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Ground-based Wind Field Construction from Mode-S
and ADS-B Data with a Novel Gas Particle Model

Junzi Sun, Huy Vû, Joost Ellerbroek, Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology, the Netherlands

Abstract—Wind is an important parameter in many air traffic
management researches, as it often introduces significant uncer-
tainties in aircraft performance studies and trajectory predictions.
Obtaining accurate wind field information has always been a
challenge due to the availability of weather sensors. Traditionally,
there is no direct method to measure wind data at different
altitudes with the exception of weather balloon systems that
cannot be easily scaled. On the other hand, aircraft, which rely
heavily on atmospheric data, can be part of atmospheric model
itself. Aircraft can provide wind and temperature measurements
to ground observers. In this paper, aircraft are considered as
a moving sensor network established to re-construct the wind
field on a larger scale. Based on the powerful open-source tool
pyModeS, aircraft ground velocity and airspeed are decoded from
ADS-B and Mode-S data respectively. Wind observations are then
derived based on the difference of these two vectors. An innovative
gas particle model is also developed so that the complete wind field
can be constructed continuously based on these observations. The
model can generate wind field in real-time and at all flight levels.
Furthermore, the confidence of wind at any 4D position can be
computed according to the proposed model method. Multiple self-
and cross-validations are conducted to ensure the correctness and
stability of the model, as well as the resulting wind field. This paper
provides a series of novel methods, as well as open-source tools,
that enable the research community using simple ADS-B/Mode-S
receivers to construct accurate wind fields.

Keywords - ADS-B, Mode-S, aviation weather, wind modeling,
aircraft sensor network, gas particle model

I. INTRODUCTION

Using airplanes as weather sensors is a relatively new field
in ATM and meteorological research. Traditionally, aircraft
obtain weather updates from air traffic services to optimize their
trajectory and speed, to best adapt to wind conditions, and to
avoid areas of drastic weather conditions. These meteorological
updates are mostly coming from ground-based operations, for
example, radar surveillance, observation stations, or forecast
systems [1], [2]. On the other hand, while an aircraft flies
through an airspace, its local meteorological conditions can also
be computed. Existing systems such as Aircraft Meteorological
Data Relay (AMDAR) [3] and Meteorological Routine Air Re-
port (MRAR) allow aircraft to down-link these meteorological
data either through ACARS and Mode-S respectively. Air traffic
controllers can combine these data with external sources to
make better predictions of weather, which can then be updated
and relayed to other aircraft.

Both AMDAR are MRAR are unencrypted broadcast data,
which means that anyone can set up receivers to intercept these
data. However, as part of ACARS, the legality of intercepting
AMDAR is questionable in certain countries. As for MRAR, the
amount of aircraft that broadcast this information is extremely
limited. Most aircraft transponders choose not to enable this
capacity and is also not interrogated by many ATC. Also,
like other Mode-S data, the decoding for MRAR can be

troublesome for the research community due to the closed
design of downlink data structure.

Several previous studies have been proposed to use flight data
from various sources to estimate wind conditions at the location
of aircraft. They can be generally divided in three stages or
categories:

1) Estimation of wind from from ground based trajectory
observation: This concept assumes a quasi-constant wind ve-
locity and aircraft airspeed during a turning maneuver. The
wind velocity vector can then be estimated dynamically using
multiple continuous observations of aircraft ground speed in
combination with Bayesian filtering. Early in 1989, Hollister
et al. [4] first proposed this method. Later on, Delahaye
and Puechmorel, applied variations and extensions of such
methodology [5], [6], [7]. Now that ADS-B transponders have
been widely deployed, monitoring aircraft states through ADS-
B has become a possiblity. De Leege et al. and De Jong et al.
were the first to introduced the use of ADS-B data to solve this
problem [8], [9].

2) Estimation of aircraft local wind from Mode-S data:
Mode-S provides many additional aircraft states to ground con-
trol, complimenting radar or ADS-B data. A series of studies
conducted by the Dutch Meteorological Institute presented by
De Haan et al. constructed wind from Mode-S and MRAR data
[10], [11]. Hrastovec and Solina also implemented a similar
experimental method to achieve the same goal [12]. In addition
to the previously mentioned direct wind information in MRAR,
airspeed of aircraft are down-linked. The wind can be computed
as the difference between aircraft airspeed and ground speed.
De Haan also used such a method to calculate local wind data
of aircraft [13].

3) Wind field estimation based on multiple wind measure-
ments: While most of the above researches focused on deriving
the local meteorological conditions of an aircraft, several of
these studies also extended their methods to larger wind field
or multiple aircraft scenario. For example, Hollister proposed
the Hidden Markov model to update a wind grid based on
measurement from multiple aircraft. Delahaye and De Leeg
used non-linear Kalman filters on either radar or ADS-B data
to obtain wind field. In additional to previously mention litera-
tures, other methods also exist. For example, Hurter et al. used
the least-squared method to construct wind field from multiple
aircraft measurements [14], while Kapoor et al. implemented
machine learning based on the Gaussian Process to predict and
extrapolate wind field [15].

Based on the existing literature, researchers are also able to
estimate wind vector using aircraft data. However, there are
still areas missing in terms of constructing wind field based on
measurements from aircraft. Unlike other types of direct sensor
networks, using aircraft themselves as wind sensors has several
disadvantages:
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• Airplanes are moving objects. Therefore, the measure-
ments derived from air traffic data have both temporal and
spatial continuity and variance.

• As aircraft tend to fly along a predefined path, most
measurements are concentrated along these flight paths.
Except climbing or descending, aircraft also tend to fly
at fixed cruise levels. This creates a high concentration
of measurements along flight routes, alongside rare or no
measurement in other spaces.

• The chaotic and temporal nature of wind makes the model
highly non-persistent.

• Decoding airspeed from EHS entails a certain level of
ambiguity and, thus, leads to errors in individual wind
calculation.

The focus of this paper is to investigate a novel and relatively
fast gas particle model that estimates real time wind field from
observations of aircraft ground speed and airspeed gathered
by a ADS-B/Mode-S receiver. The gas particle model can be
used to estimate states of wind field and address the challenges
caused by the dynamic and not evenly distributed observations.
Tunable model-parameters can be used to produce confidence
levels of wind field and to configure model persistence.

The crucial part of decoding ADS-B and Mode-S data are
open-sourced by the authors of these paper. And the process of
generating wind observations based on these data will be ad-
dressed. Within the framework of this paper, wind observations
are first computed using the difference between ground speed
(from ADS-B messages) and airspeed (derived from Mode-S
messages) using open-source software pyModeS [16]. Then the
observations are used by the particle model to construct the
wind field and compute wind vector at any positions with con-
fidence indicators. The results are first validated with external
wind data source (i.e.: Global Forecast System datasets) for an
extended period of time. Finally, the model is self-validated to
examine variances and stabilities.

The remainder of the paper is structured as follows. Section
two describes the process of obtaining wind observations.
Section three presents the essentials of the gas particle model
with simple examples. Section four details the large number
of the experiments and validations conducted based the model.
Finally, the discussion and conclusions are presented in sections
five and six.

II. THE WIND OBSERVATIONS

A simple ADS-B/Mode-S receiver is installed at the faculty
of Aerospace Engineering at the Delft University of Technol-
ogy. This device provides a constant stream of signals obtained
from aircraft. Using open-source decoding library pyModeS,
the ADS-B and Mode-S data that are collected can be used to
derive wind observations for the particle model.

A. Processing of Mode-S data

Through Mode-S, different aircraft state information is down-
linked to ground receivers. This information contains aircraft
positions, velocities, operational parameters, and meteorolog-
ical data, etc. The Mode-S transponder can maintain 256
different 56-bit wide Binary Data Store registers (BDS) that
can be interrogated by ATC. These registers are indicated by
two-digit hexadecimal numbers that can be requested via 25
different downlink formats (DF). Information in these registers
are updated with a minimum interval specified by ICAO.

Among all these downlink formats, ADS-B is transmitted via
DF17 (or DF18), while Mode-S EHS/MRAR is transmitted via
DF20 and DF21. Decoding of ADS-B messages is well docu-
mented. However, the decoding of Mode-S data is much more
challenging. The challenges include determining the source of
aircraft (ICAO address), the content of message (from BDS
code), and the quality of the content (certainty of the values).

Aircraft ICAO addresses can be determined by the reverse
parity check of the Mode-S message (DF04, DF05, DF20, and
DF21). Correct ICAO addresses can only be obtained when a
signal is not corrupt. If a message is corrupt (e.g. one or more
bits are flipped), it will result in an incorrect ICAO address.
However, by cross-referencing resulting ICAO addresses with
ADS-B streaming, error messages can be discovered.

The second challenge is that, unlike ADS-B, Mode-S mes-
sages do not contain any information on their message types
(i.e. BDS codes). This is because only the interrogating ATC
knows the target aircraft and what to expected in the downlink
message. Such a lack of transparency in Mode-S design poses
the biggest challenge in making use of these open data. With the
latest version of pyModeS, much of this data is finally unveiled.

Briefly, in pyModeS, the BDS code is determined by check-
ing several signification status bits and evaluating possible
values contained in the messages. A status bit indicates whether
its related register field (aircraft parameter) is available in the
message. This is implemented as follows: When a status bit
is set to zero, all related content bits should be zero as well.
Messages with different BDS codes usually have different sig-
nification status bits. Thus, multiple checks assuming different
message types need to be performed to evaluate all possible
types or a combination of types. It may occur that a message
matches multiple BDS codes. In this paper, only uniquely
identified messages are kept and used for the propose particle
model.

The last challenge is the quality of the content. Values
decoded from corrected messages may be incorrect due to
aircraft measurements or transmission errors. For now, no
additional filtering is applied in order to provide the direct
computation of wind observations. A good design of wind field
model needs to cope with this uncertainty, in addition to the
errors from incorrect BDS identifications.

B. Compute wind vectors

Figure 1 shows the relationship between true airspeed,
ground speed, and wind. The ground speed vector Vg given
by Equation 1 is the sum of the true airspeed vector Va and
wind vector W . χg , χa, and χw are the ground speed vector
angle (track angle), airspeed vector angle (heading) and wind
vector angle with respect to the true north respectively.

Vg = Va +W (1)

To simplify calculations in equation 1, the vectors Vg , Va,
and W are decomposed into a west-east component Vx and a
south-north component Vy . The decompositions are calculated
using Equation 2.

Vx = V sin(χ)

Vy = V cos(χ)
(2)

Wind components can then be calculated with Equation 3.
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Figure 1: Relation between true airspeed, ground speed, and wind
vector

Wx = Vgx − Vax
Wy = Vgy − Vay

(3)

To calculate the wind, the airspeed and ground speed should
first be determined. This can be done using ADS-B and Mode-S
data. In Table I, the relevant variables from ADS-B and Mode-S
are given.

TABLE I: Usable information from ADS-B and Mode-S
ADS-B BDS 5,0 BDS 6,0 MRAR

Track angle Track angle Magnetic heading Wind speed
Ground speed Ground speed Indicated airspeed Wind direction
Position True airspeed Mach number Air temperature
Pressure alt. Static pressure
Geometric alt.

The wind vector can then be determined as follows:
• Other than the ground speed vectors from ADS-B directly,

the ground speed, true airspeed, and track angle are also
available in BDS 5,0 messages.

• In BDS 6,0, the indicated airspeed is available. This can,
in turn, be converted into true airspeed, assuming that in-
dicated airspeed is equal to the calibrated airspeed. Under
the ISA condition, the true airspeed can be calculated using
Equation 4.

VTAS =

{
2κ

κ− 1

p

ρ

[{
1 +

p0
p

[(
1 +

κ− 1

2κ

ρ0
p0

V 2
CAS

) κ
κ−1

− 1

]}κ−1
κ

− 1

]} 1
2

(4)

where p and ρ are pressure and air density respectively. κ
is the specific heat ratio of 1.4. Parameters with subscript 0
represent their values at sea level. Furthermore, since BDS
6,0 also contains the Mach number, the true airspeed can
also be derived more accurately with Equation 5.

VTAS =
VCAS

f(p,M)

√
ρ0
ρ

f(p,M) = 1 +
1

8

(
1− p

p0

)
M2

+
3

640

(
1− 10

p

p0
+ 9

p2

p20

)
M4

(5)

• In order to determine the airspeed vector, heading is
required. Aircraft magnetic heading can be obtained via
BDS 6,0. However, the heading information refers to the
magnetic heading of aircraft, which should be converted
into true north depending on the location of the aircraft. 1

• When BDS 4,4 (MRAR) messages are detected, direct
meteorological information on wind can be decoded.

III. THE PARTICLE MODEL

The idea behind the proposed particle model is to mimic gas
particles in nature. The particles are modeled to carry the states
of a wind measurement. Particles are first generated when a new
measurement of wind is obtained and decay over time according
to a certain parameterized kernel function. Using a stochastic
process model, these particle propagates within the airspace.
Wind fields are constructed by combining the weighted states
of all neighboring particles. The propagation of particles allows
for wind at areas of low measurement density to be computed.
The following section will be dedicated to a more detailed
explanation of the model, methods, and kernel functions used
to compute wind field and confidences.

A. Measurement array

A single wind measurement is a 2D vector represented
by a west-east wx and a south-north wy component, in 3D
space (x, y, z). The measurement array consists of all wind
measurements from different aircraft at a given time, defined
as [X,Y, Z,Wx,Wy].

B. Particles

A particle is defined as a point object that carries the states
of wind. Particle states consist of position (px, py, pz), origin
(px0, py0, pz0), carried wind states (swx, swy), and age (τ ).

Particles are generated when new wind measurements
are observed (computed). For any new measurement vector
[X,Y, Z,Wx,Wy] with M measurements, N number of par-
ticles are created for each measurement. The total number
of M × N particles is generated from a multivariate normal
distribution, using the aircraft position as the mean value.(

px,mn

py,mn

pz,mn

)
∼ N

[xmym
zm

]
,

σ2
x, 0, 0

0, σ2
y, 0

0, 0, σ2
z

 (6)

The carried states of particles are also assigned a small vari-
ance that represents the uncertainty of the wind measurement:(

swx,mn

swy,mn

)
∼ N

([
wx,m

wy,m

]
,

[
σ2
wx, 0

0, σ2
wy

])
(7)

As an example, Figure 2 displays the measurement vectors
in solid arrows and generated particles in tiny vectors. (Note
that only 10% of the particle samples are shown for a more
clear illustration.) The plot shows the 2D projection of the X-
Y plane. The dashed circles indicate the variance of particle
positions in relation to the measurement location.

1The magnetic declination in the Netherlands is only around 1 degree. Thus,
for simplification purpose, in later datasets, the heading is assumed to be equal
to the magnetic heading.
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X

Y

Figure 2: Wind measurements and corresponding particles

C. Particle motion model
Particle motion follows a Gaussian random walk model that

takes into consideration of the actual wind vector (swx, swy). At
each step update, the particle age (τ ) increases. The following
equation describes the motion model of a particle.

p(x,y,z),t+1 = p(x,y,z),t + ε(x,y,z)

ε(x,y) ∼ N
([
k · swx

k · swy

]
,

[
σ2
px, 0

0, σ2
py

]
,

)
εz ∼ N (0, σ2

z)

(8)

The step factor ε is different in the horizontal and vertical
direction. Horizontally, the term k ·s(wx,wy) allows the random
walk executed with a small biased along the direction of
wind, with a scaling factor k. Choosing a larger k allows the
propagation becomes more biased toward the wind direction.
Vertically, the propagation follows a zero mean Gaussian walk.
The particle motion model is illustrated in Figure 3, where two
projections (X-Y and X-Z) of a possible particle update are
shown. The red dot represents the position p(x,y,z),t, while the
probability of the next position p(x,y,z),t+1 is shown by the
contour plot. The vector equals to E

[
ε(x,y,z)

]
. Also note that

the length of vectors and variances are not to their real scale.
In reality, k · sw is much smaller than variances.

X

Y

[kswx, kswy]

X

Z

[kswx, 0]

Figure 3: Possible random update of a particle position

The updates of particles follow the Gaussian random walk
as shown in Figure 4, where several possible 100-step random

walks of a particle (with origin [0, 0, 0]) are illustrated. Different
trajectories are distinguished by different colors.

X
10 0 10 20 30 40 50

Y
100 10203040

Z

10
5
0
5
10

k: 0.05,  swx: 5,  swy: 5,  i:100

Figure 4: Examples of particle random walks in 3D

D. Wind field construction

The wind field is represented by a grid of equally spaced
coordinates, which has the size of I × J ×K. Numbers I , J ,
and K represent the number of grid points at each axis. From
each grid point (xi, yj , zk), the wind is constructed using the
weighted wind state values from its neighboring P number of
particles:

[
Wx,(i,j,k)

Wy,(i,j,k)

]
=

1∑P
p=1 ωp

×
P∑

p=1

(
ωp ∗

[
swx,p

swy,p

])
(9)

The ωp is the weight of each particle that is computed
based on the product of two kernel functions. Function fd(·)
draws an exponential relationship between weight and distance
between the particle and the coordinate. Function fo(·) defines
the weight of the particles and depends on distance to their ori-
gins. Function fa(·) expresses the similar relationship between
weight and particle age.

ωp = fd(d)× fo(d0)× fa(τ) (10)

fd(d) = exp

(
− d2

2C2
d

)
(11)

fo(d0) = exp

(
− d20

2C2
o

)
(12)

fa(τ) = exp

(
− τ2

2C2
a

)
(13)

Here, d represents the spatial distance between particle and
grid point. Cd Co, and Ca are control parameters for the kernel
functions fd(·), fo(·), and fa(·).

Figure 5 displays the constructed wind field from previously
generated particles, at time-step zero. At each grid point, the
wind vector is shown in solid arrows. Grid points with no
information yet are presented in scattered circles.
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Figure 5: Wind field constructed from particles (10% particle samples
illustrated)

E. Wind field confidence model

The confidence level of each grid point in the wind field is
computed as the combination of confidence functions that are
based on several independent factors. These factors are:
1) the number of particles in the vicinity of the grid point (N )
2) the mean distances between particles and the grid point (D)
3) the homogeneity of wind states carried by particles (H)
4) the strength of particles due to decaying function (S)

1) Particle numbers and distances: The idea behind these
two confidence parameters is to give the wind field a higher
confidence value where more and closer measurements are ob-
served. On the contrary, areas that are far from flight trajectories
tend to have less reachable particles and should yield a lower
confidence value.

2) Homogeneity of carried states: The level of homogeneity
refers to the similarity of particle states. It essentially indicates
whether different measurements propagated from a nearby area
indicate similar evidence of wind vectors. It is computed as
the norm (spectral norm) of the covariance matrix of two wind
states of all particles:

Σ = Cov(Swx, Swy)

H = ‖Σ‖2 =
√
λmax(ΣT Σ)

(14)

where the λmax represents the largest eigenvalue of a matrix.
3) Particle strength: Since a particle’s creation, its age pa-

rameter (τ ) increases at each step of propagation. The decaying
strength obtained by Equation 13 regularizes not only the
weights of particles in wind calculation, but also the confidence.
Mean strength of all neighborhood particles are calculated as
follows:

S =
1

N

P∑
p=1

fa(τp) (15)

4) Normalized and combined confidence: Values from all
four confidence factors all have a distinct range. It is important
to normalize these factors into the same range. A linear scaler
is used to covert all values of each factor into (0, 1) range.

s(x) =
x−min(X)

max(X)−min(X)
(16)

At any given time, the confidence vectors that represent all
wind grid points are: N , D, H , and S. Then, the combined
confidence is expressed as:

C = mean
{
s(N), s(D), s(H), s(S)

}
(17)

Figure 6 illustrates the confidence contour plot based on
previously defined calculations. Areas in the plot in darker
colors represent higher levels of confidence.

X

Y

Figure 6: Wind field construction with confidence plot

F. Compute wind at any points
It is worth pointing out that the particle model runs inde-

pendently of a pre-defined grid. When looking at the model
as a dynamic object, particles are generated as measurements
are observed. They are propagated independently from then on.
This property allows us not to store the measurement and still
be able to compute wind at any given time and space.

Hence, wind states from this particle model are not limited
to any symmetric grid points. Values can be computed at any
point or any set of points. Equation 9 can be used at all
locations to produce accurate wind state information, as long
as a sufficient number of particles exist in the neighborhood of
these locations. The confidence levles can also be calculated in
the same fashion.

IV. EXPERIMENTS AND RESULTS

Firstly, a small data set from ADS-B and Mode-S are
combined and used as wind observations as a means to generate
the test wind field. Results are illustrated as a sampled wind
grid. Later on, different validation criteria are proposed, and
comparison experiments are conducted to examine the model
and related results.

From ADS-B and Mode-S data, wind observations are cal-
culated for the area that is covered by our ADS-B/Mode-S
antenna. The area is about 600 kilometers in diameter and
located around Delft, the Netherlands, as shown in Figure 7.
Based on a one-hour continuous streaming of measurement
data, wind vectors are computed on a 3D grid consisting of
both horizontal and vertical points.
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A. Constructing the wind field

The dataset consists of one hour of wind data obtained,
from 11:30 to 12:30 hours on July 27, 2017. In total, around
87,600 wind measurements were generated during this one-hour
period. In Figure 7, the distributions of wind observations are
displayed both horizontally and vertically.
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Figure 7: Wind data ground projections and vertical distributions

In this figure, the plot on the left hand side illustrates the
ground projection of all observations. On the right hand side,
the plot shows a histogram with the number of observations per
2,000 feet altitude. It is apparent that horizontally, the measure-
ments are highly concentrated along flight routes. Vertically, the
majority of the observations are at cruise altitudes and lower
approaching altitudes.

Despite the horizontal location of the observations, the statis-
tic of wind at different altitudes can be computed, as shown in
Figure 8.
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Figure 8: Wind speed and direction distributed at all flight levels

During this hour, it can furthermore be observed that wind
generally comes from a west or south-west direction, but with
different levels of velocities at different altitude levels. The
time-spatial variate wind state also leads to variability in both
wind velocity and direction at each altitude. Both Figure 7
and 8 illustrate the challenges of using aircraft as sensors to
model atmospheric conditions, there being: 1) high non-uniform
distribution, and 2) large variation in the time-spatial domain.

To simulate a real-time run of the model, these recorded
wind data are streamed to the particle model using the original
sequence based on the data time-stamp. Each second, there

are around 11 wind observations on average computed by the
receiver.

The entire area is converted with Cartesian coordinates cen-
tered at the location of receiver (latitude: 51.99◦N, longitude:
4.37◦E). For illustrative purposes, the horizontal visualization
of wind grid size is set to 10 x 10, where each set of adjacent
points are 60 km apart. Vertically, 12 equally separated flight
levels are chosen for visualization. A snapshot of the wind grid
at 12:00 hours is shown in Figure 9.

alt: 1 km alt: 2 km alt: 3 km

alt: 4 km alt: 5 km alt: 6 km

alt: 7 km alt: 8 km alt: 9 km

alt: 10 km alt: 11 km alt: 12 km

Figure 9: Wind grid at 12 different altitude levels

Visually, it can be ascertained that wind speed increases
with increasing altitude. At lower altitudes, the wind generally
comes from a south-west direction, while, at higher altitudes,
wind generally comes from a westerly direction. Both speed
and direction trends correspond with the observations from
Figure 8. To further validate the accuracy of the results, several
additional methods are addressed below.

B. Validation of particle model
The validation of the particle model is focused on two

indicators: correctness and variability. The level of correctness
can be examined against data from existing meteorological
models. Global Forecast System (GFS) Analysis data are used
for this purpose [2]. Variability can be caused by both the
uncertainty in the model itself and the quality of data. Firstly,
all particle generations and propagations follow a stochastic
process. At each run and each step, the states of each individual
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particle cannot be predicted. Secondly, wind measurements
from aircraft also carry their own uncertainties.

To validate the model variation, multiple runs are performed
for the same data. Differences in the resulting wind grid are
compared. To validate the data variation, a complete dataset is
sampled into different sizes of test datasets. Then, the results
are compared with those from the complete dataset.

1) Correctness: To improve the quality in correctness val-
idation, a much larger number of wind data samples across
an entire week are used. GFS Analysis data provide global
atmospheric re-analysis of all vertical levels at the highest
resolution of 0.25 degrees latitudinal and longitudinal, at 00:00,
06:00, 12:00, and 18:00 hour each day. A wind observation
dataset is aggregated that contains seven days of one-hour data
computed around these hours from GFS, lasting from the 24th
to 30th of July, 2017.

At a GFS hour (00:00, 06:00, 12:00, or 18:00), spot values
and average values are computed. The spot value is the wind
grid computed from the particle model at the exact GFS hour.
The average values are computed as the mean of the hour
around GFS hour (per minute, +/- 30 minute of wind grids).

To compare the difference in wind vectors from GFS and
the particle model at the same position and time, two distance
matrices - angular difference and magnitude difference - are
calculated at each GFS hour.

The angular difference is computed as

∆θ = arccos

(
Vpm · Vgfs

‖Vpm‖ · ‖Vgfs‖

)
(18)

where Vpm and Vgfs are the two wind vectors computed by the
particle model and extracted from GFS respectively. ∆θ is is
the angle in degrees between two wind vectors with a range of
[0, 180]. The smaller the ∆θ, the smaller the angular difference
between the two wind vectors.

The magnitude difference is computed as the absolute dif-
ference of wind vectors:

∆V = abs(‖Vpm‖ − ‖Vgfs‖) (19)

where the smaller the value, the smaller the difference between
the two results.

Table II summarizes the results of the 7-day mean angular
and magnitude differences between the wind field generated
from the particle model and GFS data. The analysis is divided
in two parts - part one, with up to gentle breeze wind (less than
10 m/s) and, part two, with higher speed wind (greater than 10
m/s). This distinction is needed because that small variability
can cause large relative differences in low wind conditions. If
analyze without such consideration, the low wind difference
could be simply considered as outliers.

Both the spot value and average value are generated from
the particle mode to compare with the GFS. They are also
illustrated in box-plots in Figure 10. Within this 7-day data
sample, the mean angular difference of the two wind fields is
around 20 degrees for low speed wind and around 10 degrees
for higher wind speeds. The magnitude difference is around 4-5
m/s as compared to around 20 m/s average wind speed.

When using a one hour (60 sample) average, the differences
become small, but not significantly different. This is due to the
fact that the particle model is already considering historical
wind measurement as a result of the decaying factor. For

example, in this experimental setting, historical observations
of up to one minute still persist in the particle model.

It is apparent that for low wind speeds, the results are less
aligned with the GFS data. However, this does not mean that
the results are less accurate. Rather, the the wind information
generated by the GFS model is smoothed and interpolated over
much larger periods of time and areas.

TABLE II: Mean grid angular and magnitude distance
vw ≤ 10m/s vw > 10m/s

spot average spot average

Date time ∆θ ∆V ∆θ ∆V ∆θ ∆V ∆θ ∆V

2017-07-24 00H 23.22 4.09 26.42 3.18 18.96 7.64 10.75 5.26
2017-07-24 06H 56.31 2.97 43.79 2.03 21.03 6.38 14.45 6.11
2017-07-24 12H 36.46 2.66 30.14 2.06 13.80 5.80 8.30 4.97
2017-07-24 18H 22.02 2.52 20.13 1.92 9.71 5.02 8.28 3.49
2017-07-25 00H 27.85 7.04 19.54 2.20 14.81 4.57 9.50 3.71
2017-07-25 06H 14.84 2.11 13.50 2.60 12.03 3.56 9.03 2.47
2017-07-25 12H 19.52 1.97 14.29 2.43 12.69 2.12 9.30 2.06
2017-07-25 18H 29.71 2.82 20.70 2.24 17.02 2.71 11.46 2.27
2017-07-26 00H 18.39 3.53 27.14 3.74 11.82 7.89 8.87 5.76
2017-07-26 06H 26.14 4.11 28.77 3.11 9.12 5.48 7.96 3.88
2017-07-26 12H 23.71 1.98 18.50 1.88 16.56 3.57 14.53 2.51
2017-07-26 18H 22.22 4.12 20.21 3.31 13.25 3.92 9.48 2.35
2017-07-27 00H 16.87 3.79 15.71 6.98 10.95 4.84 8.05 3.77
2017-07-27 06H 20.73 5.43 14.84 6.06 10.75 5.58 7.70 4.12
2017-07-27 12H 9.42 8.13 9.91 5.70 8.55 6.43 5.92 5.13
2017-07-27 18H 11.19 3.28 12.97 4.23 7.40 6.68 8.15 4.46
2017-07-28 00H 17.11 3.21 17.05 6.76 8.29 8.85 8.21 6.11
2017-07-28 06H 13.70 5.15 30.79 6.15 6.00 6.11 5.62 5.19
2017-07-28 12H 13.58 5.38 30.10 8.48 6.04 5.78 7.82 4.86
2017-07-28 18H 12.04 7.08 11.46 6.55 9.50 3.43 7.85 3.13
2017-07-29 00H 45.10 13.04 48.62 10.00 10.58 5.10 8.35 3.81
2017-07-29 06H 25.36 9.34 28.88 11.60 5.35 4.57 4.91 4.25
2017-07-29 12H 12.45 6.00 14.61 9.55 5.30 3.83 3.16 3.26
2017-07-29 18H 19.82 9.84 15.93 10.84 8.50 3.75 5.05 3.27
2017-07-30 00H 37.08 9.44 45.83 10.13 6.66 5.11 5.34 3.69
2017-07-30 06H 18.68 11.31 24.54 10.66 6.21 5.34 4.67 4.26
2017-07-30 12H 17.89 5.44 11.02 6.96 8.01 4.59 3.75 3.54
2017-07-30 18H 33.50 5.15 25.26 7.91 5.74 4.63 3.73 3.96
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Figure 10: Mean wind gird angular and magnitude difference

2) Model variation: As previously stated, there is a certain
level of the randomness in the particle model. The advantage
of such randomness is that the model mimics and copes with
the uncertainty of wind. With a large amount of particles, the
general trend of wind is (hopefully) stable. To study whether
the randomness of particles effects the wind field, as well as
the level of the influence, the same example in Section IV-A is
used with multiple runs of the particle model. The wind field
at 12:00 hour (as shown in Figure 9) is computed at the end
of each run.

In Figure 11, the distribution of standard deviations of wind
grid speed and heading among 100 runs is displayed. Among
these runs, the difference is almost negligible, namely less than
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one degree for heading and 1 m/s for magnitude. 2 Using
box-plots, the baseline variance is also illustrated for later
comparisons.
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Figure 11: Standard deviation of wind speeds and headings of 100
runs

3) Data variation: Another important validation is to de-
termine how the quality of observation data effects the wind
field estimation. More precisely, it is necessary to ascertain
whether the wind grid would be different if some percentage
of the observed data are not available. To study this effect, the
previous dataset is randomly sampled into several new datasets
that contain 90%, 70%, 50%, 30%, and 10% of the total wind
observations. Then, the same processes are run to create five
different wind fields at 12:00 hour.

Figure 12 illustrates the wind grid estimated at the altitude
level of 12km when different percentages of sampled data
are used. From the first plot to the last, it is obvious that
with increasing observation data samples, the size of estimated
wind field is increased, together with an increased level of
confidence. Visually, it is already possible to observe that the
magnitude and headings of wind field are quite similar.

10% 30% 50%

70% 90% 100%

Figure 12: Wind field at a 12km altitude from different samples

In order to quantify the differences, mean heading and mag-
nitude differences from the entire grid (including all altitude
levels) of all wind vectors are compared with the results from
the complete data, being shown in Figure 13.

It is apparent that the comparison with box-plots confirms
the previous observation. Compared to the baseline variance of

2Grid points with higher variances are usually along the boundary regions
with fewer particles.
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Figure 13: Grid magnitude and heading difference due to sampling

the model as shown in Figure 11, we can infer that with a loss
of up to 50% of the total data, the differences are still within the
acceptable range. This test indicates that, within a reasonable
percentage of data uncertainty, the particle model can always
obtain relatively stable wind field results.

4) Error resistance: The factor that effects the stability
and correctness most is the fundamental measurement error in
raw data. It is apparent that with a better accuracy in wind
observations, the wind field can be better re-constructed. In
Section II, from Mode-S and ADS-B data, different inference
methods were implemented that trying to produce a higher level
of wind accuracy. However, there is no reference data to check
the correctness of the computed wind vectors themselves at this
stage.

To study how errors in data would affect the wind field,
a percentage of the dataset is replaced with random wind
vectors that are uniformly distributed between the minimum
and maximum wind speeds with headings between 0 and
360 degrees. In Figure 14, wind grid differences between no
assumed error and data error rates of 2%, 4%, 6%, 8%, 10%,
and 15% are shown.

With such a aggressive error model, the particle model can
maintain a reasonably correct wind field with up to an error
rate of approximately 5%. One can further infer that if the
magnitude and heading errors are small (in another words, wind
observations distributed close to their true values), the particle
model would be able to handle an even larger percentage of
data error.

V. DISCUSSION

The introduction to this paper indicates four challenges posed
by using aircraft as a sensor network to construct wind fields.
Throughout the paper, methods and models are proposed to
address those challenges.

The source - wind observations - remains the most important
factor that influences the results. Without going into much
detail, the computation of aircraft true airspeed in pyModeS is
a complicated task. The challenge is not only the decoding of
BDS 5,0 and 6,0 messages, but rather a complete identification
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Figure 14: Grid magnitude and heading difference due to error

process of the entire Mode-S family of messages. As a third-
party observer without the knowledge of Mode-S interrogations,
the decoding is extremely complex. Developed by the the
authors of this paper and supported by open-source community,
pyModeS is an effective tool to solve this problem. Sophisti-
cated identification processes can be found in the source code
of the software as referenced.

Remaining challenges includes constructing a model that is
able to cope with the chaotic nature of wind, moving sensors
(aircraft), and extreme non-uniformly distributed observations.
The particle model proposed in this paper addresses the stochas-
tic characteristic of wind through particles, while maintaining
the stability through the use of relatively large particle numbers.
One must not confuse the model with Particle Filtering. The
particle model mimics the gas particles’ stochastic motions to
propagate wind information (not actual wind) to their surround-
ing areas. Using the propagated information, wind filed in areas
with less (or no) measurements can be estimated. Parameters
on particle propagation and decaying can be tunned in order to
control performance. These parameters are set empirically in
this paper. However, for future work, an automatic parameter
tunning method shall also be constructed.

As a novel approach, there are still a few remaining future
developments. For example, together with wind, air temperature
field can also be computed using Mode-S data. Since this paper
is focused on the concept of the particle model, temperature has
not been included in the scope of this paper. Air temperatures
are generally more stable and evenly distributed spatially.
Hence, using the same particle model with addition temperature
state, a similar field can be generated in parallel.

VI. CONCLUSIONS

With the increasing accessibility of open ATM data from
ADS-B and Mode-S, as well as related open-source decoding
library development, exciting new possibilities for research are
made available to the open research community. This paper
proposes an open framework to construct accurate real-time
wind field using aircraft as sensors.

At first, using our pyModeS library, raw wind vectors are
computed from ADS-B and Mode-S down-link data. Then, a
novel and fast particle model constructs wind field on a large
scale. This model is self-evaluated in order to understand its
variability and resistance to errors. The accuracy of calculated
wind fields are also validated against GFS data, using data from
28 sets over a long period (one week).

As the result, the combination of accurate wind data from
pyModeS and the fast fault resistance particle model is con-
vincing evidence of the utility of open source solutions in
ATM research. Our model clearly shows the possibility of using
aircraft as large sensor networks to construct a global scale real-
time meteorological measuring system under the open-source
domain. In stark contrast to the current propitiatory AMDAR
system, this model and the results proposed in this paper are
fully open to the ATM and the wider scientific community.
Without the need for any new equipment or communication
protocols, the implementation of such a system is completely
based on existing technology and data sources.
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