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Abstract—Heart rate (HR) is a critical indicator of an indi-
vidual’s health, serving as a key metric for detecting potential
cardiac issues. This paper explores a method for real-time heart
rate measurement using RGB camera footage, aimed at general
health monitoring. The proposed method utilizes a convolutional
neural network (CNN) to generate a 3D mesh of the subjects’
facial features. The movement over time of the points in this mesh
is used to compute a signal that captures the small pulsatile
movements corresponding to the mechanical motion of blood
being pumped through the veins. This signal is filtered, and
motion sources are separated using principal component analysis
(PCA). The most periodic component, the one with the highest
frequency, is considered to correspond to the heart rate, and
it’s frequency is used to estimate the heart rate. The proposed
method is tested using the ECG-Fitness dataset, characterized
by challenging environmental conditions such as significant
subject motion and dim lighting conditions. Experimental results
demonstrate the method’s capability for real-time applications,
though further enhancements are needed to improve robustness
under difficult environmental conditions.

Index Terms—biotelemetry, signal, real-time systems, image
processing, image models, neural networks, filter, eigen analysis,
principal component analysis, DCT, FFT, Fourier transform,
harmonic analysis

I. INTRODUCTION

THE heart’s role in circulating oxygen and nutrients
throughout the body is critical. If any issues are limiting

the heart’s ability to function properly, then the impact on an
individual’s well-being will be significant. As such, measuring
the heart rate is paramount, since it is a good indicator of
a person’s cardiac health. Bradycardia, heart rate below 60
beats per minute, and tachycardia, heart rate above 100 beats
per minute, are considered to be abnormal. They are often
indicators of underlying conditions and diseases.

Traditionally, the heart rate is measured using contact
methods like an electrocardiogram (EKG), or a finger pulse
oximeter. These methods can cause discomfort and skin irri-
tation to patients [1], which is an impediment to consistent
measurements as a way to generally monitor the health of
individuals. Therefore, developing reliable and accurate non-
invasive, non-contact heart rate measurement methods could
greatly improve the adoption of health monitoring.

RGB cameras, like the Logitech C920 used to collect the
videos for the employed dataset, are a mature and inexpensive
technology that is widely available. Given this high availability
and inherent potential reach, research into health monitoring
based on RGB cameras has broadly already been conducted.
There are two main principles when it comes to camera
based heart rate measurements: remote Photoplethysmogra-
phy (rPPG) and imaging Ballistocardiography (iBCG). RPPG
relies on extracting heart related bio-signals based on small
changes in the color of the skin. By contrast, iBCG based
methods take into account the microscopic movements of the
skin generated by the mechanical motion of the blood pumping
through the veins. [2]

Many proposed methods rely substantially on a limited
set of experimental conditions to work reliably, since signal
degradation due to improper lighting conditions or subject
motion can cause erroneous results. Individuals are often asked
to stand as still as possible, but this limits the usability of the

technology in real-life scenarios. This paper expands on the
method presented by Haque et al., with the intent of further
improving the robustness of heart rate measurements to natural
human motion, while minimizing the incurred computational
complexity.

II. BACKGROUND

There are two main approaches, color-based Photoplethys-
mography [3]–[5] and motion-based Ballistocardiography [6]–
[8]. Within each category, there are many different kinds of
techniques that can be used to isolate and extract the heart rate
bio-signal. Four influential approaches with good results for
each category that were considered are succinctly presented
below. The first two are rPPG based methods, while the next
two are based on the principles behind Ballistocardiography.

In their 2014 paper, “Remote Heart Rate Measurement
From Face Videos Under Realistic Situations” [3], Li et al.
address the challenges that realistic subject motion and lighting
variations can have on traditional rPPG methods. They make
use of face tracking using facial landmarks to minimize the
impact of head motions and additionally discard noisy portions
of the signal. To minimize the impact of lighting related noise,
they apply a normalized least mean squares (NLMS) filter,
using background light values as a reference.

Traditional rPPG methods which rely on blind source
separation techniques, can face challenges in detecting heart
rate during motion. G. de Haan and V. Jeanne introduce a
chrominance-based approach that significantly enhances mo-
tion robustness [4]. They analyze the chromatic variations
caused by blood volume variations across different color
channels, separating the pulse-related signal from motion-
induced noise. An in-depth analysis on how motion enters
the pulse-signal as noise is presented, as well as how the
chrominance approach suggested minimizes it.

Balakrisnan et al. introduce a novel method for heart rate
extraction by measuring the movement caused by the influx
of blood pumped by each heartbeat. They consider the other
sources of involuntary head movement, such as “the oscillatory
motion that keeps the head in dynamic equilibrium” [6], or
movement caused by respiration. A 1D signal is obtained by
tracking feature points. The signal is then filtered, eliminating
low frequencies (less than 0.75 Hz), containing the respiration
related movement, and very high frequencies (above 5 Hz).
This upper limit would correspond to a heart rate of 300 beats
per minute, which far exceeds the range of possible values.
However, Balakrishnan et al. discovered that “harmonics and
other frequencies higher than 2Hz provide useful precision
needed for peak detection”. The movement is decomposed into
its sources by applying principal component analysis, and the
most periodic component is considered to represent the heart
rate.

In their 2016 paper, “Heart Rate Measurement from Facial
Video” [7], Haque et al. expanded on the work of Balakr-
ishnan et al. by developing a Ballistocardiographic approach
that more directly considers the impact of internal (facial
expressions) and external head movement, as well as other
potential sources of signal degradation such as motion blur or
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improper lighting. They also present approaches to mitigate
these effects. They found that a lot of noise is induced due
to particularly low quality frames and developed a metric
upon which they would be eliminated, resulting in more stable
landmark trajectories. Additionally, they found that different
facial landmark tracking algorithms could be combined to
better mitigate each other’s limitations, resulting in more
reliable heart rate measurements.

For general health monitoring, not only should the data be
processed as it is being received, but the subject should be
able to act as they wish, unburdened by arbitrary constraints
that may be needed for the system to function optimally. This
makes computational complexity and especially reliability
to environmental conditions essential. Photoplethysmography-
based methods are inherently more dependent on lighting
conditions, while movement based methods can potentially
even operate in darkness, by adapting the approach to use
depth cameras. To that end, the approach presented by Haque
et al. will be primarily adopted for this paper. As established
by Hassan et al. in their review of non-invasive heart rate
monitoring [9], the approach not only performs well in a
simplistic scenario, but suffers some of the least degradation
in a more dynamic scenario that features more changeable
lighting conditions and increased subject motion.

More recent learnings from Cheng et al. [8] will be inte-
grated to improve upon the method. Cheng et al. discovered
that by using anterior-posterior movement rather than the stan-
dard vertical-traces captured directly, they were able to better
capture the heart-rate related pulsatile movement. Therefore,
they were able to extract a more accurate bio-signal, leading
to improved results over their previous method.

III. PROPOSED METHOD

For general-purpose health monitoring, computational com-
plexity is also an important factor to consider, as a real-time
system could provide significant assistance within a clinical
setting. Therefore, the method described below will attempt
to iterate on the method provided by Haque et al. [7] with the
intention of reducing computational costs while negating or at
least minimizing any losses in accuracy.

A. Face Quality Assessment and Face Landmark Detection

The method presented in “Heart Rate Measurement from
Facial Video” [7], first passes the captured video frames
through a face quality assessment (FQA) step, that seeks to
detect and remove the lower quality frames that induce a
disproportionate amount of noise within the signal. This is an
important step that can potentially be implemented efficiently,
given the right quality metric is chosen.

Following that, the face is detected as the region of interest
(ROI) using the classifier introduced by Viola and Jones [11]
and then facial landmarks are detected using two separate
methods. In most non-contact heart rate measurement ap-
proaches, this ROI selection and tracking component is the
most expensive computationally. This is the case for the Haque
et al. approach as well, therefore changes here have the highest

potential to reduce the computational load of the approach
overall.

To that end, the ROI selection and face landmark de-
tection stages from the paper were replaced by a fast and
lightweight convolutional neural network based model made
publicly available by Google [12]. This model is capable of
detecting the presence of faces within an image and then
generating a mesh of three-dimensional landmarks mapping
out the subject’s face as seen in Fig. 2. This model was chosen
not only due its accurate, real-time performance, but also for
its consistency across individuals from different geographic
areas; as well as between male and female subjects. This
careful analysis of potential bias alleviates some of the ethical
concerns over data bias. Adopting this will result not only
in an improvement in runtime performance, but will also
enable the usage of anterior-posterior traces, allowing for the
improvements identified by Cheng et al [8] to be incorporated.
The Z-axis coordinates provided by the model are synthetic
measurements that are “relative to the face center of mass and
are scaled proportionally to the face width”. [12]

In addition to the mesh of landmarks visible in Fig. 2,
the model also produces, for each frame, a set of confidence
values for face presence, face detection, and landmark track-
ing. Experimentally, it has been found that these are highly
correlated with face resolution, brightness, and out-of-plane
face rotation, which are the sources of noise identified by
Haque et al. to disproportionately contribute to “the most
erroneous segments coming from low quality face frames”
[7]. As such, face quality assessment will be implemented
by setting a minimum of 0.75 for these confidence values.
Frames that fall below this confidence value will be discarded.
This approach is beneficial, since it allows for similar noise
elimination while not introducing another processing step that
would add to the runtime of the algorithm.

For each frame of the video not removed by the FQA, the
model will be run, and a set of 478 facial landmarks will be
recorded. A subset of these landmarks will be selected corre-
sponding to well vascularized areas such as the forehead and
cheeks, as well as highly stable points around the eyebrows,
eye sockets, mouth, and nose bridge. This subset can be seen
in Fig. 3. The movement of these facial landmarks over time
will constitute the signal traces containing the heart rate bio-
signal. An example signal trace, before filtering, can be seen
in Fig. 4.

B. Motion Signal Filtering

To extract the heart rate from the traces, the first step that
must be done is to process the signal, attempting to eliminate
noise. To that end, following the findings of Balakrishan et al.
[6] and Haque et al. [7], the signal is first filtered using an
8-th order band-pass Butterworth filter. Heart rate should be
within the 45 to 300 beats per minute range. Therefore, the
cut-off frequencies that will be used will be 0.75 Hz and 5
Hz. Subsequently, to further smooth the traces and mitigate
the impact of noise, a moving average filter will be applied.
[7]. The effect of applying these filters is visualized in Fig. 5
and Fig. 6.



4

Fig. 1. Block diagram of the proposed system, image of person exercising sourced from ECG-Fitness dataset [10]

Fig. 2. MediaPipe Face Landmark Detection model [12] on image of author

Fig. 3. Selected subset of landmarks shown with a gray outline over the
sample picture freely provided by Google as reference for facial landmarks
[12]

C. Motion Signal Processing

In order to isolate the pulsatile movement corresponding to
the heart rate, from other sources of head motion, principal
component analysis (PCA) will be applied to the filtered
trajectories. The highest frequency component isolated by

Fig. 4. Signal trace representing the movement of specific face landmark over
time, before any filtering is performed

PCA should be the one corresponding to the heart rate. It
will be identified by performing a discrete cosine transform
(DCT) on all components, selecting the one with the highest
frequency magnitude. Finally, an inverse DCT will be per-
formed to retrieve the original signal and then a Fast Fourier
Transform (FFT) will be employed to determine the frequency
corresponding to the heart rate. [7]

IV. EXPERIMENTS

Due to concerns over sensitive personal data further de-
tailed in the responsible research section, no testing data
was collected for this project. Instead, appropriate pre-existing
datasets were accessed and used to evaluate the performance of
the method described above. For a general health monitoring
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Fig. 5. Signal trace representing the movement of specific face landmark over
time, after applying the Butterworth bandpass filter

Fig. 6. Signal trace representing the movement of specific face landmark over
time, after applying the butterworth bandpass and moving average filters

context, a system should be able to operate well no matter the
environmental conditions, and without limiting a patient’s ac-
tivities. Therefore, to suitably represent the various conditions
that would occur when such a system is deployed in practice,
a dataset should contain at least a moderate amount of subject
motion, as well as a variety of different lighting conditions.

The approach presented by Haque et al. [7] is evaluated us-
ing a common dataset for non-contact heart rate measurement,
the MAHNOB-HCI dataset [13]. This is a highly appropriate
dataset for a general purpose health monitoring approach,
since it features a normal amount of internal and external

Fig. 7. Result of heart rate extraction on signal showed in Fig. 4, Fig. 5 and
Fig. 6

face motion due to the human-computer interaction, affect
measuring scenario. Unfortunately, due to difficulties related
to the timely acceptance of a data management plan, obtaining
access to this dataset during the course of the project was not
possible. Therefore, a direct comparison between the approach
presented above, and the original one by Haque et al. will not
be possible.

As a substitute, access was possible to the ECG-Fitness
dataset collected by Spetlik et al. [10]. This dataset features
videos and electrocardiograph measurements from 17 subjects
as they speak or perform physical exercise using different
fitness machines. There are also three different lighting sce-
narios: natural light from a window, a bright 400W light,
and a dim 30W light. Due to the presence of more variable
environmental conditions, as well as the presence of intense,
periodic, exercise motion, this constitutes a scenario that cov-
ers even more of the range of possible conditions a system in
the field could encounter. This makes the ECG-Fitness dataset
a suitable substitute for MAHNOB-HCI, but as it represents
a much more challenging context, a direct comparison of the
results would be misleading.

The method described in the section above was applied to
all of the videos included in the ECG-Fitness dataset. The
approach provides an average heart rate estimation over a 20-
second window, using a sliding window. These estimations
were compared against the average heart rate measured by
the EKG over the same window to determine the following
statistical measures: mean absolute error (MAE), standard
deviation of error (SD), root mean squared error (RMSE) and
Pearson correlation coefficient (r). These can be found in the
Results section below.

In addition, to evaluate the feasibility of real-time mea-
surements, details about the runtime of the algorithm were
also collected. The approach was implemented in Python 3.8
making extensive use of optimized scientific libraries such as
NumPy, OpenCV and SciPy. The experiments were run using a
Windows 10 laptop equipped with an AMD Ryzen 9 5900HS
processor. The experiments made use of a single processor
thread, as efforts to improve the performance by parallelizing
the process were not feasible during the duration of the project.
However, the video can be segmented into several segments of
contiguous frames, and then processed by separate instances of
the face landmark detection model [12], As further presented
in the Results and Discussion section, this is a promising
approach for further optimization.

V. RESULTS & DISCUSSION

When creating the ECG-Fitness dataset to analyze the
performance of their convolutional neural network (HR-CNN)
approach [10], Spetlik et al. also evaluated other state-of-
the-art methods, including the chrominance based approach
(CHROM) [4] and that introduced by Li et al. (LiCVPR) [3]
described in the Background section. Alongside those two,
there is also data on an rPPG approach based on a detailed skin
reflection model (2SR) introduced by Wang et al. [5]. Table I
presents a comparison of results of these different methods
on the ECG-Fitness dataset. From these results it can seen
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TABLE I
AVERAGE RESULTS ON ECG-FITNESS DATABASE

Proposed method∗ HR-CNN CHROM LiCVPR 2SR
MAE 37.66 14.48 21.37 63.25 43.66
SDE 4.97 - - - -

RMSE 38.23 19.15 33.47 67.67 52.86
Pearson

Correlation 0.0545 0.50 0.33 -0.02 0.06
Coefficient

∗ on videos where the FQA did not discard more data than would allow for
the creation of at least one window

that the proposed method performs better than those described
by Li et al. and Wang et al., but significantly worse than
those of De Haan et al. and Spetlik et al.. As detailed below,
many of the shortcomings of the proposed method are related
to the difficulty of extracting accurate face landmarks given
conditions as difficult and variable as those introduced by the
ECG-Fitness dataset. A model trained with such scenarios in
mind, might enable the proposed method to derive much more
accurate heart rate estimations, and should be investigated in
the future.

A. Impact and Limitations of FQA

Due to the high levels of subject motion and difficult
lighting conditions, for certain videos within the dataset, many
frames were discarded by the FQA. For a few videos in
the more challenging scenarios, not enough frames could be
analyzed by the face landmark detection CNN [12] to obtain
even one HR measurement. Table II shows the subjects for
which the heart rate could not be estimated, for each activity
(participants are 0 indexed, just as in the original dataset).
All of the five videos are recorded at dusk, with natural light
as the primary light source, and additionally figure a large
amount of internal face motion and out-of-plane face rotation,
as the subjects are talking. The lighting conditions result in
the skin color of the participants being highly similar to that
of the background, a situation in which the face landmark
detection model [12] appears to be unable to perform face
detection. Table III further details the impact of the FQA by
showing the average number of discarded frames, separating
videos that fall within, and out of, a 20% frames dropped
threshold. From the numbers presented it can be concluded
that the FQA operates reliably in good-weather scenarios, but,
as difficult lighting and motion conditions compound, there
is a threshold beyond which the model’s ability to accurately
track the face landmarks degrades significantly. Robustness
to these conditions might be improved by training a similar
model with more data that shows greater variance across these
environmental conditions.

B. Performance Across Different Activities

It is important to mention that due to the highly difficult
circumstances imposed by some of the activities captured by
the dataset, the results varied significantly between activities,
and separating the data for each activity can give much more
insight into the performance of the approach described by this

TABLE II
VIDEOS THAT COULD NOT BE EVALUATED FOR EACH ACTIVITY

Participants
Activity 1

Speaking while standing 12
on rowing machine

Activity 2
Intense rowing N/A

Activity 3
Moderate rowing 4, 12, 13, 16
while speaking

Activity 4
Intense rowing N/A

under halogen light
Activity 5

Exercising on an N/A
elliptical trainer

Activity 6
Exercising on a N/A
stationary bike

TABLE III
AVERAGE PERCENTAGE OF FRAMES ELIMINATED BY FQA

All Videos below Videos above
videos 20% frames dropped 20% frames dropped

Activity 1 22.02% 2.07% 58.60%
Activity 2 51.87% 10.19% 57.43%
Activity 3 33.82% 4.33% 75.94%
Activity 4 57.78% N/A 57.78%
Activity 5 3.90% 1.87% 36.33%
Activity 6 1.25% 1.25% N/A

All activities 28.15% 2.46% 60.12%

paper. To that end, table IV presents a separate breakdown of
the results for each activity. An essential acknowledgment is
that activities 2 and 4 feature very high levels of rapid head
motion, resulting in a very high percentage of frames discarded
for most videos. This makes it so that fewer windows’ worth
of frames could be collected. In the case of activity 4, for all
16 videos, frames sufficient for only one HR estimation could
be analyzed. This not only makes it impossible to compute a
correlation coefficient, but it also means that the estimations
span a much larger amount of time, i.e. the entire 60 seconds
of video footage. This grants these situations a significant
advantage when it comes to temporal stability.

As shown by the relatively good performance achieved for
activities 5 and 6, a moderate level of head motion, that
doesn’t move the head out of plane with the camera, does
not cause these issues. In fact, activities 5 and 6 feature the

TABLE IV
RESULTS ON EACH ACTIVITY

Total Number of Pearson
number unevaluated MAE SDE RMSE Correlation

of videos videos Coefficient
Activity 1 17 1 32.88 5.61 33.6 -0.0814
Activity 2 17 0 34.85 1.14 34.91 -0.0008
Activity 3 17 4 45.48 7.15 46.09 0.1706
Activity 4 16 0 36.84 0.18 36.84 N/A
Activity 5 17 0 37.35 7.42 38.10 0.0930
Activity 6 17 0 40.07 8.60 41.34 0.0907

All activities 101 5 37.66 4.97 38.23 0.0545
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lowest number of frames eliminated by the FQA, as well as
the consistent performance for heart rate measurement across
all metrics. These two activities both have the camera much
closer to the subject’s face, so it can be concluded that a high
resolution of the face within the input video enables much
more accurate and reliable detection of the facial landmarks,
and that the increase in initial signal quality has a significant
impact on the final results. The difference in head position can
be visualized in Fig 8.

(a) Activity 4 (b) Activity 5 (c) Activity 6

Fig. 8. Difference in head position across different activities; Images available
for publication from ECG-Fitness dataset [10]

C. Runtime Performance

Finally, analyzing the real-time performance aspect, table
V presents the average runtime performance, in milliseconds,
of all videos that could be analyzed. It can be concluded
that the runtime is not highly dependent on the individual
input data, as the runtime remains highly consistent across
different activities. The differences in execution time can
be explained in part by the different amount of operating
systems operations being processed in the background. More
significant differences can be observed for activities 2 and
4. For these in particular, the high levels of subject motion,
result in an inability for the participant’s faces to even be
detected for many frames of the video. Because of that, there
is significantly less data for landmarks to be extracted from,
and then subsequently less signal to be filtered and processed
to extract the heart rate, resulting in some greatly reduced
processing times.

The average total runtime for all activities is 28.1 seconds,
without landmark extraction parallelization. All the videos
have a duration of exactly one minute, with 1800 frames,
captured at 30 frames per second. Since it takes less than one
minute to process one minute’s worth of video, it is therefore
possible for this method to be adapted to process live data
and provide heart rate measurements in real time, with some
delay.

As with other video-based approaches for measuring heart
rate, ROI selection and face tracking, represented here by the
“Landmark extraction” stage, remain the most time consum-
ing. However by combining them into a single process using a
CNN model based approach, a performance gain sufficient to
process video faster than its duration was achieved. Moreover,
this approach allows for significant parallelization, justifying
its adoption over the more traditional use of Viola-Jones face
detection and separate face landmark detection, as done by
Haque et al. [7].

When adapting this algorithm for real-time applications,
it is feasible to concurrently process the frames, and extract
the face landmarks, using several parallel threads. Therefore,

TABLE V
AVERAGE RUNTIME PERFORMANCE FOR EACH ACTIVITY (IN MS)

Landmark Signal Heart rate Total
extraction filtering extraction Runtime

Activity 1 28397.24 1700.48 52.78 30150.5
Activity 2 20907.97 873.41 16.88 21798.26
Activity 3 28426.58 1711.84 55.64 30194.06
Activity 4 21050.00 798.74 11.37 21860.11
Activity 5 30042.16 1973.50 64.03 32079.69
Activity 6 30650.59 2071.76 66.07 32788.42

All activities 26540.77 1519.36 44.25 28104.3836

frames can be processed as they are captured by the camera.
However, before the signal can be processed, a delay equiv-
alent to the combined window sizes of the moving average
filter, and that applied when extracting the heart rate, totaling
25 seconds, will be incurred. The signal filtering and heart
rate extraction steps cannot be parallelized, so these will
introduce further delay. Therefore, the total start-up delay for
a real-time application utilizing the described method would
be approximately 27 seconds.

Ultimately, estimations for the average heart rate over the
past 25 seconds will be produced, with 2 seconds of added
latency introduced by the signal filtering and processing steps.
For a non-critical health monitoring situation, this should
be sufficiently responsive to provide data that can be used
to preventatively detect and address cardiac health problems
before they become life-threatening.

VI. RESPONSIBLE RESEARCH

The research for this paper was conducted in alignment
with the principles outlined by the “Netherlands Code of
Conduct for Research Integrity”: Honesty, Scrupulousness,
Transparency, Independence, Responsibility [14]. Care was
taken to follow the standards and good practices outlined
by the NWO, especially as pertains to obtaining required
permissions, reporting results in a transparent, unbiased and
unadulterated manner, and attributing credit to previous works
through citations.

A. Ethical Considerations

Given the sensitive nature of medical data, special attention
was paid to protecting participant private information and to
data security. The decision to use pre-existing datasets, rather
than collect new data was made in order to minimize risk
to potential participants. The data management plan devel-
oped in collaboration with the supervisors, pending approval
of the data stewards, ensured that the datasets used in the
validation of the approach were accessed and utilized with
appropriate permissions, in compliance with institutional and
legal regulations. The data was maintained securely, and only
images specifically labeled for publication were made directly
available through this paper.

Efforts were also made to ensure that the adopted models
and methods minimize biases related to sex, skin tone, or
geographic origin. The facial landmark detection model em-
ployed in this study was evaluated for its consistency across
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a diverse pool of subjects, and no substantial explicit bias
was detected, given the model’s carefully considered training
data [12]. In future, further work should be conducted with
more diverse datasets to definitively confirm that the proposed
method does not introduce, through any of the subsequent
processing steps, potential disparities in the reliability of the
system for individuals from groups not represented by the
ECG-Fitness database.

B. Limitations and Responsible Communication

While some of the findings of this paper are promising,
the limitations were communicated clearly and transparently
to avoid overstatement of the results. Challenges, such as
the method’s reduced robustness to poor lighting and high
levels of subject motion, were explicitly detailed, along with
recommendations to address them in future work. This ensures
that further research is conducted with a clear understanding of
the current capabilities and limitations of the proposed method.

C. Transparency and Reproducibility

A key priority of this research was ensuring the transparency
and reproducibility of the results. To achieve this, all code
developed for this project will be made publicly available
alongside this paper. This should allow other researchers to
replicate the experiments.

VII. CONCLUSIONS & FUTURE RESEARCH

This paper provides a framework for measuring heart rate
from facial videos, seeking to address the limitations that
prevent such a non-intrusive system from being deployed in
practice: reliability and a lack of real-time performance. As
such, the robust approach proposed by Haque et al. [7] is
adapted in a manner that would better enable the future devel-
opment of real-time applications. To that end, the Viola-Jones
face detection, and the subsequent separate facial landmark
tracking were replaced by a fast and lightweight convolutional
neural network based model [12]. While this did lead to a
substantial improvement in performance, there has also been
an apparent decrease in the robustness of the approach to
difficult environmental conditions relating to motion and light.

Future research should prioritize improving robustness
through targeted model training on datasets featuring chal-
lenging conditions, including poor lighting, rapid, periodic
movement across a diverse range of subjects. Integrating depth
sensors to supplement RGB cameras could also significantly
improve robustness to lighting conditions, as some approaches
involving this technology have shown some promising results
[15].

Additionally, the Face Quality Assessment step used to
eliminate the frames that would introduce the most noise
into the motion signal analyzed by the system should be fur-
ther investigated to improve understanding of the correlation
between the model confidence values and the detection of
noise sources: improper lighting, motion artifacts, reduced face
resolution and out-of-plane face rotation [7]. This improved
understanding should lead to algorithmic adjustments that

contribute to further improved robustness to difficult environ-
mental conditions.

Moreover, real-time applications would benefit from im-
plementing parallel processing during the landmark detection
stage, which could reduce latency down to just the few seconds
needed to filter and process the signal. Given a similar setup
to that described in the Experiments section, the average
heart rate over the past 25 seconds could be estimated, with
only approximately 2 seconds of latency, the time needed to
filter and process the motion signal. This adaptation would be
sufficient to apply the method in a personal health monitoring
scenario, allowing for the early detection of cardiac problems,
while minimizing the discomfort caused to patients, potentially
leading to higher adoption. Preventative health interventions
facilitated by this early detection could lead to better health
outcomes for patients.
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