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SUMMARY

Coastal areas are sensitive ecosystems, which are important as natural habitat, recre-
ational areas and for protection of the hinterland. Coastal monitoring is essential in the
analysis and prediction of coastal development. Coastal monitoring has become more
urgent due to climate change and its effects on sea level and frequency of storm events.
Permanent laser scanning (PLS) provides a tool to acquire 3-dimensional point clouds
of an area nearly continuously over extended periods of time. PLS bridges the gap be-
tween incidental, in-situ measurement campaigns with high spatial detail, and frequent
monitoring via satellite data at lower spatial resolution. Methods to process the com-
plex high-resolution permanent laser scanning data are needed to find and analyse the
effects of geomorphological processes over extended periods of time and with high spa-
tial detail. This dissertation deals with the development of methods for spatio-temporal
data mining of large 4D data sets from permanent laser scanning for the application of
coastal monitoring on sandy beaches.

Two data sets of hourly 3-dimensional point clouds, acquired over periods of six months
and three years at two different locations on the Dutch coast were analysed, to identify
and assess geomorphological dynamics at the sediment surface. Each data set contains
up to 20 000 epochs capturing the dynamics of the sandy beaches in Kijkduin and Noord-
wijk.

In this thesis two methods are developed: the application of multiple hypothesis test-
ing for the estimation of minimal detectable bias and the generation of a so-called inven-
tory of trends, and the application of clustering algorithms for grouping elevation time
series. The first method using multiple hypothesis testing provides a means to define
the minimal detectable bias for an expected model behaviour of time series from perma-
nent laser scanning. This method provides a new way to detect small but persistent and
statistically significant changes in longer time series derived from 3-dimensional point
clouds. Using multiple hypothesis testing allows to identify linear changes with slopes
of 0.032 m/day and sudden changes in elevation of 0.031 m with a given discriminatory
power of 80% and significance level of 5% in 24-hour time series.

In an additional step, multiple hypothesis testing is used to reduce the complex per-
manent laser scanning data set to an inventory of trends, which consists of linear pieces
of time series, matching the predefined statistical models and corresponding parame-
ters. This method is applied to find and analyse times and areas where specific pro-
cesses such as storms, aeolian sand transport or bulldozer works occur. The inventory
of trends is particularly effective for the detection of aeolian sand transport, which has
been difficult to identify using other coastal observations because it causes small, grad-
ual deformations at the sediment surface.

The second method uses clustering algorithms to identify areas which are subject to
similar change patterns. These change patterns are then easily associated with underly-
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ing physical and anthropogenic processes, mostly tidal induced changes and bulldozer
works.

In summary, the developed methods allow to effectively detect deformations on sandy
beaches and establish their origins, such as storms, tides, anthropogenic activities or ae-
olian sand transport, with a resolution and detail that has not been achieved until now.
These results allow further analysis and interpretation of geomorphological coastal pro-
cesses. For instance, the analysis of bulldozer works in our study area leads to the con-
clusion, that not only buildings themselves, but also the associated human interventions
on the sandy beach around each building have a significant impact on coastal morphol-
ogy and possibly lead to increased erosion.



SAMENVATTING

Kustgebieden zijn kwetsbare ecosystemen. Met name Nederlandse kusten zijn belang-
rijk als natuurgebied, als recreatiegebied en voor de bescherming van het achterland.
Regelmatig monitoren van de kust is essentieel voor de analyse en de voorspelling van
kustontwikkeling. Door klimaatverandering en de effecten daarvan op het zeeniveau en
de frequentie van stormen wordt kustmonitoring steeds urgenter. Permanent laser scan-
nen (PLS) is een recent hulpmiddel om gedurende langere perioden en bijna continu
3-dimensionale puntenwolken van een gebied te verkrijgen. PLS overbrugt daarmee de
kloof tussen incidentele, in-situ meetcampagnes met een hoge ruimtelijke resolutie en
frequent waarnemen vanuit satellieten met een lagere ruimtelijke resolutie. Maar er zijn
wel methodes nodig om deze complexe permanente laserscandata met haar hoge re-
solutie en data volume te verwerken. Doel is met name het vinden en analyseren van
de effecten van geomorfologische processen over langere perioden en met veel spatieel
detail. Dit proefschrift behandelt de ontwikkeling van methoden voor spatio-temporele
data mining van grote 4D permanente laser scan datasets voor kustmonitoring op zand-
stranden.

Uitgangspunt voor dit werk vormen twee datasets met 3D puntenwolken, die met een
tussenpoos van steeds een uur werden verkregen gedurende zes maanden en drie jaar op
twee verschillende locaties, Kijkduin en Noordwijk, aan de Nederlandse kust. Deze da-
tasets, met in een geval 20.000 epochen, werden geanalyseerd om de morpho-dynamica
van het strand in kaart te brengen.

Voor dit doel worden in dit proefschrift twee methodes ontwikkeld: ten eerste wordt
statistisch testen ingezet voor de schatting van een minimaal detecteerbare afwijking
en het genereren van een zogenaamde inventory of trends. Ten tweede worden zoge-
naamde cluster algoritmes gebruikt om op elkaar lijkende tijdreeksen van hoogte data te
groeperen, in groepen van interpreteerbaar gedrag. De eerste methode biedt een manier
om de minimaal detecteerbare afwijking te bepalen voor tijdreeksen uit permanente la-
serscanning met een vooraf gegeven gedrag. Deze methode biedt een nieuwe manier
om kleine, maar langdurige en significant relevante veranderingen te detecteren in lan-
gere hoogte tijdreeksen verkregen uit een reeks van 3D puntenwolken. Met behulp van
deze methode kunnen lineaire veranderingen met hellingen vanaf 0,032 m/dag en plot-
selinge veranderingen in hoogte vanaf 0,031 m worden geïdentificeerd met een gegeven
onderscheidend vermogen van 80% en een significantieniveau van 5% in tijdreeksen van
een dag bestaande uit 24 achtereenvolgende 3D puntenwolken.

Na ontwikkeling van deze methode van meervoudige hypothesetests wordt deze ver-
volgens gebruikt om de complexe permanente laserscan dataset te reduceren tot een
inventory of trends. Deze inventaris bestaat, voor verschillende locaties op het strand,
steeds uit lineaire stukken tijdreeks, die overeenkomen met de vooraf gedefinieerde sta-
tistische modellen en bijbehorende parameters. Deze methode wordt toegepast om tij-
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den en gebieden te vinden, waar specifieke processen zoals stormen, wind gedreven
zandtransport of bulldozerwerkzaamheden, starten, plaatsvinden en ook weer ophou-
den. Deze inventarisatie is vooral effectief voor de detectie van wind gedreven zand-
transport, dat moeilijk te identificeren is met andere waarnemingsmethodes, omdat ma-
tige wind slechts kleine en geleidelijke verandering veroorzaakt. De tweede methode
gebruikt cluster algoritmes om locaties bij elkaar te zoeken, die op een vergelijkbare
manier veranderen. Deze gegroepeerde veranderingen kunnen vervolgens gemakkelijk
in verband worden gebracht met de onderliggende fysische en antropogene processen,
meestal veroorzaakt door het getij of door bulldozers.

Samenvattend kunnen we stellen dat de ontwikkelde methoden het mogelijk maken
om veranderingen op zandstranden effectief te detecteren en bovendien de oorsprong
van de veranderingen vast te stellen, zoals stormen, getij, menselijke activiteit of wind
gedreven zandtransport. Bovendien maakt de combinatie van deze methodes met de
gegeven dataset het mogelijk dit te doen met een resolutie en een mate van detail die
tot nu toe nog niet bereikt waren. Deze resultaten maken de weg vrij voor verdere ana-
lyse en interpretatie van morpho-dynamische kustprocessen. De analyse van bulldozer-
werkzaamheden in ons studiegebied leidt bijvoorbeeld tot de conclusie dat niet alleen
de bebouwing zelf, maar ook het bijbehorend menselijke ingrepen op het strand rond elk
gebouw een belangrijke invloed heeft op de kust en wellicht lokaal leidt tot meer erosie.



ZUSAMMENFASSUNG

Küstengebiete sind empfindliche Ökosysteme, die als natürlicher Lebensraum, als Erho-
lungsgebiete und zum Schutz des Hinterlandes wichtig sind. Das regelmäßige Monito-
ring der Küstengebiete ist für die Analyse und Vorhersage künftiger Veränderungen von
entscheidender Bedeutung. Infolge des Klimawandels und seiner Auswirkungen auf den
steigenden Meeresspiegel und die Häufigkeit von Sturmereignissen, gewinnt das Mo-
nitoring der Küstengebiete zusätzlich an Bedeutung. Das permanente Laserscanning
(PLS) ermöglicht die nahezu kontinuierliche Erfassung dreidimensionaler Punktwolken
eines Gebietes über längere Zeiträume hinweg. Das PLS schließt die Lücke zwischen
anlassbezogenen In-situ-Messkampagnen mit hoher räumlicher Detailgenauigkeit und
der regelmäßigen Satellitenbeobachtung mit geringerer räumlicher Auflösung. Für die
Verarbeitung der umfangreichen hochauflösenden permanenten Laserscanning-Daten
werden Methoden benötigt, mit denen die Auswirkungen geomorphologischer Prozes-
se über längere Zeiträume und mit hoher räumlicher Detailgenauigkeit ermittelt und
analysiert werden können. Diese Dissertation befasst sich mit der Entwicklung von Me-
thoden zum raum-zeitlichen Data Mining umfangreicher 4D-Datensätzen aus dem per-
manenten Laserscanning für die Anwendung des Küstenmonitorings an Sandstränden.

An zwei verschiedenen Standorten an der niederländischen Küste wurden zwei Daten-
sätze von stündlichen dreidimensionalen Punktwolken analysiert, die über einen Zeit-
raum von sechs Monaten bzw. drei Jahren erfasst wurden, um die geomorphologische
Dynamik an der Sedimentoberfläche zu ermitteln und zu beurteilen. Jeder Datensatz
enthält bis zu 20.000 Epochen, die die Dynamik der Sandstrände in Kijkduin und Noord-
wijk dokumentieren.

In der vorliegenden Arbeit werden zwei Methoden entwickelt: Die Anwendung mul-
tipler Hypothesentests für die Schätzung der minimal detektierbaren Abweichung und
die Erstellung eines so genannten Inventory of trends, sowie die Anwendung von Clus-
tering-Algorithmen zur Gruppierung von Zeitreihen der Höhe. Mit der ersten Methode,
die multiple Hypothesentests verwendet, lässt sich die minimal detektierbare Abwei-
chung für ein erwartetes Modellverhalten von Zeitreihen aus permanentem Laserscan-
ning definieren. Diese Methode bietet eine neue Möglichkeit, minimale, aber anhalten-
de und statistisch signifikante Änderungen über längere Zeiträume aus dreidimensiona-
len Punktwolken zu detektieren. Mithilfe von multiplen Hypothesentests können lineare
Veränderungen mit Steigungen von 0,032 m/Tag und plötzliche Höhenänderungen von
0,031 m mit einer gegebenen Trennschärfe von 80% und einem Signifikanzniveau von
5% in 24-Stunden-Zeitreihen erkannt werden.

In einem zusätzlichen Schritt werden multiple Hypothesentests eingesetzt, um den
komplexen Datensatz des permanenten Laserscannings auf ein Inventory of trends zu
reduzieren, das aus linearen Zeitreihen besteht, die den vordefinierten statistischen Mo-
dellen und zugehörigen Parametern entsprechen. Mit dieser Methode lassen sich Zeiten
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und Zonen ausfindig machen und analysieren, in denen bestimmte Prozesse wie Stür-
me, äolischer Sandtransport oder Baggerarbeiten auftreten. Das Inventory of trends ist
besonders effektiv für die Erkennung von äolischem Sandtransport, der mit anderen Kü-
stenbeobachtungen nur schwer zu identifizieren ist, da dieser kleine, langsame Defor-
mationen an der Sedimentoberfläche verursacht. Die zweite Methode verwendet Clus-
tering-Algorithmen, um Gebiete zu identifizieren, die ähnlichen Veränderungsmustern
ausgesetzt sind. Diese Veränderungsmuster lassen sich anschließend mit den zugrun-
de liegenden physikalischen und anthropogenen Prozessen in Verbindung bringen, vor
allem mit gezeitenbedingten Veränderungen und Baggerarbeiten.

Die entwickelten Methoden ermöglichen es, Deformationen an Sandstränden effektiv
zu erkennen und ihre Ursachen wie Stürme, Gezeiten, anthropogene Aktivitäten oder
äolischen Sandtransport mit einer bisher nicht erreichten Auflösung und Detailgenauig-
keit zu ermitteln. Diese Ergebnisse ermöglichen weitere Analysen und Interpretationen
der geomorphologischen Küstenprozesse. Die Analyse der Baggerarbeiten in unserem
Untersuchungsgebiet führt beispielsweise zu der Schlussfolgerung, dass nicht nur die
Gebäude selbst, sondern auch die damit verbundenen anthropogenen Eingriffe in den
Sandstrand um jedes Gebäude herum einen erheblichen Einfluss auf die Küstenmor-
phologie haben und möglicherweise zu verstärkter Erosion führen.



1
INTRODUCTION

1.1. MOTIVATION
Monitoring and analysing geomorphological processes in coastal areas is an integral part
of research strategies to support coastal management. When monitoring at high spatial
resolution is applied, it is typically done at low temporal resolution (e.g. yearly). PLS
allows to acquire frequent (hourly) and high spatial resolution observations in large 4D
data sets. In this work, methods for the exploitation and utilisation of these 4D data sets
are developed and applied for the analysis of dynamic coastal processes.

1.2. BACKGROUND: MONITORING COASTAL DYNAMICS
Recent developments associated with climate change have made coastal areas increas-
ingly vulnerable to extreme weather events. At the same time, a large part of the world-
wide population is living in close proximity to coastal areas (A. Luijendijk et al., 2018). Es-
pecially for a country like the Netherlands, with a large proportion of land immediately
bordering coastal areas, sustainable coastal management is essential. In order to main-
tain the protective and the recreational function of coastal areas, it is very important to
have a thorough understanding of processes that influence the evolution of coastal areas
(Ranasinghe, 2016).

Natural geomorphologic processes like heavy storm events with strong winds and high
tidal surges, currents and waves will likely increase in frequency due to climate change
(Intergovernmental Panel on Climate Change (IPCC), 2014; Nicholls et al., 2007). Coastal
areas have a protective function during storm events and the immediate effects are re-
searched and modelled extensively (see for example Callaghan et al., 2013, Grabemann
and Weisse, 2008). However, small-scale and slower processes like aeolian sand trans-
port and erosion/deposition due to tidal forces are harder to monitor and analyse. They
require consistent and frequent observation and accurate estimates of small elevation
changes (centimetre level) over extended periods of time. These processes influence the
geomorphologic long-term development of coastal areas. At the same time, these pro-
cesses are potentially influenced by rising sea levels and interrupted and disturbed by
more frequent storm events.

1
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2 1. INTRODUCTION

To protect coastal areas, ’building with nature’ solutions like nourishments, which
work with natural processes, rather than against them, are sometimes preferred over
hard structures (see for example Brand et al., 2022, Vriend et al., 2015, Schipper et al.,
2016). One famous example is the ’sand motor’, a mega-nourishment on the Dutch coast,
which is replacing regular nourishments and making use of natural processes to trans-
port sand to the required places (A. Luijendijk & Oudenhoven (Eds.), 2019). In view of
this trend towards ’building with nature’, the influence of buildings and human struc-
tures on (sandy) coasts has also been studied (see for example Bergen et al., 2021 and
Poppema et al., 2021). In these studies, the focus is on the buildings themselves, and
how their location and shape affects processes such as aeolian sand transport or dune
growth. However, these studies rarely consider human activities that are concentrated
around these buildings. Most buildings in coastal areas are frequently used and main-
tained and thus cause a large range of small-scale human interventions on the beach.
Examples of these interventions include: creating embankments for a terrace, protect-
ing a building with a sand dike before a storm and frequent clearing of access paths and
wooden decks from sand (see Figure 1.1). The long term effect of the sum of many of
these frequently repeated small-scale anthropogenic activities is underrepresented in
coastal research. That is why the long term effects are unknown and difficult to predict.

Figure 1.1: Examples of natural and anthropogenic activities in the aeolian zone of No-
ordwijk beach (NL). A: Aeolian sand transport in front of embankment around
beach bar. B: Access path covered with sand after a storm. C: Clearance of ac-
cess path with a bulldozer.

Both natural and anthropogenic drivers need to be taken into account to analyse and
model geomorphological coastal processes. Observation data of these highly dynamic
areas is therefore needed. The Dutch coastal areas are regularly monitored with the help
of remote sensing techniques. Such data is obtained in various ways, including satellite
remote sensing (radar and optical), airborne laser scanning and close range inspection
on the beach or from the water. Satellite observations using light detection and ranging
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(LiDAR), spectral or radar sensors generally occur relatively frequent (daily/weekly) but
with low spatial resolution (several 10s of meters). Airborne laser scanning and aerial
photographs are taken yearly (Jarkus data set Rijkswaterstaat - Dutch Ministery of In-
frastructure and Water Management, 2022) with a high spatial resolution (sub-meter).
Inspections are carried out incidentally. However, often visual inspections are not ex-
act and it is difficult to derive quantitative measurements for analysis. Photogrammetry
from an instrument or a vehicle on the beach or a drone is used for incidental studies.
Permanently installed cameras have been utilised for regular and high frequency ob-
servations, but with low spatial resolution and low level of detail (Davidson et al., 2007;
Holman & Stanley, 2007).

Figure 1.2: A: Beach profile with division into intertidal area, aeolian zone and dunes. B:
Illustration of the main physical processes driving changes at the sediment
surface in the different zones in sandy coastal areas.

1.3. PERMANENT LASER SCANNING

There is a gap between low frequency, high resolution observations from airborne re-
mote sensing and incidental in-situ observations on one hand, and higher frequency,
but low resolution observations from satellite remote sensing on the other hand. To
bridge this data gap, permanent laser scanning (PLS) was introduced by Vos et al., 2017:
A terrestrial laser scanner (TLS) is mounted at a fixed position for an extended period of
time, acquiring data of the same scene regularly and with high temporal frequency. At
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each epoch a 3-dimensional point cloud is acquired using LiDAR, which represents the
current shape of the observed area, as well as its reflectivity. LiDAR is a well established
technique, which makes use of the travel time of an emitted laser pulse to estimate the
distance of an object from the laser scanner. The emitted pulse is reflected and recorded
by the laser scanner, which allows to derive the position of the reflecting point of the
observed object in 3-dimensional coordinates. The collection of all these points forms a
point cloud. For a schematic illustration of this technique see Figure 1.3 and for example
Vosselman and Maas, 2010.

Figure 1.3: A: Illustration of PLS, which makes use of a permanently installed laser scan-
ner using LiDAR to estimate 3D coordinates of an object. B: Resulting re-
peated point clouds of the same scene.

The 3D representations in each point cloud over time together form a 4-dimensional
(3D + time) spatio-temporal data set. It contains the evolution of the observed area
at a high level of detail (centimetre to meter scale) and with high temporal frequency
(hourly to daily/weekly). Therefore dynamic processes like human maintenance activi-
ties in coastal areas, but also rock fall, landslide movement, snow melting on a glacier or
vegetation development can be monitored closely.

PLS provides a tool to acquire a large 4D data set which potentially samples every
change in the 3D geometry of the observed surface, as well as changes in the dielec-
tric properties of the surface, potentially related to e.g., soil moisture. Recent examples
of such data sets from PLS include

• The CoastScan data set (Vos et al., 2017; Vos et al., 2022) covering different parts of
the Dutch and Belgian coast and facilitating analysis of dynamic coastal processes.
This data set provides the input to the case studies and method development in
this study.

• A data set collected in the boreal forest in Finland (Campos et al., 2021) to observe
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and study the dynamics of the forest canopy over several months.

• A data set collected at Hintereisferner in Austria (Voordendag et al., 2023) to ob-
serve surface processes on a glacier over several years.

• A landslide monitoring site in Tirol, Austria. Monitored to derive surface changes,
analyse potential risks and test long-term high-frequency monitoring over several
months (Czerwonka-Schröder, 2023).

Each of these data sets serves a different application, but they share a common chal-
lenge: The large and unstructured data set consisting of a collection of point clouds is
demanding to manage and deriving the relevant parameters to describe observed pro-
cesses is not immediate. Dedicated methods to identify observed processes and extract
parameters to describe them are needed in order to allow utilisation of the large amount
of information contained in these data sets. Additionally, the size of the data sets poses
computational challenges, if methods are not specifically adapted.

1.4. 4D CHANGE ANALYSIS
There are well established methods for the pairwise comparison of point clouds to sup-
port change detection in geomorphologic applications. One prominent example is the
M3C2 algorithm developed by Lague et al., 2013 to compare two point clouds of complex
surfaces and determine statistically significant changes. When processing and compar-
ing a large number of point clouds this is not an efficient method. The incorporation
of the time dimension into the change analysis has been made more urgent by the ad-
vancement of techniques to acquire point clouds with high temporal frequencies and the
various applications in long-term monitoring. These data sets contain a large amount
of detailed information, but the extraction of a single process, or the analysis of a spe-
cific effect are no simple tasks and they do not rely simply on pairwise change detection.
Therefore, there is a need to develop specific methods for 4D change analysis taking into
account the large amount of estimates in four dimensions, as well as respective applica-
tions.

As the current state of the art, some methods used for comparison of several (few)
epochs from terrestrial or airborne laser scanning are applied to extract some of these
changes. Examples are the studies by Wheaton et al., 2010 and Milan et al., 2007 for
comparison of differences using digital elevation models from point clouds. However,
these methods need to be replicated for every epoch, which is inefficient. A 4D data set
from PLS contains many epochs at high temporal sampling and smaller registration er-
rors, due to the acquisition from a fixed position. Registration errors appear due to point
clouds not being perfectly aligned, i.e. registered. On the other hand, the lack of stable
reference surfaces in all three orientations and at different distances within the dynamic
observed scenes, oftentimes hinders the efficient and accurate registration of all point
clouds. Voordendag et al., 2023 analysed the resulting error budget of a long-range PLS
data set in a mountainous region including effects of environmental influences.
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A study by Anders et al., 2021 developed the so-called 4D-objects by change to extract
processes and affected regions from a PLS data set. Since a 4D data set from permanent
or frequent laser scanning is oftentimes large and challenging to analyse, they developed
their method to segment such a data set in both space and time. Starting from so-called
core points, their method finds pieces of time series that behave in similar ways and are
in the spatial vicinity of the core point using dynamic time warping distance (Berndt &
Clifford, 1994) to compare sections of time series. The segments derived through region
growing starting from the core point are the 4D-objects by change and allow the anal-
ysis of drivers and influencing factors for observed processes as well as the analysis of
patterns and typical change behaviour. In a further publication, Anders et al., 2021 suc-
cessfully demonstrate the use of their method for the detection of dynamic process on a
sandy beach. Another application is the detection of erosion pattern of a snow covered
alpine area (Anders et al., 2022). However, the collection of the 4D-objects by change is
not easily interpreted or analysed and favours most pronounced and spatially connected
changes. Some long-term processes spread out over several locations might be missed.
A method to cluster and bring order into 4D-objects by change is presented by Hulskem-
per et al., 2022.

A study by Lindenbergh and Hanssen, 2003 uses testing theory to group time series
of several epochs of elevation estimates from airborne laser scanning. They successfully
detect and distinguish time series representing surface processes such as beach nourish-
ments or marine erosion. A clear challenge was here the detection of start and end of a
process and varying duration and time scales of surface activities, which did not always
match the pre-defined length of the time series.

A different application was investigated by Weidner et al., 2021, who developed a clus-
tering approach to track trees in laser scanning data in order to monitor a landslide. The
landslide movement was tracked with point clouds from laser scanning using an unsu-
pervised decision tree algorithm to group relevant time series and subsequently estimate
the observed displacement. Clustering of time series was also used by Puttonen et al.,
2019, who use nearest neighbours clustering to group time series of trees. The grouped
time series are analysed to monitor and compare the circadian rhythms of different trees.
Zoumpekas et al., 2021 compare different supervised machine learning methods for the
automatic detection of rock fall in a data set from frequent laser scanning covering sev-
eral epochs. They find different methods are suitable for different cases, but establish
two successful examples for the classification of rock fall events. They also conclude that
each specific application needs reevaluation of the methods and parameters used and
that general recommendations and strategies are not obvious from their case studies.

The main challenge for existing methods is to observe the generally unknown physical
processes that are interacting which each other and often are superimposed in space and
time. The nature of many of the observed change patterns on sandy beaches, but also
in the snow, on top of a glacier, or on a landslide, could be described as a Langrangian
process. In theory, the movement of each particle of sand (or snow, soil/rock) could be
tracked. In practice however, these processes are observed as Eulerian changes, where
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at a fixed location the evolution of height changes is observed and quantified. Con-
sequently, the identification and separation of each dynamic process witch associated
change pattern is challenging. The error estimation of each individual observation as
well as the temporal evolution and correlation of observations in time and space add to
the challenges. A specific opportunity arises from the long-term observation of small-
scale and slowly developing processes.

1.5. LIMITATIONS
One of the original ideas at the start of the research project related to this study, was to
use supervised machine learning (classification) or deep learning to detect and identify
change pattern in the larger 4D PLS data sets. However, after some attempts and careful
consideration, the focus of this study lies on the application and adaptation of other
more conventional methods to be used for this purpose. The data sets provide a large
amount of point clouds, but considering for example major storm events, three years of
observations do not yield enough training data. With more understanding of the PLS
data, the necessary (pre-)processing and the acquisition of more training data, the use
of supervised machine learning might be a promising opportunity.

During the course of the research project, it became clear that many aspects of the ac-
quisition and pre-processing of the data sets could potentially be improved. However,
the analysis and application of the present data set was prioritised over the optimisation
of data acquisition and set-up or registration method. An in depth error analysis includ-
ing all correlation effects is also not part of this study and would require more additional
data from other sensors.

1.6. OBJECTIVES AND RESEARCH QUESTIONS
The need for an efficient method to extract relevant parts of a 4D data set from PLS in
order to provide information and interpretation on the observed processes is leading the
research of this study.

How can geomorphologic processes be identified and quantified in a 4D spatio-temporal
data set from permanent laser scanning?

This main research question is answered for an application in monitoring a typical
part of the Dutch coast. At two different locations in the Netherlands a 4D spatio-temporal
data set is acquired with PLS in order to study dynamic processes, support coastal man-
agement, and analyse the effects of small-scale, but frequent anthropogenic activities.
The permanently installed laser scanner on the coast of Noordwijk, The Netherlands, is
shown in Figure 1.4 together with a point cloud of the sandy beach and dune area.

To develop an exhaustive method for the extraction of geomorphologic processes from
a 4D spatio-temporal data set for the exemplary case of the Dutch coast, the following
sub-questions were addressed:
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Figure 1.4: A: Permanently installed laser scanner overlooking the beach-dune system in
Noordwijk, The Netherlands. B: Point cloud of the beach-dune system visible
in A. The sandy beach appears in red and yellow and the dunes in blue.

(Q1) What influences the uncertainty of height estimates from permanent laser scanning
on a sandy beach? (Chapter 2)

Even though the terrestrial laser scanner is recording range estimates, changes in height
of the sediment surface are considered for this research. Influences on the uncertainty of
height estimates from airborne and (mobile) terrestrial laser scanning have been anal-
ysed in detail in previous works (see for example Bitenc et al., 2011). However, the spe-
cific challenges and opportunities of the permanently installed laser scanner set-up are
still subject of ongoing research. The main influences on uncertainty of height estimates
from PLS data were analysed and contributions to estimation errors when observing a
dynamic scene on a sandy beach were quantified.

(Q2) Which change patterns at the coastal sediment surface can be identified with per-
manent laser scanning? (Chapter 2 and 4)

PLS allows to observe the sediment surface of a coastal area with high temporal and spa-
tial resolution. This provides lots of opportunities to monitor coastal processes, such
as aeolian sand transport, tidal erosion or human interference for example with bull-
dozer works. It is then investigated to which extent and under which conditions dynamic
coastal processes can be monitored and quantified with the use of PLS. Here the focus
lies specifically on the identification of the underlying driving forces (aeolian, tidal or
anthropogenic) of slowly changing dynamics, such as erosion or deposition of sand over
extended periods of time.

(Q3) How can elevation time series resulting from the same process be grouped together?
(Chapter 3)

The combined point clouds from PLS allow to extract time series representing eleva-
tion evolution at the sediment surface. How these time series can be grouped together
according to their behaviour, regardless of their location and in an efficient manner is
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subject of this research. The focus of this part of our research lies on the grouping ac-
cording to change patterns and temporal evolution. This allows to form clusters of all
time series that result from the same physical process.

(Q4) How are anthropogenic activities detected with permanent laser scanning and what
is their influence on coastal development and natural dynamics? (Chapter 4)

Anthropogenic activities, such as bulldozer works to restore parts of the sandy beach
after a storm, clear access paths and terraces, or maintain recreational function of the
beach are happening frequently on most parts of the Dutch coast. The influence of these
relatively small-scale activities has been difficult to study with yearly observations and
incidental inspections. PLS allows to analyse the impact of the activities for an exem-
plary part of the Dutch coast.

1.7. OUTLINE
The methods used in this study are summarised in Figure 1.5.

Figure 1.5: Overview of study methods and chapters. Methods are represented by grey
boxes and data products are shown as white boxes with rounded corners.

Chapter 2 deals with influences on data quality for an example data set acquired in
Noordwijk, The Netherlands, to answer question (Q1). Additionally, the minimal de-
tectable displacement, measurable with a PLS system is introduced and multiple hy-
pothesis testing (MHT) for time series from PLS data is discussed. It is shown how MHT
can be used to categorise elevation time series. Further, it is addressed which processes
can be identified using MHT and how temporal scale and frequency influence the results
(research question (Q2)).
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Clustering of elevation time series from another example PLS data set is discussed in
Chapter 3. Time series of a fixed length are grouped together according to their tempo-
ral evolution. In this way, different change patterns of the sediment surface are found,
as well as all locations where these occur. Here, question (Q3) is answered and differ-
ent clustering methods on elevation time series are compared for an exemplary data set.
Anthropogenic activities, such as clearing of paths and depositing piles of sand are de-
tected as well.

Chapter 4 presents results on processing the entire three-year PLS data set acquired
in Noordwijk, to extract change processes and differentiate between natural processes
and human activities. The accumulated effect of human activities, as it can be observed
in this case study is discussed as well. To answer the main question as well as questions
(Q2) and (Q4) a collection of observed processes and their properties is generated as a
so-called inventory of trends. Change processes identified as anthropogenic or aeolian
are further analysed considering their cumulative and long term effect on the observed
area.

Finally, in Chapter 5 conclusions are drawn on the main research question and the ap-
plication to the monitoring of the Dutch coast and recommendations for future research
are provided.
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MINIMAL DETECTABLE

DISPLACEMENT AT DIFFERENT

TEMPORAL SCALES IN PERMANENT

LASER SCANNING DATA ON THE

COAST OF NOORDWIJK, THE

NETHERLANDS

Mieke KUSCHNERUS, Roderik LINDENBERGH, Sander VOS,
Ramon HANSSEN

In the view of climate change, understanding and managing effects on coastal areas and
adjacent cities is essential. Permanent Laser Scanning (PLS) is a successful technique to
not only observe notably sandy coasts incidentally or once every year, but (nearly) contin-
uously over extended periods of time. The collected point cloud observations form a 4D
point cloud data set representing the evolution of the coast provide the opportunity to as-
sess change processes at high level of detail. For an exemplary location in Noordwijk, The
Netherlands, three years of hourly point clouds were acquired on a 1 km long section of a
typical Dutch urban sandy beach. Often, the so-called level of detection is used to assess
point cloud differences from two epochs. To explicitly incorporate the temporal dimension
of the height estimates from the point cloud data set, we revisit statistical testing theory.

This chapter has been published in ISPRS Open Journal of Photogrammetry and Remote Sensing, 11, 100055
(2024), Kuschnerus, Lindenbergh, Vos, and Hanssen, 2024.
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We apply multiple hypothesis testing on elevation time series in order to identify different
coastal processes, like aeolian sand transport or bulldozer works. We then estimate the
minimal detectable bias for different alternative hypotheses, to quantify the minimal el-
evation change that can be estimated from the PLS observations over a certain period of
time. Additionally, we analyse potential error sources and influences on the elevation es-
timations and provide orders of magnitudes and possible ways to deal with them. Finally
we conclude that elevation time series from a long term PLS data set are a suitable input
to identify aeolian sand transport with the help of multiple hypothesis testing. In our ex-
ample case, slopes of 0.032 m/day and sudden changes of 0.031 m can be identified with
statistical power of 80% and with 95% significance in 24-hour time series on the upper
beach. In the intertidal area the presented method allows to classify daily elevation time
series over one month according to the dominating model (sudden change or linear trend)
in either eroding or accreting behaviour.
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2.1. INTRODUCTION
In the view of climate change and the intensification of extreme weather events it is es-
sential that coastal areas are monitored regularly with high accuracy. Permanent laser
scanning (PLS) is an emerging measurement technique used to monitor natural areas in-
cluding glaciers (Kellerer-Pirklbauer et al., 2005), rockfall (Abellán et al., 2010) and coasts
(Vos et al., 2017), as well as structures such as buildings, pipelines or mines (Mukupa et
al., 2017; Vezočnik et al., 2009). PLS consists of a terrestrial laser scanner scanning fre-
quently from a fixed position. With large amounts of point cloud data becoming increas-
ingly manageable and improved instrumental set-ups, frequent terrestrial laser scanning
(TLS), airborne laser scanning (ALS) as well as PLS are becoming well-established. PLS
has the potential of detecting small scale changes in height or small deformations. The
detectable changes reach centimetre levels (Anders et al., 2019; Schröder & Nowacki,
2021; Vos et al., 2022) and time scales of several days up to years are covered in differ-
ent research projects (Schröder et al., 2022; Voordendag et al., 2021). However, at in-
creased spatial and temporal resolution, environmental influences on the measurement
system have a more pronounced effect on their performance (Kuschnerus, Schröder, et
al., 2021) and conventional methods for the determination of estimation quality, as de-
veloped for example for height estimations from ALS or TLS observations, do not always
suffice.

A short analysis of error sources for height estimates from coastal PLS is presented by
Vos et al., 2020 and Kuschnerus, Schröder, et al., 2021, who find that the strongest in-
fluence on the uncertainty in height estimates in a permanent coastal set-up during ex-
treme weather conditions comes from precipitation and strong winds, which can both
lead to data loss. Several methods are being developed to analyse geo-morphologically
relevant processes in PLS data sets (see Anders et al., 2021, Kuschnerus, Lindenbergh,
and Vos, 2021, Campos et al., 2021) without specifically considering quality of height
or displacement estimates or minimal detectable changes in elevation or displacement.
The level of detection as an indication of statistically significant surface change was de-
veloped for comparison between point clouds of two epochs by Brasington et al., 2000
and Lane et al., 2003. It is used to determine if differences between two point clouds in
any direction are statistically significant for a fixed significance level (generally chosen as
95 %). The level of detection is used in combination with Kalman-filtering to detect sig-
nificant height changes in 4D data sets by Winiwarter et al., 2023 and for the comparison
of differences between two epochs of rough surfaces with the M3C2 algorithm (Lague
et al., 2013). Methods that specifically consider multi-temporal point cloud comparison
are still being developed and improved. Therefore the following research questions are
posed to lead the research for this study:

• What is the minimal change in height on a sandy beach that can be estimated with
a given confidence with our permanent laser scanning set-up?

• How do environmental conditions contribute to the uncertainty of height esti-
mates from permanent laser scanning for the identification of change processes?

• Which change processes on a sandy beach can be observed with permanent laser
scanning and at which temporal and spatial scales?
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To answer these questions, we first introduce the properties of our specific PLS data
set, followed by the processing steps leading to time series of digital elevation models
(DEMs). Then we present the estimation of errors per grid cell of a DEM generated from
each point cloud and the level of detection of height differences between scans. Further
we adopt the multiple hypotheses testing methodology by Chang and Hanssen, 2016
for PLS data and use the model definitions for the estimation of the minimal detectable
bias (MDB) in height estimation. The results cover geometric properties of the exam-
ple data set, influences of environmental effects on the uncertainty of height estimation
and a comparison of the concept of the level of detection with the MDB. Finally, we con-
sider the detection of two geo-morphologic processes, aeolian sand transport and sud-
den changes caused by anthropogenic activities, and demonstrate the challenges of the
presented method in the intertidal area.

Figure 2.1: Location of the study site on the Dutch coast in Noordwijk, The Netherlands,
and picture of the laser scanner mounted on a hotel balcony without (A) and
with (B) protective cover.

2.2. RELATED WORK
Error sources in terrestrial laser scanning are summarised by Soudarissanane et al., 2011.
They emphasise the relevance of scanning geometry as influencing factor on height es-
timation quality and divide error sources into the following categories: scanner mecha-
nism, atmospheric conditions and environment, object properties and scanning geom-
etry. A review of commonly used performance estimation and error sources was pre-
sented by Muralikrishnan, 2021 with a focus on standardising the comparison of the
quality of different instruments under test conditions.
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Typically, accuracy of height estimations in digital elevation models (DEM) from laser
scanning is assessed with the help of real-time kinematic positioning (RTK) GNSS mea-
surements, as for example presented by Hladik and Alber, 2012 and Hodgson and Bres-
nahan, 2004. Bitenc et al., 2011 use a theoretical error model in combination with over-
lapping LiDAR point clouds from mobile mapping to generate DEMs with corresponding
error estimation. Rigorous theory on error models has been developed among others by
Glennie, 2007 and by Lichti, 2007. These models require the acquisition of extensive self-
calibration data sets under controlled laboratory conditions, which are not available in
the case of many practical applications.

More recently Kerekes and Schwieger, 2020 developed an improved elementary er-
ror model (EEM) for height estimates from laser scanning with consideration of atmo-
spheric effects on the measurements and therefore estimation accuracy. Winiwarter et
al., 2021 use error model theory to improve point cloud distance calculation based on
a modified M3C2 algorithm as presented by Lague et al., 2013, which was developed
mainly for irregular rocky surfaces, as applied for example by Zoumpekas et al., 2021
and for the comparison of two epochs. For more regular and flat surfaces Wheaton et
al., 2010 and Milan et al., 2007 extend the theory of the level of detection to quantify
uncertainty in DEMs of elevation differences (DoD) on river beds incorporating various
error sources and error propagation. These techniques can be applied to a multi-epoch
PLS data set as well, but the specific opportunities and challenges that arise from deal-
ing with (nearly) continuous elevation time series have not been considered. A recent
study by Voordendag et al., 2023 discusses the five main influences on uncertainty of
height estimates from PLS measurements of a glacier in the Alps. Their method is based
on Soudarissanane, 2016 and derives the uncertainty in height estimation per DEM grid
cell from single point measurements combined with registration errors. Williams et al.,
2018 consider a modified version of the M3C2 algorithm to detect volume change of rock
falls. Williams et al., 2018 conclude that higher temporal resolution can improve detec-
tion of instantaneous events, but simultaneously increases the accumulated estimation
error for small-magnitude long-term processes.

Hypothesis testing is a well-established statistical technique. It was introduced by
Baarda, 1968 for geodetic applications, and presented among others by Teunissen, 2006.
Lindenbergh, 2010 use hypothesis testing to group and classify elevation times series
from six consecutive point clouds. A rigorous approach on how to apply multiple hy-
potheses tests (MHT) on estimated kinematic InSAR time series was presented by Chang
and Hanssen, 2016. They define a model data base to provide multiple alternative hy-
pothesis and then use statistical testing, to identify the most likely kinematic model for
each time series. The advantages and challenges of this method for the use on a large
4D data set from laser scanning of a very dynamic area, such as the coast, have not been
discussed. We propose a simple way to use MHT for two basic models to identify geo-
morphologic processes on different time scales. The term Minimal detectable bias for
MHT was first introduced by Baarda, 1968 and is discussed in detail by Imparato et al.,
2019. The MDB gives a measure of a minimum change in the estimated quantity of a
time series that is needed in order to be identified with statistical significance.

For the comparison of two DEMs and calculating the statistical significance of the ele-
vation difference per grid cell it is commonly assumed that both height estimates in the
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respective grid cell are normally distributed. Adding the systematic registration error
σr eg and applying statistical testing using Gaussian statistics (based on Borradaile and
Borradaile, 2003) results in the level of detection (LOD) at the 95% confidence interval
as presented for example by Lague et al., 2013. For the M3C2 algorithm a normal vec-
tor is determined from a neighbourhood around the considered point. This step can be
skipped in the case of comparing two DEMs, since all height estimates of the DEMs are
measured in z-direction. Thus, the necessity of the use of M3C2 or its advanced versions
(Winiwarter et al., 2021) is absent and the only remaining step is the estimation of the
level of detection. The level of detection, LoD, between two grid cells in two DEMs with
estimated variances σ2

i and number of points per grid cell ni , i ∈ {1,2} and registration
error σr eg , as defined by Lague et al., 2013 is given by

LoD =±1.96 ·
√

σ2
1

n1
+ σ2

2

n2
+σr eg

 . (2.1)

The estimated variances contain the terrain roughness as well as measurement preci-
sion. The level of detection is therefore a statistical confidence interval at a chosen sig-
nificance level, here 95% for the difference between two independent surface elevations,
with normally distributed measurement errors. This approach has also been applied to
time series, where each height estimate per epoch was compared with the respective
level of detection to a height estimate at the reference epoch, usually the first measure-
ment (Winiwarter et al., 2023).

2.3. DATA ACQUISITION AND PROPERTIES

2.3.1. INSTRUMENT SPECIFICATIONS AND SETTINGS

The point clouds are collected with a Riegl VZ-2000 laser scanner, which is permanently
mounted on the balcony of Grand Hotel Huis ter Duin in Noordwijk, The Netherlands.
The laser scanner is mounted on a metal frame at 55.757 m height above NAP (elevation
above the Amsterdam Ordnance Datum) that is fixed to the balcony to maximise stabil-
ity. The scanner is covered with a protective housing (see Figure 2.1) to shield it from
rain, wind and dust.

range accuracy (at 150 m range) [m] 0.008
angular spacing [deg] 0.003
beam divergence [mrad] 0.3
wavelength [nm] 1550
inclination sensor

measurement accuracy [deg] 0.008

Table 2.1: Specifications of Riegl VZ-2000 laser scanner according to documentation.

The specifications and settings of the laser scanner are summarised in Table 2.1. Each
point cloud is generated by running a scan of nearly 180 degrees covering a part of the
beach of just under 1 km every hour with angular spacing of 0.03 degree.
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The system is set up with the same instrument and instrumental settings as a previous
experiment at a different location, see Vos et al., 2022.

2.3.2. DATA AVAILABILITY

area covered 250 000m2

days scanned 954
interruptions (> 24h) 21
number of points per point cloud 8.5 ·106

number of points (beach) 800 000
range (beach) 145−500 m
point density (beach) 1−40 pt/m2

footprint size (beach) 0.015−0.27 m2

incidence angle (beach) 70−90 deg

Table 2.2: Summary of data properties. The summary considers all hourly scans between
11 July 2019 and 21 June 2022.

The laser scanner generates one 3D point cloud per scan, made up of x, y, z-coordinates
which are derived by the Riegl proprietary software out of observed range, horizontal
and vertical angle data. The laser scanner also observes the intensity of the backscat-
tered signal, per point. The internal inclination sensor records inclination values during
each scan, with a frequency of 1 Hz (not matching the scanning frequency). These incli-
nation angles are used for correction of tilts in the scanner (see section 2.4.1) and have a
measurement accuracy of 0.008 degree.

The scanner operates 24 hours a day for the duration of three years. The numbers of
available point clouds are visualised in Figure 2.2. A few gaps appear in the data collec-
tion. Some of them result from bad weather conditions, but most are due to technical
failure and organisational problems. In May 2020 a decline in the data quality (i.e. in-
creased presence of randomly located noise points) was observed and the scanner was
finally switched off and sent for maintenance for a 34-day period at the end of June 2020
until end of July 2020. In December 2021 the scanner stopped working due to an un-
known issue. Because of the holiday season it was not noticed until 18 days later in Jan-
uary 2022, when the scanner was restarted. The entire point cloud data set is published
via 4TU Research Data (Vos et al., 2023).

Additionally we collect data from a nearby weather station to separate environmen-
tal influences from other factors affecting the height estimation quality. We consider
temperature, average wind speed per hour and precipitation as main influences on our
height estimations. At the same time temperature, atmospheric pressure and humidity
are provided to the instrument for internal range correction. These values are provided
by meteoserver.nl and read from nearby local weather stations of the Royal Netherlands
Meteorological Institute (KNMI) (Koninklijk Nederlands Meteorologisch Instituut, 2022)
and updated hourly, to match the scanning frequency. For comparison and evaluation
of results we use wind and temperature data from the KNMI weather station in Hoek van
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Holland, on the coast at about 38 km distance from the laser scanner and to compare
with visibility data we use measurements from a weather station in Schiphol, at about
25 km distance, but more inland.

Figure 2.2: Available point clouds per month over the entire three-year period. The green
dashes show the maximum number of files that would be possible per month.
Two large gaps in the data collection are visible in June/July 2020 (mainte-
nance) and in December 2021/January 2022, where the scanner stopped op-
erating unnoticed during the holiday season.

2.3.3. STUDY AREA AND TEST AREAS

The observed area includes a sandy beach and dunes, covered with vegetation and is
about 1 km long and 250 m wide. The beach is strongly influenced by the tides and varies
in width between 80 m and 140 m under normal weather conditions. The area includes a
helicopter landing platform (at 135 m range), which is used as a stable reference surface
and a beach cafe at the dune foot on the sandy beach (at about 172 m range), which
causes a large shadow area on the sandy beach, as shown in Figure 2.3.

For this study we focus on the sandy beach and disregard the dunes, parts of the hotel
captured by the scanner and all points representing vegetation or other non ground ob-
jects (people, rubbish bins, etc.). A few reference surfaces (see Figure 2.3) from within the
dune area are considered as well for the estimation of the registration error. The height
above NAP of the reference surfaces has been confirmed with RTK-GNSS measurements
and double checked with height estimates from the AHN (Actueel Hoogtebestand Ned-
erland) measurement campaigns (GeoTiles.nl, 2021) using ALS. The range of the sandy
beach varies within the point cloud between 150 and 500 m. On the beach we selected
two exemplary test areas, as marked in Figure 2.3. Test area 1, at about 180 m range is
representative of the dry part of the beach, where the tide does not reach under normal
weather conditions. Because of the location right next to the beach cafe, it is subject to
frequent bulldozer works and human activities. Test area 2, at about 290 m range, ap-
pears only a few times a day in the point clouds, as it is regularly submerged during high
tide. Point spacing varies between 1 and 40 points per m2 with non-overlapping, ellipse
shaped footprints (short diameter between 0.04 and 0.08 m and long diameter between
0.11 and 0.8 m) with sizes ranging from 0.015 m2 to 0.27 m2. We assume that the height
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Figure 2.3: Top view of DEM of the area of interest at low tide on 14-04-2020 (left panel)
with marked test areas on the dry beach and in the intertidal area. White areas
in the DEM represent shadows of the dunes, buildings or flooded parts in the
intertidal area, where the scanner is not recording any points. The x- and y-
axis represent across-shore and along-shore distance in meters. Right panel:
Overview of study site, located on the beach in Noordwijk (Google maps) with
helicopter platform (A) and beach cafe (B) which serve as stable reference
surfaces. The location of the laser scanner is marked with a star.

estimation per point represents the estimated height at the centre location of the foot-
print. The incidence angle is rather unfavourable due to a surface slope of about 1 degree
(on average) towards the sea and the position of the laser scanner. It ranges between 72
and 80 degree on the sandy part of the beach. A schematic of the side view of the set
up and distances to the beach is shown in Figure 2.4 together with an illustration of the
number of points and foot print size within a square meter at 145 m range.



2

20 2. MINIMAL DETECTABLE DISPLACEMENT AT DIFFERENT TEMPORAL SCALES

Figure 2.4: Left: Illustration of estimated footprint size and distribution within a square
meter on the closest part of the beach (at about 155 m range). All height es-
timates within a square meter are averaged to estimate the height at the grid
cell centre (marked in orange) to generate a DEM (see Section 2.4.1). Right:
Schematic side view of the instrument set up and range to the beach at differ-
ent horizontal distances.

2.4. METHOD

2.4.1. PRE-PROCESSING WORKFLOW

The workflow is shown as a schematic in Figure 2.5 and explained in the following para-
graphs.

PREPARATION OF DATA

Each 3D point cloud is in a local coordinate system with the location of the laser scanner
as its origin. We determined the height of the laser scanner when it was mounted with
the help of a GNSS receiver. This constant elevation of 55.757 m above NAP is added to
the z-coordinate, to process actual height above sea level instead of negative elevation
with respect to the scanner’s location.

In a first step, all points representing the hotel are removed from each point cloud.
This leads to a reduction in size of each point cloud from about 5 Mio points to about 3.5
Mio relevant points.

CORRECTION OF SCANNER TILT

In a next step the 1 Hz inclination measurements from the laser scanner are averaged for
each scan and the mean pitch and roll inclination are estimated. These values are then
used to calculate a rotation matrix R:

R =
 cos(ϕ) 0 sin(ϕ)

sin(ϕ)sin(θ) cos(θ) −cos(ϕ)sin(θ)
−sin(ϕ)cos(θ) sin(θ) cos(ϕ)cos(θ)

 (2.2)

withϕ the pitch angle and θ the roll angle. The rotation matrix R is calculated for each
point cloud separately and applied only, if the standard deviations of the pitch and roll
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values during the entire acquisition of the respective point cloud are below a threshold.
This is to ensure that point clouds acquired during a heavy storm are not corrected with
a rotation based on erroneous inclination values. In these cases a mean pitch and roll
value based on the other scans in that month is used for correction. A constant general
tilt of the point cloud is removed in this way, as well as the main part of deviations of
the laser scanner’s position due to temperature changes (heat expansion of supporting
materials) or strong winds (see Section 2.5.1).

Figure 2.5: Flow chart of the pre-processing steps.

DEM GENERATION

For the following analysis of the systematic error affecting each point cloud and for a
quality check, the reference surfaces are cut out using their x- and y-coordinates. We
assume that the reference surfaces are flat with constant elevation and no tilt in x- or
y-direction. Plane fitting provides the mean elevation of the respective reference surface
as well as the squared sum of residuals between all points and the fitted plane. Both are
used for a quality check: If the mean elevation of the plane deviates more than 0.1 m
from the (GNSS verified) expected elevation or the squared sum of residuals is above 0.1
m2, the respective point cloud is marked as ’bad quality’ and not considered for further
analysis. In Figure 2.2 these files are indicated as available (blue) but not included as
’good quality DEM’ (orange).

For further analysis of elevation changes on the beach and in the test areas, all other
parts of the point cloud are removed and subsequently a DEM is generated from the
remaining points, covering only the sandy part of the beach. The DEM has a 1m × 1m
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grid cell size and the mean elevation of all points is used as grid cell elevation estimate
located at the centre of the grid cell (Figure 2.4, left). For each grid cell the accumulation
of the estimated elevations over time provides the elevation time series at that location.

2.4.2. ERROR INFLUENCES

For further analysis we investigate the random error affecting each grid cell of the DEM,
σg , and the systematic error affecting the entire point cloud, εpc . To summarise and
quantify the most relevant error influences we estimate the order of magnitude for each
of them following Soudarissanane, 2016 and Voordendag et al., 2023, and distinguish
the main influences: geometry, registration, atmosphere, instrument and surface prop-
erties.

GEOMETRY AND REGISTRATION

We assume that the measurement geometry does not change between scans, except for
slight movement of the scanner, due to strong wind and movement of the entire hotel
building due to concrete expansion. After correction of scanner tilt (see Section 2.4.1),
the largest part of the geometric error is removed. A small error, due to the limited mea-
surement accuracy of the inclination sensor will remain and we do not have the means
to quantify any changes in yaw-angle. Since the start and stop angle of each scan are
settings that are kept constant, we do not take into account any errors due to inaccura-
cies in yaw direction. The effect of concrete expansion can be estimated from tempera-
ture observations using the expansion coefficient (see for example Marshall, 1972) and
is estimated to be below 1 cm. However, direct correlation with our measurements and
correction of this error prove to be difficult. We do not take into account variations of
incidence angle and footprint size, which both vary within the scene as well as over time
with changes in the surface topography (see Table 2.2).

No additional registration step is applied. Therefore, small registration errors are still
present when comparing subsequent point clouds. We observe the registration error on
elevation measurements by analysing the height of a fitted plane through the stable ref-
erence surfaces. The small variations observed here (in the order of 1.5 cm) are the result
of slight displacements of the scanner, scanner tilt and expansion of the building where
the scanner is mounted on and potentially disturbances of the atmosphere. We cannot
separate these effects and therefore summarise them in one error term εpc including all
error sources affecting the entire point cloud systematically.

ATMOSPHERE

Atmospheric effects were found to influence the height estimates as reported by Kuschnerus,
Schröder, et al., 2021. Deviations in range and therefore in elevation can be caused by
temperature gradients in the air and therefore differences in refraction index between
the scanner location and right above the beach. The order of magnitude can be esti-
mated empirically from elevation time series of the reference surfaces. Assuming the
atmosphere does not vary within the area of interest, the atmospheric effects are part of
the systematic error εpc . Low visibility due to fog prevents measurements all together
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and leads to exclusion of the respective point cloud. For more explanation on the effect
of atmospheric changes on height estimates from PLS see Voordendag et al., 2023.

INSTRUMENT

Instrument errors can result from environmental effects: temperature fluctuations can
influence the instrument. It is not known what the exact temperature under the pro-
tective cover and inside the instrument is at the time of data acquisition. Therefore, the
temperature from a nearby weather station is possibly not representative for the temper-
ature inside the laser scanner. Additionally, the laser scanner showed some erroneous
behaviour in spring and early summer 2020. Point clouds acquired at this time con-
tained more and more additional random points above and below the actual measured
surface. These points were for a large part filtered out. The erroneous measurements
could be part of the grid cell uncertainty σg . However, when filtering for mean elevation
and summed residuals on the reference surfaces as explained in Section 2.3.2, the point
clouds heavily affected by the malfunction, were excluded. Calibration of the instrument
and long-term drifts in calibration parameters could potentially influence our measure-
ments as well. However, two calibration reports at the beginning of the scan and after
maintenance in summer 2020 did not show any significant changes.

SURFACE PROPERTIES

Surface properties in our test areas are relatively consistent, since we are interested in
observing the sandy beach. They vary, however in soil moisture and surface roughness.
Soil moisture content has an effect on reflectivity (Di Biase et al., 2021; Jin et al., 2021)
and potentially affects range measurements. Surface roughness was further analysed by
Di Biase et al., 2022 where different grid cell size and variogramms of surface roughness
were considered. All error terms affecting the grid cell are summarised as σg (equa-
tion 2.3).

2.4.3. ERROR ESTIMATION

We estimate the elevation in z-direction per grid cell as the mean elevation over all points
within the grid cell. This corresponds to the simplified plane equation, where the esti-
mated elevation ẑ is just the mean of all observed values zi from the vector of observa-
tions z as in Bitenc et al., 2011: ẑ = mean(z). The surface roughness and measurement
uncertainty are then incorporated in the standard deviation of all points in the grid cell,
which corresponds to the root mean square error (RSME) σg . We define σg by

σg =
√

eT
s es

np −1
, (2.3)

for the spatial residual vector es of all elevation values in the grid cell and number of
points np −1, to ensure an unbiased estimation.

The systematic errors are dominated by the registration error plus temperature and
atmospheric effects as explained above. It is estimated from the mean elevation of the
reference surfaces and does not vary significantly with range, because the rotation part
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is largely corrected and the remaining translations affect the entire point cloud indepen-
dent of location. We assume that the observed standard deviation of the elevation of the
fitted plane provides the systematic error εpc = 1.5 cm for the entire point cloud.

2.4.4. HYPOTHESIS TESTING FOR TIME SERIES

To allow classification of time series according to likely deformation models, we apply
MHT based on the approach by Chang and Hanssen, 2016. More details and background
can be found in the work of Teunissen, 2006 and some examples in Tiberius et al., 2021.
MHT allows to test for the null-hypothesis (no change) and several alternative hypothe-
ses.

With the definitions as above, we consider the entire time series of one grid cell loca-
tion, with elevation vector y = (ẑ1, ẑ2 . . . , ẑm) over time t of length m and corresponding
vectors of standard deviations σg and number of points per grid cell np .

We assume that the elevation vector y can be estimated with the model y = A ·x+et for
an unknown parameter vector x of dimension n. The temporal residual vector êt = y−A·
x̂, is the estimated temporal residual vector not related to the spatial residuals in Section
2.4.3. We assume that the single elevation measurements are normally distributed as
described above, and therefore the residual vector êt is normally distributed with zero
mean (see for example Tiberius et al., 2021 for more details).

Now we define the null-hypothesis H0 and one alternative hypothesis H1 following
Chang and Hanssen, 2016:

H0 : E(y) = A0 ·x (2.4)

D y =Qy y = diag(σ) (2.5)

H1 : E(y) = A0 ·x+C1b1 (2.6)

D y =Qy y (2.7)

where A0 ∈Rm×n is the design matrix, i.e. representing the model of the null-hypothesis,
E(·) the expectation operator and Dy is the dispersion which equals the covariance Qy y ∈
Rm×m of the elevation vector y. For the alternative hypothesis H1, the model is extended
by a specification matrix C1 with b1 the additional vector of unknown parameters. To
either sustain or reject the null-hypothesis, considering the normal distribution of the
residual vector êt , we use the χ2-distribution, χ2(q,λ), with non-centrality parameter
λ and number of additional parameters of the alternative hypotheses q . For the null-
hypothesis, the model is simply the mean elevation over the entire time series. In this
case the model matrix A0 reduces to an m-dimensional vector, n = 1, yielding null-
hypothesis H0 and test value T0

H0 : A0 =


1
1
...
1

 , x = x0 (2.8)

T0 ∼χ2(1,0). (2.9)
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As first alternative hypothesis we use a step function defined to test for sudden changes
at time t̂ , with elevation x0 = mean(y1 . . . y t̂−1) for t < t̂ and x1 = mean(y t̂ . . . ym) for t ≥ t̂ ,
and dimensions n = 2 and additional parameter dimensions q = 1, yielding alternative
hypothesis H1,t̂ and test value T1,t̂ :

H1,t̂ : A1,t̂ =



1 0
...

...
1 0
0 1
...

...
0 1


, x =

(
x0

x1

)
(2.10)

T1,t̂ ∼χ2(1,λ). (2.11)

With C1,t̂ = (0, · · · ,0,1, · · · ,1)T and b1,t̂ = x1 − x0 this is equivalent to our previous defini-
tion of the alternative hypothesis:

H1,t̂ : E(y) = A0 ·x+C1,t̂ b1,t̂ . (2.12)

The determination of t̂ in practice is explained in more detail in Section 2.4.6.
And as second alternative hypothesis H2 we use a linear trend and calculate test value

T2:

H2 : A2 =

 1 t1
...

...
1 tm

 , x =
(

a0

a1

)
(2.13)

T2 ∼χ2(1,λ) (2.14)

where a0 is the intercept and a1 the slope of the linear model and therefore A2 ∈ Rm×2,
n = 2 and q = 1. This is consistent with equation 2.6 when defining:

C2 = (t1, · · · , tm)T , b2 = a1. (2.15)

The covariance matrix is defined by the RMSE per grid cell (σg as defined in Section
2.4.3). We assume that there is no correlation between subsequent measurements and
therefore obtain the diagonal matrix

Qy y = diag(σ2
g 1, . . . ,σ2

g m) =σ2 · Im . (2.16)

Following Tiberius et al., 2021 and Chang and Hanssen, 2016 the test value T j , j ∈ {0, . . . ,m+
1} for time series of length m for all alternative hypotheses, is then calculated as

T j = ê j ,t Q−1
y y ê j ,t =

m∑
i=1

(yi − ŷ j )2

σ2
i

, (2.17)

with residual vector ê j ,t for modelled time series ŷ
j
= A j · x̂. The test value is then com-

pared to the critical value kα, for significance levelα following the respectiveχ2-distribution,
with non-centrality parameter λ.
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We test for every grid cell, if for a time series over a fixed amount of time (for exam-
ple 24 hours) the null-hypothesis is not rejected. If it is rejected, we test in a next step,
which of the alternative hypothesis is most likely i.e. has smallest value for T j below the
critical value. If T j is above the critical value for all alternative hypotheses, no adequate
model can be found. In this way sudden changes, as well as gradual, linear processes
can be identified with a pre-defined level of confidence α. This method is suitable to be
extended for periodic/seasonal changes or any other typical behaviour that one would
expect on a sandy beach.

2.4.5. TEST QUALITY

Figure 2.6: Comparison of level of detection with detectability power. The parameters
α and β are indicated and they both equal 0.05 in this example. It can be
seen that the level of detection with significance level 95% does not match
the MDB with 95% detectability power.

The type I error describes the rejection of the null hypothesis, while it is true. The
size of the type I error is the probability of this happening and is defined by significance
level α. The size of the type II error is given by the probability of a missed detection of
change (in height in our case), β. Its compliment is the detectability power γ= 1−β, see
Figure 2.6 for an illustration. The determination of the detectability power γ therefore
depends on the calculation of the probability of a missed detection β, which is defined
as the integral of the probability density function of the alternative hypothesis over the
acceptance region of the null-hypothesis.

For the MHT, following the core idea of Baarda’s B-method, also applied by Chang and
Hanssen, 2016, the detectability power is fixed, for example at 80% and the significance
levelα can be defined depending on the number of parameters of the respective hypoth-
esis, as well as the dimension of the time series. Then, the critical value T j will be eval-
uated in relation to the significance level and the ratios will be compared instead of the
critical values, since the significance level depends on the number of parameters of the
alternative hypothesis. Here, we choose two simple models for the alternative hypoth-
esis, which both have two parameters that need to be estimated. Therefore the critical
values can be compared directly and the discriminatory power, and consequently the



2.4. METHOD

2

27

type II error will be the same for all alternative hypothesis with the above definitions.

2.4.6. MINIMAL DETECTABLE BIAS

To answer our first research question, we use the concept of the minimal detectable bias,
as introduced by Baarda, 1968, assuming we know which model(s) would best represent
possible changes in elevation (alternative hypotheses) in a specific area and time period.
In our case, we are looking for the minimal height of a step in a sudden change (step
function model) and the minimal slope (height per hour) that we can detect with the
specified test set up. Following Baarda and the more recent works by Imparato et al.,
2019 and Teunissen, 2006, the MDB can be determined by reversing the above procedure
to calculate the detectability power γ and therefore fixing the type II error. Instead of
calculating the integral of the probability density function of the alternative hypothesis,
we fix γ= 0.8 (i.e. 80 % probability of correct detection), with now known model matrix
C and covariance matrix Qy y . We check the value of the central normal distribution for
the selected value ofβ= 1−γ, and use it to invert the equations, which leads to the MDB.

In a first step towards determining the MDB, we calculate the non-centrality parame-
ter of the χ2-distribution, λ(α,β, q) for significance level α and β = 1−γ, where γ is the
detectability power of the test, and number of additional parameters q . In a first step the
central χ2-distribution is used to get the critical value kα, that is the value where the in-
tegral over the central χ2-distribution with degrees of freedom q reaches the value 1−α.
Then we loop over all possible non-centrality values λ, to find λ(α,β, q), where the in-
tegral of the non-central χ2-distribution for kα as previously found and with degrees of
freedom q reaches probability β.

Figure 2.7: Schematic of the calculation of the non-centrality parameter λ(α,β, q). With
χ2(x,λ, q) we denote the probability density function of the non-central χ2-
distribution for (non-)centrality parameter λ and with degrees of freedom q .

The equation for the MDB for our case of known diagonal covariance matrix Qy y re-
duces to to:

MDB =
√
λ(α,β, q)

CT Q−1
y y C

. (2.18)

For the respective alternative hypotheses defined above that simplifies to:

MDBstep =
√
λ(α,β, q)∑m

i=t̂
σ−2

i

, (2.19)
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indicating the minimum value of the step at location t̂ for H1,t̂ and

MDBl i n =
√

λ(α,β, q)∑m
i=1 t 2/σ2

i

, (2.20)

indicating the minimum slope value for a linear function for H2.
As illustration, Figure 2.8 shows an example time series with MDB for two different

models of alternative hypotheses: the height of a step function for a step after the 10th
epoch and the slope of a linear trend starting at the first epoch. The step was assumed at
a fixed location at t̂ = 10, without any further consideration of other alternative hypothe-
ses (i.e. for different values of t̂ ). We consider three different cases: Varying detectability
power γ (Figure 2.8A), varying significance level α (Figure 2.8B) and in Figure 2.8C for
both γ and α fixed and the same time series with larger uncertainty and lower uncer-
tainty. It can be seen that larger detectability power γ and lower significance levelα both
lead to larger values of MDB. Additionally, higher standard deviation on the time series
lead to larger values of MDB than lower standard deviations.

For comparison with the previously mentioned level of detection, this situation has
been drawn for a simple 1-dimensional case in Figure 2.6. For the presented definition of
the level of detection (see Section 2.2), the first test parameter to define is the significance
level α, which determines the type I error and is mostly chosen at 5%. Here we show the
level of detection with 95% confidence interval around the mean value y0. The mean
value for the alternative hypothesis y1 is shown as the MDB when assuming γ= 0.95 (i.e.
95% probability of correct detection) in order to make them comparable. It can clearly
be seen that y1 is outside the level of detection region and the two terms do not coincide
or provide the same insight.

2.5. RESULTS

2.5.1. EFFECTS OF ENVIRONMENTAL CONDITIONS ON ESTIMATION

QUALITY

The effect of weather conditions on the height estimation quality was analysed in terms
of mean elevation, before and after the tilt correction, as well as wind speed. Strong pre-
cipitation and fog, which both affect visibility, clearly have degrading effect on height
estimations and most scans under these conditions will be excluded and not pass the
quality criteria. In our entire data set, we find 156 cases, where point clouds were not
available at the same time that fog or low visibility conditions were registered at the
KNMI weather station at Schiphol airport. Schiphol is at about 25 km distance from
the study site in Noordwijk, so the weather conditions could differ. But it gives an indi-
cation, that out of more than 5000 instances, where point clouds are not available, less
than 3 % are possibly caused by low visibility.

The order of magnitude of the main influences on the uncertainty of the height esti-
mate (z-coordinate) within the point cloud (on each grid cell) and on the entire point
cloud are summarised in Table 2.3. We summarise, which effects are corrected or fil-
tered out (scanner tilt and instrument failure) and how the others contribute to the two
error terms σg and εpc . How temperature, wind speed and direct sunshine affects these
uncertainty estimates is explained in more detail in the following subsections.
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Figure 2.8: MDB for a time series covering 24 hours with two different alternative hy-
potheses: a step function, with a step at the 10th epoch and a linear function
with positive slope. A: Both hypotheses are shown for different values of de-
tectability power γ: 0.2 and 0.8. B: Both hypotheses are shown for different
values of significance level α: 0.01 and 0.1. C: Both hypotheses are shown
for fixed significance level and detectability power (α= 0.05 and γ= 0.8) with
different standard deviations: half standard deviation from the previous cases
and doubled standard deviation.

TEMPERATURE EFFECTS

An example of the effect of temperature is shown for a period of six days in August 2019,
with mostly clear skies, no precipitation and relatively low wind speed (average 4.5 m/s)
in Figure 2.9. An obvious pattern in the mean elevation of the reference surface be-
fore correction is visible. The 24-hour pattern corresponds to duration of sunshine per
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Order of
Influence magnitude Explanation

Corrected and removed influences

Scanner tilt 10 - 20 cm Estimated from inclination angles and
corrected

Instrument ≥ 10 cm Errors due to instrument failure, affected
point clouds are removed from analysis

Not corrected and considered in error terms εpc and σg

Concrete expansion 0.7 cm Estimated from temperature variations,
not corrected, included in systematic er-
ror εpc

Registration
 1.5 cm

Estimated from elevation of reference
surfaces, not corrected, included in sys-
tematic error εpcAtmosphere/tempera-

ture
Surface roughness 0.9 - 7 cm Estimated per grid cell, considered as

random error σg

Surface moisture/ foot-
print size

Not quantified or corrected, included in
random error σg

Table 2.3: Summary of estimated order of magnitudes for each of the influences on un-
certainty affecting the entire point cloud or the grid cell in z-direction.

hour as well as temperature. Considering the entire six-day period, temperature as well
as sunshine show negative correlation with the uncorrected mean elevation (-0.32 and
-0.26 respectively). After correction, sunshine and mean elevation are not correlated
anymore, but temperature and mean elevation now show a positive correlation of 0.28.
When looking at the fast Fourier transformation (FFT) of the elevation, a slight 24-hour
signal can be detected, which is probably the cause of the correlation with temperature.
However, as can be seen in Figure 2.9, the main part of the 24-hour pattern in the eleva-
tion can be corrected for.

The remaining signal could be attributed to expansion of the concrete of the hotel
building. An upward shift of the entire scanning set-up cannot be registered by the in-
strument’s inclination sensors. The rotation correction is therefore not suitable to cor-
rect for this type of error. The concrete expansion, on days with highly varying tem-
peratures, is estimated using the concrete expansion coefficient and the height of the
building. It can amount to up to 0.7 cm elevation change, within several hours or days
(not within the hour). However, we could not correlate the estimated concrete expansion
directly with the remaining variation in elevation on the reference surfaces.

EFFECTS OF WIND SPEED

To show the effect of wind on the height estimation from PLS, we first visualise the com-
bined pitch and roll angle (squared sum) together with wind speed, and show a clear
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Figure 2.9: Time series of mean elevation over the course of six days in August 2019 on the
helicopter landing platform before tilt correction (A) and after tilt correction
(C) with duration of sunshine per hour (A) and temperature(B).

correlation between standard deviation of inclination values and wind speed (0.71) and
a lower correlation between mean inclination and wind speed (0.47) for seven stormy
days in February 2022, as an example. As was shown by Kuschnerus, Schröder, et al.,
2021, the effect of the higher standard deviation can be visible in the point clouds as
a striped pattern on the reference surface. There, it was also shown that during strong
winds, the sum of residuals on the reference surface is higher, and most likely related to
the high standard deviation in the inclination values. For this example period in Febru-
ary 2022, we did not find a correlation between the sum of residuals on the reference
platform and the inclination values or the wind speed.

Further, considering the entire data set, we did not find any correlation between wind
speed and the residuals on the reference surface. This shows that the residuals in general
are not that sensitive to wind and that the corrected point clouds are suitable for further
analysis with the errors explained above. However, of the cases where there is a point
cloud available, but the quality is not good enough, about 34 % occurred during strong
winds (8 m/s and higher), which indicates a possible causal relation.

2.5.2. DIFFERENTIATING DYNAMIC PROCESSES ON THE BEACH

First, we show the MDB for test area 1 on the dry beach and two alternative hypotheses.
Then, we perform the MHT (as introduced in Section 2.4.4) on both test areas, but for
different length of time series and show the resulting partitioning of the areas according
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Figure 2.10: Combined inclination angles (squared sum of pitch and roll) with standard
deviation and wind speed.

to the most likely estimated model.

MINIMAL DETECTABLE BIAS

We show the MDB for test area 1 as indicated in Figure 2.3: On the dry beach, next to
the beach cafe and frequently used by people as well as effected by bulldozer works. We
estimate the MDB as explained in Section 2.4.6 with detectability power γ = 80% and
with significance level α= 95%.

As an example to illustrate the MDB on the dry test area we use 24-hour time series
from 7 of January 2020. The MDB is calculated for a sudden change in form of a step
function happening at 17:00h in the afternoon and shown in Figure 2.11. We know that
bulldozer works started that day and moved a considerable amount of sand between
11:00h and 17:00h depending on location, as reported previously (Kuschnerus, Linden-
bergh, Lodder, et al., 2022). The MDB shows, what the minimum change in elevation
per grid cell would have to be at that time, in order to be detected as significant. We
incorporate the systematic error εpc in order to derive a realistic estimate. The resulting
MDB ranges from 1.8 cm (just above the εpc ) up to 32 cm for some outliers, with a me-
dian at 3.1 cm. As comparison we show the LoD as defined above, which has a median
value of 26.8 cm for the entire area, which is one order of magnitude higher than the
MDB with our configuration. The MDB and the average value of the LoD indicated in
Figure 2.16, are representative of one dot in Figure 2.11A and C respectively. The MDB
for a linear trend was calculated as well: Only a few grid cells appear to deviate a lot from
the median slope of 3.2 cm/day, see Figure 2.11B.

HYPOTHESIS TESTING

We applied the MHT as explained in Section 2.4.4 on the time series of each grid cell in
the previously described test areas, using 24-hour time series on 7 January 2020.

Using the above described testing method for the test area on the dry part of the beach
we identify sudden changes, most likely caused by bulldozer works, as mentioned be-
fore. The changes happen between 16:00 and 17:00 in the afternoon and are identified
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Figure 2.11: MDB at significance level α = 0.05 and with detectability power γ = 0.8 for
a step function with step at 17:00h (A) and a linear trend (in m/day) (B).
Results were calculated for each 24-hour time series on 7 January 2020. For
comparison the level of detection is shown for a significant change at 17:00h
(C). To simplify the comparison of the spread of the values for the MDB and
LOD the histograms of the respective estimates are shown as well.

on a large part of the area (see Figure 2.12). Figure 2.12 shows some example time series
with no significant change and sudden changes.

Similar to results shown in previous works (Barbero-García et al., 2023; Kuschnerus,
Lindenbergh, Lodder, et al., 2022; Kuschnerus, Lindenbergh, & Vos, 2021), human ac-
tivities on the beach like bulldozer works that lead to sudden elevation changes can be
detected and quantified. MHT for 24-hour elevation time series with a step function as
alternative hypothesis allows to find and identify most bulldozer works taking place on
the sandy beach.

To identify longer term and slower processes, we apply the same testing procedure to
time series in the same area, covering the entire month of July 2021, with two epochs
per day, at noon and at midnight. Again we can classify the testing area into the three
classes: no change, sudden change and linear trend. Here we find more areas with a
linear change. However, for some cases a two-(or more)step model would seem more
appropriate, as can be seen in Figure 2.13B. The sudden change model does not fit the
time series very well, since in a longer term time series, it is more likely that more than
one sudden change occurs (see Figure 2.13 C).

In Figure 2.13B slow erosion processes are identified. The area close to the dune foot



2

34 2. MINIMAL DETECTABLE DISPLACEMENT AT DIFFERENT TEMPORAL SCALES

Figure 2.12: A: Dry area classified according to hypothesis testing based on time series
covering 24 hours on 07-01-2020. The x- and y-axis represent across-shore
and along-shore distance in meters. B: Example time series with sudden
change hypothesis sustained. The changes happened at 16:00h in the af-
ternoon. C: Example time series over 24 hours with null-hypothesis not re-
jected, i.e. no statistically significant change detected. The small step oc-
curring in some time series around 16:00h is not significant enough to be
detected.

shown in panel A of the same figure is eroding with about 0.5 cm per day. A slow, grad-
ual erosion process like this can be caused by aeolian sand transport or possibly by fre-
quent use of beach visitors crossing that area. It is however unique to observe the gradual
changes over a long period of time and quantify the erosion at sub-centimetre level.

When considering test area 2 (as indicated in Figure 2.3) in the intertidal area of the
beach, fully populated daily time series are not available. The area appears in the point
clouds only once (or sometimes twice) per day, during low tide. A set of daily time series
in September 2020, with one epoch per day, chosen at low tide, where the area of non-
empty grid cells in the DEM is largest, was analysed using MHT. Figure 2.14 shows some
examples of the classified time series (B) and an overview of the entire area coloured with
the most likely assumed hypothesis (A). Here we distinguish between erosion (negative)
and deposition (positive) versions of the found model time series, to give more insight
in the present dynamics.

It becomes apparent that the two models used for the alternative hypotheses are not
sufficient to classify all processes affecting the beach. The model library can be extended
with other models and additionally the start and stop time of the time series that is clas-
sified should be chosen individually per time series in order to fit the available mod-
els better. Still a general trend of either eroding or accreting becomes apparent in the
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Figure 2.13: A: Dry area classified according to hypothesis testing based on time series
covering the month of July 2021. The x- and y-axis represent across-shore
and along-shore distance in meters. B: Example time series with linear trend
(orange). One of the time series (in blue) shows a shape that appears more
like two sudden changes. C: Two examples, where the sudden change was
found as most likely model (orange), but does not fit the shape of the time
series, which shows more than one sudden change.

overview plot (Figure 2.14A) and the more dynamic nature of the intertidal area is clearly
visible. The observed effects are most likely the result of tides and waves depositing and
eroding sand while the area is flooded every day.

2.6. DISCUSSION

2.6.1. ADDITIONAL EFFECTS ON ESTIMATION QUALITY

Since the laser scanner is pointed to the west, the sun could directly shine into the lens
of the scanner in the hours just before sunset. Since we do not have weather data from
directly next to the laser scanner for most of the time, there is no way to verify when this
situation occurred. We collect all point clouds, acquired a few hours before and up to
the time of sunset on that day and check if they pass our quality checks. All point clouds
with low quality collected just before or at sunset could potentially be affected by direct
sun shine. We filtered out all instances with high wind speeds (above 8 m/s) and precip-
itation (more than 1 mm/h). There are 10 instances, where around the time of sunset,
the quality of the DEM was not good enough (i.e. the residuals on the reference surface
were too high, compare threshold defined in section 2.4.1) during or in the hours before
sunset. All of them occurred in the summer months of 2019, outside of the period of
malfunction of the laser scanner. The respective point clouds show some noise (i.e., ran-
dom points in the air), but the cause of this noise could not be determined with certainty.
We observed a similar effect in the weeks leading up to the maintenance of the scanner
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Figure 2.14: A: Classification according to most likely assumed hypothesis in the inter-
tidal area, based on daily time series in September 2020. The x- and y-axis
represent across-shore and along-shore distance in meters. For grid cells in
green (label 0) the null-hypothesis was the most likely. Blue grid cells (la-
bel -1) indicate locations where no model could be found to match the time
series. B-E: Example time series for each of the four assumed models: pos-
itive linear trend (deposition, B), negative linear trend (erosion, C), sudden
change deposition (D) and sudden change erosion (E). This example illus-
trates, that the two models used for the alternative hypothesis are not suf-
ficient for many cases and an adaptive length of the time series would im-
prove the results.

in spring 2020, when the general quality of height estimations declined due to the pre-
viously mentioned instrument malfunction. With a ray-tracing method as for example
presented by Zhou et al., 2019 the times with direct sunshine into the laser scanner could
be determined with more certainty, which would allow more investigation into possible
effects on the respective point clouds.

Beach visitors show up as peaks or outliers in the grid cell time series. As shown in
Figure 2.15, the hourly time series during a scan by students of the TU Delft show peaks
whenever a person was present in the respective grid cell. These outliers are not causing
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the null-hypothesis to be rejected, but a busy period with lots of beach visitors will lead
to higher grid cell error σg , which has an impact on the hypothesis testing.

Figure 2.15: Effect of beach visitors on the DEM. On 22-02-2022, a group of students vis-
ited the study site at the beach and appears in the point cloud at 12:00. The
DEM has grid cells of about 80 cm higher than the surroundings at that time
(A). The corresponding point clouds showing the people (B,C). The corre-
sponding time series of the entire day show a clear outlier at 12:00 (D).

A possible solution to this would be a filter for dynamic objects on the beach applied
to each point cloud before generating the DEMs. This would increase processing times
significantly and potentially lead to some data loss, but in return it could make the results
of MHT more reliable.

2.6.2. POTENTIAL IMPROVEMENTS OF SET-UP AND PROCESSING

For this research we have made several assumptions and simplifications considering the
atmospheric conditions and calibration of the instrument. Additionally we did not con-
sider in detail the slope of the beach, footprint size variation, surface roughness, fine
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registration and correlation of the height estimates.
For a future improved set-up we recommend installing temperature sensors or even

entire weather stations next to the scanner and in the observed scene at various loca-
tions. The collected temperature measurements would allow for an estimation of the
refraction index and other atmospheric influences. To improve atmospheric correction
with the additional atmospheric measurements we suggest to consider the approaches
of Voordendag et al., 2023 and Czerwonka-Schröder, 2023.

Any instrumental error could potentially be further reduced by performing a dedicated
calibration in regular time intervals on site, preferably without removing the instrument
from its permanent location. This could reduce any drifts in range estimates and yaw
alignment and prevent instrument failure and need for maintenance, or at least allow
earlier detection leading to reduced data loss. For calibration of terrestrial laser scanners
one could consider for example the works of Medic et al., 2019 and Schmitz et al., 2019.

The slope of the beach and with that the incidence angle and their variations through
time could be estimated based on point clouds or several neighbouring DEM grid cells.
Then, a slope correction could be applied to the individual height estimates. The same
holds for the estimation of footprint sizes per grid cell. A mean value for footprint size
depending on location and estimated incidence angle could be taken into account for
the individual height estimates.

The contribution of the surface roughness to the error per grid cell of up to 7 cm is
quite high. There are grid cells on the beach, where a constant elevation is not an appro-
priate surface model. Examples include the edge of a cliff, deep tire tracks, or channels
in the intertidal zone. To take such topography into account one could apply different
methods of surface approximation, as for example presented by Kermarrec et al., 2022.

The entire data set could be subject to a fine registration method, aligning all point
clouds to a suitable epoch, using for example the iterative closest point (ICP) method.
This is a computationally intensive operation, but has been done on a similar data set
for example by Vos et al., 2022.

Finally, we did not consider correlation between consecutive height estimates. When
dealing with short-term measurements, as in our case the hourly data set, temporal cor-
relation between the individual height estimates is likely. To incorporate a correlation
coefficient into the hypothesis testing model, the theory of Baarda can be applied, as for
example discussed in Rofatto et al., 2020.

2.6.3. COMPARISON TO EXISTING METHODS

Other approaches developed by Anders et al., 2020; Anders et al., 2021 and Kuschnerus,
Lindenbergh, and Vos, 2021 make use of region growing and clustering to extract regions
in space and time with similarly behaving time series of elevation (or elevation differ-
ences). These methods have the advantage that it does not have to be known previously,
what kind of processes are expected, so they can in principle be applied without pre-
existing knowledge on the occurring changes. Winiwarter et al., 2023 combine Kalman
filtering for time series interpolation, level of detection and clustering on extracted fea-
tures to find dynamic processes that were not previously defined. Also here the authors
avoid using prior process knowledge. The level of detection is used here for the com-
parison of height estimates at each epoch with a reference height. For illustration of the
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typical use, we consider a 24-hour time series on January 7th, 2020 and show all differ-
ences to the first epoch, together with the level of detection (blue), see Figure 2.16. We
use equation 2.1 with εpc = 0.015 m as registration error for the calculation of the level
of detection. We can therefore derive, at what point the time series deviates from the
first epoch with 95% confidence (first type error). We further indicate the MDB for both
curves and significance level α= 95% and detectability power γ= 80%.

Figure 2.16: Example of level of detection for two 24-hour time series on 7 January 2020.
The time series are shown as difference in elevation from the first epoch.
The level of detection is indicated in blue and the MDB for a step function
for both time series is shown as a dashed line. The MDB and LoD shown here
are different representations of one dot in Figure 2.11 A and C, respectively.

None of these methods are specifically taking into account the multi-epoch nature of
our data, nor do they efficiently detect processes, affected areas and the nature and/or
cause of the process. The here presented method uses previous knowledge on expected
processes, in order to determine the temporal sampling, as well as the models for the
alternative hypothesis. In this way specific processes can be detected together with a
provided level of confidence. To make this usable for the entire observed area, and more
for example periodic processes, the model catalogue can be extended and possibly a
combination of the above mentioned clustering methods with MHT could be used to
identify relevant areas and/or time intervals in the three-year observation period.

We can see in Figures 2.12 and 2.14 that the MHT procedure as applied in this re-
search allows a classification of time series into different processes and therefore also
a grouping according to process. The latter has the potential to be used in a similar way
or complementary to other methods of clustering time series like Kuschnerus, Linden-
bergh, and Vos, 2021 or Winiwarter et al., 2023. The main difference with these methods
is the pre-definition of the expected alternative hypotheses. By defining the alternative
hypotheses we determine apriori, which processes we are expecting to find. Our search
is limited to those processes, but on the other hand provides a level of confidence when
detecting them.

For the hypothesis tests the model library can potentially be extended in order to fit
more processes present on the beach. More simple functions can easily be added, as
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for example a periodic elevation change, step functions with several steps or a combi-
nation of linear trends and step functions. However, the difficulty in the application
will lie in matching the models and the relevant time scales. Considering hourly time
series over one day, our simple three model hypothesis testing showed good results in
identifying anthropogenic changes, however it did not categorise the intertidal area on
monthly time scales well. On larger time scales, other additional models would be re-
quired. Therefore, again a priori knowledge on the length and time scale of the time
series and the relevant, expected processes is needed in order to identify geomorpho-
logical coastal processes in a 4D point cloud data set.

2.6.4. ASSUMPTIONS ON UNCERTAINTY

Implicitly we make the assumption that larger residuals per grid cell lead to more uncer-
tainty in the knowledge of the mean elevation at that epoch. This assumption holds in
many cases, but is difficult to verify in general. There could be cases, for example in the
intertidal area, where surfaces are relatively smooth, but with sharp edges, where this
assumption is not true. Another case could be a frozen beach during temperature below
zero, where the surface roughness stays frozen over several epochs, thus it does not effect
the estimation of the model as we are assuming. However, these cases are not generally
true, and we assume the chosen approach provides a realistic estimation of the variance
in most cases.

We also tested to use a rolling-window standard deviation based purely on the eleva-
tion time series, discarding the spatial component/surface roughness but incorporating
the temporal domain into the standard deviation. This did not lead to more realistic
assumptions on the standard deviation. The temporal component leads to a lower stan-
dard deviation (compared to surface roughness) and is highly sensitive to jumps/sudden
changes in the time series. The assumption that a sudden change in elevation made our
measurements less likely does not hold in most cases and we therefore conclude that
the spatial (roughness-based) standard deviation is a better approximation of the true
measurement uncertainty.

2.7. CONCLUSION AND RECOMMENDATIONS
We investigated the main effects on height estimates of a 4D point cloud data set from
PLS and applied MHT as well as the MDB to time series of height estimates from these
observations answering the following questions.

What is the minimal change in height on a sandy beach that can be estimated with
a given confidence with our permanent laser scanning set-up? The MDB is suitable for
the estimation of possible elevation changes found within time series from PLS. Mak-
ing use of the long elevation time series available in the PLS data set, the parameters for
the estimation of the MDB can easily be tuned to detect small scale changes in sandy
beach elevation with a defined detectability power and to identify different models of
elevation change. This provides advantages over the commonly used level of detection,
especially the known detectability power and the considering of entire elevation time
series rather than just pairs of epochs. In our example case, slopes of 0.032 m/day and
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sudden changes of 0.031 m were identified with statistical power of 80% and with signif-
icance 95% in 24-hour time series on the upper beach.

How do environmental conditions contribute to the uncertainty of height estimates from
permanent laser scanning for the identification of change processes? The main effects
on height estimates from PLS are weather conditions such as strong wind causing the
instrument to shake and precipitation and instrument malfunctions. When these are
filtered out the remaining effects are dominated by the surface roughness and registra-
tion error, which we estimate as below 7 cm and 1.5 cm, respectively. Height deviations
caused by temperature changes can reach up to 1 cm within a day and are largely cor-
rected by the application of a rotation matrix based on inclination estimates from the
scanner’s internal inclination sensor.

Which change processes on a sandy beach can be observed with permanent laser scan-
ning and at which temporal and spatial scales? MHT allows for the grouping of areas fol-
lowing similar processes. At the same time we are classifying each time series according
to the available alternative hypotheses and therefore gain more insight into the predom-
inant change regime. It is especially suitable to detect and quantify slow longer term
erosion and accretion processes, which are most likely caused by aeolian sand transport
and difficult to observe using other techniques

The presented methods appear to be promising in the large scale processing and data
mining for change processes within a 4D data set from PLS. To be applicable to entire
elevation time series of length longer than one month, a method to segment each time
series and detect break points would allow to treat each segment separately. We could
then apply MHT per segment with appropriate models for the alternative hypothesis.

Further investigation of the error sources on the height estimates and quantification of
each effect could potentially improve the quality and reliability of height estimates and
therefore lead to the detection of even smaller elevation changes and trends in elevation.

The presented method could potentially be adapted for different applications, such as
height estimation on glaciers from PLS or identification of height changes in vegetation
estimated from laser scanning observations.
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Sandy coasts are constantly changing environments governed by complex, interacting pro-
cesses. Permanent laser scanning is a promising technique to monitor such coastal areas
and to support analysis of geomorphological deformation processes. This novel technique
delivers 3D representations of the coast at hourly temporal and centimetre spatial resolu-
tion and allows to observe small scale changes in elevation over extended periods of time.
These observations have the potential to improve understanding and modelling of coastal
deformation processes. However, to be of use to coastal researchers and coastal manage-
ment, an efficient way to find and extract deformation processes from the large spatio-
temporal data set is needed. To enable automated data mining, we extract time series of
surface elevation and use unsupervised learning algorithms to derive a partitioning of the
observed area according to change patterns. We compare three well known clustering al-
gorithms, k-means, agglomerative clustering and DBSCAN, apply them on the set of time
series and identify areas that undergo similar evolution during one month. We test if these
algorithms fulfil our criteria for suitable clustering on our exemplary data set. The three
clustering methods are applied to time series over 30 days extracted from a data set of daily
scans covering about two kilometres of coast at Kijkduin, the Netherlands. A small section
of the beach, where a pile of sand was accumulated by a bulldozer is used to evaluate the
performance of the algorithms against a ground truth. The k-means algorithm and ag-
glomerative clustering deliver similar clusters, and both allow to identify a fixed number

This chapter has been published in Earth Surface Dynamics 9, 89–103 (2021) Kuschnerus, Lindenbergh, and
Vos, 2021.
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of dominant deformation processes in sandy coastal areas, such as sand accumulation by
a bulldozer or erosion in the intertidal area. The level of detail found with these algo-
rithms depends on the choice of the number of clusters k. The DBSCAN algorithm finds
clusters for only about 44% of the area and turns out to be more suitable for the detection
of outliers, caused for example by temporary objects on the beach. Our study provides a
methodology to efficiently mine a spatio-temporal data set for predominant deformation
patterns with the associated regions, where they occur.
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3.1. INTRODUCTION

Coasts are constantly changing environments that are essential to the protection of the
hinterland from the effects of climate change and, at the same time, belong to the ar-
eas that are most affected by it. Especially long-term and small scale processes prove
difficult to monitor but can have large impacts (Aarninkhof et al., 2019). To improve
coastal monitoring and knowledge of coastal deformation processes, a new technique
called Permanent Laser Scanning (PLS) (also called continuous laser scanning) based
on LiDAR measurements is available. For this purpose, a laser scanner is mounted on a
high building close to the coast in a fixed location acquiring a 3D scan every hour during
several months up to years.

The resulting spatio-temporal data set consists of a series of point cloud representa-
tions of a section of the coast. The high temporal resolution and long duration of data
acquisition in combination with high spatial resolution (in the order of centimetres) pro-
vides a unique opportunity to capture a near continuous representation of ongoing de-
formation processes, like for example storm and subsequent recovery, on a section of
the coast. As reported by Lazarus and Goldstein, 2019, the natural effects of a storm
on a typical urban beach can rarely be analysed separately from anthropogenic activ-
ities, since in most cases work with bulldozers starts immediately after or even during
severe storms. There is a need for the detection and quantification of change processes
that influence the geomorphology of the coast, to allow understanding and modelling
them, as the reaction of the coast to extreme weather events gains importance (Mas-
selink & Lazarus, 2019). More examples for potential use of such a data set are presented
by O’Dea et al., 2019, who use data from a similar set-up in Duck, USA.

The PLS data set is large (in the order of hundreds of gigabytes), and to be relevant,
the information on deformation processes has to be extracted concisely and efficiently.
Currently there are no automated methods for this purpose and studies focus on one or
a few two dimensional cross-sections through the data (for example O’Dea et al., 2019).
The high temporal resolution and long observation period lead to a high dimensional
data set of long time series (i.e. 30 data points up to several thousands). Data mining on
high dimensional data sets can be challenging as discussed for example by Zimek et al.,
2012. In a first step towards extraction of interesting events and change patterns we build
on the method introduced by Lindenbergh et al., 2019. We use clustering algorithms on
time series representing the evolution of topography, to group these time series accord-
ing to their similarity in change pattern and then identify underlying processes. We use
clustering (or unsupervised learning) to avoid having to specify the patterns and pro-
cesses that we are looking for in advance.

One example of spatio-temporal segmentation on our data set from PLS was recently
developed by Anders et al., 2020. They detected seed points for deformation in time se-
ries from PLS, to then grow a region affected by the detected change around the seed
points with the use of dynamic time warping distance to spatial neighbours. Dynamic
time warping is a distance measure between time series, that accounts for similarity in
patterns even though they might be shifted in time (see for example Keogh and Ratanama-
hatana, 2005). One drawback of this approach is that temporal patterns of interest have
to be defined before hand, and therefore only deformation patterns that are expected
can be found. Another approach to model spatio-temporal deformations in point clouds
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from laser scanning, is presented by Harmening and Neuner, 2020. Their model assumes
that the deformation can be represented by a continuous B-spline surface. This ap-
proach could potentially be used to further analyse some of the deformation patterns
found in our study but does not allow the exploratory data mining, that we are aim-
ing to accomplish. A more general overview of methods to find spatio-temporal pat-
terns in earth science data was published by Tan et al., 2001 and a continuation of this
study was presented by Steinbach et al., 2001. The study of Tan et al. deals with pre-
processing of time series of different variables from satellite data including issues with
auto-correlation and seasonality. Steinbach et al. successfully apply a novel clustering
technique introduced by Ertöz et al., 2003 to explore spatio-temporal climate data. How-
ever, this technique only focuses on contiguous clusters, where all time series are in a
close neighbourhood to each other, and does not allow to find general patterns inde-
pendent of location.

Time series data sets are also used to asses patterns of agricultural land use by Re-
cuero et al., 2019. For this study time series of Normalized Difference Vegetation Index
(NDVI) data have been analysed using auto-correlation values and random forest clas-
sification. Benchmark data from an alternative source was needed to train the classi-
fier. Such benchmark data is currently not available in our case. A study by Belgiu and
Csillik, 2018 used time series from Sentinel-2 satellite data for cropland mapping. They
made use of dynamic time warping classification and showed that in areas with little
available reference data for training a classifier, their approach delivers good results in
segmentation based on time series’ evolution. Also in this case pre-labelled training data
is required. Another approach using expectation-based scan statistics was presented by
Neill, 2009: To detect spatial patterns in time series from public health data, a statistical
method based on expectation values is used. Clusters are formed where the observed
values significantly exceed the expectation. The results are promising but depend on the
choice of time series analysis method, statistics used and the shape of the search region,
which all have to be defined in advance specific to each data set and application. Gener-
ally there is a lack of studies on mining spatio-temporal data for deformation patterns,
without using training data or predefined change patterns.

The goal of the present study is to evaluate the application of clustering algorithms on
a high dimensional spatio-temporal data set without specifying deformation patterns in
advance. Our objectives in particular are:

1. To analyse and compare the limits and advantages of three clustering algorithms
for separating and identifying change patterns in high dimensional spatio-temporal
data.

2. To detect specific deformation on sandy beaches by clustering time series from
permanent laser scanning.

We compare the k-means algorithm, agglomerative clustering and the DBSCAN algo-
rithm on a PLS data set over 30 days, to investigate the effectiveness of the identification
of coastal change patterns. All three algorithms are well established and represent three
common but different approaches to data clustering. To determine if an algorithm is
suitable, we expect that it fulfils the following criteria:
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• A majority of the observation area is separated into distinct regions,

• each cluster shows a change pattern that can be associated with a geomorphic
deformation process, and

• time series contained in each cluster roughly follow the mean change pattern.

We use the different clustering approaches on a small area of the beach at the bot-
tom of a footpath, where sand accumulated after a storm, and a bulldozer subsequently
cleared the path and formed a pile of sand. We determine the quality of the detection
of this process for all three algorithms and compare them in terms of standard devia-
tion within the clusters and area of the beach covered by the clustering. We compare
and evaluate the resulting clusters using these criteria as a first step towards the devel-
opment of a method to mine the entire data set from PLS for deformation processes.
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3.2. THE PERMANENT LASER SCAN DATA SET

Figure 3.1: Top view of a point cloud representing the observation area at low tide on
1st January 2017. The laser scanner is located at the origin of the coordinate
system (not displayed). The point (xt , yt ) indicates the location of the time
series shown as an example in Figure 3.3. The test area, which is discussed in
Section 3.3.4, is indicated with a box at the end of the northern path leading to
the beach. The paved paths leading to the beach are used as stable reference
surface for the errors reported in Table 3.1. Parts that are white between the
dunes and the sandy beach are gaps in the data due to occlusions caused by
the dunes.
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The data set from PLS is acquired within the CoastScan project at a typical urban beach
in Kijkduin, the Netherlands, Vos et al., 2017. For the acquisition a Riegl VZ-2000 laser
scanner was used to scan over a period of six months from December 2016 to May 2017.
The full data set consists of hourly scans of a section of sandy beach and dunes.

Figure 3.2: Riegl VZ2000 laser scanner mounted on the roof of a hotel facing the coast of
Kijkduin, the Netherlands. The scanner is covered with a protective case to
shield it from wind and rain.

For the present study, a subset of the available data is used to develop the methodo-
logy. This subset consists of 30 daily scans taken at low tide over a period of one month,
January 2017. It covers a section of the beach and dunes in Kijkduin and is displayed in
top view in Figure 3.1. The area contains a path and stairs leading down to the beach, a
paved area in front of the dunes, a fenced in dune area and the sandy beach. It is about
950 m long, 250 m wide and the distance from the scanner to the farthest points on the
beach is just below 500 m. For the duration of the experiment the scanner was mounted
on the roof of a hotel just behind the dunes at a height of about 37 m above sea level (as
shown in Figure 3.2).

The data is extracted from the laser scanner output format and converted into a file
that contains xyz-coordinates and spherical coordinates for each point. The data is
mapped into a local coordinate system, where the origin in x- and y-direction is at the
location of the scanner and the height (z-coordinate) corresponds to height above sea
level. Since we are interested in relative changes between consecutive scans, we do not
transform the data into a geo-referenced coordinate system for this analysis.

Each point cloud is chosen to be at the time of lowest tide between 18:00 and 06:00,
in order to avoid people and dogs on the beach, with the exception of two days where
only very few scans were available due to maintenance activities. The data from 9th of
January 2017 is entirely removed from the data set, because of poor visibility due to fog.
This leads to the 30 day data set, numbered from 0 to 29. Additionally all points above
14.5 m elevation are removed to filter out points representing the balcony of the hotel
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and flag posts along the paths. In this way also a majority of reflections from particles in
the air, birds or raindrops are removed. However, some of these particles might still be
present at lower heights close to the beach.
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Figure 3.3: Time series of elevation at location (xt , yt ) (marked in Figure 3.1) on the path
that is assumed to be stable throughout the entire month. Elevation is varying
within less than 2 cm.

Since the data is acquired from a fixed and stable position we assume that consecutive
scans are aligned. Nevertheless, the orientation of the scanner may change slightly due
to strong wind, sudden changes in temperature, or maintenance activities. The internal
inclination sensor of the scanner measures these shifts while it is scanning and we apply
a correction for large deviations (more than 0.01 degrees) from the median orientation.

The remaining error in elevation is estimated as the standard error and the 95-per-
centile of deviations from the mean elevation over all grid cells included in the stable
paved area. We chose the stable surface that is part of the paved paths on top of the
dunes and leading to the beach in northern and southern direction as indicated in Fig-
ure 3.1. This area includes 1653 grid cells with complete time series. The derived mean
elevation, standard error and overall 95-percentile of deviations from the mean per time
series averaged over the stable area are reported in Table 3.1. The elevation does on aver-
age not deviate more than 1.4 cm from the mean elevation, and 95 % of deviations from
the mean elevation are on average below 3.5 cm. An example time series from the sta-
ble paved area on top of the dunes (at location (xt , yt ) marked in Figure 3.1) is shown in
Figure 3.3.

Table 3.1: Test statistics of the gridded elevation values on the paved area, which is as-
sumed to be stable throughout the observation period of one month. Values
are calculated per time series and averaged over the entire stable area, which
results in mean elevation, standard error and an average 95-percentile of de-
viations from the mean.

mean elevation 12.43 m
standard error 1.4 cm
95-percentile of deviation from mean 3.5 cm
(averaged over all grid cells)
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3.3. METHODS
To derive coastal deformation processes from clusters based on change patterns we fol-
low three steps: Extraction of time series, clustering of time series with three different
algorithms, and derivation of geomorphological deformation processes. To cluster time
series the definition of a distance between two time series (or the similarity) is not imme-
diately obvious. We discuss two different options (Euclidean distance and correlation)
to define distances between time series with different effects on the clustering results.
The rest of this section is organized as follows: We focus on time series extraction in
subsection 3.3.1, discuss distance metrics for time series (3.3.2), introduce three cluster-
ing algorithms (3.3.3) and our evaluation criteria (3.3.4). The derivation of deformation
processes will be discusses with the results (section 3.4).

3.3.1. TIME SERIES EXTRACTION

Time series of surface elevation are extracted from the PLS data set by using a grid in
Cartesian xy-coordinates. We only use grid cells that contain at least one point for each
of the scans.

Before defining a grid on our observed area, we rotate the observation area to make
sure that the coastline is parallel to the y-axis, as shown in Figure 3.1. This ensures that
the grid covers the entire observation area efficiently and leaves as few empty cells as
possible. Then we generate a regular grid with grid cells of 1 m × 1 m. Time series are
generated for each grid cell by taking the median elevation zi for each grid cell and for
each time stamp tk . That means, per grid cell with centre (xi , yi ) we have a time series

Z̃i = (zi (t1), . . . zi (tT )), (3.1)

with the number of time stamps T = 30. To make the time series dependent on change
patterns, rather than the absolute elevation values, we remove the mean elevation z̄i of
each time series Z̃i . This leads to time series

Zi = (z ′
i (t1), . . . , z ′

i (tT ), (3.2)

with z ′
i (tk ) := zi (tk )− z̄i .

In this way we extract around 40 000 grid cells that contain complete elevation time
series for the entire month. The point density per grid cell varies depending on distance
to the laser scanner. For example, a grid cell on the paved path (at about 80 m range)
contains about 40 points (i.e. time series at (xt , yt ) in Figure 3.1), whereas a grid cell
located close to the water line, at about 300 m distance from the scanner, may contain
around three values. This implies that the median per grid cell is based on more points
the closer a grid cell is to the scanner.

3.3.2. DISTANCE METRICS

We consider two different distance metrics for our analysis: the Euclidean distance as
the default for the k-means algorithm and agglomerative clustering, and correlation dis-
tance for the DBSCAN algorithm.
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EUCLIDEAN DISTANCE

The most common and obvious choice is the Euclidean distance metric defined as:

dE (Z0, Z1) = ||Z0 −Z1|| =
√

n∑
i=1

|Z0i −Z1i |2, (3.3)

for two time series Z0 and Z1 of length n.

CORRELATION DISTANCE

Another well known distance measure is correlation distance, defined as one minus the
Pearson correlation coefficient (see for example Deza and Deza, 2009). It is a suitable
measure of similarity between two time series, when correlation in the data is expected
(see Iglesias and Kastner, 2013). Correlation between two time series Z0 and Z1 is defined
as:

Cor(Z0, Z1) = 1− (Z0 − Z̄0) · (Z1 − Z̄1)

||Z0 − Z̄0|| · ||Z1 − Z̄1||
, (3.4)

with Z̄ being the mean value of time series Z and || · || the Euclidean 2-norm as in
Equation (3.3). We have to note here, that correlation cannot compare simple constant
time series (leads to division by zeros) and is therefore not a distance metric in the sense
of the definition Deza and Deza, 2009.

COMPARISON

For a comparison of the two distances for some example time series, see Figure 3.4. The
example shows that the distance between two time series is not intuitively clear. The use
of different distance metrics results in different sorting of distances between the shown
pairs of time series. When normalising all time series (subtracting the mean and scaling
by the standard deviation) correlation distance and Euclidean distance are equivalent
(as shown for example by Deza and Deza, 2009). However, this leads to issues, when
comparing to a constant time series (with zero standard deviation).

Both Euclidean distance and correlation are not taking into account the order of the
values within each time series. For example, two identical time series that are shifted
in time are seen as ’similar’ with the correlation distance, but not as similar with the
Euclidean distance and would not be considered as identical by either of them (see Fig-
ure 3.4). Additionally neither of the two distance metrics can deal with time series of
different lengths or containing gaps.

3.3.3. CLUSTERING METHODS

Clustering methods for time series can be divided into two categories: feature based and
raw data based (see for example Liao, 2005). Feature based methods first extract relevant
features to reduce dimensionality (for example using Fourier- or wavelet-transforms)
and then form clusters based on these features. They could also be used to deal with gaps
in time series. We focus on the raw data based approach to not define features in advance
and to make sure that no information within the data set is lost. We use three different
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Figure 3.4: Example of three pairs of time series that are ’similar’ to each other in dif-
ferent ways. The Euclidean distance would sort the differences as follows
dE (Z2, Z3) < dE (Z4, Z5) < dE (Z0, Z1), whereas according to the correlation dis-
tance the order would be Cor(Z0, Z1) < Cor(Z4, Z5) < Cor(Z2, Z3).

methods: k-means clustering, agglomerative clustering and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN). In Figure 3.5 an illustration of a partitioning
of a simple 2D data set is shown for each of the three algorithms. The two clusters that
can be distinguished in this example have different variances and are grouped differently
by each of the algorithms.

For the implementation of all three algorithms, we make use of the Scikit-learn pack-
age in Python (see Pedregosa et al., 2011).

K-MEANS CLUSTERING

The k-means algorithm was first introduced in 1955 and is still one of the most widely
used clustering methods (Jain, 2010). The algorithm is based on minimising the sum J of
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Figure 3.5: Example of clustering of data with two clusters with different variance: The k-
means algorithm separates them, but adds a few points in the middle to the
purple cluster instead of the yellow one (A). Agglomerative clustering sepa-
rates both clusters according to their variances (B) and DBSCAN detects the
cluster with low variance and high point density (yellow) and discards all
other points as outliers (turquoise) (C).

all distances between points and centroids over all possible choices of k cluster centroids
V = {v1, . . . , vk }:

MinV J (V ) =
k∑

j=1

∑
xi∈v j

||xi − v j ||2, (3.5)

with Euclidean distance metric || · ||. After the initial choice of k centroids among all
points the following steps are repeated iteratively, until the above sum does not change
significantly:

1. Assign each point to the cluster with closest centroid

2. Move centroid to mean of each cluster

3. Calculate sum of distances over all clusters (Equation (3.5))

Note that minimising the squared sum of distances over all clusters, coincides with
minimising the squared sum of all within cluster variances. The convergence to a local
minimum can be shown for the use of Euclidean distance (see for example Jain, 2010).
The convergence is sped up using so-called k-means++ initialisation: After the random
selection of the first centroid, all following centroids are chosen based on a probability
distribution proportional to their squared distance to the already defined centroids. In
this way the initial centroids are spread out throughout the data set and the dependence
on the random initialisation of the cluster centroids is reduced.

There are variations of k-means using alternative distance metrics such as the L1-
norm (k-medoids, Park and Jun, 2009), however the convergence is not always ensured
in these cases. Another issue to take into account when considering alternative distance
metrics, is the definition of the cluster centroids as mean of time series, which is not au-
tomatically defined for any distance metric. For more information on k-means see Jain,
2010, Liao, 2005 and the documentation of the Scikit-learn package (Pedregosa et al.,
2011).
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AGGLOMERATIVE CLUSTERING

Agglomerative clustering is one form of hierarchical clustering: It starts with each point
in a separate cluster and iteratively merges clusters together until a certain stopping cri-
terion is met. There are different variations of agglomerative clustering using different
input parameter and stopping criteria (see for example Liao, 2005 or the documentation
of the scikit-learn package (Pedregosa et al., 2011)). We choose the minimisation of the
sum of the within cluster variances using the Euclidean distance metric (Equation (3.5),
where the centroids v j are the mean values of the clusters) for a pre-defined number
of clusters k. The algorithm starts with each point in a separate cluster and iteratively
repeats the following steps until k clusters are found:

1. Loop through all combinations of clusters:

• Form new clusters by merging two neighbouring clusters into one

• Calculate squared sum of distances (Equation (3.5)) for each combination

2. Keep clusters with minimal squared sum of distances

In this way we use agglomerative clustering with a similar approach to the k-means al-
gorithm, the same optimisation criterion with the same input parameter and Euclidean
distance measure. We therefore expect similar results. However, this agglomerative clus-
tering can easily be adapted to alternative distance measures and could therefore poten-
tially deal with time series of different lengths or containing gaps.

DBSCAN ALGORITHM

Density-Based Spatial Clustering of Applications with Noise, DBSCAN, is a classical ex-
ample of clustering based on the maximal allowed distance to neighbouring points that
automatically derives the numbers of clusters from the data. It was introduced in 1996 by
Ester et al., 1996 and recently revisited by E. Schubert et al., 2017. The algorithm is based
on dividing all points into core points or non-core points that are close to core points but
not themselves surrounded by enough points to be counted as core points. The algo-
rithm needs the maximum allowed distance between points within a cluster (ε) and the
minimum number of points per cluster (Nmi n) as input parameters. These two parame-
ters define a core point: If a point has a neighbourhood of Nmi n points at ε distance, it is
considered a core point. The algorithm consists of the following steps (E. Schubert et al.,
2017):

1. Determine neighbourhood of each point and identify core points

2. Form clusters out of all neighbouring core points

3. Loop through all non-core points and add to cluster of neighbouring core point if
within maximal distance, otherwise classify as noise

In this way clusters are formed that truly represent a dense collection of ’similar’ points.
Since we choose to use correlation as distance metric, each cluster will contain corre-
lated time series in our case. All points that can not be assigned to a close surrounding
of a core point, are classified as noise or outliers.
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3.3.4. EVALUATION CRITERIA

To determine if an algorithm is suitable, we expect that it fulfils the previously defined
criteria:

• A majority of the observation area is separated into distinct regions,

• each cluster shows a change pattern that can be associated with a geomorphic
deformation process, and

• time series contained in each cluster roughly follow the mean change pattern.

In order to establish these criteria, we compare the three clustering algorithms, as well
as two choices for the number of clusters k, using the following evaluation methods.

VISUAL EVALUATION

The clustered data are visualised in a top view of the observation area, where each point
represents the location of a grid cell. Each cluster is associated with its cluster centroid,
the mean elevation time series of all time series in the respective cluster. For visuali-
sation purposes we have added the median elevation back to the cluster centroids, even
though it is not taken into account during the clustering. We subsequently derive change
processes visually from the entire clustered area. We establish which kind of deforma-
tion patterns can be distinguished and estimate rates of change in elevation and link
them to the underlying process.

QUANTITATIVE EVALUATION

We use the following criteria to compare the respective clustering and grid generation
methods quantitatively:

• percentage of entire area clustered

• minimum and maximum within cluster variation

• percentage of correctly identified change in test area with bulldozer work

The percentage of the area that is clustered differs depending on the algorithm. Espe-
cially DBSCAN sorts out points that are too far away (i.e. too dissimilar) from others as
noise. This will be measured over the entire observation area. The number of all com-
plete time series counts as 100%.

Each cluster has a mean centroid time series and all other time series deviate from that
to a certain degree. We calculate the average standard deviation over the entire month
per cluster and report on the minimum and maximum value out of all realised clusters.

TEST AREA

To allow for a comparison of the clusters with a sort of ground truth, we selected a test
area at the bottom of the footpath. In this area a pile of sand was accumulated by a
bulldozer, after the entrance to the path was covered with lots of sand during a period
of rough weather conditions (8 to 16 January, corresponding to day 7 to 14 in our time
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series), as reported by Anders et al., 2019. We chose two time stamps for illustration,
and show the elevation before the bulldozer activity at the end of the stormy period on
16 January, after the bulldozer activity on 18 January and the difference between the
elevations on these two days in Figure 3.6 (first row, A,B,C). The area does not change
significantly after this event. Within this test area we classify (manually) each point as
’stable’ or ’with significant change’ depending on a change in elevation of more than
5 cm (positive or negative). Then we evaluate for each clustering method if the points
that are classified as ’with significant change’ are in a separate cluster than the ’stable’
points.

The stable cluster consists of cluster 0, the largest cluster when using k = 6 for k-means
and agglomerative clustering and cluster 0 and 1 combined in the case of k = 10 clusters.
For evaluating the results of the DBSCAN algorithm we consider all locations that are
not clustered (noise) and points in cluster 1 as the ’stable’ areas, because the average
erosion in cluster 1 is less than 0.15 cm per day. We do not distinguish if there are dif-
ferent clusters within the category of ’with significant change’. However, in Figure 3.6,
the different clusters can be distinguished by their colours, corresponding to the colours
of the clusters shown in subsequent figures (Figures 3.7, 3.8 and 3.9). We then compare
the percentage of correctly classified grid points for the test area, for each of the grid
generation and clustering methods.
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3.4. RESULTS
The results are presented in two parts. First, we compare two different choices of the
parameter k for the k-means algorithm and for agglomerative clustering. Then, we com-
pare all three clustering methods and evaluate results on the test area, where a bulldozer
created a pile of sand (as indicated in Figure 3.1) and in terms of percentage of data clus-
tered, standard error within each cluster and physical interpretation of clusters.

3.4.1. CLUSTERING

For the k-means algorithm and agglomerative clustering, we consider two different val-
ues k = 6 and k = 10, exemplary for a smaller number of clusters and a higher number of
clusters.

Table 3.2: Summary of comparison of k-means algorithm, agglomerative clustering
(AGG) and DBSCAN algorithm.

k-means AGG DBSCAN
entire observation area

number of clusters 6 10 6 10 6
min no. points/cluster 108 34 108 39 45
area clustered 100% 100% 100% 100% 44%
max std error/cluster 3.22 m 3.1 m 3.18 m 2.86m 4.0 m
min std error/cluster 0.77 m 0.68 m 0.79 m 0.71 m 0.33 m

test area: correctly identified
stable points 81% 82% 86% 86% 99%
positive changes 97% 97% 86 % 86% 0%
negative changes 93% 93% 98 % 98% 54%
total 85% 86% 88 % 88% 79%

K-MEANS

With the k-means algorithm, the entire observation area is partitioned. The resulting
partition depends on the random initialisation. The standard error within each cluster
is relatively high, compared to the stable area (see Table 3.1) and generally increases with
the size of the cluster. Even the cluster with the smallest standard error (averaged stan-
dard deviation per time series over the clustered area), still shows a standard error of
0.77 m (cluster 5 for k = 6). We show the resulting clusters obtained using the k-means
algorithm with number of clusters k = 6 and k = 10. Visual inspection shows that both
values lead to good, usable results by partitioning the set of time series into clusters that
are small enough to capture geomorphic changes but not too large, which would make
them less informative. As displayed in Figure 3.7, a large part of the beach is contained
in a ’stable’ cluster when using k = 6 (cluster 0, blue). This cluster, as well as some of
the others, are split up into several smaller clusters when using k = 10. For example, the
intertidal zone (i.e. the area that is under water during high tide and exposed during low
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tide) is eroding mostly during stormy days in the first half of the month. This zone is con-
tained entirely in cluster 1 (green) when using k = 6. In the case of k = 10, this part is split
up into three clusters, one with a similar mean time series (cluster 2, green), one eroding
with a pattern similar to cluster 2, but mostly representing sand banks (cluster 3, brown)
and one gradually eroding at a low rate over the entire month (cluster 1, orange). It also
becomes clear, that the sand piles that were generated by bulldozer works at different
locations (k = 6 cluster 5, light blue) were created on different days (k = 10, clusters 8
and 9, yellow and light blue). Some features, like the cleared part of the paths, the sand
piles and the intertidal zone can be distinguished in both cases.

On the test area the k-means algorithm correctly classifies about 85% of points into
’stable’, ’significant negative change’, or ’significant positive change’ in the case of k =
6. However, as can be seen in Figure 3.6, a part of the points with negative change are
not identified. These clusters are split up further in the case of k = 10, which does not
influence the results in the test area a lot. A summary of these results is provided in
Table 3.2.

B D

Figure 3.7: A/C: Overview of the entire observation area divided into clusters using k-
means with k = 6 (A) and k = 10 (C). B/D: Corresponding cluster centroids for
each of the clusters shown in A and C, respectively. By using a larger number
of clusters k, more processes become visible, for example two sand piles (A/B:
cluster 5) created on two different days (C/D: cluster 8 and 9). Also the large
stable areas (A/B: cluster 0) and slowly accreting areas (A/B: cluster 3) are split
up into several clusters: A slightly eroding area (C/D: cluster 3) is split up
from the stable part and the accreting area is split into two (C/D: cluster 4
and cluster 6).
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AGGLOMERATIVE CLUSTERING

The agglomerative clustering algorithm is set up, as the k-means algorithm, to find six
and ten clusters. It produces results very similar to the clusters found with the k-means
algorithm, as can be seen comparing Figures 3.7 and 3.8 and Figures 3.6 D and E. Clusters
2 and 3 from agglomerative clustering correspond roughly to the clusters 3 and 2 from
k-means clustering. The ordering of clusters is according to size, so more time series
are considered ’noisy’ according to k-means, whereas agglomerative clustering assigns
more of these time series to the gradually accreting cluster. All other clusters appear to
be nearly identical and show similar spatial distributions as well as centroid shapes. The
differences between the two choices of the number of clusters k are also very similar.

On the test area, the detection of negative and positive changes is more balanced and
leads to an overall score of 88 % correctly identified points. Agglomerative clustering
clearly separates the path that was cleared by the bulldozer and identifies it as eroding.

 A B C D

Figure 3.8: A/C: Overview of the entire observation area divided into clusters using ag-
glomerative clustering with k = 6 (A) and k = 10 (B). B/D: corresponding clus-
ter centroids for each of the clusters shown in A and C respectively. The clus-
ters are similar to the ones found with k-means.

DBSCAN

When we use the DBSCAN algorithm on the same data set, with minimum number of
points Nmi n = 30 and maximum distance ε = 0.05, a large part of the time series (55 %)
is classified as noise, meaning that they are not very similar (i.e. not correlated, since
we use correlation as distance measure) to any of the other time series. However they
roughly match the combined areas that are identified as stable and noisy by k-means
(clusters 0 and 2 for k = 6). The remaining time series are clustered into six clusters. The
standard error within each cluster is generally lower than in the clusters generated with
k-means (minimum standard error is 0.33 m) without considering the time series that
are classified as noise.

The intertidal zone cannot be separated clearly from the ’noise’ part of the observation
area, nor can we distinguish the stable path area or the upper part of the beach. In the
test area, the sand pile is not represented by a separate cluster and positive changes in
elevation are not found, which results in an overall worse percentage of correctly identi-
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fied points. But, two clusters represent areas, which are relatively stable throughout the
month, except for a sudden peak in elevation on one day. These peaks are dominated by
a van parking on the path on top of the dunes and people passing by, and are not caused
by actual deformation, compare Figure 3.9.

Figure 3.9: Mean time series per cluster found with the DBSCAN algorithm. Outliers or
not clustered points are represented by the blue mean time series. The two
most prominent time series (cluster 5 and 6, light green and light blue) are
located on the path on top of the dunes. The peaks are caused by a group of
people and a van, on the 5th and 6th of January respectively, illustrated by the
point clouds in the middle of the plot.

On the test area the DBSCAN algorithm performs worse than both other algorithms.
In total 79% of points are correctly classified into ’stable’ or ’significant negative change’.
As stable points we count in this case all points that are classified either as noise or be-
long to cluster 1 (orange). The reason for this is that the mean of all time series that are
not clustered appears relatively stable, while cluster 1 describes very slow erosion of less
than 0.15 cm per day. This matches with 99% of points classified as stable in the ground
truth data. But, no single cluster is formed containing only the points where sand is ac-
cumulating, even though these clusters are distinguished by the other two algorithms.
These points are mixed up with the large cluster of slightly eroding points in cluster 1.
We can see in Figure 3.6, that the only significant process found in the test area is the
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cleared path (cluster 2, red).

3.4.2. IDENTIFICATION OF CHANGE PROCESSES

Figure 3.10: Observation area partitioned into clusters by the k-means algorithm with
k = 10. The associated processes are annotated with the corresponding
colours.
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Considering the clusters found by the k-means algorithm and agglomerative cluster-
ing, we can clearly distinguish between time series that represent erosion and accretion
with different magnitudes and at different times of the month, as well as a sudden jump
in elevation, caused by bulldozer work. In Figure 3.10 we show the clusters and asso-
ciated main process. To give an idea of the magnitude of the most prominent change
patterns, we fit straight lines through the mean time series or parts of it (where the slope
is steepest) and derived average rates of change in elevation from the estimated slopes.
The clusters dominated by erosion, close to the water line (clusters 2 and 5) represent the
inter-tidal zone of the beach. The elevation changes in this area are likely caused by the
effects of tides and waves. The change rates were partly accelerated during the stormy
period in the first half of the month. Accreting areas are mostly at the upper beach, close
to the dune foot and on the paths in the dunes (clusters 4, 6 and 7). These areas as well
as a large cluster on the upper beach (cluster 1, orange), which undergoes a slight and
gradual erosion over the entire month, are likely dominated by aeolian sand transport.
The most obvious change process is the sand removed from the entrances of the paths
leading to the beach by bulldozer works (cluster 7) and accumulated in piles of sand at
four different locations on two days (clusters 8 and 9). Points contained in the noisy
cluster (cluster 3) are spread out through the dune area and noise is probably caused by
moving vegetation.

3.5. DISCUSSION
We successfully applied the presented methods on a data set from PLS and demonstrated
the identification of deformation processes from the resulting clusters. Here we discuss
our results on distance measures, clustering methods and the choice of their respective
input parameters and derivation of change processes.

3.5.1. DISTANCE MEASURES

Possible distance measures for the use in time series clustering are analysed among oth-
ers by Iglesias and Kastner, 2013 and Liao, 2005. We use Euclidean distance in combi-
nation with the k-means algorithm and agglomerative clustering for our analysis. It has
been shown by Keogh and Kasetty, 2003 that especially for time series with high dimen-
sions, alternative distance measures rarely outperform Euclidean distance. However, we
have to note here, that Euclidean distance is affected by the so called ’curse of dimen-
sionality’, which causes a space of long time series (with many dimensions) to be difficult
to cluster. The problem with clustering time series in high dimensional spaces with k-
means, is that Euclidean distance is based on the sum of all point wise differences. This
leads to a space, where the variance of the distances decreases with increasing time se-
ries length. Therefore it will be harder to categorise time series as similar, and fewer
meaningful clusters will emerge, the more observations we use. This could possibly lead
to difficulties, when extending these methods to the use of longer time series, but does
not appear to degrade results on our current data set. For more details on this issue see
Assent, 2012, Verleysen and François, 2005 and Zimek et al., 2012.

We chose for the use of correlation distance with the DBSCAN algorithm, because cor-
relation in principle represents a more intuitive way of comparing time series (see Fig-
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ure 3.4). DBSCAN is based on identification of clusters of high density, which in our case
works better using correlation distance instead of Euclidean distance. Using Euclidean
distance, there are very few clusters of ’very similar’ time series and an even larger part of
the beach is classified as noise. Only in combination with correlation distance, we could
derive a set of input parameters for the DBSCAN algorithm to produce relevant results.

Scaling the time series with their respective standard deviations for the use of Eu-
clidean distance would make these two distance measures equivalent. However, this did
not improve our results using k-means or agglomerative clustering. Subtle differences
within the stable cluster would become prominent in that case, but the larger differences
between clusters as we find them without the scaling, would be reduced.

Neither of the two distance measures analysed here can deal with gaps in the time se-
ries, which would be of great interest to further analyse especially the intertidal area and
sand banks. Additionally, both distance measures do not allow to identify identical ele-
vation patterns that are shifted in time as similar. An alternative distance measure suit-
able to deal with these issues would be Dynamic Time Warping (DTW), which accounts
for similarity in patterns even though they might be shifted in time (Keogh & Ratanama-
hatana, 2005). An interpolation method to fill gaps in elevation over short time spans
based on surrounding data or a feature based clustering method could be other alterna-
tives.

3.5.2. CLUSTERING METHODS

The use of k-means clustering on elevation time series from the same data set was demon-
strated by Lindenbergh et al., 2019 and has shown promising first results. We follow the
same approach and, as a comparison, use agglomerative clustering, with the same op-
timisation criterion, distance metric and input parameter. As expected the results are
similar, although agglomerative clustering does not depend on random initialisation. It
therefore delivers the same result for every run, which is an advantage. Considering our
previously defined criteria:

• a majority of the observation area is separated into distinct regions,

• each cluster shows a change pattern that can be associated with a geomorphic
deformation process, and

• time series contained in each cluster roughly follow the mean change pattern,

both algorithms are suitable and the differences in the resulting clusters are negligible
for our specific data set.

However, the computational effort needed to loop through all possible combinations
of merging clusters for agglomerative clustering is considerably higher. Of the three al-
gorithms that were used in this study, agglomerative clustering is the only one that regu-
larly ran into memory errors. This is a disadvantage considering the possible extension
of our method to a data set with longer time series.

One of the disadvantages of the k-means algorithm and our configuration of agglomer-
ative clustering, is that the number of clusters has to be defined in advance. Our choices
of k = 6 and k = 10 clusters both yield promising results, but remain somewhat arbitrary,
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especially without prior knowledge of the data set. A lower number of clusters k (for
example k = 6) yields a division of the beach into sections (inter-tidal zone, dry part of
the beach) and highlights the most prominently occurring changes (bulldozer works).
When using a larger number of clusters k, several of the previously mentioned clusters
are split up again and more detailed processes become visible. The erosion and accre-
tion patterns on the beach appear at different degrees in distinct regions, which is valu-
able information. Also the sand piles, which appeared in one cluster for k = 6 are now
split up according to the different days, on which they were generated. We consider this
possibility to identify and specify anthropogenic induced change an illustrative example
of the influence of the choice of the number of clusters k. We have considered two data
independent methods to determine a suitable value for k: analysis of the overall sum of
variances for different values of k and so-called cluster balance following the approach
of Jung et al., 2003. Neither of them resolved the problem satisfactorily and we cannot
make a generalised recommendation, independent of the application, for the choice of k
at this point.

To avoid this issue we also compare both approaches with the use of the DBSCAN
algorithm. It is especially suitable to distinguish anomalies and unexpected patterns
in data as demonstrated by Çelik et al., 2011 using temperature time series. To decide,
which values are most suitable for the two input parameters of the DBSCAN algorithms
we plot the percentage of clustered points and the number of clusters depending on
both parameters (see Figure 3.11). However, this did not lead to a clear indication of an
’optimal’ set of parameters. After the trade-off analysis between the number of points
in clusters and the number of clusters (not too high, so that the clusters become very
small and not too low so that we generate only one big cluster) we chose ε = 0.05 and
Nmi n = 30 by visually inspecting the resulting clusters.

An alternative clustering approach for time series based on fuzzy C-means is proposed
by Coppi et al., 2010. They develop a method to balance the clustering based on the
pattern of time series while keeping an approximate spatial homogeneity of the clusters.
This approach was successfully applied to time series from socio-economic indicators
and could be adapted for our purpose. It could potentially improve detection of features
like sand bars, or bulldozer work, but not distinguish moving vegetation in the dunes as
our current approach does.

A similar approach would be to use our clustering results and identified change pat-
terns as input to the region-growing approach of Anders et al., 2020. In this way we could
combine advantages of both methods by making the identification of the corresponding
regions for each distinct deformation pattern more exact, without having to define pos-
sible deformation patterns in advance.

3.5.3. DERIVATION OF CHANGE PROCESSES

As shown in Figure 3.10, we identified change processes from the clusters generated by
k-means. Agglomerative clustering shows similar clusters and therefore yields similar re-
sults. Each centroid representing the mean time series of the k-means clusters shows a
distinct change pattern (see Figures 3.7 and 3.8), which allows to conclude on a predomi-
nant deformation process. By fitting a straight line through the mean time series, or part
of it, we estimated the slope corresponding to the average rate of change in elevation.
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Figure 3.11: DBSCAN selection of input parameters: Number of clusters versus input pa-
rameter maximum distance within clusters and minimum number of points
and percentage of total points in clusters (not classified as noise/outliers).
The choice of an ’optimal’ set of parameters is not obvious. We indicate our
selection with a red circle in both plots.

Associating the centroids with the location and spatial spread of the clusters allows to
derive the main cause for the respective deformations. In some cases extra information,
or an external source of validation data would be useful to verify the origin of the pro-
cess. This will be taken into account for future studies. The location of the clusters and
for example the steep rise of the mean time series representing the sand piles allows for
the conclusion that the cause of this sudden accretion is anthropogenic. The informa-
tion found by Anders et al., 2019 for the research on their study confirms the coinciding
bulldozer works. The derived average rates of change in elevation allow for the possi-
bility to derive mass budgets to quantify volume changes over specific amounts of time
from our data, showing a possible application of our method, that is of large scientific
interest (see for example Schipper et al., 2016).

The DBSCAN algorithm successfully identifies parts of the beach that are dominated
by a prominent peak in the time series (caused by a van and a small group of people).
Out of the three algorithms that we compare, it is most sensitive to these outliers in the
form of people or temporary objects in the data. It was not our goal for this study, to
detect people or objects on the beach, but this ability could be a useful application of
the DBSCAN algorithm to filter the data for outliers in a pre-processing step.
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3.6. CONCLUSIONS
We compared three different clustering algorithms (k-means, agglomerative clustering
and DBSCAN) on a subset of a large time series data set from PLS on a sandy urban
beach. We successfully separated the observed beach and dune area according to their
deformation patterns. Each cluster, described by the mean time series, is associated
with a specific process (such as bulldozer work, tidal erosion) or surface property (for
example moving vegetation cover).

The most promising results are found using k-means and agglomerative clustering,
which both correctly classify between 85 and 88 % of time series in our test area. How-
ever, they both need the input of the number of clusters we are looking for and agglom-
erative clustering is computationally expensive. DBSCAN turned out to be more suitable
for the identification of outliers or unnatural occurring changes in elevation due to tem-
porary objects or people in the observed area.

Our key findings are summarised as follows:

1. Both k-means and agglomerative clustering fulfil our criteria for a suitable method
to cluster time series from PLS.

2. Predominant deformation patterns of sandy beaches are detected automatically
and without prior knowledge using these methods. The level of detail of the de-
tected deformation processes is enhanced with increasing number of clusters k.

3. Change processes on sandy beaches, which are associated with a specific region
and time span, are detected in a spatio-temporal data set from PLS with the pre-
sented methods.

Our results demonstrate a successful method to mine a spatio-temporal data set from
PLS for predominant change patterns. The method is suitable for the application in an
automated processing chain to derive deformation patterns and regions of interest from
a large spatio-temporal data set. It allows such a data set to be partitioned in space and
time according to specific research questions into phenomena, such as for example the
interaction of human activities and natural sand transport during storms, recovery peri-
ods after a storm event or the formation of sand banks. The presented methods enable
the use of an extensive time series data set from PLS to support the research on long-
term and small scale processes on sandy beaches and improve analysis and modelling
of these processes. In this way we expect to contribute to an improved understanding
and managing of these vulnerable coastal areas.
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Sandy beach-dune systems make up a large part of coastal areas world wide. Their func-
tion as an eco-system as well as a protective barrier for human and natural habitat is
under increased threat due to climate change. A thorough understanding of change pro-
cesses at the sediment surface is essential to facilitate prediction of future development
and management strategies to maintain their function. Especially slow and small scale
processes happening over several days up to weeks at cm level, such as aeolian sand trans-
port are difficult to identify and analyse. Permanent laser scanning (PLS) is a useful tool
in the study and analysis of coastal processes as it captures a data representation of the
evolution of the sediment surface over extended periods of time (up to several years) with
high detail (at cm-dm level). The PLS data set considered for this study, consists of hourly
acquired 3D point clouds representing the surface evolution of a section of the Dutch coast
during three years. However, it is challenging to extract concrete information on specific
change processes from the large and complex PLS data set. We use multiple hypothesis
testing in order to reduce the PLS data set to a so-called inventory of trends, consisting of
12.8 million partial time series with associated rate of change and elevation. The inven-
tory of trends proofs to be a suitable tool to identify natural processes such as storms and

This chapter has been published in Coastal Engineering 193, 104594 (2024) Kuschnerus, de Vries, et al., 2024.
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aeolian sand transport in our test area in the aeolian zone of a sandy beach-dune system
on the Dutch coast. We identify these processes and provide a tool to derive summaris-
ing data from the complex PLS data set. We find that all partial time series identified as
most likely representing aeolian sand transport, result in 1354 m3 of sand deposition in
our study area over the course of three years. We also show a comparison with transects
from JarKus data and find a correlation between anthropogenic activities and erosion in
our test area with a correlation coefficient of 0.3.
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4.1. INTRODUCTION

Coastal areas worldwide serve a multitude of purposes. Specifically sandy beach-dune
systems (SBDS), which make up 31 % of non-iced coast (A. Luijendijk et al., 2018), serve
as a protective barrier to prevent flooding, as habitat for a large number of species, and as
recreational areas. The resilience of SBDS is under increasing pressure due to both nat-
ural and human driven climate change (Grabemann & Weisse, 2008; Intergovernmental
Panel on Climate Change (IPCC), 2014). While sea level rise and increased severity of
storm events are foreseen, the growing human population continues to develop infras-
tructure on and near coastal areas worldwide, which under improvisational planning
can lead to coastal squeeze (Vousdoukas et al., 2020). To mitigate these effects, predic-
tions of the development of SBDS are needed, which require a thorough understanding
of topographic changes at the sediment surface of SBDS.

Topographic coastal changes at SBDS are driven by anthropogenic, ecologic and ge-
omorphological processes at different spatial and temporal scales. These driving influ-
ences also interact. While a storm can cause significant erosion of the beach-dune pro-
file over the course of several hours (van Wiechen et al., 2023), wind driven sediment
transports may only cause significant accretion of the dune profile of comparable extent
over the course of several decades (de Vries et al., 2012). In addition, the net result of the
interaction between erosive and accretive processes is sensitive to even small changes in
any of the influencing factors (Stive et al., 2002). Thus, human interventions, like shore
nourishment, frequent beach maintenance or buildings on the beach might influence
these as well (Poppema et al., 2021; Schipper et al., 2016). The knowledge needed to
analyse past and present development in order to make viable predictions of the future,
can be gained by observing, quantifying and subsequently interpreting these dynamics
and interactions at the sediment surface at different time scales.

Given the difference in scale, processes and interactions may be challenging to iden-
tity and analyse through sparse observations of surface beach dynamics. Regular and
frequent observations at high level of detail are desired to cover all temporal and spatial
scales. Optical as well as radar remote sensing are suitable observation tools, as well as
in-situ measurements with sensors and through inspections.

Yearly observation of the Dutch coast with airborne laser scanning provide a tool to
monitor the long term development of surface dynamics in the Dutch beach-dune sys-
tem. The resulting JarKus transects (Rijkswaterstaat - Dutch Ministery of Infrastructure
and Water Management, 2022) were for example analysed by C. O. IJzendoorn et al.,
2021. These transects, regularly spaced at 250 m, are used to study the location of the
coastline (quantified as momentary coastline (MKL)) and for decision making in coastal
management in the Netherlands.

Several other studies use incidental terrestrial laser scanning to observe the effect of
one specific event or process (see for example Ackerley et al., 2016; J. E. Schubert et
al., 2015). PLS is a tool to continuously monitor a section of coast over a longer period
at high temporal frequency (up to hourly) and small spatial resolution (up to cm) (see
Anders et al., 2019; Vos et al., 2017). PLS has been used in combination with analysis of
video images to detect bulldozer activities on the beach (Barbero-García et al., 2023) and
for several other applications, for example glacier observation (Voordendag et al., 2021)
and rock fall monitoring (Schröder et al., 2022).
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Anders et al., 2020 developed the so-called 4D-objects by change to find spatially con-
nected areas in which time series behave in a similar way. Each 4D object by change can
then be associated with a physical process, that would typically cause this pattern. Their
method favours prominent changes and only finds affected areas that are connected,
like for example bulldozer works or the appearance of a sand bar. A method to group
and classify the 4D-objects by change was developed by Hulskemper et al., 2022. In our
previous study on a similar data set of shorter length (covering six months), we used
clustering algorithms to group time series with similar change behaviour to identify ar-
eas affected by the same physical processes (Kuschnerus, Lindenbergh, & Vos, 2021).
This method turned out to be useful for finding areas affected by bulldozer works as well
as different erosion rates in the intertidal area. However, it is less suitable to process our
entire three-year data set. Winiwarter et al., 2023 used Kalman filtering to process long
time series containing gaps and found those time series to be a suitable input to feature
based clustering methods.

The aim of this paper is to identify topographic changes at the sediment surface of
the beach-dune system using PLS on a section of the Dutch coast. The permanently in-
stalled instrument measures with high frequency (hourly) and covers a section of about
800 m length in high detail (cm to dm level of elevation change). The acquired data
set captures the surface dynamics but its structure of 3D point clouds is cumbersome
and information is not easily extracted. We propose a method to extract elevation time
series and their rates of change and collect them as an inventory of trends in order to
reduce and simplify the data set. The trend inventory allows to identify and analyse ob-
served dynamics over a period of three years. We demonstrate the link but also the addi-
tional value compared to the JarKus data set by relating the observations in the respective
matching locations. Specifically we aim to answer the following research questions:

1. What elevation trends at the sediment surface can be derived from the PLS data
set?

2. How do high resolution PLS data compare to yearly JarKus-data?

3. How can small and slow changes at the sediment surface be identified and quan-
tified with PLS?

4. How can the effect of anthropogenic activities on the dynamics at the sediment
surface be analysed using PLS data?

The novelty of the proposed work is, firstly, the presented method to generate a sim-
pler representation of our data set for efficient data mining. Secondly, we process for
the first time the entire hourly three-year data record from PLS, which has proven to be
challenging with previously developed methods. Finally, our methods allow to identify
surface dynamics in the aeolian zone, which are difficult to study with other types of
data and methods (see for instance Uphues et al., 2022). Especially our new method is
capable of capturing long term but small-scale changes due to aeolian sand transport.
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Figure 4.1: The study site on the Dutch coast in Noordwijk, The Netherlands, with the
laser scanner mounted on a hotel balcony without (A) and with (B) protective
cover.

4.2. FIELD SITE AND DATA SET

The study area is part of a typical example of a Dutch urban beach and provides the
infrastructure needed for the instrumental set-up. The Dutch beach-dune system is ori-
entated from south-southwest to north-northeast and consists of quarts sand (C. IJzen-
doorn et al., 2023). The coast is driven by meso-tidal tides of about 2 meters height (Wi-
jnberg, 2002), waves of about 1.7 meter height during average conditions and 5 meter
height during storm conditions (A. P. Luijendijk et al., 2017) and with south westerly
winds (Vos et al., 2024). The Dutch coast is maintained regularly (Maij-Weggen, 1990)
with (underwater) sand nourishments resulting in an accreting environment around No-
ordwijk (de Vries et al., 2012). The observed area includes a sandy beach and dunes,
covered with vegetation and is about 1 km long and 250 m wide. The beach is strongly
influenced by tides and varies in width between 80 m and 140 m under normal weather
conditions. In rare occasions, storm reduces the width of the beach even further. Figure
4.2 shows an overview of the study area with an aerial image and the top view of a point
cloud as an example. In the point cloud the colours are based on elevation. We focus
in this study on a 400 m long part of the aeolian zone and do not include the intertidal
zone or dunes. Within the study area there is often a beach scarp of up to 1 m height, see
Figure 4.2B, which can lead to sudden changes in elevation observations.

To identify and analyse change processes, we use an exemplary data set from perma-
nent lasers scanning (PLS) consisting of point clouds collected hourly during a period
of three years from July 2019 to June 2022. The entire data set is published and can be
accessed through 4TU.ResearchData Vos et al., 2023. The point clouds processed for this
study are acquired with a Riegl VZ-2000 laser scanner, which is permanently mounted
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Figure 4.2: Overview of study area: Point cloud of the sandy beach (A), photo of a beach
scarp formed at the edge of the aeolian zone (B) and aerial image of Grand
Hotel Huis ter Duin with the adjacent dunes and beach (C, by Google maps).
In the point cloud the colours are based on elevation. White areas appear
because of missing data in the point clouds in the shadow zones of dunes and
buildings, or because of water present in the intertidal zone. The test areas
are marked with a square: test area 1 is next to a beach cafe and influenced
by many anthropogenic changes (i.e. bulldozer works, frequent visitors) and
test area 2 is mostly influenced by natural processes. In photo (B) the beach
marker at location of Jarkus transect with ID 8225 is visible. The location of
the laser scanner is marked with a star in the aerial image.

on the balcony of Grand Hotel Huis ter Duin in Noordwijk, The Netherlands. The laser
scanner is mounted on a metal frame at 55.757 m height above NAP that is fixed to the
balcony to maximise stability and covered with a protective cover (see Figure 4.1).

4.2.1. INSTRUMENT SETTINGS

The settings of the laser scanner are summarised in Table 4.1. Data is collected by run-
ning a scan of nearly 180 horizontal degrees covering a stretch of beach of just under 1
km long every hour with an angular spacing of 0.03 degree.

The laser scanner generates a 3D point cloud per scan, made up of x,y,z-coordinates
which are calculated by the Riegl proprietary software out of recorded range, horizontal
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range accuracy (at 150 m range) [m] 0.008
angular spacing [deg] 0.003
beam divergence [mrad] 0.3
inclination sensor frequency [Hz] 1
measurement accuracy [deg] 0.008

Table 4.1: Specifications of Riegl VZ-2000 laser scanner according to documentation.

total number of files 20 875
number of good quality files 19 386
days scanned 954
interruptions (> 24h) 21
number of points in study area 800 000
range 145 - 500 m
point density 1 - 40 pt/m2

footprint size 0.02 - 0.1 m2

inclination angle 70 - 90 deg

Table 4.2: Data properties considering all hourly scans between 11 July 2019 and 21 June
2022.

and vertical angle data, as well as intensity of the backscatter signal, per point. The inter-
nal inclination sensor records inclination values during each scan, with a frequency of
1 Hz (not matching the scanning frequency). A mean value and the standard deviation
of these inclination angles is used for correction of tilts in the scanner (see section 4.3.1).

There are some temporal gaps in the data set, of which the two largest are the follow-
ing: in the spring of 2020 during a period of 1.5 months the scanner underwent mainte-
nance and was not recording while on 19th December 2021 the scanner stopped record-
ing data unnoticed for a period of 18 days due to the holiday season.

The JarKus data set is collected yearly based on different measurement techniques. Ev-
ery 250 m along the Dutch coast a transect is measured to determine the current beach
and dune profile as well as the current position of the coastline with respect to a refer-
ence coastline. In our observation area in Noordwijk two transects (with ID 8200 and
8225) are located (see Figure 4.2A). We focus our comparison on the part on the sandy
beach in the aeolian zone. In this part the JarKus data is collected with airborne laser
scanning. Findings on these transects, interpretation of data and summary of most rele-
vant parameters are summarised in reports by the Dutch ministry of infrastructure and
water management (Rijkswaterstaat, Rijksinstituut voor Kust en Zee, 2022). A visualisa-
tion of the trend of the momentary coastline (MKL) in 2022 is shown in Figure 4.3.

Additionally data from weather stations of the Royal Netherlands Meteorological In-
stitute Koninklijk Nederlands Meteorologisch Instituut, 2022 in IJmuiden and Hoek van
Holland is used to compare our findings to meteorological properties, such as wind
speed and direction and precipitation.



4

76 4. IDENTIFYING TOPOGRAPHIC CHANGES AT THE BEACH

Figure 4.3: Location of JarKus transects around Noordwijk in the Netherlands with cur-
rent trend of MKL in 2022 as a bar plot at each transect location (Rijkswater-
staat, Rijksinstituut voor Kust en Zee, 2022).

4.3. GENERATION OF INVENTORY OF TRENDS

In order to simplify the 3D point clouds, we rasterize each one into a grid. Then we gen-
erate the so called inventory of trends out of time series at the grid locations on the beach.
The resulting database of trends is then used for further analysis of specific regions and
time periods as well as to come up with overall statistics of the entire field site.

The method is explained in several steps as visualised in Figure 4.4. In a first step
a data set of corrected point clouds is generated from the raw data, see Section 4.3.1.
Then, digital elevation models (DEMs) are used to derive a set of elevation time series
located at regular grid points, as discussed in Section 4.3.2. With the help of these time
series and multiple hypothesis testing (MHT) a trend inventory is built, Section 4.3.3,
which allows then to derive the results for interpretation of natural and anthropogenic
processes, compare Section 4.3.4.

4.3.1. CORRECTED POINT CLOUDS AND FILTERING

The laser scanner data is in a local coordinate system with the location of the laser scan-
ner as its origin. The height of the scanner was determined when mounted with a GPS
receiver. This constant elevation is added to the z-coordinate, to process actual height
above sea level instead of negative elevation with respect to the scanner’s location.

In a next step the inclination data from the laser scanner is averaged for each scan and
the mean pitch and roll inclination are extracted. These values are then used to calculate
rotation matrix R, given by:
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Figure 4.4: Flow chart of the methodology. The numbers refer to the four data process-
ing steps, 1: generation of corrected point cloud, 2: reformatting as elevation
time series, 3: data reduction to inventory of trends and 4: Reporting of sta-
tistical trend parameters.

R =
 cos(ϕ) 0 sin(ϕ)

sin(ϕ) · sin(θ) cos(θ) −cos(ϕ) · sin(θ)
−sin(ϕ) ·cos(θ) sin(θ) cos(ϕ) ·cos(θ)

 (4.1)

with ϕ the pitch angle and θ the roll angle. Rotation matrix R is calculated for each
point cloud separately and applied, if the standard deviation of the pitch and roll val-
ues during the entire scan is below a threshold. This is to ensure that data that was e.g.
obtained during a heavy storm is not corrected with a rotation based on erroneous incli-
nation values. If the threshold is not met, a mean pitch and roll value based on the other
scans in that month is used for correction. A constant general tilt of the point cloud is
removed in this way, as well as the main part of deviations of the laser scanner’s position
due to temperature changes (heat expansion of supporting materials) or strong winds.
We do not use any ground control points for correction of individual point clouds. For
validation, some ground control points were measured at the start of data acquisition.



4

78 4. IDENTIFYING TOPOGRAPHIC CHANGES AT THE BEACH

Subsequently the data set is filtered for low quality or erroneous point clouds. The
mean elevation as well as the sum of residuals deviating from a fitted plane through a ref-
erence surface are estimated for each point cloud. If the mean elevation deviates more
than 10 cm or the summed residuals are larger than 10 cm the point cloud is not consid-
ered for our study. This threshold was determined during a previous study, (Kuschnerus,
Lindenbergh, Vos, & Hanssen, 2024), considering the error sources and influences on
data quality. This is to exclude point clouds with large variations/noisy data caused by
instrument failure or storms. Point clouds recorded during low visibility weather condi-
tions, which do not contain data on the sandy beach, are excluded from further analysis
as well. This leaves a data set of 19 386 good quality point clouds acquired between 11
July 2019 at 14:00 and 21 June 2022 12:00 (midday).

4.3.2. DIGITAL ELEVATION MODELS AND ELEVATION TIME SERIES

The corrected point clouds are then cropped to the relevant part to contain only the
sandy beach. For further processing a grid of 1m × 1m is formed and all elevations in
each grid cell are averaged to obtain an elevation at the centre of the grid cell, compare
Figure 4.5. The 1m × 1m-grid size is a common standard for analysis of coastal spatial
data and models. Additionally, it was chosen in order to be as small as possible, while
still containing enough points to derive statistically significant mean elevation on most
locations in the study area. A sensitivity analysis on point clouds from our data set in
comparison with higher resolution data at the same location was presented by Di Biase
et al., 2022. The square root of the summed residuals are calculated for each grid cell:

σg =
√

eT e

np −1
, (4.2)

for the spatial residual vector e and number of points np . The summed residuals are
then saved for each grid cell, as well as the number of points per grid cell. Since the
elevations in the DEMs are as a consequence available at regular grid points, all files that
meet quality criteria are then collected to generate a time series of 19 386 epochs for
each grid cell location. For each grid cell location we have the elevation time series with
the mean elevation per time stamp and the accompanying uncertainty time series with
the summed residuals per time stamp. Each time series may contain gaps for several
reasons:

• a point cloud was not available because it was not recorded or of bad quality,

• an object or pile of sand is temporarily blocking the view on the grid cell, or,

• the tides cause the grid cell to be temporarily under water.

That last case is used to determine events, where high water reaches the study area.
For every day we determined the point cloud with the narrowest beach width and save
that moment of time and water line at that time as our estimation for the high water line
on that day and the time of high tide. This method was described in more detail in a
previous study to determine the development of the beach width (Kuschnerus, Linden-
bergh, & Vries, 2022).
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Figure 4.5: Schematic of time series generation: each point cloud is divided into grid
cells. For each grid cell all recorded points are summarised by mean eleva-
tion and sum of residuals. These values for all available point clouds then
provide a time series of about 19 000 elevation values with associated sum of
residuals for each grid cell location.

4.3.3. 4D INVENTORY OF TRENDS OF SURFACE ELEVATIONS

Each time series is divided into partial time series. A break point is recorded when there
is a gap in the time series of more than three hours or if a jump is recorded in the time se-
ries. To detect the jumps or change point the so called Pruned Exact Linear Time (PELT)
algorithm is used, (Killick et al., 2012). The PELT algorithm is using minus the maxi-
mum log-likelihood as a cost function and adds a point as change point, if it reduces the
segmentation costs by more than a penalty term. We used the implementation of the al-
gorithm in the ruptures Python package, (Truong et al., 2020). This will also split partial
time series with non-monotonic trends at the points where the trend changes.

After the time series is divided into partial time series we use multiple hypothesis test-
ing (MHT) to build the 4D inventory of trends. Goal is to classify each partial time series
as (i) stable, (ii) linearly increasing or decreasing, or, (iii) without matching model.

As described in detail in Kuschnerus, Lindenbergh, Vos, and Hanssen, 2024 and sim-
ilar to Lindenbergh and Hanssen, 2003, we use MHT based on the method presented
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by Chang and Hanssen, 2016. Chang and Hanssen, 2016 use MHT to determine an ap-
propriate deformation model for time series of kinematic parameters from InSAR data.
Here, we are interested in estimating linear trends for each of the partial time series.
Therefore, we choose a linear model as alternative hypothesis to the null-hypothesis.
The null-hypothesis, H0, states that there is no statistically significant change in the re-
spective time series segment.

We first test for the null-hypothesis (i.e. no statistically significant change). If the null-
hypothesis is accepted, we save the start and end of the partial time series, slope value
0 and mean elevation over the entire duration. The null-hypothesis is formulated as
follows:

H0 : A0 =


1
1
...
1

 , x = ĥ (4.3)

T0 ∼χ2(1,0), (4.4)

For model matrix A0 and test value T0, which is centrally χ2-distributed with 1 degree of
freedom, since we have one free parameter that is estimated. The free parameter is here
the mean elevation value, ĥ, of the time series of elevation values h.

As alternative hypothesis, H1, we consider a linear trend:

H1 : A1 =

 1 t1
...

...
1 tm

 , x =
(
h0

v

)
(4.5)

T1 ∼χ2(1,λ) (4.6)

where h0 is the intercept and v the rate of change of the linear model and therefore
A1 ∈ Rm×2. The test value here follows a χ2-distribution with 1 degree of freedom and
non-centrality parameter λ ̸= 0, since we have a 2-dimensional model matrix and one
additional free parameter compared to the null-hypothesis. The covariance matrix Qh

is defined using the RMSE per grid cell σ2
g , which were saved for every grid cell together

with the elevation time series. We assume that there is no correlation between subse-
quent measurements and therefore obtain the diagonal matrix

Qh = diag(σ2
g 1, . . . ,σ2

g m) =σ2
g · Im , (4.7)

with
σ2

g = (σ2
g 1, . . . ,σ2

g m) (4.8)

the vector of epoch dependent grid-wise variances σ2
g i , for i = 1, . . . ,m.

Following Chang and Hanssen, 2016, the test value T1 for the alternative hypotheses,
is then calculated as

T1 =
m∑

i=1

(hi − ĥ)2

σ2
i

, (4.9)
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for modelled time series ĥ = A1 · x̂. The test value is then compared to the critical value
kα, determined by significance level α and non-centrality parameter λ. The chosen pa-
rameters in our case are significance levelα= 0.95 (determining a false alarm rate of 5%)
and the power of the test γ = 0.8 (80% probability of missed detection). Since we are
using the χ2-distribution, the non-centrality parameter λ needs to be chosen in order
to represent the significance value α and the power of the test γ. More details on the
determination and influence of λ can be found in Kuschnerus, Lindenbergh, Vos, and
Hanssen, 2024. Here we use λ= 7.85 to represent a statistical test set up with our chosen
parameters, i.e. 5% probability of detecting a trend, even though there is none, and 80%
probability of detecting a trend, when one is present.

If a statistically significant trend is detected, we save the value of the trend in m/day
together with the start and stop time of the partial time series and the initial elevation
(estimated as axis-intercept). In this way we derive a table of start and stop times and
slope values for each grid cell location.

4.3.4. PARAMETER EXTRACTION

The trend inventory delivers a database of statistically significant trends for each time
step and each location in our field site. For specific questions, for example the impact
of one storm, we can now zoom in on a time period and collect all available partial time
series, the matching trends, and the overall change in volume. Also, specific areas can
be highlighted, observed over the entire observational period as well as for shorter time
spans. To get a quick look on what could have happened for different zoom-in situations
(in space and/or time), we calculate the total number of partial time series, the num-
ber of partial time series with significant trends, the average duration of the partial time
series with significant trends and the average rate of change from the trend inventory.
Additionally we report on net volume and area change over the time period, as well as
the total sum of absolute volume change. Together, these parameters provide indica-
tions on the net results of erosion and deposition processes as well as a measure of how
dynamic an area has been.

4.4. RESULTS

As results of our analysis we present statistics on the inventory of trends of the entire
area (section 4.4.1) and a comparison with transects from the JarKus data set (section
4.4.2). Then we show how some commonly occurring physical processes appear in the
trend inventory (section 4.4.3). Finally we compare the trend inventory for an area with
frequent bulldozer works with an area that is dominated by natural processes (section
4.4.4).
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4.4.1. INVENTORY OF TRENDS

number of grid cells 41 000

number of partial time
series 12.8 million

average duration of
partial time series 45 hours

number of significant
change rates 395 825

average duration of ts with
significant change rates 158 hours

max duration of ts with
significant change rates 1209 hours

average change rate 0.0027 m/day

number of stable ts 3.2 million

Table 4.3: Summary of statistics of trend inven-
tory. Time series is denotes as ’ts’.

Figure 4.6: Histograms of duration of par-
tial time series (A) and of rates of
change (B).

Following the above described procedure, we calculated the inventory of trends for the
entire data set covering three years of hourly observations. The statistics on the entire
area are listed in Table 4.3 together with the histogram of the rates of change in Figure 4.6.
We can see in the table that over the entire area of 41 000 grid cells we have 12.8 million
partial time series. For a large part of those time series (about 8 million) we cannot find
a statistically significant linear model. The reason for that is either that the shape of the
partial time series does not fit a linear model or that the partial time series is too short or
has too many gaps in order to be considered. About 3.2 million partial time series appear
to represent a period of time where there is no statistically significant rate of change in
elevation recorded. We also observe that the average duration of partial time series is 45
hours, but the average duration of partial time series with a statistically significant trend
is more than three times longer (158 hours), with a maximum duration of 1209 hours
(about 50 days). The minimum duration for all partial time series is 10 hours and was
fixed as a setting in the processing.

In Figure 4.7 we show a time line of all major storm events and data gaps for three ex-
ample time series of raw elevation data as well as fitted linear models for the respective
partial time series. The elevation at the time of the JarKus data acquisition at the corre-
sponding location is marked with dots in the same colour as the respective time series.
Occurrences of measured wind speeds of 18 m/s and higher are indicated with a yellow
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bar. The most prominent gaps in the time series are due to failure in data acquisition
or bad quality data. Major storms during extreme wind speeds (as for example storms
Ciara and Dennis in February 2020 and Eunice in February 2022) can be observed as
well at times where there are abrupt changes or gaps. Another possible reason for sud-
den changes or jumps is a beach scarp that form on the beach as shown in Figure 4.2B.
We observe lots of dynamics (up to 1 m in elevation difference) in between two JarKus
height estimates, which are missed by interpolating data from yearly measurement cam-
paigns for JarKus.

4.4.2. COMPARISON OF TREND INVENTORY WITH JARKUS TRANSECTS

We use the JarKus data set as a reference since it is widely used to monitor coastal dy-
namics. We compare the JarKus transects in our study area with the trend inventory at
the same locations and over the same three-year observation period.

After conversion of the coordinate systems we can place a JarKus transect on a point
cloud collected on the same date and in this way verify, that the profiles and locations
largely match. The transects are orthogonal to the basic coastline (BKL) and cover several
cross sections of our grid structure. That is why we use an area of 10 m width to cover
each of the two JarKus transects (see Figure 4.2). Figure 4.8 shows the JarKus transects at
the location with ID 8225 together with a transect of a point cloud from the PLS data set
acquired on the same day. We use this to match the JarKus transects with our data and
validate the NAP elevation used for the calculation of the trend inventory. We are able
to show the variability in the same locations as the transects in between measurement
campaigns (as shown in Figure 4.7).

However, in Figure 4.8 it becomes clear that the JarKus transects cover a much larger
area across shore, with large parts under water, while our study area only represents a
small part of the transects. Any conclusions that we can draw out of our data set are
therefore difficult to compare and match with the results on long-term coastal develop-
ment from JarKus data. JarKus data is used for a variety of applications including the
determination of the so-called MKL-trend, the trend of the momentary coastline (MKL),
describing the current state of the coast compared to the previous years. A similar anal-
ysis with our data set would be based on a much smaller area, covering only the aeolian
zone, as well as a relatively short time-span of three years. Therefore it proofs to be chal-
lenging to draw direct conclusions out of the statistics of the inventory of trends that are
comparable to the MKL-trends based on JarKus measurements.

4.4.3. CATEGORISATION OF DIFFERENT TOPOGRAPHIC CHANGE

PROCESSES

To show in more detail the potential of the information captured by our method, we
discuss how three common process categories, a major storm, aeolian sand transport
and bulldozer work, show up in our trend inventory. This demonstrates how our trend
inventory can be used to analyse dynamics in between the yearly JarKus measurements
with respect to different processes and at different time scales.
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Figure 4.7: Time line of data collection split up in the periods between JarKus campaigns
(A: 2019/2020, B: 2020/2021, C: 2021/2022) for three example grid cells along
the JarKus transect with ID 8225. JarKus data collection is indicated by a dot
at the acquisition time and measured elevation of the transect. The raw ele-
vation data is shown for three grid cells (blue, orange and green time series)
along JarKus transect 8225. The fitted trends are shown in the same colour on
top of the raw data. Hours with an average wind speed ≥ 18 m/s, are indicated
by a yellow bar. The names of some prominent major storms are provided in
italics and reasons for large gaps in the data are given in/next to a red box.

MAJOR STORMS

In Figure 4.9 we show the effects of two major storms, Corrie and Eunice/Dudley in
February 2022 exemplary at 10 grid cells. The example grid cells are located along a line
perpendicular to the coast at y =−55 and −215 ≤ x ≤−197 in steps of 2 m. The bottom
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Figure 4.8: Jarkus transects for 2020, 2021 and 2022 with the transect from a point cloud
from raw PLS data acquired on the same day. The high water line and the
borders of our study area are shown as well.

panel shows wind speed at the same time with a threshold of 18 m/s as indication of a
’major storm’.

Storm Corrie would not register as a major storm according to our wind data collected
at IJmuiden weather station. However, it occurred together with high tide resulting in
an exceptional high water level which caused large parts of the beach to be temporarily
flooded. In Figure 4.9 A, the blue bars indicate where the high water reached up to the
location of the grid cells of the respective time series/fitted trends. Since all our study
site is in the aeolian zone, flooding during tides happens only mostly during storm con-
ditions.

Eunice and Dudley were overlapping in time and caused very strong wind gusts but
we did not register high water reaching our study area. Both storms caused some loss
of data, either because of tides covering parts of the beach or through decreased data
quality during strong winds. With the trends at different locations on the beach, we can
clearly follow the erosion patterns that are caused by both storms. Possible reasons for
erosion are either wave run up reaching the study area in between scans, high water
covering the area during gaps in the data or aeolian sand transport. We record high water
reaching the study area, when the smallest point cloud in one day shows the high water
line within the study area. It is possible that these events happen without being recorded
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Figure 4.9: A: Time series trends at 10 different grid cells indicated by 10 different colours
in storm season 2021/2022 covering the major storms Corrie, Dudley and Eu-
nice. B: Wind speed in the same time period. The dotted red line at 18 m/s
wind speed provides the threshold for a ’major storm’. Occasions, where high
water reaching up to the grid cells of the shown time series was recorded in
our data set, are indicated with a blue bar.

or that wave run up reaches the area while the high water line is just below the border of
the study area.

Overall we estimate for the entire observation area a total positive volume change of
1667 m3 for storm Corrie (with a duration of three days) and a total negative volume
change of -3459 m3 for Eunice/Dudley during six days. Our full observation area, com-
pare Figure 4.2, is roughly 41 000 m2, thus resulting in an average gain of 4 cm per square
meter during storm Corrie and an average loss of 8.4 cm per square meter during storms
Eunice and Dudley. Most of the accretion is happening during data gaps, but we suspect
that high water reaching the aeolian zone as well as wave run up are the main causes for
accretion. We remark here that the impact of both storms was very different and even
contrasting. The elevated water levels caused by Corrie are a likely explanation, despite
the corresponding relatively lower wind speeds.

AEOLIAN SAND TRANSPORT

Additionally to large and sudden changes, the trend inventory is suitable for the obser-
vation of slow elevation changes developing during several hours or even days. For an
example of aeolian sand transport we show time series trends at nine locations along a
profile perpendicular to the coastline (y = 150 and −206 ≤ x ≤−198) in steps of 1 m to-
gether with recorded wind speeds at that time (Figure 4.10). The slow but continuously
observed erosion over several days in combination with wind speeds higher than 8 m/s
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lead to the assumption that aeolian sand transport is the most likely cause of the ele-
vation changes in these neighbouring grid cells. According to Rijn, 2022, dry sand with
wind speeds of 8 m/s and higher provides the conditions for possible aeolian sand trans-
port on the Dutch coast . We did not report on precipitation here, because precipitation
varies locally and data from the weather stations at several 10s of kilometres distance is
not very accurate especially in coastal areas.

Figure 4.10A shows how the slow erosion of a few centimetres over the course of 10 to
20 days is captured very well by the inventory of trends. Filtering the entire inventory
of trends for partial time series with statistical significant rate of change, v , in the range
0 m/h < v ≤ 0.05 m/h, that last at least 6 hours, provides an estimate of all the potential
times and locations that aeolian sand transport caused changes in the sediment surface.
This amounts to just under 395 000 partial time series with potential aeolian sand trans-
port causing a deposition of sediment of about 1354 m3 in our study area over three years
time. This is equivalent to an average gain in elevation of 3.3 cm per square meter over
three years.

Figure 4.10: A: Time series trends in March 2020 showing most likely occurrence of aeo-
lian sand transport detected through the slow but continuous changes over
several days together with wind speeds above 8 m/s (red dotted line, B). The
original time series are shown together which each fitted trend.

BULLDOZER WORKS

Our study site is subject to frequent bulldozer works, compare Barbero-García et al.,
2023 and Kuschnerus, Lindenbergh, Lodder, et al., 2022. Reasons for bulldozer works are
mostly clearance of access paths and preventing and removing storm damage. Generally
the beach is maintained frequently to facilitate recreational use. For the interpretation
of the data and derived trends it is important to take the potential effects of bulldozer
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works into account. A prominent example found in our data set is the set up of a beach
tent in test area 1 (see Figure 4.2) next to the beach bar. Before the tent was set up in
January 2020, a terrace was formed and the entire month saw frequent bulldozer activ-
ities in that area. We use this example to showcase how bulldozer works appears in our
trend inventory. In Figure 4.11 we show time series trends for 10 grid locations along the
cross shore profile y = 30 and −175 ≤ x ≤−156 in January 2020. In the bottom panel we
show the total number of sudden changes per day (of 30 cm or higher) recorded in that
area, which are most likely caused by bulldozer works. A list of these potential bulldozer
activities was generated for Barbero-García et al., 2023, and is used here as reference
indication.

Figure 4.11: A: time series trends for 10 grid locations in January 2020 showing the effects
of bulldozer works in the middle of test area 1. B: Number of sudden changes
per day. most likely caused by bulldozer works.

We see in Figure 4.11 that the bulldozer works interrupt the ongoing trends signifi-
cantly. It takes almost two weeks until a regular situation with stable trends appears
again. At the same time the bulldozer works lead to loss of data, due to occlusion and
frequent interruption of time series. If there are too many gaps in a time series, a trend
is not fitted by our method. The tent’s set up after the bulldozer works, as well as sand
piles can lead to occlusions in neighbouring grid cells.

4.4.4. COMPARISON OF NATURAL VS. ANTHROPOGENIC PROCESSES

Bulldozer works are a common occurrence on the Dutch coast and coasts worldwide but
their long-term effects on natural processes are difficult to study.

Here we use the list of instances most likely caused by bulldozer works collected for a
previous study (Barbero-García et al., 2023), for a first assessment if a beach is affected
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Figure 4.12: Comparison of rates of change, net elevation change and absolute accumu-
lated elevation change over the entire observation period in test area 1 and
2.

by anthropogenic interventions and how many times these interventions occurred. We
then chose two dedicated test areas (see Figure 4.2), both of 760 m2: Test area 1, where we
suspect lots of anthropogenic influence (354 recorded incidences of possible bulldozer
works) and Test area 2, with few bulldozer works (95 recorded incidences of possible
bulldozer works) and therefore mostly natural influences but a similar location on the
beach, close to the dunes.

For the comparison of these two areas we show in Figure 4.12 the average rate of
change of all fitted trends within the three-year period in that area (A and D) and the
net elevation change that we derive out of all the fitted trends in the area (B and E). The
accumulated elevation change (C and F) is calculated as the sum of all jumps that appear
in the trend inventory and the recorded slow changes both as absolute values.

Test area 1, with lots of anthropogenic processes, shows lots of variability, see Figure
4.12A-C. Over the entire observation period, the net volume change in that area was -
257.5 m3 with an average rate of change of 0.0071 m/day. Figure 4.12B shows a clear
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pattern in both the yearly and entire period accumulated change from the dunes towards
the sea, with erosion closer to the sea (west) and no change or some deposition closer to
the dunes. The average rate of change however, Figure 4.12A, reveals different patterns.

For comparison, Test area 2 is dominated by natural processes. In Figure 4.12D-F we
do not observe the patterns observed for Test area 1: Over the entire observation pe-
riod the net volume change in Test area 2 was 272 m3 with an average rate of change of
0.002 m/day. The overall accumulated net change as well as the average rate of change
over the entire three-year period are visualised in Figures 4.12E and F. This leads to the
hypothesis, that more frequent anthropogenic human activity occurs in areas where we
also observe more erosion, compared to areas with less human influences.

To relate the amount of human activity (i.e. bulldozer works) in an area to the vari-
ability and erosion/deposition patterns in that area for our entire observation period,
we compare the number of potential bulldozer works over the entire three-year period
to the variability, quantified as net change: with a moving window of 20 m length across-
shore and 40 m length along-shore we collect for each window the number of bulldozer
work instances and the net change over the three-year period.

Figure 4.13: Comparison of number of bulldozer works with net elevation change per
square meter in the same area. The orange line shows a fitted trend.

The result of this analysis is shown in Figure 4.13, indicating a (small) negative corre-
lation between net change and number of bulldozer works. The correlation coefficient
of 0.3 supports this result. We therefore observe, that in our study site, most bulldozer
works are happening in areas that were eroding during the observation period.

4.5. DISCUSSION

We conclude that with the large and complex PLS data set, it is possible to observe in-
teracting processes with unprecedented detail and complexity. The comparison with
JarKus transects provided the opportunity to validate the elevation in the PLS data set.
However, it also showed that a simple question, such as ’Is the coastline at a specific lo-
cation retreating or advancing?’ is not easily answered using our more complex data. For
this question the JarKus data set is more suited to provide easily interpreted quantified
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answers. Generally speaking, we find a trade-off between the opportunity to research in-
creasing complexity of a natural system vs. the need for clear and easy to communicate
answers on major challenges of coastal engineering and monitoring. With the data from
the trend inventory, we can provide general indicators of variability and also if there is
generally a dominating trend of erosion or deposition. However, a direct comparison
with the indicator of for example the MKL-trend is difficult.

The unique nature of the analysed data set lends itself to look for systematic anal-
ysis of coastal dynamics, which are mostly ruled by natural processes. The question
if a ’heavy storm’ causes more surface changes depending on the strength of the wind
speed, was considered in this context. However, a consistent and systematic definition
of a storm, based on one or two observed parameters, such as wind speed and wind di-
rection proved to be difficult. As can be seen in our analysis (Section 4.4.3 and Figure
4.9) two major storms present themselves differently in terms of wind speed as well as
with their impact on the beach. We decided not to present an attempt at correlating for
example sand volume change and wind speed in order to avoid a simplified presenta-
tion of a complex system of interacting natural forces and their effects. To improve this
in similar future experiments, a weather station next to the laser scanner as well as wind
meters in several locations on the beach would be recommended.

The PLS data set together with the inventory of trends provides many opportunities
for more research. We showed in section 4.4.3 how specific physical processes that cause
elevation change at the sediment surface appear in the inventory of trends. Especially
storm damage but also the more gradual and difficult to monitor aeolian sand transport
appear with a clear pattern. Considering wind speed together with the trend inventory
both can potentially be detected in a data set of a large long term study. There is also
the opportunity to take a closer look at different regions and/or time scales. For example
the analysis of seasonal changes in erosion/accretion patterns on the sediment surface
could be interesting. However, accretion seems to happen mostly during storm condi-
tions in our study area. Therefore the trend inventory appears not to be the ideal method
for the detection and identification of accreting events. Adding additional means of ob-
serving the study area, for example through video cameras, could help to confirm the
suspected causes of erosion/accretion during times of data loss and improve this point.

The acquisition of more PLS data sets could lead to the opportunity for the generation
of training data for a possible supervised learning algorithm to detect these processes.
We still consider our three-year data set as insufficient for training an algorithm on the
occurrence of a specific process, such as aeolian sand transport or a storm. But, we feel
we have successfully demonstrated the possibility of identification of such processes in
a PLS data set.

For the evaluation of the impact of anthropogenic activities, data from other locations
and possibly specific long term experiments could be useful. The slight correlation be-
tween erosion and amount of bulldozer works that we show in section 4.4.4, could be
an indication, that frequent human interventions disturb the naturally occurring depo-
sition of sand. Another interpretation could be that larger erosion requires more cor-
rective bulldozer interventions. In any case it is important to consider the context, that
all bulldozer works must be below 20 m3 per transect of 1 m width, according to the
Dutch regulations. This threshold is chosen in order to ensure that bulldozer works are
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in the same order of magnitude as natural processes and do not disturb them. However,
the correlation that we show, could be an indicator that either more bulldozer works are
happening than the regulation allows, or the threshold was based on a false assump-
tion and there is indeed an impact of the frequent anthropogenic activities on natural
processes. Both of these hypothesis need further research.

4.6. CONCLUSIONS
We analysed a three-year data set from PLS with the help of hypothesis testing, to find
statistically significant monotonic trends in elevation and reduce the complex data set
to an inventory of trends. We furthermore showcased applications of the inventory of
trends for the analysis of change patterns at the sediment surface in the aeolian zone of
a Dutch sandy beach by answering four research questions:

• What elevation trends at the sediment surface can be derived from the PLS data
set?

We found about 380 000 thousand partial time series with statistically significant
rates of change of 0.0027 m/day on average with an average duration of 158 hours.
We therefore show dynamics on the sediment surface that are difficult to study and
to reveal with other techniques. Especially slowly developing elevation changes
over longer periods of times (several days/weeks) and at cm level can be captured
with our method.

• How do high resolution PLS data compare to yearly JarKus-data?

The elevation from the PLS data set is validated at two locations of the JarKus
transects at the day of acquisition of the JarKus data. Therefore our data set and
method allows to show dynamics in between the measurement campaigns at these
specific locations and in a small part of the JarKus transects. The comparison of
long-term (up to 10s of years) trends concerning the coast line proofs to be diffi-
cult. Our more complex and exhaustive data set, on a smaller area does not allow
to draw simple conclusions comparable to coastline trends from JarKus data, but
shows dynamics that are missed by the yearly JarKus measurements.

• How can small and slow changes at the sediment surface be identified and quan-
tified with PLS?

We show that large elevation changes, for example caused by storms as well as
slow, small-scale changes in elevation over longer periods of time can be identi-
fied and analysed with the inventory of trends. Especially small-scale, long term
elevation changes, which are associated with aeolian sand transport are well cap-
tured within the inventory of trends. Anthropogenic activities such as bulldozer
works can be found as well, but are easier detected with other methods, for exam-
ple by considering sudden changes as presented by Barbero-García et al., 2023.

• How can the effect of anthropogenic activities on the dynamics at the sediment
surface be analysed using PLS data?
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By comparing the number of bulldozer sightings in an area with the net elevation
change in the same area and time frame we find a connection between erosion and
bulldozer works with a correlation coefficient of 0.3. This leads to the hypothesis
that bulldozer works negatively affect natural processes on the beach and might
lead to more erosion. Further research is needed to confirm this hypothesis.

We presented a new method to gain information on change processes at the sedi-
ment surface on a sandy beach from a PLS data set. To extend this research, we sug-
gest comparison with similar data sets at other locations, as well as collection of more
environmental variables (for example in situ wind speed and direction) in future sim-
ilar experimental set-ups. The trend inventory is a tool that could potentially be used
for many other applications and case studies, such as analysis of seasonal patterns in
erosion/deposition, study of intertidal bar dynamics or dune growth.





5
CONCLUSIONS AND

RECOMMENDATIONS

This dissertation deals with the development of methods for spatio-temporal data min-
ing of a large 4D data set from permanent laser scanning (PLS), to answer the following
research question:

How can geomorphologic processes be identified and quantified in a 4D spatio-temporal
data set from permanent laser scanning?

5.1. CONCLUSIONS
To answer the main research question the quality of two PLS data sets was analysed and
the main influences on systematic and random errors on height estimates using PLS
were quantified. Further, two suitable methods to detect and identify geomorphologic
changes in a 4D spatio-temporal data set from PLS were provided. These methods allow
to analyse specific processes on the sediment surface and to provide quantified results.
Clustering time series allows to group the entire area into different zones according to
deformation behaviour at the sediment surface. By clustering time series, processes with
a specific change pattern at a particular time stamp are grouped together and allow to
identify for example bulldozer works, without defining the expected change pattern in
advance. The second method uses multiple hypothesis testing to detect changes follow-
ing a given model time series, for example linear changes or sudden jumps, with prede-
fined detection power and statistical significance. With the help of MHT an inventory of
trends was generated and a means to process a large PLS data set covering several years
was developed. The inventory of trends is particularly suitable to find slow gradual pro-
cesses, which are mostly caused by aeolian sand transport. Additionally, bulldozer works
and storm effects can be detected using this method. Comparing the areas influenced by
bulldozer changes and the erosion occurring in these areas, correlation between number
of occurrences of bulldozer works and amount of erosion was found.

More specifically, the following conclusions were found answering the different sub-
questions:

95
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(Q1) What influences the uncertainty of height estimates from permanent laser scanning
on a sandy beach? (Chapter 2)

A 4D spatio-temporal data set from PLS is subject to many different environmental and
instrumental conditions, which influence the data quality. In our data set acquired at
the Dutch coast in Noordwijk and Kijkduin, instrument failure and technical problems
during operations caused the largest data gaps. A technical problem with the laser scan-
ner also caused lower quality data, by adding outliers without physical representation in
the real world. The stability and automation level of the instrument set-up, are therefore
the most important influences on the continuity and quality of the resulting data set.
Environmental conditions such as heavy rains and strong winds, as well as fog have a
strong influence by affecting the stability of the system and the visibility of the observed
area. Small elevation errors of up to 1 cm per day, as an effect of daily temperature vari-
ations, can be observed as well but have less effects on the derived output products (i.e.
elevation time series, detected changes, clusters). Considering each location within the
observed area, geometric properties and local surface properties, mainly reflectivity and
surface roughness are the largest factor of influence, which are however more difficult to
quantify and verify independently. Their combined effect are estimated to result in up to
7 cm of random error. The (fine-) registration method used to align all point clouds has
a considerable influence as well and is subject to further research. The currently used
registration methods are not as exact as desirable and lead to registration errors of up to
1.5 cm. Other commonly used methods, such as iterative closest point (ICP) suffer from
a lack for stable reference surfaces and turned out to be too computationally expensive
to apply to the entire data sets.

(Q2) Which change patterns at the coastal sediment surface can be identified with per-
manent laser scanning? (Chapter 2 and 4)

Theoretically, surface elevation changes on the sandy beach can be detected with a spec-
ified probability, if their magnitude is larger than the minimal detectable bias (see chap-
ter 2) and the assumed model matches the respective change pattern. The minimal de-
tectable bias for sudden jumps and linear trends is in the order of centimetres given a
discriminatory power of 80%. Additionally, the detection potential varies depending on
location and distance to the laser scanner and the length of the considered time series.
The underlying processes causing the surface elevation change can be natural or an-
thropogenic. Many anthropogenic activities are relatively easy to identify, due to sudden
occurrence and ’unnatural’ characteristics, mainly sudden jumps in elevation. Natural
processes with large energy, such as storm surges can be detected and identified as well.
Long-term, but small-scale and slowly developing processes are detected and well rep-
resented within our inventory of trends (see chapter 4). Comparing the approximated
time series from the inventory of trends with weather data (e.g. wind speed) and with
daily location of the high water line, allows identification of the most likely underlying
process. Aeolian sand transport, as the most common natural process in the aeolian
zone, is successfully detected in this way. Geomorphologic changes resulting from tidal
forces in the intertidal zone can be identified as well. Here the frequent gaps in the time
series and the high variability cause most issues for our methods (clustering, as well as
multiple hypothesis testing (MHT)).
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(Q3) How can elevation time series resulting from the same process be grouped together?
(Chapter 3)

Using an existing clustering method, time series from a 4D spatio-temporal data set can
be grouped together to identify zones with similar dynamic behaviour. The main evo-
lution of the respective zone is following a representative change pattern, which can be
analysed to identify the most likely underlying physical process. Several clustering algo-
rithms are suitable for this application. The k-means algorithm with a predefined num-
ber of clusters k and DBSCAN turn out to be most suitable for the detection of larger
areas behaving in similar ways (k-means) and for unusual changes affecting only a few
time series (DBSCAN). Local approximation of time series with the help of hypothesis
testing allows to generate an inventory of trends. The inventory of trends provides char-
acteristics to group time series and parts of times series in order to identify dominating
processes in specific regions. The start and stop times of each time series piece is es-
timated as well and provides insight into moments in time where processes are inter-
rupted.

(Q4) How are anthropogenic activities detected with permanent laser scanning and what
is their influence on coastal development and natural dynamics? (Chapter 4)

Identifying all sudden changes allows to detect sand displacements likely caused by hu-
man activities. This can be done via a fixed, pre-defined threshold (see Barbero-García
et al., 2023). Additionally, with hypothesis testing for sudden changes in the form of a
step function model, most of the observed anthropogenic changes are identified. The
long term impact of these changes is analysed with the help of the inventory of trends
and quantified in form of a mass budget in areas subject to frequent anthropogenic ac-
tivities. It is concluded that a large part of the effect of a building on coastal development
is caused by the accompanying bulldozer activities and not only by the building itself. A
slight correlation between number of bulldozer activities and erosion was found, which
indicates a relation between the two that goes beyond what is accounted for by Dutch
coastal management regulations.

5.2. MAIN CONTRIBUTIONS
1. The unique PLS data set from Noordwijk was processed in its entirety covering

20 875 epochs of hourly acquired point clouds over the course of three years for
the first time and a shorter PLS data set from Kijkduin covering six months. The
structure as well as large size of the data set make it computationally challenging
to process the entire data set. The methods and work-flow developed in this the-
sis allowed for a restructuring of the PLS data set into gridded time series, which
were then processed using multiple hypothesis testing to generate an inventory of
trends for easier data access and interpretation (chapter 4).

2. The analysis of the influencing factors on the quality of our data set in general and
on height estimations in particular as presented in chapter 2, provides opportu-
nity for future improvements in similar PLS data acquisition set-ups. On one hand
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it is concluded that more additional environmental data, like data recorded with
an in situ weather station, is needed to provide quantification on the uncertainties
of height estimations. On the other hand, the major influencing factors could be
identified, and it was shown that for several applications the current data quality as
well as error estimations as presented in chapter 2, are sufficient to generate many
promising results. Most dominating change patterns could be identified with sta-
tistical significance even with sub-optimal registration.

3. Clustering methods were tuned and applied to the use on elevation time series
from a PLS data set. The clustered time series, where each cluster is described
by one mean time series and the locations of the associated time series provide
a promising method for the detection of change patterns and the identification
of underlying physical processes (see chapter 3). This approach was taken up by
Czerwonka-Schröder, 2023 and applied for determining surface activities on an
Alpine slope with possible landslide risk, as well as for distinguishing surface types.
The work of Winiwarter et al., 2023 builds on this method to cluster time series
from PLS data after Kalman filtering and feature detection to distinguish different
zones according to change patterns on a rockfall site.

4. Another way to simplify the information contained in the PLS data set, is the use
of multiple hypothesis testing. Multiple hypothesis testing was used to fit different
temporal models to partial time series from the PLS data set (see chapter 2). This
method allows generating the inventory of trends (chapter 4), estimating partial
time series start and stop times and linear model coefficients. This is a summary of
all statistically significant rates of change that each time series follows over the en-
tire observation period. Subsequently, these pieces of time series can be grouped
together, in the future possibly through clustering, or specific regions of interest
can be extracted according to spatial location or timing. In this way the following
processes were extracted and identified:

• storm events

• bulldozer induced changes

• tidal variations

• aeolian sand transport

Each of these processes is associated with a location and timestamp in the time se-
ries data set, where the respective process was dominating. This allows for further
analysis of the process itself, its effects and its spatial and temporal extent and
improves understanding of geomorphologic coastal processes. Especially small-
scale long term processes, which are often not captured by in-situ, incidental ob-
servation methods, or by large scale satellite observations, can be observed in this
way.

5. Using the described methods, evidence for the importance of anthropogenic in-
fluences in coastal areas was found. The analysis of anthropogenic changes led
to the conclusion, that not only buildings themselves, but also the associated hu-
man interventions on the sandy beach around each building have an impact on
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coastal morphology and possibly lead to increased erosion. The current regula-
tions of Dutch coastal management allow for a specific threshold of sand volume
to be moved per cross section on the beach. A correlation between erosion and
small-scale, but frequent bulldozer activities was found. Thus it is suspected that
current regulations do not prevent long term effects on the dynamics of the sedi-
ment surface in coastal areas.

5.3. RECOMMENDATIONS FOR FUTURE WORK
The presented system of PLS can be installed and used in any location providing a power
supply, internet connection or data saving option on site and an elevated location from
which the observation area is overlooked. For a permanent monitoring of the entire
Dutch coast this infrastructure is not available and the costs would be very high. How-
ever, a similar system can potentially be installed on specific sites all around the world,
as exemplary case study for the monitoring and analysis of coastal geomorphological
processes. Additionally, the presented methods could be applied to a data set from fre-
quent airborne laser scanning acquired either with planes or uncrewed aerial vehicles
(UAV). One example of such a data set data set is the JarKus data set (Rijkswaterstaat
- Dutch Ministery of Infrastructure and Water Management, 2022), which consists of
yearly point clouds of the entire Dutch coast (see also C. O. IJzendoorn et al., 2021). The
presented methods can be used to simplify this data set and help with the analysis of
observed processes and changes.

Additionally, the presented methods are suitable for the application to any 4D data set
from permanent or (nearly) continuous laser scanning, or other 3D observation tech-
niques, like photogrammetry. Out methods allow for post processing and analysis and
research of the respective area, but are not yet adapted to real time warning systems, or
prediction. A possible suggested line of future research would be to extend the presented
methods with short term predictions and derive real-time warning systems.

Further analysis of the inventory of trends and/or clustered time series will allow im-
proved understanding of coastal processes and their interactions. The unique PLS data
sets in combination with the presented methods allows for a thorough analysis of local
volume and elevation changes. The underlying processes can be derived or assumed in
many cases and therefore physical models for geomorphologic processes can be verified
and possibly improved. Long term models for example for dune growth could benefit
from additional insights gained this way and the incorporation of small-scale processes
as observed in this case study can potentially improve overall coastal modelling.
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