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Learning Interaction-Aware Guidance for Trajectory
Optimization in Dense Traffic Scenarios

Bruno Brito , Achin Agarwal, and Javier Alonso-Mora , Senior Member, IEEE

Abstract— Autonomous navigation in dense traffic scenarios
remains challenging for autonomous vehicles (AVs) because the
intentions of other drivers are not directly observable and
AVs have to deal with a wide range of driving behaviors.
To maneuver through dense traffic, AVs must be able to reason
how their actions affect others (interaction model) and exploit
this reasoning to navigate through dense traffic safely. This
paper presents a novel framework for interaction-aware motion
planning in dense traffic scenarios. We explore the connection
between human driving behavior and their velocity changes
when interacting. Hence, we propose to learn, via deep Rein-
forcement Learning (RL), an interaction-aware policy providing
global guidance about the cooperativeness of other vehicles to
an optimization-based planner ensuring safety and kinematic
feasibility through constraint satisfaction. The learned policy
can reason and guide the local optimization-based planner with
interactive behavior to pro-actively merge in dense traffic while
remaining safe in case other vehicles do not yield. We present
qualitative and quantitative results in highly interactive sim-
ulation environments (highway merging and unprotected left
turns) against two baseline approaches, a learning-based and
an optimization-based method. The presented results show that
our method significantly reduces the number of collisions and
increases the success rate with respect to both learning-based
and optimization-based baselines.

Index Terms— Deep reinforcement learning, dense traffic,
motion planning, safe learning, trajectory optimization.

I. INTRODUCTION

DESPITE recent advancements in autonomous driving
solutions (e.g., Waymo [1], Uber [2]), driving in

real-world dense traffic scenarios such as highway merging
and unprotected left turns still stands as a hurdle in the
widespread deployment of autonomous vehicles (AVs) [3].
Driving in dense traffic conditions is intrinsically an interactive
task [4], where the AVs’ actions elicit immediate reactions
from nearby traffic participants and vice-versa. An example of
such behavior is illustrated in Fig. 1, where the autonomous
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Fig. 1. Illustration of a dense on-ramp merging traffic scenario where the
autonomous vehicle (yellow) needs to interact with other traffic participants in
order to merge onto the main lane in a timely and safe manner. The potential
follower (purple) may yield (green arrow) to the autonomous vehicle leaving
space for the autonomous vehicle to merge or behave non-cooperatively (red
arrow) to deter the autonomous vehicle from merging. To successfully merge,
the autonomous vehicle needs to identify the cooperative ones by interacting
with them without any explicit inter-vehicle communication.

vehicle needs to perform a merging maneuver onto the main
lane. To accomplish this task, it needs to first reason about the
other driver’s intentions (e.g., to yield or not to yield) without
any explicit inter-vehicle communication. Then, it needs to
know how to interact with multiple road-users and leverage
other vehicles’ cooperativeness to induce them to yield, such
that they create room for the AV to merge safely.

The development of interaction-aware prediction models
has been studied [5], [6], allowing AVs to reason about
other drivers’ intentions. In contrast, developing interactive
motion planning algorithms that can reason and exploit other
drivers cooperativeness is still challenging [7]. The majority
of traditional motion planning methods are too conservative
and fail in dense scenarios because they do not account for
the interaction between the autonomous vehicle and nearby
traffic [3], [8]. However, works that account for the interaction
among agents do not scale for many agents due to the curse of
dimensionality [9]–[11]. Deep Reinforcement Learning (DRL)
methods can overcome the latter, but either do not provide any
safety guarantees [12] or are overly conservative to ensure
safety [13].

In this paper, we introduce an interactive Model Predic-
tive Controller (IntMPC) for safe navigation in dense traffic
scenarios. We explore the insight that human drivers commu-
nicate their intentions and negotiate their driving maneuvers
by adjusting both distance and time headway to the other
vehicles [14], [15]. Studies show that in dense traffic scenarios,
such as merging and left-turning, cooperative or aggressive
behavior is strongly connected to higher or smaller average
distance and time headway [16], [17], respectively. These
driving features (i.e., relative distance and time headway)
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can be directly translated into a velocity reference. Hence,
we propose to learn, via Deep Reinforcement Learning (DRL),
an interaction-aware policy as a velocity reference. This
reference provides global guidance to a local optimization-
based planner, which ensures that the generated trajectories are
kino-dynamically feasible and safety constraints are respected.
Our method leverages vehicles’ interaction effects to create
free-space areas for the AV to navigate and complete various
driving maneuvers in cluttered environments. The main con-
tribution of this work is an Interactive Model Predictive Con-
troller (IntMPC) for navigation in dense traffic environments
combining DRL to learn an interaction-aware policy providing
global guidance (velocity reference) in the cost function to a
local optimization-based planner.

Extensive simulation results show that our approach trig-
gers interactive negotiating behavior to reason about the
other drivers’ cooperation and exploit their cooperativeness
to induce them to yield while remaining safe.

II. RELATED WORK

The literature devoted to the problem of modeling human
interactions among traffic participants is vast [3] and includes
rule-based, optimization-based, game theoretic and learning-
based methods.

A. Traditional Methods

Traditional autonomous navigation systems typically
employ a sequential planning architecture hierarchically
decomposing the planning and decision-making pipeline
into different blocks such as perception, behavioral planning,
motion planning and low-level control [18]. For instance, rule-
based methods translate implicit and explicit human-driving
behavior into handcrafted functions describing a set of rules
directly influencing the motion planning phase. In addition
to rules, risk metrics can also be employed to generate
cautious driving behavior [19]. For instance, [20] used
predictive risk maps to plan the navigation behavior for an
AV. These methods have demonstrated excellent ability to
solve specific problems (e.g., precedence at an intersection
followed by waiting for the availability of enough free
space for the vehicle to pass safely) [21]–[23]. Nevertheless,
these methods do not consider the interactions between
multiple traffic participants and thus can fail in dense traffic
scenarios.

B. Search-Based Methods

The decision-making problem for autonomous naviga-
tion is inherently a Partially Observable Markov Decision
Process (POMDP) because the other drivers’ intentions are not
directly observable but can be estimated from sensor data [24].
To improve decision-making and intention estimation, it has
been proposed to incorporate the road context informa-
tion [25]. To deal with a variable number of agents, dimen-
sional reduction techniques have been employed to create a
compressed and fixed-size representation of the other agents
information [26]. Yet, solving a POMDP online can become

infeasible if the right assumptions on the state, action and
observation space are not made. For instance, [27] proposed
to use Monte Carlo Tree Search (MCTS) algorithms to obtain
an approximate optimal solution online and [28] improved
the interaction modeling by proposing to feedback the vehi-
cle commands into planning. These methods demonstrated
promising results but are limited to environments for which
they were specifically designed, demand high computational
power and can only consider a discrete set of actions.

C. Optimization-Based Methods

Optimization-based methods are widely used for
motion planning since they allow to define collision
and kino-dynamics constraints explicitly. These methods
include receding-horizon control techniques which allow to
plan in real-time and incorporate predicted information by
optimizing over a time horizon [3], [29], [30]. However,
these works employ simple prediction models and do not
consider interaction. Recently, data-driven methods allow
to generate interaction-aware predictions [31] that can be
used for planning [32], [33]. However, these methods ignore
the influence of the ego vehicle’s actions in the planning
phase struggling to find a collision free trajectory in highly
dense traffic scenarios [34]. Not only motion planners must
account for the interaction among the driving agents but
also generate motions plans which respect social constraints.
Hence, to generate socially compatible plans, Inverse Optimal
Control techniques have been used to learn human-drivers
preferences [35], [36]. These methods either fail to scale
to interact with multiple agents [35] or can only handle a
discrete set of actions [36] rendering them incapable to be
used safely in highly interactive and dense traffic scenarios.

D. Game Theoretic Methods

Game Theoretic approaches such as [37] model the interac-
tion among agents as a game allowing to infer the influence on
each agent’s plans. However, the task of modeling interactions
requires the inter-dependency of all agents on each other’s
actions to be embedded within the framework. This results in
an exponential growth of interactions as the number of agents
increases, rendering the problem computationally intractable.
Social Value Orientation (SVO) is a psychological metric used
to classify human driving behavior. [7] models the interaction
problem as a dynamic game given the other driver‘s SVO.
Similarly, a unscented Kalman filter is used to iteratively
update an estimate of the other drivers‘cost parameters [10].
Nevertheless, these approaches require local approximations
to find a solution in a tractable manner. Cognitive hierarchy
reasoning [38] allows to reduce the complexity of these algo-
rithms by assuming that an agent performs a limited number
of iterations of strategic reasoning. For instance, iterative
level-k model based on cognitive hierarchy reasoning [38]
has been used to obtain a near optimal policy for performing
merge maneuvers [39] and lane change [40] in highly dense
traffic scenarios. However, these approaches consider a dis-
crete action space and do not scale well with the number of
vehicles.
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E. Learning-Based Methods

Learning-based approaches leverage on large data collection
to build interaction-aware prediction models [31] or to learn
a driving policy directly from sensor data [41]. For instance,
generative adversarial networks can be used to learn a driving
policy imitating human-driving behavior [42]. Conditioning
these policies on high-level driving information allows to use
it for planning [43]. Moreover, to account for human-robot
interaction these policies can be conditioned on the interaction
history [9]. Yet, the deployment of these models can lead to
catastrophic failures when evaluated in new scenarios or if the
training dataset is biased and unbalanced [44].

Reinforcement Learning (RL) has shown great potential
for autonomous driving in dense traffic scenarios [45], [46].
For example, DQN has been employed to learn negotiating
behavior for lane change [47], [48] and intersection sce-
narios [49]. Yet, the latter consider a discrete and limited
action space. In contrast, in [12] it is proposed to learn a
continuous policy (jerk and steering rate) allowing to achieve
smooth control of the vehicle. These methods are able to learn
a working policy under highly interactive traffic conditions
involving multiple entities. However, they fail to provide safety
guarantees and reliability, rendering these methods vulnerable
to collisions. Recently, a vast amount of works has proposed
different ways to introduce safety guarantees of learned RL
policies [50]. The key idea behind these works is to syn-
thesize a safety controller when an unsafe action is detected
by employing formal verification methods [51], computing
offline safe reachability sets [52] or employing safe barrier
functions [53]. To reduce conservativeness, [13] proposes to
use Linear Temporal Logic to enforce safety probabilistic
guarantees. However, safe RL methods do not account for
interaction among the agents, being highly conservative in
dense environments. Finally, close to our work, [54] learned
a decision-making policy to select from a discrete and limited
set of predefined constraints which ones to enable in an MPC
formulation and thus, controlling the vehicle behavior applied
to intersection scenarios. In contrast, we propose to learn a
continuous interaction-aware policy providing global guidance
to an MPC through the cost function.

F. Combining Optimization and Learning Methods

Recently, there is increasing interest in approaches com-
bining optimization and learning methods [55]. For instance,
optimization-based planning has been used to explore
high-reward regions and distill the knowledge into a policy
neural network [56]–[58]. Similar to our approach, [59] uti-
lizes the RL policy during training to ensure exploration and
employs an MPC to optimize sampled trajectories from the
learned policy at test time. Similarly, [60] uses RL to learn a
driving policy and employs an MPC as a supervisor to ensure
safety. Moreover, policy networks have been used to generate
proposals for a sampling-based MPC [61] or select goal
positions from a predefined set [62]. In contrast, we propose
to learn an interaction-aware policy to provide information
through high-level decision variables directly in the MPC’s
cost function.

III. PROBLEM FORMULATION

Throughout this paper, vectors are denoted in bold lower-
case letters, x, matrices in capital, M , and sets in calligraphic
uppercase, S. �x� denotes the Euclidean norm of x and
�x�Q = xT Qx denotes the weighted squared norm. Variables
{s, a} denote the state and action used in the RL formulation,
and u denotes the control command for the AV.

Consider a set X of n vehicles interacting in a dense
traffic scenario comprising an autonomous vehicle (AV) and
n − 1 human drivers, henceforth referred to as other vehicles,
exhibiting different levels of willingness to yield. The term
“vehicles” is used to collectively refer to the AV and other
vehicles. At the beginning of an episode, the AV receives
a global reference path P to follow from a path planner
consisting of a sequence of M waypoints pr

m = [xr
m, yr

m] ∈
R

2 with m ∈ M := {1, . . . ,M}. For each time-step k,
the AV observes its state sk and the states of other agents
Sk = [s1

k, . . . , sn−1
k ], then takes action ak , leading to the

immediate reward R(sk, ak) and next state sk+1 = f (sk,uk),
under the dynamic model f 1 and controller model h, with
uk = h(sk, ak). The vehicle’s state is defined as

si
k = {xk, yk, ψk , vk} ∀i ∈ {0, . . . , n − 1}

where xk and yk are the Cartesian position coordinates, ψk the
heading angle and vk the forward velocity in a global inertial
frame W fixed in the main lane (see Fig. 2). Aego and Ai

denote the area occupied by the AV and the i -th other vehicle,
respectively. We aim to learn a continuous policy π(ak |sk,Sk)
conditioned on the AV’s and other vehicles’ states minimizing
the expected driving time E[tg] for the AV to reach its goal
position while ensuring collision-free motions, defined as the
following optimization problem:

π∗ = argmin
π

E
�
tg | π(ak|sk,Sk)

�
s.t. sk+1 = f (sk,uk), (1a)

uk = h(sk, π(ak |sk,Sk)) (1b)

Aego
k ∩Ai

k = ∅ (1c)

uk ∈ U, sk ∈ S, at ∈ A,
∀i ∈ {1 . . .n − 1} ∀k ∈ {0 . . . tg} (1d)

where (1a) are the kino-dynamic constraints, (1c) the collision
avoidance constraints, and S, A and U are the set of admissible
states, actions, and control inputs (e.g., maximum vehicles’
speed), respectively. We assume that each vehicle’s current
position and velocity are observed (e.g., from on-board sensor
data) and no inter-vehicle communication.

IV. INTERACTIVE MODEL PREDICTIVE CONTROL

A. Overview

This section introduces the proposed Interactive Model
Predictive Control (IntMPC) framework for safe navigation in
dense traffic scenarios. Figure 2 depicts our proposed motion
planning architecture incorporating three main modules: an
interactive reinforcement learner, a local optimization planner,

1This is identical to the Vehicle Model used in the simulation defined in
Section IV-C1.
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Fig. 2. Our proposed architecture comprises of three main modules: an Interactive Reinforcement Learner (DRL Agent), a Local Motion Planner (MPCC)
and a Simulation Model (P-IDM). The AV observes the leader state sl and follower state s f relative to it, which serves as input to the Interactive Planner
providing a reference velocity vk,ref = π(sk, Sk) for the MPCC to follow. The MPCC then computes locally optimal sequence of control commands u∗0:H−1
minimizing a cost function J (sk,uk) (See Section IV-C). The reference velocity vref allows to directly control the AV aggressiveness and thus, to control
the interaction with the other vehicles. Finally, P-IDM then computes acceleration command for the other vehicles based on the estimated AV’s motion plan
(Section VI-H3).

and an interactive simulation environment. Firstly, we define
the RL framework to learn an interaction-aware navigation
policy (Section IV-B), providing global guidance to a local
optimization planner (Section IV-C). Secondly, we introduce
the behavior module used to simulate dense traffic scenar-
ios with various driving behavior, ranging from cooperative
to non-cooperative. Here, we propose an expansion for the
Intelligent Driver Model (IDM) model allowing the other
vehicles to react to the other’s predicted plans (SectionV).
To finalize, we introduce our training algorithm to jointly train
the interaction-aware policy and the local optimization planner
(SectionIV-D). Our IntMPC enhances the AV with interactive
behavior, exploiting the other traffic participants interaction
effects.

B. Interactive Planner

Here, we propose to use deep RL to learn an
interaction-aware velocity reference exploiting the interaction
effects between the vehicles and providing global guidance to
a local optimization-based planner.

1) RL Formulation: The AV’s observation vector is com-
posed by the leader’s (vehicle in front) and the follower’s
(vehicle behind the AV) state, ok = [sl

k, s f
k ], relative to

AV’s frame. To enable interactive behavior with the other
traffic participants, we define the RL policy’s action as a
velocity reference to directly control the interaction at the
merging point. High-speed values lead to more aggressive and
low-speed to more conservative behavior, respectively. Hence,
we consider a continuous action space A ⊂ R and aim to learn
the optimal policy π mapping the AV’s state and observation
to a probability distribution of actions.

πθ(sk , ok) = ak = vk,ref (2a)

πθ(sk , ok) ∼ N (μk, σk) (2b)

where θ are the policy’s network parameters, N is a multivari-
ate Gaussian density function, and μ and σ are the Gaussian’s
mean and variance, respectively.

We formulate a reward function to motivate progress along a
reference path, to penalize collisions and infeasible solutions,
and when moving too close to another vehicle. The reward

function is the summation of the four terms described as
follows:

R (sk , ok, ak) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vk

rinfeasible

rcollision if Aego
k ∩Ai

k 
= ∅
rnear dmin(sk, si

k) ≤ �dmin

(3)

where cc,i
k is the collision avoidance constraint between the

AV and the vehicle i (Section IV-C3), Aego
k ∩ Ai

k represents
the common area occupied by the AV and the i -th other
vehicle at step k. dmin is the minimum distance to the closest
nearby vehicle i and �dmin is a hyper-parameter distance
threshold. The first term vk is a reward proportional to the AV’s
velocity encouraging higher velocities and thus, encouraging
interaction and minimizing the time to goal. The second
rinfeasible, third rcollision and fourth term rnear penalize the AV
for infeasible solutions, collisions and for driving too close to
other vehicles, respectively.

C. Local Motion Planner

Deep RL can be used to learn an end-to-end control policy
in dense traffic scenarios [12], [46]. However, their sample
inefficiency [63] and transferability issues [64] makes it hard
to apply them in real-world settings. In contrast, optimization-
based methods have been widely used and deployed into
actual autonomous vehicles [29], [65]. Therefore, we employ
Model Predictive Contour Control (MPCC) to generate locally
optimal control commands following a reference path while
satisfying kino-dynamics and collision avoidance constraints if
a feasible solution is found. The reference path can be provided
by a global path planner such as Rapidly-exploring Random
Trees (RRT) [66].

1) Vehicle Model: We employ a kinematic bicycle model
for the AV, described as follows:

ẋ = v cos(φ + β)
ẏ = v sin(φ + β)
φ̇ = v

lr
sin(β)

v̇ = ua
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β = arctan

�
lr

l f + lr
tan

	
uδ


�
(4)

where β is the velocity angle. The distances of the rear and
front tires from the center of gravity of the vehicle are lr and
l f , respectively, and are assumed to be identical for simplicity.
The vehicle control input u is the forward acceleration ua and
steering angle uδ , u = [ua, uδ].

2) Cost Function: The local controller receives a velocity
reference vref, from the Interactive Planner (Section IV-B),
exploiting for the interaction effects of the AV in the other
vehicles to maximize long-term rewards. To enable the AV to
follow the reference path while tracking the velocity reference,
we define the stage cost as follows:
J (sk,uk , λk) =

��ec
k(sk, λk)

��
qc
+

���el
k(sk, λk)

���
ql

+ ��vk,re f − vk
��

qv
+ ��ua

k

��
qu
+ ��uδk

��
qδ

(5)

where Q = {qc, ql, qv , qu, qδ} denotes the set of cost weights
and λk is the estimated progress along the reference path.
To track the reference path closely, we minimize two cost
terms: the contour error (ec

k) and lag error (el
k). Contour error

gives a measure of how far the ego vehicle deviates from
the reference path laterally whereas lag error measures the
deviation of the ego vehicle from the reference path in the
longitudinal direction. For more details on path parameteriza-
tion and tracking error, please refer to [29]. The third term,
�vk,ref − vk�, motivates the planner to follow vref closely.
Finally, to generate smooth trajectories, we add a quadratic
penalty to the control commands ua

k and uδk .
3) Dynamic Obstacle Avoidance: The occupied area by the

AV, Aego(sk), is approximated with a union of nc circles i.e
Āego(sk) ⊆


c∈{1,...,nc}Ac(sk), where Ac is the area occupied
for a circle with radius r . For each vehicle i , the occupied
area Ai is approximated by an ellipse of semi-major axis ai ,
semi-minor axis bi and orientation φ. To ensure collision-free
motions, we define a set of non-linear constraints imposing
that each circle c of the AV with the elliptical area occupied
by the i -th vehicle does not intersect:

ci,c
k (sk, si

k) =
�
�xc

k
�yc

k

�T

R(φ)T

⎡
⎢⎣

1

α2 0

0
1

β2

⎤
⎥⎦ R(φ)

�
�xc

k
�yc

k

�
> 1,

(6)

∀k ∈ {0, . . . , H } and ∀i ∈ {1, . . . , n − 1}. The parameters
�xc

k and �yc
k represent x-y relative distances in AV’s frame

between the disc c and the ellipse i for prediction step k.
R(ψ) is the rotation matrix. To guarantee collision avoidance
we enlarge the other vehicle’s semi-major and semi-minor axis
with a rdisc coefficient, assuming α = a+rdisc and β = b+rdisc
as described in [67].

4) Road Boundaries: We introduce constraints on the lateral
distance (i.e., contour error) of the AV with respect to the
reference path to ensure that the vehicle stays within the road
boundaries [28]:

−wroad
left ≤ ec

k(sk) ≤ wroad
right (7)

Algorithm 1 Training Procedure
1: Inputs: planning horizon H , initial policy’s parameters
θ , Q-functions’ parameters {φ1, φ2}, number of training
episodes nepisodes, number of vehicles n, reward function
R(sk, ok, ak) and number of control steps K

2: Initialize initial states: {s0, . . . , sn−1
0 } ∼ S

3: Initialize replay buffer: D← ∅
4: while episode < nepisodes do
5: Get observation ok and AV’s state sk

6: if k mod K == 0 then
7: Sample velocity reference for the AV:

vk,ref ∼ πθ(sk, ok)
8: end if
9: Solve the optimization problem of Eq.8 without collision

constraints (Eq.8e) :
u∗k:k+H = MPCC(vk,ref, sk , ok)

10: Estimate AV’s lateral position:
ỹH = PredictionModel(vk, sk , ok) (Section VI-H3)

11: {sk+1, done, rk} = Step(sk,uk)
12: Store (sk, ak, rk , sk+1, done) in replay buffer D
13: if done then
14: episode + = 1
15: Initialize: {s0, . . . , sn

0} ∼ S
16: end if
17: if it’s time to update then
18: SAC training [68]
19: end if
20: end while
21: return {θ, φ1, φ2}

where wroad
left and wroad

right are the left and right road limits,
respectively.

5) MPC Formulation: We formulate the motion planning
problem as a Receding Horizon Trajectory Optimization prob-
lem (8) with planning horizon H conditioned on the following
constraints:

u∗0:H−1 = min
u0:H−1

H−1�
k=0

J (sk,uk , λk)+ J (sH , λH ) (8a)

s.t. sk+1 = f (sk ,uk), (8b)

λk+1 = λk + vk�t (8c)

− wroad
left ≤ ec(sk) ≤ wroad

right (8d)

ci,c
k (sk , si

k) > 1 ∀c ∈ {1, . . . , nc}, (8e)

uk ∈ U, sk ∈ S, (8f)

∀k ∈ {0, . . . , H }. (8g)

where �t is the discretization time and u∗0:H−1 the locally
optimal control sequence for H time-steps. In this work,
we assume a constant velocity model to estimate of the other
vehicles’ future positions, as in [67].

D. Training Procedure

In this work, we train the policy using Soft Actor-Critic
(SAC) [68] to learn the policy’s probability distribution para-
meters. SAC augments traditional RL algorithms’ objective
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Algorithm 2 Int-MPC
1: Inputs: AV’s state sk , observation ok and reference path

pr
m = [xr

m, yr
m] ∈ R

2 with m ∈ M := {1, . . . ,M}
waypoints.

2: for k = 0, 1, 2, . . . do
3: Get observation ok and AV’s state sk

4: Sample velocity reference for the AV:
vk,ref = πθ(sk , ok)

5: Compute MPCC trajectory by solving Eq.8:
u∗k:k+H = MPCC(vk,ref, sk, ok)

6: if u∗k:k+H is feasible then
7: Apply u∗k
8: else
9: Apply usafe

10: end if
11: end for

with the policy’s entropy, embedding the notion of explo-
ration into the policy while giving up on clearly unpromising
paths [68]. We propose to jointly train the guidance policy
with the local motion planner allowing the trained policy to
directly implement our method on a real system and learn with
the cases resulting in infeasible solutions for the optimization
solver. In contrast to prior works on safe RL [53], during
training, we do not employ collision constraints (Eq.8e),
exposing the policy to dangerous situations or collisions which
is necessary to learn how to interact with other vehicles
closely.

Algorithm 1 describes the proposed training strategy. Each
episode begins with the initialization of all vehicle’s states
(see Sections VI-C and VI-B for more details). Every K
cycles, we sample a reference velocity vref from the policy πθ .
Querying the interaction-aware policy every K control cycles
helps to stabilize the training procedure and better assess the
policy’s impact on the environment (see Section VI-H2). Then,
the MPCC computes a locally optimal sequence of steering
and acceleration commands u∗0:H−1 for the AV. If a feasible
solution is found, we apply the first control command of the
sequence and re-compute the motion plan in the next cycle
considering new observations. If no feasible solution is found,
we apply a braking command. Training the interaction-aware
policy with the MPCC controller enables the policy to account
for the controller and AV constraints. Afterward, the P-IDM
computes an action for each vehicle on the main lane while
being aware of the AV on the adjacent lane. An episode is
over if: the AV reaches the goal position (finishes merging or
turning left); the AV collides with another vehicle; it does not
finish the maneuver in time (i.e., timeout). Finally, to update
the policy’s distribution parameters, we employ the Soft Actor-
Critic (SAC) [68] method. We refer the reader to [68] for more
details about the learning method’s equations. Please note that
our approach is agnostic to which RL algorithm we use.

E. Online Planning

Algorithm 2 describes our Interactive Model Predictive
Controller (IntMPC) algorithm. For every step k, we first

Fig. 3. Leader & Follower Selection Process. The AV is depicted in
yellow, the i-th interacting vehicle in blue, and the i-th vehicle’s follower
and leader in black. (xk , yk ) are the x-y position coordinates in the main
lane frame of the AV and (xi

k , yi
k) of the i-th vehicle on the main lane at

time-step k. Dashed purple represents the followers’ area set. Dashed red and
green represent the leader’s area set. To model mixed driving behavior, the
i-th vehicle cooperation coefficient ci is randomly sampled from a uniform
bounded distribution ci ∼ U([wmin, wmax]) (defined in Section VI-C). wmax
and wmin represents a maximum and minimum distance between the center
of the current lane and the adjacent lane.

obtain a velocity reference, vref, from the trained policy.
Then, by solving the MPCC problem (Eq. (8)), we obtain a
locally optimal sequence of control commands u∗k:k+H . Finally,
if the MPCC plan is feasible we employ the first control
command, u∗k , and re-compute a new plan considering the new
observations following a receding horizon control strategy.
Else, we apply a braking command, usafe.

V. MODELING OTHER TRAFFIC DRIVERS’ BEHAVIORS

We aim to simulate dense and complex negotiating behavior
with varying degrees of willingness to yield. For instance,
in a typical dense traffic scenario (e.g., on-ramp merging),
human drivers trying to merge onto the main lane need to
leverage other drivers’ cooperativeness to create obstacle-free
space to merge safely. In contrast, drivers on the main lane
exhibit different levels of willingness to yield. Some drivers
stop as soon as they spot the other vehicle on the adjacent
lane (Cooperative). Other drivers ignore the other vehicles
entirely and may even accelerate to deter it from merging
(Non-Cooperative). Moreover, they also consider an internal
belief about the other vehicle’s motion plan on the adja-
cent lane in their decision-making process at the merging
point. Here, we introduce the Predictive Intelligent Driver
Model (P-IDM) to control the longitudinal driving behavior
of the other vehicles, built on the Intelligent Driver Model
(IDM) [69]. Our proposed model consists of three main
steps: leader and follower selection, other vehicles’ motion
estimation, and control command computation.

1) Leader & Follower Selection: For each vehicle, the
model assigns a leader, denoted with up-script l, and
a follower, denoted with up-script f . Consider X l,IDM

i as
the set of potential leaders following the IDM model for the
vehicle i , then

Definition 1 (IDM): A set X l,IDM
i ⊆ X is the set of possi-

ble leaders for the vehicle i if ∀ j ∈ [0, n−1], j 
= i : x j
k > xi

k
and yi

k < ci .
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Definition 2 (IDM): A set X f
i ⊆ X is the set of possible

followers for the vehicle i if ∀ j ∈ [0, n − 1], j 
= i : x j
k < xi

k
and yi

k < ci .

where ci is a hyper-parameter threshold used to model coop-
eration (Section VI-C) [12]. Fig. 3 shows an example of the
leader’s and follower’s sets for the merging scenario as well
as the physical representation of the cooperation coefficient ci .
In the IDM, the leaders’ and followers’ sets are defined based
on the vehicle’s current lateral position, yi

k , leading to reactive
behavior. In contrast, we propose to define the leader’s and
follower’s sets based on the estimated lateral position at time-
step H , ỹi

H , as it follows
Definition 3 (P-IDM): A set X l,P-IDM

i ⊆ X is the set of
possible leaders for the vehicle i if ∀ j ∈ [0, n − 1], j 
= i :
x j

k < xi
k and

��ỹi
H

�� < ci .

Employing the predicted lateral position ỹH instead of the
current lateral position yk allows to elicit non-reactive behavior
from the other vehicles. The leader for the vehicle i is defined
as it follows

Definition 4: A vehicle j ∈ X l
i is the leader of vehicle i if

∀m ∈ X l
i ,m 
= j :

���x j
k − xi

k

��� ≤ ��xm
k − xi

k

��.

where X l
i is either X l,P-IDM

i or X l,IDM
i depending on the model

used. Please note that the followers’ set definition is the same
for the IDM and P-IDM model.

To model mixed driving behavior, ci is sampled from a
uniform bounded distribution ci ∼ U([wmin, wmax]) (defined
in Section VI-C). wmax and wmin represents a maximum and
minimum distance between the center of the current lane and
the adjacent lane, as depicted in Fig. 3, respectively. Moreover,
the ci values’ range plays an essential role in the final
policy’s behavior by controlling the proportion of cooperative
and non-cooperative vehicles encountered by the AV during
training resulting in a more aggressive or conservative final
policy.

2) Motion Plan Estimation: To enhance the IDM model
with predictive driving behavior, we propose to condition
the IDM on the beliefs of the other drivers’ motion plans.
Specifically, we assume that each vehicle on the main lane
maintains an internal belief about the AV’s motion plan (on the
adjacent lane).2 To estimate the AV’s motion plans, different
prediction models can be employed (e.g., constant velocity
model). Later, in Section VI-H3, we investigate our method’s
performance for different prediction models.

3) Control Command Computation: For each time-step k
and for each vehicle i , the acceleration control is computed
depending on the vehicle’s velocity v i

k and current distance to
the leader �xi

k =
��(xi

k, yi
k)− (xl

k, yl
k)

��:

ua,i
k = amax

⎡
⎣1−

�
v i

k

v∗

�4

−
�

s∗
	
v i

k ,�v
i
k



�xi

k

�2
⎤
⎦ (9)

2For the Ramp Merging scenario (detailed in Sec. VI-B1), the current lane
corresponds to the main lane whereas the adjacent lane refers to the merge lane
whereas for the Unprotected Left Turn scenario (detailed in Section VI-B2),
the current lane refers to the top lane and the adjacent lane corresponds to
the bottom lane.

where s∗ is the desired minimum gap, amax the maximum
acceleration, �v i

k = v i
k − vl

k the i -th vehicle approach rate to
the preceding vehicle, and v∗ the desired velocity. Please note
that we only do longitudinal control for the other vehicles on
the main lane by employing Eq. (9). For the AV, we employ
a local optimization-based planner (Section IV-C) for steering
and acceleration control.

VI. EXPERIMENTS

This section presents simulation results for two dense
traffic scenarios (Section VI-B) considering different coop-
eration settings for the other vehicles (Section VI-C). First,
we present qualitative (Section VI-F) and performance results
(Section VI-G) of our approach against two baselines:

• DRL : state-of-the-art Deep Reinforcement Learning
approach, SAC [68], learning a continuous policy con-
trolling the AV’s forward velocity.

• MPCC [29]: Model Predictive Contour Controller with a
constant velocity reference.

After, we provide an ablation study analyzing our method’s
design choices (Section VI-H). All controller parameters were
manually tuned to get the best possible performance.

A. Experimental Setup

Simulation results were carried out on an Intel Core
i9, 32GB of RAM CPU @ 2.40GHz taking approximately
20 hours to train, approximately 20 million simulation steps.
The non-linear and non-convex MPCC problem of Eq. (8)
was solved using the ForcesPro [70] solver. Our simulation
environment, P-IDM, builds on an open-source highway sim-
ulator [71] expanding it to incorporate complex interaction
behavior. Hyperparameters values can be found in Table I.
Our motion planner and simulation environment are open
source.3

B. Driving Scenarios

We consider two densely populated driving scenarios: merg-
ing on a highway and unprotected left turn. The vehicles are
modeled as rectangles with 5 m length and 2 m width. For
each episode, the initial distance between the other vehicles
is drawn from a uniform distribution ranging from [7, 10] m.
Their initial and target velocities are sampled from a uniform
distribution, v0:n

0 ∼ U(3, 4) m/s. This initial configuration
prevents early collisions while ensuring no gaps of more than
2 meters [72], typical of dense traffic scenarios. These scenar-
ios compel the AV to leverage other vehicles’ cooperativeness
while also exposing it to a myriad of critical scenarios for the
final policy’s performance.

1) Ramp Merging: Fig. 4a depicts an instance of the
merging scenario. It comprises two lanes: the main lane
and a merging lane. At the beginning of each episode, the
main lane is populated with the other vehicles, moving from
left to right. In contrast, the merge lane only includes the
AV.

3https://github.com/tud-amr/highway-env
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TABLE I

HYPERPARAMETERS

Fig. 4. Evaluation environments: The AV is depicted in yellow and the
reference path is depicted by the black dashed line. Each other vehicle
is assigned with a color transitioning from red (i.e., non-cooperative) to
green (i.e., cooperative). The number displayed by each vehicle represents
its cooperation coefficient.

2) Unprotected Left Turn: Fig. 4b illustrates the unprotected
left turn scenario. It consists of two roads: the main road and
the left road perpendicular to each other. The main road is
populated with the other vehicles (on the top lane) and the
AV (on the bottom lane). The other vehicles move from right
to left on the main road, whereas the AV is initialized at the
bottom lane of the main road, and its objective is to take an
unprotected left turn onto the left road.

C. Evaluation Scenarios

We present simulation results considering different settings
for the other vehicles’ cooperation coefficient:
• Cooperative: In this scenario, most vehicles are coop-

erative (ci ∼ U(2, 4) m), implying that as soon as the
AV shows intentions of merging into the main lane, the
other vehicle starts considering the AV as its new leader,
leaving space for it to merge into the main lane. This

Fig. 5. Training performance.

evaluation scenario helps in assessing the merging speed
of the policy.

• Non-Cooperative: This scenario comprises mostly
non-cooperative vehicles (ci ∼ U(0, 2) m), meaning that
the other vehicles would not stop for the AV unless the
AV’s lateral horizon state is in the top lane. This scenario
explicitly assesses the policy’s aggressiveness. In these
scenarios, the best option for the AV is to stop and wait
for gaps and then merge in as quickly as possible.

• Mixed: This traffic scenario involves agents with varying
degrees of cooperativeness (ci ∼ U(0, 4) m), featuring a
continuous transition from cooperative to non-cooperative
vehicles. Here, the goal is to assess how differently
the AV behaves with cooperative and non-cooperative
vehicles.

During training, we consider a mixed setting for the other
vehicles. Rule based methods such as IDM, MOBIL fail in
highly dense traffic conditions and thus have not been included
for evaluation purposes [12].

D. Evaluation Metrics

To evaluate our proposed method, we employ the following
evaluation metrics:
• Success Rate: Percentage of successful episodes.

An episode is deemed successful if the AV is able to
merge on to the main highway or perform a left term
without colliding and before timeout.

• Collisions: Percentage of episodes resulting in collision.
• Timeout: Percentage of episodes in which the AV did not

reach the goal within the maximum specified time. This
metric does not include those episodes that resulted in
collision.

• Time-to-goal: Time in seconds for the AV to reach the
goal position.

E. Training Procedure

The interactive policy was trained considering a mixed set-
ting of other vehicles following a P-IDM model with CV pre-
dictions. Fig. 5 shows the performance of the learning policy
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Fig. 6. All the scenarios employ the P-IDM model (Section V) to simulate the other vehicles. The AV is represented in yellow, whereas the future states,
as computed by the MPCC, are plotted in light blue. Each other vehicle is assigned with a color transitioning from red (i.e., non-cooperative) to green
(i.e., cooperative) to highlight the other vehicles’ cooperativeness. The number displayed by each other vehicle represents its cooperation coefficient. All the
numbers in between show a continuous transition from non-cooperative (0) to cooperative (100).

during training. The top sub-plot (Fig. 5a) shows the average
reward evolution when training a policy with and without col-
lision constraints. Training with collision constraints enables
faster growth of the average rewards until 12 × 106 training
steps. This phenomenon happens because the policy’s task is
simpler as the local controller overwrites the policy’s actions
that may lead to a collision. Nevertheless, employing collision
constraints does not allow the AV to interact closely with the
other vehicles. Hence, after the 12 × 106 training steps, the
policy trained without collision constraints achieves a higher
average reward. The bottom sub-plot (Fig. 5b) shows the
percentage of failure and collision episodes during training,
demonstrating that the learning policy effectively decreases the
percentage of collisions while increasing the rate of successful
episodes throughout training.

F. Qualitative Results

Fig. 6 presents visual results for our method for the merg-
ing and left-turn scenarios. In Fig. 6a, the AV successfully
merged onto the main lane by leveraging other vehicles’
cooperativeness. In contrast, in Fig. 6b, we highlight a critical
advantage of our framework: the ability to perform a colli-
sion avoidance maneuver when the guidance policy wrongly
estimates the other vehicle’s cooperativeness. In this episode,
at 12.1 s, the AV initiates a merging maneuver. However, the
non-cooperative vehicle does not allow it. The local planner

aborts and starts a collision avoidance maneuver at 15.5 s,
merging successfully later when encountering a cooperative
vehicle at 22.4 s. Finally, Fig. 6c shows the AV performing
an unprotected left-turn maneuver successfully. The presented
qualitative results show that our proposed method enables the
AV to safely and efficiently navigate in dense traffic scenarios.
We refer the reader to the video accompanying this paper for
more qualitative results.4

G. Quantitative Results

Aggregated results in Table II show that our method out-
performs the baseline methods in terms of successful merges
and number of collisions considering different settings for
the other vehicles’ behaviors (i.e., cooperative, mixed and,
non-cooperative). The combined capability of interactive RL
policy to implicitly embed inter-vehicle interactions into the
velocity’s policy and the safety provided by the collision
avoidance constraints allows our method to succeed in all
the environments. The optimization-based baseline (MPCC)
shows poor performance for all settings, i.e., high collision
rate. The reason is the lack of assimilation of inter-vehicle
interactions into the policy and a tracking velocity reference
error term in the cost function formulation that motivates
the AV to keep the same velocity disregarding the nearby

4Video: https://youtu.be/xPomLRHs-II
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TABLE II

STATISTIC RESULTS FOR 1200 RUNS OF PROPOSED METHOD (INTMPC) COMPARED TO BASELINES (MPCC [29] AND DRL [68]) CONSIDERING THREE
DIFFERENT SETTINGS FOR THE OTHER VEHICLES (SECTION VI-C): PERCENTAGE OF SUCCESS, COLLISIONS AND TIMEOUT EPISODES

TABLE III

STATISTICAL RESULTS ON THE Time-to-Goal [S]. ONLY THE EPISODES
WHERE ALL METHODS ARE SUCCESSFUL ARE CONSIDERED IN THE

PRESENTED RESULTS. BOLD VALUES REPRESENT THE

RESULTS WITH STATISTICAL SIGNIFICANCE

vehicles’ cooperativeness. The DRL baseline achieves signif-
icantly higher performance, i.e., lower collision rate and a
higher number of successful episodes. Nevertheless, it still
leads to a significant number of collisions due to the lack
of collision avoidance constraints to ensure safety when
closely interacting with other vehicles. This demonstrates that
employing collision constraints for navigation in dense traffic
scenarios leads to superior performance over solely learning-
based methods. In contrast, safety comes with the cost of
larger average time-to-goal because the AV has to find the
right time-window to merge.

Table III presents statistical results of the time-to-goal for all
methods. To evaluate the statistical significance, we performed
pairwise MannWhitney U-tests between each method, con-
sidering a 95% confidence level. The results show statistical
significance for the MPCC’s results against the other methods
for cooperative and mixed settings. In contrast, there is no
statistical difference in terms of time-to-goal between the
DRL and IntMPC. Similarly, between all methods in non-
cooperative environments. The presented results show that
employing collision avoidance constraints do not increase
the average time-to-goal while improving safety. Moreover,
in non-cooperative environments, all methods achieve compa-
rable performance in terms of time-to-goal.

To demonstrate our policy’s ability to leverage agents’
cooperativeness explicitly, we evaluate 600 episodes in a
mixed scenario where we track the other vehicle’ coopera-
tion level in front of which the AV performs a successful
merging maneuver. Fig. 7 depicts a histogram illustrating the
number of successful episodes per cooperation coefficient,
demonstrating that our method mostly merges with cooperative
vehicles. A small number of successful merges can be seen
with non-cooperative vehicles as well. This behavior can be
attributed to the random sampling of IDM parameters resulting
in different agents’ acceleration values. Thus, the agents might
leave a gap big enough for the AV to merge onto the lane when
moving from a standstill position.

Fig. 8 presents the number of infeasible solutions for our
method (IntMPC) and the MPCC baseline. To jointly train the

Fig. 7. This figure provides a comprehensive analysis of the agents’
cooperation level (0 - non cooperative, 100 - cooperative) in front of which
the ego vehicle was able to merge successfully.

Fig. 8. Number of infeasible solutions encountered by the solver for our
method (IntMPC) versus the optimization-based baseline (MPCC).

TABLE IV

ABLATION STUDY OF THE MPCC’S PARAMETERS CONSIDERING
A MIXED SETTING FOR THE OTHER VEHICLES

RL policy with the local controller and penalize the state and
action tuples resulting in the solver infeasibility, significantly
reduces the number of infeasible solutions. Finally, in terms of
computation performance, our policy’s network has an average
computation time of 1.35 ± 0.5 ms. To solve the IntMPC’s
optimization problem (Eq. (8)) takes on average 3.0±1.35 ms
for all experiments. There was no statistical difference on
the policy’s and solver’s computation times for the different
settings of the other vehicles (e.g., cooperative, mixed and non-
cooperative). These results demonstrate out method’s real-time
applicability.
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TABLE V

SENSITIVITY ANALYSIS OF THE HYPERPARAMETER K , I.E., NUMBER OF CONTROL CYCLES PER RL POLICY QUERY, ON THE LEARNED POLICY’S
PERFORMANCE. ALL POLICIES WERE TRAINED CONSIDERING A MIXED SETTING OF OTHER VEHICLES. QUERYING THE RL POLICY FOR A NEW

VELOCITY FOR EACH TWO CONTROL CYCLES LEADS TO THE BEST PERFORMANCE (BOLD VALUES)

H. Performance Analysis

This section investigates the impact of two critical design
choices for our proposed approach: MPCC’s parameters and
using a different number of control cycles per RL policy query.
Moreover, we evaluate our method’s robustness to different
prediction models used by the other vehicles to estimate the
AV’s motion plans. To finalize, we compare the risk-level
that the AV takes with our method and the two planning
baselines.

1) Local Controller Parameters: The MPCC’s parameters
(i.e., weights and velocity reference) highly influence the
local planner’s performance. Here, we study the two key
components controlling the AV’s interaction with the other
vehicles: the velocity tracking weight (qv ) and the reference
velocity (vref). Table IV presents performance results for
different qv and vref values. Increasing the reference velocity
combined with high qv values generates more aggressive
behavior and significantly reduces the timeout rate. However,
it also increases the collision rate. In contrast, low qv val-
ues weaken the influence of the velocity reference on the
MPCC performance. The presented results demonstrate that
fine-tuning the MPCC’s weights and velocity reference is
insufficient for safe and efficient navigation in dense traffic
environments, supporting the need for an interaction-aware
velocity reference. qv = 1.0 and vref = 2 m/s lead to the
best performance, i.e., higher success rate and lower collision
and timeout rate. For the following experiments, we use qv =
1.0 and a velocity reference of vref = 2 m/s for the MPCC
baseline.

2) Hyperparameter Selection: A key design choice of the
proposed framework is the number of control cycles per policy
query, denoted by K . For instance, for K = 1, we query the
policy network for a new velocity reference for each control
cycle, while for K = 4, we use the same queried velocity
reference during 4 control cycles. Here, we study the impact
on the learned policy’s performance for K = {1, . . . , 4}.
During testing, all the policies are evaluated using K = 1.
Table V summarizes the obtained performance results. The
policy trained with K = 2 outperforms the other policies in
terms of success and collision rate. The policy trained with
K = 1 elicits an overly aggressive response from AV, evident
from a high collision rate and a low timeout percentage.
In contrast, higher K values lead the AV to exhibit an overly
conservative behavior, thus, higher timeout percentage. This
behavior can be attributed to the long duration for which the
same action is applied after querying the interactive policy. For

instance, using a large velocity reference value during many
control cycles highly increases the collision likelihood at the
merging point. This compels the RL algorithm to learn biased
policy towards low-velocity references to avoid an impending
collision resulting in an overly conservative behavior. Finally,
the policy trained with K = 2 elicits a balanced response from
the AV that is neither too conservative nor too aggressive,
resulting in a high success rate and a low collision rate for all
the scenarios.

3) Simulation Environment: This work introduces an IDM
variant enhancing the other vehicles with anticipatory behav-
ior. Our proposed model (P-IDM in Section V) relies on the
assumption that the other vehicles can infer the AV’s motion
plans. Here, we evaluate the influence of the prediction model
used to infer the AV’s plans on our method’s performance.
We consider the following prediction models variants:

1) CV: Constant velocity (CV) model;
2) CVPath: Constant velocity (CV) model along the AV’s

reference path;
3) MPCC: MPCC plan (Eq. (8)) assuming the AV’s current

velocity as the velocity reference, vref = vk .

Moreover, we also evaluate our method’s performance in
reactive scenarios employing the IDM [69] to model the
other vehicles’ behaviors. The presented results in Table VI
demonstrate that our proposed approach is robust and gen-
eralizes well to environments with other vehicles exhibiting
different behaviors. Employing the CV-Path prediction model
results in highly cooperative behavior for other vehicles as
shown by the high success rate. In contrast, the scenarios
with vehicles following an IDM [69] represents the most
challenging scenario.

4) Risk-Level Analysis: Table VII compares the risk-level
that the AV takes using our approach against the base-
line methods for two risk metrics: Time of Closest
Encounter (TCE) and the Distance-of-Closest-Encounter
(DCE) [19]. DCE models how close the AV gets to the other
vehicles meaning that lower DCE represents higher risk. TCE
models the risk time-dependency, assuming that risk events
further away in time have a lower probability of occurrence.
Hence, the larger TCE, the lower the risk. The presented
results show that our method incurs the lowest risk.

I. Discussion

The presented performance and ablation results demon-
strate that our approach improves performance and safety
significantly compared to pure learning or optimization
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TABLE VI

ANALYSIS OF THE PROPOSED METHOD’S PERFORMANCE WHEN INTERACTING WITH REACTIVE (IDM [69])
AND PREDICTIVE VEHICLES (CV, CV-PATH AND MPCC)

TABLE VII

RISK-LEVEL ANALYSIS: TIME OF CLOSEST ENCOUNTER (TCE)
AND DISTANCE OF CLOSEST ENCOUNTER (DCE)

baselines. Our approach enables the AV to exploit the inter-
action effects in the other agents to efficiently and safely
perform different driving maneuvers by employing RL to learn
an interaction-aware velocity reference directly fed into the
MPCC’s cost function. Nevertheless, the sensitivity analysis
results presented in Table VI show some performance degra-
dation when evaluating our approach in scenarios containing
agents following different policies from those used in the
training scenarios. This effect is due to the sim-to-real gap
inherent to RL methods [73], and it can be exacerbated when
evaluating our approach in real environments.

VII. CONCLUSION

This paper introduced an interaction-aware policy for guid-
ing a local optimization planner through dense traffic scenar-
ios. We proposed to model the interaction policy as a velocity
reference and employed DRL methods to learn a policy
maximizing long-term rewards by exploiting the interaction
effects. Then, a MPCC is used to generate control com-
mands satisfying collision and kino-dynamic constraints when
a feasible solution is found. Learning an interaction-aware
velocity reference policy enhances the MPCC planner with
interactive behavior necessary to safely and efficiently navigate
in dense traffic. The presented results show that our method
outperforms solely learning-based and optimization-based
planners in terms of collisions, successful maneuvers, and
fewer deadlocks in cooperative, mixed, and non-cooperative
scenarios.

Future works could replace the simple constant velocity
model with an interaction-aware prediction model learned
from data, such as [31], [74], expand the interaction-aware pol-
icy’s network to account for a variable number of other vehi-
cles and control the merging point required for lane-changing
in highways. This will improve the prediction performance
significantly and so, safety and performance. Finally, future
works could implement and evaluate our method in a real
autonomous vehicle.
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