r . ca lcu , ’meanCVRwmvoi . mat ’ ] )
50 save ( [ d i r . ca lcu , ’ meanCVR noedvoi . mat ’ ] )
51 end
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H.4 Creation of Dose Regions

Listing 6: Creation of Dose Regions

1 f unc t i on [ t h r e s d o s e a l l , thresdosegm , thresdosewm , thre sdose noed ] =
voidoseCVR ( vnumber )

2 %This s c r i p t c r e a t e s segmentat ions o f the dose
3 %The dose groups were s e l e c t e d a f t e r a d i s c u s s i o n with the r e s ea r ch team
4 %( i n c l u d i n g a r a d i a t i o n o n c o l o g i s t and medical p h y s i c i s t )
5

6 %Load CT data
7 d i r . c t = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /CT/ ’ ] ;
8 [ mask , i n f o . mask , header . mask ] = loadImageData ( d i r . ct , ’masktoBOLD . n i i . gz

’ ) ;
9 [ dose , i n f o . dose , header . dose ] = loadImageData ( d i r . ct , ’ dosetoBOLD . n i i . gz

’ ) ;
10

11 %Load CVR brainmask
12 d i r . cvr = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/

CO2BLOCK GS0 WD1 CO2pr1/ ’ ] ;
13 [ brainmask , i n f o . brainmask , header . brainmask ] = loadImageData ( d i r . cvr , ’

mWBmask∗ . n i i . gz ’ ) ;
14

15 %Load CSF and WM informat ion
16 d i r . bold = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/ ’ ] ;
17 [wm, i n f o .wm, header .wm] = loadImageData ( d i r . bold , ’ seg2toBOLD . n i i . gz ’ ) ;
18 [ c s f , i n f o . c s f , header . c s f ] = loadImageData ( d i r . bold , ’ seg0toBOLD . n i i . gz ’ )

;
19

20 %Load T1 d i r
21 d i r . t1 = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /T1/ ’ ] ;
22

23 i f i s f i l e ( [ d i r . t1 , ’gmtoBOLD. n i i . gz ’ ] )
24 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ;
25 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;

%Load edema in BOLD space
26 e l s e
27 %Load edema and GM informat ion in T1 space
28 [ edema , i n f o . edema , header . edema ] = loadImageData ( d i r . t1 , ’

edema semiauto . n i i . gz ’ ) ;
29 [ gm, i n f o .gm, header .gm] = loadImageData ( d i r . t1 , ’ T1 seg 1 . n i i . gz ’ ) ;
30 %Load tumour mask in T1 space
31 [ maskt1 , i n f o . maskt1 , header . maskt1 ] = loadImageData ( d i r . ct , ’

masktoT1 . n i i . gz ’ ) ;
32

33 newgm= gm.∗ not ( edema ) .∗ not ( maskt1 ) ;
34 saveImageData (newgm , header .gm, d i r . t1 , ’newgm . n i i . gz ’ , 64)
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35

36 %Reg i s t e r the newgm in BOLD space and re l oad
37 cmd = [ ’ bash ’ , ’ ’ , ’newgmtoBOLD . bash ’ , ’ ’ , vnumber ] ; %you can

check the segmentat ion in T1 d i r e c t o r y
38 system (cmd) ;
39 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ; %Load new GM ( no edema , no tumour ) in BOLD space
40 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;

%Load edema in BOLD space
41 end
42

43

44 %%
45 %Create dose segmentat ions f o r GM, WM and a l l
46 %Values to detemine the dose segmentat ion groups
47 idx = [ 5 8 12 1 6 ] ;
48

49 %Create v o i s based on idx va lue s
50 th r e sdose = s t r u c t ( ’ vo i1 ’ , {dose<idx (1 ) } , ’ vo i2 ’ , {dose>=idx (1 ) & dose<

idx (2 ) } , ’ vo i3 ’ , {dose>=idx (2 ) & dose<idx (3 ) } , ’ vo i4 ’ ,{ dose>=idx (3 ) &
dose<idx (4 ) } , ’ vo i5 ’ , {dose>=idx (4 ) }) ;

51

52 %Create masks o f dose based on the GM, WM, CSF and brainmask
53 f o r i = 1 : l ength ( idx )+1
54 vo i=s p r i n t f ( ’ vo i%d ’ , i ) ;
55 thresdosegm . ( vo i ) = ( ( th r e sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) .∗ seggm

. ∗ ( not (mask ) ) ) ;
56 thresdosewm . ( vo i ) = ( thre sdos e . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) .∗wm. ∗ (

not (mask ) ) ;
57 thre sdose noed . ( vo i ) = ( thre sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) . ∗ ( not

( ed ) ) ;
58 t h r e s d o s e a l l . ( vo i ) = ( thre sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) ;
59 end
60

61 voidose gm = thresdosegm . vo i1 + thresdosegm . vo i2 .∗2 + thresdosegm . vo i3 .∗3
+ thresdosegm . vo i4 .∗4 + thresdosegm . vo i5 . ∗ 5 ;

62 voidose wm = thresdosewm . vo i1 + thresdosewm . vo i2 .∗2 + thresdosewm . vo i3 .∗3
+ thresdosewm . vo i4 .∗4 + thresdosewm . vo i5 . ∗ 5 ;

63 vo idose noed = thre sdose noed . vo i1 + thre sdose noed . vo i2 .∗2 +
thre sdose noed . vo i3 .∗3 + thre sdose noed . vo i4 .∗4 + thre sdose noed . vo i5
. ∗ 5 ;

64 vo idose = t h r e s d o s e a l l . vo i1 + t h r e s d o s e a l l . vo i2 .∗2 + t h r e s d o s e a l l . vo i3 .∗3
+ t h r e s d o s e a l l . vo i4 .∗4 + t h r e s d o s e a l l . vo i5 . ∗ 5 ;

65

66 %Saving the dose segmentat ions in the CT d i r e c t o r y
67 saveImageData ( voidose , header . dose , d i r . ct , ’ vo idose . n i i . gz ’ , 64)
68 saveImageData ( voidose gm , header . dose , d i r . ct , ’ voidose gm . n i i . gz ’ , 64)
69 saveImageData ( voidose noed , header . dose , d i r . ct , ’ vo idose noed . n i i . gz ’ ,

70



64)
70 saveImageData ( voidose wm , header . dose , d i r . ct , ’ voidose wm . n i i . gz ’ , 64)
71

72 end

H.5 Calculation Dose-Based Analysis

Listing 7: Calculation Mean CVR in Dose regions

1 f unc t i on [ t h r e s d o s e a l l , thresdosegm , thresdosewm , thresdose noed , tot gm ,
tot wm , tot noed ] = voidoseCVR ( vnumber )

2 %This s c r i p t c r e a t e s segmentat ions o f the dose
3 %The dose groups were s e l e c t e d a f t e r a d i s c u s s i o n with the r e s ea r ch team
4 %( i n c l u d i n g a r a d i a t i o n o n c o l o g i s t and medical p h y s i c i s t )
5

6 %Load CT data
7 d i r . c t = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /CT/ ’ ] ;
8 [ mask , i n f o . mask , header . mask ] = loadImageData ( d i r . ct , ’masktoBOLD . n i i . gz

’ ) ;
9 [ dose , i n f o . dose , header . dose ] = loadImageData ( d i r . ct , ’ dosetoBOLD . n i i . gz

’ ) ;
10

11 %Load CVR brainmask
12 d i r . cvr = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/

CO2BLOCK GS0 WD1 CO2pr1/ ’ ] ;
13 [ brainmask , i n f o . brainmask , header . brainmask ] = loadImageData ( d i r . cvr , ’

mWBmask∗ . n i i . gz ’ ) ;
14

15 %Load CSF and WM informat ion
16 d i r . bold = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /BOLD/ ’ ] ;
17 [wm, i n f o .wm, header .wm] = loadImageData ( d i r . bold , ’ seg2toBOLD . n i i . gz ’ ) ;
18 [ c s f , i n f o . c s f , header . c s f ] = loadImageData ( d i r . bold , ’ seg0toBOLD . n i i . gz ’ )

;
19

20 %Load T1 d i r
21 d i r . t1 = [ ’ / Fridge / u s e r s / a l ex /APRICOT/ ’ , vnumber , ’ /T1/ ’ ] ;
22

23 i f i s f i l e ( [ d i r . t1 , ’gmtoBOLD. n i i . gz ’ ] )
24 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ;
25 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;

%Load edema in BOLD space
26 e l s e
27 %Load edema and GM informat ion in T1 space
28 [ edema , i n f o . edema , header . edema ] = loadImageData ( d i r . t1 , ’

edema semiauto . n i i . gz ’ ) ;
29 [ gm, i n f o .gm, header .gm] = loadImageData ( d i r . t1 , ’ T1 seg 1 . n i i . gz ’ ) ;
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30 %Load tumour mask in T1 space
31 [ maskt1 , i n f o . maskt1 , header . maskt1 ] = loadImageData ( d i r . ct , ’

masktoT1 . n i i . gz ’ ) ;
32

33 newgm= gm.∗ not ( edema ) .∗ not ( maskt1 ) ;
34 saveImageData (newgm , header .gm, d i r . t1 , ’newgm . n i i . gz ’ , 64)
35

36 %Reg i s t e r the newgm in BOLD space and re l oad
37 cmd = [ ’ bash ’ , ’ ’ , ’newgmtoBOLD . bash ’ , ’ ’ , vnumber ] ; %you can

check the segmentat ion in T1 d i r e c t o r y
38 system (cmd) ;
39 [ seggm , i n f o . seggm , header . seggm ] = loadImageData ( d i r . t1 , ’gmtoBOLD.

n i i . gz ’ ) ; %Load new GM ( no edema , no tumour ) in BOLD space
40 [ ed , i n f o . ed , header . ed ] = loadImageData ( d i r . t1 , ’edtoBOLD . n i i . gz ’ ) ;

%Load edema in BOLD space
41 end
42

43

44 %%
45 %Create dose segmentat ions f o r GM, WM and a l l
46 %Values to detemine the dose segmentat ion groups
47 idx = [ 5 8 12 1 6 ] ;
48

49 %Create v o i s based on idx va lue s
50 th r e sdose = s t r u c t ( ’ vo i1 ’ , {dose<idx (1 ) } , ’ vo i2 ’ , {dose>=idx (1 ) & dose<

idx (2 ) } , ’ vo i3 ’ , {dose>=idx (2 ) & dose<idx (3 ) } , ’ vo i4 ’ ,{ dose>=idx (3 ) &
dose<idx (4 ) } , ’ vo i5 ’ , {dose>=idx (4 ) }) ;

51

52 %Create masks o f dose based on the GM, WM, CSF and brainmask
53 f o r i = 1 : l ength ( idx )+1
54 vo i=s p r i n t f ( ’ vo i%d ’ , i ) ;
55 thresdosegm . ( vo i ) = ( ( th r e sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) .∗ seggm

. ∗ ( not (mask ) ) ) ;
56 thresdosewm . ( vo i ) = ( thre sdos e . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) .∗wm. ∗ (

not (mask ) ) ;
57 thre sdose noed . ( vo i ) = ( thre sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) . ∗ ( not

( ed ) ) ;
58 t h r e s d o s e a l l . ( vo i ) = ( thre sdose . ( vo i ) .∗ brainmask ) . ∗ ( not ( c s f ) ) ;
59 end
60

61

62 %% Count number o f Voxels in the Dose groups
63

64 tot gm=ones (1 , l ength ( idx ) +1) ;
65 tot gm (1)=sum( thresdosegm . vo i1 ( : ) == 1) ;
66 tot gm (2)=sum( thresdosegm . vo i2 ( : ) == 1) ;
67 tot gm (3)=sum( thresdosegm . vo i3 ( : ) == 1) ;
68 tot gm (4)=sum( thresdosegm . vo i4 ( : ) == 1) ;
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69 tot gm (5)=sum( thresdosegm . vo i5 ( : ) == 1) ;
70

71 tot wm=ones (1 , l ength ( idx )+1) ;
72 tot wm (1)=sum( thresdosewm . vo i1 ( : ) == 1) ;
73 tot wm (2)=sum( thresdosewm . vo i2 ( : ) == 1) ;
74 tot wm (3)=sum( thresdosewm . vo i3 ( : ) == 1) ;
75 tot wm (4)=sum( thresdosewm . vo i4 ( : ) == 1) ;
76 tot wm (5)=sum( thresdosewm . vo i5 ( : ) == 1) ;
77

78 tot noed=ones (1 , l ength ( idx ) +1) ;
79 tot noed (1 )=sum( thre sdose noed . vo i1 ( : ) == 1) ;
80 tot noed (2 )=sum( thre sdose noed . vo i2 ( : ) == 1) ;
81 tot noed (3 )=sum( thre sdose noed . vo i3 ( : ) == 1) ;
82 tot noed (4 )=sum( thre sdose noed . vo i4 ( : ) == 1) ;
83 tot noed (5 )=sum( thre sdose noed . vo i5 ( : ) == 1) ;
84

85 %%
86

87 voidose gm = thresdosegm . vo i1 + thresdosegm . vo i2 .∗2 + thresdosegm . vo i3 .∗3
+ thresdosegm . vo i4 .∗4 + thresdosegm . vo i5 . ∗ 5 ;

88 voidose wm = thresdosewm . vo i1 + thresdosewm . vo i2 .∗2 + thresdosewm . vo i3 .∗3
+ thresdosewm . vo i4 .∗4 + thresdosewm . vo i5 . ∗ 5 ;

89 vo idose noed = thre sdose noed . vo i1 + thre sdose noed . vo i2 .∗2 +
thre sdose noed . vo i3 .∗3 + thresdosewm . vo i4 .∗4 + thre sdose noed . vo i5 . ∗ 5 ;

90 vo idose = t h r e s d o s e a l l . vo i1 + t h r e s d o s e a l l . vo i2 .∗2 + t h r e s d o s e a l l . vo i3 .∗3
+ t h r e s d o s e a l l . vo i4 .∗4 + t h r e s d o s e a l l . vo i5 . ∗ 5 ;

91

92 %Saving the dose segmentat ions in the CT d i r e c t o r y
93 saveImageData ( voidose , header . dose , d i r . ct , ’ vo idose . n i i . gz ’ , 64)
94 saveImageData ( voidose gm , header . dose , d i r . ct , ’ voidose gm . n i i . gz ’ , 64)
95 saveImageData ( voidose noed , header . dose , d i r . ct , ’ vo idose noed . n i i . gz ’ ,

64)
96 saveImageData ( voidose wm , header . dose , d i r . ct , ’ voidose wm . n i i . gz ’ , 64)
97

98 end
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