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ARTICLE

A metabolic profile of all-cause mortality risk
identified in an observational study of 44,168
individuals
Joris Deelen et al.#

Predicting longer-term mortality risk requires collection of clinical data, which is often

cumbersome. Therefore, we use a well-standardized metabolomics platform to identify

metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at

baseline 18–109), of whom 5512 died during follow-up. We apply a stepwise

(forward-backward) procedure based on meta-analysis results and identify 14 circulating

biomarkers independently associating with all-cause mortality. Overall, these associations are

similar in men and women and across different age strata. We subsequently show that the

prediction accuracy of 5- and 10-year mortality based on a model containing the identified

biomarkers and sex (C-statistic= 0.837 and 0.830, respectively) is better than that of a

model containing conventional risk factors for mortality (C-statistic= 0.772 and 0.790,

respectively). The use of the identified metabolic profile as a predictor of mortality or sur-

rogate endpoint in clinical studies needs further investigation.
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Robust predictors of intermediate- and long-term mortality may
be valuable instruments in clinical trials and medical decision-
making. Predicting mortality in the final year of the life of a

patient is generally feasible because of the abundance of available
clinical data1. There is no consensus on the ultimate set of predictors
of longer-term (5–10 years) mortality risk, since the predictive power
of the currently used risk factors is limited2, especially at higher ages.
However, it is especially this age group and follow-up time window
for which a robust tool would aid clinicians in assessing whether
treatment is still sensible. Some of the currently used risk factors for
mortality, such as systolic blood pressure and total cholesterol, show
opposite associations with mortality in the elderly (i.e., above 85
years) as compared to middle age3,4. This could be due to mortality
crossover of these risk factors or metabolic shifts that are difficult to
predict in individuals5,6, thus making them less suitable for accurate
prediction of mortality in older individuals. Given the multimorbidity
among older people, predictors of intermediate- and long-term
mortality should ideally represent generic immune-metabolic health
adversity rather than only being indicators of specific pathology. The
number of molecular scores that are able to predict mortality across
all ages is currently limited.

Fischer and colleagues used a high-throughput and well-
standardized nuclear magnetic resonance (NMR) platform and
identified four metabolic biomarkers, i.e., albumin, glycoprotein
acetyls (GlycA), mean diameter for very low-density lipoprotein
(VLDL) particles and citrate that are independently associated with
all-cause and cause-specific (cardiovascular disease (CVD) and
cancer) mortality7–9. The same metabolomics platform had also
been utilized to predict CVD and type 2 diabetes10–12. Although the
initial sample size of the study by Fischer and colleagues was large,
the statistical power of the study was limited due to the relatively
small number of observed deaths (n= 684) and under-
representation of older individuals.

The current metabolomics study is the largest thus far, and
includes 44,168 individuals (from 12 cohorts), spanning a wide
age range. We first determine which metabolic biomarkers
independently associate with prospective mortality in all indivi-
duals. Subsequently, we test the association of the biomarkers
with mortality in different age strata. In the FINRISK 1997
cohort, consisting of 7603 individuals of whom 1213 died during
follow-up, we compare the predictive value of a score based on
the identified mortality-associated biomarkers with a score based
on conventional risk factors for mortality.

Results
Association of metabolic biomarkers with all-cause mortality.
The primary survival meta-analysis of the 226 metabolic bio-
markers for all-cause mortality was performed in 44,168

individuals from 12 cohorts, of whom 5512 died during follow-up
(mean follow-up time per study ranging from 2.76 to 16.70 years)
(Table 1). As depicted in Supplementary Data 1, 136 of the
biomarkers showed a significant association with all-cause mor-
tality after adjustment for multiple testing. When we subse-
quently adjusted for the 4 previously identified metabolic
biomarkers9, i.e., albumin, GlycA, VLDL particle size and citrate,
the number of significant biomarkers increased to 159 (including
the 4 previously identified biomarkers) (Supplementary Data 1).
As the majority of the associated biomarkers are highly corre-
lated, we tried to identify all independent biomarkers that were
significantly associated with mortality. For this, we used a step-
wise (forward-backward) procedure. To decrease the chance of
overfitting, we only included a subset of 63 biomarkers in this
step (Supplementary Data 2). Since the associations of the bio-
markers with mortality in the primary survival analysis were
similar in men and women (Supplementary Data 3), we per-
formed the secondary analyses in men and women combined to
increase power. After the stepwise procedure, 14 biomarkers
showed to be independently associated with mortality. For the
total lipids in chylomicrons and extremely large VLDL and small
high-density lipoprotein (HDL), the mean diameter for VLDL
particles, the ratio of polyunsaturated fatty acids to total fatty
acids, and the concentrations of histidine, leucine, valine, and
albumin a higher level is associated with decreased mortality,
while for the concentrations of glucose, lactate, isoleucine, phe-
nylalanine, acetoacetate, and GlycA the opposite applies (Table 2
and Supplementary Data 1). Of note, of the 4 previously identi-
fied mortality-associated biomarkers, only citrate was not selected
in the fully adjusted model with 14 biomarkers due to its limited
additional contribution. An increase of one unit in the metabolic
biomarker score based on the 14 identified biomarkers, which
ranges between −2 and 3 in most cohorts (see Supplementary
Fig. 1, for examples), is associated with a 2.73 times higher
mortality risk (HR= 2.73, 95% CI: 2.60–2.86, P < 1.00 × 10−132).
The forest plots for each of these 14 biomarkers, based on the
fully adjusted model, and the biomarker score are depicted in
Supplementary Figs. 2–16.

Association of biomarkers with disease-specific mortality. To
determine whether the identified biomarkers are indicators of
disease-specific mortality risk, we also explored the associations of
the biomarkers with cardiovascular, cancer, and infection-related
mortality in the FINRISK 1997 cohort. As indicated in Table 3,
the majority of the biomarkers associated with multiple mortality
outcomes in the same direction as observed for all-cause mor-
tality, including nonlocalized infections, thus representing general
markers of health and disease, although some biomarkers, such as

Table 1 Description of the cohorts included in this study

Study N Males (%) Deaths Age at inclusion (range) Mean follow-up time (SD)

Alpha Omega Cohort 568 428 (75.4%) 157 69.21 (59.31–80.94) 7.79 (2.44)
ALSPAC 4351 0 (0%) 17 47 (34–63) 5.69 (0.01)
EGCUT 10,988 4106 (37.4%) 912 46.10 (18–103) 7.97 (1.77)
ERF study 680 307 (45.1%) 107 50.44 (18.10–86.50) 10.67 (2.22)
FINRISK 1997 cohort 7603 3778 (49.7%) 1213 48.29 (24.15–74.28) 16.70 (3.23)
DILGOM study 4816 2256 (46.8%) 190 52.39 (24.06–74.18) 7.73 (0.75)
KORA F4 1790 871 (48.7%) 123 60.89 (32–81) 8.02 (1.25)
LLS nonagenarians 843 326 (38.7%) 823 97.35 (89.13–109.85) 4.03 (3.09)
LLS offspring+ partners 2241 999 (44.6%) 191 70.93 (42.54–91.25) 11.76 (1.99)
PROSPER 5329 2583 (48.5%) 467 75.30 (69.37–83.39) 2.76 (0.53)
Rotterdam Study 2963 1241 (41.9%) 1254 75.00 (52.21–98.13) 8.28 (3.18)
TwinsUK 1996 0 (0%) 58 64.58 (42.37–87.84) 4.32 (2.47)

SD standard deviation
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glucose, seem to be risk factors for a specific mortality outcome,
in this case cardiovascular-related mortality.

Association of metabolic biomarkers across the lifespan. To
investigate the association across the lifespan for the mortality-
associated biomarkers identified in this study, we performed age-
stratified mortality analyses. All 14 biomarkers that were part of the
fully adjusted model showed consistent associations with mortality
across all strata (Supplementary Data 4) and the same was true for
the metabolic biomarker score (Supplementary Fig. 17).

Mortality risk prediction accuracy of identified biomarkers. To
determine the mortality risk prediction accuracy of the 14 iden-
tified biomarkers, we generated weighted risk scores based on
conventional risk factors and on our identified biomarkers plus
sex. The weights of the risk scores were estimated in the Estonian
Biobank cohort and the FINRISK 1997 cohort was used as vali-
dation cohort to compare the mortality risk prediction accuracy
of the models. Instead of looking at the added value of the
individual biomarkers, we directly compared the two models to
determine if this single point NMR measurement on itself could
be used as a standard for risk assessment of mortality. Removal of
FINRISK 1997 from the discovery analysis resulted in similar

effect estimates as those reported in Table 2, indicating that it is
unlikely that the risk prediction analyses are influenced by
overfitting. Given the restricted follow-up time in the elderly
cohorts and the need for mortality risk indicators in the clinic at
higher ages, we investigated both 5- and 10-year mortality in all
individuals as well as only in those above 60 years of age. As
depicted in Fig. 1 and Table 4, the C-statistic was 0.065 (P=
5.48 × 10−4) or 0.040 (P= 2.48 × 10−5) larger when comparing
the model with the 14 biomarkers (C-statistic= 0.837 and 0.830)
to the model with conventional risk factors (C-statistic= 0.772
and 0.790) when looking at 5- or 10-year mortality, respectively.
The difference in the C-statistic was even larger when only
individuals above 60 years of age were included (Table 4).
Reclassification analyses showed higher integrated discrimination
improvement (IDI) (e.g., + 8.6% (P= 1.83 × 10−12) for 10-year
mortality) when comparing the model with the biomarkers to the
model with conventional risk factors (Table 4). When compared
to a model with the 4 previously identified mortality-associated
biomarkers, the model with the 14 biomarkers also showed higher
C-statistics and IDI’s for both 5- and 10-year mortality (Sup-
plementary Table 1). Since the conventional risk factors were only
partially correlated with the 14 biomarkers (Supplementary
Fig. 18), we also compared a model with the biomarkers to a
model combining the conventional risk factors and biomarkers to

Table 2 Association of the 14 identified metabolic biomarkers with all-cause mortality in the fully adjusted model

Biomarker Full name HR 95% CI P I2 P (het)

XXL-VLDL-L Total lipids in chylomicrons and extremely large VLDL 0.80 0.75–0.85 1.53 × 10−13 0.08 0.363
S-HDL-L Total lipids in small HDL 0.87 0.84–0.90 5.98 × 10−19 0.52 0.018
VLDL-D Mean diameter for VLDL particles 0.85 0.80–0.90 8.51 × 10−8 0.21 0.241
PUFA/FA Ratio of polyunsaturated fatty acids to total fatty

acids (%)
0.78 0.75–0.80 1.06 × 10−47 0.71 8.65 × 10−5

Glc Glucose 1.16 1.13–1.19 2.22 × 10−29 0.56 0.008
Lac Lactate 1.06 1.03–1.10 6.24 × 10−5 0.28 0.173
His Histidine 0.93 0.90–0.96 1.15 × 10−5 0.24 0.213
Ile Isoleucine 1.23 1.14–1.32 2.14 × 10−8 0.39 0.078
Leu Leucine 0.82 0.76–0.89 7.34 × 10−7 0.35 0.109
Val Valine 0.87 0.82–0.92 1.04 × 10−6 0.07 0.376
Phe Phenylalanine 1.13 1.09–1.17 2.39 × 10−12 0.44 0.052
AcAce Acetoacetate 1.08 1.05–1.11 1.73 × 10−8 0.35 0.108
Alb Albumin 0.89 0.87–0.92 9.96 × 10−13 0.52 0.017
GlycA Glycoprotein acetyls 1.32 1.27–1.38 7.45 × 10−41 0.45 0.046

HR hazard ratio, CI conference interval, P P value, I2 heterogeneity statistic, het heterogeneity, VLDL very low-density lipoprotein particle, HDL high-density lipoprotein. The statistics in this Table have
been generated with the R-package meta using the survival analyses results from the individual cohorts as input

Table 3 Association of the 14 identified metabolic biomarkers with all-cause and cause-specific mortality in the FINRISK
1997 cohort

Biomarker N All-cause
(HR, 95% CI, P)

Cancer
(HR, 95% CI, P)

Cardiovascular
(HR, 95% CI, P)

Nonlocalized infections
(HR, 95% CI, P)

Other
(HR, 95% CI, P)

XXL-VLDL-L 7583 0.77, 0.68–0.86, 1.00 × 10−5 0.78, 0.64–0.95, 0.016 0.85, 0.73–0.99, 0.039 0.47, 0.26–0.86, 0.014 0.57, 0.40–0.82, 0.002
S-HDL-L 7583 0.95, 0.89–1.01, 0.085 0.89, 0.80–0.98, 0.023 0.96, 0.88–1.04, 0.319 0.80, 0.60–1.07, 0.130 1.00, 0.85–1.19, 0.966
VLDL-D 7583 0.99, 0.88–1.11, 0.802 0.95, 0.78–1.16, 0.619 1.06, 0.91–1.24, 0.462 1.89, 1.01–3.54, 0.045 0.90, 0.66–1.23, 0.520
PUFA/FA 7583 0.73, 0.69–0.78, <2.22 × 10−16 0.74, 0.66–0.83, 2.31 × 10−7 0.77, 0.70–0.84, 2.77 × 10−9 0.50, 0.37–0.68, 9.01 × 10−6 0.69, 0.58–0.82, 4.06 × 10−5

Glc 7583 1.13, 1.09–1.18, 5.85 × 10−9 1.05, 0.96–1.13, 0.273 1.16, 1.10–1.22, 1.29 × 10−8 1.05, 0.85–1.29, 0.643 1.03, 0.88–1.20, 0.721
Lac 7583 1.07, 1.00–1.14, 0.038 1.02, 0.92–1.14, 0.694 1.14, 1.05–1.23, 0.003 1.08, 0.77–1.52, 0.656 0.97, 0.83–1.14, 0.727
His 7583 0.93, 0.86–0.99, 0.031 0.88, 0.78–0.98, 0.023 0.89, 0.81–0.97, 0.010 1.12, 0.78–1.62, 0.538 1.11, 0.93–1.31, 0.250
Ile 7583 1.12, 0.95–1.32, 0.180 1.07, 0.81–1.41, 0.638 1.05, 0.84–1.32, 0.661 0.57, 0.24–1.38, 0.214 1.26, 0.84–1.88, 0.270
Leu 7583 0.80, 0.67–0.97, 0.020 0.89, 0.65–1.22, 0.474 0.73, 0.57–0.94, 0.016 1.02, 0.40–2.62, 0.967 0.83, 0.53–1.30, 0.419
Val 7583 0.89, 0.79–1.02, 0.084 0.95, 0.77–1.19, 0.672 1.05, 0.88–1.26, 0.580 1.32, 0.67–2.61, 0.425 0.64, 0.48–0.86, 0.003
Phe 7583 1.21, 1.10–1.33, 4.17 × 10−5 1.14, 0.98–1.33, 0.087 1.28, 1.13–1.44, 7.61 × 10−5 1.21, 0.75–1.96, 0.437 1.07, 0.84–1.36, 0.575
AcAce 7583 1.06, 1.00–1.13, 0.038 1.04, 0.94–1.15, 0.441 1.07, 0.99–1.15, 0.096 1.23, 0.90–1.69, 0.191 1.11, 0.96–1.28, 0.167
Alb 7583 0.89, 0.83–0.96, 0.003 0.90, 0.79–1.01, 0.084 0.88, 0.79–0.97, 0.009 0.81, 0.55–1.17, 0.261 1.00, 0.83–1.21, 0.997
GlycA 7583 1.41, 1.26–1.57, 5.75 × 10−10 1.35, 1.12–1.61, 0.001 1.36, 1.18–1.57, 3.13 × 10−5 2.03, 1.15–3.59, 0.015 1.52, 1.16–2.01, 0.003

The number of (cause-specific) deaths were 1210 (all-cause), 434 (cancer), 687 (cardiovascular), 43 (nonlocalized infections), and 189 (other). N number of samples, HR hazard ratio, CI conference
interval, P P value. The statistics in this Table have been generated with the R-package survival
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see if the addition of conventional risk factors could further
improve the mortality risk prediction accuracy. However, this was
not the case (Supplementary Table 2).

Reproducibility and validation of metabolic biomarkers. The
reproducibility of the quantification of the 14 identified bio-
markers, which was determined using previously generated in-
house NMR from the Leiden Longevity Study (LLS) offspring+
partners and nonagenarians13,14, was very good (all r > 0.8,
Supplementary Fig. 19). This, in combination with the previously
published validation of some additional identified biomarkers
with other techniques (i.e., the ratio of polyunsaturated fatty
acids to total fatty acids and the concentrations of albumin and
GlycA)10,15,16, and the provided data on the consistency of the
identified mortality-related small molecules (i.e., the concentra-
tions of glucose, lactate, histidine, isoleucine, leucine, valine, and
phenylalanine) as measured with other widely used metabolomics
platforms (i.e., Metabolon and Biocrates, Supplementary Table 3)

show evidence of high analytical consistency with other
biomarker assays, providing confidence that our findings should
be reproducible when the metabolic biomarkers would be
measured using other metabolomics platforms or techniques.

Discussion
By performing high-throughput metabolic biomarker profiling in
44,168 individuals from 12 cohorts, we identified a set of 14
biomarkers independently associating with all-cause mortality.
The associations of these biomarkers were consistent in men and
women and across age strata. The identified biomarkers represent
general health up to the highest ages rather than specific disease-
related death causes. In combination, these biomarkers clearly
improve risk prediction of 5- and 10-year mortality as compared
to conventional risk factors across all ages. These results suggest
that metabolic biomarker profiling could potentially be used to
guide patient care, if further validated in relevant clinical settings.

Our results show that the use of an affordable, well-standar-
dized, and high-throughput NMR platform measuring multiple
biomarkers leads to a high mortality risk prediction accuracy. We
observed similar effects of the biomarkers on mortality in the
cohorts using either EDTA plasma (Alpha Omega Cohort, ERF
study, FINRISK 1997 cohort, DILGOM study, LLS non-
agenarians, LLS offspring+ partners, PROSPER, and Rotterdam
Study) or serum (ALSPAC, EGCUT, KORA F4, and TwinsUK).
In addition, the associations of the identified biomarkers with
mortality are independent of the sex, age and cause of death of
the individuals, and are thus unaffected by mortality crossover.
Hence, in comparison to conventional risk factors, such as sys-
tolic blood pressure and total cholesterol, these biomarkers seem
much more suitable for guided screening of older individuals at
risk, as surrogate endpoint in clinical trials among older indivi-
duals, and for targeted prevention of mortality.

The 14 identified biomarkers are involved in various processes,
such as lipoprotein and fatty acid metabolism, glycolysis, fluid
balance, and inflammation. Although the majority of these bio-
markers have been associated with mortality before, this is the
first study that shows their independent effect when combined
into one model. In comparison to the previous study by Fischer
et al.9, we increased the sample size and number of deaths by
fivefold and almost tenfold, respectively. This resulted in identi-
fication of more biomarkers (14 versus 4) and improved predic-
tion accuracy. We were able to replicate the associations of all
four biomarkers identified in the previous work. However, citrate
was not included in our fully adjusted model, since this biomarker
did not pass the multiple testing threshold. A possible explanation
for this could be that one, or multiple, of the currently included
biomarkers partially capture the effect of citrate, resulting in the
attenuation of the association.

The total lipids in chylomicrons and extremely large VLDL and
small HDL and the mean diameter for VLDL particles play a role
in lipid metabolism and their association with mortality is likely
caused by their involvement in the regulation of plasma trigly-
ceride levels, a known risk factor for mortality17. The association
of polyunsaturated fatty acids with different mortality outcomes
has been attributed to its variety of actions, including its anti-
inflammatory properties and inhibition of atherosclerosis18. The
association between postprandial glucose levels and mortality is
likely attributable to a loss in glycemic control19, while the
association of both albumin and GlycA with mortality has been
attributed to their role in inflammation16,20. The association
between the other identified biomarkers and mortality is less well
described, although they all play a well-known role in health and
disease21–23. Future studies should be performed to determine
which health conditions are further reflected by the identified
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Fig. 1 Mortality risk prediction accuracy of the 14 identified metabolic
biomarkers. Receiver operating characteristic curves for 5- (a) and 10-year
(b) mortality in the FINRISK 1997 cohort. The curves are based on the
predictions from the conventional risk factors (black) and the metabolic
biomarkers (red). AUC area under the curve
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metabolic biomarkers and by what mechanisms. Such research is
exemplified by previous work on the relation between metabolic
biomarkers and all-cause mortality9, which opened up new ave-
nues for research into the metabolic biomarker GlycA16.

For two of the biomarkers, i.e., the total lipids in extremely
large VLDL lipids and isoleucine, the direction of effect changes
when adjusting for the remaining 12 biomarkers. This change is
most likely due to the inclusion of GlycA and the two other
branch-chain amino acids, i.e., leucine and valine, in the model.
Adjusting for GlycA removes the correlated negative effect of the
total lipids in extremely large VLDL lipids, while adjusting for
leucine and valine removes the correlated positive effect of iso-
leucine, resulting in appearance of opposite associations for these
biomarkers. A similar effect was observed by Fischer et al.9 for
VLDL diameter after inclusion of GlycA in their model. It would
be interesting to see if a similar effect is also observed for other
phenotypes using multivariate adjusted models.

A potential limitation of our study is that the number of bio-
markers captured by our targeted NMR platform is only a frac-
tion of the metabolites in the human serum24. More complete
high-throughput metabolic biomarker platforms are available, but
these are usually more expensive. The predictive accuracy of these
more complete platforms may be compared to the one used in
this study. Efforts to increase the number of identifiable bio-
markers using inexpensive high-throughput metabolic biomarker
platforms (e.g., NMR or liquid chromatography–mass spectro-
metry) will likely result in identification of many more mortality-
associated biomarkers and, hence, improved risk prediction.

Although we were able to show a good predictive ability of our
biomarkers for mortality risk using two complementary methods
(the C-statistic and IDI), the metabolic biomarker score con-
structed is not yet suitable for classification of patients in the
clinic, since it is based on scaled biomarker values created sepa-
rately for each cohort. Future efforts should therefore be focused
on creation of a metabolic biomarker score that could be used for
clinical research based on concentration units that could be
generated using individual-level data.

In conclusion, we identified a set of 14 metabolic biomarkers
that independently associate with all-cause mortality. A score
based on these 14 biomarkers and sex leads to improved risk
prediction as compared to a score based on conventional risk
factors. This indicates that this affordable, well-standardized, and
high-throughput NMR measurement may be used to generate a
standard for risk assessment of mortality in the clinic. Such a
score could potentially be used in clinical practice to guide
treatment strategies, for example when deciding whether an
elderly person is too fragile for an invasive operation. In addition,
it may be used as a surrogate endpoint for clinical trials in older
individuals, since showing (a reduction in) the total mortality
endpoint is mostly not feasible due to the limited duration and
number of cases in a regular clinical trial. The currently used

metabolomics platform can be incorporated in ongoing clinical
studies to explore its value, opening up new avenues for research
to establish the utility of metabolic biomarkers in clinical settings.

The summary statistics of our primary survival meta-analysis
have been made publically available in the BBMRI -omics atlas:
http://bbmri.researchlumc.nl/atlas.

Methods
Study populations. The individuals included in this study were selected from the
following cohorts; Alpha Omega Cohort, Avon Longitudinal Study of Parents and
Children (ALSPAC), Estonian Biobank cohort, Erasmus Rucphen Family (ERF)
study, FINRISK 1997 cohort, Dietary, Lifestyle and Genetic Predictors of Obesity
and Metabolic Syndrome (DILGOM) study, Cooperative Health Research in the
Region of Augsburg (KORA F4) study, LLS, PROspective Study of Pravastatin in
the Elderly at Risk (PROSPER), Rotterdam Study (RS), and TwinsUK. All indi-
viduals were of European descent. A description of the cohorts is provided in
Table 1 and the Supplementary Methods.

We have complied with all relevant ethical regulations for work with human
subjects. All participants provided written informed consent, and the studies were
approved by the relevant institutional review boards.

Measurement of metabolic biomarkers. The metabolic biomarkers were quan-
tified from EDTA plasma and serum samples using high‐throughput NMR
metabolomics (Nightingale Health Ltd., Helsinki, Finland). This method provides
simultaneous quantification of routine lipids, lipoprotein subclass profiling with
lipid concentrations within 14 subclasses, fatty acid composition, and various low‐
molecular metabolites, including amino acids, ketone bodies, and gluconeogenesis-
related metabolites, in molar concentration units. Details of the experimentation
and applications of the NMR metabolomics platform have been described
previously8,25. Several of the metabolic biomarkers have already been validated
with other techniques (i.e., routine clinical chemistry assays, gas chromatography,
an enzymatic method, and/or mass spectrometry)8,10,15,16,26. Furthermore, the
metabolic biomarkers measured using the Nightingale Health platform have been
used in numerous published epidemiological studies (see https://nightingalehealth.
com/publications for an overview). The genetic work based on the Nightingale
Health platform also underscores that the labels given to the metabolic biomarkers
are correct and are associated with biologically relevant and plausible genes27–29.
For the analyses in this study we first used all 226 available measurements,
including the highly correlated lipid subclasses and compositions (for a full list see
Supplementary Data 2). Due to the high correlation among the measurements, the
selection of independently associated biomarkers was based on a subset of 63
biomarkers to prevent overfitting. The selection of these biomarkers was based on
previous studies using this platform and the list comprises the total lipid con-
centrations, fatty acid composition, and low-molecular-weight metabolites,
including amino acids, glycolysis-related metabolites, ketone bodies and metabo-
lites involved in fluid balance and immunity (Supplementary Data 2)10,12.

Statistical analyses. For each study, a value of one was added to all biomarkers
containing zeroes (i.e., x+ 1), which indicates the value was below the detection
limit. Subsequently, all biomarkers were log-transformed and scaled to standard
deviation units, separately per study. Similar to the previous study by Fischer et al.,9

a Cox proportional hazards model with age at blood sampling as the time scale, was
used to determine the associations of the biomarkers with all-cause mortality. In
addition, the basic models were adjusted for age at blood sampling, sex and study-
specific covariates that are related to demography and relatedness of the included
individuals. Age at blood sampling was included in the model to make the results
directly comparable with the age-stratified analyses (see below) in which the
follow-up time of some individuals encompassed multiple age groups, so the age at
sampling could have been before the age at start of the age group. To check for
differences between sexes, we also performed sex-stratified analyses.

Table 4 Results of the discrimination and reclassification analyses for all-cause mortality in the FINRISK 1997 cohort comparing
the conventional risk factor score with the metabolic biomarker score

Follow-up time
(years)

Age Conventional risk factor
score C-statistic

Metabolic biomarker
score C-statistic

Difference in C-statistic IDI

5 All 0.772 0.837 0.065 ± 0.019, P= 5.48 × 10−4 5.9 ± 1.9%, P= 0.001
5 >60 0.626 0.732 0.105 ± 0.027, P= 0.0001 8.6 ± 2.1%, P= 3.20 × 10−5

10 All 0.790 0.830 0.040 ± 0.010, P= 2.48 × 10−5 8.6 ± 1.2%, P= 1.83 × 10−12

10 >60 0.650 0.715 0.065 ± 0.014, P= 3.29 × 10−6 11.9 ± 1.5%, P= 1.13 × 10−14

The estimates for the risk scores were derived from the Estonian Biobank cohort. The conventional risk factor score, included sex, body mass index, systolic blood pressure, total cholesterol, high-density
lipoprotein (HDL) cholesterol, triglycerides, creatinine, smoking status, alcohol consumption, and prevalent diabetes, cardiovascular disease, and cancer. The metabolic biomarker score, included total lipids
in extremely large very low-density lipoprotein particle (VLDL), total lipids in small HDL, VLDL diameter, ratio of polyunsaturated fatty acids to total fatty acids, glucose, lactate, histidine, isoleucine, leucine,
valine, phenylalanine, acetoacetate, albumin, glycoprotein acetyls, and sex. IDI integrated discrimination improvement. The statistics in this Table have been generated with custom-made functions in R
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For the secondary analyses, we additionally adjusted the basic model for the 4
metabolic biomarkers previously reported by Fischer et al.,9 i.e., albumin, GlycA, the
mean diameter for VLDL particles and citrate (step 1), as well as 11 of the
independently associating biomarkers discovered in the current study, i.e., the total
lipids in chylomicrons and extremely large VLDL and small HDL, the ratio of
polyunsaturated fatty acids to total fatty acids, and glucose, lactate, histidine,
isoleucine, leucine, valine, phenylalanine, and acetoacetate levels (step 2). To select
the biomarkers used for adjustment in step 2, we performed a stepwise
(forward-backward) procedure based on successive rounds of meta-analyses. In
each round we added to the model the unselected biomarker that showed the lowest
P value in the previous round of the stepwise procedure (forward step). Next, we
removed biomarkers from the model if the previous step resulted in an increase of
the P value above the threshold (backward step). We stopped the procedure once all
unselected biomarkers showed a P value above the threshold in the working model.
As threshold we used the Bonferroni-adjusted P value to adjust for multiple testing
(see below). To test the combined effect of the 14 identified biomarkers, we also
created a metabolic biomarker score. To this end, the log-transformed and scaled
biomarkers were multiplied by their weights, based on the meta-analyses results (i.e.,
ln(hazard ratio) from Table 2), and subsequently summed.

For the age-stratified analyses, samples were divided into age groups of <60,
60–70, 70–80, 80–90, and >90 years. Some samples were used multiple times, since
their follow-up time encompassed two, or even three, age groups.

To determine the predictive value of the identified mortality-associated
biomarkers, we constructed four weighted risk scores. The weights for the risk
scores were based on the Estonian Biobank cohort (Supplementary Table 4) to
avoid overestimation. The selection of the Estonian Biobank as training set was
based on the fact that this was the largest dataset in our study containing data on
most conventional risk factors for mortality, with the exception of C-reactive
protein. The selection of conventional risk factors was based on the previous study
by Fischer et al.9 using the same dataset. The first risk score contains the
conventional risk factors (i.e., sex, body mass index, systolic blood pressure, total
cholesterol, HDL cholesterol, triglycerides, creatinine, smoking, alcohol, prevalent
diabetes, prevalent CVD, and prevalent cancer). The second risk score contains our
14 identified independent mortality-associated biomarkers plus sex. The third risk
score contains the four previously identified mortality-associated biomarkers plus
sex. The fourth score contains our 14 identified independent mortality-associated
biomarkers and the conventional risk factors (excluding total cholesterol, HDL
cholesterol, triglycerides, and creatinine, since they were also part of the
Nightingale Health platform). Age at sampling was not included in the risk scores,
since this was used as the time scale. The predictive ability of the weighted risk
scores was tested in the FINRISK 1997 cohort. We used two measures to assess the
predictive value of the risk scores: (1) C-statistics and (2) IDI30,31.

Biomarkers were considered significant when the P value was below the
Bonferroni-adjusted threshold of 2.21 × 10−4 (0.05/226), which takes into account
that we tested 226 biomarkers. The P values for the difference between sexes and
age strata were calculated using meta-analyses heterogeneity statistics (I2). The
survival analyses in the individual cohorts were performed using R and STATA/SE
11.2 (StataCorp LP, College Station, TX, USA), while the meta-analyses were
performed using a fixed-effect model implemented in the R-package meta. The
discrimination and reclassification analyses were performed using custom-made
functions in R.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available from the
corresponding author upon request. In addition, the quantified metabolic biomarker
datasets of the cohorts that participated in this study are available upon request through
http://www.bbmri.nl/omics-metabolomics/ (Alpha Omega Cohort, ERF study, LLS
nonagenarians, LLS offspring+ partners, and Rotterdam Study), http://www.bristol.ac.
uk/alspac/researchers/access/ (ALSPAC), https://www.geenivaramu.ee/en/biobank.ee/
data-access (EGCUT), https://thl.fi/en/web/thl-biobank/for-researchers/apply (FINRISK
1997 cohort and DILGOM study), https://epi.helmholtz-muenchen.de/ (KORA F4),
https://twinsuk.ac.uk/resources-for-researchers/access-our-data/ (TwinsUK), and the
PROSPER executive committee (J. Wouter Jukema; J.W.Jukema@lumc.nl). We are
unable to share the raw NMR data from Nightingale Health Ltd., as the company holds
the proprietary rights. The NMR data of the LLS samples that were used to test the
reproducibility of the quantification of the identified metabolic biomarkers have been
deposited in MetaboLights under accession code MTBLS974 (https://www.ebi.ac.uk/
metabolights/MTBLS974)32.

Code availability
We have provided the most important scripts that we used for the scaling of the
metabolic biomarkers, single cohort analyses (for the Alpha Omega Cohort, as example),
and meta-analyses as Supplementary Datas 5–7. The custom-made R functions used to
perform the discrimination and reclassification analyses are available from the
corresponding author upon request.
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