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Figure 1: Visualization of the environment with random walker

Various problems related to Random Walk in Random Environment have been reseached intensively in the
past 40 years by both mathematics and physics community. It still remains an active research topic in the
field of Interacting Particle Systems. The setting of the problem is quite simple, one defines a Random Walk
of the choice and lets it traverse the Random Environment that influences the Random Walk in some
predetermined way. In this thesis, we study the survival time of a Random Walk in different Random
Environments of traps. The Random Environments of traps are separated in two distinct classes: static and
dynamic. In the static environment the trap configuration is chosen randomly at a time zero and remains
fixed thereafter. While in dynamic case, we let the trap configuration evolve over time by some predefined
dynamics. The problem in the static setting has a long story and the picture is understood fairly well.

The survival probability of the Random Walk in a static Random Environment is derived for many different
static environments, and it happens to be sub-exponential. This is due to a celebrated result of Donsker and
Varadhan [1], which connects to the large deviations of the range of random walk, or in the continuum to the
Wiener sausage. Furthermore, many unusual phenomena has been obtained: recurrence criteria, laws of large
numbers, invariance principles and refined large deviation estimates.

In the dynamic case, the state of the art is less developed. In recent years, much more has been understood
about the empirical speeds of random walks in dynamic environments, the laws of large numbers have been
proved under certain space-time mixing conditions, and large deviation principles under different assumptions.
Many results yield exponential decay of survival probabilities of a random walk in a dynamic environment, but
the literature suggests that for now there is still no unified approach in the derivation of survival times for the
models with different environments. Finally, almost nothing is known about the interpolation between the
models of random walk in static environments and dynamic environments. The interpolation model should
yield an exponential survival time for a fast enough environment while showing a sub-exponential decay of
survival probability whenever the environment is slow enough.

One of the aims of the thesis is to collect different results of survival probabilities in different dynamic
environments and to create a set-up where one can interpolate between exponential and sub-exponential
behavior.

In the second and third sections of this paper we introduce the reader with the needed mathematical
background and discuss the problem in a static setting. We give an overview of the Markov Processes and
Random Walks and give examples of the Trapping Processes that are used as trapping potentials for the
models in future sections. Then we state the Feynman-Kac formula and give its applications by using the
theory of semigroups. Then, we study the survival time of a random walk in a static environment of traps in a
quite general setting.
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The fourth section begins with the mathematical formalization of the problem in a dynamic setting. The rest
of the sections is then dedicated to the studies of the random walk in various time-continuous models. More
specifically we give the results of varying strength for the following environments: Independent Spin-Flip,
Simple Symmetric Exclusion Process, Random Walking Traps, and Attractive Spin-Flip.

The last section of this paper is dedicated to the study of discrete-time random walk in a one-dimensional
discrete-time dynamic random environment. In a discrete-time, the dynamics of the environment come from
the build-up of the so-called "refreshing times", which dictate at which discrete times the environment changes.
By controlling the distribution of the difference of these refreshing times, we show the interpolation between
the slow regime, where the survival time decays sub-exponentially, and the fast regime, where the survival
time decays exponentially. We prove that it suffices to have the renewal times difference to be distributed
sub-exponentially with the rate td/(d+2), for the survival time to have a sub-exponential lower bound.
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2 Background
In this section, we provide some theoretical background such as definitions of Markov processes, semigroups,
and generators corresponding to the Markov processes. Additionally, we provide three essential tools that are
extensively used in the studies of Interacting Particle Systems, namely the Feynman-Kac formula and the
large deviations theory.

2.1 Markov Processes
A Markov process is a such stochastic process that the distribution of a future state only depends on the
current state and does not depend on the past history. Essentially a Markov process is a memoryless process.
Let us define it more formally.

Definition 2.1 (Markov Process) A stochastic process {Xt, t ≥ 0} on state space Ω with values in
measurable space (Ω,F) is called Markov Process (or markovian), if for ∀t ≥ 0, n ∈ N, 0 ≤ t1 ≤ t2, ..., tn ≤ 0
and for ∀f : Ω → R bounded and F-measurable, the following holds:

E(f(Xt)|Xt1 , Xt2 , ..., Xtn) = E(f(Xt)|Xtn), (1)

Or in more measure theoretic notation:

E(f(Xt)|Fs) = E(f(Xt)|Xs), (2)

where Ft = σ(Xr : r ≤ t) and 0 ≤ s ≤ t.
Note that further into this thesis we will have state spaces Ω = Zd and Ω = E, where E will be a space of all
possible configurations of traps (better definition will be discussed in future)

It is not always convenient, nor easy to define the Markov process and prove its existence directly. Thus, the
semigroup of linear operators on functions spaces is used, which is quite a natural way to define the
corresponding processes. We assume the state space Ω (in future notations we will denote it as E -the space of
all configurations of environment) to be a compact metric space

Definition 2.2 (Semigroup) Given a Markov process on a state space Ω we define semigroup as:

Stf(x) = E(f(Xt)|X0 = x) = Ex(f(Xt)) (3)

for f ∈ C0(Ω), where C0(Ω) is a Banach space of continuous functions defined on Ω vanishing at infinity,
equipped with a supremum norm ∥·∥

The whole idea is to take the perspective from the probabilistic setting to the spaces of the linear operators
which is a deterministic setting.

The probability semigroups must satisfy the following properties.

Lemma 2.1 (Semigroup Properties) The semigroup St, t ≥ 0 satisfies the following properties.

1. Identity at time zero: S0 = I, i.e., S0f = f for ∀f .

2. Right-continuity: the map t→ Stf is right continuous.

3. Semigroup property: for all t, s > 0, f : St+sf = St(Ssf) = Ss(Stf)).

4. Positivity: f ≥ 0 implies Stf ≥ 0.

5. Normalization: St1 = 1.

6. Contraction: maxx |(Stf)(x)| ≤ maxx |f(x)|

Note that, given a certain semigroup there is always a unique Markov process corresponding to that
semigroup. Thus, to show the existence of the process, it suffices to show that the semigroup exists.
The semigroup in turn might be constructed from the generator. The generator is defined to be a sort of a
time-derivative of a semigroup.
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Definition 2.3 (Generator) Generator L is an infinitesimal operator of the following form:

Lf = lim
t→0

Stf − f

t
(4)

defined on a domain

D(L) =

{
f ∈ C0(Ω) : ∃g ∈ C0(Ω) : lim

t→0

∥∥∥∥Stf − f

t
− g

∥∥∥∥ = 0

}
(5)

where the ∥·∥ is a supremum norm and C0(Ω) is a space of functions on Ω decaying to zero at infinity. Note
that for function f inside of the domain, the limit limt→0

Stf−f
t converges uniformly to g

In the studies of interacting particle systems, the underlying stochastic processes are usually given in terms of
their generators. The logic of defining the process via its generator comes from the fact that by the
Hille-Yoside Theorem there is a one-to-one correspondence between the generator and its underlying
semigroup.

Theorem 2.2 There is a one-to-one correspondence between a Markov generator L and a Markov semigroup
{St, t ≥ 0} through

a) The domain D(L) is given by

D(L) =

{
f ∈ C0(Ω) : ∃g ∈ C0(Ω) : lim

t→0

Stf − f

t
converges uniformly to g

}
and for f ∈ D(L)

Lf = lim
t→0

Stf − f

t

b) The semigroup is given by

St = lim
n→∞

(
I − t

n
L

)−n

=: etL

where I is an identity operator If = f

c) For f ∈ D(L), Stf ∈ D(L)
d

dt
Stf = StLf = LStf

Moreover, Stf is the unique solution of the differential equation

dψt
dt

= Lψt

with initial condition ψ0 = f .

One should note that generator L is closed, but not necessarily bounded (which means that the definition of a
semigroup from item b) generally cannot be expanded as a Taylor series), and the domain D(L) is dense in
C0(Ω)

2.2 Trap Processes

Usually, the object of interest in the IPS studies is a collection of particles that form some environment η,
which evolves over time {ηt : t ≥ 0} in a Markovian way. In some models, researchers focus on the behavior of
single or multiple particles, that are not part of the environment, traversing the said environment and how the
behavior of the particle is affected by the environment. In some other models, the focus is given to the
behavior of the environment itself.

Here we give a few examples of generators of the Markov processes, that are used as random dynamic trapping
potential fields for the models in the subsequent sections of the paper.

For instance, let the environment η be a configuration of traps on a lattice Zd and let E be a set of all possible
configurations of traps. Thus, we can formalize the environment η ∈ E = {0, 1}Zd

as a collection of the spins
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situated on the lattice nodes, where by spin 1 we can denote the existence of the trap at some site of the lattice
Zd and by spin 0 we mean the absence of the trap. Now, if we let all of these individual nodes to spin at a
time-constant and environment-independent rates c we get the definition of the Independent Spin Flip Process.

Definition 2.4 (Independent Spin Flip Process Generator) Let trap process be independent-flips
process {ηt : t ≥ 0} and denote by ηt(x) ∈ {0, 1} the value of environment at site x ∈ Zd, with the process
defined on probability space (E,F ,P) with following generator L

(Lf)(η) =
∑
x

c(f(ηx)− f(η)) (6)

where η ∈ E is "frozen" configuration of traps on Zd and ηx is a configuration with point x ∈ Zd flipped,
meaning following

ηx =

{
1− η(x), if y = x

η(y), if y ̸= x
(7)

It is also possible to have a system where multiple particles can occupy the same site x. For example we can
have multiple random walking particles (or traps in the future) moving along the nodes.

Now the environment takes form E = NZd

where we count how many particles per node there are. In this
paper we would like the nodes that have more traps in them to update quicker, thus we can set the updating
rate to be dependent on η(x). Thus, we choose the following generator of the second studied process. The
collection of Random Walking traps can be formalised in the following way

Definition 2.5 (Independent Random walking traps) For η ∈ E the trap process is a collection of
independent random walks, (

({Xx
i (t) : t ≥ 0})η(x)i=1

)
x∈Zd

(8)

where η(x) is a number of traps at site x and Xx
i means random walking trap starting from x. The number

η(x) of the random walks at site x is is defined to be Poisson distributed with mean ρ and random walking
traps are defined to have jumping rate ν.

Now the generator of such process is of the following form

Definition 2.6 (Independent Random walking traps generator) Let trap process be a process of
independent random walking traps defined as above, defined on a probability space (E,F ,P) with following
generator L,

Lf(η) =
∑
x∈Zd

∑
e∈Zd:|e|=1

η(x)

2d

(
f(ηx,x+e)− f(η)

)
, (9)

where ηx,x+e stands for removing trap at x and putting it at x+ e

ηx,x+e(y) = η(y)− δy,x + δy,x+e (10)

To give another example we go back to the process with the environment E = {0, 1}Zd

of singleton particles
situated on a lattice, where we let each particle make a jump to one neighboring unoccupied node at an
exponential rate. If the neighbor node is already occupied by another particle, the original particle has to wait
another exponential time before jumping.

Definition 2.7 (Symmetric Exclusion Process Generator) The generator of the exclusion process is
given by:

Lf(η) =
∑
x∈Zd

∑
e∈Zd:|e|=1

1

2d

(
f(ηx,x+e)− f(η)

)
, (11)

where ηx,x+e stands for exchanging occupations of points x and x+ e

ηx,x+e(y) =


η(y) y ̸∈ {x, x+ e}
η(x) y = x+ e

η(x+ e) y = x

(12)

8



The last example of the trap process that we are going to outline in this section is the Spin Flip Process which
is the generalization of the Independent Spin Flip Process, as we let the rates c(i, η) to be dependent on the
state of the other particles in the system.

Definition 2.8 (Spin Flip Process Generator) The generator of the trapping process

Lf(η) =
∑
i∈Zd

c(i, η)(f(ηi)− f(η)) (13)

where f(η) depends on η only through some finite subset of Zd.

Informally speaking, one can "see" how the Markov Process evolves infinitesimally over time by looking at the
system’s generator. For instance, in the case of the Spin Flip Process the −f(η) means that the whole
environment from the previous instance is removed and f(ηi) means that the ηi environment is added ( where
ηi is the previous instance environment with the site i having its spin flipped). And this update from η to ηi
happens at a rate c(i, η) for each point i.

To not give a reader the impression that all generators of all Markov Processes take the same form of a sum
over working space (like a Zd), we would like to give a few more examples of possible generators

Definition 2.9 (Generator of the Brownian Motion) Let Xt be a Brownian motion on R, then for
f ∈ C2

0(R)

Exf (Xt) = Ef(x+N(0, t)) = f(x) + f ′(x)E(N (0, t)) +
1

2
f ′′(x)E(N (0, t))2) + O(t)

Now the generator of the Brownian motion is the following

Lf(x) = lim
t→0

Exf (Xt)− f(x)

t
=

1

2

d2

dx2
f(x)

Definition 2.10 (Generator of the Diffusion process on R) Let Xt be diffusion process on R solving the
following stochastic differential equation

dXt = b (Xt) dt+ σ (Xt) dWt

By the Itô’s formula we have

f(Xt)− f(X0) =

∫ t

0

b(Xs)f
′(Xs)ds+

∫ t

0

1

2
σ2(Xs)f

′′
(Xs)ds+

∫ t

0

σ(Xs)f
′(Xs)dWs

Which results in the generator of Xt taking the following form

Lf(x) = b(x)
d

dx
f(x) +

1

2
σ2(x)

d2

dx2
f(x)

for f ∈ C2
0(R).

One should note that the generators of Trap processes are all informal in a sense that they are not bounded
generators, compared to the generators of the Brownian Motion and Diffusion Process.

Now that the reader is getting acquainted with the generators, we will give the definitions and some results
regarding Random Walks. Then we would like to work with the generators for more generalized processes. For
example, we will compute the generator of the process where we let a certain Random Walk traverse a random
dynamic environment with one of the previously stated trapping processes as underlying.

2.3 Random Walks
One of the examples of Markov Processes is a simple random walk, which also happens to be one of the
central objects in our study. Let us define the discrete-time random walk and two types of continuous-time
random walks on Zd.
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Definition 2.11 (Discrete-time Nearest Neighbor Random Walk) Continuous-time simple symmetric
random walk on Zd is a process that equiprobably jumps across the nearest neighbours after waiting a mean
one exponential time. Each point has 2d neighbours, so at the i-th jump the probability to jump to a certain
neighbour is P(ϵi = e) = 1/2d, where e is canonical vector of Zd that corresponds to path to the neighbour.
Denote Nt as number of jumps until time t, which is Poisson counting process (since times are exponential).
The random walk is defined as

Xt = X0 + SNt
, SNt

=

Nt∑
i=1

ϵi (14)

The defined continuous time random walk is also called nearest neighbor random walk, as we constrained
random walk to jump only to its neighbors. The generator of this RW takes the form,

Definition 2.12 (Generator of the Continuous-time Nearest Neighbor Random Walk) Let
X := (Xt)t≥0 be a continuous time random walk on Zd defined as previously, on probability space
(ΩX ,FX ,PX0 ). Its generator L

(Lf)(x) =
∑

y:|x−y|=1

p(x, y)(f(y)− f(x)), (15)

where p(x, y) = 1
2d

In the literature, more generalized Random walks are studied, for instance, without constricting the processes’
jumps to the neighboring states. In this thesis, we are mostly going to use Nearest Neighbor types of random
walks, but a wide range of different types of RW’s can be generalized to the setting where the rates are
translational invariant p(x, y) = p(0, x+ y) (where p(0, z) = 0 for all |z| > R where R is some predefined
radius). If a random walk exhibits such translational invariance of jumping rates on a lattice, then the
generator can be defined as follows

Definition 2.13 (Generator of the Random Walk) Let X := (Xt)t≥0 be a continuous time random walk
on Zd whose jumping rates are translationally invarian as above and whose jumping rates for points farther
than R > 0 are zero. Then the generator L of such random walk takes the following form,

(Lf)(x) =
∑
y

p(0, y)(f(y + x)− f(0)), (16)

where p(0, z) = 0 if |z| > R for some predefined radius R > 0.

2.4 Basic Properties of the Random Walks
Here we present the properties of random walks. More specifically, we write down the results regarding the
ranges of a simple random walk, mention facts regarding the transience/recurrence of simple random walks,
and state invariance principle.

2.4.1 Donsker Invariance Principle

The random walk has many interesting properties, one of which is the Invariance principle. Essentially it
means that the scaling limit of one-dimensional continuous time simple random walk is a Brownian Motion.
Let us define a brownian motion and then state Donsker’s Invariance Principle.

Definition 2.14 Brownian motion {Wt : t ≥ 0} is a process defined to satisfy the following properties.

• Starting from 0: W0 = 0.

• Independent normally distributed increments: for 0 < t1 < t2 < . . . < tn

Wti −Wti−1

are independent and normally distributed with expectation zero and variance ti − ti−1.
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Note that the d-dimensional Brownian motion is then can be defined combining d independent Brownian
motions: (W1(t), . . . ,Wd(t)). The Markov property for this generalization holds. Then by the central limit
theorem, the process ϵXϵ−2dt converges to Wt for any t > 0, as ϵ→ 0. This means that the scaling limit of
random walk is Brownian motion. The more general result is

Lemma 2.3 (Donsker Invariance Principle) The process {ϵXϵ−2dt : t ≥ 0} converges in distribution to
the process {Wt : t ≥ 0} as ϵ→ 0.

2.4.2 Transience and Recurrence of the Random Walk

A very natural question that arises in the literature, would the Random Walk visit a certain site in a state
space given finite or infinite time. Let us begin by defining the notion of recurrence and transience sites and
then continue to define what it means for the Random Walk to be transient or recurrent.

Definition 2.15 (Recurrent State) The state i ∈ Ω is called recurrent (or persistent), if P(Ti <∞) = 1
where Ti is the first hitting time of i (the first time the Xt reaches the state i)

The state being recurrent naturally means that given an infinite time or steps, a process will eventually visit
this state. The definition of the transient state is stated in an opposite manner. A state i ∈ Ω is said to be
transient, if, starting from i, there is a non-zero probability that the chain will never return to i. This also
means that the process will occupy the transient state quite rarely.

Now we can give definitions of recurrent/transient processes through their state spaces being a collection of
recurrent/transient states.

Definition 2.16 (Recurrent Process) If state space Ω is connected (every state is connected via some path
to every other state) and every state i ∈ Ω is recurrent, then we say that the process Xt is recurrent.

The transient processes are thus defined in an analogous way.

A natural subsequent question is whether Random Walks on Zd are always recurrent or transient, and if not,
what does this property depend on? Surprisingly, G.Pòlya proved in [2] that the transience or recurrence of
the simple Random Walk depends on the dimensionality of state space.

Theorem 2.4 ([2]) A simple symmetric nearest neighbor random walk on Zd is recurrent in dimensions
d = 1, 2, and transient in higher dimensions d ≥ 3.

This theorem is best characterized by the following quote of Shizuo Kakutani: "A drunk man will find his way
home, but a drunk bird may get lost forever". In fact, if we denote by p(d) to be a probability of a simple
random walk on Zd returning to origin, we may find that at dimensions d = 1 and 2 the probability of
returning to origin is p(1) = p(2) = 1 and, then, at the dimension d = 3 there is sudden abruption with
p(3) ≈ 0.34 < 1 making random walk to become transient. The p(d)’s are called Pólya’s random walk
constants, for which the closed-form expression was not known up until the recent paper by Robert E. Gaunt
and et.al. [3].

2.4.3 The Range of the Random Walk

A number of the results were derived using the notion of the Range of the Random walk, both in static and
dynamic trapping cases. For instance, the proof of the exponential upper and lower bounds on the asymptotics
of the survival time of a Random Walk among Random Walking Traps reduces the situation towards looking
at the range of the difference between two random walks. The range of the random walk is defined as follows

Definition 2.17 (Random Walk Range) Range of the random walk Xt on Zd is defined to be

R(X, t) =
∑
x

1{Xs=x,∃s∈[0,t)} (17)

It is also beneficial to know how the expectation of the random walk range decays in time. The paper by A.
Dvoretzky and P. Erdös [4] shows that the following asymptotics holds.
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Theorem 2.5 (Expectation of Range of RW) The expectation of Range of a Random Walk Xt on Zd is

E(R(X, t)) =


√
t, if d = 1
πt
log t + O

(
t log log t

log2 t

)
, if d = 2

tυd + O(t2−d/2), if d ≥ 3

(18)

where υd is the probability of never returning to the origin

The asymptotics of this form, where we get a dependency on
√
t for the one-dimensional case, on t/ log t for

the two-dimensional case, and on t in the higher-dimensional cases, are quite frequent along the studies of the
Random Walks and pop up almost everywhere in the literature.
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2.5 Feynman-Kac formula
Let L be a Markov generator for some Markov process Xt, then the corresponding semigroup
Stf(x) = Exf(Xt) solves the following system of PDE’s

d

dt
ψ(t, x) = Lψ(t, x)

ψ(0, x) = f(x)

Throughout this section we will be interested in the solutions of a more general "Schrödinger type" system of
PDEs 

d

dt
ψ(t, x) = Lψ(t, x) + V (t, x)ψ(t, x)

ψ(0, x) = f(x)

It happens to be that the solution expressed in terms of the Markov process Xt takes the following functional
form

ψ(t, x) = Ex(e
∫ t
0
V (t−s,Xs)dsψ(0, Xt))

This result is called the Feynman-Kac formula and is vastly useful in analyzing this type of exponential
functionals.

Theorem 2.6 [Feynman–Kac formula] The following system of PDEs
d

dt
ψ(t, x) = Lψ(t, x) + V (t, x)ψ(t, x)

ψ(0, x) = f(x)

accepts solution of the form:
ψ(t, x) = Ex(e

∫ t
0
V (t−s,Xs)dsf(Xt))

Note that ψ(t, x) forms a so called Feynman-Kac semigroup. Furthermore, if V ≡ 0, then the solution reduces
to the semigroup St of a Markov process Xt.

ψ(t, x) = Ex(e0ψ(0, Xt)) = Ex(ψ(0, Xt)) = Stψ(0, Xt)

In the following sections, we are interested in the case when the V is not dependent on time as it happens
with several types of trap models. The Feynman-Kac semigroup with time-independent component V :

ψ(t, x) = Ex(e
∫ t
0
V (Xs)dsψ(0, Xt))

happens to have very nice properties. In particular, we will discover that the Feynman-Kac semigroup can be
expressed as an exponential operator that depends on L and V

2.5.1 Feynman-Kac semigroup

In this section, we prove important result that will help us apply the Feynman-Kac formula in the section
dedicated to the Independent Spin Flip trap model. More specifically, we will derive an expression for the
Feynman-Kac formula solution functional in terms of the generators.

Let us define the Feynman-Kac semigroup as

T (t)u(η) = Eη
[
exp

{∫ t

0

V (η(s))ds

}
u(η(t))

]
(19)

Let us prove that this semigroup takes the form of some exponential operator.

Theorem 2.7 The Feynman-Kac semigroup T (t) defined in (19) that solves PDE from Theorem 2.6 with the
generators L and V , can be expressed as follows

T (t)u(η) = Eη
[
exp

{∫ t

0

V (η(s))ds

}
u(η(t))

]
= et(L+V )(u(η)) (20)

where L is defined to be

Lu(η) = lim
t→0

Eη [u(η(t))]− u(η)

t
(21)

13



Proof:

To prove that T (t)u(η) = exp(t(L+ V ))(u(η)) is suffices to show that both

• T (t+ s)u = T (t)(T (s)u)

• d
dtT (t)

∣∣∣
t=0

= L+ V

hold for the semigroup T (t).

Let us prove the first point directly

T (t+ s)u(η) = Eη
[
exp

{∫ t+s

0

V (η(r))dr

}
u(η(t+ s))

]
= (22)

= Eη
[
Eη
(
exp

{∫ t+s

0

V (η(r))dr

}
u(η(t+ s))

∣∣∣∣ Fs)] = (23)

= Eη
[
Eη
(
exp

{∫ s

0

V (η(r))dr +

∫ t+s

s

V (η(r))dr

}
u(η(t+ s))

∣∣∣∣ Fs)] (24)

= Eη
[
Eη
(
exp

{∫ s

0

V (η(r))dr +

∫ t+s

s

V (η(r))dr

}
u(η(t+ s))

∣∣∣∣ Fs)] = (25)

= Eη
[
exp

{∫ s

0

V (η(r))dr

}
Eη
(
exp

{∫ t+s

s

V (η(r))dr

}
u(η(t+ s))

∣∣∣∣ Fs)] = (26)

(27)

Now we note that the right inner expectation is conditioned on starting the process from time s ( conditioning
on Fs) and due to translational time invariance we can translate the distributions to start from time 0, thus
we get,

T (t)u(η) = Eη
[
exp

{∫ s

0

V (η(r))dr

}
Eη
(
exp

{∫ t

0

V (η(r))dr

}
u(η(t))

)]
= (28)

= Eη
[
exp

{∫ s

0

V (η(r))dr

}
(T (t)u(η))

]
= (T (s)(T (t)u)(η) (29)

which proves the first point.

To prove the second statement, we need to expand T (t)u into Taylor series around the zero and observe the
leading term of order t, which will be exactly the derivative around the zero.

T (t)u(η) = Eη
[
exp

{∫ t

0

V (η(s))ds

}
u(η(t))

]
= Eη

[(
1 +

∫ t

0

V (η(s))ds+ O(t)

)
u(η(t))

]
= (30)

= Eη [u(η(t))] + Eη
[
u(η(t))

∫ t

0

V (η(s))ds

]
+ O(t) (31)

We can find the first expectation from the definition of the generator L:

Eη [u(η(t))] = u(η) + tLu(η(t)) (32)

The second term can be found by noticing that we have convergence in the distribution of the following things:

u(η(t)) −→ u(η) as t→ 0 (33)
V (η(t)) −→ V (η) as t→ 0 (34)

Thus the second term can be expressed as,

Eη
[
u(η(t))

∫ t

0

V (η(s))ds

]
= Eη

[
u(η)

∫ t

0

V (η)ds

]
= Eη

[
V (η)u(η)

∫ t

0

ds

]
= tV (η)u(η) (35)

Combining two previous results yields,

T (t)u(η) = u(η) + tLu(η(t)) + tV (η)u(η) + O(t) (36)
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Thus we the time derivative of T around t = 0 is

d

dt
T (t)

∣∣∣
t=0

= L+ V (37)

Which combined with the first statement, indeed means that the semigroup takes the form of the following
exponential operator

T (t)u(η) = et(L+V )(u(η)) (38)

□
This result will allow us, in the future sections, to compute bounds on the exponential functionals involving
Feynman-Kac semigroup by the biggest eigenvalues of the operator et(L+V ).

2.5.2 Applications in Interacting Particle Systems

In the studies of the Interacting Particle Systems the most widely used result is the Feynman-Kac formula.
The reason is that the Feynman-Kac formula connects the exponential functionals, that arise everywhere in
the IPS field, to the solutions for certain systems of partial differential equations.

For, instance the functional of interest in this thesis Zγ,t can be viewed as an averaged Feynman-Kac solution

Zγ,t := EηEX0
(
exp

[
−γ
∫ t

0

η(s,X(s))ds

])
= (39)

= EηEX0
(
exp

[
−γ
∫ t

0

η(t− s,X(s))ds

])
= EηEX0

(
exp

[∫ t

0

V (t− s,X(s))ds

])
(40)

if stochastic process η(s, ·) (the definition of which will be discussed in future sections) has time-reversibility
property (time reversibility is given by η(s, ·) and η(t− s, ·) having same distribution).
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2.6 Large Deviation Theory
Another frequently used tool, that has proved its successfulness in the analysis of the exponential functionals
that arise in the studies IPS, is the Large Deviation Principle.

Large Deviation theory deals with deviations of empirical processes from the law of large numbers. In the
simplest setting with Sn =

∑n
i=1Xi and i.i.d. Xi’s we want to estimate

P
(
Sn
n

≈ x

)
,

where x > µ with µ being the expectation EXi.

Under the assumption that for λ > 0 the exponential moments E(eλXi) exist, we can find in fact

P
(
Sn
n

≈ x

)
≃ e−nI(x)

More formally speaking, the previous expression means the existence of the following limit

lim
n→∞

1

n
lnP

(
Sn
n

∈ (x− δ, x+ δ)

)
= −I(x)

where I(x) = supλ(λx− F (λ)) is the so called rate function, F (λ) = lnEeλX and some δ > 0.

In other words, the Large Deviation Theory quantifies the exponentially small probabilities and their decaying
order behavior (on the exponential scale). We will give a few examples and basic results from this theory,
adapted to the context of this thesis.

2.6.1 Deviations of empirical mean in Coin Tossing

Let us give an example demonstrating one of the simplest applications of a large deviation theory for the
reader to get acquainted with the theory’s formalism. We would like to work with the coin-tossing experiment
and then formalize the ideas in more general setting.

Let us compute the decay of the probability P
{

1
nSn ≥ x

}
. Let X1, X2, . . . be independent random variables

taking values in {0, 1} with probabilities p = q = 1
2 . Denote Sn = X1 + · · ·+Xn as their partial sum. Let us

prove that

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −I(x) (41)

for all x > µ = 1
2 , for some function I(x).

Note that since X takes values {0, 1}, for x > 1 we have the following

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= −∞

For the x ∈
[
1
2 , 1
]

we can expand the probability of deviation as follows:

P {Sn ≥ xn} =
1

2n

∑
k≥xn

Ckn

where Ckn are binomial coefficients.
Now let us bound the object of our interest

1

2n
max
k≥xn

Ckn ≤ P {Sn ≥ xn} ≤ n+ 1

2n
max
k≥xn

Ckn.

The maximum is attained at the smallest integer ≥ xn which is k = ⌈xn⌉. Denote l := ⌈xn⌉.
Let us state the Stirling’s formula

n! = nne−n
√
2πn

(
1 +O

(
1

n

))
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Since we are looking for the limit of n as in (41), let us take a limit of the derived expression and use the
Stirling’s formula

lim
n→∞

1

n
ln max
k≥xn

Ckn = −x lnx− (1− x) ln(1− x),

since l
n = ⌈xn⌉

n → x as n→ +∞.
This result together with the fact that 1/n ln(2−n) = −ln(2) and that limn→∞ ln(n+ 1)/n = 0 gives us

lim
n→∞

1

n
lnP

{
1

n
Sn ≥ x

}
= − ln 2− x lnx− (1− x) ln(1− x)

for all x ∈
[
1
2 , 1
]
.

For the x ∈ [0, 12 ] we need to note the following symmetry

lim
n→∞

1

n
lnP

{
1

n
Sn ≤ x

}
= −I(1− x) = −I(x)

because Xk and 1−Xk have the same distribution and because of the fact that
f(x) = ln 2 + x lnx+ (1− x) ln(1− x) is symmetric around 1/2.

So, in the end

I(x) =

{
ln 2 + x lnx+ (1− x) ln(1− x) if x ∈ [0, 1]

+∞ otherwise

It turns out that this function gives better information about the decay of such unlikely probabilities,
compared to Central Limit theorem

2.6.2 Cramer Theory

Now let us formalize the ideas regarding probabilities of large deviations of empirical means that we have
wrote previously

Let X1, X2, ..., Xn, ... be i.i.d. distributed random variables. Let the E(Xi) = µ ∈ R and the
Var(Xi) = σ2 ∈ R+. Take the partial sum Sn = X1 +X2 + ...+Xn.

The Strong Law of Large Numbers tells us that the empirical mean converges almost surely to the mean of X:

1

n
Sn

a.s.−→
n→∞

µ (42)

The Central Limit Theorem, on the other hand, quantifies the probability that the Sn deviates from µn by an
amount

√
n

Sn − µn

σ
√
n

P−→
n→∞

N (0, 1) (43)

Let us think that the n is large but finite. In essence, these two results say the following. The SLLN tells us
just that Sn/n converges to µ as finite n gets larger. The CLT tells us that Sn/n is very close to µ as finite n
gets larger optimally quantifying the probability that the Sn/n deviates from µ by an amount of order

√
n.

But if one were to quantify the probability of a "large" deviation of Sn/n from µ by an amount of order n
using CLT, it would give a non-optimal rate of decay of such an unlikely event.

For further derivations, let us define the Fenchel-Legendre transform, and note a few of its properties.

Definition 2.18 The following function is called the Fenchel-Legendre transform

f∗(x) = sup
λ∈R

{λx− f(λ)} (44)
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xµ y

2√
n

Range of Validity of CLT

Sn

n

P
(∣∣Sn

n

∣∣> x
)
?

P
(∣∣Sn

n

∣∣> y
)
⇒ use CLT

Figure 2: The visuals how CLT fails to capture the rate of decay of very unlikely events like
{∣∣Sn

n − µ
∣∣ > x

}
Note that the Fenchel-Legendre transform of a convex function is once again convex, as the supremum of a
convex function is also convex and λx− f(λ) is convex given f is. Also note that the function inside
supremum that we often use in this study f = φ = lnEeλX is convex in λ.

Now, let us derive the Cramer Theory. Let x > µ and ∀λ ≥ 0.

P
(
Sn
n

≥ x

)
= P (Sn ≥ xn) = P

(
eλSn ≥ eλxn

)
≤ 1

eλxn
E
(
eλSn

) ind
= (45)

ind
= e−λxn

n∏
i=1

E
(
eλXi

) i.i.d.
= e−λxnE

(
eλX1

)n
= e−λxnen lnE exp(λX) = (46)

= e−n(λx−φ(λ)) (47)

where φ(λ) = lnE
(
eλX1

)
(which is also called cumulant generating function). If we take the supremum over

all λ of the expression inside the exponent we would get a sharp upper bound

P
(
Sn
n

≥ x

)
≤ e−nI(x) (48)

where the I(x) is of the following form

I(x) = sup
λ∈R

{λx− φ(λ)} (49)

Now let us derive the lower bound with the same rate function I(x). Let δ ≥ 0 be some tunable constant.

P
(
Sn
n

≥ x

)
≥ P

(
Sn
n

∈ (x− δ, x+ δ)

)
= E

[
I

(
Sn
n

∈ (x− δ, x+ δ)

)
eλSn

enφ(λ)
e−λSn

]
enφ(λ) (50)

The term eλSn/enφ(λ) realizes the change of measure with respect to λ thus we get

P
(
Sn
n

≥ x

)
≥ Eλ

[
I

(
Sn
n

∈ (x− δ, x+ δ)

)
e−λSn

]
enφ(λ) (51)

Let us remember the definition of φ(λ) and find its derivative

φ(λ) = lnE[eλX ]
d

dλ
φ(λ) =

E(XeλX)

E(eλX)
=: x (52)

Which also means that λ achieves the supremum in

sup
λ∈R

{λx− φ(λ)} = I(x) (53)

since φ(λ) is convex and a Fenchel-Legendre transform of a convex function is again convex. Furthermore, we
get a unique optimizer λ through this procedure.
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Now let us tune the λ such that Eλ(X) = x > µ. Now we would get the following lower bound. Let ϵ < δ,

P
(
Sn
n

≥ x

)
≥ Eλ

[
I

(∑
Xi

n
∈ (x− δ, x+ δ)

)
e−λSn

]
enφ(λ) (54)

≥ Eλ
[
I

(∑
Xi

n
∈ (x− ϵ, x+ ϵ)

)
e−λSn

]
enφ(λ) (55)

≥ e−λn(x+ϵ)P
(∑

Xi

n
∈ (x− ϵ, x+ ϵ)

)
enφ(λ) (56)

≥ e−λn(x+ϵ)enφ(λ) (57)

By letting ϵ→ 0 going to zero, we get the resulting lower bound

P
(
Sn
n

≥ x

)
≥ e−λn(x+ϵ)enφ(λ) ≥ e−n(λx−φ(λ)) ≥ e−nI(x) (58)

It is said that Sn/n satisfies a large deviation principle with the rate function I(x) and with the rate n. The
previous logic yields that for large finite n, the following is the very sharp approximation for the probability of
a large deviation of empirical mean bigger than x.

P
(
Sn
n

≥ x

)
≃ e−nI(x) (59)

It turns out, that this approximation yields a much better expression for the tail of the distribution of the
deviations of the empirical mean and it tells much more about the rate of the decay of large deviations of the
empirical mean.

Note that the symbol ≃ means the exponential equivalence. Two sequences αn and βn are called exponentially
equivalent if and only if

lim
n→∞

1

n
(log(

αn
βn

) = 0

Let us also establish another notation. Let x > µ, by the following expression

P
(
Sn
n

≈ x

)
≃ e−nI(x)

we mean that the probability that Sn/n deviates from µ by an amount of order at least x is exponentially
equivalent to e−nI(x), or, in other words, such deviation is described by the Large Deviation Principle with the
rate function I(x)

Thus we formalize the first result of the Large Deviations Theory regarding a large deviation principle for
empirical means of i.i.d. random variables, which came to be known as Cramer’s Theorem.

Theorem 2.8 (Cramer’s Theorem) Let η1, η2, ..., ηn be i.i.d. random variables with mean µ and with
cumulant generating function φ. Let Sn = η1 + η2 + ...+ ηn, then for every x > µ the following holds:

lim
n→∞

1

n
lnP

(
Sn
n

≥ x

)
= −φ∗(x) (60)

lim
n→∞

1

n
lnP

(
Sn
n

≤ x

)
= −φ∗(x) (61)

where φ∗(x) is a Fenchel-Legendre transform of cumulant generating function φ = lnEeλη1

2.6.3 Basics of Abstract Large Deviation Theory

In this subsection, we give statements of abstract large deviations principle and two important theorems that
allow one to derive LDPs of higher-order objects from already existing LDPs.

Let us give a general abstract Large Deviations Principle, which covers a bigger family of functionals of
η1, η2, ..., ηn, and not just empirical mean.
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Lemma 2.9 (Large Deviations Principle) A family of probability measures (Pn : n ∈ N) satisfies a
Large Deviation Principle (LDP) with rate an and with rate function I, if for any measurable set A,

− inf
θ∈int(A)

I(θ) ≤ lim
n→∞

inf
1

an
logPn(A) ≤ lim

n→∞
sup

1

an
logPn(A) ≤ − inf

θ∈cl(A)
I(θ) (62)

where cl(A) and int(A), are the closure and the interior of A

However, it is not always possible to derive the rate function directly and thus directly prove LDP for any
case. Let us next state the result from Large Deviations Theory that allows one to derive LDP for a random
object from another known LDP via a "contraction".

Theorem 2.10 (Contraction Principle) Let the families of probability measures (Pn : n ∈ N) and
(P′
n : n ∈ N) be defined on Ω and Ω′ correspondingly. Let (Pn : n ∈ N) satisfy some LDP on Ω with the rate

function I.
If there exists continuous function f : Ω → Ω′ such that

P′
n(A) = Pn(f−1(A)) ∀A ∈ Ω′ (63)

Then (P′
n : n ∈ N) satisfies LDP on Ω′ with the rate function J

J(y) = inf
y: x=f−1(y)

I(x), y ∈ Ω′ (64)

Let us also state another important result, that will be quite useful along this study.

Theorem 2.11 (Varadhan’s Lemma) Let A family of probability measures (Pn : n ∈ N) satisfy the LDP
on Ω with rate n and with the rate function I. Let F : Ω → R be a continuous function that is bounded from
above. Then

lim
n→∞

1

n

∫
Ω

enF (x)Pn(dx) = sup
x∈Ω

[F (x)− I(x)] (65)

The previously stated contraction principle is an extremely strong result that allows one to derive Large
Deviation Principles for higher-level kinds of objects. For instance, it is possible to derive LDP for the
following empirical measures Ln.

Ln =
1

n

n∑
i=1

δXi
(66)

Note that there is a following have a connection between these empirical measures and previously defined
empirical means

Sn
n

=

∑n
i=1Xi

n
=

∫
x
∑n
i=1 δXi(dx)

n
=

∫
x
1

n

n∑
i=1

δXi
(dx) =

∫
xLn(dx) (67)

This might suggest, that the empirical measures should satisfy some large deviation principle since the
underlying Sn satisfies LDP by the Cramer’s Theorem. And this is actually the case, the Ln satisfies the
so-called "Level 2" Large Deviation Principle. Let us state this quite surprising result

2.6.4 Sanov Theory

In this subsection, we state LDP results in increasing order of generalization, going from Cramer’s Theorem
up to Sanov’s Theorem.

Let us remember the Cramer’s Theorem. If i.i.d. random variables Xi with finite exponential moments are
taking their values in R, then empirical mean 1

n

∑
Xi satisfies large deviation principle with the rate function

I(x) = supλ(λx− F (λ)) with F (λ) = lnEeλX .

The natural question is, whether it is possible to derive rate functions when Xi’s take their values from other
spaces. For instance, it turns out that it is possible to derive large deviation principle in a case when Xi’s are
Rd valued.
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Theorem 2.12 Let Xi be Rd-valued i.i.d random variables with finite exponential moments E
(
eθ∥X∥) for

θ > 0 and let Sn =
∑n
i=1Xi. Then the empirical mean vector Sn

n satisfies large deviation principle

P
(
Sn
n

≈ X

)
≃ e−nI(X) (68)

with the rate function

I(X) = sup
λ∈Rd

(⟨λ,X⟩ − F (t)) (69)

F (λ) = lnE
(
e⟨λ,X⟩

)
(70)

where E(Xi) ̸= X ∈ Rd and λ ∈ Rd.

It is possible to further generalize the setting. We can let Xi’s take values in some separable Banach Space B.
Then one can derive the following large deviation principle

Theorem 2.13 Let Xi be i.i.d random variables with values in a separable Banach space B. Let µ be a
common distribution of Xi’s. Assume that exponential moments E

(
eθ∥Xi∥

)
are finite for some θ > 0. Let

Sn =
∑
Xi. Then the mean Sn

n satisfies large deviation principle

P
(
Sn
n

≈ X

)
≃ e−nI(X) (71)

with the rate function

I(X) = sup
λ∈B∗

(⟨λ,X⟩ − F (λ)) (72)

F (λ) = lnE
(
e⟨λ,X⟩

)
(73)

where E(Xi) ̸= X ∈ B and λ ∈ B∗. The B∗ denotes dual space of B.

This general result has the following example. Let Xi be R-valued i.i.d. random variables distributed with
common distribution µ. Let us define the empirical measures

Ln =
1

n

n∑
i=1

δXi

are elements of Banach space of finite signed measures M(R) on R. Note that the dual space of M(R) is a
space of all maps λf : µ ∈ M(R) →

∫
fdµ ∈ R for functions f ∈ Cb(R) from the space of bounded continuous

functions on R. Then for ν deviating from the expectation of Ln,

P (Ln ≈ ν) = e−nI(ν)

with the rate function

I(ν) = sup
λf∈M(R)∗

(⟨λf , ν⟩ − F (λf )) = (74)

= sup
f∈Cb(R)

(⟨λf , ν⟩ − F (f)) (75)

where we note that optimizing ⟨λf , ν⟩ − F (λf ) over λf ∈ M(R)∗, is the same as optimizing
∫
fdν − F (f) over

f ∈ Cb(R), where F (f) is as follows

F (f) = lnEe⟨λf ,δX⟩ = lnEef(X) = ln

∫
ef(x)dµ(x) (76)

Now substituting all in the rate function we get

I(ν) = sup
f∈Cb(R)

(∫
fdν − ln

∫
ef(x)dµ(x)

)
(77)
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This supremum gives Donsker-Varadhan’s representation of relative entropy, i.e.

sup
f∈Cb(R)

(∫
fdν − ln

∫
ef(x)dµ(x)

)
= H(ν|µ) =


∫

dν

dµ
ln

(
dν

dµ

)
dµ if ν ≪ µ

∞ if ν ̸≪ µ

(78)

(79)

where H(ν|µ) is a relative entropy of ν from µ [5].

This means that the rate function for defined empirical measures I(ν) = H(ν|µ) is a relative entropy. This
result is called Sanov’s theorem

Theorem 2.14 (Sanov’s Theorem) Let Xi be i.i.d random variables with values in a separable Banach
space B. Let µ be a common distribution of Xi’s. Let us define the empirical measures

Ln =
1

n

n∑
i=1

δXi

Let ν ̸= µ, then Ln satisfies large deviation principle

P(Ln ≈ ν) ≃ e−nH(ν|µ) (80)

with the rate function H(ν|µ), which is an entropy from µ to ν:

H(ν|µ) =


∫

dν

dµ
ln

(
dν

dµ

)
dµ if ν ≪ µ

∞ if ν ̸≪ µ

(81)

where by ν ≪ µ we mean that ν doesn’t assign the positive probabilities to events for which µ doesn’t also do so

This is a quite surprising result, as it allows one to quantify the probabilities of the empirical measures to
deviate from their asymptotic measures µ (to which they converge almost surely), and in turn to take the form
of another measure ν.

One might notice that we have generalized a few functionals and tweaked the objects of interest. This justifies
the "Level 2" name for such LDP.
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3 Static Trapping Case
Here we discuss survival time assymptotics for Random Walk in a Static Random Environment. Firstly, we
discuss the setup of the problem, in particular, we define a random static environment and survival functional.
Then in the next subsection, we sketch a proof of the survival time asymptotics for the Independent Bernoulli
hard traps model. At last, we state heuristics for the general i.i.d. environment of soft traps and state the
general asymptotics divided into three classes depending on the underlying distribution of traps.

The trap environment η is drawn from some random distribution at a time zero and stays static in time. The
random walk is left to traverse in this static random environment. This way, the generator of the process is
exactly L1f(η), where L1 is the generator of the random walk, for the reasons that are going to be discussed
in the next section .

In this section, we restrict the trapping configuration to be generated from i.i.d. distributions. This means, at
a time t = 0 the lattice points "decide to be traps or normal points" independently of each other. There is no
mixture between hard and soft traps. All traps are either defined to be a soft trap γ <∞ for the whole
configuration, or defined to be hard ones γ = ∞. Hard traps kill the Random Walk instantaneously upon
touching. Soft traps do not kill the Random Walk in an instantaneous fashion, but they start an exponentially
distributed killing timer. If the Random Walk leaves the trap before the "time" is up, it is free to travel
further.

Let us define the survival time of the random walk in a random static environment functional.

Zγ,t := P(T ≥ t) = EX,η0

(
exp

[
−γ
∫ t

0

η(Xs)ds

])
, (82)

where EX,η0 = EX0 ⊗ Eη = EX0 Eη. Note that the environment Eη expectation is taken ergodic
translation-invariant measure νρ.

3.1 Independent Bernoulli Hard Traps
In the special case when γ = ∞ (the hard traps) and when the random potential η is a collection of i.i.d.
Bernoulli traps, the Z∞,t can be thought as the expectation w.r.t. the random walk of the probability p that
the site x ∈ Zd is a trap to the power of the number of jumps realized by the random walk up to time t.

Then, given the Range of the random walk R(X, t), which essentially counts a number of the unique sites to
which the random walk has traversed, the Z∞,t can be simplified as follows:

Z∞,t = EX0
(
pR(X,t)

)
= EX0

(
eln p

R(X,t)
)
= EX0

(
eR(X,t) ln p

)
(83)

From the results of the Donsker and Varadhan ([6]) we can choose the heuristics that the random walk
chooses to stay within a spatial window of scale 1 ≪ αt ≪

√
t. In the (83) there are two competing forces: the

exponential becoming large when the R(X, t) is small and the costs of the random walk having a small range.

Now we have that the expectation is attained by the range of the random walk being inside a ball of the size αt

eR(X,t) ln p ≈ ecα
d
t ln p = ecα

d
t (−c) = e−c1α

d
t (84)

Due to random walk scaling, for a certain c2 we have

P
(

sup
0≤s≤t

||X(s)|| ≤ αt

)
≈ exp

(
−c2t
α2
t

)
(85)

Thus we have the following asymptotics for the Z∞,t

Z∞,t ≈ exp

{
− inf

1≪αt≪
√
t

(
c1α

d
t +

c2t

α2
t

)}
= exp

{
−c3t

d
d+2

}
(86)

with the optimal scale αt = t
d

d+2 , which equates the two terms in c1αdt +
c2t
α2

t

This gives us the sub-exponential decay of survival probabilities in the case of Hard i.i.d. Bernoulli traps.
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3.2 Independent General Soft Traps
This section mostly follows the material from section 3.3 of Wolfgang König book [7]. Here we state results for
the case of general i.i.d. environment consisting of soft traps. We begin by deriving the rough lower and upper
bounds on survival probability and then proceed by stating the general assymptotics divided into three
classes, depending on the underlying environment distribution.

For the survival time in a static field of i.i.d. traps, one might notice that we can write the probability of the
survival time in terms of the functional of local times of Random Walk over the expectation of the random
walker.

We define the local times measure as Lt(x) and cumulant generating function H(t) as follows,

Lt(x) =

∫ t

0

1(Xs = x)ds (87)

H(t) = lnEη
(
e−η(0)t

)
(88)

It is possible to obtain rough, but relatively simple upper and lower bounds on the survival probability

Lemma 3.1 Given the local times measure as Lt(x) and cumulant generating function H(t) as defined above,
the following rough bounds hold

eH(γt)−2dt ≤ Zγ,t ≤ eH(γt), t ∈ (0,∞).

Proof: The lower bound can be obtained by restricting the expectation Zγ,t = Eη,X0

[
e−γ

∫ t
0
η(Xs)ds

]
with

respect to the random walk to the event
⋂
s∈[0,t] {Xs = 0} that the random walk does not leave the origin up

to time t. The probability of such event is e−2dt as the first jump time, τ = inf{t > 0 : X(t) ̸= X(0)},
distributed exponentially with rate 2d. Moveover this event, yields that

∫ t
0
η(X(s))ds = tη(0). Thus,

Zγ,t ≥ EηEX0
[
e−γtη(0)1{τ>t}

]
= Eη

[
e−γtη(0)

]
e−2dt = eH(γt)−2dt,

For the upper bound, we use Jensen’s inequality in the exponential term in the Feynman-Kac representation
to the probability measure on [0, t] with Lebesgue density 1/t:

exp

{
−γ
∫ t

0

η (Xs) ds

}
≤
∫ t

0

1

t
exp {−γtη (Xs)} ds.

It is possible to interchange the expectation with respect to η with the time integral and the random walk
expectation

Zt,γ ≤ EηE0

∫ t

0

1

t
[exp {−γtη (Xs)}] ds =

∫ t

0

1

t
Eη
[
E0e

−γtη(Xs)
]
ds = Eηe−γtη(0)

= eH(γt)

This yields an upper bound. The resulted bounds for the asymptotics hint that the survival probability
asymptotics will be described by at least two terms. Furthermore, we will see that eH(t) will be replaced by a
modified term.

□

Now, let us derive the sharp results. We will state the setup and the assumptions for the heuristical approach,
as follows. The occupation times formula yields [7],∫ t

0

η(Xs)ds =
∑
z∈Zd

η(z)Lt(z) (89)

This in turn yields the following heuristical expansion of the survival time of a random walk,
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Zγ,t = EX,η0

(
exp

[
−γ
∫ t

0

η(Xs)ds

])
= EX,η0

exp

−γ ∑
z∈Zd

η(z)Lt(z)

 = (90)

= EX0 Eη
∏
z∈Zd

exp [−γη(z)Lt(z)]

 = EX0

∏
z∈Zd

elnEη exp[−γη(0)Lt(z)]

 = (91)

= EX0

∏
z∈Zd

eH(γLt(z))

 = EX0

exp

∑
x∈Zd

H(γLt(x))

 (92)

The expression that we got can be called the total mass expansion,

Zγ,t = EX0

exp

∑
x∈Zd

H(γLt(x))

 (93)

Given this expansion, and the contraction principle from the Large Deviations theory, it is possible to analyze
the behavior of the survival probability using large deviations of the occupation time measure of the random
walk.

The survival time is the joint expectations over the path and over the potential. Thus, there is a contribution
from both of these random objects, and it is possible to get an optimum in this functional, by a compromise
joint strategy between two events, so that neither of them is too costly to plummet the survival time
asymptotics.

It is possible to get the strategy that yields exponential costs from both of these opposing effects. Such a joint
strategy of these random objects is a compromise between the two effects. Since each of them must contribute
the exponential costs: the random trapping environment must yield low values in a suitable area, and the
random path should not leave this area for time from zero to t. For making the latter not too costly, the area
should be a centered ball. Hence, the main contribution to the survival time should come from a
self-attractive behaviour of the random walk and a low input of the potential.

Talking from the perspective of intermittency, it turns out that the contribution of the sum over all Zd of the
solution is asymptotically optimally described by the sub-sum of a smaller spatial region, which can be
centered at the origin with a radius Rα(t) where α(t) will be our spatial scaling term [7].

Let us state the assumptions regarding the spatial scaling and the rescaling factors.

(A1) : Let the rescaled occupation time measure be of the form

L̂(y) =
adt
t
L(⌊αty⌋) y ∈ [−R,R]d (94)

where the scale αt is such that

η

(
γt

αdt

)
αdt =

t

α2
t

(95)

for some continuous η(t) : R+ → R+.

(A2) : One needs one more assumption on the generating function H(t), namely that the following
Ĥ(t) : R+ → R is not zero if y ̸= 1:

Ĥ(t) = lim
t→∞

H(yt)− yH(t)

η(t)
(96)

for some continuous η(t) : R+ → R+ with limt→∞ η(t)/t ∈ [0,∞] from the definition of the α(t)

This assumption comes from the fact that the rescaling from Zd to the Rd case, requires that both rescaled
L̂(y) and Ĥ(t) exist. One might notice, that it is not an overly restricting assumption. Let α(t) → ∞ as
t→ ∞.

Now we can rewrite the Zγ,t expression in (93) as following
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Zγ,t = EX0

exp

∑
x∈Zd

H(γLt(x))

 = (97)

= EX0

exp
η( γt

αdt

) ∑
x∈Zd

H
(
γt
αd

t
L̃t

(
x
αt

))
− L̃t

(
x
αt

)
H
(
γt
αd

t

)
η
(
γt
αd

t

)
 eαd

tH

(
γt

αd
t

)
≥ (98)

≥ e
αd

tH

(
γt

αd
t

)
EX0

exp
η( γt

αdt

) ∑
x∈Zd

Ĥ

(
L̃t

(
x

αt

)) ≥ (99)

≥ e
αd

tH

(
γt

αd
t

)
EX0

[
exp

(
η

(
γt

αdt

)
αdt

∫
Rd

Ĥ
(
L̃t (y)

)
dy

)]
= (100)

= e
αd

tH

(
γt

αd
t

)
EX0

[
exp

(
t

α2
t

∫
Rd

Ĥ
(
L̃t (y)

)
dy

)]
(101)

which results in the term in (101) with an exponential rate of decay with rate tα(t)−2. This term is
comparable with the large deviation of the probability of the Random Walk being restricted to a spatial
window of scale αt. Now the asymptotics of the survival probability can be derived using LDP for the random
walk occupation time measure at scale αt.

Lemma 3.2 ([7]) The collection (Lt)t∈(0,∞) satisfies a large-deviation principle with the rate tα(t)−2 and the
rate function g2 7→ ∥∇g∥22, that is,

P0

(
Lt(·) ≈ g2(·) in [−R,R]d

)
≈ exp

{
− t

α(t)2
∥∇g∥22

}
,

for any L2-normalised function g ∈ H1
(
Rd
)

with support in [−R,R]d.

To get the lower bound we insert the indicator of the event
{
Lt(·) ≈ g2(·) in [−R,R]d

}
and optimize over g2

and R. This yields that under the above assumptions

Theorem 3.3 ([7]) Under assumptions (A1) and (A2), the following lower bound on survival asymptotics
holds

Zγ,t ≥ e
α(t)dH

(
γt

α(t)d

)
exp

{
− t

α(t)2
(χ◦ + o(1))

}
,

where χ◦ is given as

χ◦ = inf

{
∥∇g∥22 −

∫
Rd

Ĥ ◦ g2 : g ∈ H1
(
Rd
)
, ∥g∥2 = 1

}
.

It is further possible to derive the following exact asymptotics. The proof is extremely technical and scattered
across multiple papers, so we would like to state the main result without the proof.

Theorem 3.4 ([7]) Under assumptions (A1) and (A2) we have the following cases for asymptotics,

(C1) : If limt→∞ η(t)/t = 0, then α(t) → ∞, and the asymptotics are of following form

Zγ,t = eα(t)
dH(γt/α(t)d) exp

{
− t

α(t)2
(χ◦ + o(1))

}
,

where χ◦ is given as

χ◦ = inf

{
∥∇g∥22 −

∫
Rd

Ĥ ◦ g2 : g ∈ H1
(
Rd
)
, ∥g∥2 = 1

}
.

(C2) : If limt→∞ η(t)/t = 1, then α(t) → 1, and Ĥ(y) = ρy log y for some ρ ∈ (0,∞), and the asymptotics are
of following form

Zγ,t = eH(γt) exp {−t (χρ + o(1))} ,
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where χρ is given by

χρ = inf
φ:Zd→R:limz→∞ φ(z)=−∞

ρ
e

∑
z∈Zd

eφ(z)/ρ − λ(φ)


with λ(φ) = supg∈ℓ2(Zd):∥g∥2=1 ⟨g, (L1 + φ) g⟩ is defined as the top of the spectrum of L1 + φ in Zd;

(C3) : If limt→∞ η(t)/t = ∞, then α(t) → 0 and ρ = ∞, and the asymptotics are of following form

Zγ,t = eH(γt) exp {−t (χ∞ + o(1))} ,

where χ∞ = 2d

One might notice that only when the environment of traps of such that the radius α(t) for the t-th moments of
1
t

∫ t
0
η(Xs)ds diverges do we get the subexponential decay of survival probability, in other cases when this

island stays bounded away from zero and when this island shrinks we get the exponential decay.
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4 Dynamic Traps and Environment Process

In this section, we establish the setup of our models of random walks in a dynamic random environment of
traps. We formally define the random walk in a dynamic trapping environment process, which is referred to as
the Environment Process. Moreover, here we derive the generator of the Environment Process, which will
come out to be a sum of the generators of the Random Walk and the Trap process. At last, we define the
functional of interest - the survival probability of the Random Walk in the dynamic environment.

Our choice of the Random Walk is of continuous time type, so it waits an exponential time before jumping to
another lattice point different from its current position. In different models, we will define traps differently. In
each model all traps are either "hard" - meaning the Random Walk is killed immediately upon touching the
trap, or "soft" - meaning, if the Random Walk escapes the trap before the exponential killing time is up it
lives, otherwise it is killed. In the dynamic setting, the initial η environment consists of the traps placed
randomly as in the static setting, but the configuration of traps is changed over time according to some
Markov Process.

In the Independent Spin Flip and Attractive Spin Flip models, each lattice point is flipped from being a
normal site to being a trap with some rate. In the case of the Independent Spin Flip model each site is
independent of the other, while in the Attractive Spin Flip model, the rates at which the sites are flipping are
dependent on the configuration of traps. In other models, traps do not vanish or pop out of nothingness, they
move along the lattice according to some law. In the Random Walking Traps Environment, the traps are
independent Random Walkers with no limit on number of traps per site. In the Simple Symmetric Exclusion
Process, the traps walk randomly to the nearest neighbors, waiting exponential time between the jumps, with
the restriction of no more than one trap per site.

We call our state space E a space of all possible trap configurations and η ∈ E a trap configuration. In this
thesis, the following state spaces are considered.

• E = {0, 1}Zd

with at most one trap per site

• E = NZd

with potentially multiple traps per site

As the distributions of traps change over time, let us define a Markov Process {ηt, t ≥ 0} as our trap process.
The ηt takes values in E giving us the distribution of traps at a time t. We define ηt(x) to be the value at the
point x ∈ Zd of the environment ηt at the time T . Thus we need to define a generator in a general form for
the family of all of the different trapping processes that we study in this paper.

Definition 4.1 (Trap Process Generator) The general form of generator of the trap process {ηt, t ≥ 0} is
of the following form:

L0f(η) = lim
t→0+

Eηf(ηt)− f(η)

t
(102)

As we work on a lattice space Zd, it is quite natural to assume some sort of the form of a translational
invariance. The probability distributions environment should look the same if we translate the coordinate
system, as there no special points in Zd that we consider, nor any point is different from another.

Definition 4.2 (Translation operator) Let η be a configuration of traps drawn from the space of all
possible trap configurations E (which can be one of the state spaces discussed previously). Let τx be the
translation operator, i.e. τxη is an environment seen from point x, with

(τxη)(y) = η(y + x)

Now let us focus on the generator of the Random Walk in the built setup. We assume translational
symmetries of the Random Walk’s jumping rates. Given the definition of the translational operator, the
generator of the Random Walker of our choice, for all of the models, can be expressed as follows

Definition 4.3 (Shifted Random Walk Generator) Let X := (Xt)t≥0 be a continuous time random walk
on Zd, its generator takes the following form

(L1f)(η) =
∑
x∈Zd

p(0, x)(f(τxη)− f(η)) (103)
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Since we have formally defined the trapping process and the random walk, and their generators, it is plausible
to start to think about how they should interact if we put both processes on the same space. We define this
joined space as a product probability space, that has the following formal definition.

Definition 4.4 (Product Space) Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces. The space
(Ω1 × Ω2,F1 ⊗F2,P1 ⊗ P2) is called their product space, if P1 ⊗ P2(A1 ×A2) = P1(A1)P2(A2) is a product
measure, and F1 ⊗F2 defined to be minimal σ-algebra of subsets of Ω1 × Ω2 that contains all sets of the form
A1 × Ω2 and Ω1 ×A2, where A1 ∈ F1 and A2 ∈ F2.

We define the probability space of our combined processes as (Zd × E,FX ⊗Fη,PX ⊗ Pη). Let us define the
combined Markov Process and find its generator, which will be the main result of this section. We will refer to
the combined Markov Process as an Environment process. Naturally speaking, the Environment Process is an
environment as seen from the perspective of the Random walk. Formally it can be expressed quite elegantly as,

Definition 4.5 (Environment Process) The Environment Process is a Markov Process {ηt(Xt), t ≥} which
is an environment from the perspective of Random Walk Xt, expressable in terms of translations in a following
way

ηt(Xt) = τXt
ηt

The overall process Environment Process is quite sophisticated and its study is quite problematic, due to the
trapping process and random walk living on the same product space, giving us a combined Environment
Process with its own generator. Let us state the general non-closed form of the Environment Process generator

Definition 4.6 (Environment Process Generator) The general form of the The Environment Process
{ηt(Xt), t ≥} denoted by L is of the following form:

Lf(η) = lim
t→0+

Eη,X0 f(ηt)− f(η)

t
(104)

where Eη,X0 is the expectation taken with respect to the product space (Zd × E,FX ⊗Fη,PX ⊗ Pη), i.e.
EX,η0 = EX0 ⊗ Eη = EX0 Eη. Note that the environment Eη expectation is taken with respect to a reversible and
ergodic translation-invariant measure νρ, the definition of which will be discussed further in this section.

Now given all of the prerequisites, let us observe that the generator of the environment process is just a sum of
the Random Walk’s and Trap process’ generators. More generally speaking the generator of the coupling of
the independent generators is a sum of these generators.

Theorem 4.1 The generator L of the Environment process is of the following form:

(Lf)(η) = (L1f + L0f)(η) (105)

Proof:

Lf(η) = lim
t→0+

Eη,X0 f(η)− f(η)

t
= lim
t→0+

1

t

(∫
f(τXt

ηt)d(PX0 ⊗ Pη)− f(η)

)
Fubini′s

=
theorem

(106)

= lim
t→0+

1

t

(
EηEX0 f(τXtηt)− f(η)

)
= lim
t→0+

1

t

(∑
x

pt(0, x)Eηf(τxηt)− f(η) · 1

)
= (107)

= lim
t→0+

1

t

(∑
x

pt(0, x) [Eητxf(ηt)− τxf(η) + τxf(η)− f(η)]

)
= (108)

= lim
t→0+

(∑
x

pt(0, x)

[
Eητxf(ηt)− τxf(η)

t

]
+
∑
x

pt(0, x)

t
[τxf(η)− f(η)]

)
= (109)

=
∑
x

I(x = 0)L0(τxf(η)) +
∑
x

p(0, x) [τxf(η)− f(η)] = (110)

= L0(τ0f(η)) + L1f(η) = (111)
= L0f(η) + L1f(η) (112)
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□

Now we will define invariant measures and the notion of ergodicity.

Let St be a Markov Semigroup, then for µ ∈ P(E) we call the measure µSt evolution of the measure µ after
time t. In other words by µSt we denote distribution of the process {ηt : t > 0} at a time t when the process
started from µ. Functionally this means,∫

fdµSt =

∫
Stfdµ ∀f ∈ C(E)

Definition 4.7 A probability measure µ ∈ P(E) is called invariant if∫
Stfdµ =

∫
fdµ ∀f ∈ C(E)

Let us denote by I the set of all invariant measures on E.

We call a set A ∈ E invariant if St(1A) = 1A. Now we can define ergodicity of the measure µ

Definition 4.8 A probability measure µ ∈ I is called ergodic if all invariant sets have measre µ zero or one.

Definition 4.9 The process with semigroup St is called uniquely ergodic if I = {µ} and for all ν ∈ P(E) we
have

lim
t→∞

νSt = µ

Now we define the notion of the reversibility of the measure.

Definition 4.10 A probability measure µ ∈ P(E) is called reversible if∫
(Stf)gdµ =

∫
f(Stg)dµ ∀f, g ∈ C(E)

Note that a reversible measure is invariant.

More intuitively a reversible measure describes the following property. A measure µ ∈ P(E) is reversible if and
only if the process {ηt : 0 < t < T} started from η0 distributed according to µ has the same distribution as its
time reversed analogue {ηT−t : 0 < t < T}.

We further assume that for each trapping process {ηt : t ⩾ 0} that is going to be discussed in this paper there
is a reversible and ergodic translation-invariant measure νρ. Furthermore, we assume that the domain of L0 is
translation invariant. To formalize this,

• For any f ∈ D (L0), the translated τxf ∈ D (L0) for all x ∈ Zd

• L0 is self-adjoint on L2 (νρ)

• νρ is ergodic for the process {ηt : t ≥ 0}.

• τxνρ = νρ, for all x ∈ Zd.

Now by using these assumptions, we can state an incredibly useful result

Theorem 4.2 ([8]) The reversible and ergodic translation-invariant measure νρ for the trapping process
{ηt : t ≥ 0} generated by L0 is again reversible and ergodic translation-invariant for the Environment Process
{ηt(Xt) : t ≥ 0} generated by L = L1 + L0

Now the object of the interest in the built setup is the probability that a Random Walker survives in a
dynamic environment of traps for some T ≥ t, defined to be

Zγ,t = P(T ≥ t) = EX,η0

(
exp

[
−γ
∫ t

0

ηs(Xs)ds

])
(113)

where Eη,X0 is the expectation taken with respect to the product space (Zd × E,FX ⊗Fη,PX ⊗ Pη), i.e.
EX,η0 = EX0 ⊗ Eη = EX0 Eη.

Further, we will study this functional under the previously given list of distinct trap processes.
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5 Random Walk in an Independent Spin Flip Trap Dynamics
Our first example of the problem in a dynamic setting is the model of the random walk in the independent
spin-flip trap process. Firstly we discuss the setup of the model. Then we proceed by proving a rough lower
bound and sharp upper bound on the survival probability. Lastly, we prove that the decay is exponential
under environment monotonicity assumptions and then provide an example of such an environment.

In this setting, the space of all trap configurations is E = {0, 1}Zd

. Thus the environment (or the trap
configuration) at any given time is a collection of spins 1’s and 0’s, where by 1 at a site x ∈ Zd we denote a
trap, and by 0 we denote a normal point. Then we all let traps independently flip at the same exponential rate
c. The trap process begins from the configuration of i.i.d. Bernoulli distributed traps, which should also form
an ergodic and reversible translation invariant measure νρ. By [9] such measure exists.

Definition 5.1 (Reversible translational invariant and ergodic measure) For the Independent Spin
flip traps starting from i.i.d. Bernoulli distributed configuration the ergodic and reversible translation invariant
measure is

νρ =
⊗
Zd

Bernoulli ρ ∈ [0, 1]

Let us quickly remind the reader about the generators of two Markov processes in this model. The generator
of the Random walk is the same as was stated in the previous section, and the trapping process has the
following generator

Definition 5.2 (Independent Spin Flip Process Generator) Let trap process be independent-flips
process η(x, t) ∈ {0, 1} with x ∈ Zd defined on probability space (E,Fη,Pη) with following generator L0

(L0f)(η) =
∑
x

c(f(ηx)− f(η)) (114)

where η ∈ {0, 1}Zd

is "frozen" configuration of traps on Zd and ηx is a configuration with point x ∈ Zd flipped,
meaning following

ηx =

{
1− η(x), if y = x

η(y), if y ̸= x
(115)

Note that the spins flip at rate c, with each lattice point flipping independently.

Now, let us define the overall Environment Process.

Definition 5.3 (Environment process) Environment process is defined as the configuration of traps
η(t,Xt) at a time t as seen from the perspective of a random walker (Xt)t≥0 x ∈ Zd defined on probability
space (Zd × E,FX ⊗Fη,PX ⊗ Pη)

η(t,Xt) =

{
1, if a point x ∈ Zd, at which random walker Xt = x is situated at a time t, is a trap
0, otherwise

(116)

And the generator of the Environment Process takes the form of a sum of both generators of Random Walk
(the L1 generator ) and ISF Trapping process (the L0 generator) since both are independent Markov processes.

Lf(η) = L0f(η) + L1f(η)

In the following subsections, we are interested in the survival probability of the Random Walk, which we
define in the following way

Zγ,t = P(T ≥ t) = EX,η0

(
exp

[
−γ
∫ t

0

ηs(Xs)ds

])
(117)

In future subsections, we will observe that for the Independent Spin Flip process, the survival functional can
be decomposed, which narrows down the focus to a single point of the environment, due to the independent
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nature of the traps. Further, it will become apparent that the study of the survival time asymptotics will rely
on the observations of the so-called occupational time measure of the single point of origin. Throughout this
thesis, we will resort to the indirect calculations of the survival probabilities via spectral methods and other
sophisticated approaches.

Now we can proceed with quite simple calculations of the exponential lower bound on the decay of survival
probabilities.

5.1 Lower Bound on Survival Probability
In this subsection, we will prove the rough lower bound on the survival functional and connect this lower
bound to the special case of this model with infinite flip rates

Lemma 5.1 The survival time of the Random Walk Xt among the independent spin-flip trap process can be
exponentially bounded as follows

P(T ≥ t) ≥ e−γρt

where ρ = Eηηs(·) is a stationary distribution for ηs(·)

Proof: The survival time functional can be bounded as follows

P(T ≥ t) = EX,η0

(
exp

[
−γ
∫ t

0

η(s,Xs)ds

])
≥ (118)

≥ exp

[
−γ
∫ t

0

EX,η0 η(s,Xs)ds

]
= (119)

= exp

[
−γ
∫ t

0

EXEη0η(s,Xs)ds

]
= (120)

= exp

−γ ∫ t

0

∑
x∈Zd

P(Xs = x)(Eη0η(s,Xs))ds

 = (121)

= exp

−γ ∫ t

0

∑
x∈Zd

ρP(Xs = x)ds

 = (122)

= e−γρt (123)

□

Thus we have derived a very simple exponential lower bound, which, nevertheless, is exactly the limit when
spin rates cx = ∞ are infinite.

lim
c→∞

P(T ≥ t) = lim
c→∞

EX,η0

(
exp

[
−γ
∫ t

0

η(s,Xs)ds

])
= (124)

= lim
c→∞

EXEη0

(
exp

[
−γ
∫ t

0

η(s,Xs)ds

])
= (125)

= lim
c→∞

EX
(
exp

[
−γ
∫ t

0

ρds

])
= (126)

= e−γρt (127)

This happens since cx = ∞ makes the random walk see the average environment, which essentially means that
η(s, ·) = ρ in distribution.

5.2 Upper Bound on Survival Probability
Here we derive an exponential upper bound for the survival probability in an agnostic way. We assume that
the survival probabilities decay exponentially, i.e. there exists such an exponent λ̃max ( the definition of which
will be apparent below) which dictates the decay rate. Then we bound this exponent using spectral techniques.
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Theorem 5.2 For the Random Walk in the Independent Spin Flip trap process, if the λ̃max greatest
eigenvalue of the operator (L0 + L1 + V ) exists then

P(T > t) ≤ eλ̃maxt (128)

with λ̃max being strictly negative. Note that P is taken with respect to ergodic and reversible measure.

Note that the existence of λ̃max < 0 is assumed here. We delegate proof of its existence under environment
monotonicity assumptions to the next subsection. Then the final subsection is dedicated to expressing these
assumptions in terms of non-degeneracy conditions on the rate function of occupational time measures of the
system.

Proof: Given translation operator τXsη(s, ·) = η(s,Xs) defined in the previous section and the fact that the
environment doesn’t have special points and translationally invariant, we can state that we have the following
equality τXs

η(s, ·) = η(s, 0) in distribution

P(T ≥ t) = Eη,X0

(
exp

[
−γ
∫ t

0

η(s,Xs)ds

])
=

∫
dνρ(η)Ẽη,X0

(
exp

[
−γ
∫ t

0

τXs
η(s, ·)ds

])
= (129)

=

∫
dνρ(η)Ẽη

(
exp

[
−γ
∫ t

0

η(s, 0)ds

])
=

∫
dνρ(η)Ẽη

(
exp

[∫ t

0

V (ηs)ds

])
(130)

where V = −γη(0) and τXsη(s, ·) is an environment seen from the perspective of a random walk, with
generator L̃ and νρ is an ergodic and reversible measure of the environment process.

Let us observe that the inner expectation is the same as,

P(T ≥ t) =

∫
dνρ(η)Ẽη,X

(
exp

[∫ t

0

V (ηs)ds

])
= ⟨1, et(L̃+V )1⟩ (131)

where we used the fact that we proved in the "Feynman-Kac semigroup" section. We denote by L̃ = L0 + L1

as a generator of the environment process (a sum of random walk’s and trapping potential’s generators) and
V = −γη(0) is the so-called killing function. The previous inner product expression can be bounded by the
greatest eigenvalue of L̃+ V in the following way

⟨1, et(L̃+V )1⟩ ≤ ⟨1, 1⟩eλ̃maxt (132)

The λ̃max greatest eigenvalue of the operator (L̃+ V ) and can be found using the variational formula:

λ̃max = sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L̃g)

)
(133)

Now we can find an upper bound the following way. Since by variational formula, we have the supremum that
contains an inner product that involves L̃, which is a sum of inner products of its independent constituent
generators. The random walk part can be thrown away giving us a strict bound:

λ̃max = sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L̃g)

)
= (134)

= sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L0g) + (g, L1g)

)
≤ (135)

≤ sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L0g)

)
= λmax (136)

where we get the Random Walk out due to −L1 being non-negative on L2

Note that, due to only V and L0 remaining, λmax can be computed in the following way

λmax = lim
t→∞

1

t
lnEη

(
exp

[
−γ
∫ t

0

η(s, 0)ds

])
= lim
t→∞

1

t
ln⟨1, et(L+V )1⟩ (137)

where the L and V are trap generator and killing function of a single point.
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Now we specify the resulting L and V for independent spin flip dynamics. Without the loss of generality, we
set flipping rates c = 1. Since the computations are done with respect to a single trap point and due to the
Feynman-Kac formula, the L and V take the following form,

L =

[
−1 1
1 −1

]
V =

[
−γ 0
0 0

]
A := L+ V =

[
−γ − 1 1

1 −1

]
(138)

All is left to find the closed form of the exponential operator etA = et(L+V ) which will be quite
computationally extensive, due to L and V not commutive between each other.

The eigenvalues of the matrix A are the following

ν1, ν2 =
−γ − 2±

√
γ2 + 4

2
=:

−γ ± µ

2
− 1 (139)

The matrix Q of the eigenvectors of A can be computed to be the following:

Q =

[−γ+µ
2

−γ−µ
2

1 1

]
Q−1 =

1

µ

[
1 γ+µ

2

−1 −γ+µ
2

]
(140)

Performing the diagonalization routine on the matrix A yields the following eigendecomposition

A = QΛQ−1 =
1

µ

[−γ+µ
2

−γ−µ
2

1 1

] [−γ+µ
2 − 1 0
0 −γ−µ

2 − 1

] [
1 γ+µ

2

−1 −γ+µ
2

]
(141)

Note that the powers of A are now easily computable

An = QΛnQ−1 =
1

µn

[−γ+µ
2

−γ−µ
2

1 1

] [(−γ+µ
2 − 1

)n
0

0
(−γ−µ

2 − 1
)n] [ 1 γ+µ

2

−1 −γ+µ
2

]
(142)

Let us finally compute the inner product involving the exponential operator etA,

⟨1, etA1⟩ = (1 1)

∞∑
n=0

tnAn

n!

(
1

1

)
=

∞∑
n=0

tn

n!
(1 1)An

(
1

1

)
= (143)

=

∞∑
n=0

tn

n!

1

µn
((β + 1)(α+ 1)(β − 1)n − (α− 1)(β − 1)(−α− 1)n) = (144)

= (β + 1)(α+ 1)e
β−1
µ t − (α− 1)(β − 1)e

−α−1
µ t (145)

where α = γ+µ
2 , β = µ−γ

2 and µ =
√
γ2 + 4. One can notice, that the powers of both exponents are negative,

thus taking the logarithm and the limit with t→ ∞ will leave the larger exponent power surviving which is
negative. Note that for general case when the flipping rates c ̸= 1, one still gets the same result (by using
substitution γ := γ/c and taking factor c out of matrices in the previously derived expressions). Thus, we have
the following

λmax = lim
t→∞

1

t
ln⟨1, et(L+V )1⟩ < 0 (146)

This concludes the sharp exponential upper bound for the decay of survival probabilities. This additionally
suggests that the collection { 1

t

∫ t
0
−γη(s, 0)ds} might satisfy Large Deviation Principle with the rate function

I(x) = supλ{λx+ λmax} if λ̃max exists, which will be discussed in the next subsection.
□

In the next section regarding the Simple Symmetric Exclusion traps, we state the Theorem 6.1 from the [8]
that proves the sharp exponential decay of survival probability, assuming the Large Deviation Principle on the
occupational time measures. In the following subsection regarding Attractive Spin Flip Dynamics, we state
the model that is a generalization of the model in the current section, and we provide a proof of such Large
Deviation Principle that makes Theorem 6.1 applicable to the model in this section.
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5.3 Existence of the Exponent
In the previous section, we proved that if the exponent λ̃max exists, then it must be negative. In the current
section, we prove the existence of such exponent, which in combination with the previous result yields the
exponential decay of survival probability of random walk in the independent spin flip environment.

Let ψ(t, η) = Ẽη(exp[
∫ t
0
ηs(0)ds]), where Ẽη is taken with respect to the path space measure of trap process

starting from η ∈ E.

Theorem 5.3 For the Random Walk in Independent Spin Flip trap process, the exponent

λ̃max = lim
t→∞

1

t
lnP(T > t) (147)

exists and is finite, if ψ(t, η) and Ẽηψ(t, ηt) are positively correlated.

Note that by the reasons of the previous subsection, if such λ̃max exists and is finite, then it is negative.

Proof: The proof relies on the fact that if

lnP(T > t) = lnEηEX0
(
exp

{
−γ
∫ t

0

η(s,Xs)ds

})
(148)

is sub-additive in t then by Fekete’s Lemma the exponent λ exists [10].

Let us prove the super-additivity of the survival time functional directly

Eη,X0

(
exp

{
−γ
∫ t+s

0

η(s,Xs)ds

})
=

∫
dνρ(η)Ẽη,X0

(
exp

{
−γ
∫ t+s

0

τXs
η(s, ·)ds

})
= (149)

=

∫
dνρ(η)Ẽη

(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
(150)

Now let us prove that Ẽη,X0

(
exp

{
−γ
∫ t
0
ηs(0)ds

})
is sub-additive in t,

Ẽη
(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
= Ẽη

(
Ẽη,X0

[
exp

{
−γ
∫ t+s

0

ηs(0)ds

} ∣∣∣∣ Ft]) = (151)

= Ẽη
(
exp

{
−γ
∫ t

0

ηs(0)ds

}
Ẽη
[
exp

{
−γ
∫ t+s

t

ηs(0)ds

} ∣∣∣∣ Ft]) (152)

Now we can revert the process inside the inner expectation to start from the sigma-algebra Ft, meaning the
process will start from ηt

Ẽη
(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
= Ẽη

(
exp

{
−γ
∫ t

0

ηs(0)ds

}
Ẽηt

[
exp

{
−γ
∫ s

0

ηs(0)ds

}])
(153)

This will yield,

Ẽη
(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
= ψ(t, η)Ẽη (ψ(t, ηt)) + Cov

(
ψ(t, η), Ẽη (ψ(t, ηt))

)
(154)

where ψ(t, η) = Ẽη(exp[
∫ t
0
ηs(0)ds])

Now, if we assume the positive correlations of ψ(t, ηt) and Ẽη (ψ(t, ηt)), which might be proved for certain
monotone environments, we get the following bound

Ẽη,X0

(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
= ψ(t, η)Ẽη (ψ(t, ηt)) + Cov

(
ψ(t, η), Ẽη (ψ(t, ηt))

)
≥ (155)

≥ ψ(t, η)Ẽη (ψ(t, ηt)) = f(η, t)g(η, s) (156)

where f and g stand for the annealed versions of their F and G counterparts,
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Thus the problem reduces to the following,∫
dνρ(η)Ẽη,X0

(
exp

{
−γ
∫ t+s

0

ηs(0)ds

})
≥
∫
dνρ(η)f(η, t)g(η, s) ≥ (157)

≥
∫
dνρ(η)f(η, t)

∫
dνρ(η)g(η, s) (158)

where the inequality part is due to f and g being simultaneously monotonous (if f is ↑ then g is as well, if f is
↓ then g is as well, since we assumed the positive correlations of f and g) by the FKG inequality.

The last result means that

Eη,X0

(
exp

{
−γ
∫ t+s

0

η(s,Xs)ds

})
≥ Eη,X0

(
exp

{
−γ
∫ t

0

η(s,Xs)ds

})
Eη,X0

(
exp

{
−γ
∫ s

0

η(s,Xs)ds

})
(159)

which means that the survival time functional is time sub-additive. This concludes the proof. □

Thus given the proof from the previous subsection, we get that this λ < 0 is negative, and thus we get the
sharp exponential decay of survival probabilities, although indirectly.

5.4 Attractive Spin Flip Dynamics
The interacting particle system we study in this section generalizes many Spin Flip systems studied in the
literature. The Independent Spin Flip system is, in fact, an example of an Attractive Spin Flip system. The
main goal of this section is to boost the assumptions of the previous subsection and to prove the applicability
of the Theorem 6.1 from [8] to the case of Independent Spin Flip.

Firstly, we state large deviation estimates for the occupation time measure from the [11], particularly, strong
large deviation estimates for the occupation times of ergodic systems. Secondly, using obtained large deviation
estimates we prove that Theorem 6.1 regarding exponential decay of survival time from the [8] applicable to
the case of attractive spin flip systems, and thus to the independent spin flip system.

Let us work in the same state space as usual E = {0, 1}Zd

. As a spin-flip process, we again define a Markov
process on a said state space E. We describe the evolution of the system through a family of the flip rates
{c(x, η) : η ∈ E, x ∈ Zd}. Thus, let us define the generator of the trapping process as always

Definition 5.4 (Attractive Spin Flip Process Generator) Let trap process be independent-flips process
η(x, t) ∈ {0, 1} with x ∈ Zd defined on probability space (E,F ,Pη) with following generator L0

(Lcf)(η) =
∑
i∈Zd

c(i, η)(f(ηi)− f(η)) (160)

where ηx is a configuration of traps with point x ∈ Zd flipped, f(η) are local functions of η, and c(i, η) form an
attractive system

The system is said to be attractive if the rates c(i, η) are obeying the following rule. For all η and ξ in E with
η ⩽ ξ (i.e., η(i) ⩽ ξ(i),∀i ∈ Zd ) the rates are as follows{

c(i, η) ⩽ c(i, ξ), if η(i) = ξ(i) = −1
c(i, η) ⩾ c(i, ξ), if η(i) = ξ(i) = 1

For this section we assume the translational invariance and finiteness of ranges of interaction of the flip-rates.
To formalize this,

Assumption 5.4 Flip rates c(i, η) are translation invariant with finite range interactions. There exist a finite
subset U0 of Zdand a nonnegative function c0 on E which is not identically zero, such that c0(η) depends on η
only through the coordinates of η in U0 and

c(i, η) = c0(τiη) ∀x ∈ Zd, η ∈ E (161)

where τx is a shift operator on E defined as (τxη)(y) = η(x+ y)
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The literature suggests that for the attractive spin systems the monotonicity assumptions of the Theorem 5.3
are satisfied [12], [13]. For measures µ1, µ2 on E if system is attractive then

µ1 ≤ µ2 =⇒ µ1St ≤ µ2St

where ≤ was in the weak sense, i.e. µ1 ≤ µ2 whenever
∫
fdµ1 ≤

∫
fdµ2. Furthermore, by [12] we have that for

the attractive system µSt ≤ µ. Thus the assumptions made in the "Existence of Exponent" section regarding
the independent spin flip problem can be proved for the attractive spin flip systems using above properties.

Now, as we have defined a setup for the model, we will proceed by defining the object of interest - occupation
time measures, for which we will state large deviation estimate consequently.

Definition 5.5 Define the occupation time measures at a time t > 0

Tt =
1

t

∫ t

0

ηs(0)ds (162)

Given the previous setup we get the following quite useful result.

Theorem 5.5 For ∀δ > 0 there exists λδ > 0 :

sup
η∈E

P0
η(Tt > ρ+ + δ or Tt < ρ− − δ) ≤ e−λδt (163)

If the system is ergodic, then:
sup
η∈E

P0
η(|Tt − ρ| > δ) ≤ e−λδt (164)

Thus for the ergodic system, the ρ is a stationary measure for the Tt.

lim
t→∞

Eη(Tt) = ρ (165)

The previous Large Deviation estimate, as well as, the Large Deviations Principle from the [14] for the system
with strictly positive rates gives a possibility of using the Theorem 6.1 from the [8] as its assumptions are
satisfied by these results. Note that in the setup of the Independent Spin Flip, it is quite reasonable to assume
space-time invariance as the flip rates do not interact with themselves, making the system obey all the
previously stated assumptions. Furthermore, note that if the spin-flip rates are strictly positive the Large
Deviation Estimates turn into the Large Deviation Principles. Furthermore, one can derive that the resulting
rate function obeys the non-degeneracy and single zero conditions of the Theorem 6.1, which we proceed to
prove.

Lemma 5.6 The rate function I(x) of LDP of the occupation time measures {Tt} is non-degenerate with the
zero at the only point x∗ = Eη(ηs(0))

Proof: Given that the underlying independent spin flip system is defined to be ergodic, we would have the
following:

P0
η(|Tt − ρ| > δ) ≤ sup

η∈E
P0
η(|Tt − ρ| > δ) ≤ e−λδt (166)

This means that Tt satisfies some LDP with some rate function I(x). Which implies that Tt → ρ as t→ ∞
P0
η − a.s.. This also implies that for any closed set F we have the following,

1

t
lnP0

η(Tt ∈ F ) ≤ inf
x∈F

I(x) (167)

Given a positive ε > 0, the infimum of the rate function away from its stationary value ρ obeys the following
inequality

inf
x∈[x∗+ε,x∗+2ε]

I(x) > 0 (168)

Thus we have that the rate function is positive for all inputs greater than ρ,
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I(y) > 0 ∀y > x∗ (169)

By the reverse logic

inf
x∈[x∗−ε,x∗−2ε]

I(x) > 0 (170)

Thus we have the reverse statement

I(y) > 0 ∀y < x∗ (171)

Combining both results regarding the rate function we get

I(x) = 0 iff x = x∗ (172)

□
This yields that in the case when the environment is independent spin flip traps the collection {Tt : t > 0} of
occupation measures satisfies the Large Deviation Principle with the non-degenerate function I(x) which has
the only zero at x∗, meaning that the conditions for the Theorem [8] are satisfied. Thus the theorem can be
applied in the section regarding the Independent Spin Flip model, to derive the sharp exponential decay of
survival probabilities.
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6 Random Walk in Simple Symmetric Exclusion Trap Dynamics
In this section, we study the survival time of the Random Walk in a Simple Symmetric Exclusion environment
of traps. We provide the statement and the proof of a quite useful theorem from [8], which allows one to
derive exponential decay for survival time given certain requirements for the rate function for the occupational
time measures of the process. At last, we apply this theorem for the case d ≥ 3 by supporting it with
occupational time measure LDP results from the literature.

The environment is defined to be E = {0, 1}Zd

. The process can be thought as a collection of the particles
situated on a lattice (1’s being a particle, and 0’s being free lattice points), each particle independently
waiting exponential time before jumping to the closest neighboring lattice point (equiprobably in all directions
since it is symmetric), if it is empty, otherwise waiting another exponentially distributed time. We define all
traps be hard.

Let us remind the reader of the definition of the generator for the trap process.

Definition 6.1 (Simple Symmetric Exclusion Process Generator) The generator of the exclusion
process is given by:

L0f(η) =
∑
x∈Zd

∑
e∈Zd:|e|=1

1

2d

(
f(ηx,x+e)− f(η)

)
, (173)

where ηx,x+e stands for exchanging occupations of points x and x+ e

ηx,x+e(y) = η(y)(1− δy,x − δy,x+e) + η(x)δy,x+e + η(x+ e)δy,x (174)

For the proof of the existence of a reversible ergodic and translation invariant measure for the Simple
Symmetric Exclusion trap process (and its form), we refer the reader to Chapter VIII, Section I of the book
[15].

Definition 6.2 (Reversible and ergodic measure) The Bernoulli product measure is reversible ergodic
and translation invariant measure for the Simple Symmetric Exclusion dynamics

νρ =
⊗
Zd

Bernoulli(ρ) ρ ∈ [0, 1]

Since we have the restriction of one trap particle per site, we can define the environment process in the same
fashion as it was defined in the Independent Spin-Flip section.

Definition 6.3 (Environment process) Environment process is defined as the configuration of traps
η(t,Xt) at a time t as seen from the perspective of a random walker (Xt)t≥0 x ∈ Zd defined on probability
space (Zd × E,FX ⊗Fη,PX ⊗ Pη)

η(t,Xt) =

{
1, if a point x ∈ Zd, at which random walker Xt = x is situated at a time t, is a trap
0, otherwise

(175)

The generator of the Environment Process, as always, is a sum of both generators of Random Walk (the L1

generator ) and SSE Trapping process (the L0 generator) since both are independent Markov processes.

Lf(η) = L0f(η) + L1f(η)

Now let us focus on the results from the literature. The large deviation principle for the random walk
occupation time measure was proved by C.Landim [16] for d ̸= 2, with the subsequent paper in 2004 by
Chih-Chung Chang, C. Landim and Tzong-Yow Lee [17] where the corresponding large deviation principle for
the case d = 2 is proved. Furthermore, the rate function of these LDP’s for the case d ≥ 3 satisfies the
non-degeneracy conditions assumed by the next theorem from [8], which makes it instantly applicable.

Theorem 6.1 ([8]) If {ηt : t ≥ 0} is such that the large deviation principle for the occupation time measure{
1
t

∫ t
0
V (ηs)ds

}
is satisfied with a non-degenerate rate function I with the only zero at the point ρ = Eη(V (η))

then the following holds

lim sup
t→∞

1

t
lnP(T ≥ t) < 0 (176)

where P is taken in a sense of reversible and ergodic translation-invariant measure.
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Proof:

P(T ≥ t) = P
(∫ t

0

η(s,Xs)ds = 0

)
= P

(
exp

{
−
∫ t

0

η(s,Xs)ds

}
≥ 1

)
= (177)

= P
(
exp

{
−
∫ t

0

τXs
η(s, ·)ds

}
≥ 1

)
= P

(
exp

{
−
∫ t

0

V (η)ds

}
≥ 1

)
≤ (178)

≤ E
(
exp

{
−
∫ t

0

V (η)ds

})
(179)

where V (η) = η(0).

Now by the Feynman-Kac routine we have the following

E
(
exp

{
−
∫ t

0

V (η)ds

})
≤ e−λmaxt (180)

From the previous section, we know that λmax can be found using Varadhan variational formula

λmax = sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L0g) + (g, L1g)

)
≤ (181)

≤ sup
g:
∫
g2dνρ=1

(
−
∫
V (η)g2(η)νρ(dη) + (g, L0g)

)
≤ (182)

≤ sup
µ∈P(E),µ≪νρ

[
−
∫
V (η)µ(dη) +

((
dµ

dνρ

)1/2

, L0

(
dµ

dνρ

)1/2
)]

≤⃝ (183)

(184)

where in the last two steps we use the fact that the large deviation principle for the L0 was proved in [16] and
[17] with the appropriate non-degenerate rate function I2 with the only zero at its stationary measure. Note
that P(E) denotes the set of all probabilistic measures on E. Thus we have:

≤⃝ sup
µ∈P(E),µ≪νρ

[
−
∫
V (η)µ(dη)− I2(µ)

]
(185)

By Varadhan’s formula:

lim
t→∞

1

t
lnE

(
exp

{
−
∫ t

0

V (ηs)ds

})
= sup
µ∈P(E),µ≪νρ

[
−
∫
V (η)µ(dη)− I2(µ)

]
(186)

One of the last things to note is that by the contraction principle, the collection
{

1
t

∫ t
0
V (ηs)ds

}
satisfies LDP

with the following rate function:

I1(x) = inf
µ∈P(E)

{
I2(µ)

∣∣∣∣ ∫ V (η)µ(dη) = x

}
(187)

Now we have:

lim
t→∞

1

t
lnE

(
exp

{
−
∫ t

0

V (ηs)ds

})
= sup
x∈R+

[−x− I1(x)] (188)

□
Thus we can conclude that for d ≥ 3 there exists λ > 0, such that the following exponential upper bound of
the survival probability is obtainable:

P(T ≥ t) ≤ e−λt (189)

The result in [17] proves the occupation time LDP with the rate
√
t for the case d = 1 and with the rate

t/ log t for the case d = 2, so the corresponding survival probability, in principle, should also have the
subexponential decay.
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Conjecture 6.2 The survival probability of the Random Walk among the Simple Symmetric Exclusion traps
may have the following asymptotics

P(T ≥ t) ≃


exp

{
−c1

√
t+ O(t)

}
d = 1

exp

{
−c2

t

log t
+ O(t)

}
d = 2

exp {−c3t+ O(t)} d ≥ 3

(190)

for some positive constants c1, c2 and c3
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7 Random Walk among Independent Random Walking Traps
In this section, we study the survival time of the Random Walk among Independent Random Walking traps.
Firstly, we prove the lower bounds on survival time in a setting with hard traps. Then we provide proof for
the exact asymptotics in a setting with soft traps, which is a celebrated result by A. Drewitz et al.[10].

In this model, we define the random walk generator as previously and the trap process is defined to be a
collection of independent random walkers. The state space is defined to be E = NZd

, where we count the
number of traps at each site. We do not impose any restrictions on the number of traps per site, although we
make the sites with a high number of traps update faster.

Definition 7.1 (Independent Random walking traps) For η ∈ E the trap process {ηt : t ≥ 0} starting
from η is a collection of independent random walks,(

({Xx
i (t) : t ≥ 0})η(x)i=1

)
x∈Zd

(191)

where η(x) is a number of traps at site x and Xx
i means random walking trap starting from x. The number

η(x) of the random walks at site x is is defined to be Poisson distributed with mean ρ and random walking
traps are defined to have jumping rate ν. This also forms the ergodic and the reversible translation-invariant
measure of the process νρ.

For the existence of reversible ergodic and translation invariant measure for the Independent Random Walking
Traps Process we refer a reader to the [18].

Definition 7.2 (Reversible and ergodic measure) The Poisson product measure is a reversible ergodic
and translation invariant measure for the Independent Random Walks Dynamics

νρ =
⊗
Zd

Poisson(ρ) ρ ∈ (0,∞)

As always we recall the definition of the generator of trapping potential, in this case the generator of the
Random walking traps Process,

Definition 7.3 (Independent Random walking traps generator) The generator of trapping potential is
given by:

Lf(η) =
∑
x∈Zd

∑
e∈Zd:|e|=1

η(x)

2d

(
f(ηx,x+e)− f(η)

)
, (192)

where ηx,x+e stands for removing trap at x and putting it at x+ e

ηx,x+e(y) = η(y)− δy,x + δy,x+e (193)

Definition 7.4 (Environment process) The environment process η(t,X(t)) is defined to be the number of
the walking traps at a site x where the random walker X(t) is situated at a time t, with η(t, x) to be of
following form:

η(t, x) =
∑

y∈Zd,1≤j≤η(y)

I(Xy
j (t) = x) (194)

Note that for each t ≥ 0 the collection of η(t, x) is a collection of i.i.d Poisson distributed random variables
with mean ρ, so Markov process ηt is a stationary and reversible process [10]

For the purposes of this section, we need to define two survival functionals for the case of soft taps. Let us
define the quenched survival probability (which depends on the random environment η):

Zηt,γ = EX0
(
exp

{
−γ
∫ t

0

η(s,Xs)ds

})
(195)
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The annealed survival probability (constantly referred to as just survival probability) is the same as in
previous sections:

Zt,γ = P(T > t) = EηZηt,γ = EηEX0
(
exp

{
−γ
∫ t

0

η(s,Xs)ds

})
(196)

Note that Zt,γ due to Feynman-Kac formula also solves the following PDEs
d

dt
u(t, x) = κLu(t, x)− γη(t, x)u(t, x),

u(0, x) = 1

where L is a shifted generator of a simple random walk on Zd.

In the next subsection, we will prove the lower bounds on the survival probability in a setting with hard traps.
After that, we focus on studying the proof of exact asymptotics in the soft traps setting.

7.1 Exponential Lower Bound in a Hard Traps Setting
In the setting of the "hard" traps, instead of using Theorem 6.1 from the [8], as in the section regarding the
simple symmetric exclusion process, it is possible to calculate things more explicitly using ranges of the
random walks.

To have a reversible ergodic and translation invariant measure for the process we let the environment be
Poisson distributed. Then such measure would be a product measure

νρ =
⊗
Zd

Poisson(ρ) ρ ∈ (0,∞)

Now it is possible to get a lower bound on survival time using the range between random walk and random
walking traps and annealing it to the range of the difference between two simple random walks, which gives us
the approximation via the range of one random walk with double speed.

Theorem 7.1 ([8]) Let the random walker Xt travel in the random walking traps environment as defined
above with the "hard traps". Then the survival probability is as follows

P(T ≥ t) = EX
(
exp[−ρEY (R(X − Y, t))]

)
(197)

Proof:
P(T ≥ t) =

∫
P(Xx

i (s)−Xs ̸= 0∀i = 1, .., η(x),∀x, ∀s ∈ [0, t))dνρ =

=

∫
dPX

∫
dνρ

∏
x

η(x)∏
i=1

∫
dPXi1{Xi(s)̸=Xs+x,∀s∈[0,t)}

ind
=

ind
=

∫
dPX

∫
dνρ

∏
x

(∫
dPXi1{Xi(s)̸=Xs+x,∀s∈[0,t)}

)η(x)
=

=

∫
dPX

∫
dνρ

∏
x

(
PXi(Xi(s) ̸= Xs + x, ∀s ∈ [0, t))

)η(x)
=

=

∫
dPX

∏
x

∞∑
j=0

e−ρ
ρj

j!
PXi(Xi(s) ̸= Xs + x, ∀s ∈ [0, t))η(x) =

=

∫
dPX

∏
x

e−ρ
∞∑
j=0

ρj

j!
PXi(Xi(s) ̸= Xs + x, ∀s ∈ [0, t))j =

=

∫
dPX

∏
x

exp(−ρ) exp(ρPXi(Xi(s) ̸= Xs + x,∀s ∈ [0, t)) =

=

∫
dPX

∏
x

exp
[
−ρ(1− PXi(Xi(s) ̸= Xs + x, ∀s ∈ [0, t))

]

43



=

∫
dPX

∏
x

exp
[
−ρ(PXi(Xi(s) = Xs + x, ∀s ∈ [0, t))

]
=

∫
dPX

∏
x

exp

[
−ρ
∫ ∑

x

1(Xi(s) = Xs + x, ∀s ∈ [0, t))dPXi

]

=

∫
dPX exp

[
−ρ
∫
R(X −Xi, s)dPXi

]
= EX exp

[
−ρEYR(X − Y, s)

]
□

Now that we have the above theorem, the following is the consequent

Theorem 7.2 ([8]) The survival probability of the random walk among random walking "hard" traps has the
following lower bound:

P(T ≥ t) ≥ exp[−ρEZR(Z, 2t)] (198)

Proof:
P(T ≥ t) = EX exp

[
−ρEYR(X − Y, t)

]
≥ exp

[
−ρEXEYR(X − Y, t)

]
= exp

[
−ρEZR(Z, 2t)

]
(199)

where we used Jensen’s Inequality and the fact that X − Y behaves like a random walk Z with doubled speed
we have the last equality □

Now due to known expression for Expectation of a Range of the Random Walk in 2.5, we can conclude
following subexponential lower bound for d = 1, 2 and exponential lower bound for d ≥ 3:

P(T ≥ t) ≥



√
2t, if d = 1

2πt
log 2t + O

(
t log log 2t

log2 2t

)
, if d = 2

2tυd + O((t2−d/2), if d ≥ 3

(200)

where υd is the probability of a random walk never coming back to the origin.

7.2 The exact asymptotics on survival time in soft traps setting
In this subsection, we state asymptotic results for annealed and quenched survival probabilities and the
existence of the Lyapunov exponent of the model. Then we prove the existence of the Lyapunov exponent and
derive the exact asymptotics for annealed survival probability.

The exact asymptotics of survival probability for the case of soft traps were obtained by A. Drewitz et al. [10],
and this subsection mainly follows this work. In the cases d = 1, 2 the survival probability decays
subexponentially and the constants in the exponents are independent of κ and γ, and for d ≥ 3 it decays
exponentially with the Lyapunov exponent as a constant.

Theorem 7.3 ([10]) Assume that γ ∈ (0,∞], κ ≥ 0, ρ > 0, ν > 0, then in a simple symmetric exclusion
process the survival probability of the random walk has the following asymptotics

P(T ≥ t) =



exp

{
−ν
√

8ρt
π (1 + O(1))

}
d = 1

exp
{
−νπρ t

log t (1 + O(1))
}

d = 2

exp {−λd,γ,κ,ρ,νt(1 + O(1))} d ≥ 3

(201)

where λd,γ,κ,ρ,ν is a Lyapunov exponent

44



Surprisingly, the quenched survival probability always decays exponentially

Theorem 7.4 ([10]) Assume that γ ∈ (0,∞], κ ≥ 0, ρ > 0, ν > 0. Then there exists deterministic quenched
Lyapunov exponent λ̂d,γ,κ,ρ,ν such that:

Zηt,γ
P−a.s.
= exp

{
−λ̂d,γ,κ,ρ,νt(1 + O(1))

}
t→ ∞ (202)

The Annealed Lyapunov Exponent (can be called just Lyapunov exponent) is defined as follows:

Definition 7.5 (Lyapunov Exponent) Assume that γ ∈ (0,∞], κ ≥ 0, ρ > 0, ν > 0. The Lyapunov
exponent corresponding to the annealed survival probability Zγ,t, is defined as:

λd,γ,κ,ρ,ν = − lim
t→∞

1

t
logEηZηγ,t (203)

One might define a different rate from rate t (corresponding to 1/t term in the limit) in the Lyapunov
exponent, for instance, the existence of the Lyapunov exponent with decay rate t/ log t for exclusion process
was proved in [17]. Essentially, the rate for the annealed Lyapunov exponent, tells how the tail of the annealed
survival probability decays, if it was constructed appropriately

Proof: Here we prove the Theorem 7.3 (as in [10])

Let us prove that Lyapunov exponent λd,γ,κ,ρ,ν exists for SZRP in d ≥ 3 and is finite

Define ν(t, y) for y ∈ Zd

ν(t, y) = EYy
(
exp

{
−γ
∫ t

0

δ0(Y (s)−X(t− s))ds

})
(204)

Now, annealed survival probability can be rewritten as follows:

Zγ,t = Eηu(0, t) = EηEX0
(
exp

[
−γ
∫ t

0

η(t− s,X(s))

])
= (205)

= EX0

exp

ν∑
y∈Z

(νx(t, y)− 1)

 (206)

Now, by the Feynman-Kac, this ν(t, y) exponential functional solves a certain system of PDE’s (generator L in
PAM is set to be the one of the random walk).

∂

∂t
νX(t, y) = ρLνX(t, y)− γδX(t)(y)νX(t, y)

νX(0, y) = 1
(207)

Which can be summed across Zd, by denoting ΣX(t) =
∑
y∈Z(νx(t, y)− 1), to form the following system of

PDE’s: 
∂

∂t
ΣX(t) = −γνX(t,X(t))

ΣX(0) = 0
(208)

Integrating (208) from 0 to t gives us the following solution ΣX(t) = −γ
∫ t
0
νX(s,X(s))ds. Now the annealed

survival probability can be rewritten as follows:
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Zγ,t = EηZηγ,t = EX0
(
exp

[
−νγ

∫ t

0

νX(s,X(s))ds

])
(209)

Now, let us assume the time-translational invariance under the following shift operator
θt1X(t) = (X(t1 + s)−X(t1))s≥0. The following holds for νX(s,X(s)) given s > t1:

νX(s,X(s)) = EYX(s)

(
exp

{
−γ
∫ s

0

δ0(Y (r)−X(s− r))dr

})
≥ (210)

≥ EYX(s)

(
exp

{
−γ
∫ s−t1

0

δ0(Y (r)−X(s− r))dr

})
= (211)

= νθt1X(s− t1, θt1X(s)) (212)

Let us note that for the annealed survival probability, given the t1, t2 > 0, the following holds:

EηZηγ,t1+t2 = EX0
(
exp

[
−νγ

∫ t1

0

νX(s,X(s))ds

]
exp

[
−νγ

∫ t1+t2

t1

νX(s,X(s))ds

])
≥ (213)

≥ EX0
(
exp

[
−νγ

∫ t1

0

νX(s,X(s))ds

]
exp

[
−νγ

∫ t2

0

νθt1X(s, θt1X(s))ds

])
= (214)

= Eη(Zηγ,t1)E
η(Zηγ,t2) (215)

This proves that logEηZηγ,t is subadditive in t, and thus by the Fekete’s Lemma the limit for λd,γ,κ,ρ,ν exists

Let us now prove the special case κ = 0, which would become useful for lower and upper bounds of
asymptotics in d = 1, 2 and for general κ > 0.

When κ = 0 and γ ∈ (0,∞), the (209) becomes:

Eη
[
Zγt,η

]
= exp

{
−νγ

∫ t

0

v0(s, 0)ds

}
(216)

where v0(t, 0) is the solution of the original system (207), with X ≡ 0. Given all of this, it is now sufficient to
analyze the asymptotics of the v0(t, 0). From the (204):

v0(t, 0) = EY0
[
e−γ

∫ t
0
δ0(Y (s))ds

]
(217)

Note that due to recurrence in d = 1, 2 the v0(t, 0) → 0+ and due to transience in d ≥ 3 v0(t, 0) → C(d) for
some constant dependent on dimension.
The Duhamel’s principle dictates the following form for the v0(t, 0):

v0(t, 0) = 1− γ

∫ t

0

pρs(0)v0(t− s, 0)ds (218)

where ps(·) is the transition probability kernel of a rate 1 simple symmetric random walk on Zd

The Laplace transforms of the v0(t, 0) and the pt(0) are

v̂0(λ) =

∫ ∞

0

e−λtv0(t, 0)dt, p̂(λ) =

∫ ∞

0

e−λtpt(0)dt (219)

Then if we take Laplace transform of the (218) and solve for v̂0(λ) we get the following:

v̂0(λ) =
1

λ
· ρ

ρ+ γp̂(λ/ρ)
(220)

The local central limit theorem for continuous time simple random walks (for d = 1, 2) tells us that
pt(0) =

(
d

2πt

)d/2
(1 + o(1)) with t→ ∞, which gives us the following asymptotics as λ→ 0+
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p̂(λ) =



1√
2λ
(1 + o(1)), d = 1,

ln( 1
λ )
π (1 + o(1)), d = 2,

Gd(0)(1 + o(1)), d ≥ 3,

(221)

where Gd is a green function associated with the random walk.

The previous asymptotics result for p̂(λ) is converted to the following asymptotics for v̂0(λ) by (219) and (221):

v̂0(λ) =



√
2ρ
γ · 1√

λ
(1 + o(1)), d = 1,

πρ
γ · 1

λ ln( 1
λ )

(1 + o(1)), d = 2,

ρ
ρ+γGd(0)

· 1
λ (1 + o(1)), d ≥ 3.

(222)

Thus by Karamata’s Tauberian theorem (given that v̂0(λ) is monotonically decreasing) we get the following
asymptotics for the original:

v0(t, 0) =



1

γ

√
2ρ

π
· 1√

t
(1 + o(1)), d = 1,

πρ

γ
· 1

ln t
(1 + o(1)), d = 2,

ρ

ρ+ γGd(0)
(1 + o(1)), d ≥ 3,

(223)

which if integrated out in (216) gives the Theorem 7.3 for the case κ = 0 and γ ∈ (0,∞).

For the κ = 0 and γ = ∞, we have the following:

Eη
[
Zγt,η

]
= P(η(s, 0) = 0∀s ∈ [0, t]) = exp

−ν
∑
y∈Zd

ψ(t, y)

 (224)

with ψ(t, y) = PYy (∃s ∈ [0, t] : Y (s) = 0).

Note that ψ(t, y) solves the following system
∂

∂t
ψ(t, y) = ρ∆ψ(t, y), y ̸= 0, t ≥ 0

ψ(·, 0) ≡ 0

ψ(0, ·) ≡ 1

(225)

Thus if we sum it up, given the fact that
∑
x∈Zd ∆ψ(t, x) = 0 ,the

∑
y∈Zd ψ(t, y) solves the system:

d

dt

∑
y∈Zd

ψ(t, y) = −ρ∆ψ(t, 0) = ρ (1− ψ (t, e1)) = ρϕ (t, e1) (226)

where e1 = (1, 0, . . . , 0), ϕ (t, e1) := 1− ψ (t, e1)

Thus, going back to (224):

Eη
[
Zγt,η

]
= exp

{
−νρ

∫ t

0

ϕ (s, e1) ds

}
(227)
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By going though calculations of generating functions and Tauberian theorems (Sect. 2.4 of [19]), the ϕ (t, e1)
(the probability that a rate 1 random walk that starts from e1 doesn’t hit 0 until time ρt) follows the
asymptotics :

ϕ (t, e1) =



√
2

πρt
(1 + o(1)) d = 1

π

ln t
(1 + o(1)) d = 2

Gd(0)
−1(1 + o(1)) d ≥ 3

(228)

Thus, by (227) we get the following asymptotics:

lnEη
[
Zγt,η

]
=



−ν
√

8ρt

π
(1 + o(1)), d = 1,

−νπ ρt
ln t

(1 + o(1)), d = 2,

−ν ρt

Gd(0)
(1 + o(1)), d ≥ 3,

(229)

which is a result for the Theorem 7.3 for the case κ = 0 and γ = ∞.

Now, we will give sharp lower and upper bounds for the survival probability in d = 1, 2 for the general κ > 0
and use the results that we got for κ = 0 to do so.

Firstly, let us get the lower bounds of the following form. For any γ ∈ (0,∞], κ ≥ 0, ρ > 0, and v > 0, we
should aim for following bounds

lim inf
t→∞

1√
t
logEη

[
Zγt,η

]
≥ −ν

√
8ρ

π
, d = 1,

lim inf
t→∞

ln t

t
logEη

[
Zγt,η

]
≥ −νπρ, d = 2.

(230)

We can restrict Random walk to a certain strategy to get these lower bounds. Let us constrict random walk to
stay up to time t inside a ball BRt

of radius Rt (which also will be a scaling function used in the argument)
around the origin such that this ball remains clear of the traps until the time t. This leads us to the lower
bound that is independent of γ and κ (due to ball being devoid of the traps). In the dimensions d = 1, 2 this
bound is sharp since it is easier to create space-time regions clear of traps

Let Et denote the event that η(x) = 0 for all x ∈ BRt
. Let Ft denote the event that Xx

j (s) /∈ BRt
for all

x /∈ BRt
, 1 ≤ j ≤ η(x), and s ∈ [0, t]. Lt Gt denote the event that X with X(0) = 0 does not leave BRt

before
time t. Immediately, it is evident that

Eη
[
Zγt,η

]
≥ P (Et ∩ Ft ∩Gt) = P (Et)P (Ft)P (Gt) (231)

Now let us estimate these three events, beginning with Et:

P (Et) = e−v(2Rt+1)d (232)

For the P (Gt) we have to choose scale and use Donsker’s invariance principle. Choose scale 1 ≪ Rt ≪
√
t as

t→ ∞. Now by Donsker’s invariance principle there exists α such that:

inf
x∈B√

t/2

P
(
X(s) ∈ B√

t∀s ∈ [0, t], X(t) ∈ B√
t/2 | X(0) = x

)
≥ α. (233)
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Finally by partitioning [0, t] into intervals of length R2
t , using Markov property we get the following estimation

for

P (Gt) ≥P
(
X(s) ∈ BRt∀s ∈

[
(i− 1)R2

t , iR
2
t

]
, and X(iR2

t ) ∈ BRt/2, i = 1, 2, · · · ,
⌈
t/R2

t

⌉)
≥

≥αt/R
2
t = et lnα/R

2
t .

(234)

For the final event estimation P (Ft), denote F̃t as the event that Xx
j (s) ̸= 0 for all x ∈ Zd, 1 ≤ j ≤ η(x), and

note that P(F̃t) is exactly Eη
[
Zγt,η

]
with κ = 0 and γ = ∞ for which we already proved the asymptotics. Next

we will compare P (Ft) and P(F̃t).

Denote τBRt
as a stopping time for X (here we mean random walking trap as X) to hit BRt , and τ0 as

stopping time for X (here we mean random walking trap as X) to hit 0. Now,

lnP (Ft) = −ν
∑

y∈Zd\BRt

PXx
(
τBRt

≤ t
)

(235)

lnP(F̃t) = −ν
∑

y∈Zd\B0

PXx (τB0
≤ t) (236)

Now the following holds,∑
y∈Zd\BRt

PXx
(
τBRt

≤ t
)
≥

∑
y∈Zd\BRt

PXx (τ0 ≤ t) =
∑
y∈Zd

PXx (τ0 ≤ t)−
∑
y∈BRt

PXx (τ0 ≤ t) . (237)

Thus,

lnP (Ft) ≤ lnP
(
F̃t

)
+ v

∑
y∈BRt

PXx (τ0 ≤ t) ≤ lnP
(
F̃t

)
+ v (2Rt + 1)

d
. (238)

For ϵ > 0, we have ∑
y∈Zd

PXx (τ0 ≤ t+ ϵt) ≥
∑

y∈Zd\BRt

PXx
(
τBRt

≤ t, τ0 ≤ t+ ϵt
)

≥ inf
z∈∂BRt

PXz (τ0 ≤ ϵt)
∑

y∈Zd\BRt

PXx
(
τBRt

≤ t
)
,

Dividing by the infimum term in r.h.s, we get

∑
y∈Zd\BRt

PYy
(
τBRt

≤ t
)
≤
∑
y∈Zd PYy (τ0 ≤ t+ ϵt)

infz∈∂BRt
PYz (τ0 ≤ ϵt)

, (239)

And thus by (235)

lnP (Ft) ≥
lnP

(
F̃t+ϵt

)
infz∈∂BRt

PXz (τ0 ≤ ϵt)
. (240)

Now, combining the results in (237) and (240), the fact that P
(
F̃t

)
follows the desired asymptotics with κ = 0

and γ = ∞, and that ϵ > 0 can be chosen to be arbitrarily small, this concludes in

lnP (Ft) = −v
√

8ρt

π
(1 + o(1)) = lnP(F̃t).

For Rt =
√
t/ ln t we have

lnP (Et) = −v(2
√
t/ ln t+ 1) and lnP (Gt) ≥ lnα ln t,

Substituting estimation of these probabilities in (231) results in desired lower bound (230) for d = 1
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When d = 2, firstly choose Rt = ln t. This results in infz∈∂Bln t
PXz (τ0 ≤ ϵt) → 1 as t→ ∞ . By the same

computations as for d = 1:

lnP (Ft) = −vπρ t

ln t
(1 + o(1)) = lnP

(
F̃t

)
.

With the other probabilities having asymptotics

lnP (Et) = −v(2 ln t+ 1)2 and lnP (Gt) ≥
t lnα

ln2 t

Again, substituting estimation of these probabilities in (231) results in desired lower bound (230) for d = 2

For the upper bound let us state the Pascal principle:

Lemma 7.5 (Pascal Principle) Let η be the random field generated by a collection of irreducible symmetric
random walks

{
Xx
j

}
y∈Zd,1≤j≤η(x) on Zd with jump rate ρ > 0. Then for all piecewise constant X : [0, t] → Zd

with a finite number of discontinuities, we have

Eη
[
exp

{
−γ
∫ t

0

η(s,X(s))ds

}]
≤ Eη

[
exp

{
−γ
∫ t

0

η(s, 0)ds

}]
The pascal principle tells that the survival probability is maximized when X ≡ 0 and does not move. Which
means that combining it with proof of Theorem 7.3 for the case of κ = 0 gives us the desired upper bound.
Which in turn proves the Theorem 7.3 in full generality. □
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8 Interpolation between static and dynamic traps of 1D
time-discrete model

• • • Time Renewal times

... • ⊗ • ⋆ • ⊗ • ... n = 1

• • • •

... • ⊗ • • ⋆ ⊗ • ... n = 2

• •

... ⊗ • • ⊗ • ⋆ ⊗ ... n = 3 T1 = 3

• •

... • • ⊗ • ⋆ • • ... n = 4 T2 = 4

•

0

Random walk

Z
Trap

Figure 3: Random walk in an environment with random renewal times

In the previous sections, we have discussed settings with both static and dynamic environment of traps. The
survival probability in a static setting happens to have a subexponential tail, compared to a strict exponential
decay of survival probability in a dynamic setting. Intuitively, if we slow down the dynamic environment we
should get some interpolation of survival probabilities from exponential decay to subexponential. In the
literature, very little is written regarding this phenomenon, and almost nothing is known regarding the exact
nature of such interpolation. In this section, we propose a simplified model which features interpolation
between static and dynamic environment of traps. The model of choice is a discrete-time random walk in a
discrete-time environment of hard traps on a lattice Z, where the whole environment is updated at specific
random "renewal times".

We define the random dynamic environment as follows. Let E = {0, 1}Z be a space of all possible trap
configurations on Z.

Definition 8.1 (Traps) Define the configuration of traps being i.i.d Bernoulli random variables with
probability ρ of a site being a trap and (1− ρ) of a site being a normal point. The trap is defined to be hard: it
kills the random walk if it touches it.

Now we will define the way we want the environment to be dynamic. Although, all points of the environment
should have individual "clocks" that tell the traps at which discrete timestep they should update, we will
update all traps simultaneously at random steps. One should note that between these random environment
update steps, which we will call renewal times, the environment is static. Let us formally define these renewal
times and their difference more formally

Definition 8.2 (Renewal Times) Let the sequence T1, T2, ..., Tk, ... be a random sequence of renewal times
(with T0 = 0), which dictates at which iterations the random environment η is drawn again from E,
independently of previous choices of environment.
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Assumption 8.1 (Renewal Times Differences) Define the renewal times differences τi = Ti − Ti−1 as
i.i.d random variables. The tail of τi will turn out to be important.

The main idea of this section is to gain some insight into the interpolation of survival probability asymptotics
of the random walk in a built random environment between the slow updating regime (the random
environment is such that the renewal times difference is exponential: E(τi) = ∞ ) and the fast regime (the
renewal times difference is sub-exponential E(τi) = a <∞) by controlling the distribution of τi.
Now let us define the Random Walk in this discrete setting.

Definition 8.3 (Random walk in discrete-time) For n ∈ N and S1, S2, ..., Sn, ... the {−1, 1}-valued
sequence of i.i.d. random variables, define the random walk (Xn) as:

Xn =

n∑
i=1

Si (241)

Let us also denote R(n1, n2) as a range of random walk between discrete times n1, n2.

Definition 8.4 (Random Walk Range) Range of the random walk Xn on Zd between discrete times n1, n2
is defined to be

R(n1, n2) =
∑
x

1{Xs=x,∃s∈{n1,n2}} (242)

Now that the definition of the model is complete, we would like to prove the exponential decay of survival
time after n steps and then present results regarding the proposed interpolation in future sections.

8.1 Fast environment: exponential bounds on decay of survival probability
In this subsection, we first proof the exponential decay of survival time after the random Tn update of the
environment and then use this result with a combination of the Large Deviations Theory to prove that the
survival probability after some deterministic n can be bounded exponentially from below and above.

Let S be a survival time of a random walk, then the probability that survival time is greater than n-th
environment renewal time Tn is:

P(S > Tn) (243)

Let us proceed with the first lemma of this subsection

Lemma 8.2 Let the difference of renewal times τi be i.i.d. distributed. Let Ti be random environment renewal
times with Tk =

∑k
i=1 τi. Let traps be i.i.d. Bernoulli random variables with parameter ρ. Then the following

holds
P(S > Tn) =

(
Eτ1

[
(1− ρ)R(0,τ1)

])n
where R(0, τ1) is the range of the random walk from time 0 to a first random renewal time T1 = τ1.

Proof: Let us first note that

P(S > Tn) = ETi (P(S > Tn|Ti, 0 ≤ i ≤ n− 1)) (244)

where we condition inside term on the collection of known collection of Ti’s up to Tn.
The survival time probability conditioned on a collection of Ti’s essentially is the product across all Ti’s
collection of the probabilities that the environment, which is static between renewal times Ti’s (thus
η(x, k) = η(x) for Ti ≤ k ≤ Ti+1), from the perspective of a random walker Xk is devoid of traps. This yields
in the following expansion,

P(S > Tn|Ti, 0 ≤ i ≤ n− 1) = P((η(Xk) = 0 ∀ 0 ≤ k ≤ T1) ∩ (245)
∩(η(Xk) = 0 ∀ T1 ≤ k ≤ T2) ∩ ... (246)

...∩(η(Xk) = 0 ∀ Tn−1 ≤ k ≤ Tn)) = (247)

=

n∏
k=1

(1− ρ)R(Tk−1,Tk) (248)
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Thus the annealed survival probability of a random walk, with respect to environment renewal times, would
take the following form

P(S > Tn) = ETi (P(S > Tn|Ti)) = (249)

= ETi

(
n∏
k=1

(1− ρ)R(Tk−1,Tk)

)
ind
= (250)

ind
=
(
Eτ1

[
(1− ρ)R(0,τ1)

])n
(251)

This concludes the proof □
Now, let us prove the exponential decay for the expression P(S > Tn) using the previous lemma.

Theorem 8.3 (Survival time after random update of the Environment) Let τi be i.i.d. distributed by
law π, with finite exponential moments E(eλτ ) <∞ for some λ > 0. Let Ti be random environment renewal
times with Tk =

∑k
i=1 τi. Then the following holds

P(S > Tn) ≃ e−λ1n

where ≃ is a logarithmic equivalence defined as in (19)

Proof: Proving the above statement can be done by proving that the following limit

lim
n→∞

1

n
lnP(S > Tn) < 0

is finite and negative.

We can do it, utilizing the previous Lemma 8.2

lim
n→∞

1

n
lnP(S > Tn) = lim

n→∞

n

n
lnEτ1

[
(1− ρ)R(0,τ1)

]
= lnEτ1

[
(1− ρ)R(0,τ1)

]
=: −λ1 < 0 (252)

where we used the fact that 0 < ETi(1− ρ)R(0,τ1) < 1 with a strong inequality (since τ1 being at least 1 and
ρ < 1).

Thus we have P(S > Tn) ≃ e−λ1n. □
Let us now prove one of the important results of this section in our studies.

Theorem 8.4 Let τi be i.i.d. distributed by law π with mean E(τ) = a, and with finite exponential moments
E(eλτ ) <∞ for some λ > 0. Let Ti be random environment renewal times with Tk =

∑k
i=1 τi. Then the

following holds

lim
n→∞

1

n
lnP

(
S > Tn

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≤ ε

)
= sup
ν∈G(a,ε)

(∫
lnψdν −H(ν|π)

)
< 0 (253)

where ψ(τ) = ETi(1− ρ)R(0,τ), the set of measures G(a, ε) = {µ : a− ϵ ≤
∫
xdµ ≤ a+ ϵ}, and H(ν|π) is a

relative entropy with the strict inequality

Proof: The appropriate setup is needed for us to proceed. Let us denote by ψ(t) the following exponent of a
range of random walk:

ψ(τ) = ETi(1− ρ)R(0,τ) (254)

Now the survival probability after random time Tn conditioned on the collection Ti’s becomes the following
product

P(S > Tn|Ti, 0 ≤ i ≤ n− 1) =

n∏
i=1

ψ(τi) (255)
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Define by Λn the empirical measures of the form:

Λn =
1

n

n∑
i=1

δτi (256)

By Sanov’s theorem, since we have finite exponential moments E(eλτ ), given that τi ∼ π, we have that the
empirical measures Λn satisfies a Large Deviation Principle with the rate function I with I(µ) = H(µ|π)
where H is a relative entropy (also called Kullback–Leibler divergence) from π to µ.

P(Λn ≈ µ) ≃ e−nI(µ) (257)

Now let us derive the Large Deviation Principle for Λn for the conditioned probabilistic measures.

P(Λn ≈ µ | Λn ∈ G) ≃ e−nIG(µ) (258)

where the rate function IG(µ) is following:

IG(µ) =

{
I(µ)− infν∈G I(ν) µ ∈ G

∞ otherwise
(259)

An important note that if we have π ∈ G, then since H(µ|π) is nonnegative and relative entropy of π to itself
is zero H(π|π) = 0, then the infimum zero in the definition IG is attained, i.e.
infν∈G I(ν) = I(π) = H(π|π) = 0. Thus, if π is in G, we have the following:

IG(µ) =

{
I(µ) µ ∈ G

∞ otherwise,
(260)

It is straightforward to note the following connection between the empirical measures Λn from (256) and the
empirical means Tn/n. Along the way, we define the resulting integral as Q(·) for the sake of simplicity of the
notations in the future,

Tn
n

=

∑n
i=1 τi
n

=

∫
x
∑n
i=1 δτi(dx)

n
=

∫
x
1

n

n∑
i=1

δτi(dx) =

∫
xΛn(dx) =: Q(Λn) (261)

We proceed by looking at the quenched survival probability after said random time Tn,

P(S > Tn) = ETi (P(S > Tn|Ti, 0 ≤ i ≤ n− 1)) = ETi

(
n∏
i=1

ψ(τi)

)
= ETi

(
e
∑n

i=1 lnψ(τi)
)

(262)

Measure theoretically speaking, the sum in the power of the exponent in the above expression can be thought
of as an integral taken with respect to previously defined empirical measures. We also define the resulting
integral as F (·):

P(S > Tn) = ETi

(
e
∑n

i=1 lnψ(τi)
)
= ETi

(
en

∫
lnψ(x) 1

n

∑n
i=1 δτi (dx)

)
= E

(
en

∫
lnψ(x)Λn(dx)

)
=: E

(
enF (Λn)

)
(263)

Let us also recall that given the finite exponential moments E(eλτ ) for some λ > 0 implies that the mean
E(τ) = a being finite, and also gives us the Large Deviations Principle for the empirical mean (by Cramer
Theorem). By the weak of the large numbers the empirical mean Tn/n should be near E(τ) = a. With a little
abuse of the notation let us derive the expression for the survival probability after a random Tn conditioned
on the event |Tn/n− a| ≤ ϵ for some controllable ϵ.

P
(
S > Tn

∣∣∣∣ ∣∣∣∣Tnn − a

∣∣∣∣ ≤ ϵ

)
= E

(
enF (Λn)

∣∣∣∣ ∣∣∣∣Tnn − a

∣∣∣∣ ≤ ϵ

)
= (264)

= E
(
enF (Λn)

∣∣∣∣ a− ϵ ≤ Tn
n

≤ a+ ϵ

)
= (265)

= E
(
enF (Λn)

∣∣∣ a− ϵ ≤ Q(Λn) ≤ a+ ϵ
)

(266)

= E
(
enF (Λn)

∣∣∣ Λn ∈ G(a, ε)
)

(267)
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Note that the set G(a, ε) can be viewed as a set of measures G(a, ε) = {µ : a− ϵ ≤
∫
xdµ ≤ a+ ϵ}.

Furthermore, π is in this set G(a, ε), as
∫
xdπ = E(τ) = a which obviously satisfies a− ϵ ≤ a ≤ a+ ϵ.

Now, let us proceed by deriving the rate function for the survival probability after random renewal time
conditioned on the event that the empirical mean is close to c ̸= a.

lim
n→∞

1

n
lnP

(
S > Tn

∣∣∣∣ ∣∣∣∣Tnn − c

∣∣∣∣ ≤ ϵ

)
= lim
n→∞

1

n
lnE

(
enF (Λn)

∣∣∣ Λn ∈ G(a, ε)
)

(268)

Note that the above functional is of Varadhan’s Lemma type, by

lim
n→∞

1

n
lnE

(
enF (Λn)

∣∣∣ Λn ∈ G(a, ε)
)
= lim
n→∞

1

n
ln

∫
G(a,ε)

enF (Λn)P(dΛn) (269)

Recall that we have derived that the family of the conditioned probability measures {P(·| Λn ∈ G), n ∈ N}
satisfies the Large Deviation Principle with the rate function IG. And since π ∈ G(a, ε), we have the equality
IG(a,ε) = I, where I is the rate function for Λn. Thus by Varadhan’s Lemma, we have:

lim
n→∞

1

n
ln

∫
G(a,ε)

enF (Λn)P(dΛn) = sup
ν∈G(a,ε)

(F (ν)− IG(ν)) (270)

Finally, substituting everything:

sup
ν∈G(a,ε)

(F (ν)− I(ν)) = sup
ν∈G(a,ε)

(∫
lnψdν −H(ν|π)

)
(271)

Note that if the optimal ν = π we have that I(ν) = H(ν|π) = H(π|π) = 0 and F (ν) = F (π) < 0, otherwise, if
the optimal ν ̸= π we have F (ν) ≤ ln(1− ρ) < 0 thus supν∈G(a,ε)(F (ν)− I(ν)) < ln(1− ρ) < 0. Thus

sup
ν∈G(a,ε)

(F (ν)− I(ν)) < 0 (272)

□
Now given the previous results, it is possible to exponentially bound the survival probability from below and
above.

Theorem 8.5 (Exponnetial lower and upper for survival probability) Let τi be i.i.d. distributed by
law π, with finite exponential moments E(eλτ ) <∞ for some λ > 0. Let Ti be random environment renewal
times with Tk =

∑k
i=1 τi. The survival probability after some deterministic time n can be bounded as follows

e−λ∗n ≤ P(S > n) ≤ e−λ
∗n, λ∗, λ

∗ > 0 (273)

Proof: To obtain the exponential upper bound, we can decompose the survival probability as follows.

P(S > (a+ ε)n) = P
(
S > (a+ ε)n

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≤ ε

)
P
(∣∣∣∣Tnn − a

∣∣∣∣ ≤ ε

)
+ (274)

+ P
(
S > (a+ ε)n

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≥ ε

)
P
(∣∣∣∣Tnn − a

∣∣∣∣ ≥ ε

)
≤ (275)

≤ P
(
S > Tn

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≤ ε

)
+ P

(∣∣∣∣Tnn − a

∣∣∣∣ ≥ ε

)
≃ (276)

≃ en supν∈G(a,ε)(F (ν)−I(ν)) + enφ(ε) ≃ (277)

≃ e−λ
∗n (278)

where we used the fact that P (|Tn/n− a| ≤ ε) ≈ 1, then we have used the Lemma (8.2) to get logarithmic
equivalence of the first term and the fact that Tn/n satisfies LDP by the Cramer’s theorem to get logarithmic
equivalence of the second term by enφ(ε) with φ(ε) < 0. Then in the last line, we used the fact that the largest
exponent survives.
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Now, for the lower bound, we need to look at the P(S > (a− ε)n).

P(S > (a− ε)n) ≥ P
(
S > (a− ε)n

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≥ ε

)
≥ (279)

≥ P
(
S > Tn

∣∣∣∣∣∣∣∣Tnn − a

∣∣∣∣ ≥ ε

)
(280)

≃ en supν∈G(a,ε)(F (ν)−I(ν)) = (281)

= e−λ∗n (282)

where we have used the Theorem 8.4

Combining both results yields,

e−λ∗n ≤ P(S > n) ≤ e−λ
∗n, λ∗, λ

∗ > 0

which concludes the proof
□

8.2 Slow environment: subexponential lower bound for survival probability
In this section, we observe the interpolation between slow and fast regimes of the previously stated
discrete-time model. It is quite natural to think that if we let the difference of the renewal times to be large
enough, the model should start to exhibit the behavior of the static regime. Thus, we present the conditions
for the exponential and sub-exponential decay of the survival probability of the Random Walk in this discrete
model. These conditions happen to oppose each other, in a sense giving tunable instrument to switch between
sub-exponential and exponential regimes.

Let us move on to stating the conditions for the sub-exponential lower bound decay of survival time. To some
degree, the conditions on the next theorem are opposite to those of the fast regime model.

Theorem 8.6 Let τi be i.i.d. distributed with infinite exponential moments E(eλτ ) = ∞ for any λ > 0, with
P(τ > n) decaying with at most time rate of nd/d+2. Let Ti be random environment renewal times with
Tk =

∑k
i=1 τi. The survival probability after some deterministic time n

P(S > n) ≥ e−λn
d/d+2

, λ > 0 (283)

Proof: We provide a rough, but simple sub-exponential lower bound to prove this theorem.

P (S > n) ≥ P (S > n ∩ T1 > n) = P (Sstatic > n ∩ T1 > n) = P (Sstatic > n)P (T1 > n) = (284)

= P (Sstatic > n)P (τ1 > n) = e−n
d

d+2
e−α(n) (285)

Since we assume the distribution of τ , the α(n) is a parameter. We need τ to follow the sub-exponential type
of distribution such that α(n) ≤ nd/d+2, to get the sub-exponential decay of survival probability.

P (S > n) ≥ e−n
d

d+2 (286)

□
This result combined with the Theorem 8.5 proves that the model interpolates between the static and
dynamic regimes.

The interpolation logic is as follows. The Cramer’s theorem for the empirical mean Tn/n is implied by the
finiteness of the exponential moments E(eλτ ) <∞ for some λ > 0 making the survival probability decay
exponentially (in a rough sense, not strictly) as in the previous section. And in the case E(eλτ ) = ∞ for ∀λ it
implies sub-exponential decay of P(τ > n) and thus by the previous result it implies the subexponential lower
bound on the decay of the survival probability.

It is also worth mentioning that the interpolation that we get might not be abrupt, as we might not get the
sudden jump from n to nd/d+2 of the survival decays, from the nd/d+2 side. If we weaken the conditions of the
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Theorem 8.5 by letting P(τ > n) decaying with the rate α faster than nd/d+2 and slower than n then we might
get the following result in a weak form

ec1n < eα(n) ≤ P(S > n) ≤ ec2n
d/d+2

Essentially, this would result in an interpolation between the static and dynamic regimes of the model. If this
result is true, it also gives rise to a new question - whether the interpolation is smooth and of the same rate as
P(τ > n), or does it abruptly jump from nd/d+2 to n.
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9 Conclusion
To sum up, a wide variety of rich and rigorous mathematical toolkits, such as theory of Markov processes,
semigroups and generators theory, and the large deviations theory were studied in this thesis. Furthermore, it
was shown how these theories were applied in the quite sophisticated field of Interacting Particle Systems
through the lens of the problem regarding the Random Walk in a dynamic and static environment of traps.

A wide range of different models of random walk among dynamic random environments of traps were
discussed and studied. The collection of the results regarding the decay of survival probability of the random
walk in these environments gives a great overview of the present and past results in the literature regarding
this topic. Moreover, it gives perspective on possible future research directions.

For some models, like Independent Spin Flip, it was proven that the rate of decay of survival probability of the
random walk decays exponentially. We have also observed large deviation estimates for the occupation times
of a much more general Attractive Spin Flip model.

Also, the recent strong results from the literature regarding the exact asymptotics for the decay of the survival
probabilities of the random walk among random walking traps were presented in full generality.

In the last section, the interpolation between the static and dynamic regimes for the discrete-time model was
shown, albeit not sharp and not in a closed form. We have proved that it suffices to let renewal times
difference to be distributed sub-exponentially (at most with the nd/(d+2) rate of decay), to have the same
sub-exponential lower bound on the decay of a survival time, same as in the static regime. Furthermore, it
raises a question regarding much weaker conditions on the distribution of renewal times. Notably, it is possible
to have deterministic renewal times, which would yield the same conclusions, and would connect our results to
other papers in literature, such as "cooling" environment models. The last section suggests the following
questions that should be researched in the future:

• As the sub-exponential distribution of the renewal time difference yields a sub-exponential lower bound
on the rate of decay of survival probabilities, the question of exact sub-exponential asymptotics is open.

• Further generalizations, may include the limiting case of the model to get a continuous time model. This
would give further insights into asymptotics in the continuous-time case.

• Is interpolation, caused by letting the difference of the renewal times to be distributed subexponentially,
smooth or abrupt? Is survival probability P(S > n) decays the same as P(τ > n) in the interpolating
regime (i.e. is P(S > n) ≃ P(τ > n) if E(τ) = ∞ ?)

The overview, given by this thesis, shows that there are many still open problems regarding the Random walks
in random environemnts subfield of Interacting Particle Systems. The lack of a general approach for deriving
the survival time asymptotics in the literature, such that it would be applicable across different models with
the different environment of traps, might suggest that the models might have quite different exact asymptotics.
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