
 
 

Delft University of Technology

Enriching Source Code with Contextual Data for Code Completion Models
An Empirical Study
van Dam, Tim ; Izadi, Maliheh; Deursen, Arie van

DOI
10.1109/MSR59073.2023.00035
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

Citation (APA)
van Dam, T., Izadi, M., & Deursen, A. V. (2023). Enriching Source Code with Contextual Data for Code
Completion Models: An Empirical Study. In L. O'Conner (Ed.), Proceedings of the 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR) (pp. 170-182). (Proceedings - 2023
IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023). IEEE.
https://doi.org/10.1109/MSR59073.2023.00035
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSR59073.2023.00035
https://doi.org/10.1109/MSR59073.2023.00035


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Enriching Source Code with Contextual Data for
Code Completion Models: An Empirical Study

Tim van Dam
Delft University of Technology

Delft, The Netherlands

t.o.vandam@student.tudelft.nl

Maliheh Izadi
Delft University of Technology

Delft, The Netherlands

m.izadi@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands

arie.vandeursen@tudelft.nl

Abstract—Transformer-based pre-trained models have recently
achieved great results in solving many software engineering tasks
including automatic code completion which is a staple in a
developer’s toolkit. While many have striven to improve the code-
understanding abilities of such models, the opposite – making the
code easier to understand – has not been properly investigated.
In this study, we aim to answer whether making code easier to
understand through using contextual data improves the perfor-
mance of pre-trained code language models for the task of code
completion. We consider type annotations and comments as two
common forms of additional contextual information that often
help developers understand code better. For the experiments,
we study code completion in two granularity levels; token and
line completion and take three recent and large-scale language
models for source code: UniXcoder, CodeGPT, and InCoder with
five evaluation metrics. Finally, we perform the Wilcoxon Signed
Rank test to gauge significance and measure the effect size.
Contrary to our expectations, all models perform better if type
annotations are removed (albeit the effect sizes are small). For
comments, we find that the models perform better in the presence
of multi-line comments (again with small effect sizes). Based on
our observations, we recommend making proper design choices
when training, fine-tuning, or simply selecting such models given
the intended data and application. Better evaluations and multi-
modal techniques can also be further investigated to improve the
practicality and accuracy of auto-completions.

Index Terms—Code Completion, Transformers, Pre-trained
Language Models, Context, Empirical Software Engineering

I. INTRODUCTION

Transformer-based pre-trained models [1] originally pro-

posed in the Natural Language Processing (NLP) field have

recently been extended to the source code domain [2–4].

Thanks to natural properties of source code [5] and also the

modifications to tailor these models, they are currently top

performers in many code-related tasks such as automatic code

completion (hereafter called auto-completion) [6–9]. Auto-

completion techniques complete source code statements by

suggesting the next token(s) given the current development

context. They help developers program faster by correcting ty-

pographical errors, decreasing the typing effort, and facilitating

API exploration [10] making auto-completion one of the most

prominent features in Integrated Development Environments

(IDEs).

Auto-completion utilizes two information channels; the nat-

ural language and the algorithmic channel [11]. The former

explains the context of a program, while the latter specifies

computer execution. Comments are a common form of op-

tional information that can help developers understand code

better, however, they do not affect how programs are run. Type

annotations are another form of auxiliary information to help

developers generate and/or understand code better. They can

increase auto-completions’ accuracy as the type of variables

often directly dictates how these variables can be interacted

with. However, types are often not present in dynamically-

typed or optionally-typed languages. Auto-completion models

often focus on code tokens and lately also on some aspects of

program structure to provide better completions. Most recently,

comments have also been utilized in such models [6]. Re-

searchers have also proposed models such as LambdaNet [12]

and TypeBERT [13] for the task of type inference. However, to

what extent contextual information embedded in source code

in the form of comments and annotated types can impact the

performance of recent large-scale pre-trained language models

has not been investigated yet.

In this work, we address this knowledge gap by conduct-

ing an extensive empirical investigation of the performance

of recent language models for source code. We consider

the three publicly available models, namely UniXcoder [6],

CodeGPT [14], and InCoder [7]. We perform auto-completion

in two granularity levels; next-token prediction and line

completion. Moreover, we report the results based on five

evaluation metrics commonly used to evaluate NLP models.

To preserve the underlying semantics of a piece of code,

we add/remove optional auxiliary contextual information, i.e.,

type annotations and comments and generate multiple vari-

ations of the same code. To this end, we first collect a

dataset containing a total of 704 TypeScript repositories from

the most starred public repositories on GitHub. We then use

the TypeScript compiler to create multiple variants of the

same TypeScript code. The first of these variants has all type

annotations removed, while the second has type annotations

added to the code, given that the types can be inferred. Type-

Script, being a gradually-typed language, does not mandate

the presence of type annotations. The TypeScript compiler

is therefore equipped with a type inference system that can

deduce the types of variables without type annotations, given

that the value of the variable provides enough information. The

three datasets are then further processed by varying the levelsCopyright ©2022 IEEE

170

2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

2574-3864/23/$31.00 ©2023 IEEE
DOI 10.1109/MSR59073.2023.00035

20
23

 IE
EE

/A
C

M
 2

0t
h 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 M

in
in

g 
So

ftw
ar

e 
R

ep
os

ito
rie

s (
M

SR
) |

 9
79

-8
-3

50
3-

11
84

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
M

SR
59

07
3.

20
23

.0
00

35

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



of comments. We consider 1) keeping comments as-is, 2)

removing all comments, 3) keeping only single-line comments,

4) keeping only multi-line comments, 5) keeping only doc-

blocks, This leads to 15 datasets containing semantically-
similar code, however, with different amounts of type annota-

tions and comments. Then, we use the three models to perform

automatic token and line completion on equivalent versions of
TypeScript code with different amounts of type annotations.

This is to establish the effect of the presence (or lack thereof)

of type annotations. Additionally, we investigate the effects

of removing all comments and limiting the comments to only

single-line, multi-line, and doc-block comments.

Our results show that all three models perform better on

untyped code than on code with type annotations. To assess the

significance of the outperformance, we conduct the Wilcoxon

Signed Rank test. The p-values obtained indicate that the
differences are significant for all models across all evaluation

metrics, meaning the differences are not random. Note that

the effect sizes are small, i.e., practical significance may be

limited. Based on the above, and considering that all five

evaluation metrics are mostly affected in the same way, further

efforts to propose better evaluation metrics that assess the

value to developers are required. Additionally, our results

indicate that the presence of multi-line comments significantly

contributes to auto-completion performance. Similar to the

previous case, although the differences are significant, the ef-

fect sizes are small in this case as well. Interestingly, although

doc-block comments are a type of multi-line comment, they

do not have a meaningful effect on performance relative to the

baseline.

Therefore, the community should take these factors into

account when selecting the appropriate auto-completion model

given their purpose and application. The main contributions of

this work are:

• An extensive empirical assessment of the impact of type
information on three large language models for both to-

ken and line completion in TypeScript code with various

amounts of type annotations,

• A comprehensive empirical assessment of the effect of

natural language text information in three formats (single-

line, multi-line, and doc-block comments) on the perfor-

mance of these code language models for both token and

line completion,

• Our source code, dataset, and select fine-tuned models
are publicly available. 1

II. MOTIVATING EXAMPLE

Figure 1 shows an example code snippet from the Angular

repository with and without type annotations and comments.2

Lack of appropriate type information or documentation can

make it harder for developers to use this function properly.

For instance, one might provide a string as value but a

1https://github.com/AISE-TUDelft/ContextualDataCodeCompletion;
https://huggingface.co/AISE-TUDelft/CodeGPT-TS-Multi-Untyped;
https://huggingface.co/AISE-TUDelft/UniXcoder-TS-Multi-Untyped
2https://github.com/angular/.../#L7

1 // Return the path to the node with the given value
using DFS

2 function findPath<T>(value: T, node: TreeNode<T>):
TreeNode<T>[] {

3 if (value === node.value)
4 return [node];
5 for (const child of node.children) {
6 const path: TreeNode<T>[] = findPath(value,

child);
7 if (path.length) {
8 path.unshift(node);
9 return path;
10 }
11 }
12 return [];
13 }

1 function findPath(value, node) {
2 if (value === node.value)
3 return [node];
4 for (const child of node.children) {
5 const path = findPath(value, child);
6 if (path.length) {
7 path.unshift(node);
8 return path;
9 }
10 }
11 return [];
12 }

Fig. 1. Sample code snippet with and without type annotations and comments

tree of numbers as node. In statically-typed languages, this
would lead to a compile-time error, however, in dynamically-

typed languages, this would run perfectly fine, which can lead

to bugs entering the code base. It is therefore important for

auto-completion models to work well in situations where type

annotations are lacking to prevent users from introducing bugs

to their code through auto-completion. In theory, additional

type information should boost auto-completion models, as it

provides them with a more comprehensive description of the

source code. The same can be said about comments, which

are typically used to describe complete functions with doc-

blocks, or used to annotate smaller parts of code with single-

line comments. The difference between the two is that type an-

notations are placed in a structured manner, whereas comments

are not guaranteed to follow a specific structure. Note that doc-

blocks do follow a form of structure, but do not have an order

and can contain a wide range of information. Investigating

the impact of types and comments and their relationship on

the performance of pre-trained Language Models (LMs) for

auto-completion in both dynamically- and gradually-typed lan-

guages with varying amounts of type annotations gives us an

understanding into what elements of source code can be used

to improve the performance of auto-completion approaches.

III. BACKGROUND AND RELATED WORK

In the following, we first provide background on pre-trained

models, then we review the existing work on completing code

using these approaches.

1) Transformers and Pre-trained Models: Transformer-

based [1] models have recently shown great promise in the

171

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



area of NLP. BERT [15], a bidirectional Transformer model,

showed the value of considering both the left and right

context for training LMs. Liu et al. improved further upon
BERT with the RoBERTa [16] model, and aimed to show

that the performance of BERT can be further be improved

through optimizing different design choices. Raffel et al. [17]

proposed a Text-to-Text Transformer (T5) which treated var-

ious NLP goals as a text-to-text (i.e., seq2seq) task. While
BERT-based models use Masked Language Modeling (MLM),
the Generative Pretraining Transformer (GPT) architecture

utilizes Causal Language Modeling (CLM) and is suitable
for generation tasks [18]. Nowadays, Transformers are being

tailored to source code to solve software engineering tasks.

For instance, Feng et al.’s CodeBERT [19], builds on top of

the RoBERTa model introduced above. CodeT5 is the corre-
sponding T5 model for the source code fine-tuned on multiple

code-related tasks such as code summarisation, translation,

generation, and more [20, 21]. Codex is an LM for code

that is based on the GPT-3 architecture [22, 23]. The authors

show that Codex is capable of implementing full-function

implementations from textual prompts and function signatures

alone. Although most research on auto-completion is focused

on single-token prediction, several studies aimed to complete

entire statements or blocks of code [9, 24, 25]. For instance,

AUTOSC combines program analysis and software naturalness
and fills in a partially completed statement with frequent

and valid recommendations [24]. GPT-C is a multi-lingual

model based on GPT-2, for completing lines [9]. CodeFill
is Multi-Task Learning-based approach also based on GPT-2

for completing lines for dynamically-typed languages [8]. The

authors showed using the extra information from the structure

representation is beneficial for the model.

2) Studies on Type Annotations and Comments: Several

previous works have demonstrated the ability to infer the types

of variables and functions in dynamically-typed languages

depending on their context [12, 13, 26, 27]. However, whether

type information can be used to improve code understanding

has not been established. DeepTyper [27] shows how deep

learning can be applied to infer types to ease the transition

from untyped code to gradually-typed code. Similar to Deep-

Typer [27], Malik et al.’s NL2Type [26] shows that natural
language information in comments, functions, and parameter

names can be exploited to predict types in dynamically-typed

languages. Wei et al.’s LambdaNet [12] shows that deep
learning can be applied to provide untyped code with type

annotations in gradually-typed languages like TypeScript and

Python. LambdaNet is able to predict user and third-party

types, while DeepTyper is only able to predict types from a

fixed vocabulary. Similar to LambdaNet [12], TypeBERT [13]
is able to infer user and third-party types but it takes a much

simpler approach by applying BERT-style pre-training, after

which it is fine-tuned on a large set of TypeScript data.

Mastropaolo et al. compare T5 [17] to n-gram models on a

comment completion task, showing T5 [17], leverages code

context to complete partial comments [28]. As previously

mentioned, Codex [22] has shown proficiency in generating

function implementations from natural language descriptions

and a function signature alone. This shows that natural lan-

guage can be of value to LMs for code. Additionally, these

models show that it is possible for LMs to infer type informa-

tion from source code. However, the opposite, whether type

information can be leveraged to facilitate code understanding,

has not been established. UniXcoder is a Transformer-based

model proposed by Guo et al. [6]. Guo et al. show that

UniXcoder performs slightly better on the auto-completion

task when considering comments. However, the impact of

type annotations and different types of comments, i.e., single-

line and multi-line comments are not considered individually.

Similarly, Fried et al. [7] show good single-token prediction
performance, but do not investigate the performance of line

completion, nor do they consider the influence of comments

or type annotations. Note that we adapt both these models to

perform line completion (more details in the approach section).

3) Empirical Studies on Auto-Completion Models: Ciniselli
et al. [29, 30] analyzed the performance of two language
models for text namely, T5 [17] and RoBERTa [16], for

completing code in three granularity levels; single-token, line,

and block. The authors included two datasets, containing Java

methods and Android app methods from open-source GitHub

repositories. They showed that T5 performs better, however,

the success of these models when tasked to predict longer

sequences is limited. As only Java was used for evaluation,

the results are not generalizable to dynamically- or gradually-

typed languages. Similar to our study, the authors aim to assess

Transformer models’ performance, however, the angles of their

study differ from this study. While they focus on investigating

the prediction granularity levels for T5 and RoBERTa, we

focus on the impact of comments and annotated types on the

performance of state-of-the-art large-scale LMs specifically

fine-tuned on source code. Chirkova et al. [31] analyze the
performance of Transformers on several code-related tasks

including auto-completion. This work analyzes how well

Transformer models are able to perform tasks using solely

syntactic information. They show that the auto-completion task

uses all AST components and that omitting types in ASTs has

a negative impact on this task.

IV. STUDY DESIGN

We select three of the most recently released LMs for source

code that are publicly available, namely UniXcoder, CodeGPT,

and InCoder. Choosing three models leads to more general-

izable results across the research questions. Moreover, these

models support two different language modeling objectives;

masked and causal.

UniXcoder is a pre-trained model that leverages multiple
modalities to facilitate several code understanding and gen-

eration tasks [6]. In addition to source code, comments and

flattened Abstract Syntax Trees (ASTs) were used during

pre-training to improve understanding. UniXcoder was pre-

trained using MLM [15, 32], Unidirectional Language Mod-

eling (ULM) [33], and denoising objectives [17]. Initially,

UniXcoder was trained on unimodal natural language data

172

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Overview of the study pipeline

from the C4 [17] dataset. Afterward, it was trained on bimodal

data in the form of text-code pairs from the CodeSearchNet

dataset [34]. These pairs consist of function definitions and

corresponding leading comments.

InCoder is a Transformer-based decoder-only model which
is able to infill code based on both left and right contexts [7]

using causal modeling [35]. It was trained on a large dataset

consisting primarily of Python and JavaScript code from

GitHub, GitLab, and StackOverflow. The training data from

StackOverflow contains natural text from questions, answers,

and comments in addition to code.

CodeGPT is a Transformer-based model based on the GPT-
2 model. Lu et al. utilize the GPT-2 architecture to train several
LMs for code-related tasks. The authors train four models, two

for Python and two for Java: for each programming language,

one model solely used the GPT-2 architecture, and one used

the pre-trained text-based GPT-2 as a starting checkpoint. The

latter methodology was used for auto-completion by Lu et al.
and is consequently what is referred to as CodeGPT in this

work.

Our study consists of seven main phases, namely marking,
type inference, data splitting, pre-processing, hyper-parameter
tuning, fine-tuning, and post-processing. During marking, we
add comments to the TypeScript code in our dataset to deter-

mine where we will perform auto-completion. Afterward, we

create equivalent marked datasets with 1) all type annotations

removed, 2) all implicit types added, and 3) where type

annotations are left as-is. For all three datasets, we divide

the files into train, test, and validation sets according to an

80/10/10 percent split. There are 5 pre-processing modes
that all handle comments differently: 1) keep all comments,

2) remove all comments, 3) keep only multi-line comments,

4) keep only single-line comments, and 5) keep only doc-

blocks. This results in 15 unique datasets. Next, we perform

hyper-parameter tuning, after which we use these datasets to

fine-tune 15 models for UniXcoder and CodeGPT. Afterward,
we use the fine-tuned models to generate predictions for the

test set. Finally, we post-process the predictions.

Note that we do not fine-tune InCoder: it does not have

publicly available fine-tune code and has already been trained

on data containing TypeScript code. This also has an effect on

the pre-processing step for InCoder, as discussed later.

Figure 2 depicts the overall pipeline of our study. Note that

different paths are taken depending on the auto-completion

model in use. Next, we describe the steps in more detail.

a) Marking: When testing the fine-tuned models, mark-
ing indicates where auto-completion should be performed.

Throughout a piece of code, we add placeholder comments

in the form of /*<marker:i>*/, where i is a number that
we use to identify markers within a file. These comments are

later used to create the auto-completion tasks for the test and

validation sets. We perform this task prior to other phases

to ensure that each dataset has identical completion tasks:

comments will not move as we transform code, hence we can

use them to track a position in code even when transformations

occur during type inference and pre-processing. For marking,

we first randomly select 40% of non-empty lines. Then,

for each selected line, we place a marker in front of an

ECMAScript token that is not a newline, whitespace, comment,
or type annotation. The code to the left of this marker will
serve as input, and the code to the right of this marker up to

the end of the line will serve as ground truth.

b) Type Inference: In order to ascertain the influence of
the number of types on performance, we transform our Type-

Script dataset in order to create two additional datasets: one

of which makes all implicit types explicit, and one of which

is without any type annotations. In the former case, we for

instance transform const x = 5 * 10; to const x:

173

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TUNED HYPER-PARAMETERS

Model Hyper-param Values Best

UniXcoder
Learning Rate {1e-5, 7.33e-5, 1.37e-4, 2e-4} 7.33e-5
Batch Size {2, 4, 8} 4

CodeGPT
Learning Rate {1e-5, 7.33e-5, 1.37e-4, 2e-4} 1.37e-4
Batch Size {2, 4, 8} 2

number = 5 * 10;. The opposite transformation would
happen in the latter case. This results in three datasets, with

three different amounts of type annotations.

This step is more elaborately discussed in section V.

c) Data splitting: We split all TypeScript files into the
train, test, and validation sets. All three datasets contain the

same files, so we maintain one distribution for all datasets.

This ensures that all models produce comparable results. The

files are split according to an 80/10/10 percent split.
d) Pre-Processing: We pre-process the data to prepare

for fine-tuning and evaluation. First, we normalize spacing and

linebreaks by replacing consecutive spaces and linebreaks with

a single such character. Then, the following steps are applied

to prepare the data for fine-tuning UniXcoder and CodeGPT:

As a standard technique to reduce the vocabulary size in the

literature [8, 9, 36, 37], we normalize the number and string

literals by replacing them with special tokens, 〈NUM LIT〉,
and 〈STR LIT〉, respectively. Then, we replace line breaks
with the special 〈EOL〉 token. These pre-processing steps are
not applied to the data that is fed to InCoder, as we do not

fine-tune this model. Consequently, the InCoder expects raw

code, without the special tokens that the pre-processing phase

adds.

We then apply different variants of pre-processing regard-

ing comments; 1) keep all comments as-is, 2) remove all

comments, 3) keep only single-line comments, 4) keep only

multi-line comments, and finally 5) keep only doc-blocks. This

process results in 15 different collections of TypeScript files
(three type variants, and five comment variants).

The pre-processed data is then stored in files to be used by

the three models. To prevent large files from representing a

large part of the validation and test sets, the maximum amount

of code completion tasks per file is set at 15.
e) Hyper-parameter Tuning: We perform hyper-

parameter tuning on 25% of the training and validation

set of the dataset with the original types (TS704-OT) and

unmodified comments to perform hyper-parameter tuning. We

choose to use 25% of one dataset to limit the computational

burden of our experiments. Note that fine-tuning does use
100% of all datasets. Table I reports the tuned hyper-

parameters, the values that were tested, and the combination

of hyper-parameters which led to the highest accuracy.

f) Fine-tuning: Next, we fine-tune UniXcoder and

CodeGPT on all our datasets. That is, on each type-annotation

variant and each comment-variant. This results in 15 different

datasets, thus 15 different fine-tuned models for UniXcoder

and CodeGPT. We use the hyper-parameters found during

hyper-parameter tuning. Note that we do not fine-tune In-

Coder, as it does not have publicly available fine-tune code.

Furthermore, it was already trained on TypeScript code, hence

it is expected to be able to provide reasonable predictions on

the test set without fine-tuning. We use a standard language

modeling objective, predicting the next token given a context,

and maximize the following likelihood. In Equation 1, m is

the length of the predicted sequence of code token values and

θ is the set of parameters that is learned through stochastic
gradient descent optimization to model P [38].

L(V ) =
∑

i

logP (vi|c0, ..., cT , vi−m, ..., vi−1; θ). (1)

UniXcoder and CodeGPT treat the 〈EOL〉 tokens as the end of
a sequence token, resulting in the fine-tuned models predicting

up to the end of each line. To emulate this behavior in InCoder,

we add a stopping criterion to the model that detects whenever

a new line is among the generated tokens. If a new line is

detected, we stop the model from generating more tokens.

g) Post-processing: After fine-tuning, the 30 fine-tuned
models plus InCoder are used to generate predictions for the

15 test sets. These predictions are subsequently post-processed
which consists of normalizing the spacing of code tokens

(including line breaks), removing all comments, and replacing

tokenized versions of literals with default literals. That is,

〈STR LIT〉 becomes "" (an empty string), and 〈NUM LIT〉
becomes 0. Since the data fed to InCoder does not contain
tokenized versions of literals, we replace the raw string and

number literals in the InCoder’s predictions by these constants.

To have a consistent and fair evaluation, this process is applied

to both the prediction and the ground truth.

V. EXPERIMENTAL SETUP

We first present our Research Questions (RQ) and describe

the datasets used for the experiments. Next, we introduce the

evaluation metrics used to assess the models’ performance in

detail. Finally, we review the implementation details.

A. Research Questions

We aim to assess the impact of additional contextual infor-

mation, e.g., explicit type annotations and textual explanations

in the form of comments on the performance of three state-

of-the-art large-scale pre-trained models for source code. For

both of our RQs, we consider three code LMs, i.e., UniX-

coder, CodeGPT, and InCoder, and two auto-completion tasks,

namely token and line completion. Accordingly, we design our

experiments to answer the following RQs.

• RQ1: How is the performance of these models in-
fluenced by the ratio of available type annotations in
code? That is, whether these models perform significantly
differently depending on the degree to which a piece of

code is type-annotated. To provide a fair comparison, we

use a TypeScript dataset, and create its equivalent code

without type annotations using the TypeScript compiler.

Moreover, to assess whether adding additional type an-

notations affect the performance of models, we add more

174

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



1 function solveQuadratic(a: number, b: number, c:
number) {

2 const d = b ** 2 - 4 * a * c;
3 const denom = 2 * a;
4 const sol1 = (-b + Math.sqrt(d)) / denom;
5 const sol2 = (-b - Math.sqrt(d)) / denom;
6 return [sol1, sol2];
7 }

1 function solveQuadratic(a: number, b: number, c:
number): number[] {

2 const d: number = b ** 2 - 4 * a * c;
3 const denom: number = 2 * a;
4 const sol1: number = (-b + Math.sqrt(d)) /

denom;
5 const sol2: number = (-b - Math.sqrt(d)) /

denom;
6 return [sol1, sol2];
7 }

Fig. 3. A sample code snippet before/after adding additional type annotations

annotations to the TypeScript dataset to make it more

explicitly typed and run the same experiments on this

new dataset.

• RQ2: What is the impact of enriching source code
context with textual information, i.e., comments? This
question explores how the performance of the three

models is affected by the presence of different types of

comments including single-line, multi-line, and doc-block

comments. We compare these results against the results

obtained from the respective datasets with no comments.

B. Datasets

To perform the experiments, we use publicly available

GitHub repositories that predominantly consist of TypeScript

code. TS704-OT, the first dataset, consists of a subset of the
top-1000 starred repositories on GitHub. This dataset was re-

trieved by querying the GitHub Search API.3 The GitHub API

returned a total of 851 unique repositories. To prevent bias, we

deduplicate our dataset against the repositories used for (pre-

)training UniXcoder, CodeGPT, and InCoder. To answer the

first RQ, we created an additional dataset based on the TS704-

OT dataset where we remove all type annotations (TS704-NT).
To do so, we use the TypeScript Compiler API to traverse

the Abstract Syntax Tree of every TypeScript file, removing

any type annotations that are encountered. Additionally, we

created a dataset where we make all implicit types explicit

using the TypeScript compiler (TS704-AT). As TypeScript is
a gradually-typed language, types are not required but can

oftentimes be inferred based on the types of other variables or

constants. We use the TypeScript compiler to add type anno-

tations when they can be inferred by the compiler, attempting

to amplify a potential effect caused by the presence of type

annotations. This process is displayed with a sample code

snippet in Figure 3. TypeScript code may depend on type an-

notations that are defined in third-party dependencies. Hence,

we first install all third-party dependencies using npm (Node

3https://docs.github.com/en/rest/search?apiVersion=2022-1..repositories

TABLE II
DATASETS USED FOR FINE-TUNING AND EVALUATION

TS704-OT TS704-NT TS704-AT

#Repositories 704 704 704
#Files 174,500 174,500 174,500
#LOC 26,115,719 25,548,595 26,115,719
Type Explicitness 30.95% 0.00% 95.62%

Package Manager) to be able to infer these types. More specif-

ically, we run the npm install --ignore-scripts
command in each directory containing a package.json file
(package.json files contain dependency information). We
opt to ignore post-install scripts, as npm packages made for
TypeScript ship with type declarations as-is, meaning that no

additional scripts are required to retrieve all third-party types.

This also significantly speeds up the installation process. Not

all dependencies were available, hence we removed all projects

with unavailable dependencies from all three datasets. This

decreased the number of repositories in our datasets by 147.

After having installed the dependencies, we locate all directo-

ries containing tsconfig.json files. These directories are
at the root of TypeScript projects, and contain configuration

options for the TypeScript compiler. We use the TypeScript

compiler to load in these TypeScript projects and traverse the

AST of each TypeScript file (files with the .ts extension),
adding type annotations where possible using the TypeScript

Compiler Type Checker. The resulting dataset The datasets

are nearly identical: the sole difference is the number of type

annotations.

Table II shows the size of our datasets in terms of the

number of repositories, files, and lines of code (LOC). Ad-

ditionally, it displays the type explicitness of the code in
these datasets. Type explicitness refers to the number of type

annotations present in the code relative to the maximum

amount of type annotations that can be present in the code.

C. Evaluation Metrics

We compare the predictions made by the models, fine-

tuned on typed and non-typed code, against the ground truths

using several evaluation metrics. In this study, we include a

wide range of standard metrics commonly used for evaluating

line completion solutions to provide a more comprehensive

assessment [8, 9, 39]. As our focus is on assessing the

performance of these models in various settings, we review

these metrics in detail.

EM (Exact Match) compares ground truths with predictions

and returns a boolean value. The EM score over an entire

dataset is expressed as a percentage. Higher values are better.

ES (Edit Similarity) or Levenshtein Similarity compares

the ground truth to the prediction on a character-by-character

basis. Wrong characters (substitutions), too many characters

(insertions) and too few characters (deletions) increase the

Levenshtein distance by 1. ES is a number in the range [0, 1]
that is computed by dividing the Levenshtein distance by the

175

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



length of either the prediction or the ground truth, depending

on which is the longest.

BLEU-4 is a variant of BLEU (Bilingual Evaluation Un-

derstudy) that deals specifically with n-grams with n ∈ [1, 4].
BLEU compares the ground truth to the prediction by comput-

ing the ratio of n-grams that occur in both the prediction and

the ground truth to the total amount of n-grams in the ground

truth [40]. We apply BLEU-4 by treating each code token,

as per the ECMAScript lexical grammar specification [41],

as a unigram, and give each value of n an equal weight. A
smoothing technique [42] is used to prevent division by zero

when the prediction has fewer than four tokens.

ROUGE-L is a variant of the ROUGE (Recall-Oriented

Understudy for Gisting Evaluation) metric which uses the

Longest Common Subsequence algorithm to find the largest n-

gram that occurs in both the prediction and the ground truth.

ROUGE-L computes precision and recall and uses them to

compute an F1-score [43].

METEOR (Metric for Evaluation of Translation with Ex-

plicit ORdering), compares the ground truth and the prediction

by mapping their respective unigrams, and computes a score

over this mapping based on its Precision and Recall. Addition-

ally, a penalty is applied based on how well the true unigram

order is followed by the mapping. METEOR has been shown

to be better at capturing human judgment over a complete

dataset than BLEU [44]. Opposed to BLEU, METEOR puts

more weight on recall, which has been shown to align closer

to human judgment than precision [45]. We apply METEOR

with parameters α = 0.9, β = 3.0, and γ = 0.5.

D. Implementations and Configuration

We use ts-morph to interface with the TypeScript com-
piler API when removing or adding type annotations.4 We

use js-tokens for tokenizing TypeScript code during the
line completion task creation, pre-processing, and evaluation

phases to add and remove specific types of comments.5

We fine-tune UniXcoder using the fine-tune source code

published by its authors.6 We also fine-tune CodeGPT using

the published code.7 Slight tweaks were made to both scripts

to make them compatible with our dataset files.

For UniXcoder, we use an initial learning rate of 7.33e-5
and a batch size of 4, as per the results of hyperparameter
tuning (Table I). We set the maximum input sequence length

to 936, the maximum output sequence length to 64, the beam
size to 5, The remaining parameters are set to the default
values as per the fine-tuning code published by the authors

of UniXcoder. We then train UniXcoder for 10 epochs. For
CodeGPT, we use an initial learning rate of 1.37e-4 and a
batch size of 2 (Table I). The remaining parameters are set to
the default values. We then train CodeGPT for 10 epochs.
We do not fine-tune InCoder, as it does not have publicly

available fine-tune code. We use the InCoder model with 1

4https://www.npmjs.com/package/ts-morph/v/15.1.0
5https://www.npmjs.com/package/js-tokens/v/8.0.0
6https://github.com/microsoft/CodeBERT/tree/master/UniXcoder
7https://github.com/microsoft/CodeXGLUE/.../CodeCompletion-line

TABLE III
RQ1: IMPACT OF TYPE ANNOTATIONS (LINE COMPLETION, DATA

WITHOUT COMMENTS)

Model Types EM ES B4 RL MR

UniXcoder
NT 65.32 79.62 61.63 81.32 65.91
OT 58.85 73.68 58.25 75.83 63.05
AT 59.93 74.41 58.82 76.39 63.56

CodeGPT
NT 63.39 80.38 62.08 82.51 67.03
OT 60.29 78.00 61.30 80.63 66.80
AT 61.32 78.74 61.86 81.13 67.25

InCoder
NT 33.26 56.56 43.51 59.71 51.09
OT 32.00 54.99 42.70 58.15 50.04
AT 32.01 54.76 42.36 57.82 49.77

billion parameters, which is available on HuggingFace.8 While

InCoder is capable of providing completions given left and
right context, we choose to only provide a left context as input,
because UniXcoder and CodeGPT only support left contexts.

For inference, we apply InCoder with a temperature of 0.2,
and a p = 0.95 for top-p nucleus sampling.
We conducted the experiments with models on a cluster

equipped with NVIDIA Tesla V100S GPUs, an AMD EPYC

7402 24C @ 2.80GHz CPUs. We ran hyper-parameter tuning,

fine-tuning, and inference on this cluster using one GPU per

process, four CPUs per process, and 48 GB RAM per process.

Running hyper-parameter tuning on UniXcoder and

CodeGPT took around 34 hours per model. Fine-tuning these
models took roughly 5 days per model. Inference on the test
set took roughly 6 hours for every model, including InCoder.

VI. RESULTS AND DISCUSSION

A. RQ1: Impact of Type Annotations

To gauge the impact of type annotations on auto-completion

performance, we run the three models against the test sets of

datasets with different type explicitness ratios. We then report

the results for each task, namely line and token completion.

Next, to determine which performance difference is significant

we perform the Wilcoxon Signed Rank test. In the following

tables, we abbreviate BLEU-4, ROUGE-L, and METEOR

metrics to B4, RL, and MR, respectively.

1) Line Completion: Table III presents how each model

performed on comment-less code with and without type anno-

tations. The displayed data is retrieved by running the models

against the test set, computing every metric for each prediction,

and averaging the metrics. We then use the Wilcoxon Signed

Rank test to determine whether different type explicitness rates

significantly impact auto-completion performance. Specifi-

cally, we compare TS704-NT with TS704-OT, and TS704-OT

with TS704-AT. The test sets contain a total of 153,147 paired

code completion tasks. We obtain paired samples from these

tasks by pairing the metric values computed for predictions

done by the two models under test. This is done for every

metric. The family-wise significance level of the tests is

α = 0.05. Additionally, we compute Cliff’s delta to measure

8https://huggingface.co/facebook/incoder-1B

176

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
RQ1: IMPACT OF TYPE ANNOTATIONS (LINE COMPLETION, DATA

WITHOUT COMMENTS, WILCOXON SIGNED RANK p-VALUES, CLIFF’S
DELTA)

Model Types 1 Types 2 Metric p δ

UniXcoder

NT OT EM 0.000 0.065
NT OT ES 0.000 0.080

OT AT EM 0.000 −0.011
OT AT ES 0.000 −0.011

CodeGPT

NT OT EM 0.000 0.021
NT OT ES 0.000 0.026

OT AT EM 0.000 −0.010
OT AT ES 0.000 −0.011

InCoder

NT OT EM 0.000 0.012
NT OT ES 0.000 0.021

OT AT ES 0.000 0.003

the effect size. Table IV reports partial results of the statistical

tests. The B4, RL, and MR metrics are omitted for brevity, as

these were significant in all cases.

Removing type annotations leads to the best performance
for all three models. In all cases, this outperformance is

statistically significant but quite small – especially for InCoder.

This performance difference may be explained by the fact

that UniXcoder and InCoder are pre-trained on corpora that

include large amounts of JavaScript, which is nearly identical

to TypeScript without type annotations. However, it should

be noted that even CodeGPT, which does not have any source

code in its pre-training data, also shows better performance on

code without type annotations. This opposes the rationale that

auto-completion performance can be enhanced by adding type

annotations. A possible explanation could be that source code

tokens are more valuable to the models than type annotations,

and removing type annotations leaves more input space for

source code tokens.

Adding type annotations to partially-typed code improves
auto-completion, but not as much as removing type annota-

tions altogether. For UniXcoder and CodeGPT, adding type

annotations led to a statistically significant performance im-

provement for all metrics. For InCoder, a similar improvement

was observed for all metrics except for Exact Match. In all

cases the effect size is much smaller than the effect size

caused by removing all type annotations, suggesting limited

practical utility. While this can not be determined from our

experiments alone, these findings may suggest that strongly

typed languages are easier to interpret than gradually-typed

languages such as TypeScript. However, the fact that removing

type annotations led to a bigger performance increase once

more suggests that source code may be a more important part

of the input than type annotations.

2) Token Completion: Table V presents how each model

performed on the token completion task on comment-less

code. We only report Exact Match and Edit Similarity, as all

other metrics are sequence-level metrics that do not work on

single tokens. We perform the Wilcoxon Signed Rank test on

TABLE V
RQ1: IMPACT OF TYPE ANNOTATIONS (TOKEN COMPLETION, DATA

WITHOUT COMMENTS)

Model Types EM ES

UniXcoder
NT 78.28 81.36
OT 70.80 73.88
AT 71.81 74.74

CodeGPT
NT 78.47 82.02
OT 75.35 78.98
AT 76.42 79.93

InCoder
NT 51.46 57.05
OT 50.94 56.61
AT 51.15 56.64

TABLE VI
RQ1: IMPACT OF TYPE ANNOTATIONS (TOKEN COMPLETION, DATA
WITHOUT COMMENTS, WILCOXON SIGNED RANK p-VALUES, CLIFF’S

DELTA)

Model Types 1 Types 2 Metric p δ

UniXcoder

NT OT EM 0.000 0.075
NT OT ES 0.000 0.081

OT AT EM 0.000 −0.010
OT AT ES 0.000 −0.010

CodeGPT

NT OT EM 0.000 0.025
NT OT ES 0.000 0.027

OT AT EM 0.000 −0.011
OT AT ES 0.000 −0.011

InCoder

NT OT EM 0.000 0.004
NT OT ES 0.000 0.004

OT AT EM 0.000 −0.002

these results, as displayed in Table VI.

Removing type annotations once again leads to the best
performance. The performance gain is statistically significant

for all models, with effect sizes similar to those found for

line-level completion.

Adding type annotations improves auto-completion per-
formance. This outperformance is statistically significant for

all metrics for UniXcoder and CodeGPT, and statistically

significant only for Exact Match for InCoder. The effect sizes

are small across all models.

Overall, the results for token completion are similar to the

results for line completion. Removing type annotations leads

to a larger performance gain than adding type annotations.

The reason for this is not clear from our experiments alone,

however, we theorize that this could indicate that the tested

models are better at interpreting source code than type anno-

tations, making it worthwhile to remove type annotations to

make more space for source code tokens.

Answer to RQ1: All models perform best on untyped code
across nearly all metrics. The Wilcoxon Signed Rank test

shows the performance difference between untyped (TS704-

NT) and type-annotated code (TS704-OT) is significant. This

suggests that type annotations do not necessarily enhance auto-

completion models’ ability to interpret and complete code.

Additionally, performance on code with a high type explic-

177

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



itness (TS704-AT) is significantly better than performance on

code with a normal type explicitness ratio (TS704-OT). This

could suggest that the irregular nature of type annotations

in gradually-typed languages may make it more difficult for

language models to interpret optionally-typed languages. Com-

paring effect sizes indicates that it is a better option to strip

(rather than add) type annotations from TypeScript code to

improve auto-completion performance. We theorize that these

observations suggest that source code provides more value

to these models, rather than type annotations. Consequently,

removing type annotations to allow more source code to be

used by the models can lead to increased performance.

B. RQ2: Impact of Comments

We run UniXcoder, CodeGPT, and InCoder against the

test sets of TS704-NT with different types of comments

to determine whether specific types of comments influence

auto-completion performance. Similarly, we use the Wilcoxon

Signed Rank test to determine significance, and consider both

line and token completion.

1) Line Completion: Table VII shows how each model

performed on code containing different types of comments. In

this table, and the tables thereafter, the CMT column indicates
which types of comments are present in the code. Possible

values are NC (No Comments), SL (Single-Line comments),

ML (Multi-Line comments), DB (Doc-Block comments), and
AC (All Comments).

We conduct the Wilcoxon Signed Rank test to determine

whether any observations are significant. We use performance

on comment-less data as a baseline, and compare it to per-

formance on all other types of comments. We also compute

Cliff’s delta. The results are shown in Table VIII. The B4, RL,

and MR metrics are once more omitted for brevity, as these

were significant in nearly all cases, and show great correlation

to EM and ES.

Preserving All Comments or Multi-Line Comments leads
to the best performance for all models and all metrics. This

implies that the information embedded in multi-line com-

ments leads to the best understanding of the source code.

UniXcoder, CodeGPT, and InCoder are all (pre-)trained on

corpora containing English text, which could explain their

outperformance on code with multi-line comments relative

to their performance on code without such comments. The

outperformance on these types of comments is statistically

significant for all three models, albeit with small effect sizes.

Keeping All Comments versus only multi-line comments have

similar effects for UniXcoder and CodeGPT, but for InCoder

specifically, multi-line comments have a larger effect size.

Preserving solely Doc-Block Comments does not lead to
substantial nor significant performance gains, despite Doc-

Blocks being a type of multi-Line comment. This reinforces

that the natural language descriptions inside multi-line com-

ments cause performance enhancements, rather than Doc-

Block information such as argument types and purposes.

Keeping only Single-Line Comments generally does not
cause performance enhancements like preserving only multi-

TABLE VII
RQ2: IMPACT OF COMMENTS ON LINE COMPLETION, TS704-NT

Model CMT EM ES B4 RL MR

UniXcoder

NC 65.32 79.62 61.63 81.32 65.91
SL 65.84 80.30 62.16 82.03 66.41
ML 69.28 82.99 63.78 84.35 67.65
DB 65.17 79.56 61.55 81.24 65.78
AC 69.27 83.09 63.88 84.46 67.76

CodeGPT

NC 63.39 80.38 62.08 82.51 67.03
SL 62.85 79.97 61.72 82.08 66.68
ML 66.90 82.56 62.82 84.26 66.95
DB 63.65 80.42 62.10 82.48 67.02
AC 66.45 82.29 62.64 84.01 66.78

InCoder

NC 33.26 56.56 43.51 59.71 51.09
SL 32.30 55.86 43.09 59.05 50.68
ML 34.89 57.78 44.13 60.67 51.37
DB 33.27 56.49 43.49 59.56 50.99
AC 33.99 57.02 43.64 59.91 50.88

TABLE VIII
RQ2: IMPACT OF COMMENTS ON LINE COMPLETION, TS704-NT

(WILCOXON SIGNED RANK p-VALUES, CLIFF’S DELTA)

Model CMT 1 CMT 2 Metric p δ

UniXcoder

NC SL EM 0.000 −0.003
NC SL ES 0.000 −0.005
NC ML EM 0.000 −0.031
NC ML ES 0.000 −0.036
NC DB EM 0.000 0.003
NC DB ES 0.003 0.003

NC AC EM 0.000 −0.032
NC AC ES 0.000 −0.039

CodeGPT

NC ML EM 0.000 −0.020
NC ML ES 0.000 −0.022
NC DB EM 0.019 −0.001
NC AC EM 0.000 −0.020
NC AC ES 0.000 −0.023

InCoder

NC SL EM 0.000 0.008
NC SL ES 0.000 0.009

NC ML EM 0.000 −0.017
NC ML ES 0.000 −0.019
NC AC EM 0.000 −0.010
NC AC ES 0.000 −0.010

line comments. This could be explained by the differences

in comment length: single-line comments are generally much

smaller than multi-line comments. For UniXcoder, Single-

Line comments appear to cause a very small, yet statistically

significant performance increase. For InCoder, however, these

comments have a statistically significant negative effect, one

more with a small effect size. Single-Line comments do not

significantly impact the performance of CodeGPT.

Overall, different types of comments have a statistically

significant effect on line-level auto-completion performance,

albeit with relatively small effect sizes. multi-line comments

appear to have the largest positive effect, indicating that the

three models are most capable at interpreting these types of

comments.

178

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IX
RQ2: IMPACT OF COMMENTS ON TOKEN COMPLETION, TS704-NT

Model CMT EM ES

UniXcoder

NC 78.28 81.36
SL 78.83 81.91
ML 82.35 85.23
DB 78.35 81.39
AC 82.30 85.23

CodeGPT

NC 78.47 82.02
SL 77.85 81.44
ML 80.99 84.31
DB 78.42 81.86
AC 80.66 84.05

InCoder

NC 51.46 57.05
SL 50.45 56.21
ML 52.47 58.06
DB 51.32 56.92
AC 51.47 57.22

TABLE X
RQ2: IMPACT OF COMMENTS ON TOKEN COMPLETION, TS704-NT

(WILCOXON SIGNED RANK p-VALUES, CLIFF’S DELTA)

Model CMT 1 CMT 2 Metric p δ

UniXcoder

NC SL EM 0.000 −0.004
NC SL ES 0.000 −0.004
NC ML EM 0.000 −0.032
NC ML ES 0.000 −0.034
NC AC EM 0.000 −0.033
NC AC ES 0.000 −0.036

CodeGPT

NC SL EM 0.006 0.002
NC SL ES 0.003 0.002

NC ML EM 0.000 −0.017
NC ML ES 0.000 −0.019
NC AC EM 0.000 −0.018
NC AC ES 0.000 −0.019

InCoder

NC SL EM 0.000 0.009
NC SL ES 0.000 0.009

NC ML EM 0.000 −0.011
NC ML ES 0.000 −0.012
NC AC EM 0.002 −0.002
NC AC ES 0.000 −0.004

2) Token Completion: Table IX shows the token completion
performance of all models on code with different types of

comments. We only report Exact Match and Edit Similarity,

as the other metrics are not applicable to single tokens. We

once more perform the Wilcoxon Signed Rank Test on the

results, as shown in Table X. Overall, the results are similar to

the results observed for line completion. Preserving All Com-
ments or Multi-Line Comments once more leads to the best
performance. This outperformance is significant and has the

largest effect size for all three models. Once more, UniXcoder

and CodeGPT have similar effect sizes when preserving multi-

line and all comments, whereas InCoder appears to benefit

more when preserving only multi-line comments.

Preserving only Doc-Block Comments once again does not
lead to significant performance improvements, despite doc-

block comments being a type of multi-line comment. Keeping

only Single-Line comments significantly affects performance
for all models. For UniXcoder and InCoder there are slightly

positive and negative effect sizes respectively, which was also

the case for line completion. For CodeGPT, we observe a

slight, statistically significant, negative effect, which was not

observed during line completion.

Overall, the results for token completion are consistent with

the results for line completion: different types of comments

influence auto-completion performance in different ways, with

small effect sizes. Multi-Line comments appear to have the

largest positive effect for the three models.

Answer to RQ2: All three models perform best on a

code containing either all comments or solely multi-line

comments. The presence of doc-block comments (which is

a type of multi-line comment) does not cause a significant

performance increase, suggesting that the value of multi-line

comments comes from the natural language embedded in them.

Additionally, single-line comments do not always appear to

have the same effect: UniXcoder slightly benefits from the

presence of single-line comments, but CodeGPT and InCoder

experience performance degradation when present. While code

containing multi-line comments performs best, the effect size

is relatively small. Nevertheless, these types of comments do

provide some value to code completion models. The results

suggest that the three code completion models can adequately

interpret natural language descriptions contained in multi-line

comments. Other comment types do not appear to further

enhance auto-completion performance, suggesting that these

comments can be omitted from the input without sacrificing

performance.

C. Discussion and Recommendations

The experiments’ results indicate that the observed differ-

ences in auto-completion performance are statistically signifi-

cant, hence they are not random. However, the effect sizes are

small, which can indicate limited impact in practice.

In this work, we focused on TypeScript. More studies are

required to generalize our findings including investigating

whether the observed results apply to other programming

languages or not. Python3 is a suitable candidate, as it is an

optionally-typed language. However, it lacks a type inference

engine that is present in the TypeScript compiler, which makes

this more challenging. Additionally, experiments with different

splitting policies (e.g., repository-based instead of file-based),

other datasets, and more strictly de-duplication policies could

reinforce our findings.

The results hint at the removal of type annotations being

beneficial, which may suggest that current LLMs do not

need additional clues such as type annotations to aid code

understanding. This is specifically important as the input size

of LLMs is generally limited – removing type annotations

can make space for more important information. Examples of

alternative types of contextual information that could be of

more use to these models are 1) available function signatures,

2) local folder structure, 3) previous (correct) predictions,

and 4) simply more code context. Our results indicate that

179

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



predominantly multi-line comments are of importance for

code completions. Removing all other types of comments can

similarly create extra input space for other types of useful

information.

In general, we believe that helping recent LLMs understand

the input syntactically may not be the best way of advancing

state-of-the-art models with millions or billions of parameters.

Instead, providing different types of contextual information

may help widen the scope of code completion models. Future

research is needed to confirm how different types of contextual

clues may be valuable to LLMs used for code-related tasks.

D. Threats to the Validity

We categorize threats to the validity of our study into three

groups, namely internal, external, and construct threats.

Threats to internal validity: relate to the parameters
affecting the performance of the model, factors unintentionally

influencing the results, and errors in the implementations.

We intentionally changed type annotations and comments to

test their relationship with auto-completion performance. Vari-

ables involved in this work are fine-tuning hyper-parameters

and metric-related parameters. Hyper-parameter tuning was

performed before fine-tuning UniXcoder and CodeGPT, after

which the hyper-parameters that lead to the best accuracy were

kept constant throughout the experiments. This ensures that

no observed differences between fine-tuned models can be

attributed to a difference in the fine-tuning configuration. The

same applies to parameters relating to metrics; the tokeniza-

tion of input sequences required for BLEU, ROUGE-L and

METEOR was always done the same way, according to the

ECMAScript lexical grammar specification [41]. Moreover,

our analysis relies on pre-existing code published by Guo et
al. and Lu et al. to make the evaluation of UniXcoder and
CodeGPT reproducible [6, 14]. This perfectly demonstrates

the importance of reproducibility. We assure reproducibility by

publishing all resources required to conduct the experiment,

including the source code and datasets. Additionally, we

provide fine-tuned models for UniXcoder and CodeGPT for

all three type explicitness settings, trained on data containing

all comment types.

Threats to external validity: relate to factors that could
affect the generalizability of our findings. In this study, the

datasets used greatly impact the generalizability of results.

We create our own dataset, TS704-OT, based on which we
create two more datasets, TS704-AT and TS704-NT, through
adding and removing type annotations. To prevent skewed

results, we removed all repositories in our dataset that were

also used to train UniXcoder, CodeGPT, or InCoder. However,

our datasets themselves were not de-duplicated, which could

lead to overly-optimistic results caused by the overlap of

the train and test sets [46]. Our duplication measurements

indicate that there is only 1% exact duplication within our

dataset, and 7% near-duplication. We believe this duplication

is relatively small and aligns with real scenarios as in practice

developers tend to reuse code frequently. Additionally, the

datasets were split by file, as opposed to by project, or by

repository. This could cause artificially high measurements

as projects generally share patterns or variable names [47].

Hence, different splitting policies should be explored in the

future. Future work could also incorporate different optionally-

typed languages, and different datasets to further support our

findings.

Threats to construct validity: relate to the validity of
the measurements performed. We use several commonly-used

metrics in the NLP field [1, 6, 14, 20]. Together, these metrics

give a broad perspective on the performance of models, as

each metric measures performance in a different way. BLEU,

ROUGE-L, and METEOR all require parameters or tokeniza-

tion. Slight differences in the way these metrics are applied can

wildly change results and differences in parameters make the

metrics incomparable [48]. This highlights the importance of

indicating exactly how each metric is used. The specification

of datasets is similarly important [48] and plays a big part

in reproducibility. For these reasons the processes applied to

obtain the results are described in detail and transparently,

such that it is clear how the data should be interpreted, and

whether it is comparable to data provided in other studies. To

ensure that all data reported are comparable, we used the same

distribution of files in the train, validation, and test sets for all

experiments.

VII. CONCLUSION

Source code tokens are not the only sources of information

for exploiting the context when using code LMs. Optional type

annotations and natural language text in the form of comments

can add valuable information to the source code. However,

not all this extra information may be useful for improv-

ing language understanding capabilities of auto-completion

models. In this work, we investigated the impact of these

sources of additional information when leveraged by three

recent LMs for source code. Our results show that not all

optional information channels are valuable to the three models.

Namely, type annotations are shown to negatively affect these

models, whilst their performance is enhanced by the presence

of multi-line comments. These observations are statistically

significant for all models and nearly all metrics (albeit with

small effect sizes). Hence, the community should take these

findings into account when selecting the best model for their

tasks. For instance, exchanging type annotations and non-

multi-line comments in the input of these models for other

more beneficial types of contextual information can be helpful

to these models. Future research can investigate how different

types of contextual clues can impact the performance of LLMs

for code.

VIII. DATA AVAILABILITY STATEMENT

Our source code, dataset, and select fine-tuned models are

publicly available.9

9https://github.com/AISE-TUDelft/ContextualDataCodeCompletion;
https://huggingface.co/AISE-TUDelft/CodeGPT-TS-Multi-Untyped;
https://huggingface.co/AISE-TUDelft/UniXcoder-TS-Multi-Untyped

180

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706 . 03762. [On-

line]. Available: http://arxiv.org/abs/1706.03762.

[2] A. Al-Kaswan, M. Izadi, and A. van Deursen, “Stacc:

Code comment classification using sentencetransform-

ers,” 2023.

[3] M. Izadi, P. R. Mazrae, T. Mens, and A. van Deursen,

“Linkformer: Automatic contextualised link recovery

of software artifacts in both project-based and transfer

learning settings,” arXiv preprint arXiv:2211.00381,
2022.

[4] M. Izadi, “Catiss: An intelligent tool for categorizing

issues reports using transformers,” in 2022 IEEE/ACM
1st International Workshop on Natural Language-Based
Software Engineering (NLBSE), IEEE, 2022, pp. 44–47.

[5] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu,

“On the naturalness of software,” Communications of
the ACM, vol. 59, no. 5, pp. 122–131, 2016.

[6] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J.

Yin, UniXcoder: Unified cross-modal pre-training for
code representation, 2022. DOI: 10.48550/ARXIV.2203.
03850. [Online]. Available: https://arxiv.org/abs/2203.

03850.

[7] D. Fried et al., “Incoder: A generative model

for code infilling and synthesis,” arXiv preprint
arXiv:2204.05999, 2022.

[8] M. Izadi, R. Gismondi, and G. Gousios, “Code-

fill: Multi-token code completion by jointly learning

from structure and naming sequences,” arXiv preprint
arXiv:2202.06689, 2022.

[9] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sun-

daresan, “Intellicode compose: Code generation using

transformer,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, 2020, pp. 1433–1443.

[10] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A

study of visual studio usage in practice,” in 2016 IEEE
23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), IEEE, vol. 1,
2016, pp. 124–134.

[11] C. Casalnuovo, E. T. Barr, S. K. Dash, P. Devanbu,

and E. Morgan, “A theory of dual channel constraints,”

in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and
Emerging Results, 2020, pp. 25–28.

[12] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “Lamb-

daNet: Probabilistic type inference using graph neural

networks,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020. [Online]. Available: https: / /
arxiv.org/abs/2005.02161.

[13] K. Jesse, P. T. Devanbu, and T. Ahmed, “Learning type

annotation: Is big data enough?” Proceedings of the

29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, 2021. DOI: 10.1145/3468264.
3473135.

[14] S. Lu et al., “CodeXGLUE: A machine learning bench-
mark dataset for code understanding and generation,”

CoRR, vol. abs/2102.04664, 2021. arXiv: 2102.04664.
[Online]. Available: https://arxiv.org/abs/2102.04664.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:

pre-training of deep bidirectional transformers for

language understanding,” CoRR, vol. abs/1810.04805,
2018. arXiv: 1810.04805. [Online]. Available: http: / /

arxiv.org/abs/1810.04805.

[16] Y. Liu et al., “RoBERTa: A Robustly Optimized

BERT Pretraining Approach,” arXiv e-prints,
arXiv:1907.11692, arXiv:1907.11692, Jul. 2019.

arXiv: 1907.11692 [cs.CL].
[17] C. Raffel et al., “Exploring the Limits of Transfer

Learning with a Unified Text-to-Text Transformer,”

arXiv e-prints, arXiv:1910.10683, arXiv:1910.10683,
Oct. 2019. arXiv: 1910.10683 [cs.LG].

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,

and I. Sutskever, “Language models are unsupervised

multitask learners,” 2019.

[19] Z. Feng et al., Codebert: A pre-trained model for pro-
gramming and natural languages, 2020. arXiv: 2002.
08155 [cs.CL].

[20] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5:

Identifier-aware unified pre-trained encoder-decoder

models for code understanding and generation,” in Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, 2021.

[21] A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant, P.

Devanbu, and A. van Deursen, “Extending source code

pre-trained language models to summarise decompiled

binaries,” in Proceedings of the 30th IEEE Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), 2023.

[22] M. Chen et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[23] T. Brown et al., “Language models are few-shot learn-
ers,” Advances in neural information processing sys-
tems, vol. 33, pp. 1877–1901, 2020.

[24] S. Nguyen, T. Nguyen, Y. Li, and S. Wang, “Combining

program analysis and statistical language model for

code statement completion,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), IEEE, 2019, pp. 710–721.

[25] Y. Yang, Y. Jiang, M. Gu, J. Sun, J. Gao, and H. Liu,

“A language model for statements of software code,”

in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2017,
pp. 682–687.

[26] R. S. Malik, J. Patra, and M. Pradel, “NL2Type: In-

ferring javascript function types from natural language

181

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 



information,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), 2019,
pp. 304–315. DOI: 10.1109/ICSE.2019.00045.

[27] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Alla-

manis, “Deep learning type inference,” ser. ESEC/FSE

2018, Lake Buena Vista, FL, USA: Association for

Computing Machinery, 2018, pp. 152–162, ISBN:

9781450355735. DOI: 10 . 1145 / 3236024 . 3236051.

[Online]. Available: https://doi.org/10.1145/3236024.

3236051.

[28] A. Mastropaolo, E. Aghajani, L. Pascarella, and G.

Bavota, “An empirical study on code comment com-

pletion,” in 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE,
2021, pp. 159–170.

[29] M. Ciniselli et al., “An empirical study on the usage of
transformer models for code completion,” IEEE Trans-
actions on Software Engineering, 2021, ISSN: 1939-
3520. DOI: 10.1109/TSE.2021.3128234.

[30] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk,

M. Di Penta, and G. Bavota, “An Empirical Study on

the Usage of BERT Models for Code Completion,”

arXiv e-prints, arXiv:2103.07115, arXiv:2103.07115,
Mar. 2021. arXiv: 2103.07115 [cs.SE].

[31] N. Chirkova and S. Troshin, “Empirical study of trans-

formers for source code,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 703–715.

[32] A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and

M. Auli, “Cloze-driven pretraining of self-attention net-

works,” CoRR, vol. abs/1903.07785, 2019. arXiv: 1903.
07785. [Online]. Available: http://arxiv.org/abs/1903.

07785.

[33] A. Radford, K. Narasimhan, T. Salimans, and I.

Sutskever, “Improving language understanding by gen-

erative pre-training,” 2018.

[34] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and

M. Brockschmidt, “CodeSearchNet challenge: Evaluat-

ing the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[35] A. Aghajanyan et al., “Cm3: A causal masked

multimodal model of the internet,” arXiv preprint
arXiv:2201.07520, 2022.

[36] M. Izadi, A. Heydarnoori, and G. Gousios, “Topic

recommendation for software repositories using multi-

label classification algorithms,” Empirical Software En-
gineering, vol. 26, no. 5, pp. 1–33, 2021.

[37] M. Izadi, K. Akbari, and A. Heydarnoori, “Predicting

the objective and priority of issue reports in software

repositories,” Empirical Software Engineering, vol. 27,
no. 2, pp. 1–37, 2022.

[38] H. Robbins and S. Monro, “A stochastic approxima-

tion method,” The annals of mathematical statistics,
pp. 400–407, 1951.

[39] M. Izadi and M. N. Ahmadabadi, “On the evalua-

tion of nlp-based models for software engineering,” in

2022 IEEE/ACM 1st International Workshop on Natural
Language-Based Software Engineering (NLBSE), IEEE,
2022, pp. 48–50.

[40] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu:

A method for automatic evaluation of machine transla-

tion,” in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, ACL, 2002,
pp. 311–318. DOI: 10.3115/1073083.1073135.

[41] S. Guo, M. Ficarra, and K. Gibbons, 12 ECMAScript
Language: Lexical Grammar, 2022. [Online]. Available:
https : / / tc39 . es / ecma262 / multipage / ecmascript -

language - lexical - grammar . html # sec - ecmascript -

language-lexical-grammar.

[42] C.-Y. Lin and F. J. Och, “ORANGE: A method for

evaluating automatic evaluation metrics for machine

translation,” in COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics,
Geneva, Switzerland: COLING, 2004, pp. 501–507.

[Online]. Available: https://aclanthology.org/C04-1072.

[43] C.-Y. Lin, “ROUGE: A package for automatic evalu-

ation of summaries,” in Text Summarization Branches
Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:

https://aclanthology.org/W04-1013.

[44] S. Banerjee and A. Lavie, “METEOR: An automatic

metric for MT evaluation with improved correlation

with human judgments,” in Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization,
Ann Arbor, Michigan: Association for Computational

Linguistics, Jun. 2005, pp. 65–72. [Online]. Available:

https://aclanthology.org/W05-0909.

[45] A. Lavie, K. Sagae, and S. Jayaraman, “The significance

of recall in automatic metrics for MT evaluation,”

Machine Translation: From Real Users to Research,
pp. 134–143, 2004. DOI: 10.1007/978-3-540-30194-

3 16.

[46] M. Allamanis, “The adverse effects of code duplication

in machine learning models of code,” in Proceedings
of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on
Programming and Software, 2019, pp. 143–153.

[47] A. LeClair, S. Jiang, and C. McMillan, “A neural model

for generating natural language summaries of program

subroutines,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), IEEE,
2019, pp. 795–806.

[48] M. Post, “A call for clarity in reporting BLEU scores,”

2018. DOI: 10 . 48550 /ARXIV.1804 . 08771. [Online].

Available: https://arxiv.org/abs/1804.08771.

182

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 13:05:01 UTC from IEEE Xplore.  Restrictions apply. 


