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a b s t r a c t

This paper presents a practical dynamic programming based methodology to optimize the long-term

maintenance check schedule for a fleet of heterogeneous aircraft. It is the first time that the long-term

aircraft maintenance check schedule is optimized, integrating different check types in a single schedule

solution. The proposed methodology aims at minimizing the wasted interval between checks. By achiev-

ing this goal, one is also reducing the number of checks over time, increasing aircraft availability and,

therefore, reducing maintenance costs, while respecting safety regulations. The model formulation takes

aircraft type, status, maintenance capacity, and other operational constraints into consideration. We also

validate and demonstrate the proposed methodology using fleet maintenance data from a European air-

line. The outcomes show that, when compared with the current practice, the number of maintenance

checks can be reduced by around 7% over a period of 4 years, while computation time is less than 15

minutes. This could result in saving worth $1.1M–$3.4M in maintenance costs for a fleet of about 40

aircraft and generating more than $9.8M of revenue due to higher aircraft availability.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Aircraft maintenance is the overhaul, repair, inspection or mod-

ification of an aircraft or aircraft systems, components and struc-

tures in an airworthy condition (Minister of Justice, 2012). Reg-

ular maintenance prevents aircraft components and systems fail-

ures during operations. It takes place when an aircraft undergoes

certain flight hours, flight cycles or calendar months. There are

three major types of maintenance: A-check, B-check1, C-check and

D-check. A typical A-check includes inspection of the interior or

exterior of the airplane with selected areas opened (e.g., check-

ing and servicing oil, filter replacement and lubrication) (Ackert,

2010); they are performed approximately every 2–3 months. The

C-check requires thorough inspection of individual systems and

components for serviceability and function; it is planned within

an interval of 18–24 months. The D-check (a.k.a Structural Check)

uncovers the airframe, supporting structure and wings for inspec-

tion of most structurally significant items; it is carried out every

6–10 years. Many airlines merge D-check into C-check and label

it as a heavy C-check. During a C-check or D-check, the aircraft
∗ Corresponding author.

E-mail address: q.deng@tudelft.nl (Q. Deng).
1 B-checks are rarely mentioned in practice. The tasks that could be included in

B-checks are commonly incorporated into successive A-checks.
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as to be grounded for several weeks and removed from the rev-

nue schedule. This paper for the first time optimizes the long-

erm integrated A- and C-check scheduling problem. We call this

roblem the aircraft maintenance check scheduling problem, or for

hort the AMCS problem.

Scheduling the maintenance inspection for a large heteroge-

eous fleet is generally a demanding and complex problem. In

ractice, the aircraft maintenance schedules are usually prepared

ccording to the experience of maintenance operators. The main

roblem associated with such planning approach is that it is time

onsuming and it can result in poor solutions. For a large fleet,

he maintenance operators need to spend several days or weeks

lanning the A- and C-checks one after another according to

ndividual aircraft inspection interval and maintenance resource

f the airline. If conflict A- or C-checks occur, the maintenance

perator needs to adjust the schedule, constantly moving checks

o earlier or later time slots until a feasible schedule is found.

imited by the manual planning approach, the goal is usually

o find a feasible maintenance schedule for a fleet instead of an

ptimal one (Buskirk et al., 2002). As a result, the traditional

anual maintenance planning approach inevitably decreases the

ircraft utilization and leads to more A- and C-checks in the long

erm, increasing aircraft maintenance cost. Therefore, an optimized

ong-term maintenance schedule reduces the number of mainte-

ance checks and increases aircraft availability, the saving derived

rom efficient maintenance planning can be very substantial.

https://doi.org/10.1016/j.ejor.2019.08.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.08.025&domain=pdf
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Nowadays, airlines are laying increasing emphasis on improving

heir aircraft availability and planning their maintenance in a more

fficient way. Aircraft maintenance represents one of the main di-

ect operating costs and plays an important role on the balance

heet of an airline. According to Horder (2003), 11% of the total

ost of an airline goes to aircraft maintenance. In 2014, this was

quivalent to $295M on average per year per airline (IATA’s Main-

enance Cost Task Force, 2015). The long-term economical and op-

rational benefits of adopting a more efficient approach are clear;

typical C-check of A320 family may cost $150k–$350k (Ackert,

010), an A-check costs around $10k–$15k, while an additional day

n operation may represent $75k–$120k of commercial revenue

depending on the utilization level of aircraft). However, the chal-

enge is that A- and C-check scheduling problems are two corre-

ated combinatorial problems. The decision of scheduling or not

cheduling A-/C-check on an aircraft today impacts on the utiliza-

ion of the aircraft onwards and, therefore, on the need to perform

-/C-checks in the future. This kind of problem is hard to solve and

s often addressed by heuristics or algorithms (Steiner, 2006).

In this paper we propose a dynamic programming (DP) based

ethod to solve the AMCS problem. The main contribution of this

ork can be summarized in the following three aspects:

1. Methodology:
• An innovative and tractable DP-based model formulation is

presented, suitable to solve real-life, large scale scheduling

problems.
• A thrifty algorithm is used to infer future implications of an

action taken in the current time stage.

2. Practicality
• The optimization takes the inspection interval of different

check types and detailed operations into consideration.
• It takes less than 15 minutes to optimize the 4-year A- and

C-check schedule for more than 40 aircraft, rather than days

or weeks.

3. Application
• For the first time, the long-term AMCS problem is formu-

lated and optimized by a single algorithm.
• The formulation is flexible and other maintenance events

can be easily included in the proposed model, such as land-

ing gear maintenance or cabin modification.

The outline of this paper is as follows: Section 2 reviews the

iterature about aircraft maintenance planning and solution tech-

iques for scheduling problems. The aircraft maintenance require-

ents, constraints and AMCS problem formulation, for aircraft A-

nd C-check scheduling, are presented in Section 3. The DP based

ethodology for A- and C-check scheduling optimization is dis-

ussed in detail in Section 4. Section 5 describes the case study

rom a European airline. The last section summarizes the research

ith concluding remarks and gives an outlook to future work.

. Literature overview

Aircraft maintenance scheduling has been relying on the man-

al planning approach for many years. Since the introduction of

ommercialized wide-body aircraft in the early 1970s, the main-

enance scheduling has become increasingly difficult due to the

mphasis on efficiency and lack of an accurate and timely main-

enance scheduling tool. It usually took several weeks for plan-

ing personnel to create a maintenance schedule (Boere, 1977). Air

anada was aware of this issue and developed in the 1970’s an

ircraft maintenance operations simulation model (AMOS) to im-

rove maintenance efficiency and reduce labor and material cost

Boere, 1977). The AMOS tool formulated the aircraft maintenance

cheduling as a discrete integer programming problem. According
o the author, the problem constraints in AMOS included man-

ower, public holidays and summer time (when no maintenance

as allowed), contractual maintenance duties for other airlines, re-

iability and required inspection intervals from the maintenance

lanning document (MPD). Several assumptions had been made in

MOS: each maintenance event ties up only one hangar/slot; the

inimum time unit is one calendar day; aircraft is aged by daily

ight hours; maintenance events can be postponed from the de-

ired due date within a certain tolerance. Although AMOS works

or both C-check and A-check scheduling, with the objective of

inimizing total unused flight hours between two successive C-

hecks, a priority-based simulation heuristic is used to produce

good) feasible solutions. The author claims that neither mixed-

nteger programming or dynamic programming is deemed suitable

o Air Canada’s environment. Furthermore, due to rapidly chang-

ng of aircraft utilization and other unforeseen events, the author

id not see the value of using computational power to find an

ptimal solution that could rapidly become obsolete. Therefore, a

imulation-based approach was adopted in AMOS, in which the

ser is the one that chooses the best solution. The process is very

imilar to the manual planning approach, shifting conflict checks

o earlier time slots until a feasible solution is found, except that

lower bound of utilization was implemented to prevent schedul-

ng checks too often. Still, the main contribution of AMOS was to

ropose a systematic maintenance scheduling approach that could

educe the time required to generate a 5-year plan from 3 weeks

o a few hours (Boere, 1977).

Despite the limitations in AMOS, this is together with

tschmaier and Franke (1969) and Bauer-Stämpfli (1971) the only

vailable reference devoted to long-term aircraft maintenance

cheduling. The long-term planning still has not been adequately

tudied. In fact, most research works about the aircraft mainte-

ance topic focus on the short-term aircraft maintenance rout-

ng. That is, ensuring that each aircraft is assigned to a sequence

f flight legs (a routing) that allows the aircraft to undergo daily

hecks, which are needed every two to four days (Belobaba, Odoni,

Barnhart, 2009). The main reason is that aircraft A-/C-checks

ave intervals of several months/years and the benefits of an op-

imal schedule are only visible in the long term. Airlines usually

ave higher urgency to monitor and optimize short-term activi-

ies, such as aircraft routing and routine aircraft inspections, from

hich they can rapidly see tangible cost savings and profits.

Feo and Bard (1989) is one of the first works to address the

ircraft maintenance routing problem. It primarily focuses on

he flight schedule design and incorporates the maintenance

equirement as part of the constraints. A homogeneous fleet and

xed time intervals between maintenance checks were considered

or simplicity. Only A-checks are considered in this work, since

-checks are spaced at relatively large time intervals. The planned

ight schedule minimizes the total maintenance cost and also

etermines the maintenance base for the aircraft which start and

nd at the same city. The problem is formulated as a min-cost,

ulti-commodity flow network with integer constraints. Column

eneration is applied to obtain an optimized solution. Although the

ain purpose of Feo and Bard (1989) is to design a flight schedule,

t is considered as a significant step in maintenance planning. Sev-

ral authors have followed this path and continued the research on

ircraft maintenance routing, such as Moudani and Mora-Camino

2000), Papakostas, Papachatzakis, Xanthakis, Mourtzis, and Chrys-

olouris (2010), Başdere and Bilge (2014) and Liang, Feng, Zhang,

u, and Chaovalitwongse (2015). For example, Moudani and Mora-

amino (2000) proposed a hybrid dynamic programming (DP)

hich recursively searched for the best maintenance schedule, fol-

owed by a greedy algorithm to solve the sequential maintenance

chedule problem. This approach was developed specifically as

n on-line fleet operations management decision support system,
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focused on providing improved daily aircraft assignment solutions

based on a given aircraft maintenance check schedule.

Sriram and Haghani (2003) is one rare example where the fo-

cus has been shifted from flight schedule design to maintenance

scheduling. The authors proposed a mixed random search and

depth first search heuristic to minimize the total costs of A- and

B-checks and inappropriate aircraft assignments. Different from

other research works which emphasize flight schedule design and

consider aircraft maintenance as constraint, the flight schedule is

given as input and, the goal is to determine when, where and what

type of maintenance check an aircraft should undergo. Although

the main focus is on maintenance scheduling, this research is still

considered as an extension of Feo and Bard (1989), the C-check

scheduling has not been considered since long-term flight sched-

ules are unknown.

Instead of scheduling letter checks (A-, C- and structural/D-

check), an alternative that reduces maintenance cost and generates

profits in the short-term is aircraft maintenance task scheduling.

This recent approach reverses the conventional top-down stereo-

typed planning. It schedules tasks individually, which gives flexi-

bility to maintenance operators to execute the tasks at the most

appropriate time (Kinnison & Siddiqui, 2012; Senturk, Kavsaoglu,

& Nikbay, 2010). The task-oriented planning concept and its appli-

cation are illustrated in Senturk and Ozkol (2018). The case study

claims that more than $4M can be saved over 72 days compared

with the rigid letter checks. However, among the works concerning

task-oriented planning approach, there is little information about

the influence of fleet size, maintenance capacity and algorithm

computation time. Since an aircraft can have about 2000–3000

maintenance tasks, the practicality of applying a task-oriented ap-

proach on planning a long-term maintenance schedule for a large

fleet remains questionable.

In general, the literature in long-term maintenance scheduling

is limited, when planning aircraft maintenance checks, researchers

often resort to the solution techniques from more general schedul-

ing problems. A list of objective functions, models and optimiza-

tion methods of scheduling problems are summarized by Duffuaa

and Al-Sultan (1997). Since scheduling problems usually involve in-

teger decision variables and linear constraints, the most common

approaches to such mixed-integer linear programming problems

are heuristics, which rely heavily on comemrcial solver such as

CPLEX (Go, Kim, & Lee, 2013; Kiefera, Schildeb, & Doerner, 2018);

the other alternative is dynamic programming (DP). DP was pro-

posed in the 1950s by Bellman, referring specifically to nesting

smaller decision problems inside larger decisions (Dreyffus, 2002).

It divides a large and complicated problem into stages and states.

The smaller sub-problems contained within each state are solved

faster than the initial problem and the optimal solution can be re-

trieved by examining the solutions from all sub-problems. DP was

initially applied on single-machine production (Bomberger, 1966;

Gascon & Leachman, 1988; Lawler, 1990) or single-machine main-

tenance scheduling problems (Graves & Lee, 1999). For example,

the work from Bomberger (1966), which minimizes the total cost

of producing different items from a single machine, is considered

to be one of the first to motivate application of DP on scheduling

problems, although it assumes that only one unit can be produced

at a time and the demand rate of units is constant.

As the development of DP, the application has been gradu-

ally extended from scheduling of single machine to multiple ma-

chines. Most of the DP applications on multiple machines are re-

lated to power generation. One of the examples can be found in

Pereira, Campodónico, and Kelmam (1998). It presented a study

to optimize the cost of multiple reservoir systems over a long pe-

riod considering the uncertainties of water inflow and equipment

outage. Even though piecewise linear functions are introduced in

the solution process to estimate the future operation cost (this
voids recursively computing the actual future operating cost), the

pplication is still limited to low-dimensional problems, namely,

small number of reservoirs (Asamov, Salas, & Powell, 2016).

hen the number of reservoirs increases, the number of decisions,

.e., how much water should be kept in each reservoir, increases

xponentially.

Several conclusions can be drawn from the review of liter-

ture. First of all, Boere (1977) is the only available reference

or long-term A- and C-check scheduling although no optimiza-

ion technique is implemented. Secondly, the long-term A- and C-

heck scheduling forms a typical large-scale combinatorial prob-

em, but there is no standard approach or exact algorithm for

uch a problem type. Thirdly, aircraft A- and C-check scheduling

n a fleet aggregate level is analogous to multiple unit scheduling,

hich can be treated with similar formulation and solution tech-

iques. Fourthly, DP is capable of dealing with small-scale mixed-

nteger/combinatorial problems, but the classic DP is not applicable

o large-scale problems. In the rest of the paper, we will present a

P based methodology to tackle the long-term aircraft A- and C-

heck scheduling optimization.

. Problem formulation

In this section we formulate the AMCS problem, adopting the

P framework and the nomenclature presented in Appendix A. We

tart with an introduction of inspection intervals (3.1), followed by

list of assumptions (3.2). After that we explain the maintenance

apacity and some common operational constraints (3.3). The for-

ulation of the AMCS problem is then described, divided into de-

ision space (3.4), definition of state (3.5), state transition (3.6),

onstraints formulation (3.7) and the objective function (3.8). The

nal subsection summarizes the optimization model formulation.

.1. Maintenance inspection interval

In aviation industry, aircraft are aged by daily utilization with

espect to 3 different usage parameters, calendar day (DY), flight

ours (FH) and flight cycles (FC). One DY is a full 24 hours period;

H refers to the elapsed time between wheel lift off and touch

own; and a FC is defined by a complete take-off and landing se-

uence. The inspection interval reflects to the maximum usage pa-

ameters allowed in operation. For example, the maintenance plan-

ing document (MDP) of the AIRBUS A320 family (AIRBUS, 2017)

efines that an C-check interval corresponds to 730 DY, 7500 FH

r 5000 FC; and 120 DY, 750 FH or 750 FC for the A-check.

After an A-/C-check the corresponding three usage parameters

re set to 0 and a maintenance cycle is concluded. These mainte-

ance cycles are associated with labels, referring to different task

ackages (i.e., A1, A2, A3, ... for the A-check and C1, C2, ... for the

-check). The A-check program is commonly divided into 4 cycles,

n which A1 has similar task packages as that of A5, while A2 has

imilar task packages as that of A6, and so forth. The C-check pro-

ram has 12 cycles and consists of continuous C-checks, whereby

very three check (i.e., C3, C6, C9, ...) is a heavier check incorporat-

ng tasks from the D-check.

The aircraft MPD also includes an inspection interval tolerance.

his tolerance allows operators to fit the maintenance schedule

round maintenance capacity and operations constraints, as well as

perations demand. However, in the case that tolerance is used in

ne maintenance cycle, the amount of DY, FH and FC used from the

olerance need to be deducted from the maximum usage parame-

er values for the next cycle. This guarantees that the maximum

sage parameters are verified in the long term. The inspection in-

erval tolerance should not be included as a planning option but it

s commonly used in practice to accommodate deviations from the

nitial schedule.
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Although having different usage parameters, the A-check and

-check scheduling problems are dependent on each other due to

wo reasons: the first is that when an aircraft is performing a C-

heck (or A-check), it will be grounded and the A-check (or C-

heck) usage parameters are not altered (i.e., the daily utilization

f these parameters is equal to 0). The second reason is that, de-

ending on the usage parameters for the A-check, it could be ben-

ficial for the airline to merge the A-check within a C-check. This

as the advantage of performing the A-checks without necessar-

ly increasing the C-check duration and without using an A-check

lot. On the other hand, to anticipate an A-check, merging an A-

heck within a C-check will increase the number of A-checks in the

ong-term.

.2. Assumptions

Boere (1977) defined a list of major conditions for maintenance

vent scheduling, based on aircraft maintenance practice. In this

aper, we adopt the first six of these assumptions (A.1–A.6) and

dd two more (A.7–A.8) necessary to define our approach. A.1–A.7

y far are commonly used among airlines. A.8 is added due to the

act that airlines do not have their flight schedule for future 4–5

ears, thus flexible aircraft routing is assumed for long-term main-

enance scheduling.

A.1 Minimum time unit of the aircraft maintenance schedule is

1 DY.

A.2 Aircraft ages by DY, daily FH and FC. The daily utilization, as

well as the commercial peak seasons, can be estimated per

aircraft according to historical data.

A.3 Each A-/C-check ties up only one hangar (slot) for its total

duration.

A.4 A-/C-check priority is defined according to the rule of

“earliest deadline first”, namely, aircraft which has ear-

lier A-/C-check deadline is given higher A-/C-check priority,

respectively.

A.5 However, when looking at one particular aircraft, C-check

has higher priority than A-check.

A.6 A-check can be merged in C-check, which will not affect the

C-check duration or existing A-check slots.

A.7 The duration of an A-/C-check per check label can be es-

timated according to historical data or can be specified by

airline.

A.8 There is flexibility in aircraft routing to accommodate the A-

/C-check and the geographical location of the hangars does

not have to be specified.

The last assumption is based on the fact that the AMCS is a

ype of strategic problem. The aircraft routings are still not known,

ince they are only defined a couple of weeks before operations.

or this same reason, the location of the aircraft at the time of

he maintenance checks is unknown. Therefore, the geographical

ocation of the A-/C-checks is not considered in this work. Never-

heless, the formulation presented can be easily adapted to incor-

orate different locations of the hangars and constraints regarding

he allocation of a given fleet to specific hangar locations.

.3. Maintenance capacity and operational constraints

In this research work, we only consider one single maintenance

ocation with multiple A-/C- check hangars, meaning that all air-

raft will undergo A-/C-check in the main hub of the airline. Al-

hough later on in the formulation, we will see that the location

f hangar can be easily incorporated in the constraints of the DP

ramework, we opt not to take it into consideration. The main rea-

on is that the AMCS is a type of strategic problem, no long-term

ircraft rotations or flight schedules are given for verification or
alidation. Therefore, multiple locations of performing A-/C-checks

ould become redundant and only complicate the formulation.

In the AMCS problem, the A-/C-check capacity can either be ex-

ressed as person-hour available during a working day or, equiv-

lently, as the maximum parallel A-/C-check allowed per work-

ng day (defined as “time slots” or just “slots”). The capacity for

ach check type is not always constant over time. Airlines and

aintenance, repair and overhaul (MRO) service providers usually

ave operational constraints that influence the maintenance capac-

ty per day. For instance, during commercial peak season (e.g., the

eriod of New Year, Easter, summer and Christmas) it is desirable

or the airline to operate with the maximum fleet. Performing C-

hecks will lead to high commercial revenue loss and it is also

ommon to have reduced or no checks during weekends and pub-

ic holidays due to higher labor costs. A final example is the case

here some maintenance capacity is pre-allocated to third-party

ircraft and therefore cannot be considered in the airline mainte-

ance schedule.

In this paper, we define the capacity Mk
h,t

for hangar h:

k
h,t =
{

1 if hangar h is available on day t for type k slots
0 otherwise

(1)

This parameter has to be defined per day per hangar for the

ntire time horizon, reflecting capacity variations between peak

eason and off-peak season and between weekends and normal

orking days, according to the airline policy. The capacity Mk
h,t

for

angar h can also be set equal to zero if hangar h is reserved for

specific maintenance event, such as performing a landing gear

hange on an aircraft of the fleet or for a type k check of an third-

arty aircraft.

.4. Decision space

An action xt of day t is to perform A-checks or C-checks, or do

othing:

t =
{{

χ k
i,t

}N
i=1

}
k∈{A, C}

(2)

here each χ k
i,t

is a binary decision variables in which:

k
i,t =
{

1 a type k check for aircraft i is planned to start
at time t

0 otherwise
(3)

.5. Definition of state

A state vector st is defined by the set of attributes that influence

ur decisions and the available maintenance slots of each check

ype:

t =
{{

aA
i,t

}N
i=1

,
{

aC
i,t

}N
i=1

}
(4)

here, each attribute set ak
i,t

contains the information of aircraft i

n day t, with respect to check type k:

ak
i,t = {Mk

t , zk
i,t , δk

i,t , ηk
i,t ,︸ ︷︷ ︸

Type 1
(
a(1),k

i,t

)
DYk

i,t , FHk
i,t , FCk

i,t , ε
k-DY
i,t , εk-FH

i,t , εk-FC
i,t , θ k

i,t , yk
i,t ,︸ ︷︷ ︸

Type 2
(
a(2),k

i,t

)
Lk

i

(
yk

i,t

)
, fhi,t , fci,t︸ ︷︷ ︸

Type 3
(
a(3),k

i,t

)
} (5)

hese attributes are described in Appendix A and discussed in the

ext subsection. They can be divided into three types, as showed

n Table 1.
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Fig. 1. A two-phase attribute update mechanism: Phase 1 updates the set of pre-decision Type 1 attribute a(1),k
i,t

to ã(1),k
i,t

before making any action; after an action xt is made,

Phase 2 updates ã(1),k
i,t

, a(2),k
i,t

and a(3),k
i,t

to a(1),k
i,t+1

, a(2),k
i,t+1

and a(3),k
i,t+1

.

Table 1

Different types of attribute within a state st .

Type 1 a(1),k
i,t

Attributes at time t that impact the action xt and are

modified only when a check starts or ends, or when an

aircraft is grounded

Type 2 a(2),k
i,t

Attributes at time t that are updated every time based on

their value at time t − 1

Type 3 a(3),k
i,t

Attributes at time t that depend on exogenous

information
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3.6. State transition

The transition between states in subsequent time steps depends

on the actions taken. This can be described by a state transition

function in which the state st+1 is defined as a function of the ini-

tial state st and the action xt chosen in state st:{
xt = Xπ (st )

st+1 = SX (st , xt )
for t = t0, t0 + 1, . . . , T (6)

where Xπ (st ) generates actions based on st according to A- and

C-check hangar capacities at day t, MA
t and MC

t . The state transi-

tion function SX (st , xt ) describes how the state vector is updated

and expresses the fact that an action taken at time t influences the

future maintenance activities and capacities. A history of such pro-

cess, including the sequence of actions and evolution of state, can

be represented as:(
st0

, xt0
, st0+1, xt0+1, st0+2, . . . , st−1, xt−1, st , . . . , sT , xT , sT+1

)
(7)

The main purpose of state transition is to renew the attributes

over the time horizon. The attributes are updated in two phases:

pre-decision (Phase 1) and post-decision (Phase 2). The goal of

the pre-decision phase is to update the hangar capacity and air-

craft availability for time t, before any decision is made. This pro-

vides the information about how many hangars can be used to per-

form A-/C-checks and which aircraft is available for operation. In
hase 1, only Type 1 attribute (a(1),k
i,t

) is updated and the result-

ng attributes (ã(1),k
i,t

) from the pre-decision update is defined as

re-decision attributes. On the other hand, the goal of the post-

ecision phase is to update aircraft usage parameters, according to

he action xt that made on day t. All 3 type attributes will be up-

ated in Phase 2 and we call the subsequent attributes from Phase

update post-decision attributes. Since the attributes of a state are

ivided into three types (Table 1), the transition of each type of at-

ributes is presented separately in the following sub-sections.

.6.1. Update of Type 1 attributes

Phase 1, which we called the pre-decision phase (Fig. 1), only

pdates the Type 1 attributes a(1),k
i,t

. In this phase, we check if

t time t is the end day for an ongoing aircraft check. The new

ector within the pre-decision attributes of type 1 is ã(1),k
i,t

=
M̃k

t , z̃k
i,t

, δ̃k
i,t

, η̃k
i,t

}
. The pre-decision update is triggered by veri-

ying if the end date (zk
i,t

) of an ongoing check is equal to t − 1

i.e., if zk
i,t

= t − 1), for any aircraft in the fleet:

˜k
i,t =
{

0 if zk
i,t

= t − 1

[5pt]zk
i,t

otherwise
(8)

t the same time, we update δk
i,t

to δ̃k
i,t

:

˜k
i,t =
{

0 if zk
i,t

= t − 1

1 otherwise
(9)

f the end date of a type k check for an aircraft i is larger than

he current calendar day t, it means that there is an aircraft check

ccurring. And the hangar capacity needs to be updated for time t

ccordingly:

˜ k
t =
∑

h

Mk
h,t −

N∑
i=1

δ̃k
i,t (10)

here Mk
h,t

is the maintenance capacity per hangar h at time t. The

alue of η̃k
i,t

is initialized using ηk
i,t

, namely, η̃k
i,t

= ηk
i,t

.
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In Phase 2, or the post-decision phase (see Fig. 1), the action xt

s taken into account to update Type 1 attributes. For all aircraft

hat start type k check on day t (χ k
i,t

= 1), the values of δk
i,t

and zk
i,t

eed to be updated. The zk
i,t

is updated according to:

k
i,t+1 =

{
t + Lk

i

(
yk

i,t

)
if χ k

i,t
= 1

z̃k
i,t

otherwise
(11)

here Lk
i

(
yk

i,t

)
is the elapse time for maintenance type k, with label

k
i,t

. Following this update, the values of δk
i,t

can also be renewed:

k
i,t+1 =

{
0 if χ k

i,t
= 1

δ̃k
i,t

otherwise
(12)

Still in the post-decision stage, in some special cases, aircraft

each their inspection intervals and no maintenance check capacity

s available. In these undesirable situations, the aircraft needs to be

rounded and put out of operations, waiting for the next mainte-

ance opportunity. This happens if the usages parameters for time

+ 1 of any aircraft is larger than the respective inspection inter-

al. We first compute the expected usage parameters of t + 1 as

ollows:

DYk
i,t+1 =

(
DYk

i,t + 1
)︸ ︷︷ ︸

DYk
i,t+1

−
[
Ii
k-DY +
(
1 − θ k

i,t

)
ei

k-DY − εk-DY
i,t

]︸ ︷︷ ︸
Actual DY Interval of Type k Check

(13)

	k
i,t+1 =

(
	k

i,t + ψi,t

)︸ ︷︷ ︸
usage parameters of t+1

−
[
Ii
k-	 +
(
1 − θ k

i,t

)
ei

k-	 − εk-	
i,t

]︸ ︷︷ ︸
Actual Interval of 	 (	 ∈ {FH, FC}) of Type k Check

(14)

here we use 	k
i,t+1

∈ {FHk
i,t+1, FCk

i,t+1}, 	 ∈ {FH, FC} and ψk
i,t+1

∈
fhk

i,t+1, fck
i,t+1} for convenience. We separate DY from other usage

arameters because its utilization update is different from FH or

C. DYk
i,t , FHk

i,t and FCk
i,t are the cumulative DY, FH and FC since

revious type k check till day t; Ii
k-DY

, Ii
k-FH

and Ii
k-FC

refer to the

tandard interval of type k check; (1 − θ k
i,t

)ei
k-DY

, (1 − θ k
i,t

)ei
k-FH

and

(1 − θ k
i,t

)ei
k-FC

represent the respective tolerance that can be added

o the standard interval; and εk-DY
i,t

, εk-FH
i,t

and εk-FC
i,t

represent the

mount of DY, FH and FC tolerance used in previous type k check

and that needs to be deducted from the coming maintenance

heck according to the aircraft MPD).

The aircraft is then grounded if any of these previous delta val-

es is greater than 0 and no maintenance check is being performed

n the aircraft:

k
i,t+1 =

{
1 χ k

i,t
= 0, max

{
�DYk

i,t+1,�FHk
i,t+1,�FCk

i,t+1

}
> 0

η̃k
i,t

otherwise

(15)

.6.2. Update of Type 2 attributes

Once the action of day t is known, the update of Type 2 at-

ributes is trivial. The aircraft usage parameters are updated ac-

ording to the following equations:

Yk
i,t+1 =

(
1 − δk

i,t

)(
DYk

i,t + 1
)

(16)

k
i,t+1 =

(
1 − δk

i,t

)[
	k

i,t +
(

1 − δ{A,C}\k

i,t

)
ψi,t

]
(17)

here δ{A,C}\k

i,t
means if k = A then δ{A,C}\k

i,t
= δC

i,t
and vice versa. The

arameters are reset to 0 if a maintenance check of type k was

cheduled in the previous time step (i.e., δk
i,t

= 1). Otherwise, the
arameters are either increased by the average daily aging of the

ircraft or kept constant, if a maintenance of the type other than k

s scheduled (i.e., δ{A,C}\k

i,t
= 1).

The update of Type 2 attributes also includes renewing the tol-

rance usage variables for each maintenance check type k:

k-DY
i,t+1 =

{
max
{

0,	k
i,t

− Ii
k-DY

}
if χ k

i,t
= 1

εk-DY
i,t

otherwise
(18)

k-	
i,t+1 =

{
max
{

0,	k
i,t

− Ii
k-	

}
if χ k

i,t
= 1

εk-	
i,t

otherwise
(19)

here 	 ∈ {FH, FC}. (18) and (19) indicate that the status of toler-

nce usage of a type k check is the same as the day before if there

s no type k check allocated on day t. On the contrary, if a type

check is scheduled before all usage parameters reach maximum,

hen no tolerance is used and εk-DY
i,t+1

/εk-FH
i,t+1

/εk-FC
i,t+1

are set to 0. If an

ircraft has to operate over the limit of a type k check, the corre-

ponding εk-DY
i,t+1

/εk-FH
i,t+1

/εk-FC
i,t+1

are updated according to the difference

etween the cumulative DY/FH/FC and type k check interval. As a

esult, the tolerance usage indicators will be renewed:

k
i,t+1 =

{
1 if max

{
εk-DY

i,t+1
, εk-FH

i,t+1
, εk-FC

i,t+1

}
> 0

0 otherwise.
(20)

After an action is evaluated, the maintenance labels for both

ype k checks are updated consequently. The maintenance labels

f an aircraft i are updated to the next label using the following

quation:

k
i,t+1 =

{
yk

i,t
+ 1 if χ k

i,t
= 1

yk
i,t

otherwise
(21)

.6.3. Update of Type 3 attributes

The Type 3 attributes are exogenous variables that are updated

ccording to lookup tables, or provided by an airline, or estimated

ccording to historical data of airline. They refer to:

• Lk
i

(
yk

i,t+1

)
is the elapsed time specified by airline.

• fhk
i,t+1 is estimated according to historical aircraft FH.

• fck
i,t+1 is estimated according to historical aircraft FC.

.7. Constraints formulation

There are two types of constraints in the A- and C-check

cheduling optimization: A-/C-check intervals and A-/C-check op-

rational constraints. The A-/C-checks are usually scheduled before

he corresponding usage parameters reach maximum. That not be-

ng possible, in practice the airline can make use of the interval

olerance. The extra DY/FH/FC used from tolerance must be com-

ensated in the next type k check, as mentioned in Section 3.6.1.

his can be described as follows, for each check k, aircraft i, and

ime t:

Yk
i,t+1 ≤ Ii

k-DY +
(
1 − θ k

i,t

)
ei

k-DY − εk-DY
i,t (22)

k
i,t+1 ≤ Ii

k-	 +
(
1 − θ k

i,t

)
ei

k-	 − εk-	
i,t (23)

here 	 ∈ {FH, FC}; the first term of the right-hand side of each

nequality refers to the standard check interval, the second terms

dds the tolerance interval, and the last term subtracts the toler-

nce used in the previous check of the same type.
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Before instigating any action, we need to verify whether or not

there are sufficient slots for a type k check in a hangar during the

entire maintenance elapse time Lk
i
(yk

i,t
), for all aircraft and hangars

available:

χ k
i,t ≤
∑t+Lk

i (yk
i,t )

τ=t Mk
h,τ

Lk
i

(
yk

i,t

) , k ∈ {A, C}, t ∈ [t0, T ] (24)

The operational constraints are required to guarantee that the

number of A-/C-checks performed in parallel per day do not ex-

ceed the hangar capacity, namely:

N∑
i=1

δk
i,t ≤
∑

h

Mk
h,t , k ∈ {A, C}, t ∈ [t0, T ] (25)

Some airlines require a minimum number of days (dk) between

the start dates of two type k checks preparing the maintenance re-

sources, such as tools, manpower, aircraft spare parts and to avoid

parallel peaks of workload at the hangar, meaning that:

• If dk > 0, there can be at most 1 aircraft starts a type k check at

time t.
• If dk > 0 and there is a type k check starting at t, no type k

check is allowed to start in [t, t + dk)

The requirement of start date can be translated in the following

equations for all time t:

N∑
i=1

χ k
i,t ≤

⎧⎨
⎩1 if dk > 0 and

N∑
i=1

χ k
i,τ = 0, ∀τ ∈ [t − dk, t)

Mk
t otherwise

(26)

Note that we use a generic indicator h to represent an A-/C-

check hangar in this paper, based on the assumption A8. If one

wants to consider multiple locations of perform the aircraft A-/C-

check, each hangar h would have to be associated with a location

lh and the decision variable δk
i,t

will be replaced by δ
lh,k

i,t
.

3.8. Objective function

When scheduling aircraft maintenance activities, the most com-

mon objectives are minimization of costs (Moudani & Mora-

Camino, 2000; Sriram & Haghani, 2003) or minimization of the

unused flight hours (FH) (Başdere & Bilge, 2014; Boere, 1977). In

this work we consider the second objective. The cost minimization

objective was not considered for three main reasons:

– The available maintenance cost data is unreliable and hard to

associate to a specific maintenance check.

– Maintenance checks are mandatory and the total maintenance

costs of an airline can only be reduced if the number of aircraft

checks over time is also reduced.

– One day of an aircraft out of operations is more costly than the

daily cost of a maintenance check.

Therefore, minimization of the unused FH, and consequently, in

the long term, the reduction of the number of aircraft checks and

days on the ground, is considered to be the best objective for the

AMCS problem. For an aircraft i, the value of unused FH in a day t

is equal to the summation of the FH loss due to an A- or a C-check

scheduled for that day:

χA
i,t

(
Ii
A-FH − FHA

i,t−1

)
+ χC

i,t

(
Ii
C-FH − FHC

i,t−1

)
(27)

The contribution function of FH loss on day t is calculated by:

t (st , xt ) =
∑

k∈{A,C}

N∑
i=1

[
χ k

i,t

(
Ii
k-FH − FHk

i,t

)
+
(
1 − χ k

i,t

)
Paθ

k
i,t + Pdη

k
i,t

]
(28)
here the first term on the right hand side reflects the unused FH

f aircraft i, the second term is a penalty for aircraft i using an

nterval tolerance, and the third term is a penalty for having an

ircraft on the ground without doing maintenance.

The penalty Pa is introduced due to the fact that the use of tol-

rance needs to be communicated and approved by the local civil

viation authorities. Therefore, tolerance should not be considered

t a scheduling stage or, if inevitable, it should be used as little

s possible. The second penalty is introduced to reflect the cost of

aving an aircraft on the ground waiting for a maintenance slot.

his results in very high costs and it should always be avoided,

nless it proves to be unfeasible otherwise. For that reason, the

alue of Pd should always be of a very large magnitude. Our ob-

ective is then to minimize the sum of the total contributions for

ll states visited during the time horizon, discounted by a factor γ .

hat is, we search for the optimal AMCS policy (π ) that minimizes

he contribution of our scheduling decisions over the time horizon

− t0:

in
π

E

{
T∑

t=t0

γ t−t0Ct (st ,Xπ (st ))

}
(29)

here Xπ (st ) is the optimal scheduling policy function.

.9. Optimization model

After the introduction of state transition, constraints and objec-

ive function, the optimization problem can be described by the

ollowing:

in
π

E

{
T∑

t=t0

γ t−t0Ct (st ,Xπ (st ))

}
(30)

ubject to:

onstraints (11) − (26)

The optimal scheduling policy over the time horizon T can be

ound by recursively computing the Bellman’s equation:

t (st ) = min
xt

{
Ct (st , xt ) + γ

∑
st+1

p
(
st+1

∣∣st , xt

)
Vt+1(st+1)

}
(31)

here st+1 = SX (st , xt ) = SX (st ,Xπ (st )) and p
(
st+1

∣∣st

)
is the prob-

bility of transitioning from state st to state st+1. The Bellman’s

quation expresses the value of being at each state St.

. Methodology

The AMCS problem has a structure that follows the Markov De-

ision Process (MDP). Like any other MDP, it can be solved using

ynamic programming (DP). The AMCS problem can be divided

nto stages, each stage referring to one calendar day (indexed by

). For each stage, all feasible actions xt from a state st need to be

valuated and the optimal one x∗
t can be eventually identified. For

llustration purpose, we use Fig. 2 to depict an example of state

ransition from stage t0 to stage t0 + 1 (deterministic). In this case,

t0
is the initial state. There are two aircraft, 1 A-check slot and

C-check slot on stage t0. The action vector xt has the following

tructure:

t =

⎧⎨
⎩ {0, 0}︸ ︷︷ ︸

aircraft 1

, {0, 0}︸ ︷︷ ︸
aircraft 2

⎫⎬
⎭ (32)

or each aircraft in (32), the first number indicates the action of

-check and the second number is for C-check. If an A-/C-check

tarts, the corresponding number is 1, and 0 otherwise. This gives

possible actions on stage t :
0
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Fig. 2. An example of deterministic state transition from stage t0 to stage t0 + 1,
{

xt0 ,i

}
is the set of possible actions and

{
st0+1,i

}
is the set of resulting states. In deterministic

case, the transition probability is 1, thus there is only one resulting state per action. Similarly from stage t0 + 1 on-wards, each st0+1,i has the same number of actions as st0
.
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1) no A-check or C-check: xt0,1 = {{0, 0}, {0, 0}}
2) A-check on aircraft 1 but no C-check: xt0,2 = {{1, 0}, {0, 0}}
3) A-check on aircraft 2 but no C-check: xt0,3 = {{0, 1}, {0, 0}}
4) no A-check but C-check on aircraft 1: xt0,4 = {{0, 0}, {1, 0}}
5) no A-check but C-check on aircraft 2: xt0,5 = {{0, 0}, {0, 1}}
6) merge A- into C-check for aircraft 1 but no A-check on air-

craft 2: xt0,6 = {{1, 0}, {1, 0}}
7) merge A- into C-check for aircraft 1 and A-check on aircraft

2: xt0,7 = {{1, 1}, {1, 0}}
8) no A-check on aircraft 1 but merge A- into C-check for air-

craft 2: xt0,8 = {{0, 1}, {0, 1}}
9) A-check on aircraft 1 and merge A- into C-check for aircraft

2: xt0,9 = {{1, 1}, {1, 0}}
It can be observed that 9 possible actions lead to 9 states on

tage t0 + 1, even for an example of 1 A-check slot and 1 C-check

lot (here we assumed that an A-check can be merged into a C-

heck, in deterministic case there is only 1 resulting state per ac-

ion). This process repeats as the state transition proceeds, i.e.,

ach state st0+1,i has 9 different actions and therefore will have 9

utcome states. As we move forward, the number of states within

stage will grow exponentially.
The value associated with each action can be computed us-

ng Bellman’s optimality Eqs. (31). However, solving these for all

ossible actions is not trivial due to three challenges: the size

f the multi-dimensional action vector xt; the size of the multi-

imensional state vector st; and the very large outcome space.

hese challenges are well known as the “curse of dimensionality”

Powell, 2011). It is easy to understand these challenges if we ana-

yze our AMCS problem, as the state vector st is a tuple that con-

ains the states of N aircraft, and each aircraft has 28 attributes

ith respect to the A- and C-check. If one wants to use discretiza-

ion for each attribute, e.g. to l levels, the total number of lev-

ls to access will be l28 × N, just for a single stage. This requires

large amount of computer memory and also makes it difficult

o trace decisions backwards. In terms of actions, for each time

tage t and capacities MA
t (A-check) and MC

t (C-check), we would

ave:

MC
t∑

c=0

MA
t∑

ma=0

[
N!

(N − ma)! × ma!
× N!

(N − mc)! × mc!

]
(33)
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possible actions and, if no optimal final state is given, there will

be:

T∏
=t0

MC
t∑

mc=0

MA
t∑

ma=0

[
N!

(N − ma)! × ma!
× N!

(N − mc)! × mc!

]
(34)

possible outcomes for the last stage. This means that even for a

small case with 10 aircraft and one daily slot available for each

check type, we would have 121 possible actions on the first day

and more than 1.7 million possible sequences of actions just after

three days.

In classic dynamic programming, computing Vt+1(st+1) requires

t+2(st+2), and in order to obtain Vt+2(st+2), the Vt+3(st+3) has to

be computed and so forth, until t reaching the final stage T. The

aforementioned solution process is called backward induction that,

if the final state is not known, easily becomes intractable even for

the small example of 10 aircraft. This forces us to treat the AMCS

problem in a different way, adopting a forward induction approach

which moves from the initial planning stage towards the future.

In this section we propose a forward induction DP based

methodology to solve the AMCS problem. We begin with a brief

introduction to the forward induction concept in Section 4.1.

After that we describe a priority solution that is proposed in

dealing with the multi-dimensional action vector (Section 4.2).

Section 4.3 presents a Thrifty Algorithm for A- and C-check schedul-

ing, which estimates the implications of an action at the current

stage on the remaining planning horizon. Section 4.4 presents the

discretization and aggregation approach adapted to implement the

algorithm. The last subsection (Subsection 4.5) includes an algo-

rithm complexity analysis.

4.1. Forward induction

Since the final state of our AMCS problem is not known, we

propose to use a forward induction approach. Forward induction is

the process of reasoning forward in time, determining a sequence

of optimal actions from an initial state till the end of the time hori-

zon. This comes from the observation that the shortest path from

an initial node st0
to an end node sT+1 is equal to the shortest path

from the end node to the initial node (Hoppe, 2018). That is, de-

termining the optimal solution for the forward shortest path prob-

lem is the same as determining the optimal solution for the back-

ward shortest path problem, as computed by the backward induc-

tion approach. The idea from the forward induction approach is to

move forward in time, continuously computing the shortest path

between the initial node st0
and the current node being tested st.

This process is repeated until one has determined the best action

for every stage in the time horizon.

Although the forward induction approach would solve the prob-

lem of not knowing the final state of our problem, due to the large

number of intermediate states between the initial stage and the fi-

nal stage of planning horizon, this approach is still inefficient for

AMCS in terms of computation time and storage. For this reason,

we incorporate forward induction with three additional compo-

nents:

• An A- and C-check priorities definition solution
• A Thrifty Algorithm for A- and C-check scheduling
• A discretization and state aggregation strategy.

These components are labeled as blocks A, B and C, respectively,

in the work flow diagram of forward induction (Fig. 3). The first

component is used to deal with the multi-dimensional action vec-

tor; the second component is used to estimate the consequences of

an action on future time steps; the third components is designed

to reduce the outcome space to a manageable size. These three

components are explained in the following subsections.
.2. Defining A-/C-check priority

Given a state st, we generate an action based on st:

t = Xπ (st ) (35)

ote that xt can be performing mC C-check and mA A-check (mC

nd mA depend on corresponding hangar capacity), meaning that

he action affects the status of multiple aircraft. This leads to a

ombination of (N!)2

mC!(N−mC)!mA!(N−mA)!
aircraft selection and there-

ore, (N!)2

mC!(N−mC)!mA!(N−mA)!
outcome states.

We observe that the number of states can quickly explode due

o such a multi-dimensional action vector (being an action on mul-

iple items). One common solution to this challenge is to assign

riorities to each aircraft and in our case, we define A- and C-

heck priorities (Block A in Fig. 3) according to the rule of “earliest

eadline first”. However, in order to know the deadline of an A-

C-check, we need to first compute the remaining utilization. Since

here are 3 usage parameters for each check type in the AMCS

roblem, this gives 3 different remaining utilization with respect

o DY, FH and FC, while a type k check should be scheduled before

ny of the remaining utilization goes to 0.

This way, we define the aircraft remaining utilization by the

ewest days to the next A-/C-check:

k
i,t = min

{
Rk-DY

i,t , Rk-FH
i,t , Rk-FC

i,t

}
(36)

he Rk-DY
i,t

, Rk-FH
i,t

and Rk-FC
i,t

refer to the remaining operation days

ith respect to each usage parameter and associated interval spec-

fied by the MPD:

k-DY
i,t = max argr∈N

{
r ≤ Ii

k-DY − εk-DY
i,t − DYk

i,t

}
(37)

k-FH
i,t = max argr∈N

{
t+r∑
τ=t

fhi,τ ≤ Ii
k-FH − εk-FH

i,t − FHk
i,t

}
(38)

k-FC
i,t = max argr∈N

{
t+r∑
τ=t

fci,τ ≤ Ii
k-FC − εk-FC

i,t − FCk
i,t

}
(39)

here N is the set of natural numbers for k ∈ {A, C}. At any given

ime t, the remaining utilizations are sorted in ascending order:

˜k
1,t , R̃k

2,t , R̃k
3,t , . . . , R̃k

N,t R̃k
i,t ≤ R̃k

i+1,t , R̃k
i,t ∈
{

Rk
i,t

}N
i=1

(40)

he aircraft are sent to maintenance check according to this sorted

ist while aircraft with a lower remaining utilization are given a

igher check priority. Since the C-check is more restrictive and de-

anding in terms of resources, it has higher priority than an A-

heck. In addition to the available slots and maintenance elapsed

ime of the check type, we set the following rules for making A-

nd C-check decisions:

(i) No type k check should be scheduled if there is no available

hangar for type k check on day t.

(ii) An aircraft i is allocated a type k check only if its remain-

ing operation days is lower than the threshold (Rk
i,t

≤ Rk)

and there are available slots for type k check (∃h, Mk
h,τ

>

0 for ∀τ ∈ [t, t + Lk
i
(yk

i,t
) − 1])

(iii) If the number of type k check slots is sufficient, the air-

craft that has lowest remaining utilization R̃k
1,t

= min{Rk
i,t

}
has highest priority of type k check.

(iv) The A-check of aircraft i can be incorporated into C-check if

δC
i,t

= 1 and LA
i
(yA

i,t
) < LC

i
(yC

i,t
).

(v) If aircraft i has a higher type k check priority than aircraft j

(R̃k
i,t

< R̃k
j,t

) but the remaining slots of type k check are only

sufficient to accommodate a type k check for aircraft j rather

than i, swap the priorities of type k check between aircraft i
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Fig. 3. Work flow of the proposed DP based methodology. Three main components are incorporated, labeled as blocks A, B and C. In block A, we define the A- and C-check

priority for each aircraft in order to reduce the number of actions. In block B we use a Thrifty Algorithm to infer future implications of an action and in block C we use

discretization and state aggregation to overcome the challenge of multi-dimensional state vectors. The term ground days refers to the days when an aircraft is grounded and

waiting for a A-/C-check slot. After the forward induction, a final state St+1 is returned and a sequence of actions xt0
, xt0+1, ..., xT is generated.
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After assigning A- and C-check priorities to each aircraft, the

ombination of aircraft selection for maintenance, as well as the

umber of outcome states, is reduced from (N!)2

mC!(N−mC)!mA!(N−mA)!

o 1.

.3. Thrifty Algorithm for A- and C-check scheduling

Even after reducing the size of outcome space to one action

er state, the number of final states nT+1
act is very tremendous for

large T, we need to further trim the outcome space so that for-

ard induction is tractable.

After an action is performed, we place ourselves at state st+1,

here st+1 = SX (st , xt ). Many st+1 states may have the status that

ome aircraft will have to be grounded to wait for a A-/C-check

lot in a future stage τ (τ > t + 1). Apparently this is what airlines

o avoid (unless they have no better option), due to the very high

ost of parking aircraft on the ground. Therefore, we propose to

nly consider the actions that lead to a workable state. We describe
orkability of st+1 by using the following function:

(st+1) =
∑

k∈{A,C}

N∑
i=1

T∑
τ=t+1

ηk
i,τ (41)

state st+1, resulting from being at state st and taking action xt,

s said to be workable if there exists a sequence of actions xt+1,

.., xT such that no aircraft has to wait on the ground for an A- or

-check between t + 1 and T. That is:

(st+1) = 0 (42)

n our approach, we use a Thrifty Algorithm to check the worka-

ility of future states (Block B in Fig. 3). That is, for each possible

ction xt and resulting state st+1, we use an algorithm to check if

sequence of actions exist that guarantee (42). If that is the case,

e consider st+1 to be workable and otherwise we assume that xt

oes not lead to such a workable state.

The term Thrifty refers to the concept that we make use of all

vailable slots, allocating A- and C-check to aircraft whenever there

s a maintenance opportunity. The Thrifty Algorithm serves the pur-

ose of checking the workability of a state st. For convenience, in
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the rest of the paper, we refer to running the Thrifty Algorithm to

check whether (42) holds when mentioning “checking workability”.

4.4. Discretization and state aggregation

After moving one stage ahead in time for a set of workable

states st, several workable st+1 states are produced from a com-

bination of st and xt. We use St+1 to denote the set of workable

st+1:

St+1 =
{

st+1

∣∣st+1 workable
}

(43)

Although the Thrifty Algorithm can help reduce the outcome space

to a certain extent by only keeping the workable st+1, the num-

ber of workable st+1 is still not bounded; meaning that the number

of workable states may still grow exponentially. This increases the

difficulty of saving all workable st+1 and tracing the actions back-

wards, especially if we move several stages ahead. In order to pre-

vent the explosion of workable states, we need to restrain the num-

ber of workable st+1, from the first stage t0 to final stage T. That is,

giving an upper bound to the number of workable st+1 so that it

will not increase exponentially with increasing t. For such purpose

we resort to discretization and state aggregation.

Discretization is the process of transferring continuous models

or variables into discrete counterparts. State aggregation refers to

collecting or clustering the states that have the same properties

into a group. Here we use ‘properties’ to differentiate state at-

tributes, which are the features that at a fleet level, such as mean

utilization of fleet (A- or C-check) or standard deviation of fleet

utilization (A- or C-check). We divide the outcome space (a set

of workable st+1) into several disjunct space regions, where each

space region is characterized by a unique tuple of values of some

state properties. For the states that clustered in the same space re-

gion (having the same tuple of state properties), only one single

state will be selected to represent such a space region and consid-

ered in forward induction for the next stage.

Such discretization and state aggregation provides an upper

bound to the outcome space, since the number of workable st+1

is determined by the number of space regions. One way of collect-

ing workable states is to discretize the AMCS problem according to

the mean utilization of the fleet with respect to A- and C-checks,

and then categorize the workable states according to the values of

the features:

u
A
t+1 = 1

N

N∑
i=1

uA
i,t+1, u

C
t+1 = 1

N

N∑
i=1

uC
i,t+1 (44)

where uk
i,t+1

is the utilization of aircraft i with respect to check

type k (k ∈ {A, C}). We define individual utilization uk
i,t

as the max-

imum of the ratios between the current value of the usage pa-

rameters and their respective maximum values, according to the

MPD:

uk
i,t+1 = max

{
DYk

i,t+1

Ii
k-DY

− εk-DY
i,t+1

,
FHk

i,t+1

Ii
k-FH

− εk-FH
i,t+1

,
FCk

i,t+1

Ii
k-FC

− εk-FC
i,t+1

}
(45)

for k ∈ {A, C}. For each check type k, we also give upper bound Uk
max

and lower bound Uk
min

to restrict the outcome space region to be

discretized. This significantly improves algorithm efficiency and re-

duces required computer memory when optimizing A- and C-check

schedules for a large fleet. For instance, if a fleet has about 200 air-

craft, performing A- or C-check on an aircraft will only impact the

overall fleet utilization slightly. In such case, Uk
max and Uk

min
can be

chosen close to ūk
t0

.

Since tolerance is not allowed in planning unless no feasible

schedule can be found, the mean utilization of a fleet normally

ranges between 0 and 1 in practice (Uk
max = 1 and Uk

min
= 0), a dis-

cretization increment �u = 0.1 yields 112 space regions in 1 stage,
hile an increment of �u = 0.01 increases the number of space

egions in 1 stage increase to 1012.

Using uA
t+1 and uC

t+1 to categorize the set of workable st+1 en-

bles us to cover the state properties of both the A- and C-check,

ith each pair (uA
t+1, uC

t+1) corresponding to one outcome space

egion. For each workable state st+1, we compute the mean fleet

tilization with respect to the A- and C-check, ūA
t+1

and ūC
t+1

, from

44) and (45). These two features will be further rounded accord-

ng to the number of decimal points chosen from �u. For exam-

le, if �u = 0.1, ūC
t+1

= 0.345 and ūA
t+1

= 0.678, then ūC
t+1

can be

ounded to 0.3 and ūA
t+1 to 0.7. After that, we compute the cumula-

ive contribution from state st0
to a specific workable state st+1:

t+1,ūA
t+1

,ūC
t+1

(st+1) =
{

Jt,ūA
t ,ūC

t
(st ) + Ct (st , xt ) t > t0

Ct0 (st0
, xt0 ) t = t0

(46)

here st+1 = SX (st , xt ), Cτ (sτ , xτ ) refers to the contribution func-

ion in (28). If a given space region has no state within it, a cumu-

ative contribution value of infinity ∞ is assumed for that space

egion.

During forward induction, there will be several workable states

hat can be grouped into the same outcome space region because

f identical ūA
t+1

and ūC
t+1

after rounding. Then, an aggregation pro-

edure is followed: the state with the lowest cumulative contribu-

ion is selected as the representative of its outcome space region,

hile all others are discarded:

∗
t+1,ūA

t+1
,ūC

t+1

= argmin
s

{
Jt+1,ūA

t+1
,ūC

t+1
(s)

}
(47)

In the worst case, no st has a subsequent workable st+1, that

s, g(st+1) = g(SX (st , xt )) > 0 for all st and xt = Xπ (st ). In such a

ircumstance, we select only one ŝt+1 according to:

t̂+1 = argmin
s,ūA

t ,ūC
t

{
Jt,ūA

t ,ūC
t
(s)
}

(48)

t+1 =
{

ŝt+1

}
(49)

here the right hand side of (48) means choosing the state s

mong all outcome space regions (uA
t+1, uC

t+1). The forward induc-

ion then continues from ŝt+1.

The procedure from (46) to (47) repeats until it loops all pos-

ible pairs of {st, xt} (st workable). Thus far, we complete the dis-

retization and state aggregation, and then the forward induction

oves one stage ahead from t to t + 1. The pseudo code of DP

ased methodology is presented in Appendix B.

.5. Algorithm complexity

From the perspective of algorithm complexity, the total number

f states in our DP based methodology is equivalent to the total

umber of outcomes, given by (34):

T∏
=t0

MC
t∑

mc=0

MA
t∑

ma=0

(N!)
2

ma! mc! (N − ma)! (N − mc)!
(50)

here N is the total number of aircraft, and MC
t and MA

t are the

aintenance capacity of C-check and A-check respectively.

Given a state st at time stage t, following an action xt, the

lgorithm has to call the state transition function (6) at most

− t0 − t + 1 times to check whether (42) holds (from t to T). In

ach stage t, the number of states depends on the discretization

esolution �u:

state =
(

1 + 1

�u

)2

(51)

Since each state can have at most nact actions, this implies the

ollowing relation between the stage t and the number of state

ransition:
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Table 2

A- and C-check intervals and tolerance for the Airbus A319, A320 and A321 (AIRBUS,

2017).

Check type Calendar days Flight hours Flight cycles

Inspection A-Check 120 750 750

intervals C-Check 730 7500 5000

Tolerance A-Check 12 75 75

C-Check 60 500 250
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fl

A

d

5

a

F

s

a

t

b

o

b

Y

T

t

y

Day t0: nact(1 + T − t0)

Day t0 + 1: nstatenact(1 + T − 1 − t0)

· · · · · ·
Day T − 1 nstatenact(1 + T − T )

Day T nstatenact(1 + T − T − 1)

After summing up of all state transitions from t0 to T we

btain

nact(1 + T − t0) + nstatenact

T−t0∑
τ=0

τ

= nact(1 + T − t0)

[
1 + nstate(T − t0)

2

]
= nact(1 + T − t0)

[
1 + 1

2

(
1 + 1

�u

)2

(T − t0)

]
(52)

omputing (52) gives the maximum number of state transitions in

orward induction. Since each of the state transitions generates a

ew state, this means that the total number of states to be vis-

ted is equal to the total number of state transitions in forward

nduction.

Moreover, (52) also indicates that the total number of states

isited during forward induction depends on the A- and C-check

apacity (nact is determined by the A- and C-check capacity MA
t and

C
t ), and the increment of discretization �u and planning horizon

− t0. Since (52) increases quadratically with T, this means that

52) can be much smaller than (50) for a large T:

nact(1 + T − t0)

[
1 + 1

2

(
1 + 1

�u

)2

(T − t0)

]

<<

T∏
t=t0

MC
t∑

mc=0

MA
t∑

ma=0

(N!)
2

ma! mc! (N − ma)! (N − mc)!
(53)

. Case study

In this section, the proposed DP based methodology is evalu-

ted using the aircraft maintenance data from a European airline.

wo case studies are presented in this evaluation. The first case

ses data from the historical period 2013–2016 to validate the pro-

osed DP based methodology. We compare the results obtained

y the DP based methodology with the A- and C-check sched-

le executed by the airline. A detailed scheduled from the air-

ine is used and the comparison is easy to make. However, this

omparison is somewhat unfair since the airline in the executed

chedule had to take aircraft routing into account and potentially

eal with unscheduled maintenance events. Therefore, the second

ase focuses on the period of 2018–2021 and compares the results

rom the DP based methodology with the maintenance schedule

lanned by the airline. This case is also used to support a sen-

itivity analysis on some of the model parameters. The data set

upporting case study is available on https://doi.org/10.4121/uuid:

630e6fd-9574-46e8-899e-83037c17bcef.

.1. Test cases

The test fleet is the Airbus A320 family (A319, A320 and A321)

perated by the airline, consisting of 45 aircraft. These three air-

raft types happen to share the same A- and C-check intervals and

olerances, in terms of same flight hours, flight cycles and calendar

ays (Table 2). The planning horizon is 4 years in both cases. For

013–2016, this starts from January 1st of 2013 to December 31st

f 2016, while 2018–2021 the planning horizon goes from Septem-

er 25th of 2017 to December 31st of 2021. For both cases the

nitial data contains the information for aircraft average monthly

tilization; initial fleet status, in terms of DY, FH and FC, and

tilization of tolerance in previous inspections; maintenance slots
vailable per day; and average elapsed time of the multiple A- and

-checks labels. The average daily utilization of the aircraft is com-

uted per month and per aircraft type, according to the historic

ight data from the airline. On average, it is estimated that the

320 family fleet has a daily utilization of 10.5 FH and 4.7 FC per

ay.

.2. Maintenance constraints and key performance indicators

The maintenance schedule needs to follow a set of operational

nd capacity constraints, namely, for the A-check:

– there is 1 A-check slot per day from Monday to Thursday dur-

ing IATA winter (from the last Sunday of October to the last

Sunday of March);

– during IATA Summer (from the last Sunday of March to last

Sunday of October), there is an extra A-check slot on Tuesdays

(2 slots on Tuesday);

– from 2018 onwards, there are 2 A-check slots on Tuesdays (all

year) and 2 A-check slot on Wednesdays during IATA Summer;

– there are no A-checks on Fridays, weekends, or public holidays;

– an A-check lasts 1 day and can be merged into a C-check with-

out increasing the C-check elapsed time or affecting the exist-

ing available A-check slots.

or the C-check:

– there can be a maximum of 3 C-checks ongoing in parallel;

– there are a minimum of 3 days between the start dates of two

C-checks, for resource availability reasons (i.e., dC = 3);

– C-check works are interrupted during weekends and public hol-

idays;

– no C-check can be scheduled during the commercial peak sea-

sons (except some extraordinary occasions in which the airline

is forced to have additional slots to avoid aircraft waiting on

the ground for a C-check).

Since there are at least 3 days between two start dates of two

uccessive C-checks, there could be at most 1 C-check starting on

day. The maximum of 2 A-checks on a Tuesday and considering

he possibility of merging A-checks into C-check, leads to the com-

ination of daily A- and C-check capacities with 7 possible actions

n a day:

(i) 0 A-check and C-check

(ii) 0 A-check and 1 C-check

(iii) 1 A-check and 0 C-check

(iv) 1 A-check and 1 C-check

(v) 2 A-checks and 0 C-check

(vi) 2 A-checks and 1 C-check

(vii) 3 A-checks and 1 C-check

The commercial peak seasons of the airline are defined to be

etween June 1st and September 30th, two weeks before the New

ear’s and one week after, and the weeks before and after Easter.

he days of the year are converted into calendar days where, e.g.,

he New Year’s Day is set as day 1 and Christmas is day 359 of the

ear (or day 360 if it is a leap year).

https://doi.org/10.4121/uuid:1630e6fd-9574-46e8-899e-83037c17bcef
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Table 3

Descriptive statistics of KPIs for 2013–2016 (�u = 0.1 in the DP based method). For

the term “Tolerance Events”, if an aircraft uses tolerance (DY/FH/FC) in planning, it

is counted as 1 tolerance event.

Type KPI 2013–2016 Airline DP-based

Method

Difference

C-Check Average FH 6795.9 6798.7 0.04%

Standard Deviation 1013.7 572.2 −43.6%

Total FH Tolerance 2230 349.2 −84.3%

Tolerance Events 17 1 −94%

Extra C-Check Slot 73 0 −100%

Total C-Check 89 82 −7.9%

A-Check Average FH 690.8 701.2 1.5%

Standard Deviation 65.6 31.6 −51.8%

Total FH Tolerance 1277 457.4 −64.2%

Tolerance Events 72 34 −52.8%

Extra A-Check Slots 101 0 −100%

Total A-Check 818 758 −7.3%
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To discuss the results, we use a set of key performance indica-

tors (KPIs) for each type of maintenance check. These are the av-

erage FH of the fleet, the total number of checks, the total amount

DY/FH/FC used as tolerance and computation time etc. during the

planning horizon. For deterministic problems, we make the tran-

sition probability p
(
st+1

∣∣st

)
= 1 in (31). RA and RC are set to 21

and 365, meaning that an aircraft can only be scheduled an A-

/C-check if the corresponding remaining operation days is lower

than 21/365 days. Since no information is given for discount fac-

tor γ , we set γ = 1 and the penalty of using tolerance Pa and Pd

in (28) are given to be 108. This avoids using tolerance in forward

induction and grounding the aircraft in the situation of no A- or

C-check slot.

The airline schedules the aircraft A- and C-checks separately.

The C-checks are scheduled first with a time horizon of 4-years,

followed by scheduling of the A-checks for the next year. In both

cases, the airline follows a greedy approach with the goal to sched-

ule the checks as close as possible to the end of their intervals. The

common conflicts resulting from this approach are them manually

solved by the maintenance planner, which anticipates the dates of

the checks until a feasible plan is obtained. This manual process

is a puzzle, hard to solve for the A-checks and for the C-checks

close to the peak seasons during which no checks can be sched-

uled. This results in a sub-optimal schedule that takes a couple of

days of work to be fully developed from scratch.

In addition, if an aircraft uses tolerance before undergoing an

A-/C-check, the more of extra DY/FH/FC used in tolerance has to

be subtracted from the next A-/C-check interval, namely, the inter-

val to its next A-/C-check becomes shorter. For instance, the A320

family has an A-check interval of 750 FH (see Table 2), if an aircraft

has to fly 770 FH before undergoing an A-check, then the amount

of tolerance used is 770 − 750 = 20 FH, and the next A-check in-

terval will be 750 − 20 = 730 FH (this rule has already been con-

sidered in the problem formulation (22)–(23)).

5.3. Optimization results for 2013–2016

The proposed algorithm is first evaluated for the planning hori-

zon of 2013–2016. Table 3 shows a comparison of KPIs between

the airline schedule and the DP schedule. We observe that the

average FH increases with respect to both A- and C-checks. For

the A-check, there is a growth of 10.4 FH on average per aircraft,

which equates to approximate an extra day in operation per air-

craft per A-check cycle. This increase has an impact on the num-

ber of checks needed for the 4-year period. There is a reduction

of more than 7% for both A- and C-checks, which is equivalent to

60 fewer A-checks and 7 fewer C-checks. From the perspective of

maintenance cost, assuming that airlines spend on average $70K–
350K (Ackert, 2010) on a C-check and $10K—$15K on a A-check,

he results from the proposed DP-based methodology can result in

maintenance costs saving of approximate $1.1M—$3.4M for the

eet of A320 family.

Since it takes 10–30 days to complete a C-check and 1 day for a

-check, 7 reduced C-checks and 60 reduced A-checks are equiva-

ent to approximately 130–270 more days of aircraft availability for

evenue generation. One day of operation generates $75K–$120K

f revenue and 130–270 more days available for commercial use

eans an additional $9.8M–$32.4M of revenue for an airline.

The optimized schedule uses tolerances of 349.2 FH and 457.4

or the A- and C-check scheduling, respectively. These are 84% and

4% less than the FH tolerances used by airline. More importantly,

he optimized schedule reduces the frequency of using tolerance (if

n aircraft uses tolerance, it is counted as 1 tolerance events), from

7 to 1 with respect to C-check, and from 72 to 34 for A-check.

ecall that using tolerance needs to be approved by the national

viation authority and it is a troublesome process that should not

e used recurrently.

In Figs. 4 and 5, we observe that the optimized schedule gener-

ted by the DP-based methodology concentrates the aircraft FH of

- and C-check close to its corresponding inspection interval. For

he A-check, 17% of the checks are scheduled with 95% of the in-

erval used, while for the airline this value was double, up to 34%.

similar result is obtained for the C-check, where these values are

3% and 43%, for the optimized schedule and the airline schedule,

espectively. As a result of the greedy approach followed by the

irline, the airline has a large number of A- and C-checks sched-

led very closed to their interval limit. However, this is achieved

y using tolerance in 9% of the A-checks and 19% of the C-checks;

y scheduling other checks with a quite low interval utilization;

nd by creating A- and C-check slots, not considered in the opti-

ized schedule, to solve occasional critical situations with several

ircraft with high utilization. It is important to notice that the op-

imized results only used tolerance in the checks at the beginning

f the time horizon. It was not possible to schedule these checks

ithout using tolerance, given the initial state of the fleet and the

aintenance slots available.

.4. Optimization results for 2018–2021

Although the proposed DP based methodology appears to out-

erform the planning approach of the airline, based on the KPIs

howed in Table 3, this comparison is somewhat unfair since the

irline has to take aircraft routing into account and deal with all

inds of unscheduled maintenance events. In order to verify and

alidate the proposed DP based methodology together with the

aintenance planners from the airline, we use it to subsequently

enerate an optimized A- and C-check schedule for future 2018–

021, and then compare this schedule with the one made by the

aintenance planners of the airline.

In this test case, both the maintenance planners of airline

nd us plan the 4-year maintenance check schedule using exactly

he same input, average aircraft daily utilization, operational con-

traints and excluding unscheduled maintenance events and air-

raft routing. We compare the KPIs with respect to C-check from

oth schedules, as well as the optimization results of different

iscretization resolutions (�u = 1, 0.1 and 0.01). Given that the

irline only plans the A-check for the coming year, no A-check

etrics were compared. The optimized schedules of different dis-

retization resolutions (both A- and C-checks use the same level

u in discretization) are obtained using parallel computing func-

ion on a quad-core workstation.

Again we see that the proposed DP based methodology outper-

orms the planning approach of airline, in terms of KPIs and com-

utation time. The optimized schedules reduce the number of C-
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Fig. 4. Comparison of aircraft FH with respect to A-check between schedule of airline and the optimized schedule.

Fig. 5. Comparison of aircraft FH with respect to C-check between schedule of airline and the optimized schedule.
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Table 4

Results of A- and C-check scheduling optimization from different discretization res-

olution, compared with the C-check schedule from Airline.

KPI (2018–2021) Airline �u = 1 �u = 0.1 �u = 0.01

Objective Value [FH] – 1.2140 × 105 1.1524 × 105 1.1371 × 105

C-Check Avg. FH < 6600 6558.1 6615.2 6634.7

Total C-Checks 96 86 88 85

C-Check Tol. DY > 48 18 18 18

C-Check Tol. FH > 490 135.3 135.3 135.3

C-Check Tol. FC 0 0 0 0

Tolerance Events 6 4 4 4

A-Check Avg. FH – 714.3 717.6 714.5

Total A-Checks 895–920∗ 881 877 881

Tolerance Events – 0 0 0

Merged A- and

C-Check

– 19 18 19

Computation Time

[s]

≥ 3 Days 504.9 510.3 20243.5

∗ Airline estimation.
hecks, varying from 8.3% (for �u = 0.1) to 11.4% (for �u = 0.01),

hile the same amount of tolerance is used in all three optimized

chedules. The tolerance and the number of tolerance events from

ur results is significantly less than what the airline scheduled. The

se of this tolerance is inevitable for aircraft that at the starting

ate of the optimization are already closed to their C-check inter-

al. The number of A-checks vary from 877 (for �u = 0.1) and 881

for �u = 1 and �u = 0.01), when the airline estimates around

95 to 920 A-checks for these four years. The number of A-checks

erged in the C-checks has little variance among three discretiza-

ion resolutions.

Besides, an overall trend is found where the level of discretiza-

ion impacts the solution quality and algorithm computation time,

s illustrated in Fig. 6(a) and (b). In terms of optimality, as ex-

ected, the smaller �u is, the better the results are. However, the

PI’s presented in Table 4 are no significantly different between

he three �u values tested, indicating that good results can be ob-

ained even with low discretization resolution. This happens be-
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Fig. 6. (a) Correlation between discretization level (resolution) and objective value; (b) correlation between discretization level (resolution) and algorithm computation time.
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cause most workable states are in a limited range of the outcome

space. Just a few of the space regions from our discretization do re-

ally have a workable state after aggregation. Nevertheless, there is

trade-off between optimality and computation efficiency. The ob-

jective function consistently reduces when we increase the dis-

cretization resolution. However, the computational times sharply

increase when we increase the discretization resolution beyond

�u = 0.1.

For the algorithm computation time, decreasing �u results in

longer computation times. This happens because the number of

outcome space region increases with decreasing �u, e.g., there are

121 outcome space regions when �u = 0.1, and 10,201 regions

for �u = 0.01. As a result, the number of representative states of

outcome space region in each stage also increases. However, for

this particular case study, the computational time only starts to

sharply increase at �u values of lower than 0.1. After breaking

down the computation time, we observe that each state transition

requires about 0.023 seconds. Looking at the case of �u = 0.1, it

takes 510.3 seconds to obtain an optimized schedule using parallel

computing on a quad-core workstation, meaning that the actual

computation time should be about 2141.2 seconds. In particular,

during 2141.2 seconds, there are about 2141.2/0.023 = 9.31 × 104

state transitions for 1461 stages (there being 1461 days from Jan

1st 2018 to Dec 31st 2021). The actual computation is still much

less than the worst case computed from (52):

computation time

= 0.023 × nact(1 + T − t0)

[
1 + 1

2

(
1 + 1

�u

)2

(T − t0)

]
= 0.023 × 7 × 1461 ×

[
1 + 1

2
× 112 × 1460

]
≈ 2.08 × 107 (s)

(54)

The shorter actual computation time than the worst case is due to

the checking of workability and state aggregation, where we only

keep some workable states in each stage, which in the end are suf-

ficient to generate an optimized schedule.

5.5. Sensitivity analysis for 2018–2021

This subsection investigates the impact of some airline capac-

ity constraints on the results of the AMCS problem, relative to the

following 4 scenarios:
– Scenario 0: the baseline scenario, as pre-computed in the previ-

ous subsection;

– Scenario 1: conditions from Scenario 0 and one additional A-

check slot on Friday, weekends and bank holidays (i.e., one A-

check slot every day of the week, plus an extra slot on Tuesdays

and Wednesdays during IATA Summer);

– Scenario 2: conditions from Scenario 0 and three additional C-

checks on weekends and bank holidays (i.e., three C-check slots

every day of the week during off peak seasons, reducing the

elapse time of the C-checks);

– Scenario 3: conditions from Scenario 0, Scenario 1, and Scenario

2 combined.

All four scenarios are computed assuming �u = 0.1, relative to

he sensitivity shown in Table 4 regarding precision and compu-

ation time. The results, shown in Table 5, indicate that a natural

mprovement of the aircraft average utilization is obtained when

ither the A-check or the C-check slots are increased. By increasing

he number of checks, we are increasing the maintenance opportu-

ities, given more flexibility for a schedule in which the checks are

lanned closer to their due date. For example, compared with Sce-

ario 0, the objective value in Scenario 3 is reduced by 33%, and the

verage FH of aircraft is increased by 2.7% and 3.1% for C-check and

-check, respectively. As consequence of this, there are 2 fewer C-

hecks and 14 fewer A-checks scheduled for Scenario 3 when com-

ared with Scenario 0. For the scenarios involving more C-check

lots, it is observed that the results are improved by the fact that

ore maintenance opportunities exist to merge A-checks and C-

hecks. In fact, Scenarios 2 and 3 have around 500 to 600 fewer

ays on the ground than Scenarios 1 and 2, respectively. These are

ays when the aircraft can be used in operation to generate rev-

nue. Furthermore, it is interesting to notice the interdependence

etween A- and C-checks when analyzing the results from Scenario

. Although only additional A-check slots are added, the results for

he C-checks also improve, due to the fact that more A-check slots

reate more A-check maintenance opportunities. This gives more

exibility to schedule some of the C-checks that in Scenario 0 were

nticipated to enable the merge with an A-check.

The consideration of extra aircraft maintenance capacity has

o be analyzed by the airline by comparing the additional costs

f these extra slots and the benefits of having less maintenance

hecks and higher aircraft availability. This analysis is outside the
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Table 5

Sensitivity analysis for having different A- and C-check slots in 2018–2021, the discretization res-

olution is set to �u = 0.1. No A-check tolerance was used in the scenarios tested.

KPI (2018–2021) Scenario 0 Scenario 1 Scenario 2 Scenario 3

Objective Value [FH] 1.1524 × 105 0.8934 × 105 1.0623 × 105 0.7719 × 105

C-Check Avg. FH 6615.2 6635.0 6699.3 6790.5

Total C-Checks 88 85 85 86

C-Check Tol. DY 18 18 0 0

C-Check Tol. FH 135.3 135.3 23.6 23.6

C-Check Tol. FC 0 0 0 0

A-Check Avg. FH 717.6 738.5 716.5 739.8

Total A-Checks 877 856 890 863

Merge A- and C-check 18 7 22 10

Computation Time [seconds] 510.3 1780.2 743.0 2625.5
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cope of this paper but these results are crucial to the airline in

ssessing such capacity increases (or reductions) scenarios.

. Conclusion

A practical dynamic programming based methodology for the

ong-term aircraft maintenance check scheduling (AMCS) problem

s presented. This integrates both A- and C-checks, including re-

uirements that are associated with the previous denominated B-

nd D-checks, operational constraints and maintenance capacity

or specific days. The goal was to minimize the total wasted FH

nterval between checks, hereby increasing aircraft availability in

he long run.

The proposed methodology followed a forward induction ap-

roach, incorporating a maintenance priority solution to deal with

he multi-dimensional action vector, as well as a discretization and

tate aggregation strategy to reduce outcome space at each time

tage. In addition, a Thrifty Algorithm was used to estimate the

onsequence of an action at the current stage on the remaining

lanning horizon. All these adaptations in the DP framework are

ovel compared with the classic dynamic programming. The pro-

osed methodology is capable of optimizing both A- and C-check

chedules in a matter of minutes for multiple years horizon and

eterogeneous aircraft fleets. It is suitable for practical implemen-

ation and it can be used not only for scheduling but also, for ex-

mple, to predict if an airline has sufficient maintenance capacity

n the future; or to assess if it is beneficial to expand maintenance

apacity with additional hangar slots.

The proposed DP based methodology is evaluated using the

ase-study of an A320 family fleet from a European airline. Com-

aring the optimized A- and C-check schedules with the schedule

f the airline, we can infer that the proposed methodology reduces

he total number of A- and C-check, potentially resulting in the

ong run in maintenance cost savings of about $1.1M-$3.4M for a

eet of about 40 aircraft. Besides, the reduction of A- and C-checks

mplies extra days of aircraft availability for revenue generation, an

stimation of $9.8M–$32.4M can be generated when the proposed

ethodology is applied on historical data.

This study is the first to address the AMCS optimization prob-

em despite its relevance for practice, despite its relevance for

ractice. It opens the door for future research on the topic. For

nstance, future research can consider the uncertainty associated

ith both the maintenance check elapsed time and the aircraft uti-

ization. These uncertainties will not only affect the schedule ro-

ustness, but also the computational time needed to find such op-

imal schedules. One such improvement can be achieved by using

pproximate dynamic programming, extending the dynamic pro-

ramming principle adopted in this paper. Another research op-

ortunity, is the consideration of the task allocation problem (i.e.,

he problem of defining the tasks to be performed on each aircraft

heck) as part of the AMCS problem. Although this would signifi-
antly increase the complexity of the problem, it would extend the

MCS problem to good benefit, producing an optimal integrated

heck and tasks schedule.
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ppendix A. Nomenclature

arameters:

dk minimum interval between the start dates of two type k checks.

ei
k-DY

maximum DY tolerance of type k check interval of aircraft i

ei
k-FH

maximum FH tolerance of type k check interval of aircraft i

ei
k-FC

maximum FC tolerance of type k check interval of aircraft i

fci,t average daily FC usage for aircraft i at day t

fhi,t average daily FH usage for aircraft i at day t

h hangar indicator

i aircraft indicator

Ii
k-DY

interval of type k check of aircraft i in terms of DY

Ii
kFH

interval of type k check of aircraft i in terms of FH

Ii
k-FC

interval of type k check of aircraft i in terms of FC

k maintenance check type, k ∈ {A, C}
N total number of aircraft

nk the number of hangars for type k check

nact the number of actions on day t

Pd daily penalty for having an aircraft on the ground waiting for a

maintenance slot

Pa penalty for an aircraft using the tolerance

Rk remaining day threshold of type k check

t indicator of calendar day

T final day in planning horizon

t0 first day in planning horizon

�u increment of fleet utilization for discretization

π scheduling policy

γ discount factor

ain decision variables:

χ k
i,t

binary variable to indicate if aircraft i starts type k check on t

xt available action on day t, xt =
{{

χC
i,t

}
,
{
χA

i,t

}}
x∗

t the optimal action among {xt}
Xπ (st ) scheduling policy function, xt = Xπ (st )

https://doi.org/10.13039/501100007601
https://www.airmes-project.eu
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State related decision variables:

ai,t the attributes of aircraft i in the beginning of day t

At At = {ai,t | i = 1, 2, . . . , N}
Ct (st , xt ) contribution of choosing action xt on st

DYk
i,t total DY of aircraft i in the beginning of day t for type k check

FCk
i,t cumulative FC of aircraft i at t since last type k check

FHk
i,t cumulative FH of aircraft i at t for type k check

Jt,ūA
t ,ūC

t
(st )

cumulative contribution on day t when the fleet has mean

utilization ūA
t and ūC

t for A-check and C-check respectively

Jmin
t,ūA

t ,ūC
t

(st )

Jmin
t,ūA

t ,ūC
t

(st ) = min
{

Jt,ūA
t ,ūC

t
(st )
}

Lk
i
(yk

i,t
) estimated elapsed time of next type k check with label yk

i,t

Mk
h,t

binary variable to indicate if type k check can be performed in

hangar hk on day t

Mk
t hangar capacity of type k check, Mk

t =∑h Mk
h,t

st state variable

St the set of workable states, St =
{

st

∣∣st workable
}

Rk
i,t

remaining fly days of aircraft i before the next type k check

yk
i,t

next maintenance label for of type k check of aircraft i on day t

zk
i,t

the end date of type k check of aircraft i

δk
i,t

binary variable to indicate if aircraft i is undergoing type k

check on day t

εk-DY
i,t

extra DY before day t if previous type k check is deferred

εk-FH
i,t

extra FH before day t if previous type k check is deferred

εk-FC
i,t

extra FC before day t if previous type k check is deferred

ηk
i,t

binary variable to indicate if aircraft i is grounded and waiting

for a type k check

θ k
i,t

tolerance usage indicator of type k check of aircraft i on day t

	 	 ∈ {FH, FC}
	k

i,t
	k

i,t
∈ {FHk

i,t , FCk
i,t}

ψk
i,t

ψk
i,t

∈ {fh
k
i,t , fc

k
i,t}

Others:

SX (st , xt ) transition function from st to st+1, st+1 = SX (st , xt )

uk
i,t

utilization of aircraft i on day t with respect to type k check

ūk
t mean utilization of fleet on calendar day t for type k check

Vt (st ) the value of being in a state st

Appendix B. Algorithm

Algorithm 1 A dynamic programming based methodology for air-

craft A- and C-check scheduling optimization.

Step 1: Initialize �u (0 < �u < 1), t ← t0, St ←
{

st0

}
, St+1 ← ∅

Step 2: Discretize the interval [0,1] with �u: 0, �u, 2�u, . . . , 1;

Step 3: For each workable st ∈ St :

Step 3.1: Compute and sort the remaining utilization:

R̃C
1,t

, . . . , R̃C
N,t

R̃C
i,t

≤ R̃C
i+1,t

R̃C
i,t

∈
{

RC
i,t

}
R̃A

1,t
, . . . , R̃A

N,t
R̃A

i,t
≤ R̃A

i+1,t
R̃A

i,t
∈
{

RA
i,t

}
Step 3.2: For each action xt of st ∈ St :

Step 3.2.1: Compute Ct (st , xt );

Step 3.2.2: Compute st+1 using st+1 = SX (st , xt );

Step 3.2.3: Check whether st+1 is a workable state;

Step 3.2.4: Aggregate st+1 according to

Jmin
t+1,ūA

t+1
,ūC

t+1

(s) = min{
ūA

t+1
,ūC

t+1

} {J
t+1,ūA

t+1
,ūC

t+1
(st+1)
}

s∗
t+1,ūA

t+1
,ūC

t+1

= argmin{s,ūA
t+1

,ūC
t+1

}
{

J
t+1,ūA

t+1
,ūC

t+1
(s)
}

St+1 = St+1 ∪
{

s∗
t+1,ūA

t+1
,ūC

t+1

}
Step 4: t ← t + 1;

Step 5: If t ≤ T , go to Step 3;

Else s∗
T+1,ūA

T+1
,ūC

T+1

= argmins

{
J
T+1,ūA

T+1
,ūC

T+1
(s)
}

;

x∗
T (sT ) = argxT

{
s∗

T+1,ūA
T+1

,ūC
T+1

= SX (sT , xT )

}
;

Step 6: Recover x∗
T−1

, x∗
T−2

, …, x∗
t0+1

, x∗
t0
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