

Delft University of Technology

Sample effficient deep reinforcement learning for control

de Bruin, Tim

DOI
10.4233/uuid:f8faacb0-9a55-453d-97fd-0388a3c848ee
Publication date
2020
Document Version
Final published version
Citation (APA)
de Bruin, T. (2020). Sample effficient deep reinforcement learning for control. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:f8faacb0-9a55-453d-97fd-0388a3c848ee

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f8faacb0-9a55-453d-97fd-0388a3c848ee
https://doi.org/10.4233/uuid:f8faacb0-9a55-453d-97fd-0388a3c848ee

Sample Efficient
Deep Reinforcement Learning

for Control

Tim de Bruin

w

δ

Δ

Δ

θ

Δ w

θ

Δ

δ
Δ

δ

θ

Δ

w

Δ

θ

≈
Δ

Δ

w

δ

≈

w

≈

w

≈

δ

≈

≈

Δ

w

≈

θ

w

δ

w

≈

θ

≈

Δ

θ

≈

≈
θ

w

wδ

≈

≈

≈

≈

≈

≈

≈

≈

δ

≈

≈

≈

w
≈

≈

θ

δ

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈
≈

≈
w

≈

≈

≈

≈≈

≈

≈

≈

≈

≈

≈
≈

≈

≈

≈

≈

≈
≈

≈

≈

≈

≈≈

≈

≈

≈

w

δ

Δ

Δ

θ

Δ w

θ

Δ

δ
Δ

δ

θ

Δ

w

Δ

θ

≈
Δ

Δ

w

δ

≈

w

≈

w

≈

δ

≈

≈

Δ

w

≈

θ

w

δ

w

≈

θ

≈

Δ

θ

≈

≈
θ

w

wδ

≈

≈

≈

≈

≈

≈

≈

≈

δ

≈

≈

≈

w
≈

≈

θ

δ

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈

≈
≈

≈
w

≈

≈

≈

≈≈

≈

≈

≈

≈

≈

≈
≈

≈

≈

≈

≈

≈
≈

≈

≈

≈

≈≈

≈

≈

≈

ππSaμ
≠

sγQQγrπ
(s
)

Q S
A

r

Qγ S

tr
Π

Πaπ(
s)

πttsaπ(
s) γr t rr rt a

r

π r q

r
r ttsπ

AΠ
tπ
r
A

tΠ
πS

Ss

s

A
rss

t

Q

Πr srs Sq
γ q

s At

r
t

r

γ

γ

r

t
r

S

r

Q t

s

s

πQs

s

γ

t

r

q

μ

t μ

q r

r

rrr

rμ
≠

a γrμ

r
r

S rtr

a

rr

γ γ

r

s

r

r

r

r

r

r

r r

π
(s
)

γ

r

r

π

r

rrπ(
s)

r

r
r

raAQμμ
≠QAμ
≠

raμrrqqπΠ π

Sπ
(s
)

Πr

S

μa q
γπ

t
μt

a

γ

t

t

tt πtμ
r

r

t

A

Qa
π
(s
)

π

A

rμ
≠

qqrrS
aS

Q

γrΠArγ

μ ss

r
μ
A

π(
s)

t
r
t

a
r

Qπ(
s) tt

γγ

saΠAπqtrqQqπ(
s)

Sqπ(
s) q

a tr

Π

sQA

r

Π
a

π

a
πrSrπμ

≠rμ≠AS

μts a
A

r
rA

rq μ

rr

γ
qtst

r

s

q rs

t

Q

a

sr a

Q aa

aa

t

s

r

μπS

r

Asrμ≠ ts

s

π(
s) S

t

q

a

S

r

A

Π

Sr

r

s

Π

s

r

r

a

r

t

γ

tr
a

r

s

μ≠γ

t

rγ

r t

r

tμ≠

r

q
r

μ S

π(s)

s

t

Qr

Sπ(s)

r
r

r

γ
r

t

s

q

r

r
t γ t

tr A

a r

at

r

t

rs

γ

q

r
S

S

γ

r

r

Πr

a

t

A

a

π

r
q

t

Π

S

t

rQ

A

r t

Sr

t

π

t

s

qΠQ

μ≠γ

Qπsq

a

rr π

r

q

Q

s

q

r

r

s
r
γ

t

μγt

r sr γ

r

s

γ

t

γ

a
at

s

r t

aμ

sπ

Ar S

q
πs

γ

r

πA
Π

γ

r

t
r r

Stt

sμ

At

s
Π

q

q

Q

r

r

γ

r

π

a

rrΠ

ss

t

r

π

t

q

r

ts

at
Ar

r
S

tr

t

r

s

S

t

π

r

Π
r s

t

π
π

a

r
rr

Sq

Q
μ≠
γ

r
A

SπsγμπQ

r

γS As

πr π
s

γr

S

μ

r

γ
sr

π

r

r

s

A

Sr
γ

r
t

S

r

r

π
q

r

q

a

a

a

s

S

q
S

γ

sq
r a

t π

sπ S

π

s

π

a

s
Q

Π

π(s)

r

a

QS
A
as
Q
a

a

μ

ta

s

s

Q

t

π

μ
a

a

r

a

r r

t

rrr

t

r

r
γ

A
t

Π
Q

r

r

π

t

s

γr

r

π

r

γ

t

π

γ

π
S

r

r

tr

s

AQ

r

t

r

s

t

μ

s

r

γQ

t r

S
r

Π

π

s

s

π

γ

t

r
γ

γ
q

a

s
A

r

t
Π

r
μq

r
A s

Q
Ar

r
Arasqπ

γr

γ

tr

t t

r A

t
γ

s

q

s

r

A
t

π

r

aπγ

Π

r

r

A
s

π

r

t
tsr

t

γ
μ
q

r

r
ΠQ

γ

r

Ss

Πr

ar

t

S

π

t

t

A
r

a

s

r
r

γ
Q

t

S
A

t

r

π

r

a

γ

a

r

r

r
r

γ

A

s

r
γsa

Π

t

r

t r

γ
Π
qt

γ
μ

r
r

s

s

a
r

r

r
t

t

a
s

γ rr r

r

r

r

r

t

r

r
a

t

ar

r

r

s

a

t

t t
γ

r

r

r

t
S

r

γ

t

r

r r

r

r

r

r

r

t s

t

r

s

r
r

r

r

r
s

r r

sr r
r

r

r
r

r
t

r

r

r

t

t

r

r
r

r

t

r

rs

r

r

r

r

r
r

s

r

r

r

r

t

r
r

r

r
t

r

r

r t

r

r

r

r

r

r

r

r

r

r

r

r
t

rr

t

r

r

r

r

r

r
rr

r

r

r

r

r

r

r

r

r

r

t

r

r

γ

t

r

r

r

r

r

r

r

r

γ
r

π(
s)

r r

r

r

s

π
r

r

r

r

r

rr

r

rr

r

r

r

t

r

r

r

r

r

r
r

t

r

r

r r

r

r

r

r

r

r
t

r
rr

r

r

r

r

r

r
r

r

r

t

r

r

r

r

r

r

r

r

r

r

Sample Efficient
Deep Reinforcement Learning

for Control

T.D. de Bruin

Sample Efficient
Deep Reinforcement Learning

for Control

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof. dr. ir. T. H. J. J. van der Hagen;
Chair of the Board for Doctorates

to be defended publicly on
Friday the 17th of January 2020 at 10:00 o’clock

by

Timon David DE BRUIN
Master of Science in Systems and Control, Delft University of Technology, the

Netherlands
born in Amsterdam, the Nederlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, Chairperson
Prof. dr. R. Babuška Delft University of Technology, promotor
Prof. dr. K. Tuyls University of Liverpool, promotor
Dr.-Ing. J. Kober Delft University of Technology, copromotor

Independent members:
Prof. dr. S. M. Bohte Centrum voor Wiskunde en Informatica
Prof. Dr. O. Brock Technical University of Berlin
Prof. dr. A. Nowé Vrije Universiteit Brussel
Dr.-Ing. H. Vallery Delft University of Technology
Prof. dr. M. Wisse Delft University of Technology, reserve member

This work is part of the research programme Deep Learning for Robust Robot
Control (DL-Force) with project number 656.000.003, which is (partly) financed
by the Netherlands Organisation for Scientific Research (NWO).

Printed by: Gildeprint

Front & Back: Tim de Bruin

Email: timdebruin89@gmail.com

Copyright © 2020 by T.D. de Bruin

ISBN 978-94-6384-096-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

v

Contents

Summary vii

Samenvatting xi

1 Introduction 1
1.1 Robots that learn 2
1.2 This thesis 8

2 Deep Reinforcement Learning 13
2.1 Reinforcement Learning 14
2.2 Deep Learning 18
2.3 Deep Reinforcement Learning 22

3 Experience buffer contents 37
3.1 Introduction 38
3.2 Motivating example 39
3.3 Related work 41
3.4 Experimental Benchmarks 43
3.5 Performance Measures 44
3.6 Main Contribution: Analysis of Experience utility 45
3.7 Summary 56

4 Experience selection 59
4.1 Introduction 60
4.2 Preliminaries 61
4.3 Experience Selection Strategy Notation 64
4.4 The Limitations of a Single Proxy 66
4.5 Main Contribution: New Experience-Selection Strategies 67
4.6 Experience Selection Results 72
4.7 Conclusions and Recommendations 82

5 State Representation Learning 87
5.1 Introduction 88
5.2 Learning Objectives 90
5.3 Main Contribution: Integration Methods 93
5.4 Experiments 95
5.5 Results 97
5.6 Conclusions 101

vi | Contents

6 Beyond Gradient-Based Optimization 103
6.1 Introduction 104
6.2 Related work 106
6.3 Main Contribution: Optimization Method 107
6.4 Experiments 110
6.5 Conclusion and future work 115

7 Conclusions 117
7.1 Conclusions 117
7.2 Discussion and Outlook 120

Appendix A Benchmarks 125
A.1 2-link robot arm 125
A.2 Pendulum and Magman simulations 126
A.3 CarRacing-v0 128
A.4 Atari 128

Appendix B Implementation details 131
B.1 Physical arm experiments 131
B.2 Experience buffer experiments (Chapters 3 and 4) 132
B.3 State representation Learning (Chapter 5) 134
B.4 Optimization (Chapter 6) 135

Appendix C Additional results 139
C.1 Experience buffer experiments (Chapters 3 and 4) 139
C.2 Optimization (Chapter 6) 148

References 149

Acknowledgements 163

About the author 165

List of publications 167

Summary

The arrival of intelligent, general-purpose robots that can learn to perform new
tasks autonomously has been promised for a long time now. Deep reinforcement
learning, which combines reinforcement learning with deep neural network function
approximation, has the potential to enable robots to learn to perform a wide range
of new tasks while requiring very little prior knowledge or human help. This
framework might therefore help to finally make general purpose robots a reality.
However, the biggest successes of deep reinforcement learning have so far been in
simulated game settings. To translate these successes to the real world, significant
improvements are needed in the ability of these methods to learn quickly and
safely. This thesis investigates what is needed to make this possible and makes
contributions towards this goal.

Before deep reinforcement learning methods can be successfully applied in the
robotics domain, an understanding is needed of how, when, and why deep learn-
ing and reinforcement learning work well together. This thesis therefore starts
with a literature review, which is presented in Chapter 2. While the field is still
in some regards in its infancy, it can already be noted that there are important
components that are shared by successful algorithms. These components help to
reconcile the differences between classical reinforcement learning methods and the
training procedures used to successfully train deep neural networks. The main
challenges in combining deep learning with reinforcement learning center around
the interdependencies of the policy, the training data, and the training targets.
Commonly used tools for managing the detrimental effects caused by these inter-
dependencies include target networks, trust region updates, and experience replay
buffers. Besides reviewing these components, a number of the more popular and
historically relevant deep reinforcement learning methods are discussed.

Reinforcement learning involves learning through trial and error. However, robots
(and their surroundings) are fragile, which makes these trials—and especially
errors—very costly. Therefore, the amount of exploration that is performed will
often need to be drastically reduced over time, especially once a reasonable be-
havior has already been found. We demonstrate how, using common experience
replay techniques, this can quickly lead to forgetting previously learned successful
behaviors. This problem is investigated in Chapter 3. Experiments are conducted
to investigate what distribution of the experiences over the state-action space leads
to desirable learning behavior and what distributions can cause problems. It is
shown how actor-critic algorithms are especially sensitive to the lack of diversity
in the action space that can result form reducing the amount of exploration over
time. Further relations between the properties of the control problem at hand

viii | Summary

and the required data distributions are also shown. These include a larger need
for diversity in the action space when control frequencies are high and a reduced
importance of data diversity for problems where generalizing the control strategy
across the state-space is more difficult.

While Chapter 3 investigates what data distributions are most beneficial, Chap-
ter 4 instead proposes practical algorithms to select useful experiences from a
stream of experiences. We do not assume to have any control over the stream of
experiences, which makes it possible to learn from additional sources of experience
like other robots, experiences obtained while learning different tasks, and experi-
ences obtained using predefined controllers. We make two separate judgments on
the utility of individual experiences. The first judgment is on the long term utility
of experiences, which is used to determine which experiences to keep in memory
once the experience buffer is full. The second judgment is on the instantaneous
utility of the experience to the learning agent. This judgment is used to deter-
mine which experiences should be sampled from the buffer to be learned from.
To estimate the short and long term utility of the experiences we propose prox-
ies based on the age, surprise, and the exploration intensity associated with the
experiences. It is shown how prior knowledge of the control problem at hand can
be used to decide which proxies to use. We additionally show how the knowledge
of the control problem can be used to estimate the optimal size of the experience
buffer and whether or not to use importance sampling to compensate for the bias
introduced by the selection procedure. Together, these choices can lead to a more
stable learning procedure and better performing controllers.

In Chapter 5 we look at what to learn form the collected data. The high price
of data in the robotics domain makes it crucial to extract as much knowledge as
possible from each and every datum. Reinforcement learning, by default, does
not do so. We therefore supplement reinforcement learning with explicit state
representation learning objectives. These objectives are based on the assumption
that the neural network controller that is to be learned can be seen as consisting
of two consecutive parts. The first part (referred to as the state encoder) maps
the observed sensor data to a compact and concise representation of the state
of the robot and its environment. The second part determines which actions to
take based on this state representation. As the representation of the state of
the world is useful for more than just completing the task at hand, it can also
be trained with more general (state representation learning) objectives than just
the reinforcement learning objective associated with the current task. We show
how including these additional training objectives allows for learning a much more
general state representation, which in turn makes it possible to learn broadly
applicable control strategies more quickly. We also introduce a training method

Summary | ix

that ensures that the added learning objectives further the goal of reinforcement
learning, without destabilizing the learning process through their changes to the
state encoder.

The final contribution of this thesis, presented in Chapter 6, focuses on the opti-
mization procedure used to train the second part of the policy; the mapping from
the state representation to the actions. While we show that the state encoder
can be efficiently trained with standard gradient-based optimization techniques,
perfecting this second mapping is more difficult. Obtaining high quality estimates
of the gradients of the policy performance with respect to the parameters of this
part of the neural network is usually not feasible. This means that while a reason-
able policy can be obtained relatively quickly using gradient-based optimization
approaches, this speed comes at the cost of the stability of the learning process as
well as the final performance of the controller. Additionally, the unstable nature
of this learning process brings with it an extreme sensitivity to the values of the
hyper-parameters of the training method. This places an unfortunate emphasis on
hyper-parameter tuning for getting deep reinforcement learning algorithms to work
well. Gradient-free optimization algorithms can be more simple and stable, but
tend to be much less sample efficient. We show how the desirable aspects of both
methods can be combined by first training the entire network through gradient-
based optimization and subsequently fine-tuning the final part of the network in a
gradient-free manner. We demonstrate how this enables the policy to improve in a
stable manner to a performance level not obtained by gradient-based optimization
alone, using many fewer trials than methods using only gradient-free optimization.

x

Samenvatting

Al geruime tijd wordt de komst van intelligente, algemeen toepasbare robots—
robots die zelfstandig nieuwe taken kunnen leren—aangekondigd. Deep reinforce-
ment learning, een vorm van reinforcement learning waarbij functie benadering
verricht wordt met behulp van diepe neurale netwerken, heeft de potentie om
robots in staat te stellen om een breed scala aan nieuwe taken te leren met mini-
male menselijke hulp en voorkennis. Dit raamwerk zou daarom eindelijk de belofte
van algemeen toepasbare robots in kunnen lossen. Tot nu toe liggen de voornaam-
ste successen van deep reinforcement learning echter in het spelen van computer-
spelletjes. Om deze successen ook te behalen in de echte wereld zijn er significante
verbeteringen nodig in het vermogen van deze methodes om snel en veilig te leren.
Deze thesis onderzoekt wat er nodig is om dit mogelijk te maken en draagt bij aan
dit doel.

Voordat deep reinforcement learning methodes succesvol toegepast kunnen worden
in de robotica is er een begrip nodig van hoe, wanneer en waarom deep learning en
reinforcement learning goed samenwerken. Deze thesis begint daarom in Hoofd-
stuk 2 met een literatuur onderzoek. Hoewel het deep reinforcement learning veld
in veel opzichten nog in de kinderschoenen staat, kan al wel opgemerkt worden
dat succesvolle methodes een aantal belangrijke componenten delen. Deze com-
ponenten helpen de verschillen te overbruggen tussen de klassieke reinforcement
learning methodes en de trainings procedures van diepe neurale netwerken. De
voornaamste uitdagingen bij het combineren van deep learning en reinforcement
learning komen voort uit de onderlinge afhankelijkheden van de geleerde rege-
laar, de trainingsdata en de trainingsdoelen. Onder de vaak gebruikte onderdelen
voor het inperken van de negatieve gevolgen van deze afhankelijkheden vallen
doel-netwerken, vertrouwens regio updates en buffers voor het terugspelen van er-
varingen. Naast deze componenten worden ook een aantal van de populairdere en
historisch relevante deep reinforcement learning methodes besproken.

Bij reinforcement learning wordt er geleerd door middel van trial and error. Maar
omdat robots (en hun omgeving) kwetsbaar zijn, is deze vorm van leren—met
name het maken van fouten—erg kostbaar. Daarom moet de intensiteit waarmee
nieuwe dingen worden uitgeprobeerd drastisch afnemen naarmate de tijd verstri-
jkt, vooral als een goede regelstrategie al gevonden is. Wij laten zien hoe, bij
het gebruik van de standaard technieken voor het terugspelen van ervaringen, dit
snel kan leiden tot het vergeten van eerder geleerde succesvolle regelstrategieën.
Dit probleem wordt onderzocht in Hoofdstuk 3. In dit hoofdstuk worden experi-
menten uitgevoerd om te onderzoeken welke verdeling van de ervaringen over de
toestand/observatie-actie ruimte leiden tot gewenst leergedrag en welke verdelin-

xii | Samenvatting

gen leiden tot problemen. Er wordt aangetoond dat actor-critic algoritmen extra
gevoelig zijn voor het gebrek aan diversiteit in de actie ruimte dat kan voortkomen
uit het verminderen van de exploratie. Tot slot worden verdere verbanden aange-
toond tussen de benodigde distributie van de ervaringen en de eigenschappen van
het op te lossen regelprobleem. Hieronder vallen een grotere behoefte aan di-
versiteit in de acties wanneer er op met grote frequentie geregeld wordt en een
afname van het belang van diversiteit voor problemen waarbij het generaliseren
van de regelstrategie over de toestand ruimte moeilijker is.

Waar Hoofdstuk 3 onderzocht welke ervarings verdelingen bevorderlijk zijn voor
het leren, stelt Hoofdstuk 4 in plaats daarvan praktische algoritmes voor om te
selecteren uit een stroom van ervaringen. Hierbij wordt aangenomen dat er geen
controle is over de stroom van ervaringen, zodat er geleerd kan worden van extra
bronnen van ervaringen zoals andere robots, ervaringen opgedaan tijdens het leren
van andere taken en ervaringen opgedaan met vooraf geprogrammeerde regelaars.
We maken twee afzonderlijke beoordelingen van het nut van individuele ervaringen.
De eerste beoordeling heeft betrekking op de lange termijn waarde van de ervaring.
Deze beoordeling wordt gebruikt om te bepalen welke ervaringen bewaard worden
als de buffer eenmaal vol is. De tweede beoordeling heeft betrekking op de korte
termijn en wordt gebruikt om te bepalen van welke ervaringen op het moment het
beste geleerd kan worden. Om de waarde van de ervaringen op de korte en lange
termijn in te schatten stellen we benaderings functies voor op basis van de leeftijd,
verrassing, en de hoeveelheid exploratie die verbonden zijn aan de ervaring. Ook
demonstreren we hoe kennis van het voorhanden zijnde regelprobleem gebruikt kan
worden om een weloverwogen keuze te maken tussen deze functies. We laten ook
zien hoe aan de hand van deze kennis de optimale grootte van de ervaringsbuffer
geschat kan worden en hoe bepaald kan worden of importance sampling gebruikt
moet worden om te compenseren voor de systematische fouten die geïntroduceerd
worden door de selectie procedure. Samen kunnen deze keuzes leiden tot een
stabieler leerproces dat resulteert in beter presterende regelaars.

In Hoofdstuk 5 kijken we naar wat er geleerd kan worden van de verzamelde er-
varingen. De hoge kosten van ervaringen in de robotica maken het belangrijk
om zo veel mogelijk kennis te destilleren uit iedere opgedane ervaring. Rein-
forcement learning algoritmes doen dit normaal gesproken niet. Daarom voe-
gen we aan deze algoritmes explicite toestand-representatie leerdoelen toe. Deze
leerdoelen zijn gebaseerd op de aanname dat de te leren neurale netwerk rege-
laar beschouwd wordt als twee opeenvolgende delen. Het eerste deel (dat we de
toestand-codeermachine zullen noemen) beeldt de geobserveerde sensorsignalen af
op een beknopte en bondige representatie van de toestand van de robot en diens
omgeving. Het tweede deel bepaalt welke acties genomen worden op basis van

Samenvatting | xiii

deze toestandsbeschrijving. Omdat de toestandsbeschrijving gebruikt kan worden
voor meer dan alleen de huidige regeltaak, kan deze beschrijving ook geleerd wor-
den van algemenere (toestand representatie leer) trainingsdoelen dan alleen het
reinforcement learning leerdoel dat hoort bij de huidige regeltaak. We laten zien
hoe het toevoegen van deze extra leerdoelen leidt tot het leren van een veel al-
gemenere toestands omschrijving. Deze algemenere toestands omschrijving maakt
het mogelijk om sneller algemeen toepasbare regelstrategieën te leren. Ook intro-
duceren we een trainingsmethode die er voor zorgt dat de extra leerdoelen helpen
bij het reinforcement learning doel, zonder het leerproces onstabiel te maken door
de veranderingen aan de toestand-codeermachine.

De laatste bijdrage van deze thesis, die we uit de doeken doen in Hoofdstuk 6,
richt zich op de optimalisatie procedure die gebruikt wordt voor het trainen van
het tweede deel van de regelaar; het afbeelden van de toestandsrepresentatie op
de stuur acties. We laten zien dat, hoewel de toestand-codeermachine efficiënt
getraind kan worden met de standaard—op gradiënten gebaseerde—optimalisatie
procedures, dit een stuk moeilijker is voor dit tweede deel van de regelaar. Het
is meestal niet mogelijk om schattingen van goede kwaliteit te verkrijgen voor de
afgeleiden van de prestaties van de regelaar ten opzichte van de parameters van
het neurale netwerk. Dit betekent dat, hoewel op gradiënten gebaseerde optimal-
isatie procedures het mogelijk maken om snel een redelijke regelaar te trainen,
deze snelheid ten koste gaat van de stabiliteit van het leerproces en daardoor de
uiteindelijke prestaties van de regelaar. De instabiliteit van het leerproces zorgt
verder voor een extreme gevoeligheid voor de waarden van de hyper-parameters
van de leermethode. Dit zorgt voor een ongelukkige nadruk op het afstellen van
deze waarden om deep reinforcement learning methodes goed te laten werken. Op-
timalisatie procedures die geen gebruik maken van gradiënten kunnen stabieler en
simpeler zijn, maar zijn vaak ook veel minder efficient in het aantal benodigde er-
varingen om een taak te leren. We laten zien hoe de aantrekkelijke eigenschappen
van deze twee methodes gecombineerd kunnen worden. We doen dit door eerst
het hele netwerk te trainen met een optimalisatie procedure die wel gradiënten ge-
bruikt en daarna het laatste deel van de regelaar verder te optimaliseren met een
optimalisatie procedure die dit niet doet. Dit resulteert in stabiele verbeteringen
die resulteren in een beter presterende regelaar dan verkregen wordt met alleen
het gebruik van op gradienten gebaseerde optimalisatie, maar met veel minder
ervaringen dan bij het gebruik van alleen gradient vrije optimalisatie.

xiv

IN
T

R
O

D
U

C
T

IO
N

1
Introduction

2 | Chapter 1

For decades, robots have been useful as tools inside of factories. In these highly
structured environments, they successfully perform simple repetitive tasks. For
even longer, there has been the promise that they will someday soon become
something more. That robots will help us in our everyday lives. That robots will
become useful in the unstructured, changing, stochastic and ambiguous world that
we live in. For this to happen, a paradigm shift is needed in their programming.
It will no longer be possible to define all the behaviors they will require a priori.
Instead, their programming will need to be adapted in the field. For robots to
finally leave the factories, they need the ability to learn.

1.1 | Robots that learn

Robots that operate in changing environments will need to adapt existing behav-
iors. For robots to become more general purpose, like a household robot rather
than a vacuum cleaning robot, they will additionally need the ability to learn
completely new behaviors. They might even have to learn behaviors that have not
been foreseen by their programmers. To make this learning process possible, their
programming will need to include two key components.

The first component is a way to encode behaviors. These behaviors are defined by
mappings from observations to actions. As illustrated in Figure 1.1, the robot’s
behavior results from first observing the state of the world through its sensors.
The mapping is then used to determine which action to take, given the sensory
observations. The robot performs the action, which changes the state of the world,
and observes the new state of the world through its sensors. This process is
repeated until the task is accomplished. To make sure the robot can exhibit even
behaviors not thought of by its programmers, we need a way to encode a very
diverse set of observation-to-action mappings. If we want a robot to exhibit a
specific behavior, and no mapping exists in our set that represents this behavior,
the robot has no way of learning it.

A robot that is theoretically able to exhibit very many behaviors is not yet useful.
We want the robot to exhibit a behavior that actually solves a problem we are faced
with. Therefore, we also require a second component: a way to search through
this set of mappings for one that represents such a behavior. This search process
is the mechanism by which the robot learns. An efficient search process will result
in quick learning, while an inefficient search process results in a useless robot.

These two components are closely linked. The size and the structure of the set of
mappings we encode will dictate which search strategies will be successful.

Introduction | 3

observation
action

move
stand still
vacuum

Set of all
possible mappings

Chosen mapping

Figure 1.1: The robot’s behavior results from repeatedly mapping its sensory observations to
actions and performing those actions, which causes new observations. To make sure the robot
can exhibit many different behaviors, we need a way to encode a large set of mappings from
observation to action. To enable the robot to learn the right behavior, we need a way to search
through this set of mappings to find one that induces a suitable behavior in the robot.

Encoding a varied set of behaviors and picking the right one

Lets examine the first component: a way to encode a broad set of mappings from
observations to actions. We can divide these mappings into two sub-mappings.
The first sub-mapping processes the observed sensor data by mapping it to a
compact and concise representation of the state of the world. In the second sub-
mapping, this state representation is mapped to an appropriate action.

In many robotic scenarios, a significant part of the complexity of representing the
mapping from observation to action is in the sub-mapping from observation to
state (Giusti et al., 2016). This is especially true for robots that need to perform
tasks that we might consider trivial in environments not specifically designed for
robots. Consider for example asking a general purpose robot to "clean under the
couch". The robot might be outfitted with a microphone, which registers the
request as a sequence of variations in air pressure. It can have a camera, which
measures the intensity of the light bouncing off the objects in a room and hitting
a grid of receptors. The first sub-mapping is from these signals to a relevant
description of the state of the world. One such description could be the angle and
distance of the robot relative to the couch and the presence of obstacles. Given this
representation, the mapping to an appropriate action could be relatively simple.
Extracting this representation is not. It requires understanding speech. It requires

4 | Chapter 1

understanding the equivalence of the word "couch" to the pattern of light that
such a thing causes on a camera. It requires estimating depth from an image. It
requires understanding what light intensity patterns represent drivable floor and
what patterns represent obstacles.
The encoding scheme of the mappings from observations to actions should therefore
be chosen such that we can efficiently learn to extract a representation of the state
of the world from the robot’s sensory signals as a part of this mapping. This
requires an encoding scheme that is very general, as we might not know a priori
what we will be looking for or listening to. At the same time, the scheme should
include as much prior knowledge as is reasonable about the kind of sensory signals
we need to process. This prior knowledge will help limit the set of mappings, and
the amount of information needed to define one such mapping. This in turn will
make it easier to search for a good mapping within the set, which allows for robots
that learn more quickly.
Artificial Neural Networks (ANNs) provide one such way to encode mappings.
ANNs can approximate a very large class of functions arbitrarily well, given enough
parameters (Hornik, 1991). More importantly, Deep Neural Networks (DNNs) can
approximate certain functions very efficiently, and the functions that are found in
nature happen to be of this type (Lin et al., 2017). An important part of the
reason for this efficiency comes from the fact that DNNs encode an hierarchi-
cal structure, with mappings often built up out of shared, simpler sub-mappings.
This same property is found all throughout nature with small numbers of sim-
ple building blocks repeatedly being combined into increasing numbers of more
complex structures. Specialized neural network variants can additionally include
prior knowledge about the structure of specific sensory signals, such as the spatial
relations in images or the temporal structure of audio signals. This knowledge en-
ables further sharing of sub-mappings, reducing the amount of information needed
to encode the final mapping without significantly reducing the number of useful
mappings that can be encoded.
This makes it possible to encode a general enough set of functions, while keeping
the function space small and structured enough to make searching it tractable. The
suitability of deep neural networks for processing natural data has been demon-
strated many times over the last couple of years. Examples include state of the art
results for learning functions of images (e.g. Karras et al., 2018; Krizhevsky et al.,
2012), sounds (e.g. Hinton et al., 2012; Zeghidour et al., 2018), language (e.g. Col-
lobert et al., 2011b; Vaswani et al., 2017), and combinations of these modalities
(e.g. Ngiam et al., 2011; Vinyals et al., 2015).
Given the large number of mappings (and by extension behaviors) that can be
encoded by neural networks, we need an efficient and effective search strategy to

Introduction | 5

find an appropriate one. In all the examples of successful methods cited above, an
a priori fixed dataset is used to learn from. In most, this dataset contains samples
of both the inputs and the outputs of the mapping that needs to be found. From
the set of mappings, a mapping should be chosen that not only maps those inputs
to (approximately) the corresponding outputs, but also gives appropriate outputs
for inputs that were not included in the training set, but that could reasonably be
expected.

With the structure of the neural network (most commonly) chosen manually, only
the network parameters have to be determined to define the mapping. Simple
stochastic gradient-based optimization techniques are most commonly used to
find the right values for these parameters. These search techniques start with
a random parameter vector—and therefore mapping—and repeatedly make small
adjustments to the parameters to map given inputs closer to the corresponding
outputs. For large enough networks a local minimum of the loss function will al-
most always provide adequate performance (Choromanska et al., 2015). This sim-
ple local search for better parameters should therefore result in learning a good
mapping, provided the example data were sufficiently descriptive of the desired
mapping.

Unfortunately, these techniques that rely on a provided set of input output ex-
amples of the desired mapping do not readily apply to our robotics setting. To
adapt to new tasks and changing environments, the robots need to update their
programming away from their programmers. If we buy a new couch with a flower
pattern, and our robot mistakes the couch for a garden, we can not rely on a team
of programmers to rush in and fix the problem. The robot will need to quickly
learn, possibly with some help of a user, to vacuum under—rather than pour water
over—the couch. For the same reason that we cannot rely on predefined behaviors,
we can also not rely (at least not completely) on predefined datasets, simulators,
or examples of correct behaviors.

Reinforcement Learning (RL) is a framework based on trial and error learning that
can help collect both the input samples and estimates of the desired outputs of the
mappings (behaviors) that are to be learned. In RL, the task description is given
in the form of a reward function. This function maps task relevant aspects of the
state of the world and the action performed in that state to a scalar measure of
instantaneous desirability. It might for example give a high reward for clean floors,
while penalizing actions that deplete the battery. The objective of reinforcement
learning is to learn to maximize the (possibly discounted) sum of rewards over
time. To do this, we search through the set of mappings that are encoded by the
neural network parameters. Each mapping represents a behavior; for any sensory
observation that goes in, an action comes out. The challenge is finding the best

6 | Chapter 1

behavior in the set. The one that, when applied in the states that the robot might
encounter, is most likely to pick the actions that will lead to the highest sum of
rewards over time.

Optimizing over long time horizons is hard. For a vacuuming robot, every speck
of dust that is sucked up might lead to instant gratification. It is difficult to learn
to drive away from the dust and towards a charger when the battery runs low.
In fact, it is hard for two key reasons. The first is that the further we look into
the future, the more uncertain our predictions become. Driving towards a pile
of dust right in front of the robot will almost certainly be rewarding. Driving
away and coming back for it after charging could lead to the same rewards. But
it would require finding the way back and hoping that an impatient human has
not cleaned up the pile in the meantime. To pick the best behavior from the set,
we need to compare how good they are, which becomes much harder under this
uncertainty. A second difficulty is that finding better behaviors requires trying
different things. A small variation on a behavior that only ever collects dust will
not suddenly lead to driving to chargers. While a significantly different behavior
might lead to charging, it might also lead to falling off stairs. A very delicate
balance needs to be struck between doing what is known to work and trying new
things. In spite of these difficulties, researchers have used reinforcement learning
with impressive results. By trying to maximize the score in Atari games, behaviors
were found that taught human gamers new strategies (Mnih et al., 2015). By trying
to maximize the probability of winning the game of Go, behaviors were found that
were previously thought to require human intuition (Silver et al., 2016). While the
largest successes have so far been limited to games (where trial and error learning
is relatively unproblematic) these successes do make an intriguing case for RL as
a framework for finding successful behaviors.

Is the whole less than the sum of the parts?

It is easy then, to motivate each of the individual components. For robots to
become useful in unpredictable environments, they need the ability to learn. Deep
neural networks give them the ability to represent the behaviors they need to
learn in an efficient manner. Reinforcement learning allows for actually learning
these behaviors, using very minimal (human) feedback. The combination could
lead to truly useful robots. Ones that do not need to be reprogrammed every
time their surroundings change and could learn new skills, not thought of by their
programmers. However, while motivating a desire to combine these components
is easy, getting the combination to work is not.

Part of the reason that ANNs can efficiently encode functions of natural data
is that they are global function approximators; there is one function (mapping)

Introduction | 7

that applies to all inputs. DNNs can be even more efficient by composing this
mapping out of reusable sub-mappings. For recognizing a couch by its outline,
a useful sub-function would be a line detector. This line detector could then
be reused for detecting tables. This efficiency through parameter reuse makes
learning these functions tractable. At the same time, it requires diversity in the
training data. For only recognizing couches it might be beneficial to have the
line detectors specialize in detecting couch-shaped lines. Yet this would hurt the
table-detecting performance. To prevent over-specializing the sub functions in a
way that hurts their general usefulness, deep learning methods present a wide
variety of a priori collected examples in a randomized order. In fact, collecting
the right dataset is often one of the most influential factors in the performance
of deep learning methods. The right dataset enables learning the truly general
shared sub-mappings. This in turn makes it possible to learn complex mappings
of natural data in an efficient way.

Reinforcement learning methods have been developed with a different mindset. An
a priori collected dataset is in general not used. Instead, an agent moves through
the world, learning from observations as they are experienced. This means that
when a robot is exploring under a couch, all of the subsequent samples will be
related to couches. This was not an issue for the classical reinforcement learn-
ing methods, as they did not use global function approximators to represent the
obtained knowledge. Learning about a couch would not change anything about
the knowledge of tables, as the two were completely separate. As a result, the
combination of reinforcement learning with neural networks did not succeed until
this discrepancy was addressed (Lin, 1992; Mnih et al., 2015; Riedmiller, 2005).
The solution was found in delaying the learning. An agent gathers a collection of
experiences based on variations of its current behavior. When enough experiences
are collected, they are learned from in a randomized order, restoring some of the
sample diversity that is crucial in training neural networks.

With a buffer in place, the combination of RL with DNNs—known as Deep Re-
inforcement Learning (DRL)—becomes somewhat more similar to the previously
mentioned successful applications of DNNs. Yet problematic differences remain.
One of these differences is that while the buffer gives us some diversity and stability
in the input distribution, the corresponding outputs are not given. In reinforce-
ment learning these outputs usually describe the long term effects of a behavior.
Estimating these long term effects involves a combination of trying out the behav-
iors to get true samples of their effects and estimating the effects from samples of
(somewhat) different behaviors. Trying out behaviors to get true samples of their
effects is problematic when using robots, as it requires many expensive robot in-
teractions (Kober et al., 2013). The other strategy involves training our mappings

8 | Chapter 1

to output predictions of long term effects, where these predictions are determined
mostly by the mappings that we are trying to train. This feedback loop can quickly
destabilize the optimization of DNNs, as the network parameters are optimized to
reinforce the networks poor predictions (Mnih et al., 2015).

The successes of DRL have generated a lot of enthusiasm for the potential of
these methods. Yet the challenges—of which we only provided a sample here—
mean that success is far from guaranteed even when applying these methods to
simple problems. The complexity that is born out of the combination of these
relatively simple parts means that DRL methods are often poorly understood
even by their creators (Tucker et al., 2018) and published results are often not
statistically significant (Henderson et al., 2017). Even seemingly impressive results
are sometimes no better than those obtained by much more simple methods (Mania
et al., 2018).

To evaluate the use of these methods for enabling robots to learn autonomously,
we should therefore first better understand when, how and why DRL works.

1.2 | This thesis

This thesis looks at combining deep learning and reinforcement learning, while
keeping in mind the constraints that are imposed by the robotics domain. The
aim is to understand why and when these individual parts work, and how the
combination can exploit the strengths of both. A visual summary of the topics
discussed in this thesis is given in Figure 1.2.

1.2.1 Deep Reinforcement learning

In Chapter 2 we begin by reviewing some preliminaries on both reinforcement
learning and deep learning. Here the notation used in this thesis is also introduced.
After discussing the relevant aspects of these two individual fields, we turn to the
combination: deep reinforcement learning. A survey is presented of the problems
that arise when combining these two fields. We discuss DRL methods from the
literature, with a specific focus on how they address these common challenges.
Attention is also given to the opportunities that the combination of DL and RL
provides. Methods that attempt to exploit those opportunities are reviewed.

1.2.2 Experience Selection

After this review of existing methods, we will focus on one of the most crucial
parts of any machine learning algorithm: data. As discussed, the view of data
from the deep learning and (traditional) reinforcement learning communities is
quite different. The success of typical deep learning methods often hinges on the

Introduction | 9

observation
action

move
stand still
vacuum

state
representation

stairs

table
dusty

wooden

person

Chapter 3: What makes experiences usefull?
Chapter 4: How can usefull experiences be selected?

Chapter 5: What criteria should be used to select these?

Chapter 6:What search strategy
should be used for this set?

Chapter 2: How, when and why does all this (not) work?

Figure 1.2: This thesis looks at some of the fundamental questions that arise when trying to
combine deep learning with reinforcement under the constraints imposed by the robotics domain.

availability of a carefully curated data set. In reinforcement learning, the focus is
very much on new data. Exploration strategies are developed to ensure that what
is observed next is interesting enough to learn from. Once obtained, data quickly
fall out of fancy. In almost all deep reinforcement learning methods, each data
point only stays in a memory for a fixed amount of time before it is forgotten. But
in robotics, where trials and especially errors come at a high price, can we really
afford to forget about past mistakes? Is uninhibited exploration really feasible or
should we try to learn optimally from any experience we can get? And how do we
combine the data needs of neural networks and reinforcement learning? Should we
get diverse data to allow the neural networks to learn general functions? Or should
the data be closely related to the policy we want to evaluate for reinforcement
learning to work?

In Chapter 3 we investigate how the performance of deep reinforcement learning
depends on the contents of the experience buffer. The focus here is on learning
to control physical systems. We investigate how the properties of these tasks
influence the need for certain experience distributions. These properties include
such factors as the sampling frequency, the need for generalization, the presence
of noise and the RL algorithm used.

10 | Chapter 1

Where Chapter 3 investigates what data we would like to have for the combination
of deep learning and reinforcement learning to work, the focus in Chapter 4 is on
obtaining these data. We consider the scenario in which we cannot choose the
data gathering behavior policy freely. This could happen when exploration is too
damaging, when learning from the experiences obtained by other robots or when
learning a new task from previous experiences. We therefore do not investigate
exploration strategies. Instead, we consider the stream of experiences observed by
the agent as a given. In this scenario we need to estimate the value of observed
experiences and select the right ones for training. We do this by making two
judgments. The first is, given a buffer of experiences, which ones to learn from.
This requires a judgment on the immediate value to the learner of the experience.
The second judgment is made when determining which experiences to keep once
the buffer is full. This requires an estimate of the long term value of experiences.

1.2.3 State Representation Learning

The mappings encoded by deep neural networks consist of sub-mappings that
range from very general to very task specific. The more general sub-mappings
can be shared by several (sub-)tasks, which enables efficient learning. This also
means that we can learn some of the building blocks of behavior functions by
training on different tasks that also need these components. These tasks can often
be much easier than the reinforcement learning objective of estimating long term
effects. We investigate using a number of these additional learning objectives. By
using a range of general objectives, very general sub-mappings are learned. These
general sub-mappings enable learning behaviors that are themselves more general.
Behaviors that solve tasks not just in the environment that they were trained
in, but also in new environments. Unfortunately, all these different objectives
perform a tug-of-war with our sub-functions. When a behavior is made up of
building blocks that are suddenly changed to perform better on a different task,
the behavior can change in an unpredictable way. In Chapter 5 we look into ways
of preventing these unfortunate side effects.

1.2.4 Optimization strategies

With the data selected and the objectives chosen, all that is left to do is to use
an optimization algorithm to search for parameter values that lead to good per-
formance according to the chosen objectives on the collected data points. For
the parameter values of deep neural networks, first-order gradient techniques are
most commonly used. These techniques use estimates of the direction in which
the parameters should be changed in order to improve the task performance. One
challenge of this approach is that while we know the direction, we do not know
the ideal size of the step that should be taken in this direction. Taking steps that

Introduction | 11

are too small slows down learning and can prevent escaping non-optimal criti-
cal points, while the nonlinear nature of neural networks means that taking a step
that is too large can quickly lead to severely deteriorated performance. Potentially
even more problematic is the fact that the estimates of the direction in which the
parameters should be updated, as obtained through reinforcement learning, are
not always accurate. For the more general sub-functions—encoded by the layers
early in the network—the direction can be determined fairly well. For the more
task specific sub functions–encoded by the later layers—this is much harder.

To see why, let us return to the vacuuming robot. Imagine it is standing in
front of the stairs, deciding whether to drive forwards or backwards. Using a
fairly standard reinforcement-learning technique, the neural network needs to be
trained to map the sensor data (such as an image showing the stairs, and the drop
beyond) to the expected long term sum of rewards for the two options. Early sub-
mappings of the network might need to detect the lines that make up the stairs.
These same functions can also be learned while learning drive around tables or
learning not to crash into walls. Later sub-mappings might specifically detect
stairs, for which we still get information whether we drive forwards or backwards.
The final sub-mapping gives the long term return estimates. Not only is this
difficult to determine, due to the fact that it involves predicting part of the future,
but we also only get a single measurement of one of the two options. This makes
the direction in which we update the parameters corresponding to this final sub-
mapping of the neural network more uncertain than those of the sub-mappings
before.

As the estimates of the direction in which we should update the parameters of
the final sub-mapping can be poor, updates in wrong directions are common.
This means that suddenly behaviors are tried that are worse than those that were
found previously. When calculating the gradients this way, both the estimation
of the long term effects as well as the data gathered are dependent on the current
behavior. This means that the update direction estimates might become even
worse and the optimizer can quickly loose its way in the parameter space. In
practice this tends to mean that while these gradient-based optimization strategies
can relatively quickly find a decent policy, they tend to be unstable and struggle to
go from a decent policy to a great policy. In Chapter 6 we will therefore investigate
a different way of fine-tuning these final parameters. Instead of repeated small
steps in an uncertain direction, we will repeatedly sample from a distribution over
the parameter space, test the sampled parameters for a while, and update the
distribution to make the more successful parameters more likely to be sampled
again. We show in Chapter 6 how this gradient-free fine-tuning leads to finding
better behaviors in a more stable way.

12

C
H

A
P
T

E
R

 2

2
Deep Reinforcement Learning

Parts of this chapter have previously been published in:

Buşoniu, L., de Bruin, T., Tolić, D., Kober, J., Palunko, I. (2018).
"Reinforcement learning for control: Performance, stability, and deep
approximators". Annual Reviews in Control (ARC).

14 | Chapter 2

This chapter will discus the basic components that are combined in this thesis: re-
inforcement learning and deep learning (for more detailed reviews, see Goodfellow
et al., 2016; Sutton and Barto, 2018). Besides covering the required preliminary
knowledge and the notation used in this thesis, attention will be given to the
aspects of these methods that will provide the opportunities and the pitfalls re-
sulting from their combination. We will also discuss existing methods in the deep
reinforcement learning subfield, with a focus on the common strategies for cop-
ing with the problems resulting from the combination, as well as exploiting the
opportunities.

2.1 | Reinforcement Learning

Reinforcement learning is a framework that enables solving sequential decision
making problems. These problems can be framed as Markov Decision Processes
(MDPs). An MDP is defined by a set of states S, a set of actions A, a dynamics
function P(s, s′|a) that describes the probability of transitioning from state s to
state s′ when taking action a, and a reward function R(s, a, s′) that describes the
instantaneous desirability of the transition from s to s′ using action a as a scalar.

Instead of only considering the reward for a single transition, decisions should be
made with the aim of transitioning towards states that are more rewarding in the
long term. The optimality of a sequence of control decisions will be measured by
the return R, which is the long term sum of rewards. In this thesis the return is
defined as:

R =
K∑
k=0

γkrk, (2.1)

where γ ∈ [0, 1) is a discount factor that keeps the sum finite and enables em-
phasizing shorter term rewards. We use k to indicate the discrete time steps (of
an episode) at which control decisions are made. K is the time-step at which
the environment terminates, which can be ∞. The return gives a measure of the
quality of the sequence of decisions made from a single initial state s0. The aim of
reinforcement learning is to come up with a policy that optimizes the return for
the initial state distribution S0:

J = Esk=0∼S0R(sk=0). (2.2)

For episodic tasks where the environment is guaranteed to terminate in a finite
number of steps (K <∞), γ can be 1. However, even the when we are interested
in optimizing for this undiscounted return, the discounted return is often used as a
proxy that is easier to optimize for (Marbach and Tsitsiklis, 2003; Schulman et al.,

Deep Reinforcement Learning | 15

environment
rk+1

sk+1sk

rkok

agent ak

Tk

Figure 2.1: The agent-environment interface. The agent sends actions a to the environment,
which change the environments internal state s. After a delay one one time step k, the agent
receives a reward r, an observation o that describes the new environment state, and a signal T
which indicates whether the new environment state is terminal.

2015b). In all but the last chapter of this thesis we consider the discounted return
as the optimization objective.

The MDP framework is important for developing the theory of RL. In practice,
we consider only the set of actions A to be directly available to the algorithms we
use. In this thesis, we consider the actions that can be taken to be independent of
the state. Besides the actions, we can only sample the rest of the MDP through
the agent-environment interface shown in Figure 2.1.

At every time-step k, an observation ok is obtained from the environment. In this
thesis, we consider this observation to contain all of the information contained in
the state s of the environment, although potentially in an ambiguous and highly
redundant manner. The high dimensional, highly redundant encoding is a property
of physics and tends to be true for sensor data (Lin et al., 2017). The (Markov)
assumption that previous observations will not contain any information about
the current state that is not also included in the current observation will not
often hold on actual robotic tasks. However, it is (approximately) true for the
tasks considered in this work and allows a focus on other challenges facing deep
reinforcement learning.

Based on the observation o an action a is selected. The environment then transi-
tions from state s to s′, which is observed as o′ and the reward r for the underlying
transition is received. In addition, we will record whether the environment termi-
nates after the transition with the terminal indicator T, which is 1 for terminal
states and 0 otherwise. The interactions with the environment result in experience
tuples {o, a, o′, r,T}.

Our aim is to come up with a policy that maps observations to actions in a way
that maximizes (2.2). In this thesis we consider deterministic policies: a = π(o).
Stochastic policies can have advantages in exploration, robustness and convergence

16 | Chapter 2

stability and can be optimal in certain settings (Haarnoja et al., 2017). However,
in this thesis we are looking at the effects of data distributions, representation
learning and optimization procedures on deep reinforcement learning. To isolate
these effects, we prefer the simpler deterministic algorithms.

To learn policies we will make use of value functions (Sutton and Barto, 2018).
These functions give the expectation of (2.1) under a specific policy. We start
here by defining value functions (and policies) based on the true states s ∈ S of
the system. In the next section we will address the fact that we do not presume
access to these states, but only to their corresponding observations o. Two value
functions are used:

• the state value function V π(s) is defined as the expected value of the return
when starting from state s and following policy π:

V π(s) .= Eπ
[K∑
k=0

γkrk|sk=0 = s
]
, (2.3)

• the state-action value function Qπ(s, a) is defined as the expected value of
the return from state s when taking action a for the first time step and
following the policy π afterwards:

Qπ(s, a) .= Eπ
[K∑
k=0

γkrk|sk=0 = s, ak=0 = a
]

(2.4)

To learn value functions, estimates of the return are needed. Different estimators
for the return from a state exist. On opposite ends of the bias-variance spectrum
we have the Monte Carlo estimator: by simply following the policy from a given
state and calculating the return with the collected reward samples, an unbiased
sample of the return distribution is obtained. However, as every transition might
be stochastic, this estimator can have very high variance. If, on the other hand, we
already have an estimator for the value function, we can use the recursive property
of the definition of value functions. For instance:

qπ(s, a) = r + γQ̂π(s′, π(s′)). (2.5)

Note here that we use capitals for functions and lower case notation for (point)
estimates. This estimator does not suffer from the high variance of the Monte
Carlo estimator, since evaluatingQπ(s′, π(s′)) provides an estimate of the expected
value of the return distribution from s′ rather than a sample from the distribution.
However, since the estimate stems from the function that is being learned, it is

Deep Reinforcement Learning | 17

almost certainly biased. This idea of using the function that is to be learned for
generating part of its own learning targets is known as bootstrapping.

With samples from an MDP, it is possible to form estimators for the expected value
of the return of the policy that generated the data (an on-policy estimator), or
for another policy. In this thesis the focus is on off-policy methods: methods that
use samples from an arbitrary policy to estimate the value function of the optimal
policy. Our interest in these methods stems from the fact that they (theoretically)
allow for better sample efficiency. When the policy changes, older samples can still
be used. Additionally, samples from other agents or controllers that are known
to work could theoretically be used. In practice, learning becomes difficult when
the sample distribution that would be induced by the policy that is to be learned
differs too much from the sample distribution that it should be learned from. We
investigate these considerations in detail in Chapters 3 and 4.

Most commonly, the samples of the MDP that are used to learn the value functions
from are obtained by exploration policies. These policies π̃ tend to be stochastic
variants of the policy π that is being learned. The aim of these policies is to obtain
more diverse samples of the MDP than the policy π would. The reason for this
need for diversity is twofold. First, to learn the optimal policy, the value functions
need to be accurate for those states that the optimal policy visits. The current
policy π might not be optimal yet, so it might not sample those states. By adding
stochasticity to the policy, the probability of visiting states that correspond to a
better policy than π is increased. Second, as will be investigated in Chapter 3,
sufficient sample diversity is crucial when combining RL with deep neural networks,
even for (near) optimal π.

Three types of exploration policies are used in this thesis:

• epsilon-greedy: at every time step, a = π(s) with probability (1 − ε). With
probability ε, a ∼ U(A),

• additive noise: ak = π(sk) +Ok, where Ok is a noise process that might be
temporally correlated,

• parameter noise: In Chapter 6 we will use a form of exploration that adds
noise to the policy parameters rather than the actions. This causes the
exploration to be state dependent.

To learn a policy, two basic strategies are used in this thesis. The first is to
use a state-action value function, and take the action associated with the highest
expected return value:

π(s) = arg max
a

Q(s, a) (2.6)

18 | Chapter 2

For discrete actions, (2.6) can be easily evaluated. When using continuous actions,
finding the maximum becomes more involved. The second strategy is therefore to
use an explicitly parameterized policy. Estimates of the return (such as value
functions or Monte Carlo estimates) can then be used to optimize the parameters
of the policy using the policy gradient theorem (Schulman et al., 2015b; Silver
et al., 2014; Sutton et al., 2000). While this section has discussed some of the basic
ideas behind reinforcement learning, Section 2.3.2 will discuss concrete algorithms.

2.2 | Deep Learning

Much of the original theory of RL was developed in a tabular setting, where the
values and actions for every state can be stored explicitly. When the number of
states becomes too large, for instance when the state-space is continuous, it be-
comes infeasible to sample, store, and compute the values of all states. Therefore,
the value functions and optimal policies will need to be approximated by functions
that are able to generalize to some extent across the state-space. Worse still, in
our robotic setting, we do not assume to have access to the true state of the en-
vironment at all. Instead, we have access to sensory observations of a subset of
relevant states of the environment, which tend to be high dimensional and include
a lot of redundancy. The high dimensional nature of the observations means that
local function approximation will not work without a proper distance measure,
which we are unlikely to have access to (Friedman et al., 2001).1 Although feature
engineering could be used to extract the relevant aspects of the state from the
sensor data, this defeats the purpose of using RL; we would like to have a general
algorithm that requires minimal prior knowledge about the task that needs to be
solved.
Therefore, we require some function that can learn to approximate the value func-
tions (2.3) and (2.4) from the observations corresponding to the states. This will
require the function approximator to not just learn a mapping from (representa-
tions of) states to return estimates, but also a mapping from observations to a
representation of these states. Although we will investigate explicitly learning this
mapping of observations to state representations in Chapter 5, this mapping is
generally learned implicitly as part of the mapping from observations to return
estimates or actions.
The mapping from observations to return estimates or actions requires a global,
expressive function approximator that can be trained in a statistically efficient

1According to the manifold hypothesis, the observations will be clustered around low(er) di-
mensional nonlinear manifolds within the high-dimensional observation space (Goodfellow et al.,
2016). While this could enable local function approximation on these manifolds, calculating
distances between points on the manifold requires knowing the shape of the manifold.

Deep Reinforcement Learning | 19

manner. There are many different function approximators to choose from, and all
make some assumptions about the functions that need to be approximated. Neu-
ral Networks (NNs) make only smoothness assumptions and, as a consequence,
are able to represent any smooth function arbitrarily well given enough parame-
ters (Hornik, 1991), making them a very general approximator option. However,
without assumptions in addition to smoothness, it is impossible to learn to approx-
imate certain complex functions in a statistically efficient manner (Bengio et al.,
2006). The most important additional assumption made in Deep Neural Networks
(DNNs) is that the function that needs to be approximated can be composed of
a hierarchy of simpler functions (Goodfellow et al., 2016). This assumption is ex-
pressed through the architecture of DNNs, which have multiple hidden layers that
compute nonlinear transformations of the outputs of previous layers. This decom-
posability assumption has proven very useful, especially when learning functions
of natural data—which we assume our sensory observations to be—such as images,
sounds and languages. This is due to the fact that this compositional structure is
found all throughout the physical processes that generate these natural data (Lin
et al., 2017).

Since we consider the challenge of learning to control from sensory observations,
we will use DNNs as functions approximators in this work. The notation for the
DNN approximations of value functions and policies we use in this thesis will be
as follows. For a state-action value function approximation we write Q̂π(o, a; θ),
where θ is the parameter vector of the network. When the corresponding policy
and parameter vector are clear from the context, we will abbreviate this to: Q̂(o, a).
For the policy we will write: π(o; θ) which will similarly be abbreviated to π(o)
when this does not lead to ambiguity.

The combination of RL with DNN function approximation is known as Deep Re-
inforcement Learning (DRL). This sub-field has already shown impressive results,
such as achieving super-human performance on the game of Go, which until re-
cently was believed to require human intuition (Silver et al., 2016). It is however
important to realize that the assumptions behind DNNs do not always hold and
that they do come at a price. We outline the assumptions, the opportunities they
offer and the potential pitfalls of combining RL with DNNs in Section 2.2.1. In
Section 2.3.1, we describe common strategies to deal with the challenges of DRL,
while Section 2.3.2 gives an overview of popular DRL algorithms and how they
implement these solutions. Section 2.3.3 describes ways in which the opportunities
provided by the DNN assumptions can be exploited further.

20 | Chapter 2

2.2.1 Opportunities and pitfalls

In order to decide whether using a DNN as a function approximator is a good
idea, and to realize the potential when one is used, it is important to be aware of
the consequences stemming from the assumptions underlying deep learning.

Universal function approximation

The use of a universal function approximator, which can theoretically approximate
any smooth function arbitrarily well, makes it possible to learn complex nonlinear
policies and value functions. The combination of RL with DNNs gives a very
general algorithm. However, this does mean that the space of possible functions is
very large, making the optimization problem of finding a good set of parameters
difficult. When more is known about the properties of the function that needs to
be approximated, including this knowledge and thereby reducing the search space
can be very beneficial. Although additional assumptions might introduce a bias in
the learned function, they might also make the problem of learning the function
tractable. Additionally, the use of a universal function approximator makes it more
likely to over-fit to the training data. Rajeswaran et al. (2017) showed how, on a
set of benchmarks often used to test DRL algorithms, RL with simpler function
approximators learned faster and resulted in more robust policies, as the neural
network policies over-fitted on the initial state distribution and did not work well
when initialized from different states.

Stochastic gradient descent

A number of optimization techniques could be used to fit the parameters of a neural
network (e.g. evolutionary strategies, Koutník et al., 2013; Salimans et al., 2017).
However, the large number of parameters in most neural networks combined with
the reliance on functional composition mean that first-order gradient methods are
by far the most popular choice in practice. These techniques calculate an estimate
of the first-order gradient of the cost function with respect to all of the network
parameters. In the simplest case, the parameters are simply adjusted slightly
in the (opposite) direction of the gradient, although often techniques are used
that incorporate momentum and adaptive learning rates per parameter such as
RMSprop (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2015).

Neural networks can learn in a statistically efficient way because their parameters
can apply globally and the decomposition into functions of functions allows the
efficient reuse of parameters (Carter et al., 2019). While this allows for the gen-
eralization of a policy to unexplored parts of the state-space, it also means that
the gradient estimates should be representative of the entire state-action space
and not biased towards any particular part of it. Therefore, gradient estimates

Deep Reinforcement Learning | 21

are usually averaged over individual gradients computed for a batch of experiences
spread out over the state-space. Subsequent gradient estimates should similarly be
unbiased; they should be independent and identically distributed (i.i.d.) over the
relevant state-action space distribution. When the gradient estimates suffer from
high variance (as is the case for Monte-Carlo estimates of the policy gradient),
they should be averaged over a larger batch to get a more reliable estimate.

Even when using adaptive learning rates and momentum, popular DNN opti-
mization techniques still base their parameter updates on stochastic first order
gradients estimates. Determining the right step size is problematic and sometimes
the direction of the gradient is simply wrong. Combined with the highly nonlinear
nature of DNNs, this means that some updates will inevitably have detrimental
effects.

Functions of functions

The assumption that the function that needs to be approximated is composed of a
hierarchy of simpler functions is encoded in DNNs by having multiple layers, with
each layer computing a function of the outputs of the previous layer. The number
of unique functions that the entire network can represent scales exponentially with
the number of layers (Raghu et al., 2016) and the optimization of deeper networks
has theoretically been shown to be less likely to result in a poor local optimum
(Choromanska et al., 2015).

When determining the gradient of the loss function with respect to the parameters,
the repeated multiplications with the derivative of a layer with respect to its inputs,
resulting from the chain rule, can cause the gradients to become too large or small
to effectively learn from. This problem is especially pronounced in recurrent neural
networks, which are effectively very deep in time and repeatedly apply the same
function (Hochreiter et al., 2001).

Complexity

DNNs have shown remarkable results in practice. The theoretical foundations are
however still somewhat incomplete (Zhang et al., 2016). DRL lacks the theoretical
guarantees offered by RL with some other types of function approximators. At
the same time, it has been shown to scale to problems where the alternatives are
intractable.

The complexity resulting from the interplay between the different components of
DRL algorithms makes the learning curve fairly steep for beginning practitioners.
Implementation details not mentioned in papers can have a more significant in-
fluence on the performance of a method than the parameters that are the focus
of the work (Henderson et al., 2017; Tucker et al., 2018). The complexity of the

22 | Chapter 2

domains DRL is often tested on also contributes to a relatively high computa-
tional complexity. This means that DRL papers often include fewer repetitions of
the experiments than are needed to get statistically significant results (Henderson
et al., 2017).

2.3 | Deep Reinforcement Learning

The particularities of training deep neural networks mentioned previously mean
that using DNNs as plug and play function approximators in standard RL algo-
rithms is unlikely to result in more than disappointment. Section 2.3.1 will discuss
some of the ideas needed to make deep reinforcement learning work in practice.
Some of the DRL algorithms implementing these ideas will be discussed in Sec-
tion 2.3.2. Of course, the combination of RL and DNNs also leads to specific
opportunities, some of which are briefly mention in Section 2.3.3.

2.3.1 Common solution components
A substantial number of DRL algorithms have been proposed recently. These
algorithms all have to address the challenges that arise from combining RL with
DNNs. More specifically, these algorithms need to provide sufficiently diverse
and independent samples from the observation space and corresponding stable
yet accurate training targets. Based on this, the network parameters need to be
updated in an efficient manner, without changing the policy so drastically that
the obtained samples and learned functions are no longer valid.

To do this, most DRL methods are based on a few shared ideas. While most
of these ideas and the problems they address are not limited to RL with DNN
function approximation, they have proven crucial for making DRL work.

Delayed targets

To learn to approximate a value function with a DNN, the difference between the
network predictions and estimates of the returns is minimized. When the return
estimates are obtained through bootstrapping, this means that the predictions
and the training targets are highly correlated, especially for high values of γ.
While this is true for other forms of function approximation as well, it is especially
problematic for DNNs for at least two reasons. The first is that parameter updates
can have a global effect; a poor update in one part of the state space can affect
the predictions—and therefore the training targets—in other parts of the state
space as well. Secondly, the large number of parameters of DNNs means that it
is usually only feasible to obtain a stochastic estimate of the first order parameter
gradient. Combined with the highly nonlinear nature of DNNs this can mean that
a parameter update can sometimes have large unforeseen consequences. These

Deep Reinforcement Learning | 23

effects combined with the direct feedback of predictions to training targets can
quickly cause the learning process to diverge (Mnih et al., 2015). To ameliorate
this problem, the target (return estimate) values can be calculated using an older
version of the (action) value function network, often called a target network. This
reduces the correlation and allows the network to update the predictions towards
a more stable target, providing a chance to recover from bad updates.

Trust region updates

To limit the detrimental effects of too large steps in the parameter space, small
learning rates can help. However, the resulting increase in training time and
the required amount of training samples mean that preventing problems in this
manner is often infeasible in practice. The problems are especially pronounced for
on-policy methods relying on roll-outs, where the gradients additionally exhibit
high variance. Changes to the policy can quickly change the distribution of states
visited by the updated policy away from the on-policy distribution for which the
update was valid.

To increase the likelihood of the updates to the policy resulting in improved per-
formance, the changes in the policy distribution should therefore be kept small,
while still maximizing the improvement in the parameter space. Several schemes
have been proposed to prevent the changes to the parameters of the policy from
resulting in too large changes to the policy distribution. These include adding a
constraint on the policy distribution change to the optimization (Schulman et al.,
2015a), clipping the objective function such that only small changes to the policy
distribution are considered beneficial (Schulman et al., 2017), and constraining the
policy parameters to be close to the running average of previous policies (Wang
et al., 2017).

n-step returns

A problem that is inherent to bootstrapping methods is that they result in biased
updates since the targets are based largely on an approximation of a function
that should still be learned and is therefore by definition incorrect. This bias can
prevent these methods from converging. On the other hand, Monte-Carlo based
methods, while unbiased, suffer from high variance. This is because the return
calculated for each roll-out trajectory represents only a single sample from the
return distribution, while value functions represent the expectation of the return
distribution.

On the complex domains that DRL is often applied to, the high variance of Monte-
Carlo based methods tends to result in learning that is infeasibly slow. At the same
time, the bias of methods based exclusively on learning value functions through

24 | Chapter 2

bootstrapping results in learning that can sometimes be faster, while other times
failing to learn anything useful at all. A common strategy therefore is to interpolate
between these extremes, for instance by using n-step algorithms (Watkins, 1989).
To estimate the return from a certain state, these algorithms use the true rewards
observed during n time-steps and the learned value estimate for the state at time
step n+1. For instance, an n-step on-policy action value return estimate becomes:

q(ok, ak) = rk + γrk+1 + · · ·+ γn−1rk+n−1 + γnQ̂π̃(ok+n, ak+n) (2.7)

n-step returns are related to eligibility traces (Sutton and Barto, 2018). The n-step
return is preferred in DRL because it tends to be easier to use with momentum
based optimization and recurrent neural networks (Mnih et al., 2016).

Just like the use of target networks, the use of n-step return targets reduces the
correlations between the value function that is being learned and the optimization
targets. Whereas the use of targets networks slows down the learning process
in order to obtain the convergence gains, the use of n-step returns can speed up
learning, provided the policy that obtained the trajectories is close to the policy
for which the return should be estimated.

Experience replay

One of the largest mismatches between the RL framework and the stochastic gra-
dient descent optimization algorithms used to train DNNs is the requirement of the
latter for i.i.d. estimates of the gradients. This requirement can be (approximately)
satisfied by using an experience replay buffer. The consecutive, strongly correlated
experiences obtained through interaction with the environment are saved to the
buffer. When batches of experiences are needed to estimate the gradients, these
batches are assembled by sampling from the buffer in a randomized order, break-
ing the temporal correlations. The fact that off-policy algorithms can learn about
the optimal policy from data obtained by another policy means that a fairly large
amount of previous experiences can be retained. This in turn means that even if
the policy changes suddenly, the data distribution used to calculate the gradients
changes only slowly, which aids the stability (and therefore the convergence prop-
erties) of the optimization process. Finally, the fact that old experiences can be
reused aids the sample efficiency of algorithms using an experience replay buffer
B. Extensions to this basic idea have been proposed, with the most popular being
to replace uniform sampling from the buffer with sampling based on a distribu-
tion determined by the temporal difference error associated with the experiences
(Schaul et al., 2016). By sampling surprising experiences more often, the learn-
ing process can be sped up significantly. This is similar to the classical idea of
prioritized sweeping (Moore and Atkeson, 1993).

Deep Reinforcement Learning | 25

When using n-step returns with n > 1, it is necessary to compensate for the
fact that the samples are not from the policy for which we want to estimate the
return. Importance sampling is a popular choice that prevents bias (Precup et al.,
2000). The downside of importance sampling is that when the difference between
the policies is large, the importance weights quickly become either very small—
effectively rendering the sampled experiences useless—or very large—resulting in
updates with very high variance. Other compensation strategies that ameliorate
these issues have been proposed, see Munos et al. (2016) for an overview.
When an on-policy learning algorithm is used, a buffer can be filled with expe-
riences from roll-outs with the policy. After a learning update based on these
experiences has been performed, the buffer is emptied and the process is repeated.

Input, activation and output normalization

The nonlinearities used in neural networks bound the outputs of the neurons to a
certain range. For instance, the popular Rectified Linear Unit (ReLU) maps all
non-positive inputs to zero. As a consequence, when calculating the derivatives of
these nonlinearities with respect to their inputs, this derivative can be very small
when the input is outside of a certain range. For the ReLU, the derivative of the
activation with respect to all parameters that led to the activation is zero when the
input to the ReLU was non-positive. As a consequence, none of the parameters
that led to the activation will be updated, regardless of how sub-optimal the
activation was. It is therefore important that the inputs to all neural network
layers (whether they be the input to the network or the ouputs of previous layers)
are within a sensible range.
When the properties of the inputs are unknown a priori and they cannot be nor-
malized manually, adaptive normalization can be used. These techniques can also
be used on subsequent layers. Normalization techniques include batch normaliza-
tion (Ioffe and Szegedy, 2015), layer normalization (Ba et al., 2016) and weight
normalization (Salimans and Kingma, 2016).
Similar considerations apply to the backward pass through a network during train-
ing. The gradients of the loss with respect to the parameters should not be too
large, as an update based on large gradients can quickly cause the subsequent
activations of the unit with the updated parameters to be outside of the range
for which learning works well. Particularly, this means that while the scale of the
reward function does not necessarily influence the stability of other forms of RL,
DRL algorithms can be quite sensitive to this property (Henderson et al., 2017).
To ensure that the parameter gradients are within a sensible range, these gradients
are often clipped. This changes the optimization objective, but prevents destruc-
tive updates. Additionally, when learning value functions, the reward function

26 | Chapter 2

can be scaled such that the resulting value function is of a sensible order of mag-
nitude. Rewards are also sometimes clipped, although this changes the problem
definition. Finally, the target values can be adaptively normalized during learning
(van Hasselt et al., 2016).

2.3.2 Popular DRL algorithms
In this section we will discuss some of the more popular or historically relevant
algorithms for deep reinforcement learning. These algorithms all address the chal-
lenges of performing RL with (deep) neural network function approximation by
combining implementations of some of the ideas outlined in the previous section.

Neural Fitted Q iteration (NFQ)

An important early development in achieving convergent RL with neural network
function approximation was the Neural Fitted Q iteration (NFQ) algorithm (Ried-
miller, 2005). The algorithm uses a fixed experience buffer of previously obtained
interaction samples from which to sample randomly. By calculating the target Q-
values for all states at the start of each optimization iteration, and keeping them
fixed throughout an iteration, the optimization is further helped to converge. A
final measure to aid convergence was to add artificial experience samples to the
database at the goal states, where the returns for the optimal policies were known.

Deep Q-network (DQN)

While good for convergence, the need for an a priori fixed set of experiences is
limiting. While new experiences can be added to the NFQ buffer once a training
iteration has completed, Mnih et al. (2015) proposed to continuously write expe-
riences to an experience replay, and to sample experiences uniformly at random
from this buffer at regular environment interaction intervals. Since the constant
changes to the contents of the buffer and the learned Q-function mean that good
targets cannot be calculated a priori, a copy θ− of the Q-function parameters θ
is kept in memory. The optimization targets (q-estimates) are calculated using a
target network, which is a copy of the Q-function network using these older pa-
rameters θ−. At regular intervals the target network parameters θ− are updated
to be equal to θ. Mnih et al. (2015) demonstrated their method using raw images
as inputs. Their convolutional Deep Q-Network (DQN) achieved super-human
performance on a number of Atari games, resulting in growing interest in the field
of DRL.

The base DQN algorithm is simple to implement. Through various extensions,
DQN can achieve competitive performance on domains with discrete actions (Hes-
sel et al., 2017). Because of its simplicity and popularity, we use DQN in several
chapters of this thesis. We therefore present the pseudo code in Algorithm 1.

Deep Reinforcement Learning | 27

Algorithm 1 DQN

Require: DNN value function estimator Q̂(o, a; θ)
Require: Exploration policy π̃(·, Q̂)
Require: Parameter optimization algorithm
Require: Experience replay buffer B
Require: Total number of training steps M
Require: Number of initial random interactions Nr
Require: Parameter update frequency Uθ
Require: Target parameter update frequency U−
Require: Mini-batch size S
1: Randomly initialize θ
2: θ− ← θ

3: while step < M do
4: o← reset environment, T← 0
5: while T = 0 do
6: a← π̃(o; θ) . sample exploration action
7: o′, r,T← environment step(a) . execute action, observe transition
8: store {o, a, o′r,T} in B
9: o← o′

10: step ← step +1
11: if step > Nr then
12: if step mod Uθ = 0 then
13: Sample a random batch of S transitions from B
14: for i ∈ S do
15: qi = ri + (1− Ti) · γmax

a′
Q̂(oi, a′; θ−)

16: update θ to minimize LQ = 1
S

∑S
i=1(qi − Q̂(oi, ai; θ))2

17: if step mod U− = 0 then . U− � Uθ

18: θ− ← θ
return trained network Q̂(·, θ)

28 | Chapter 2

Double DQN (DDQN)

Although methods that use bootstrapping are inherently biased, DQN suffers from
a particular source of bias that can be reduced fairly easily. This form of bias is the
overestimation of the returns which results from the maximization over the next
step Q-values (line 15 of Algorithm 1). The max operator uses the same values
to both select and evaluate the Q-values, which makes over-estimation of the
values likely (Van Hasselt et al., 2016). To address this problem, the selection and
evaluation can be decoupled. The original double Q-learning algorithm did this
by learning two separate Q-functions, based on separate experiences (van Hasselt,
2010). One of these Q-functions is then used for the action selection while the other
is used to determine the Q-value for that action. The Double Deep Q Network
(DDQN) algorithm (Van Hasselt et al., 2016) uses the two separate Q-functions
parameterized by θ and θ− for the separation, such that the complexity of the
algorithm is not increased. As in DQN, the target network is used to determine
the value of the Q-function used for bootstrapping, while the on-line network is
used to determine for which action the target Q-function is evaluated. This makes
the optimization targets (line 15 of Algorithm 1):

q(o, a) = r + (1− T) · γQ̂
(
o′, arg max

a′
Q̂(o′, a′; θ); θ−

)
. (2.8)

This simple change was shown to improve the convergence and performance of the
DQN algorithm.

Deep Deterministic Policy Gradient (DDPG)

For continuous action spaces, an actor-critic algorithm exists that is closely related
to DQN. This Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap
et al., 2016) uses a deterministic policy a = π̂(o; θπ), which is trained to (approx-
imately) select those actions that maximize Q̂. For convergence, target network
copies of both the actor and the critic are used for the critic’s optimization targets:

q(o, a) = r + (1− T) · γQ̂
(
o′, π(o′; θ−π); θ−q

)
. (2.9)

In this algorithm the target network parameters θ−q , θ−π slowly track the online
parameters θq, θπ using a low pass filter. They are updated after each optimization
step according to:

θ−q ← (1− τ)θ−q + τθq

θ−π ← (1− τ)θ−π + τθπ,

Deep Reinforcement Learning | 29

with τ � 1. To calculate the gradients for updating the policy parameters, the
algorithm uses samples of the deterministic policy gradient (Silver et al., 2014):

∇θπJ ≈
1
S

S∑
i=1
∇aQ̂(oi, π(oi; θπ); θq)∇θπ π̂(oi; θπ). (2.10)

The DDPGmethod additionally uses batch normalization layers (Ioffe and Szegedy,
2015).

DDPG is one of the simpler DRL algorithms allowing for continuous action spaces.
Since the algorithm is off-policy, it additionally allows for experience replay, which
together with the use of bootstrapping can lead to sample efficient learning. How-
ever, as Henderson et al. (2017) empirically show, its off-policy nature makes
DDPG most suitable for domains with stable dynamics. Additionally, the bias in
the policy gradient due to the exclusive reliance on a learned value function can
limit the performance and convergence of the algorithm. As this algorithm is used
in this thesis, the pseudo code is presented in Algorithm 2.

Trust Region Policy Optimization (TRPO)

While DDPG uses an off-policy critic to determine the policy gradient for a deter-
ministic policy, Schulman et al. (2015a) introduced a policy-gradient method on
the other end of the bias-variance spectrum. Their Trust Region Policy Optimiza-
tion (TRPO) algorithm uses a large number of roll-outs with the current policy to
obtain state-action pairs with Monte-Carlo estimates of their returns q(o, a, θ−π).
The stochastic policy is then updated by optimizing for the conservative policy
optimization objective (Kakade and Langford, 2002), while constraining the dif-
ference between the policy distribution after the optimization and the older policy
distribution used to obtain the samples:

max
θπ

E
{
π(a|o; θπ)
π(a|o; θ−π)

q(o, a; θ−π)
}

(2.11)

subject to E
{
DKL(π(·|o; θ−π) || π(·|o; θπ))

}
≤ c (2.12)

where DKL denotes the Kullback-Leibler divergence, and the expectations are
with respect to the state distribution induced by the old policy. To perform the
optimization, a linear approximation is made to the objective and a quadratic
approximation is made to the constraint. The conjugate-gradient method is then
used, followed by a line search, to calculate the next parameter values. The TRPO
method is relatively complicated and sample inefficient, but does provide relatively
reliable improvements to the policy.

30 | Chapter 2

Algorithm 2 DDPG

Require: DNN value function estimator Q̂(o, a; θq)
Require: DNN policy π̂(o; θπ)
Require: Exploration policy π̃(·, π)
Require: parameter optimization algorithm
Require: Experience replay buffer B
Require: Total number of training steps M
Require: Number of initial random interactions Nr
Require: Target-parameters update-speed parameter τ
Require: Mini-batch size S
1: Randomly initialize θq, θπ
2: θ−q ← θq, θ−π ← θπ
3: while step < M do
4: o← reset environment, T← 0
5: while T = 0 do
6: a← π̃(o; θπ) . sample exploration action
7: o′, r,T← environment step(a) . execute action, observe transition
8: store {o, a, o′r,T} in B
9: o← o′

10: step ← step +1
11: if step > Nr then
12: Sample a random batch of S transitions from B
13: for i ∈ S do
14: qi = ri + (1− Ti) · γQ̂

(
o′i, π(o′i; θ−π); θ−q

)
15: update θq to minimize LQ = 1

S

∑S
i=1(qi − Q̂(oi, ai; θq))2

16: update θπ using ∇θπJ ≈ 1
S

∑S
i=1∇aQ̂(oi, π(oi; θπ); θq)∇θπ π̂(oi; θπ)

17: θ−q ← (1− τ)θ−q + τθq
18: θ−π ← (1− τ)θ−π + τθπ

return trained policy π̂(·, θπ)

Deep Reinforcement Learning | 31

Generalized Advantage Estimation (GAE)

The stochastic policy gradient can be written as (Schulman et al., 2015b):

∇θπJ = E{
∞∑
k=0

qk ∇θπ log π(ok, ak; θπ)}, (2.13)

where qk is an estimate of the return when taking action ak in state sk and following
the policy afterwards. A trade-off between the bias and variance of the policy
gradient estimates can be made by choosing how much qk is based on observed
rewards versus a learned value estimate, as discussed in Section 2.3.1. Additionally,
the variance of the policy gradient can be reduced by subtracting a baseline from
the return estimate (Greensmith et al., 2004). A common and close to optimal
choice for the baseline is the state-value function. This makes qk a sample from
the advantage function:

Adv(o, a) = Q(o, a)− V (o),

which represents the advantage of taking action a in the state leading to observa-
tion o as opposed to the policy action π(o). An n-step estimate of the advantage
function is:

adv(n)(ok, ak) =
n−1∑
i=0

γirk+i + γnV̂ (ok+n; θV)− V̂ (ok; θV) (2.14)

To more optimally trade off the bias introduced by the imperfect learned value
function for low n with the variance of estimators with high n, Schulman et al.
(2015b) define a Generalized Advantage Estimator (GAE) as an exponentially
weighted average of n-step advantage estimators:

advGAE(λ) := (1− λ)
N∑
n=0

(λn−1adv(n)) (2.15)

The authors use the estimator with the TRPO algorithm. The value function is
learned from Monte-Carlo estimations with trust-region updates as well.

Proximal Policy Optimization (PPO)

The constrained optimization of TRPOmakes the algorithm relatively complicated
and prevents using certain neural network architectures. In the Proximal Policy
Optimization (PPO) algorithm, Schulman et al. (2017) therefore replace the hard
constraint by a clipped version of the objective function, which ensures that for
each state the potential gain from changing the state distribution is limited, while
the potential loss is not. This makes it possible to optimize for the objective

32 | Chapter 2

(which uses the GAE) with SGD-based techniques, as well as to add additional
terms to the objective. Specifically, a regression loss for the value function is
added, which enables parameter sharing between the value function and the policy.
Additionally, a loss based on the entropy of the policy is added to encourage
exploration (Williams and Peng, 1991). PPO is a relatively simple algorithm that
offers competitive performance.

Asynchronous Advantage Actor Critic (A3C)

Instead of collecting a large number of consecutive on-policy trajectories with a
single policy, which are then batched together, Mnih et al. (2016) proposed the
use of a number of parallel actors with global shared parameters. These actors
all calculate updates with respect to the shared parameters, which they apply to
the parameters asynchronously (Recht et al., 2011). To ensure the actors explore
different parts of the state-action space so that the parameter updates better
meet the i.i.d. assumption, each agent uses a different exploration policy. While a
number of proposed algorithms benefited from the parallel actor setup, the most
successful was the Asynchronous Advantage Actor Critic (A3C) algorithm. This
algorithm takes a small number of steps, after which it calculates n-step advantage
estimates (2.15) and value function estimates for these roll-out steps. These are
then used to calculate gradients to update the policy (2.13) and the value function.

Actor Critic with Experience Replay (ACER)

The downside of the on-policy methods (TRPO, PPO, A3C) is that once a step has
been made in policy space, re-evaluating the policy gradient requires discarding
all previous experiences and running trials with the new policy. To increase the
sample efficiency, it is desirable to combine the favorable convergence properties
of the on-policy algorithms with the sample efficiency of off-policy algorithms.

One algorithm that does this is the Actor Critic with Experience Replay (ACER)
algorithm of Wang et al. (2017). It uses the A3C algorithm as a base and combines
it with a trust-region update scheme based on limiting the distance between the
new policy parameters and those of a running average of recent policies. It then
alternates between the standard on-policy updates of A3C and off-policy updates,
where each parallel agent samples trajectories from a local experience buffer for
the updates. Truncated importance sampling with a bias correction term is used
to correct for the off-policy nature of the n-step trajectories. While the algorithm
offers very competitive performance for both discrete and continuous actions, it is
relatively complex.

Deep Reinforcement Learning | 33

Interpolated Policy Gradient (IPG)

Another way in which on-policy and off-policy algorithms can be combined is to
simply interpolate between the biased yet sample efficient deterministic policy
gradient obtained from an off-policy critic (2.10) and the unbiased yet sample
inefficient on-policy Monte Carlo estimate of the policy gradient. This Interpolated
Policy Gradient (IPG) method was proposed by Gu et al. (2017b), who found
intermediate (but mostly on-policy) ratios to work best.

2.3.3 Extensions

The DRL algorithms discussed before mostly address the pitfalls of combining RL
with DNNs. However, the use of DNNs also offers opportunities to go beyond
simply performing RL with DNN function approximation. The functional decom-
position of DNNs means that while later layers might compute very task specific
features, earlier layers could represent much more general functions. For exam-
ple, while later layers in a convolutional network might learn to recognize task
specific objects, earlier layers might learn to detect edges or textures (Olah et al.,
2017). These earlier layers might therefore easily generalize to new tasks and,
equivalently, be trained through different objectives and using data obtained from
separate tasks. Therefore, the deep learning assumptions make the combination
of DRL with transfer learning and state-representation learning very interesting.

State representation learning

As discussed previously, learning a policy from observations can be seen as a com-
bination of learning a mapping from the sensor data to a representation of the state
of the environment as well as a subsequent mapping from the state representation
to the actions. While the state representation can be learned implicitly through
DRL, the number of required trial and error samples might be prohibitively ex-
pensive as the reward signal might contain only very indirect information on how
to learn the state representation.

Instead, explicit State Representation Learning (SRL) objectives can be used be-
fore or during the RL phase. These objectives can enable learning from unlabeled
sensor data, as well as limiting the parameter search space through the inclu-
sion of prior knowledge. Auto-encoding is a popular SRL objective as it is fully
unsupervised; through a compression objective salient details are extracted from
observations that are highly redundant (Finn et al., 2016; Hinton and Salakhutdi-
nov, 2006; Lange et al., 2012b). Besides the knowledge that observations are highly
redundant, other priors include the fact that the state of the world only changes
slowly over time (Wiskott and Sejnowski, 2002), as well as the fact that the state

34 | Chapter 2

should be predictive of immediate received rewards (Shelhamer et al., 2016). Ad-
ditional priors relevant to physical domains were suggested by Jonschkowski and
Brock (2015). Besides encoding general knowledge about the state of the world, it
is possible to learn to encode the observations in a way that is suitable for control.
One example is the work of Watter et al. (2015), which embeds images into a state-
space in which actions have a (locally) linear effect. Another example is provided
by Jonschkowski et al. (2017) who learned to encode the positions and velocities
of relevant objects in an unsupervised manner. Jaderberg et al. (2017) proposed
to learn, off-policy, additional value functions for optimizing pseudo rewards based
on controlling the sensory observations and the activations of the neurons of the
networks. The inclusion of SRL objectives in DRL can help learn representations
and policies that generalize to unseen parts of the state-space more easily. We in-
vestigate this, and the question of how to combine SRL and RL in a stable manner
in Chapter 5.

Transfer learning

Just as the generality of the functions encoded by the earlier layers of the policy
and value function DNNs means that they can be trained with more than just RL
updates, and generalize to unseen parts of the state-space, it also means that the
encoded functions can be relevant to more than just the training task. This makes
DRL suitable for transfer learning, where generalization needs to be performed to
a new task, rather than just across the state-space of the training task. In this
context, Parisotto et al. (2015) used DQN agents trained on several Atari games
as teachers for a separate DQN agent that was trained to output similar actions,
and have similar internal activations as the teachers. This was found to result in a
weight initialization that sped up learning on new games significantly, given enough
similarity between the new games and some of the training games. It is also pos-
sible to more explicitly parameterize representations for transfer. Universal Value
Functions (UVFs) (Schaul et al., 2015) are one example where value functions are
learned that generalize over both states and goal specifications. To improve the
performance in domains where only reaching a goal results in obtaining a reward,
Andrychowicz et al. (2017) proposed Hindsight Experience Replay (HER), which
relabels a failed attempt to reach a certain goal as a successful attempt to reach
another goal. Another representation that is suitable for transfer learning is the
Successor Features (SF) representation (Barreto et al., 2017) which is based on
successor representations (Dayan, 1993). These representations decouple the value
function into a representation of the discounted state distribution induced by the
policy and the rewards obtained in those states. Zhang et al. (2017) showed the
use of this representation with DRL in the robotics domain.

Deep Reinforcement Learning | 35

Supervised policy representation learning

Sometimes the state of the environment is available for specific training cases,
but not in general. For instance, a robot might be placed in a motion capture
arena. In this case, it might be relatively simple to learn or calculate the correct
actions for the states in the arena. Alternatively, it might be possible to solve the
RL problem from specific initial states, but hard to learn a general policy for all
initial states. In both of these scenarios, trajectories of observations and actions
can be collected and supervised learning can be used to train DNN policies that
generalize to the larger state-space, preventing many of the issues of DRL. One
technique that applies this principle is Guided Policy Search (GPS), which adds a
constraint to the local controllers on the deviation from the global policy, such that
the local policies do not give solutions that the DNN can not learn to represent
(Levine et al., 2016; Levine and Koltun, 2013).

36

C
H

A
P
T

E
R

 3

3
The Effect of the Experience

Buffer Contents

Parts of this chapter have previously been published in:

de Bruin, T., Kober, J., Tuyls, K., Babuška, R. (2018). "Experience
selection in deep reinforcement learning for control". the Journal of
Machine Learning Research (JMLR).

de Bruin, T., Kober, J., Tuyls, K., Babuška, R. (2015). "The impor-
tance of experience replay database composition in deep reinforcement
learning". Deep Reinforcement Learning Workshop, Advances in Neu-
ral Information Processing Systems (NIPS), 2015.

38 | Chapter 3

3.1 | Introduction

For any machine learning system, the data that are used to train the system are of
paramount importance for its performance. In the application of supervised and
unsupervised learning algorithms alike it is crucial to collect a training dataset
with a distribution of examples that is representative of the distribution of inputs
that is expected during the operation of the system. While generalization in deep
neural networks is not well understood (Zhang et al., 2016), it is well known that
relatively large amounts of diverse examples from the domain of the function that
is to be learned are required. Besides these requirements on the training data set
as a whole, the stochastic-gradient algorithms used for the optimization of the
neural network parameters additionally require the data to be presented in an
independent and identically distributed (i.i.d) order.

Reinforcement learning is a somewhat unusual form of machine learning, as the
training dataset is generally not collected a priori. Instead, reinforcement learning
algorithms receive a temporally correlated stream of data, the distribution of which
is a direct function of the training process. Here too, sufficient coverage of the
function domain is crucial. Not just to ensure that the learned function generalizes,
but also to discover good policies to begin with. In RL this gives rise to a large
body of work on advanced exploration strategies and the exploration-exploitation
dilemma. To facilitate the use of neural network function approximation, the
stream of experiences can be directed towards a buffer from which the experiences
can be sampled in an order that breaks their temporal correlations. This reduces
the violations of the i.i.d requirement of the stochastic gradient methods used to
train the networks.

When applying deep reinforcement learning methods to robotics, there are con-
straints on the kind of policies that can be executed—and therefore the data that
can be gathered. Due to the danger involved, it might not be possible to perform
extensive exploration or even apply a policy directly that has not been sufficiently
trained. Even when rigorous exploration is temporarily possible, it is often neces-
sary to reduce the exploration intensity over time to prevent wear and to focus the
newly gathered data around the sensitive equilibria that are often of most interest
when controlling dynamical systems.

Given the possible limitations on the policies that can be executed on robots, as
well as the expensive nature of robotic experience samples, we investigate off-policy
reinforcement learning in this thesis. In this context we investigate the effects of
the data distribution on deep reinforcement learning. In this chapter, we start
by investigating how different aspects of control problems influence the need for
different distributions of samples over the state-action space. In the next chapter

Experience buffer contents | 39

we will use this knowledge to propose several strategies for selecting experiences,
from the stream of experiences that is observed, for training. These experience
selection methods are developed to address specific problems stemming from the
combination of reinforcement learning and deep learning under the constraints
imposed in the robotics domain.

3.2 | Motivating example

We start by motivating the focus on the effects of the data distribution when com-
bining reinforcement learning with deep neural network function approximation
under robotic constraints. To do so, a reference tracking controller for a 2-link
robot arm is learned using DDPG (Lillicrap et al., 2016, see Section 2.3.2 and
Algorithm 2). The arm is depicted in Figure 3.1. It consists of two links that are
connected through a motorized joint. The arm hangs down from another motor-
ized joint. A detailed description of the control task is given in Appendix A, with
algorithmic implementation details given in Appendix B. The control problem en-
tails learning to move the end of the arm to reference positions by determining
the voltages to the motors based on a low-dimensional observation.

Certain control signals, especially those with strong high-frequency components,
have the potential to significantly increase wear on the system (Koryakovskiy et al.,
2017). We therefore used both a low-pass filter on the applied control signals
and the temporally-correlated Ohrnstein-Uhlenbeck noise process (detailed in Ap-
pendix A and Appendix B respectively). The observation of the system included
the control voltages at the preceding time step to prevent the filtered control signal
from making the problem non-Markovian.

θ1

θ2

a2

a1

x

y

G

Figure 3.1: 2-link arm robot schematic (left) and photo (right).

40 | Chapter 3

Time [s]

0 5 10 15 20 25 30

x
-p

o
s
it
io

n

-1.5

-1

-0.5

0

0.5

1

1.5
Reference

First 3 and last 3 trials

Last 6 trials

Time [s]

0 5 10 15 20 25 30

y
-p

o
s
it
io

n

0

0.5

1

1.5

2

2.5

3
Reference

First 3 and last 3 trials

Last 6 trials

Figure 3.2: Effects of (not) keeping early samples in the experience buffer on a physical sys-
tem. For both retention strategies, two policies were trained for 40 episodes of 30 seconds. An
experience buffer that can hold experiences from 6 episodes was used. Keeping early experiences
in memory can be seen to significantly improve the quality of the learned controller.

Despite these precautions, the exploration noise was still observed to cause in-
creased wear on the system1. We therefore decay the magnitude of the exploration
signal exponentially with every subsequent episode. This means that the experi-
ences obtained during the initial exploratory phase, in which data is collected that
is spread more uniformly over the state-action space, will quickly be outnumbered
by experiences centered more closely around the policy. When a buffer is used
that is large enough to contain all samples, uniform sampling will asymptotically
reduce the importance of the initial samples to zero. When a smaller buffer is used
that is overwritten in a First In First Out (FIFO) manner, the experiences will be
overwritten within finite time.

To clearly demonstrate the continuing importance of the initial exploratory sam-
ples, we perform experiments with a small experience buffer that can hold 6 trials
worth of experiences. We consider two strategies for overwriting this buffer. In
the first, we simply overwrite the buffer in a FIFO manner. In the second method,
only the second half of the buffer is overwritten, leaving the initial exploratory
experiences in the buffer indefinitely.

The policies that resulted after 40 episodes were tested on the same sequence
of reference positions. The response of the system in the four tests is shown in
Figure 3.2. It can be seen that although the two learning runs which kept the initial
episodes in the database produced useful policies, the method completely failed
on both runs where the six most recent episodes were kept in memory instead.

1The more aggressive movements during exploration quickened the loosening of a screw on
the arm. The gradual loosening altered the system dynamics and when the screw became too
loose the arm was not accurately controllable.

Experience buffer contents | 41

These experiments motivate an investigation into which experiences should be in
the experience buffer for deep reinforcement learning to work well. This investiga-
tion will be performed in simulation, as this allows for reproducible experiments,
sufficient repetitions for statistically significant results and the exclusion of con-
founding factors such as screw looseness.

3.3 | Related work

When a learning system needs to learn a task from a set of examples, the order
in which the examples are presented to the learner can be very important. One
method to improve the learning performance on complex tasks is to gradually
increase the difficulty of the examples that are presented. This concept is known
as shaping (Skinner, 1958) in animal training and curriculum learning (Bengio
et al., 2009) in machine learning.

Sometimes it is possible to generate training examples of just the right difficulty
on-line. Recent machine learning examples of this principle include generative ad-
versarial networks (Goodfellow et al., 2014) and self play in reinforcement learning
(see for example the work by Silver et al. 2017). When the training examples are
fixed, learning can be sped up by repeating those examples that the learning sys-
tem is struggling with more often than those that it finds easy, as was shown for
supervised learning by, among others, Hinton (2007) and Loshchilov and Hutter
(2015). Additionally, the eventual performance of supervised-learning methods
can be improved by re-sampling the training data proportionally to the difficulty
of the examples, as done in the boosting technique (Freund et al., 1999; Valiant,
1984)

In on-line reinforcement learning, a set of examples is generally not available to
start with. Instead, an agent interacts with its environment and observes a stream
of experiences as a result. The experience replay technique was introduced to save
those experiences in a buffer and replay them from that buffer to the learning
system (Lin, 1992). The introduction of an experience buffer makes it possible to
choose which examples should be presented to the learning system again. As in
supervised learning, we can replay those experiences that induced the largest error
(Schaul et al., 2016). Another option that has been investigated in the literature
is to replay experiences that are associated with large immediate rewards more
often (Narasimhan et al., 2015).

In off-policy reinforcement learning the question of which experiences to learn from
extends beyond choosing how to sample from a buffer. It begins with determining
which experiences should be in the buffer. Lipton et al. (2016) fill the buffer with

42 | Chapter 3

successful experiences from a pre-existing policy before learning starts. Other au-
thors have investigated criteria to determine which experiences should be retained
in a buffer of limited capacity when new experiences are observed. In this context,
Pieters and Wiering (2016) have investigated keeping only experiences with the
highest immediate rewards in the buffer, while this chapter will investigate the im-
portance of sufficient diversity in the state-action space (see also de Bruin et al.,
2016a,b).

Experience replay techniques, including those in this thesis, often take the stream
of experiences that the agent observes as given and attempt to learn from this
stream in an optimal way. Other authors have investigated ways to instill the
desire to seek out information that is useful for the learning process directly into the
agent’s behavior (Bellemare et al., 2016a; Chentanez et al., 2004; Houthooft et al.,
2016; Osband et al., 2016; Schmidhuber, 1991). Due to the classical exploration-
exploitation dilemma, changing the agents behavior to obtain more informative
experiences comes at the price of the agent acting less optimally according to the
original reward function.

A safer alternative to actively seeking out real informative but potentially danger-
ous experiences is to learn, at least in part, from synthetic experiences. This can be
done by using an a priori available environment model such as a physics simulator
(Barrett et al., 2010; Rusu et al., 2016), or by learning a model from the stream of
experiences itself and using that to generate experiences (Caarls and Schuitema,
2016; Gu et al., 2016; Kuvayev and Sutton, 1996; Sutton, 1991). The availability
of a generative model still leaves the question of which experiences to generate.
Prioritized sweeping bases updates again on surprise, as measured by the size of
the change to the learned functions (Andre et al., 1997; Moore and Atkeson, 1993).
Ciosek and Whiteson (2017) dynamically adjusted the distribution of experiences
generated by a simulator to reduce the variance of learning updates.

Learning a model can reduce the sample complexity of a learning algorithm when
learning the dynamics and reward functions is easy compared to learning the value
function or policy. However, it is not straightforward to get improved performance
in general. In contrast, the introduction of an experience replay buffer has shown to
be both simple and very beneficial for many deep reinforcement learning techniques
(Gu et al., 2017a; Lillicrap et al., 2016; Mnih et al., 2015; Wang et al., 2017).
When a buffer is used, we can decide which experiences to have in the buffer and
which experiences to sample from the buffer. In contrast to previous work on
this topic we investigate, in the next chapter, the combined problem of experience
retention and sampling. We also look at several different proxies for the usefulness
of experiences and how prior knowledge about the specific reinforcement learning
problem at hand can be used to choose between them, rather than attempting to

Experience buffer contents | 43

find a single universal experience-utility proxy. These proxies will be based on the
examinations in this chapter.

3.4 | Experimental Benchmarks

In this section, we discuss two simulated control tasks with limited observation
and action dimensionalities. The low dimensional nature of these problems makes
it possible to understand and visualize the effects of different data distributions
and makes it feasible to perform statistically significant experiments. We test our
findings on benchmarks with higher dimensional observation and action spaces in
the next chapter.

The simulations are of a pendulum swing-up task and a magnetic manipulation
problem. Both were previously discussed by Alibekov et al. (2018). Although both
represent dynamical systems with a two dimensional state-space, it will be shown
in Section 3.6 that they are quite different when it comes to the optimal experience
selection strategy. Here, a high level description of these benchmarks is presented,
while the full mathematical descriptions are given in Appendix A.

The first task is the classic underactuated pendulum swing-up problem, shown in
Figure 3.3a. The pendulum starts out hanging down under gravity. The goal is to
balance the pendulum in the upright position. The motor is torque limited such
that a swing to one side is needed to build up momentum before swinging towards
the upright position in the opposite direction. Once the pendulum is upright it
needs to stabilize around this unstable equilibrium point. The observation of the
problem o consists of normalized versions of the angle θ and angular velocity θ̇

of the pendulum. The action space is a normalized version of the voltage applied
to the motor that applies a torque to the pendulum. A reward is given at every
time-step, based on the absolute distance of the observed system state from the
reference state of being upright with no rotational velocity.

The second benchmark is a magnetic manipulation (magman) task, in which the
goal is to accurately position a steel ball on a 1-D track by dynamically changing
a magnetic field. The relative magnitude and direction of the force that each
magnet exerts on the ball is shown in Figure 3.3b. This force is linearly dependent
on the actions, which represent the squared currents through the electromagnet
coils. Normalized versions of the position x and velocity ẋ form the observation-
space of the problem. A reward is given at every time-step, based on the absolute
distance of the observed system state from the (fixed) reference state.

In experiments where the buffer capacity C is limited, we take C = 104 experiences,
unless stated otherwise. All our experiments have episodes which last four seconds.

44 | Chapter 3

θ

a

g

(a) Pendulum task

x

m
ag
ne

tic
fo
rc
e a1 a2 a3 a4

(b) Magnetic manipulation task

Figure 3.3: Two of the benchmark problems considered in this thesis. In the pendulum task,
an underactuated pendulum needs to be swung up and balanced in the upright position by
controlling the torque applied by a motor. In the magnetic manipulation (magman) task, a
steel ball (top) needs to be positioned by controlling the currents through four electromagnets.
The magnetic forces exerted on the ball (bottom) can be seen to be a nonlinear function of the
position. The forces scale linearly with the actions a1, ..., a4, which represent the normalized
squared currents through the magnets.

Unless stated otherwise, a sampling frequency of 50 Hz is used, which means the
buffer can store 50 episodes worth of experience tuples 〈oi, ai, o′i, ri〉.

Since we are especially interested in physical control problems where sustained
exhaustive exploration is infeasible, the amount of exploration is reduced over
time from its maximum at episode 1, to a minimum level from episode 500 onwards
unless stated otherwise. At the minimum level, the amplitude of the exploration
noise we add to the neural network policy is 10% of the amplitude at episode 1.
Details of the exploration strategies used are given in Appendix B.

3.5 | Performance Measures

When we investigate the performance of the learning methods in this chapter and
the next, we are interested in the effect that these methods might have on three
aspects of the learning performance: the learning stability, the maximum controller
performance and the learning speed. We define performance metrics for these
aspects, related to the normalized mean reward per episode µr. The normalization
is performed such that µr = 0 is the performance achieved by a random controller,
while µr = 1 is the performance of the off-line dynamic programming method
described in Appendix B.2.3. This baseline method is, at least for the noise-free
tests, proven to be close to optimal.

Experience buffer contents | 45

The first learning performance aspect we consider is the stability of the learning
process. We will be shown in this chapter (see also de Bruin et al., 2015, 2016a)
that even when a good policy has already been learned, the learning process can
become unstable and the performance can drop significantly when the properties
of the training data change. We investigate to what extent different experience
replay methods can help prevent this instability. We use the mean of µr over
the last 100 episodes of each learning run, where the learning runs should have
converged to good behavior already, as a measure of learning stability. We denote
this measure by µfinal

r .

Although changing the data distribution might help stability, it could at the same
time prevent us from accurately approximating the true optimal policy. Therefore
we also report the maximum performance achieved per learning trial µmax

r .

Finally, we want to know the effects of the experience selection methods on the
learning speed. We therefore report the number of episodes before the learning
method achieves a normalized mean reward per episode of µr = 0.8 and denote
this by Rise-time 0.8.

For these performance metrics we report the means and the 95% confidence bounds
of those means over 50 trials for each experiment. The confidence bounds are based
on bootstrapping (Efron, 1992).

3.6 | Main Contribution: Analysis of Experience utility

As previously noted by Narasimhan et al. (2015); Pieters and Wiering (2016);
Schaul et al. (2016) and de Bruin et al. (2015, 2016a), when using experience replay,
the criterion that determines which experiences are used to train the reinforcement
learning agent can have a large impact on the performance of the method. The
aim of this section is to investigate what makes an experience useful and how this
usefulness depends on several identifiable characteristics of the control problem at
hand.

In the following sections, we mention only some relevant aspects of our imple-
mentation of the deep reinforcement-learning methods, with more details given in
Appendix B.

3.6.1 Exploration Decay
As mentioned in Section 3.2, it can be necessary to reduce the amount of explo-
ration that is performed over time to prevent wear on physical systems. Here we
investigate the effect this has on the two simulation benchmarks introduced in Sec-
tion 3.4. Over the first 500 episodes of every trial, the strength of the exploration
noise (B.1) is linearly decayed to a fraction of the initial strength. The results

46 | Chapter 3

Episode
0.0

0.2

0.4

0.6

0.8

1.0

µ
r
(s
wi
ng

up
)

Train performance

final exploration fraction
0.0
0.2
0.4

0.6
0.8
1.0

Episode

µ
r
(s
wi
ng

up
)

Generalization performance

0 500 1000 1500 2000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

µ
r
(m

ag
m
an
)

0 500 1000 1500 2000
Episode

µ
r
(m

ag
m
an
)

Figure 3.4: The effect of decaying the strength of the exploration noise. Only the means of 50
runs are shown for legibility. For the generalization tests, a larger set of initial states was used
than during training.

are shown in Figure 3.4. The results show that for both benchmarks, decaying
the exploration at least somewhat is necessary for good results. However, espe-
cially on the pendulum task, decaying the exploration too much results in a loss
of performance over time. On the magman, this decay is only observed for the
generalization tests.

3.6.2 Generalizability and Sample Diversity

One important aspect of the problem with reduced exploration, which at least
partly explains the differences in training performance for the two methods on the
two benchmarks in Figure 3.4, is the complexity of generalizing the value function
and policy across the observation and action spaces.

For the pendulum task, learning actor and critic functions that generalize across
the entire state and action spaces will be relatively simple, as a sufficiently deep
neural network can efficiently exploit the symmetry in the value and policy func-
tions (Montufar et al., 2014). Figure 3.5b shows the learned policy after 100

Experience buffer contents | 47

-3

1-1

velocityposition

0 0

-2

-11

-1

0

(a) critic, episode 100

-1

1-1

position velocity

00

-11

0

1

(b) actor, episode 100

-3

1-1

position velocity

00

-2

1 -1

-1

0

(c) critic, episode 390

-1

1-1

velocityposition

0 0

1 -1

0

1

(d) actor, episode 390

-3

1-1

position velocity

00

-2

-11

-1

0

(e) critic, episode 507

-1

1-1

position velocity

00

1 -1

0

1

(f) actor, episode 507

Figure 3.5: The critic Q̂
(
o, π̂(o; θπ); θQ

)
and actor π̂(o; θπ) functions trained on the pendulum

swing up task. The surfaces represent the functions. The black dots show the trajectories through
the state-action space resulting from following the current policy. The red and blue lines show
respectively the positive and negative ‘forces’ that shape the surfaces caused by the experiences
in the buffer: for the critic these are ∂(qi − Q̂(oi, ai; θ))2/∂Q̂ (note ai 6= π̂(oi; θπ)). For the
actor these forces represent ∂Q̂

(
o, π̂(o; θπ); θQ

)
/∂a. Animations of these graphs for different

experience selection strategies are available at https://youtu.be/Hli1ky0bgT4. The episodes are
chosen to illustrate the effect of reduced sample diversity described in Section 3.6.2.

https://youtu.be/Hli1ky0bgT4

48 | Chapter 3

episodes (where, as before, experiences are replaced in a Fist In First Out (FIFO)
manner and sampling from the buffer is done uniformly at random). Due to the
thorough initial exploration, the experiences in the buffer cover much of the state-
action space. As a result, a policy has been learned that is capable of swinging the
pendulum up and stabilizing it in both the clockwise and anticlockwise directions,
although the current policy favors one direction over the other.

For the next 300 episodes this favored direction does not change and as the amount
of exploration is decayed, the experiences in the buffer become less diverse and
more centered around this favored trajectory through the state-action space. Even
though the information on how to further improve the policy becomes increasingly
local, the updates to the network parameters can cause the policy to be changed
over the whole state space, as neural networks are global function approximators.
This can be seen from Figure 3.5d, where the updates that further refine the policy
for swinging up in the currently preferred direction have removed the previously
obtained skill of swinging up in the opposite direction. The policy has suffered
from catastrophic forgetting (Goodfellow et al., 2013) and has over-fitted to the
currently preferred swing up direction.

For the pendulum swing up task, this over-fitting is particularly risky since the
preferred swing up direction can and does change during learning, since both
directions are equivalent with respect to the reward function. When this happens,
the FIFO experience retention method can cause the data distribution in the buffer
to change rapidly, which by itself can cause instability. In addition, the updates
to the network parameters (calculated in lines 14-16 of Algorithm 2) now use the
critic Q̂ (o, a; θQ) function in regions of the observation-action space that it has not
been trained on in a while, resulting in potentially bad gradients. Both of these
factors might destabilize the learning process. This can be seen in Figure 3.5f
where, after the preferred swing up direction has rapidly changed a few times, the
learning process is destabilized and the policy has deteriorated to the point that
it no longer accomplishes the balancing task. By keeping a more diverse set of
experiences in the buffer, this failure case can be prevented.

For the magman task, a policy that generalizes over the whole state-space might
be harder to find. This is because the effects of the actions, shown as the colored
lines in Figure 3.3b, are strongly nonlinear functions of the (position)-state. The
actor and critic functions must therefore be very accurate for the states that are
visited under the policy. Requiring the critic to explain all of the experiences that
have been collected so far might limit the ability of the function approximators to
achieve sufficient accuracy for the relevant states.

Experience buffer contents | 49

0.0

0.2

0.4

0.6

0.8

1.0
µ

fi
na

l
r

buffer capacity = 1 · 103 buffer capacity = 1 · 104

Pendulum
sw

ing-up

buffer capacity = 1 · 105

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

0.0

0.2

0.4

0.6

0.8

1.0

µ
fi

na
l

r

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

M
agm

anSynthetic
none
state
action

Figure 3.6: The effect on the mean performance during the last 100 episodes of the learning
runs µfinal

r when changing a fraction of the observed experiences with synthetic experiences, for
different buffer sizes. The addition of more diverse experiences can be seen to be most important
for small buffers.

Buffer Size and Synthetic Sample Fraction

To further investigate its effects on the reinforcement learning performance, we
will artificially alter the diversity of the experiences in the buffer. We will do
so by performing the following experiment. We still decay the exploration and
use an experience buffer of the same size, still overwritten in a FIFO manner
with uniformly random sampling. However, with a certain probability, we make a
change to an experience 〈oi, ai, o′i, ri〉 before it is written to the buffer. We change
either the observation oi (and the corresponding underlying state) or the action
ai. The changed observations and actions are sampled uniformly at random from
the observation and action spaces. When the observation is re-sampled the action
is recalculated as the policy action for the new observation including exploration.
In both cases, the next observation and the reward are recalculated to complete
the altered experience. To calculate the next observation and reward, we use the
real system model. This is not possible for most practical problems; it serves here
merely as a way of gaining a better understanding of the need for sample diversity.

The results of performing this experiment for different sample alteration proba-
bilities and buffer sizes are given in Figures 3.6 and 3.7. Interestingly, for the
pendulum swing up task, changing some fraction of the experiences to be more

50 | Chapter 3

120

130

140

150

160

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

buffer capacity = 1 · 103 buffer capacity = 1 · 104
Pendulum

sw
ing-up

buffer capacity = 1 · 105

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

200

400

600

800

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

M
agm

anSynthetic
none
state
action

0.94

0.96

0.98

µ
m

ax
r

buffer capacity = 1 · 103 buffer capacity = 1 · 104

Pendulum
sw

ing-up

buffer capacity = 1 · 105

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

0.85

0.90

0.95

1.00

µ
m

ax
r

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

0.0 0.05 0.1 0.2 0.5 1.0
synthetic sample fraction

M
agm

anSynthetic
none
state
action

Figure 3.7: The effects on the learning performance when replacing a fraction of the observed
experiences with synthetic experiences, for different buffer sizes. Increasing the diversity of the
samples can be seen to increase the amount of training needed to find good policies, but also
increase the eventual quality of the policy. The pendulum swingup task is most sensitive to the
experience diversity. On the magman task, increased diversity in the state-space can limit the
eventual performance.

Experience buffer contents | 51

diverse improves the stability of the learning method dramatically, regardless of
whether the diversity is in the states or in the actions. The effect is especially
noticeable for smaller experience buffers.

For the magman benchmark, as expected, having more diverse states reduces the
performance significantly. Having a carefully chosen fraction of more diverse ac-
tions in the original states can however improve the stability and learning speed
slightly. This can be explained from the fact that even though the effects of the ac-
tions are strongly nonlinear in the state-space, they are linear in the action space.
Generalizing across the action space might thus be more straightforward and it is
helped by having the training data spread out over this domain.

3.6.3 Reinforcement-Learning Algorithm

The need for experience diversity also depends on the algorithm that is used to
learn from those experiences. In the rest of this chapter as well as the next one
we exclusively consider the DDPG actor-critic algorithm, as the explicitly pa-
rameterized policy enables continuous actions, which makes it especially suitable
for control. An alternative to using continuous actions is to discretize the action
space. In this subsection, we compare the need for diverse data of the actor-critic
DDPG algorithm (Lillicrap et al., 2016; Silver et al., 2014) to that of the closely
related critic-only DQN algorithm (Mnih et al., 2015, see Section 2.3.2 and Algo-
rithm 1). The experiments are performed on the pendulum benchmark, where the
one dimensional action space is discretized uniformly into 15 actions. Results for
the magman benchmark are omitted as the four dimensional action space makes
discretization impractical.

For the actor-critic scheme to work, the critic needs to learn a general dependency
of the Q-values on the observations and actions. For the DQN critic, this is not the
case as the Q-values for different actions are separate. Although the processing of
the observations is shared, the algorithm can learn at least partially independent
value predictions for the different actions. These functions additionally do not
need to be correct, as long as the optimal action for a given observation has a
higher value than the sub-optimal actions. The requirement on the critic in the
actor-critic algorithm is more stringent; there the derivative of the critic with
respect to the actions needs to be correct.

These effects can be seen in Figure 3.8. The DDPG algorithm can make more
efficient use of the observation-action space samples by learning a single value
prediction, resulting in significantly faster learning than the DQN algorithm. The
DDPG algorithm additionally benefits from more diverse samples, with the perfor-
mance improving for higher fractions of randomly sampled observations or actions.
The DQN algorithm conversely seems to suffer from a more uniform sampling of

52 | Chapter 3

0.0 0.05 0.1 0.25 0.5
synthetic sample fraction

0.2

0.4

0.6

0.8

1.0

µ
fi
na

l
r

DDPG (state)
DDPG (action)
DQN (state)
DQN (action)

0.0 0.05 0.1 0.25 0.5
synthetic sample fraction

0

100

200

300

400

500

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

Figure 3.8: RL algorithm dependent effect of sample diversity on the pendulum benchmark.
The effect on µmax

r is given in Figure C.4 of Appendix C. The benefits of increased diversity that
were observed for the actor-critic learning DDPG algorithm are seen not to transfer to the critic
only DQN algorithm.

the observation-action space. This could be because it is now tasked with learning
accurate mappings from the observations to the state-action values for all actions.
While doing so might not help to improve the predictions in the relevant parts
of the observation-action space, it could increase the time required to learn the
function and limit the function approximation capacity available for those parts
of the observation-space where the values need to be accurate. Note again that
learning precise Q-values for all actions over the whole observation-space is not
needed, as long as the optimal action has the largest Q-value.

Sample Age

In the model-free setting it is not possible to add synthetic experiences to the
buffer. Instead, in Chapter 4 we will introduce ways to select real experiences
that have desirable properties and should be remembered for a longer time and
replayed more often. This will inevitably mean that some experiences are used
more often than others, which could have detrimental effects—such as that the
learning agent could over-fit to those particular experiences.

To investigate the effects of adding older experiences for diversity, we perform the
following experiment. As before, a FIFO buffer is used with a certain fraction of
synthetic experiences. However, when a synthetic experience is about to be over-
written, we only sample a new synthetic experience with a certain probability.
Otherwise, the experience is left unchanged. The result of this experiment is
shown in Figure 3.9. For the pendulum benchmark, old experiences only hurt
when they were added to provide diversity in the action space in states that were

Experience buffer contents | 53

0.0 0.01 0.1 1.0
synthetic sample refresh probability

0.0

0.2

0.4

0.6

0.8

1.0
µ

fi
na

l
r

Pendulum swing-up

0.0 0.01 0.1 1.0
synthetic sample refresh probability

0.0

0.2

0.4

0.6

0.8

1.0
Magman

Synthetic fraction
state [0.1]
state [0.5]
action [0.1]
action [0.5]

Figure 3.9: The effects of only updating the synthetic experiences with a certain probability
each time they are overwritten. The effects on µmax

r and the rise-time are given in Figure C.6 in
Appendix C. While over-fitting to individual samples does not seem to be an issue, keeping state-
distribution current when adding synthetic actions is important on the pendulum benchmark.

visited by an older policy. For the magman benchmark the age of the synthetic
experiences is not seen to affect the learning performance.

3.6.4 Sampling Frequency

An important property of control problems that can influence the need for ex-
perience diversity is the frequency at which the agent needs to produce control
decisions. The sampling frequency of a task is something that is often considered
a given property of the environment in reinforcement learning. For control tasks
however, a sufficiently high sampling frequency can be crucial for the performance
of the controller and for disturbance rejection (Franklin et al., 1998). At the same
time, higher sampling frequencies can make reinforcement learning more difficult
as the effect of taking an action for a single time-step diminishes for increasing
sampling frequencies (Baird, 1994). Since the sampling rate can be an impor-
tant hyperparameter to choose, we investigate whether changing it changes the
diversity demands for the experiences to be replayed.

In Figure 3.10, the performance of the DDPG method is shown for different sam-
pling frequencies, with and without synthetic samples. The first thing to note
is that, as expected, low sampling frequencies limit the controller performance.
Interestingly though, much of the performance loss on the pendulum at low fre-
quencies can be prevented through increased sample diversity. This indicates that
on this benchmark most of the performance loss at the tested control frequencies
stems from the learning process rather than the fundamental control limitations.
When increasing the sampling frequencies beyond our baseline frequency of 50Hz,

54 | Chapter 3

sample diversity becomes more important for both stability and performance. For
the pendulum swing-up it can be seen that as sampling frequency increases fur-
ther, increased diversity in the state/observation-space becomes more important.
For the magman, adding synthetic action samples has clear benefits. This is very
likely related to the idea that the effects of actions become harder to distinguish
for higher sampling frequencies (Baird, 1994; de Bruin et al., 2016b).

There are several possible additional causes for the performance decrease at higher
frequencies. The first is that by increasing the sampling frequency, we have in-
creased the number of data points that are obtained and learned from per episode.
Yet the amount of information that the data contains has not increased by the
same amount. Since the buffer capacity is kept equal, the amount of informa-
tion that the buffer contains has decreased and the learning rate has effectively
increased. To compensate for these specific effects, experiments are performed in
which samples are stochastically prevented from being written to the buffer with
a probability proportional to the increase in sampling frequency. The results of
these experiments are indicated with [DE] (dropped experiences) in Figure 3.11
and are indeed better, but still worse than the performance for lower sampling
frequencies.

The second potential reason for the drop in performance is that we have changed
the problem definition by changing the sampling frequency. This is because the
forgetting factor γ determines how far into the future we consider the effects of
our actions according to:

γ = e
−Tsτγ ,

where Ts is the sampling period in seconds and τγ is the lookahead horizon in
seconds. To keep the same lookahead horizon, we recalculate γ, which is 0.95

10 25 50 100 150 200
Sampling frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

µ
fi

na
l

r

Pendulum swing-up

10 25 50 100 150 200
Sampling frequency [Hz]

Magman

Synthetic
none
state [0.5]
action [0.5]

10 25 50 100 150 200
Sampling frequency [Hz]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ
m

ax
r

Pendulum swing-up

10 25 50 100 150 200
Sampling frequency [Hz]

Magman

Synthetic
none
state [0.5]
action [0.5]

Figure 3.10: Sampling frequency dependent effect of adding synthetic experiences to the
FIFO[Uniform] method. The effect on the rise time is given in Figure C.5 in Appendix C.

Experience buffer contents | 55

0 500 1000 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

µ
r

Pendulum swingup [100Hz]

synthetic samples
none
none [DE]
action [0.5]
action [0.5] [DE]

0 500 1000 1500
Episode

µ
r

Magman [200Hz]

synthetic samples
none
none [DE]
action [0.5]
action [0.5] [DE]

Figure 3.11: The effect of synthetic actions and stochastically preventing experiences from
being written to the buffer [DE] on the benchmarks with increased sampling frequencies.

in our other experiments (Ts = 0.02), to be γpendulum = 0.9747 (Ts = 0.01)
and γmagman = 0.9873 (Ts = 0.005). To keep the scale of the Q functions the
same, which prevents larger gradients, the rewards are scaled down. Correcting
the lookahead horizon was found to hurt performance on both benchmarks. The
likely cause of this is that higher values of γ increase the dependence on the biased
estimation of Q over the unbiased immediate reward signal (see Equation (2.5)).
This can cause instability (François-Lavet et al., 2015).

3.6.5 Noise
The final environment property that we consider is the presence of sensor and
actuator noise. So far, the observations have been normalized versions of the exact
environment state and the (de-normalized) chosen actions have been implemented
without change. Now we consider adding Gaussian noise with a standard deviation
σ ∈ {0, 0.01, 0.02, 0.05} to both the normalized observations and actions. The
results of performing these experiments are shown in Figure 3.12. The results
indicate that the need for data diversity is not dependent on the presence of noise.
However, in Section 4.6.3 it will be shown that the methods used to determine
which experiences are useful can be affected by noise.

56 | Chapter 3

0.0 0.01 0.02 0.05
noise amplitude

0.0

0.2

0.4

0.6

0.8

1.0

µ
fi

na
l

r

Pendulum swing-up

0.0 0.01 0.02 0.05
noise amplitude

0.0

0.2

0.4

0.6

0.8

1.0
Magman

Synthetic
none
state [0.5]
action [0.5]

Figure 3.12: The effect of adding Gaussian noise to the observed states and applied actions on
the need for diverse data.

3.7 | Summary

This chapter has presented an investigation into how different aspects of the rein-
forcement learning problem at hand influence the need for experience diversity. In
Table 3.1 a summary is given of the investigated aspects and the strength of their
effect on the need for experience diversity. While this chapter has used the true
environment model to examine the potential benefits of diversity, the next chapter
will propose strategies to obtain diverse experiences in ways that are feasible on
real problems.

Experience buffer contents | 57

Property Effect Explanation

Benchmark Very high

The need for diverse states and actions largely
depends on the ease and importance of
generalizing across the state-actions space,
which is benchmark dependent.

RL algorithm Very high

Generalizing across the action space is
fundamental to actor-critic algorithms, but
not to critic-only algorithms with discrete
action spaces.

Sampling frequency High

The stability of RL algorithms depends
heavily on the sampling frequency. Experience
diversity can help learning stability. Having
diverse actions at higher frequencies might
be crucial as the size of their effect
on the observed returns diminishes.

Buffer size Medium

Small buffers can lead to rapidly changing
data distributions, which causes unstable
learning. Large buffers have more inherent
diversity.

Sample age Low

Although retaining old samples could
theoretically be problematic, these problems
were not clearly observable the experiments in
this chapter.

Noise None

The presence of noise was not observed to
influence the need for experience diversity,
although it can influence experience selection
strategies, as will be shown in the next
chapter.

Table 3.1: The dependence of the need for diverse experiences on the investigated environment
and reinforcement learning properties.

58

C
H

A
P
T

E
R

 4

4
Experience Selection

Parts of this chapter have previously been published in:

de Bruin, T., Kober, J., Tuyls, K., Babuška, R. (2018). "Experience
selection in deep reinforcement learning for control". the Journal of
Machine Learning Research (JMLR).

60 | Chapter 4

4.1 | Introduction

In the previous chapter we showed how the performance of deep reinforcement
learning algorithms is influenced by the distribution of the experiences over the
observation-action space. We investigated how several aspects of control problem
at hand dictated a need for either more or less diverse experiences. We did this
by assuming access to a perfect model of the environment, so that synthetic expe-
riences could be generated. In this chapter we return to the standard model-free
setting in which this is not the case. Instead, we assume that a stream of expe-
riences, over which we might have little to no influence, is directed towards an
experience buffer.

If we have access to a buffer with past experiences, an interesting question arises:
how should we sample the experiences to be replayed from this buffer? It has been
shown by Schaul et al. (2016) that a good answer to this question can significantly
improve the performance of the reinforcement-learning algorithm.

However, even if we know how to sample from the experience buffer, two additional
questions arise: what should the buffer capacity be and, once it is full, how do we
decide which experiences should be retained in the buffer and which ones can be
overwritten with new experiences? These questions are especially relevant when
learning on systems with a limited storage capacity, for instance when dealing with
high-dimensional inputs such as images. Finding a good answer to the question
of which experiences to retain in the buffer becomes even more important when
exploration is costly. This can be the case for physical systems such as robots,
where exploratory actions cause wear or damage and risks need to be minimized
(Garcıa and Fernández, 2015; Kober et al., 2013; Koryakovskiy et al., 2017; Tamar
et al., 2016). It is also the case for tasks where a minimum level of performance
needs to be achieved at all times (Banerjee and Peng, 2004) or when the policy
that generates the experiences is out of our control (Schaal, 1999; Seo and Zhang,
2000).

We will refer to the combined problem of experience retention and experience
sampling as experience selection. The questions of which experiences to sample
and which experiences to retain in the buffer are related, since they both require
a judgment on the utility of the experiences. The difference between them is that
determining which experiences to sample requires a judgment on the instantaneous
utility: from which experiences can the agent learn the most at the moment of
sampling? In contrast, a decision on experience retention should be based on the
expected long term utility of experiences. Experiences need to be retained in a
way that prevents insufficient coverage of the state action space in the future, as
experiences cannot be recovered once they have been discarded.

Experience selection | 61

To know the true utility of an experience, it would be necessary to foresee the
effects of having the reinforcement-learning agent learn from the experience at
any given time. Since this is not possible, we instead investigate proxies for the
experience utility that are cheap to obtain.

In this chapter, we investigate age, surprise (in the form of the temporal difference
error), and the amplitude of the exploration noise as proxies for the utility of
experiences. To motivate the need for multiple proxies, we will start by showing
the performance of different experience selection methods on the pendulum and
magman control benchmarks introduced in the previous chapter. We show how
the current state-of-the-art experience selection method of Schaul et al. (2016),
based on retaining a large number of experiences and sampling them according
to their temporal difference error, compares on these benchmarks to sampling
uniformly at random from the experiences of the most recent episodes. We show
that the state-of-the-art method significantly outperforms the standard method
on one benchmark while significantly under-performing on the other, seemingly
similar benchmark.

The hardware limitations of the robotic systems that this thesis focuses on can
impose constraints on the exploration policy and the number of experiences that
can be stored in the buffer. These factors make the correct choice of experience
sampling strategy especially important. As we show on additional, more complex
benchmarks, even when sustained exploration is possible, it can be beneficial to be
selective about which—and how many—experiences to retain in the buffer. The
costs involved in operating a robot mean that it is generally infeasible to rely on an
extensive hyper-parameter search to determine which experience selection strategy
to use. We therefore want to understand how this choice can be made based on
prior knowledge of the control task.

Note that for many of the experiments in this work most of the hyper-parameters
of the deep reinforcement-learning algorithms are kept fixed. While it would be
possible to improve the performance through a more extensive hyper-parameter
search, our focus is on showing the relationships between the performance of the
different methods and the properties of the control problems. While we do intro-
duce new methods to address specific problems, the intended outcome of this work
is to be able to make more informed choices regarding experience selection, rather
than to promote any single method.

4.2 | Preliminaries

The experience replay techniques from the literature (some of which were briefly
introduced in Chapter 2) will be discussed in more detail in this section. After-

62 | Chapter 4

wards, Section 4.3 will introduce the notation used to indicate experience selection
strategies and Section 4.4 will demonstrate the need for multiple proxies. We will
introduce our proposed methods in Section 4.5, experimentally test these methods
in Section 4.6, and provide general recommendations for their use in Section 4.7.

4.2.1 Experience Replay

As discussed in Chapter 2 and Chapter 3, experience replay is crucial for making
deep reinforcement learning work. The experience replay technique uses a buffer of
past experiences, from which mini-batches are sampled for the paramter updates.
Most commonly, experiences are written to the buffer in a First In First Out
(FIFO) manner. When experiences are needed to train the neural networks, they
are sampled uniformly at random from the buffer. This breaks the temporal
correlations of the updates and restores the i.i.d. assumption of the optimization
algorithms, which improves their performance (Mnih et al., 2015; Montavon et al.,
2012). The increased learning stability that results comes in addition to the fact
that experiences can be used multiple times for updates, increasing the sample
efficiency of the algorithm.

4.2.2 Prioritized Experience Replay

Although sampling experiences uniformly at random from the experience buffer
is an easy default, the performance of reinforcement-learning algorithms can be
improved by choosing the experience samples used for training in a smarter way.
Here, we summarize one of the variants of Prioritized Experience Replay (PER)
that was introduced by Schaul et al. (2016). Our enhancements to experience
replay are given in Section 4.5.

The PER technique is based on the idea that the temporal difference error

δi = Q̂(oi, ai; θq)− qi, (4.1)

provides a good proxy for the instantaneous utility of an experience. Schaul et al.
(2016) argue that, when the critic made a large error on an experience the last
time it was used in an update, there is more to be learned from the experience.
Therefore, its probability of being sampled again should be higher than that of an
experience associated with a low temporal difference error.

In this work we consider the rank-based stochastic PER variant. In the method,
the probability of sampling an experience i from the buffer is approximately given
by:

P (i) ≈

(
1

rank(i)

)α
∑
j

(
1

rank(j)

)α . (4.2)

Experience selection | 63

Here, rank(i) is the rank of sample i according to the absolute value of the temporal
difference error |δ| according to (4.1), calculated when the experience was last
used to train the critic. All experiences that have not yet been used for training
have δ = ∞, resulting in a large probability of being sampled. The parameter α
determines how strongly the probability of sampling an experience depends on δ.
We use α = 0.7 as proposed by Schaul et al. (2016) and have included a sensitivity
analysis for different buffer sizes in Appendix C. Note that the relation is only
approximate as sampling from this probability distribution directly is inefficient.
For efficient sampling, (4.2) is used to divide the buffer B into S segments of equal
cumulative probability, where S is taken as the number of experiences per training
mini batch. During training, one experience is sampled uniformly at random from
each of the segments.

4.2.3 Importance Sampling
The estimation of an expected value with stochastic updates relies on those updates
corresponding to the same distribution as its expectation. Schaul et al. (2016)
proposed to compensate for the fact that the changed sampling procedure can
affect the value of the expectation in (2.9) by multiplying the gradients of the
critic with an Importance Sampling (IS) weight

ωi =
(

1
C

1
P (i)

)β
. (4.3)

Here, β allows scaling between not compensating at all (β = 0) and fully compen-
sating for the changes in the sample distribution caused by the sampling strategy
(β = 1). In our experiments, when IS is used, we follow Schaul et al. (2016) in
scaling β linearly per episode from 0.5 at the start of a learning run to β = 1 at
the end of the learning run. C indicates the capacity of the buffer.

Not all changes to the sampling distribution need to be compensated for. Since
we use a deterministic policy gradient algorithm with a Q-learning critic, we do
not need to compensate for the fact that the samples are obtained by a different
policy than the one we are optimizing for (Silver et al., 2014). We can change the
sampling distribution from the buffer, without compensating for the change, so
long as these samples accurately represent the transition and reward functions.

Sampling based on the TD error can cause issues here, as infrequently occurring
transitions or rewards will tend to be surprising. Replaying these samples more
often will introduce a bias, which should be corrected through importance sam-
pling.

However, the temporal difference error will also be partly caused by the function
approximation error. These errors will be present even for a stationary sample

64 | Chapter 4

distribution after learning has converged. The errors will vary over the state-action
space and their magnitude will be related to the sample density. Sampling based
on this part of the temporal difference error will make the function approximation
accuracy more consistent over the state-space. This effect might be unwanted
when the learned controller will be tested on the same initial state distribution as
it was trained on. In that case, it is preferable to have the function approximation
accuracy be highest where the sample density is highest. However, when the
aim is to train a controller that generalizes to a larger part of the state space,
we might not want to use importance sampling to correct this effect. Note that
importance sampling based on the sample distribution over the state space is
heuristically motivated and based on function approximation considerations. The
motivation does not stem from the reinforcement learning theory, where most
methods assume that the Markov decision process is ergodic and that the initial
state distribution does not factor into the optimal policy (Aslanides et al., 2017).
In practice however, deep reinforcement-learning methods can be rather sensitive
to the initial state distribution (Rajeswaran et al., 2017).

Unfortunately, we do not know to what extent the temporal difference error is
caused by the stochasticity of the environment dynamics and to what extent it is
caused by function approximation errors. We will empirically investigate the use
of importance sampling in Section 4.6.4.

4.3 | Experience Selection Strategy Notation

We consider the problem of experience selection, which we have defined as the
combination of experience retention and experience sampling. The experience re-
tention strategy determines which experiences are discarded when new experiences
are available to a full buffer. The sampling strategy determines which experi-
ences are used in the updates of the reinforcement-learning algorithm. We use the
following notation for the complete experience selection strategy: retention strat-
egy[sampling strategy]. Our abbreviations for the retention and sampling strategies
commonly used in deep RL that were introduced in Section 4.2 are given in Ta-
bles 4.1 and 4.2 respectively. The abbreviations used for the new or uncommonly
used methods introduced in Section 4.5 are given there, in Tables 4.3 and 4.4.

Experience selection | 65

Notation Proxy Explanation

FIFO age The oldest experiences are overwritten with new ones.

FULL DB - The buffer capacity C is chosen to be large enough to
retain all experiences.

Table 4.1: Commonly used experience retention strategies for deep reinforcement learning.

Notation Proxy Explanation

Uniform - Experiences are sampled uniformly at random.

PER surprise

Experiences are sampled using rank-based
stochastic prioritized experience replay
based on the temporal difference error.
See Section 4.2.2.

PER+IS surprise

Sampling as above, but with weighted
importance sampling to compensate for the
distribution changes caused by the sampling
procedure. See Section 4.2.3.

Table 4.2: Experience sampling strategies from the literature.

66 | Chapter 4

4.4 | The Limitations of a Single Proxy

To motivate the need for multiple proxies for the utility of experiences rather than
one universal proxy, we compare the performance of the two strategies from the
literature on the benchmarks described in the previous chapter.

The first experience selection strategy tested is FIFO[Uniform]: overwriting the
oldest experiences when the buffer is full and sampling uniformly at random from
the buffer. We compare this strategy to the state-of-the-art prioritized experience
replay method FULL DB[PER] by Schaul et al. (2016). Here, the buffer capacity C is
chosen such that all experiences are retained during the entire learning run (C =
N = 4× 105 for this test).1 The sampling strategy is the rank-based stochastic
prioritized experience replay strategy as described in Section 4.2. The results of
the experiments are shown in Figure 4.1.

Figure 4.1 shows that FULL DB[PER] method, which samples training batches based
on the temporal difference error from a buffer that is large enough to contain all
previous experiences, works well for the pendulum swing-up task. The method
very reliably finds a near optimal policy. The FIFO[Uniform] method, which keeps
only the experiences from the last 50 episodes in memory, performs much worse.
As we demonstrated in the previous chapter, the performance degrades over time
as the amount of exploration is reduced and the experiences in the buffer fail to
cover the state-action space sufficiently.

If we look at the result on the magman benchmark in Figure 4.1, the situation is re-
versed. Compared to simply sampling uniformly from the most recent experiences,
sampling from all previous experiences according to their temporal difference error
limits the final performance significantly. As shown in Appendix C.1, this is not
simply a matter of the function approximator capacity, as even much larger net-
works trained on all available data are outperformed by small networks trained on
only recent data. When choosing an experience selection strategy for a reinforce-
ment learning task, it seems therefore important to have some insights into how
the characteristics of the task determine the need for specific kinds of experiences
during training. We have investigated some of these characteristics in the previ-
ous chapter and will introduce experience selection methods based on the lessons
learned in that chapter in the next section.

1Schaul et al. (2016) use a FIFO database with a capacity of 106 experiences. We here denote
this as FULL DB since all our experiments use a smaller number of time-steps in total.

Experience selection | 67

0 500 1000 1500
Episode

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

µ
r

Pendulum swingup

selection
FULL DB[PER]
FIFO[Uniform]

0 500 1000 1500
Episode

µ
r

Magman

selection
FULL DB[PER]
FIFO[Uniform]

Figure 4.1: Comparison of the state-of-the-art (FULL DB[PER]) and the default method
(FIFO[Uniform]) for experience selection on our two benchmark problems.

4.5 | Main Contribution: New Experience-Selection Strate-
gies

For the reasons discussed in Section 3.3, we do not consider changing the stream
of experiences that an agent observes by either changing the exploration or by
generating synthetic experiences. Instead, to be able to replay experiences with
desired properties, valuable experiences need to be identified, so that they can be
retained in the buffer and replayed from it. In this section we look at how several
proxies for the utility of experiences can be used in experience selection methods.

4.5.1 Experience Retention

Although we showed in Section 3.6.4 that high sampling rates might warrant drop-
ping experiences, in general we assume that each new experience has at least some
utility. Therefore, unless stated otherwise, we will always write newly obtained
experiences to the buffer. When the buffer is full, this means that we need some
metric that can be used to decide which experiences should be overwritten.

Experience Utility Proxies

A criterion used to manage the contents of an experience replay buffer should
be cheap enough to calculate,2 should be a good proxy for the usefulness of the
experiences and should not depend on the learning process in a way that would

2We have discussed the need for experience diversity in Section 3.6.2 and we have previously
proposed overwriting a buffer in a way that directly optimized for diversity (de Bruin et al.,
2016a). However, calculating the experience density in the state-action space is very expensive
and therefore prohibits using the method on anything but small-scale problems.

68 | Chapter 4

cause a feedback loop and possibly might destabilize that learning process. We
consider three criteria for overwriting experiences.

Age: The default and simplest criterion is age. Since the policy is constantly
changing and we are trying to learn its current effects, recent experiences
might be more relevant than older ones. This (FIFO) criterion is computa-
tionally as cheap as it gets, since determining which experience to overwrite
involves simply incrementing a buffer index. For smaller buffers, this does
however make the buffer contents quite sensitive to the learning process, as
a changing policy can quickly change the distribution of the experiences in
the buffer. As seen in Figure 3.5, this can lead to instability.

Besides FIFO, we also consider reservoir sampling (Vitter, 1985). When the
buffer is full, new experiences are added to it with a probability C/i where
i is the index of the current experience. If the experience is written to the
buffer, the experience it replaces is chosen uniformly at random. Note that
this is the only retention strategy we consider that does not write all new
experiences to the buffer. Reservoir sampling ensures that at every stage of
learning, each experience observed so far has an equal probability of being
in the buffer. As such, initial exploratory samples are kept in memory and
the data distribution converges over time. These properties are shared with
the FULL DB strategy, without needing the same amount of memory. The
method might in some cases even improve the learning stability compared
to using a full buffer, as the data distribution converges faster. However,
when the buffer is too small this convergence can be premature, resulting in
a buffer that does not adequately reflect the policy distribution. This can
seriously compromise the learning performance.

Surprise: Another possible criterion is the unexpectedness of the experience, as
measured by the temporal difference error δ from (4.1). The success of
the Prioritized Experience Replay (PER) method of Schaul et al. (2016)
shows that this can be a good proxy for the utility of experiences. Since
the values have to be calculated to update the critic, the computational cost
is very small if we accept that the utility values might not be current since
they are only updated for experiences that are sampled. The criterion is
however strongly linked with the learning process, as we are actively trying
to minimize δ. This means that, when the critic is able to accurately predict
the long term rewards of the policy in a certain region of the state-action
space, these samples can be overwritten. If the predictions of the critic later
become worse in this region, there is no way of getting these samples back.
An additional problem might be that the error according to (4.1) will be

Experience selection | 69

caused partially by state and actuator noise. Keeping experiences for which
the temporal difference error is high might therefore cause the samples saved
in the buffer to be more noisy than necessary.

Exploration: We introduce a new criterion based on the observation that problems
can occur when the amount of exploration is reduced. On physical systems
that are susceptible to damage or wear, or for tasks where adequate per-
formance is required even during training, exploration can be costly. This
means that preventing the problems caused by insufficiently diverse expe-
riences observed in Section 3.6.2 simply by sustained thorough exploration
might not be an option. We therefore view the amount of exploration per-
formed during an experience as a proxy for its usefulness. We take the
1-norm of the deviation from the policy action to be the usefulness metric.
In our experiments on the small scale benchmarks we follow the original
DDPG paper (Lillicrap et al., 2016) in using an Ornstein-Uhlenbeck noise
process added to the output of the policy network. The details of the im-
plementation are given in Appendix B. In the experiments in Section 4.6.5
a copy of the policy network with noise added to the parameters is used to
calculate the exploratory actions (Plappert et al., 2018).

For discrete actions, the cost of taking exploratory actions could be used
as a measure of experience utility as well. The inverse of the probability of
taking an action could be seen as a measure of the cost of the action. It
could also be worth investigating the use of a low-pass filter, as a series of
(semi)consecutive exploratory actions would be more likely to result in states
that differ from the policy distribution in a meaningful way. These ideas are
not tested here, as we only consider continuous actions in the remainder of
this chapter.

Note that the size of the exploration signal is the deviation of the chosen
action in a certain state from the policy action for that state. Since the policy
evolves over time we could recalculate this measure of deviation from the
policy actions per experience at a later time. Although we have investigated
using this policy deviation proxy previously (de Bruin et al., 2016b), we
found empirically that using the strength of the initial exploration yields
better results. This can partly be explained by the fact that recalculating
the policy deviation makes the proxy dependent on the learning process
and partly by the fact that sequences with more exploration also result in
different states being visited.

70 | Chapter 4

Notation Proxy Explanation

Expl(α) Exploration Experiences with the least exploration are
stochastically overwritten with new ones.

TDE(α) Surprise Experiences with the smallest temporal difference error
are stochastically overwritten with new ones.

Resv Age
The buffer is overwritten such that each experience
observed so far has an equal probability of being in
the buffer.

Table 4.3: New and uncommon experience retention strategies considered in this work.

Stochastic Experience Retention Implementation

For the temporal difference error and exploration-based experience retention meth-
ods, keeping some experiences in the buffer indefinitely might lead to over-fitting
to these samples. Additionally, although the overwrite metric we choose might
provide a decent proxy for the usefulness of experiences, we might still want to
be able to scale the extent to which we base the contents of the buffer on this
proxy. We therefore use the same stochastic rank-based selection criterion of (4.2)
suggested by Schaul et al. (2016), but now to determine which experience in the
buffer is overwritten by a new experience. We denote this as TDE(α) for the tem-
poral difference-based retention strategy and Expl(α) for the exploration-based
policy. Here, α is the parameter in (4.2) which determines how strongly the buffer
contents will be based on the chosen utility proxy. A sensitivity analysis of α for
both Expl and PER is given in Appendix C.1. The notation used for the new
experience retention strategies is given in Table 4.3.

4.5.2 Experience Sampling

For the choice of proxy when sampling experiences from the buffer, we consider
the available methods from the literature: sampling either uniformly at random
[Uniform], using stochastic rank-based prioritized experience replay [PER] and com-
bining this with weighted importance sampling [PER+IS]. Given a buffer that con-
tains useful experiences, these methods have shown to work well. We therefore
focus on investigating how the experience retention and experience sampling strate-
gies interact. In this context we introduce a weighted importance sampling method
that accounts for the full experience selection strategy.

Importance sampling according to (4.3) can be used when performing prioritized
experience replay from a buffer that contains samples with a distribution that is
unbiased with respect to the environment dynamics. When this is not the case,

Experience selection | 71

we might need to compensate for the effects of changing the contents of the buffer,
potentially in addition to the current change in the sampling probability. The
contents of the buffer might be the result of many subsequent retention probability
distributions. Instead of keeping track of all of these, we compensate for both the
retention and sampling probabilities by using the number of times an experience in
the buffer has actually been replayed. When replaying an experience i for theK-th
time, we relate the importance-weight to the probability under uniform sampling
from a FIFO buffer of sampling an experience X times, where X is at least K:
Pr(X ≥ K|FIFO[Uniform]). We refer to this method as Full Importance Sampling (FIS)
and calculate the weights according to :

ωFISi =

 Pr(X ≥ K|FIFO[Uniform])[∑dnpe
j=1 Pr(X ≥ j|FIFO[Uniform])

]
/np

β

.

Here, n is the lifetime of an experience for a FIFO retention strategy in the number
of batch updates, which is the number of batch updates performed so far when the
buffer is not yet full. The probability of sampling an experience during a batch
update when sampling uniformly at random is denoted by p. Note that np is the
expected number of replays per experience, which following Schaul et al. (2016) we
take as 8 by choosing the number of batch updates per episode accordingly. As in
Section 4.2.3 we use β to scale between not correcting for the changes and correct-
ing fully. Since the probability of being sampled at least K times is always smaller
than one for K > 0, we scale the weights such that the sum of the importance
weights for the expected np replays under FIFO[Uniform] sampling is the same as
when not using the importance weights (n · p · 1). The probability of sampling an
experience at least K times under FIFO[Uniform] sampling is calculated using the
binomial distribution:

Pr(X ≥ K|FIFO[Uniform]) = 1−
K∑
k=0

(
n

k

)
pk(1− p)n−k.

Correcting fully (β = 1) for the changed distributions would make the updates
as unbiased as those from the unbiased FIFO uniform distribution (Needell et al.,
2016). However, since the importance weights of experiences that are repeatedly
sampled for stability will quickly go to zero, it might also undo the stabilizing
effects that were the intended outcome of changing the distribution in the first
place. Additionally, as discussed in Section 4.2.3, the FIFO Uniform distribution
is not the only valid distribution. As will be demonstrated in Section 4.6.4, it is

72 | Chapter 4

Notation Proxy Explanation

Uniform + FIS -
Experiences are sampled uniformly at random,
FIS (Section 4.5.2) is used to account for the
distribution changes caused by the retention policy.

PER+FIS Surprise

Experiences are sampled using rank based stochastic
prioritized experience replay based on the temporal
difference error. Full importance sampling is used to
account for the distribution changes caused by both
the retention and sampling policies.

Table 4.4: New experience sampling strategies considered in this work.

therefore important to determine whether compensating for the retention strategy
is necessary before doing so.

The notation for the selection strategies with this form of importance sampling is
given in Table 4.4.

4.6 | Experience Selection Results

Using the experience retention and sampling methods discussed in Section 4.5,
we revisit the scenarios discussed in Section 3.6. We first focus on the methods
without importance sampling, which we discuss separately in Section 4.6.4. Besides
the tests on the benchmarks of Section 3.4, we also show results on six additional
benchmarks in Section 4.6.5. There we also discuss how to choose the size of the
experience buffer.

4.6.1 Basic Configuration
We start by investigating how these methods perform on the benchmarks in their
basic configuration, with a sampling rate of 50 Hz and no sensor or actuator noise.
The results are given in Figure 4.2 and show that it is primarily the combination of
retention method and buffer size that determines the performance. It is again clear
that this choice here depends on the benchmark. On the pendulum benchmark,
where storing all experiences works well, the Resv method works equally well
while storing only 104 experiences, which equals 50 of the 3000 episodes. On
the magman benchmark, using a small buffer with only recent experiences works
better than any other method.

Sampling according to the temporal difference error can be seen to benefit pri-
marily the learning speed on the pendulum. On the magman, PER only speeds

Experience selection | 73

0.6 0.8 1.0

µfinal
r

FIFO[Uniform]
FIFO[PER]

TDE(1.20)[Uniform]
TDE(1.20)[PER]

Expl(1.20)[Uniform]
Expl(1.20)[PER]
Resv[Uniform]

Resv[PER]
FULL DB[Uniform]

FULL DB[PER]

se
le
ct
io
n

0 100 200
Rise-time 0.8 [episodes]

0.6 0.8 1.0
µmax
r

(a) Swing-up

0.6 0.8 1.0

µfinal
r

FIFO[Uniform]
FIFO[PER]

TDE(1.20)[Uniform]
TDE(1.20)[PER]

Expl(1.20)[Uniform]
Expl(1.20)[PER]
Resv[Uniform]

Resv[PER]
FULL DB[Uniform]

FULL DB[PER]

se
le
ct
io
n

0 250 500
Rise-time 0.8 [episodes]

0.6 0.8 1.0
µmax
r

(b) Magman

Figure 4.2: Performance of the experience selection methods under the default conditions of
moderate sampling frequencies and no state or actuator noise. A description of the performance
measures is given in Section 3.5.

up the learning process when sampling from recent experiences. When sampling
from diverse experiences, PER will attempt to make the function approximation
errors more even across the state-action space, which as discussed before, hurts
performance on this benchmark.

4.6.2 Effect of the Sampling Frequency

For higher sampling frequencies, the performance of the different experience selec-
tion methods is shown in Figure 4.3. We again see that higher sampling frequencies
place different demands on the training data distribution. With the decreasing ex-
ploration, retaining the right experiences becomes important. This is most visible
on the Magman benchmark where FIFO retention, which resulted in the best per-
formance at the end of training for the base sampling frequency, now performs
worst. Retaining all experiences works well on both benchmarks. When not all

74 | Chapter 4

0.0 0.5 1.0

µfinal
r

FIFO[Uniform]
TDE(1.20)[Uniform]
Expl(1.20)[Uniform]

Resv[Uniform]
FULL DB[Uniform]

se
le
ct
io
n

0 100 200
Rise-time 0.8 [episodes]

0.0 0.5 1.0
µmax
r

(a) Swing-up [100 Hz]

0.0 0.5 1.0

µfinal
r

FIFO[Uniform]
TDE(1.20)[Uniform]
Expl(1.20)[Uniform]

Resv[Uniform]
FULL DB[Uniform]

se
le
ct
io
n

0 250 500
Rise-time 0.8 [episodes]

0.0 0.5 1.0
µmax
r

(b) Magman [200 Hz]

Figure 4.3: Performance of the experience selection methods with increased sampling frequen-
cies. Results are from 50 learning runs. A description of the performance measures is given in
Section 3.5.

experiences can be retained, the reservoir retention method is still a good option
here, with the exploration-based method a close second.

4.6.3 Sensor and Actuator Noise

We also test the performance of the methods in the presence of noise, similarly to
Section 3.6.5. The main question here is how the noise might affect the methods
that use the temporal difference error δ as the usefulness proxy. The concern is
that these methods might favor noisy samples, since these samples might cause
bigger errors. To test this we perform learning runs on the pendulum task while
collecting statistics on all of the experiences in the mini-batches that are sampled
for training. The mean absolute values of the noise in the experiences that are
sampled are given in Table 4.5. It can be seen that the temporal difference error-
based methods indeed promote noisy samples. The noise is highest for those
dimensions that have the largest influence on the value of Q.

In Figure 4.4 the performance of the different methods on the two benchmarks
with noise is given. The tendency to seek out noisy samples in the buffer is
now clearly hurting the performance of PER sampling, as the performance with
PER is consistently worse than with uniform sampling. For our chosen buffer size
the retention strategy is still more influential and interestingly the TDE-based

Experience selection | 75

position velocity action

Expl(1.0)[Uniform] 1.584 ·10−2 1.582·10−2 1.594·10−2

Expl(1.0)[PER] 1.654 ·10−2 1.630·10−2 1.595·10−2

TDE(1.0)[Uniform] 1.713·10−2 1.627·10−2 1.598·10−2

TDE(1.0)[PER] 1.846·10−2 1.743·10−2 1.594·10−2

Table 4.5: Mean absolute magnitude of the noise per state-action dimension in the mini batches
as a function of the experience selection procedure.

0.6 0.8 1.0

µfinal
r

FIFO[Uniform]
FIFO[PER]

TDE(1.20)[Uniform]
TDE(1.20)[PER]

Expl(1.20)[Uniform]
Expl(1.20)[PER]
Resv[Uniform]

Resv[PER]
FULL DB[Uniform]

FULL DB[PER]

se
le
ct
io
n

0 100 200
Rise-time 0.8 [episodes]

0.6 0.8 1.0
µmax
r

(a) Swing-up [σs = σa = 0.02]

0.6 0.8 1.0

µfinal
r

FIFO[Uniform]
FIFO[PER]

TDE(1.20)[Uniform]
TDE(1.20)[PER]

Expl(1.20)[Uniform]
Expl(1.20)[PER]
Resv[Uniform]

Resv[PER]
FULL DB[Uniform]

FULL DB[PER]

se
le
ct
io
n

0 250 500
Rise-time 0.8 [episodes]

0.6 0.8 1.0
µmax
r

(b) Magman [σs = σa = 0.02]

Figure 4.4: Performance of the experience selection methods with with sensor and actuator
noise. Results are from 50 learning runs. A description of the performance measures is given in
Section 3.5.

76 | Chapter 4

retention method does not seem to suffer as much here. The relative rankings of
the retention strategies are similar to those without noise.

4.6.4 Importance Sampling
Finally, we investigate the different importance sampling strategies that were dis-
cussed in Sections 4.2.3 and 4.5.2. We do this by using the FIFO, TDE and Resv
retention strategies as representative examples. We consider the benchmarks with
noise, since as we discussed in Section 4.2.3, the stochasticity in the environment
can make importance sampling more relevant. The results are shown in Fig-
ure 4.5. We discuss per retention strategy how the sample distribution is changed
and whether the change introduces a bias that should be compensated for through
importance sampling.

FIFO: This retention method results in an unbiased sample distribution. When
combined with uniform sampling, there is no reason to compensate for the
selection method. Doing so anyway (FIFO[Uniform + FIS]) results in down-
scaling the updates from experiences that happen to have been sampled more
often than expected, effectively reducing the batch-size while not improving
the distribution. The variance of the updates is therefore increased without
reducing bias. This can be seen to hurt performance in Figure 4.5, especially
on the swing-up task where sample diversity is most important. Using PER
also hurts performance in the noisy setting as this sampling procedure does
bias the sample distribution. Using importance sampling to compensate for
just the sampling procedure (FIFO[PER+IS]) helps, but the resulting method
is not clearly better than uniform sampling.

TDE: When the retention strategy is based on the temporal difference error, there
is a reason to compensate for the bias in the sample distribution. It can be
seen from Figure 4.5 however, that the full importance sampling scheme
improves performance on the magman benchmark, but not on the swing-
up task. The likely reason is again that importance sampling indiscrimi-
nately compensates for both the unwanted re-sampling of the environment
dynamics and reward distributions as well as the beneficial re-sampling of the
observation-action space distribution. The detrimental effects of compensat-
ing for the latter seem to outweigh the beneficial effects of compensating for
the former on this benchmark where observation-action space diversity has
been shown to be so crucial.

Resv: The reservoir retention method is not biased with respect to the reward
function or the environment dynamics. Although the resulting distribution
is strongly off-policy (assuming the policy has changed during learning), this

Experience selection | 77

0.50 0.75 1.00

µfinal
r

FIFO[Uniform]
FIFO[Uniform+FIS]

FIFO[PER]
FIFO[PER+IS]

FIFO[PER+FIS]
TDE(1.20)[Uniform]

TDE(1.20)[Uniform+FIS]
TDE(1.20)[PER]

TDE(1.20)[PER+IS]
TDE(1.20)[PER+FIS]

Resv[Uniform]
Resv[Uniform+FIS]

Resv[PER]
Resv[PER+IS]

Resv[PER+FIS]

se
le
ct
io
n

0 100 200 300
Rise-time 0.8 [episodes]

0.50 0.75 1.00
µmax
r

(a) Swing-up [σ = 0.02]

0.50 0.75 1.00

µfinal
r

FIFO[Uniform]
FIFO[Uniform+FIS]

FIFO[PER]
FIFO[PER+IS]

FIFO[PER+FIS]
TDE(1.20)[Uniform]

TDE(1.20)[Uniform+FIS]
TDE(1.20)[PER]

TDE(1.20)[PER+IS]
TDE(1.20)[PER+FIS]

Resv[Uniform]
Resv[Uniform+FIS]

Resv[PER]
Resv[PER+IS]

Resv[PER+FIS]

se
le
ct
io
n

0 500
Rise-time 0.8 [episodes]

0.50 0.75 1.00
µmax
r

(b) Magman [σ = 0.02]

Figure 4.5: Performance of representative experience selection methods with and without im-
portance sampling on the benchmarks with sensor and actuator noise. A description of the
performance measures is given in Section 3.5.

78 | Chapter 4

InvDoublePnd Reacher Hopper Walker2d HalfCheetah Ant

|o| 9 9 15 22 26 28
|a| 1 2 3 6 6 8

Table 4.6: The RoboSchool benchmarks considered in this section with the dimensionalities of
their observation and action spaces.

does not present a problem for a deterministic policy gradient algorithm with
Q-learning updates, other than that it might be harder to learn a function
that generalizes to a larger part of the state space. When sampling uniformly,
we do sample certain experiences, from early in the learning process, far more
often than would be expected under a FIFO[Uniform] selection strategy.
The FIS method compensates for this by weighing these experiences down,
effectively reducing the size of both the buffer and the mini-batches. In
Figure 4.5, this can be seen to severely hurt the performance on the swing-
up problem, as well as the learning stability on the magman benchmark.

Interesting to note is that on these two benchmarks, for all three considered re-
tention strategies, using importance sampling to compensate for the changes in-
troduces by PER only improved the performance significantly when using PER
resulted in poorer performance than not using PER. Similarly, using FIS to com-
pensate for the changes introduced in the buffer distribution only improved the
performance when those changes should not have been introduced to begin with.

4.6.5 Additional Benchmarks

The computational and conceptual simplicity of the two benchmarks used so far
allowed for comprehensive tests and a good understanding of the characteristics of
the benchmarks. However, we also saw that the right experience selection strategy
is benchmark dependent. Furthermore, deep reinforcement learning yields most
of its advantages over reinforcement learning with simpler function approximation
on problems with higher dimensional observation and action spaces. To obtain a
more complete picture we therefore perform additional tests on 6 benchmarks of
varying complexity.

Experience selection | 79

Benchmarks

In the interest of reproducibility, we use the open source RoboSchool (Klimov,
2017) benchmarks together with the openAI baselines (Dhariwal et al., 2017) im-
plementation of DDPG. We have adapted the baselines code to include the expe-
rience selection methods considered in this section. Our adapted code is available
online.3

The baselines version of DDPG uses Gaussian noise added to the parameters of
the policy network for exploration (Plappert et al., 2018). In contrast to the other
experiments in this work, the strength of the exploration is kept constant during
the entire learning run. For the Expl method we still consider the 1-norm of the
distance between the exploration policy action and the unperturbed policy action
as the utility of the sample.

Results

For the benchmarks listed in Table 4.6, we compare the default FULL DB[Uniform]
selection strategy in the baselines code to the alternative retention strategies con-
sidered in this work with uniform sampling. We show the maximum performance
for these different retention strategies as a function of the buffer size in Figure 4.6.
From the figure, it can be seen that on these noise-free benchmarks with constant
exploration and moderate sampling frequencies, the gains obtained by using the
considered non-standard experience selection strategies are limited. However, in
spite of the limited number of trials performed due to the computational complex-
ity, trends do emerge on most of the benchmarks. On all benchmarks, the best
performance is seen not when retaining all experiences, but rather when learn-
ing from a smaller number of experiences. This is most visible on the reacher
task, which involves learning a policy for a 2-DOF arm to move from one random
location in its workspace to another random location. For this task, the best per-
formance for all retention strategies is observed when retaining less than a tenth
of all experiences.

For these noise-free benchmarks, the temporal difference error is an effective proxy
for the utility of the experiences, resulting in the highest or close to the highest
maximum performance on all benchmarks.

The exploration-based retention strategy was introduced to prevent problems when
reducing exploration and for high sampling frequencies. Since the exploration is
not decayed and the sampling frequencies are modest, there is no real benefit
when applying this strategy to these benchmarks. However, it also does not seem
to hurt performance compared to the age-based retention strategies. The constant

3The code is available at https://github.com/timdebruin/baselines-experience-selection.

80 | Chapter 4

0.04 0.1 0.2 0.318 0.5 1.0
3000

4000

5000

6000

7000

8000

m
ax

re
tu
rn

InvertedDoublePendulum

0.01 0.02 0.028 0.04 0.1 0.2 1.0

-5

0

5

10

15

Reacher

0.04 0.1 0.2 0.5 0.644 1.0

600

800

1000

1200

m
ax

re
tu
rn

Hopper

0.04 0.1 0.164 0.2 0.5 1.0

200

300

400

500

600

700

800

Walker2d

0.04 0.1 0.2 0.264 0.5 1.0
buffer size [million experiences]

200

400

600

800

m
ax

re
tu
rn

HalfCheetah

0.04 0.1 0.2 0.5 0.7 1.0
buffer size [million experiences]

-100

0

100

200

300

400

500

Ant

Retention
FIFO
TDE(1.2)
EXPL(1.2)

Reservoir
Full DB

Figure 4.6: Maximum performance during a training run on the Roboschool benchmarks as a
function of the retention strategy and buffer size. Results for the individual runs and their means
are shown. In Appendix C, we additionally show the mean (Figure C.9) and final (Figure C.8)
performance. Green lines indicate the rule of thumb buffer sizes of Figure 4.7.

Experience selection | 81

0.0 0.2 0.4 0.6 0.8 1.0
Million environment steps

0.00

0.25

0.50

0.75

1.00

1.25
N
or
m
al
ize

d
ep
iso

de
re
tu
rn

Ant
HalfCheetah
Hopper

InvertedDoublePendulum
Reacher
Walker2d

Figure 4.7: Learning curves of the FULL DB method on the different benchmarks, averaged over
5 trials. The curves are normalized by the final performance (the mean performance over the last
2 · 105 steps). Indicated are the number of steps needed to get to 90% of the final performance.

exploration on these benchmarks additionally means that the performance of FIFO
and Reservoir retention are rather close, although due to premature convergence
of the data distribution, reservoir retention does suffer the most when the buffer
capacity is too low.

Figures 4.6, C.8 and C.9 show that when the right proxy for the utility of expe-
riences is chosen, performance equal to and often exceeding that of retaining all
experiences can be obtained while using only a fraction of the memory. This begs
the question of how to choose the buffer size.

As it tends to result in more stable learning, retaining as many experiences as
possible seems a sensible first choice for the buffer size. We therefore base our
suggestion for subsequently tuning the buffer size on the learning curves of the
FULL DB[Uniform] method. The complexity of the control task at hand determines
the minimal number of environment steps required to learn a good policy, as well as
the number of experiences that need to be retained in a buffer for decent learning
performance. We propose to use the number of experiences needed to get to 90%
of the final performance as a rough empirical estimate of the optimal buffer size.
We show this rule of thumb in Figure 4.7 and have indicated the experiments with
the proposed buffer sizes in Figure 4.6 with vertical green lines.

Instead of iteratively optimizing the buffer size over several reinforcement learning
trials, extrapolation of the learning curve (Domhan et al., 2015) could also be used
to limit the buffer capacity when the remaining learning performance increase is
expected to be small. This would allow the method to work immediately for novel
tasks.

82 | Chapter 4

4.7 | Conclusions and Recommendations

We have investigated how the characteristics of a control problem determine what
experiences should be replayed when using experience replay in deep reinforcement
learning.

We first investigated how factors such as the generalizability over the state-action
space and the sampling frequency of the control problem influenced the balance
between the need for on-policy experiences versus a broader coverage of the state-
action space.

We then investigated a number of proxies for the utility of experiences which we
used to both decide which experiences to retain in a buffer and how to sample
from that buffer. We performed experiments that showed how these methods
were affected by noise, increased sampling frequencies and how their performance
varied across benchmarks and experience buffer sizes.

Based on these investigations we present a series of recommendations below for
the three choices concerning experience selection: how to choose the capacity
of the experience replay buffer, which experiences to retain in a buffer that has
reached its capacity and how to sample from that buffer. These choices together
should ensure that the experiences that are replayed to the reinforcement learning
agent facilitate quick and stable learning of a policy with good performance. An
example of applying the procedure outlined below on the Magman benchmark
is given in Figure 4.8. Note the proposed methods are especially relevant when
faced by issues that might occur in a physical-control setting, such as a need
for constrained exploration, high or low sampling frequencies, the presence of
noise and hardware limitations that place constraints on the experience buffer
size. Section 4.6.5 showed that the potential gains might be limited for processes
where these problems do not occur.

4.7.1 Choosing the Buffer Capacity

Although it is not the best retention strategy in most of the benchmarks we have
considered, retaining as many experiences as possible is a good place to start.
This tends to result in more stable learning, even if the eventual performance is
not always optimal.

If the learning curve for the FULL DB experiments reaches a level of performance
close to the performance after convergence in significantly fewer environment steps
than there are experience samples in the buffer, it might be worthwhile reducing
the size of the buffer. Our proposed rule of thumb is to to make the buffer size
roughly equal to the number of environment steps needed to reach to 90% of the
final performance level.

Experience selection | 83

0.0

0.2

0.4

0.6

0.8

µ
r

84k

1. Choosing the buffer size: rule of thumb

Full DB[Uniform]
90% of final performance
Buffer capacity rule of thumb 10−2

10−1

100

1
−

µ
r

2. Choosing the buffer size: tweaking

FULL DB(400k)[Uniform]
FIFO(84k)[Uniform]
FIFO(42k)[Uniform]
FIFO(21k)[Uniform]

0 100 200 300 400
Environment steps [k]

10−2

10−1

100

1
−

µ
r

3. Choosing sampling method: Uniform or PER

FIFO(84k)[Uniform]
FIFO(42k)[Uniform]
FIFO(84k)[PER]
FIFO(42k)[PER]

0 100 200 300 400
Environment steps [k]

10−2

10−1

100

1
−

µ
r

4. Choosing sampling method: Importance Sampling

FIFO(42k)[Uniform]
FIFO(42k)[PER]
FIFO(42k)[PER+IS]

Figure 4.8: Demonstration of the proposed process for the magman benchmark. 1: Based on
the performance of the Full DB[Uniform] method, the rule of thumb indicates a buffer capacity
of 84× 103 experiences. As there are no special circumstances such as high sampling frequencies
and the magman requires a very precise policy that does not easily generalize due to the highly
nonlinear behavior of the magnets, FIFO retention is used. 2: By exploring around the proposed
buffer size, a buffer capacity of 42× 103 experiences is chosen. 3: Sampling from the buffer based
on the temporal difference error can help speed up and stabilize learning, but is very dependent
on the experiences that are in the buffer to begin with. 4: Since the benchmark fully deterministic
(noise free), importance sampling is not needed in this case and can be seen to undo some of the
benefits of PER.

84 | Chapter 4

4.7.2 Choosing the Experience Utility Proxy
When not all experiences are retained in the buffer, a proxy for the utility of the in-
dividual experiences is needed to determine which experiences to retain and which
to discard. In this work, we have discussed strategies based on several proxies and
shown that the right strategy is problem dependent. Although finding the right
one will likely require some experimentation, we discuss here what properties of
the control problem at hand make certain strategies more likely or less likely to
succeed.

FIFO: Although off-policy reinforcement-learning algorithms can learn from sam-
ples obtained by a different policy than the optimal policy that is being
learned, the reality of deep reinforcement learning is that a finite amount
of shared function approximation capacity is available to explain all of the
training data. While simply using larger networks might help, we show in
Appendix C.1 that learning only from more recent data (which corresponds
more closely to the policy being learned) can work better. A large po-
tential downfall presents itself when the policy suddenly changes in a way
that changes the distribution of the states that are visited. As shown in
Section 3.6.2, this can quickly destabilize the learning process. Extra care
should be taken when using FIFO retention in combination with decaying
exploration. This is especially true for problems where multiple policies are
possible that give similar returns but distinct state/observation-space tra-
jectories, such as swinging up a pendulum either clockwise or anti-clockwise.

TDE: The idea behind selecting certain experiences over others is that more can
be learned from these samples. The temporal difference error is therefore
an interesting proxy, especially during the early stages of the learning pro-
cess when the error is mostly caused by the fact that the value function has
not been accurately learned yet. In the experiments of Schaul et al. (2016)
as well as in our own experiments, prioritizing experiences with larger TD
errors was observed to improve both the speed of learning as well as the
eventual performance in many cases. The downside of using the TD error
as an experience utility proxy is that the error can also be caused by sen-
sor and actuator noise, environment stochasticity or function approximation
accuracy differences as a result of differences in the state-space coverage.
We have shown in Section 4.6.3 how noise can hurt the performance of the
algorithm when using this proxy and argued in Section 4.2.3 how this proxy
introduces a harmful bias in the presence of environment stochasticity.

Exploration: We introduced an additional proxy based on the observation that, es-
pecially on physical systems, exploration can be costly. By using the strength

Experience selection | 85

of the exploration signal as a proxy for the utility of the experience, some
of the problems mentioned for the FIFO strategy when reducing exploration
can be ameliorated. As shown in Section 3.6.4 and Section 4.6.2, sufficient
diversity in the action space is most important when the dependency of the
value function on the action is relatively small, such as for increased sampling
frequencies. The downside of this strategy is that since it focuses on early
experiences that are more off-policy, it can take longer for the true value
function to be learned. Besides the impact on training speed, the focus on
off-policy data can also limit the maximum controller performance.

Reservoir sampling: By using reservoir sampling as a retention strategy, the buffer
contains, at all times, samples from all stages of learning. As with the
exploration-based policy, this ensures that initial exploratory samples are
retained which can significantly improve learning stability on domains where
FIFO retention does not work. However, of the methods mentioned here,
reservoir sampling is the one most severely impacted by a too small experi-
ence buffer, as the data distribution in the buffer will converge prematurely
and will not cover the state-action space distribution of the optimal policy
well enough.

4.7.3 Experience Sampling and Importance Sampling
The experiences that are used to learn from are not just determined by the buffer
retention strategy, but also by the method of sampling experiences from the buffer.
While the retention strategy needs to ensure that a good coverage of the state-
action space is maintained in the buffer throughout learning, the sampling strategy
can seek out those experiences that can result in the largest immediate improve-
ment to the value function and policy. It can therefore be beneficial to sample
based on the temporal difference error (as suggested by Schaul et al. 2016), which
can improve learning speed and performance, while basing the retention strat-
egy on a more stable criterion that either promotes stability or ensures that only
samples from the relevant parts of the state-action space are considered by the
sampling procedure.

As discussed in Sections 4.2.3 and 4.6.4, selecting experiences based on the tem-
poral difference error in stochastic environments introduces a bias that should
be compensated for through weighted importance sampling in order to make the
learning updates (more) valid. While the other experience selection methods in
this work change the distribution of the samples, these changed distributions are
still valid for an off-policy deterministic gradient algorithm.

86

C
H

A
P
T

E
R

 5

5
Integrating

State Representation Learning
into

Deep Reinforcement Learning

Parts of this chapter have previously been published in:

de Bruin, T., Kober, J., Tuyls, K., Babuška, R. (2018). "Integrating
State Representation Learning into Deep Reinforcement Learning".
IEEE Robotics and Automation Letters (RA-L / ICRA).

88 | Chapter 5

5.1 | Introduction

In the last two chapters we have investigated which experiences we would like to
learn from. Now, we now turn our attention to the question of what to learn
from them. One of the most exciting promises of using reinforcement learning
for robot control is the fact that, instead of having to explicitly program the
required behaviors, only a reward function that captures the success of the robot
at performing the task is required. Unfortunately, while it has been shown that
this reward function provides a signal that can be used to find a mapping directly
from sensory signals to correct actuator commands (e.g., Finn et al., 2016; Mnih
et al., 2015), the often uninformative nature of the reward signal contributes to the
large amount of experiences required to learn good, generally applicable policies.

This problem is especially pronounced in the robotics domain, where much of the
complexity of learning a new task lies in learning to perceive the world. Robot
designers often equip their robots with several different types of sensors that es-
timate the state of the world through measuring different physical phenomena.
Deep Learning has been shown to be very capable of extracting descriptive fea-
tures from high-dimensional, multi-modal inputs (Ngiam et al., 2011). However,
while reward functions describe the desirability of the state of the world, they
often provide only vague and indirect information on how to distill that state from
the raw sensory observations. This further increases the number of required sam-
ples, which when combined with the high operating cost of robots, makes using
reinforcement learning in this domain infeasible in general.

In this chapter, an autonomous racing car is used as a simulation benchmark.
Images, range-finder readings and velocity data are observed and rewards are given
based on the velocity along the track-axis combined with the distance from the
center of the track. With a wealth of high-dimensional sensor data and a scalar
reward it is easy to learn the wrong causal relations. Was the negative reward due
to the tree in the background, the combination of velocity and the distance to the
track-edge or the color of the road markings? While some of these observations
might be correlated to a good driving policy on one track, the learned policy will
not necessarily work on a different circuit. Without a good compact and concise
representation of the state of the problem, large amounts of diverse data will be
required before the true causal connections outweigh the accidental ones and a
general policy is found.

In order to make learning suitable state representations from the raw sensor data
easier and faster, additional training criteria can be used to supplement the rein-
forcement learning objective (Caruana, 1993). These State Representation Learn-
ing (SRL) criteria can simplify the representation learning problem by encoding

State Representation Learning | 89

... ...

...

...

o1

o2

on

Q̂(s̄, a; θq)

LSRL1(s̄)

S̄(o; θs)

s̄

LSRL2(s̄, ·, θSRL1)

LSRLm(s̄, ·, θSRLm)

Figure 5.1: The general neural network architecture considered in this chapter. A shared state
embedding s̄ = S̄(o; θs) of the different sensory modalities om is learned. Both the reinforcement
learning cost function (line 16 of Algorithm 1), as well as a number of state-representation
learning cost terms LSRL1,. . . ,m are employed to shape the embedding during training.

prior knowledge and can help to regularize the learned representation by mak-
ing it adhere to some fundamental properties from physics. Examples of state
representation learning criteria include the classical auto-encoding objective (e.g.,
Finn et al., 2016; Hinton and Salakhutdinov, 2006; van Hoof et al., 2016; Lange
et al., 2012b), predicting instantaneous rewards (e.g., Jaderberg et al., 2017; Jon-
schkowski and Brock, 2015; Munk et al., 2016), learning the (inverse) dynamics
in the state embedding space (e.g., Agrawal et al., 2016; Shelhamer et al., 2016;
Watter et al., 2015) or encoding the belief that state representations should change
only slowly over time (e.g., Jonschkowski and Brock, 2015; Wiskott and Sejnowski,
2002), while being diverse in general (Jonschkowski et al., 2017).

These additional optimization criteria have the potential to aid reinforcement
learning, and even to substitute for reinforcement learning when a shaped reward
function is not available (Agrawal et al., 2016), as is often the case is real world
settings. However, realizing this potential can be non-trivial. When the auxiliary
optimization terms are added to the reinforcement learning objective naively, per-
formance can easily be reduced rather than improved. Many of the works that have
introduced new state-representation learning criteria have done so for purposes
other than reinforcement learning (e.g., Agrawal et al., 2016; Shelhamer et al.,
2016), or with the state-representation learning separated from the reinforcement
learning (e.g., van Hoof et al., 2016; Jonschkowski et al., 2017; Lee et al., 2017;
Munk et al., 2016). In this chapter we take a host of state-representation learning
criteria from the literature. We then propose and compare different ways of in-
tegrating state-representation learning with popular deep reinforcement learning
methods. Specifically, we make the following contributions:

• We propose and investigate a method for reducing the potential detrimental

90 | Chapter 5

effects of changing the state representation on-line.

• We combine several state-representation learning objectives from the litera-
ture and investigate their contributions.

• We compare the effects of pre-training the state-representation and policy
on data from a related domain to learning both from scratch during the
reinforcement learning trials.

• We learn a shared state representation from multi-modal sensor observations.

• We perform state representation learning and reinforcement learning simul-
taneously, allowing the reinforcement learning process to help shape the state
representation while the state representation learning helps regularize that
representation.

The rest of this chapter is organized as follows: in Section 5.2 we discuss the
state representation learning objectives that we will use. Section 5.3 discusses
the different methods we consider for combining these objectives in a way that
maximally benefits the reinforcement learning process. To test these methods we
perform experiments that are described in Section 5.4, and examine their results
in Section 5.5. Further discussion and conclusions are given in Section 5.6.

5.2 | Learning Objectives

We consider a robot that observes an environment with one or more sensors. We
indicate the individual sensory observations with om, where m ∈M indicates the
sensor modality with M the set of modalities of the sensors that the robot is
equipped with. We denote with o the combined sensory signals of the robot.

To optimize the return R (2.1) obtained form a given state s, a policy has to
be found that maps the observations to actions. In robotics applications, these
sensory observations tend to be high dimensional, noisy and redundant, which
makes learning a policy from them directly based only on rewards both costly
and prone to over-fitting. Our aim therefore is to learn a mapping from the sen-
sory observations to a low dimensional, concise representation of the task relevant
aspects of the state: s̄ = S̄(o; θs). This representation should allow learning a
policy that generalizes better, while using less data. However, in contrast to many
other works on representation learning, we consider reinforcement learning itself
as a crucial state representation learning objective, and allow it to help shape the
representation.

State Representation Learning | 91

In the following subsections, we describe the different optimization criteria that we
use to map the observations to state representations and the state representations
to actions.

5.2.1 Reinforcement Learning

The first objective for which we optimize is the reinforcement learning objective.
We use (Deep Double) Q-learning in this chapter (Mnih et al., 2015; Van Hasselt
et al., 2016; Watkins, 1989, see also Section 2.3.2) for its simplicity and popularity.
The algorithm is used to learn to approximate the value of the return (2.1) when
taking action a after observing o and following the optimal policy from the sub-
sequent time-step onwards. This function is learned by minimizing the squared
temporal difference error (4.1) between the network predictions Q̂ and the DDQN
return estimates q (2.8):

LRL =
(
Q̂
(
S̄(o; θs), a; θq

)
− q(o, a)

)2
. (5.1)

5.2.2 Auto-encoding

Besides using the reinforcement learning objective to shape the state representa-
tion, we want to add additional objectives that encode some form of prior knowl-
edge which can help simplify and regularize the state representation learning pro-
cess by adding optimization targets and limiting the model search space. The
most general prior knowledge that we encode is the knowledge that high dimen-
sional sensory observations are often the result of a smaller number of relevant
latent state variables (Finn et al., 2016; Ghadirzadeh et al., 2017; Hinton and
Salakhutdinov, 2006; Lange et al., 2012b). Additionally, we use the knowledge
that the different sensors on a robot all measure different physical effects of the
same environment state. We encode these beliefs in two ways.

The first is through the network structure. While the different sensory modalities
have their own encoders, these encodings are then fused and embedded into a
shared state embedding space, as shown in Fig. 5.1. This embedding space is
much lower dimensional than (some of) the sensory observations.

The second way in which we enable the state representation to encode significant
aspects of the state is by reconstructing the observations of one or more of the
sensory modalities from the shared embedding space, by minimizing the following
loss:

LAEm =
∥∥ôm(S̄(o; θs); θAEk

)
− om

∥∥2
, (5.2)

where ôm(S̄(o; θs); θAEk) is the reconstruction of om made by a decoding layer in
the network based on the state representation. In our autonomous car benchmark,

92 | Chapter 5

we might for instance expect the representation that is learned to include the
curvature of the road, which would help explain much of the variation in both the
images and the range-finder measurements.

5.2.3 Reward prediction

While auto-encoding is very general, and encourages encoding those factors that
can help explain the significant variations in the observed sensor data, we might
want the state-representation to specifically focus on those aspects of the environ-
ment state that are relevant to the task that needs to be performed. The second
SRL objective we consider is therefore predicting the instantaneous rewards (Jader-
berg et al., 2017; Jonschkowski and Brock, 2015; Munk et al., 2016). Doing this in
addition to learning a value function helps especially when the rewards are sparse.
However, even when this is not the case, this loss term is easier to optimize for
than the temporal difference error (5.1) as changes to the policy will only change
the data distribution and not the training targets.

We use the mean squared error as the reward prediction loss term:

Lrew =
(
r̂
(
S̄(o; θs), a, S̄(o′; θs); θr

)
− r
)2
, (5.3)

with r̂
(
S̄(o; θs), a, S̄(o′; θs); θr

)
the prediction of the network, based on the sub-

sequent state representations and action, of the reward r. For the driving task,
predicting the reward would encourage encoding the velocity of the car as well as
the position and orientation of the car relative to the track axis, regardless of the
current policy. Note however that this is not sufficient for a good racing policy,
as we would also need properties like the distance to the next corner, which does
not influence the instantaneous reward. This is why we still consider the temporal
difference loss (5.1) to be an important state-representation learning criterion.

5.2.4 Slowness and diversity

It is also possible to encode knowledge about physics which should be applicable
to state representation learning for robotics, regardless of the task (Jonschkowski
and Brock, 2015). This physical prior knowledge can be encoded as loss functions
that act directly on the learned state-space embedding. One popular physical prior
is that states should not change quickly over short periods of time (Wiskott and
Sejnowski, 2002). A potential downside of encoding this belief is that its optimum
is a state representation that does not change at all, and therefore contains no in-
formation. We can counter this by adding an additional loss term that encourages
diversity between non consecutive states (Jonschkowski et al., 2017). The slowness

State Representation Learning | 93

Lslow and diversity Ldiv loss terms we use are respectively:

Lslow =
∥∥S̄(o′; θs)− S̄(o; θs)

∥∥2
, (5.4)

Ldiv = e−‖s̄(ox;θs)−s̄(oy ;θs)‖2
, (5.5)

where ox and oy are non-consecutive observations. In practice we calculate the
average of Ldiv over the experiences in a training mini-batch which is sampled
uniformly at random from an experience replay buffer.

5.2.5 (Inverse) state dynamics
Since our eventual goal is to select actions based on the state representation, it
can also be beneficial to make sure that the embedding specifically encodes those
aspects of the world that can be changed by the robot’s actions. This can be done
by learning the inverse state-representation dynamics; predicting which action was
responsible for the transition between two states (Agrawal et al., 2016; Shelhamer
et al., 2016). We also learn the forward dynamics by giving a prediction ˆ̄s′ of the
next state embedding s̄′ based on the current state embedding and action. We
assume the environment state to be (approximately) Markovian and in learning the
forward dynamics we attempt to ensure that our state representation also has this
property. Since we consider discrete actions in this chapter we use a classification
loss term for the inverse dynamics Linv. The forward dynamics Lfwd are posed
as a regression problem:

Linv = − log
(
P̂
(
a|S̄(o; θs), S̄(o′; θs); θinv

))
, (5.6)

Lfwd =
∥∥∥ ˆ̄S′
(
S̄(o; θs), a; θfwd

)
− S̄(o′; θs)

∥∥∥2
. (5.7)

5.3 | Main Contribution: Integration Methods

The loss functions from the literature that were reviewed in the previous section
have been used in a number of different ways. In some works, state-representation
learning was not explicitly combined with reinforcement learning (e.g., Agrawal
et al., 2016; Watter et al., 2015). In others, the state-representation learning objec-
tives were used during an initial pre-training phase while the state encoding was
held (partially) fixed during the subsequent reinforcement learning phase (e.g.,
van Hoof et al., 2016; Jonschkowski et al., 2017; Lee et al., 2017; Munk et al.,
2016). Yet others use the auxiliary optimization objectives during the reinforce-
ment learning phase (e.g., Jonschkowski and Brock, 2015; Mirowski et al., 2017;
Shelhamer et al., 2016) or even learn separate RL controllers that optimize for
auxiliary tasks (Jaderberg et al., 2017). In this chapter, we use a large number
of SRL objectives from the literature, and we propose and investigate different

94 | Chapter 5

ways of integrating them with popular deep RL algorithms. The main aim for the
combined methods is finding control policies that generalize well, while minimizing
the number of required environment interactions.

5.3.1 Simultaneous optimization
The first and most straightforward way of integrating state-representation learning
with reinforcement learning that we consider is to simply add the SRL objectives
to the RL loss LRL and optimize for this new loss function Lsim instead of the
standard loss function used in the RL algorithm:

Lsim = LRL + cSRL
(
cSRL1LSRL1 + · · ·+ cSRLnLSRLn

)
, (5.8)

where cSRL1,...,n are scaling constants for the individual SRL loss terms and cSRL
is an overall scaling term that trades off the SRL objectives with the RL objective.
The individual loss scaling terms cSRL1,...,n are the same in all our experiments.
They were chosen once, such that the 2-norms of the gradients of the loss terms
with respect to the embedding vector are of the same order of magnitude during
the early stages of learning. We do vary the overall scaling cSRL to investigate the
effects of the trade-off between strictly enforcing our state-representation knowl-
edge and allowing the reinforcement learning to mostly dictate the representation.
We refer to this method of optimizing simultaneously for all loss terms as sim.

During the learning process, we perform batch updates after each episode, with
the number of updates dependent on the number of experiences obtained during
the episode.

5.3.2 Alternating optimization with fixed Q values
One of the challenges of reinforcement learning, compared to supervised learning,
is the fact that the training data distribution can change significantly as a result of
a change in the policy. When using the sim method, this might cause some of the
auxiliary loss terms to suddenly significantly change the state representation. This
in turn can change the Q-values, which are dependent on the representation. As
action gaps are generally small compared to the Q-values (Bellemare et al., 2016b),
even small changes in these values could inadvertently change their ordering and,
as a consequence, the policy. This could further destabilize the learning process.

To mitigate these effects we propose a second method, alt, in which the network
parameters are updated in two alternating phases. In each cycle, we first pre-
determine the experiences that will be sampled from the experience buffer. For
these experiences, we determine the predicted Q-values with the current network
parameters: Q̂(S̄(o; θs), a; θIq) where I indicates the parameter update step at the
start of the current cycle. We then first perform a number of update steps where

State Representation Learning | 95

we optimize for the state representation learning objectives, while attempting to
minimize the changes to the predicted Q-values:

Lalt = cQfixLQfix + cSRL
(
cSRL1LSRL1 + · · ·+ cSRLnLSRLn

)
, (5.9)

with:
LQfix =

(
Q̂
(
S̄(o; θs), a; θq

)
− Q̂

(
S̄(o; θs), a; θIq

))2
. (5.10)

After these updates we perform the same number of updates with the regular
reinforcement learning objective LRL (5.1).

5.4 | Experiments

We performed experiments with the Torcs (Wymann et al., 2000; Yoshida, 2016)
racing simulator. The aim is to complete a lap of a track as quickly as possible.
We use three different sensory modalities:

1. oRGB ∈ R12288: RGB images of 64 by 64 pixels, looking forward from the
car.

2. oT ∈ R19: Measurements of the distance to the track edge at 10 degree
intervals covering the front of the car. When the car is off the track the
measurements are −1.

3. oC ∈ R5: The translational velocity of the car and the rotational velocities
of each of the wheels.

For all experiments, the three different sensory modalities oRGB, oT, oC are em-
bedded into a 30-dimensional shared state-representation space s̄ ∈ R30. We use
the state-representation learning cost functions described in Section 5.2, with both
oRGB and oT as auto-encoding targets. For oRGB we reconstruct a down-sampled

Figure 5.2: Training and validation experiments are performed on four tracks. Pre-train data
from a separate fifth track is used in some experiments.

96 | Chapter 5

image. We used the following neural network architecture. Three separate en-
coders were employed:

• For the camera images oRGB, the same convolutional architecture as in Mnih
et al. (2015) was used, without the final fully connected layer but with nor-
malization layers (Ioffe and Szegedy, 2015).

• For the track (range finder) measurements oT a fully connected encoder was
used with two ReLU layers of 50 and 25 units respectively.

• The car observations oC encoder, uses a single layer of 25 units with ReLU
nonlinearities.

All encoders are followed by a single linear layer of size 30. The shared repre-
sentation is obtained by averaging over the different modalities to get a single
shared representation s̄ ∈ R30 (Coates and Bollegala, 2018). The decoders, for the
Q-values, downsized (32x32x3) RGB targets, and the reconstruction of the track
measurements all use an affine transformation of the state embedding.
As in other works, (e.g., Liu et al., 2017), we use a reward function that penalizes
the distance from the center of the track as well as the velocity perpendicular to
the track axis, while rewarding the velocity along the track axis:

r = v′ (cos(α′)− | sin(α′)| − |d′c|) , (5.11)

with v the velocity of the car, α the angle between the car and the track-axis and
dc the distance between the car and the middle of the track. The distance dc is
normalized such that |dc| = 1 at the edge of the track. Episodes are ended (T = 1)
when the car starts pointing in the wrong direction (cos(α) < 0), when the car
stops after an initial grace period or when a lap is completed.
We use a pool of four tracks for training and testing. When we train on one
track, we test the generality of the learned controller on the remaining three.
The hypothesis is that the SRL objectives will encourage a representation that
allows the learned policies to generalize to new tracks as well. When we perform
pre-training, the experiences are from a separate fifth track (see Figure 5.2). All
reported experiments are based on two trials per training track. Reported training
performance is therefore averaged over 8 runs, while test performance is averaged
over 24 runs. To compare the algorithms across different tracks, we here define the
performance as the mean reward observed during an episode, normalized between
0 and 1. For each track we define 0 as the mean reward during the first episode
of the trials, when the controllers are untrained, and 1 as the best observed mean
reward for any single episode over all experiments performed on the same track.
Additional implementation details are given in Appendix B.

State Representation Learning | 97

5.5 | Results

step
0.0

0.2

0.4

0.6

0.8

te
st

pe
rfo

rm
an
ce

10000 20000 30000 40000
cumulative environment interaction steps

0.2

0.4

0.6

0.8

tr
ai
n
pe
rfo

rm
an
ce

rl
sim

alt
alt, no qfix

Figure 5.3: Normalized performance for the rl, sim and
alt methods, as well as the alt method without the
LQfix (5.10) loss term. For the test performance, every 104

steps the network parameters that gave the best training
performance up to that point are evaluated on the test
tracks, without any additional training on those tracks.
The mean ± half a standard deviation of the performance
criterion from Section 5.4 are shown.

We start by comparing the
performance of plain reinforce-
ment learning to that of the
two algorithms that include
state representation learning
considered in this chapter. For
both sim and alt we choose
cSRL = 0.5 such that the 2-
norms of the gradients of the
state representation learning
terms in the cost function with
respect to the state embed-
ding vector are about half that
of the reinforcement learning
term. For alt, we consider a
version with cQfix chosen such
that the 2-norm of the gra-
dient of this term is similar
to that of the reinforcement
learning cost term and a ver-
sion with cQfix = 0.

From the results in Figure 5.3
it can be seen that all algo-
rithms manage to find control
policies that yield good per-
formance on the tracks that
they are trained on. When the
learned controllers are tested
on different tracks however, it
becomes clear that the con-
trollers trained by reinforcement learning alone do not generalize well. The perfor-
mance when including the state-representation learning cost terms is significantly
better. As can be seen from Table 5.1, the alt algorithm with the LQfix loss term
consistently produced the best performing controllers on the training tracks, while
the alt algorithm without this loss term gave the best generalization performance
on three of the four tracks.

98 | Chapter 5

Table 5.1: Best performing algorithm (of rl, sim and alt with and without the LQfix (5.10)
loss term) on each of the training track / evaluation track combinations.

evaluation: track 1 track 2 track 3 track 4

training track 1 alt alt(no qfix) alt(no qfix) alt
training track 2 sim alt alt(no qfix) alt(no qfix)
training track 3 sim alt(no qfix) alt alt(no qfix)
training track 4 sim alt(no qfix) alt(no qfix) alt

Sensitivity to cSRL

Since we are interested in the integration of RL and SRL, we have investigated
the effect of changing the weight cSRL of all SRL terms compared to the RL
cost term. We observed that scaling cSRL down from 0.5 to 0.25 and 0.05 for
the sim method resulted in slightly better training performance, with no clear
difference in test performance. Overall, the algorithms sensitivity to this hyper-
parameter seems quite limited, as a change of an order of magnitude did not
produce clear performance differences. Still, adapting the scale of the individual
loss terms dynamically (van Hasselt et al., 2016) could be useful future work, as
it could eliminate the tuning step altogether.

Learning speed

Besides the potential for regularizing the state representation in a way that ben-
efits generalization across domains, the other main appeal of adding the extra
state-representation learning objectives is making the optimization problem for
the state-representation easier by providing more stable and simpler objectives.
Other authors, such as Jaderberg et al. (2017), have found that the use of addi-
tional training objectives can speed up the learning process, also on the training
domain. While Figure 5.3 showed that the sim and alt methods were able to find
generalizing controllers more quickly, learning on the training domain was slower
than that of plain rl.

A likely reason for these observations is that while some of the individual optimiza-
tion problems posed by the SRL loss terms might be simple, we are optimizing for
many of them at once, which makes the optimization more difficult. Additionally,
by (softly) enforcing the physical priors we limit the space of suitable state repre-
sentations, as the state representation should not only allow fitting the Q-values,
but additionally adhere to the SRL constraints. While this results in the improved
generalization performance, it makes finding a representation that allows decent
training performance more challenging, as most SRL objectives do not limit the

State Representation Learning | 99

parameter search space. To further investigate the cause of the slower learning we
vary the experience reuse and perform an ablation study of the individual SRL
loss components.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

pe
rfo

rm
an
ce

0 10000 20000 30000 40000 50000
cumulative environment interaction steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tr
ai
n
pe
rfo

rm
an
ce

rl, sample reuse 8
rl (sample reuse 16)
rl, sample reuse 32
alt, sample reuse 8
alt (sample reuse 16)
alt, sample reuse 32

Figure 5.4: The influence of the sample-reuse hyper-
parameter on the train and test performance of the rl and
alt methods. For legibility only the means of the perfor-
mance criterion from Section 5.4 are shown.

After each training episode,
the newly observed experi-
ences are added to the ex-
perience replay buffer and a
number of optimization steps
is performed. The number of
updates is determined by the
sample reuse hyper-parameter;
the expectation of the num-
ber of times each experience
is sampled as part of a mini-
batch for an update. As
the SRL objectives add richer
training targets and serve as
regularizers, we might expect
that increasing the number of
updates performed per new ex-
perience would be beneficial,
especially compared to doing
the same without the SRL ob-
jectives. To test this, we var-
ied the sample reuse for both
the alt and the rl algorithms
from 16, which we use for all
other experiments, to 8 and
32. The results are shown
in Figure 5.4 and show that
for our tests there is little to
be gained from increasing the
sample reuse beyond 16.

Individual SRL losses

We are also interested in how the individual losses contribute to both the speed of
learning and the performance of the learned controllers. Figure 5.5 shows an abla-
tion study in which, for the alt algorithm, each of the losses is separately turned
off.

100 | Chapter 5

0.0

0.2

0.4

0.6

0.8

te
st

pe
rfo

rm
an
ce

10000 20000 30000 40000
cumulative environment interaction steps

0.0

0.2

0.4

0.6

0.8

tr
ai
n
pe
rfo

rm
an
ce

rl
alt
No auto-encoding
No reward prediction
No slowness / diversity
No (inv) dynamics
No temporal

Figure 5.5: The effect on the performance of the
alt algorithm of turning off individual SRL losses. The no
temporal experiment excludes both the (inv) dynamics and the
slowness / diversity losses. The performance with all SRL losses
(alt) and with no SRL losses (rl) are shown for comparison.
The mean ± half a standard deviation of the performance cri-
terion from Section 5.4 are shown.

While all losses contribute
to learning general control
policies during the early
stages of learning, the
auto-encoding loss seems
to hurt generalization in
the later stages. Ini-
tially, this loss might help
quickly shape the con-
volutional feature maps
through the dense training
targets. The input recon-
struction objective is how-
ever the most general ob-
jective and the least spe-
cialized towards reinforce-
ment learning. While the
objective seems to help
with the learning stabil-
ity1, it might hurt the test
performance in the later
stages, where it forces
the state representation to
capture information that,
while it might help explain
the variation in the sen-
sor data on the training
track, might not be rele-
vant to the task at hand.
The other losses all bene-
fit the generalization per-
formance.
The (inverse) dynamics loss can be seen from Figure 5.5 to be the primary reason
for the slower learning on the training domains, as excluding it yields a similar
learning curve to the rl method. Leaving out either the (inverse) dynamics or
the slowness and diversity loss terms results in a large drop in generalization
performance.

1Note that since the test performance is evaluated every 104 steps for the best performing
controllers up to that point, the test performance is less sensitive to the learning stability than
the training performance.

State Representation Learning | 101

MDP dynamics encoding

When leaving out both the slowness and diversity as well as the (inverse) dynam-
ics losses (no temporal in Figure 5.5), the generalization performance degrades to
the level of the plain rl method. This shows that, at least on the Torcs domain,
explicitly learning to encode the temporal aspects of the environment into the rep-
resentation of the state is the most beneficial for the generalization performance.

The incorporation of the MDP dynamics into the state representation to aid gen-
eralization is also the idea behind successor representations (Barreto et al., 2017;
Dayan, 1993; Kulkarni et al., 2016). These methods use a prediction of the oc-
cupancy of future states as a representation of the current state, something that
might be biologically plausible (Stachenfeld et al., 2017). While for successor rep-
resentations the representation is a function of the MDP dynamics and the current
policy, our state representation learning losses are all off-policy and only a func-
tion of the environment dynamics. However, the slowness objective does encourage
successive states in the experience buffer to have similar representations.

Pre-training

So far we have investigated integrating state-representation learning directly into
the reinforcement learning process. An alternative to this approach is to first
learn a state-representation and to then perform reinforcement learning, either
while keeping the representation fixed, or while allowing it to be adjusted further.
We investigate the potential of pre-training using a fixed dataset obtained by a
reinforcement learning controller on a separate track.

In Figure 5.6 the performance with pre-training is compared to the performance
without. We pre-train using the SRL objectives with or without the RL loss.
Subsequently, we train while either keeping the representation fixed (and only
changing the parameters of the RL decoder), or we perform training with the rl or
alt algorithms as usual. The results show that while pre-training enables quick
adaption to a new track and can help generalization, the learned representation
is not good enough to allow competitive performance without adaption of the
representation in the on-line learning phase.

5.6 | Conclusions

We have investigated several ways of integrating State Representation Learning
(SRL) objectives into standard deep Reinforcement Learning (RL). During all
stages of learning, we allowed the reinforcement learning objective to help shape
the state representation and we used the state representation learning objectives to
regularize that representation.

102 | Chapter 5

0.0

0.2

0.4

0.6

0.8

te
st

pe
rfo

rm
an
ce

0 10000 20000 30000 40000 50000
cumulative environment interaction steps

0.2

0.4

0.6

0.8

tr
ai
n
pe
rfo

rm
an
ce

SRL → RL (SR fixed)
SRL+RL → RL (SR fixed)
SRL → RL
SRL+RL → RL

SRL → SRL+RL
SRL+RL → SRL+RL
rl (no pre-training)
alt (no pre-training)

Figure 5.6: Performance when starting with a net-
work pre-trained with data from a separate track.
The notation is pre-train method→ train method. SR
fixed indicates that the state representation is kept
fixed during the on-line learning phase and only the
RL decoder is adapted. The means of the perfor-
mance criterion from Section 5.4 are shown.

The regularization resulted in a
small control performance im-
provement on the training domain
and a significant improvement on
the test domain. While we com-
bined state representation learning
criteria from a number of differ-
ent works, little effort was put into
scaling their relative importance,
and it was found that the meth-
ods were not sensitive to the hyper-
parameter that determined the ra-
tio between the weights of the SRL
and RL objectives. The slowness
and diversity and the (inverse) dy-
namics SRL objectives were found
to be most beneficial to the gen-
eralization performance, while the
auto-encoding objective benefited
the learning stability and speed at
the cost of the eventual generaliza-
tion performance.

Compared to combining SRL and
RL directly in a single update, our
proposed method of alternating
between these objectives yielded
better performance. While limit-
ing the changes to the value func-
tion predictions during the SRL updates consistently gave the best performance
on the training domain, not doing so tended to result in better performance on
the test domain.

C
H

A
P
T

E
R

 5

6
Beyond

Gradient-Based Optimization

Parts of this chapter are under review for the IFAC 2020 conference.

104 | Chapter 6

6.1 | Introduction

After having discussed in the preceding chapters what we would like to learn from
which experiences, we now focus on how to learn these things.

As discussed in Chapter 2, deep neural network function approximation is suitable
for robotics because of the functional decomposition of deep neural networks. This
structure mirrors the hierarchical nature of the physical processes that generate
the sensor data that robots base control decisions on (Lin et al., 2017). This makes
DNNs more statistically and computationally efficient at processing these natural
data than alternatives that do not have a hierarchical structure (Bengio et al.,
2013).

While the DNN controllers are often trained end-to-end to map raw sensor data
to actuator commands, the hierarchy of functions that is encoded by their layers
could be thought of as representing two distinct sub-functions. The first is a
mapping from the high-dimensional sensor data to a concise lower-dimensional
representation of the task-relevant aspects of the environment state. The second
is a mapping from this state representation to the action that needs to be taken in
that state to accomplish the task at hand. In the previous chapter we made use of
this decomposition by training the first mapping with additional SRL objectives.

To learn both functions, stochastic gradient-based optimization techniques are
most commonly used. When good enough estimates of the true parameter gra-
dients can be obtained, these techniques can efficiently find good values for the
network parameters. In this chapter we will take the view that, for the mapping
from observation to state representation, sufficiently good gradient estimates can
indeed often be obtained. For an interesting class of problems many, if not most,
of the parameters of the DNN controller will be used to encode this mapping.
This mapping can be learned either implicitly through end-to-end reinforcement
learning, or explicitly by using state representation learning objectives (as in the
previous chapter and e.g. de Bruin et al., 2018b; Finn et al., 2016; Jonschkowski
and Brock, 2015; Lange et al., 2012b). Intuitively, the sensory observations are a
direct result of the latent state of the environment. While we do not have access
to the true state, there are many objectives that will allow us to learn to infer the
task-relevant aspects of this state relatively easily. These include reconstructing
observations, predicting action-dependent changes to the state representation or
observations, predicting the instantaneous rewards, and more. Even when hand
crafted state representations are available, learned state representations can some-
times enable better policies (Levine et al., 2016).

The mapping from the state representation to the optimal action in that state
often requires fewer parameters and can be simpler. However, this mapping can

Beyond Gradient-Based Optimization | 105

still be much harder to learn. This is because the effect of any single action on
the eventual task performance is often rather small, and there might be delays be-
fore the consequences of actions become apparent. Getting high-quality estimates
of the gradients of the task performance with respect to the network parameters
through the chosen actions is therefore difficult. These difficulties show up in dif-
ferent forms, depending on how the parameter gradients are obtained. Techniques
using policy rollouts are able to get unbiased estimates of the policy gradient,
but suffer from very high variance, while techniques using bootstrapping suffer
from biased gradients (Marbach and Tsitsiklis, 2003; Schulman et al., 2015b). For
both extremes, as well as the methods that trade off bias and variance by using
both rollouts and bootstrapping, the low-quality parameter gradients can make
the stochastic gradient optimization process diverge (Gu et al., 2017b; Henderson
et al., 2017; Sutton and Barto, 2018). As discussed in Chapter 2, many differ-
ent strategies have been used to deal with these problems—generally trading in
learning speed and data efficiency for learning stability. Examples include target
networks (Mnih et al., 2015), experience replay buffers (Lin et al., 2017; Mnih et al.,
2015), trust region updates (Schulman et al., 2015a, 2017; Wang et al., 2017) and
very large batch sizes (Bansal et al., 2017). While these techniques ameliorate the
problem, DRL is still notoriously sensitive to hyperparameter tuning and prone to
divergence (Henderson et al., 2017).

An alternative to these attempts to deal with low-quality parameter gradients
is to use gradient-free optimization techniques, such as Evolutionary Strategies
(ES) (e.g. Koutník et al., 2013; Salimans et al., 2017). Rather than trying to
assign credit to the policy parameters through the individual actions that were
taken, gradient-free techniques assign credit to parameter vectors directly based
on entire trajectories. These techniques tend to be much less data efficient than
gradient-based techniques, but they can lead to more stable convergence of the
policy performance. They also have other benefits like their ability to optimize
policies that need to make decisions at high sampling frequencies, and the fact
that their training is highly parallelizable (Salimans et al., 2017).

In this work we combine the desirable aspects of both gradient-based and gradient-
free optimization techniques for DNN controllers. We start with a gradient-based
phase in which we use standard deep reinforcement learning techniques. This
allows us to quickly learn a policy that is good enough to collect relevant training
data and learn a state representation. We then freeze the state encoder part of
the policy, and tune the final action-selection parameters further using a gradient-
free technique. Since we are only tuning relatively small number of parameters,
we use the CMA-ES algorithm (Hansen and Ostermeier, 2001). This algorithm
is not only relatively sample efficient for an ES algorithm, but also includes a

106 | Chapter 6

natural way of decaying the amount of exploration (Stulp and Sigaud, 2012). This
makes it possible to perfect the policy while reducing the probability of poor
performances. Note that reducing the amount of exploration while training the
entire policy—including the state encoder—using gradient-based optimization can
lead to over-fitting and destabilize the learning process (see Chapters 3, 4 and
de Bruin et al., 2018a).

6.2 | Related work

The method we propose in this chapter is perhaps most closely related to that
of Ha and Schmidhuber (2018). In their work, a random policy is used to collect
training data, which is used to train a state encoder using state-representation
learning objectives. Then, the action-selection subnetwork of the policy is trained
from scratch using CMA-ES. While we consider the use of state representation
learning objectives in addition to reinforcement learning, we rely mainly on RL
to learn the whole policy during the gradient-based learning phase. This not only
results in more relevant training samples (enabling a better representation to be
learned (Pérez Dattari et al., 2019)), but also a good initialization of the action-
selection parameters. We show in Section 6.4 how these changes allow us to solve
the CarRacing-v0 task using forty times fewer episodes, while still obtaining a
considerably better final policy.

Evolutionary Strategies (ES) have also been used to optimize all parameters of
deep neural network controllers (e.g. Hausknecht et al., 2014; Salimans et al., 2017).
These methods are able to scale across many CPUs in an efficient way. They are
however not very sample efficient. The fact that we only optimize a small number
of parameters using ES helps us to limit the sample inefficiency of the method. It
also allows us to use CMA-ES which does not scale to large parameter vectors,
but is able to optimize small parameter vectors in a more sample-efficient manner
than other ES strategies (Hansen and Ostermeier, 2001). We additionally show in
Section 6.4 that even when we do optimize all parameters of a policy using ES (for
small NNs), initializing the parameters using a short gradient-based optimization
phase before starting the ES optimization can help to both speed up the learning
as well as improve the eventual performance.

The idea that the last layer of a DNN is harder to train using gradient-based
reinforcement learning than the preceding layers was previously explored by Levine
et al. (2017). In their work, the instability of the DQN method was limited by
performing least squares updates of the parameters of the final layer in addition
to the standard gradient updates.

Beyond Gradient-Based Optimization | 107

The authors of Plappert et al. (2018) also consider the final layers of the policy
to represent the action selection part and add noise to these parameters to enable
exploration. We use their technique during the gradient-based learning phase
and update only these parameters through CMA-ES during the policy fine-tuning
phase. Here, the CMA-ES can be understood as an optimization algorithm for
both the exploration policy as well as the policy parameters (Stulp and Sigaud,
2012).

6.3 | Main Contribution: Optimization Method

In this work, the training of the deep neural network controller consists of two
distinct phases; a gradient-based optimization phase and a gradient-free phase.
The aim of the initial gradient-based learning phase is twofold: we want to effi-
ciently learn a state representation that can be used for control and we want to
find a good initialization of the action-selection subnetwork of the policy. After
this phase is complete, we will trade in the learning speed for stability by further
tuning the action-selection parameters using a gradient-free evolutionary strategy.

So far in this thesis, we have optimized for the discounted return (2.1) with γ < 1.
However, in many episodic tasks—such as those in this chapter—we are interested
in optimizing for the undiscounted return (γ = 1). We still do use the undis-
counted return as a surrogate optimization objective during the gradient-based
optimization phase, as this makes the optimization easier (Marbach and Tsitsik-
lis, 2003; Schulman et al., 2015b). The subsequent gradient-free phase will allow
for stable convergence of the policy performance, while optimizing for the true
(undiscounted return) objective.

6.3.1 DNN Controllers

The control policy that maps observations o to actions a is parameterized as a
deep neural network with parameters θ: a = π(o; θ). The network consists of
m layers, of which we consider the first n to represent the state encoder, which
maps observations to a state representation: s̄ = S̄(o, θs). The final m− n layers
are considered to represent the action selection subnetwork, which encodes the
mapping from this state representation to the policy action: a = Ψ(s̄; θa) with
π(o; θ) = Ψ(S̄(o; θs); θa). In addition to the policy action, several other predictions
can be made based on the state representation s̄. In the DRL methods considered
in this work these include the return estimates Q̂(s̄, a; θq) and optionally additional
state representation learning predictions, as shown in Figure 6.1.

108 | Chapter 6

s̄

S̄(o; θs) Ψ(s̄; θa)

o a

ŷsrln(s̄, ·; θsrln)

...
ŷsrl1(s̄, ·; θsrl1)

Q̂(s̄, a; θq)
. . .

Figure 6.1: We learn DNN control policies that map observations to actions: a = π(o; θ).
We consider the first n layers of m-layer DNN to encode a mapping from observations to a
state representation: s̄ = S̄(o; θs). The parameters θs that encode this mapping are learned
through gradient-based optimization by fitting value functions, optionally supplemented with
state representation learning objectives. The final m − n layers encode the mapping from the
state representation to actions: a = Ψ(s̄; θa). The parameters θa are initialized during the
gradient-based learning phase and then fine-tuned during a gradient-free optimization phase.

6.3.2 Gradient-based optimization

For the gradient-based optimization of θ we use two simple and popular deep
reinforcement-learning algorithms. For policies with discrete actions we use the
DQN algorithm (Algorithm 1, Mnih et al., 2015). For continuous actions we use
the DDPG algorithm (Algorithm 2, Lillicrap et al., 2016). The experience samples
{o, a, o′, r,T} are collected by following an exploratory policy π̃ (defined below).
These samples are stored in an experience buffer, from which they are sampled
uniformly at random to calculate training targets q(o, a) (line 15 of Algorithm 1
for DQN, line 14 of Algorithm 2 for DDPG). The observation-action estimation
function Q̂(S̄(o; θs), a; θq) is trained by minimizing the squared temporal difference
error (5.1) through stochastic gradient descent. For the DQN algorithm, the return
predictions for all actions are estimated for a given state representation s̄ by a
linear layer. In the DDPG algorithm, a neural network is used that takes both o
and a as inputs and outputs the predicted expectation of the return.

For the DQN algorithm, we follow Plappert et al. (2018) in having an explicit policy
head that is separate from the value function estimation (but uses the same state
representation). This head is trained using the negative log likelihood objective to
predict the action with the highest Q-value, given the state representation.

6.3.3 Parameter space exploration

During both the gradient-based and the gradient-free phase of the optimization,
parameter space exploration is used to explore the state-action space. The ex-

Beyond Gradient-Based Optimization | 109

ploratory policy is given by π̃ = Ψ(S̄(o; θs); θã). The parameters θã, representing
the exploratory version of the action-selection part of the policy, are re-sampled
at the start of every Vth episode according to:

θã ∼ N (µ, σC), (6.1)

where the choice and evolution of µ, σ and C depend on the optimization phase.

Exploration during the gradient-based optimization phase

During the gradient-based (reinforcement learning) phase of the algorithm, a new
exploratory policy is sampled every episode (V = 1). The parameters are sampled
from an isotropic mutation distribution (C = I) which is centered around the
parameters of the current policy (µ = θa). The scaling of the parameter noise σ
is adjusted according to the method of Plappert et al. (2018):

σν+1 =
{
ασν if d(π, π̃) ≤ δ,
1
ασν otherwise.

(6.2)

To ensure that the scale of the parameters to which this noise is applied is not
too different, layer normalization (Ba et al., 2016) is used on the perturbed lay-
ers (Plappert et al., 2018). The distance measure d and threshold δ relate the
exploration scale σ to action space exploration, allowing for more intuitive hyper-
parameter choices. For DDPG, we follow Plappert et al. (2018) in using

dDDPG(π, π̃) =

√√√√ 1
N

N∑
i=1

E
[(
π(o)i − π̃(o)i

)2]
,

where N is the dimensionality of the actions and the expectation is estimated
over a batch of samples from the experience buffer. Using this distance measure,
the threshold value can be chosen as δ .= σa to get exploration with the same
standard deviation from the policy in the action space as normally distributed
noise with a standard deviation of σa. For DQN, we do deviate from the method
of (Plappert et al., 2018) and simply count the fraction of observations per episode
for which π 6= π̃ which we compare directly to the desired epsilon greedy action
space exploration fraction: δ = ε.

6.3.4 Gradient-free optimization phase
During the second phase of learning, we first restore all network parameters θ to
the values θ∗ that resulted in the highest undiscounted return so far. We then use
the gradient-free CMA-ES (Hansen and Ostermeier, 2001) optimization procedure
to further optimize the action-selection parameters θa.
We start by initializing a normal distribution (6.1) with:

110 | Chapter 6

• µ0 = θ∗ã (the parameters that led to the best performance during training),

• σ0: we use the procedure of (6.2) to adapt σ based on a desired exploration
intensity in the action space.

• C0 = I (the mutation distribution starts out isotropic, but is adapted over
time in contrast to the exploration during the gradient-based phase).

After this initialization, the CMA-ES algorithm then adapts µ, σ and C by iter-
atively sampling λ parameter vectors θ̃a from the distribution and updating the
distribution based on their fitness. For the evaluation of the sampled parameter
values θ̃a, we perform V roll-outs of the exploration policy π̃(·; θs+ã) and aver-
age the returns. The values of µ, σ and C are updated so that the parameters
corresponding to the higher fitness scores are more likely under the updated dis-
tribution. In this update, previous updates are also taken into account to speed up
the learning. For a more detailed description of the CMA-ES procedure we refer
to Hansen et al. (2019); Hansen and Ostermeier (2001). One important aspect of
the CMA-ES algorithm is that the intensity (σ) and shape C of the exploration
are adapted automatically. During the final phase of learning, this can allow the
optimization procedure to reduce the exploration intensity in a controlled manner
(Stulp and Sigaud, 2012).

6.4 | Experiments

In the following we write DRL(time)→CMA-ES(exploration) to indicate that
we use the DRL deep reinforcement learning algorithm (either DQN or DDPG)
for time episodes or environment steps before switching to CMA-ES where we
initialize σ0 (6.1) to exploration. We use the CMA-ES implementation of Hansen
et al. (2019). In all experiments, we use their default population size of λ = 4 +
floor(3 ln(n)), where n is the number of elements in θa.

We start with experiments on the OpenAI Gym CarRacing-v0 benchmark (Brock-
man et al., 2016). In this task, the observation o is a top-down image of a car on
a randomly generated racing track of which it needs to complete a lap as quickly
as possible. Only a single image is provided at each time-step, where the car’s
translational and angular velocities, wheel speeds and steering wheel position are
encoded as bars in the image. The task of the state encoder S̄(o; θs) is therefore
to decode this information, along with all other relevant information, and include
it in the state representation s̄. We discretize the action space (of throttle, break-
ing and steering inputs) into 7 actions (detailed in Appendix B). The aim of the
action selection subnetwork Ψ(s̄; θa) is to select the best action in a very reliable

Beyond Gradient-Based Optimization | 111

0 10000 20000 30000 40000 50000

Episodes

0

200

400

600

800

M
e
a
n
 u

n
d

is
co

u
n
te

d
 r

e
tu

rn

Goal performance

DQN

DQN(2.5k) CMA-ES(0 : 0.25)

DQN(10k) CMA-ES(0 : 0.25)

10000 20000 30000 40000 50000
850

900

(a) Average of the population

0 50000

Episodes

850

860

870

880

890

900

910

920

U
n
d

is
co

u
n
te

d
 r

e
tu

rn

DQN(ep) CMA-ES(0)
ep

10k
0.10

0.25

0.50

2.5k

0

(b) Highest in the population

Figure 6.2: Mean undiscounted return over V = 16 episodes on the CarRacing-v0 benchmark.
(Median) results over 3 runs are shown.

way. Solving the task is defined as getting a mean score of at least 900 over 100
subsequent episodes, which means very few mistakes are allowed.

The need for a very precise and reliable policy based on a learned state representa-
tion makes this benchmark interesting for our proposed method. It also allows for
a comparison with the related work of Ha and Schmidhuber (2018) who chose this
benchmark for similar reasons. On this benchmark we use the DQN architecture
(Mnih et al., 2015) with an added policy head (Plappert et al., 2018). We consider
all but the final layer to be the state encoder S̄, making the state representation
512 dimensional. This leaves a final layer with θa ∈ R3591 for the action selection
Ψ. For the CMA-ES phase we sample λ = 28 values of the parameter vector θã
and evaluate each over V = 16 episodes. Each iteration of the CMA-ES algorithm
therefore consists of 448 episodes.

We use this benchmark to test the assumptions on which our method is based:
that the state-encoder part of a good policy can quickly be learned through deep
reinforcement learning and that stable convergence to a better performing policy
can be achieved through gradient-free fine-tuning of the final action-selection pa-
rameters. Figure 6.2a shows both parts in action. The outer graph shows the
relative speed with which the gradient-based DRL phase can learn the values of
the 1.7 million parameters in θs and initialize the 3591 parameters in θa to a point
where the task is performed reasonably well. The popout shows the stability with
which the parameters of θa can subsequently be tuned further using the gradient-

112 | Chapter 6

Table 6.1: Performance over 100 test episodes on the CarRacing-v0 benchmark. Tested policies
were those that set the highest (mean) undiscounted return during training for the first (of 3)
training runs.

Method Episodes Score

SRL → CMA-ES (Ha and Schmidhuber, 2018) 1,843,200 906 ± 21
DQN(2500ep) 2,500 871 ± 86
DQN(2500ep) → CMA-ES(ε0 = 0.10) 50,000 890 ± 34
DQN(2500ep) → CMA-ES(ε0 = 0.25) 50,000 918 ± 20
DQN(2500ep) → CMA-ES(ε0 = 0.50) 50,000 915 ± 28

free CMA-ES procedure, learning not just to solve the task but also beating what
is to the best of our knowledge the highest reported score in the literature (Ha and
Schmidhuber, 2018) while using considerably fewer episodes, as shown in Table 6.1.

0 20000 40000
Episodes

0

200

400

600

800

DQN
DQN(2.5k) CMA-ES
DQN(10k) CMA-ES

Figure 6.3: Mean undiscounted re-
turn over V = 16 episodes on the
CarRacing-v0 benchmark. Population
average while training θã from scratch.
Results from 3 runs are shown.

Given that we have two distinct optimization
phases, one important question is when we
should switch from the gradient-based phase to
the gradient-free phase. A closely related ques-
tion is how much (initial) exploration around
the action-selection parameters θ∗ã is beneficial.
Figure 6.2b shows the mean undiscounted re-
turn for the best parameter vector θã sampled
per iteration of the CMA-ES procedure, as a
function of the number of DRL episodes and
the initial exploration ε0 that σ0 is adapted to
using (6.2). It can be seen that more gradient-
based optimization steps might limit the po-
tential for subsequent gradient free improve-
ment. To see whether this effect is related to
over-fitting in the state encoder or the action-
selection parameters, we perform two experi-
ments.

In the first we train θa from scratch using
CMA-ES, rather than starting from θ∗ã. This
is shown in Figure 6.3. We see again that
when using a state encoder that is trained
for fewer episodes, the subsequent gradient-free
optimization of the action selection subnetwork
is easier. The sample efficiency benefit of starting from the pre-trained θ∗ã can also

Beyond Gradient-Based Optimization | 113

0 500 1000 1500 2000
episode

-1

-2

-3

-4

-5m
ea

n
un

di
sc

ou
nt

ed
 re

tu
rn

switch episode
0
25
1000
2000

0 25 50 100 250 1000 2000

switch episode

1.1

1.0

0.9

0.8

0.7

0.6

m
a
x
 u

n
d

is
co

u
n
te

d
 r

e
tu

rn

CMA-ES(0 = 2.5)

DDPG CMA-ES(a0 = 0.5)

DDPG CMA-ES(a0 = 0.25)

DDPG CMA-ES(a0 = 0.1)

DDPG

Figure 6.4: Magman benchmark results. Mean undiscounted return per episode for
DDPG(switch episode)→CMA-ES(σa0 = 0.25) (left) and maximum undiscounted return per
learning trial (right). Results are from 50 trials, with the 95% bootstrapped confidence bounds
of the means shown.

be clearly seen when comparing Figure 6.3 with Figure 6.2a. As at least part of
the limitation of the performance improvement when switching later seems to be
related to over-fitting in the state encoder, we perform an experiment where state
representation losses are added to the state encoder learning objective to help reg-
ularize the state representation (as in the previous chapter and de Bruin et al.,
2018b). The result of this experiment is shown in Figure C.11 of the appendix.
We indeed observe that switching later now leads to better performance.

Due to the computational complexity of these methods, these results were from
three runs. For more statistically significant results we perform experiments on the
Magman benchmark (de Bruin et al., 2018a). This benchmark is low-dimensional,
but requires a very precise control policy with continuous actions. We use two
smaller networks with 2 hidden layers of 64 units each for a policy and a Q-
function. During the gradient-based optimization we use the DDPG algorithm to
train these networks. During the CMA-ES phase, we optimize all parameters of
the policy. The results, shown in Figure 6.4, again demonstrate the benefits of
this two stage optimization. Switching early, with sufficient initial exploration,
results in both faster learning as well as a higher maximum performance than
either DDPG or CMA-ES alone.

Finally, we tested the method on two Atari games. We followed the exploration
strategy and network architecture of (Plappert et al., 2018). This meant that
in the RL phase, ε decayed linearly from 1 to 0.1 during the first one million
episodes and remained constant afterwards. For the DQN architecture it meant

114 | Chapter 6

0 10000 20000

0

500

1000

1500

2000

2500

3000

U
n
d
is

co
u
n
te

d
 r

e
tu

rn

Enduro

0 25000 50000

Episodes

0

5

10

15

20

25

30

35
Freeway

DQN

DQN CMA-ES

maxmean

(a) Learning curves

1000 2000

Undiscounted return

0

10

20

30

40

Fr
e
q

u
e
n
cy

Enduro

30 32 34

Undiscounted return

0

10

20

30

40

Freeway

DQN

DQN CMA-ES

(b) Test performance

Figure 6.5: Train and test performance on two Atari games.

that the policy head was implemented as a single fully connected layer, right
after the convolutional layers of the DQN architecture. The Q̂ head still had
the usual 512 dimensional fully connected intermediate layer. While we found
that this architecture worked better during the DRL phase, it meant that the
final action selection layer now contained more parameters than can feasibly be
optimized using CMA-ES. Therefore, we trained a new policy head—which did
have the 512 dimensional intermediate layer—after the DRL phase. This head was
trained to minimize the KL divergence between its predictions and the predictions
of the original policy head on samples from the replay buffer (Parisotto et al.,
2015). We then used CMA-ES to optimize the final layer of this new policy
head. When testing the controllers resulting in the highest undiscounted returns
during both phases (evaluated with V = 1), we again observe that the CMA-
ES procedure was able to noticeably improve the policy performance by fine-
tuning the final action-selection parameters. Results are shown in Figure 6.5
and Table 6.2. For the Enduro benchmark, where episodes can be very long
and consequences of actions less immediate, the gradient-free optimization also
resulted in the highest outright scores. On the freeway benchmark, with short
episodes and more immediate consequences to actions, DRL was able to find a
near optimal policy. The gradient-free optimization phase here found a policy
that has a higher mean performance over 100 episodes, but did not obtain the
maximum score.

Beyond Gradient-Based Optimization | 115

Table 6.2: Performance over 100 test episodes on two Atari benchmarks.

Enduro Freeway
Method Steps Mean ± SD Steps Mean ± SD

DQN(50m) 50m 1188 ± 240 50m 30.7 ± 0.9
DQN(50m) → CMA-ES(ε0 = 0.5) 250m 1483 ± 505 100m 32.6 ± 1.0

6.5 | Conclusion and future work

In this chapter we combined gradient-based deep reinforcement learning methods
with a gradient-free evolutionary strategy. We showed how a relatively short initial
gradient-based phase was able to learn a good state representation and a decent
action selection strategy relatively quickly, while a subsequent gradient-free fine-
tuning of the action-selection parameters resulted in stable convergence to a policy
performance not achieved with gradient-based optimization alone. Experiments
on a small scale benchmark, where no state encoder needed to be trained, also
showed how the combination of gradient-based and gradient-free optimization was
able to learn more quickly, and find better performing policies, than either method
alone.

The results suggests several avenues for future work. When we consider part of the
network to represent a state encoder, we freeze this encoder during the gradient-
free fine-tuning of the policy. However, if the improved policy that is found through
gradient-free optimization visits significantly different states, it might be worth
updating the state encoder using the data obtained with this new policy. On the
other hand, if we do keep the state encoder frozen, we can consider using model
compression (Hinton et al., 2015; Moniz et al., 2019) on this part of the network
to speed up the evaluation of the gradient-free phase further.

When optimizing all parameters of a neural network, it might be interesting to
investigate a tighter integration of deep reinforcement learning with parameter-
space exploration and CMA-ES. For instance by introducing the ability of CMA-
ES to scale and shape the exploration to the gradient-based optimization phase,
or by allowing the DRL gradients to bias the update direction of the population
mean of CMA-ES.

116

7
Conclusions & Outlook

This thesis has investigated how reinforcement learning using deep neural network
function approximation can be made to work more efficiently under the constraints
imposed by the robotics domain. In this chapter, we will summarize the main
conclusions and contributions of the work, reflect on the state of the field, and
outline possible avenues for future work.

7.1 | Conclusions

Before applying Deep Reinforcement Learning (DRL) to robotics an understanding
is needed of how, when, and why the combination of deep learning and reinforce-
ment learning works. To this end, Chapter 2 has provided a review of existing
literature. An important conclusion that can be drawn from this survey is that
deep neural networks can not simply be seen as a plug-and-play function approx-
imator to be used with traditional reinforcement learning algorithms. Instead,
several properties of deep neural networks need to be properly accounted for to
make the combination work. These properties include the fact that deep neural
networks are global function approximators and that the stochastic estimates of
their parameter gradients therefore need to be, in expectation, representative of
all the relevant parts of the function domain. Besides this, the gradient estimates
need to be accurate; with limited bias and variance. While this is true for other
reinforcement learning methods and for supervised deep learning methods as well,
the detrimental effects of poor gradient estimates can be especially severe in DRL.
This is due to the fact that a poor local update can have global consequences
that affect the training data distribution as well as the training targets. To obtain
parameter gradient estimates that are of adequate accuracy and sufficiently rep-
resentative of the function domain, several components are shared among many
successful DRL methods. One of these components is the use of delayed targets,
which reduce the correlations between the training targets and predictions. An-
other is the use of trust region updates, which reduce the probability of steps in the
parameter space that lead to reduced performance. Possibly the most widely used

118 | Conclusions

component that makes the combination of reinforcement learning with deep neural
networks work are experience buffers, which ensure that parameter estimates are
calculated that are representative of the function domain.

Despite their widespread use, experience replay techniques are often very simplis-
tic. Most commonly, experiences are sampled uniformly at random from a buffer
which contains a given number of the most recent experiences. This can cause
problems in the robotics setting, due to the costly nature of exploration. When
using standard experience replay techniques in combination with a decay in ex-
ploration, the coverage of the function domain by the experiences sampled from
the buffer will shrink over time. Chapter 3 investigates the effects this has on the
performance of DRL methods. By assuming access to the true system dynamics,
an investigation was carried out into what distribution over the state-action space
was desirable for the learning algorithms to work well. It was found that the need
for specific data distributions was most strongly related to the used RL algorithm,
as well as the properties of the control problem at hand. Specifically, it was found
that actor-critic algorithms can be sensitive to the diversity in the action space
of the training data. When the training data become insufficiently diverse, pre-
viously learned successful behaviors can quickly be forgotten by these algorithms.
This effect is stronger for control problems with high sampling frequencies, where
the effect of a single action is smaller. It was additionally shown how the benefit of
a diverse data distribution depends on the ease of generalizing the policy or value
function over the state-space.

In Chapter 4 this knowledge of desirable training data distributions was used to
propose practical algorithms for managing the experience buffer. In this chapter
it was no longer assumed that the dynamics model was available. Additionally,
no influence over the stream of experiences observed by the agent was assumed,
as it might be useful to learn from tele-operation, other agents, or experiences
obtained while learning different tasks. Instead, the short and long-term utility of
experiences needed to be determined in order to decide which experiences should
be retained in the buffer as well as which experiences should be sampled from the
buffer for the learning updates. It was concluded that there is no single metric
to identify useful experiences. Instead, the use of proxies based on the age of the
experience, the amount of exploration it represents, and the surprise it causes in
the learning agent were proposed. It was found that prior knowledge about the
control problem at hand could be used to choose among these proxies, select the
size of the experience buffer and determine whether importance sampling should
be used. We found that these decisions could help improve the stability and speed
of the learning process and lead to better controller performance. Crucially, it
was concluded that retaining the right experiences in memory makes it possible to

Conclusions | 119

overcome the tendency of DRL algorithms to forget good behaviors when reducing
exploration, an important step towards making these methods suitable for robotics.

Besides leading to challenges, the properties of deep neural networks also provide
opportunities for DRL in the robotics domain. One source of these opportunities
is the fact that DNNs encode functions that are made up of shared sub-functions.
For an interesting class of problems, these sub-functions go from being very gen-
eral to being very task specific when going from the input to the output of the
network. Specifically, we can view the first part of a neural network as a state
encoder, which extracts a compact and concise representation of the state of the
world from the high dimensional sensor data. This part of the network can be
trained not just in an end-to-end fashion with reinforcement learning, but also
more explicitly by using State Representation Learning (SRL) objectives. Chap-
ter 5 investigated this option. A number of SRL objectives were added to the DRL
training procedure. We showed how this leads to more general policies that work
not just in the training domain but also generalize to test domains. Using just re-
inforcement learning, a policy is learned that over-fits to the training domain and
fails to work in the test domains. While these SRL objectives can thus be viewed
as effective regularizers of the state encoder, their inclusion in the training proce-
dure can lead to problems. This is because the changes to the state representation
that these objectives cause can change the policy predictions in unforeseen ways.
To address this shortcoming, we proposed a method that alternates between im-
proving the state representation—while optionally minimizing the changes to the
RL predictions—and optimizing the RL predictions. We showed how this can
improve the performance relative to simply optimizing for all objectives simulta-
neously, which was already significantly better than only optimizing for only the
reinforcement learning objective.

Diverse data, combined with SRL and RL objectives, can enable the training of a
good state encoder through gradient-based optimization strategies. Learning the
mapping from the state representation to the optimal actions is often more of a
challenge. While gradient-based DRL can quickly initialize this mapping to a point
where reasonable performance is obtained, it is much more difficult to get good
gradient estimates for this part of the network. This tends to cause instability in
the optimization and prevents stable convergence towards an optimal policy. In
Chapter 6 a strategy was therefore proposed to optimize these final parameters
in a gradient-free manner. While gradient-free methods (such as evolutionary
strategies) have been used to train entire DNNs, these strategies tend to be much
less data efficient than their gradient-based alternatives. On the other hand, the
fact that a population of parameter vectors is maintained and that the performance
of each one is tested empirically (rather than estimated) means that getting lost in

120 | Conclusions

the gradient space is less likely. In several experiments we showed how, by starting
from the solution found using the common gradient based methods and fine-tuning
the final sub-mapping in a gradient-free way, the speed of gradient-based methods
can be combined with the stability of gradient-free methods. In this way, better
controllers were found than when using either method in isolation. The use of
the CMA-ES method for fine-tuning only the final parameters also allowed for a
natural decay of exploration, without the previously discussed diversity problems
this would cause for gradient-based methods.

The work in this thesis suggests that deep reinforcement learning can be used to
enable robots to learn new behaviors and fine-tune old ones, provided the combina-
tion of reinforcement learning and deep learning can be made to work in a stable
and sample efficient manner. For the sake of sample efficiency, we have looked
into off-policy reinforcement learning techniques. While these techniques allow for
the use of data from an arbitrary policy (which could greatly increase the sample
reusability), we showed how the data distribution that makes DRL work best is
dependent on factors relating to the specific RL method as well as the benchmark.
We then argued that for both the stability and sample efficiency of DRL methods,
it is favorable to see a policy as being divided in separate state-encoder and action
selection parts. Training the first part with additional SRL objectives enabled
learning general policies more quickly. Using a different optimization technique
for the latter part enabled more stable learning behavior. All of these parts help
make deep reinforcement learning more stable and sample efficient. This in turn
might make robots a little bit less dumb. However, until additional significant
breakthroughs are achieved, general purpose robots that learn to perform novel
tasks without being painstakingly reprogrammed will remain confined to fiction.

7.2 | Discussion and Outlook

The work that this thesis has reported was done during an exciting time for the
deep reinforcement learning field. When the work started, the field had just had
its first headline grabbing result of playing Atari games from pixels. This result led
to much excitement about the potential of DRL and a flurry of research ensued.
During this early phase, the excitement about the kind of problems that could
suddenly be solved with these methods meant that the proper theoretical and
empirical validation were sometimes overlooked. More recently, the field has been
maturing and there has been a stronger call for reproducible, more thoroughly
validated results.

One of the most important challenges for the field might be in figuring out what it
takes to properly understand these methods and how to test them in a way that is

Conclusions | 121

statistically sound and yet computationally feasible on a reasonable budget. The
reason that difficulties are present here seems to stem from the complexity caused
by the interdependent components of deep reinforcement learning; the model pre-
dictions (policy), the training data collection procedure, and the training targets.
On one end of the spectrum, we can focus on a single component, abstract every-
thing else away and perform a rigorous theoretical analysis. When we subsequently
apply the theory obtained in this way to the full DRL method, we will more likely
than not find that the interactions with the other components mean that the con-
clusions that were drawn from the analysis do not entirely transfer. On the other
hand, we could leave the black box intact and do an empirical study. However,
the large combinatorial space of the possible parameters who’s influence we would
like to understand means that statistically significant results can only be obtained
for very simple problems. These problems might not be representative of the kind
of problems for which the use of DRL actually makes sense. When we scale up
to the kind of problems that make the usage of deep neural networks beneficial,
it becomes computationally infeasible to get statistically significant results. Since
these different options are problematic in different ways, different lessons can be
taken from them. It therefore seems that for now, using at all of these problematic
options—while staying aware of their respective biases—is the best option. In the
future, the answer might have to be sought in new standardized benchmarks that
specifically test for the different problems and opportunities of the DRL combina-
tion.

When the problem of how to answer DRL related research questions is solved,
many interesting questions are left to be answered. DRL can be seen as rein-
forcement learning that happens to use DNN function approximation or as DNN
training that happens to use an RL objective. While both vantage points can be
very insightful, the latter might offer more low hanging fruit. The field of super-
vised deep learning is more popular and mature than that of DRL and new insights
into the workings of DNNs are discovered regularly, often calling into question pre-
vious theories. It would be good to take the knowledge that is generated by this
field and apply it to DRL. While this thesis has attempted to investigate how the
best can be brought out of deep neural networks when they are trained—at least
in part—through reinforcement learning, it has only scratched the surface of this
topic.

One important theory about why and how deep learning works is the manifold
hypothesis. It states that natural data in high-dimensional spaces are clustered
around low-dimensional nonlinear manifolds. Deep neural networks are able to
make predictions about data living in high-dimensional spaces because they learn
a mapping to (and from) this manifold. Rather than simply training a DNN end-

122 | Conclusions

to-end through reinforcement learning, the ideas in the later half of this thesis
can be seen as treating the mappings to these manifolds separately from the map-
ping from the manifold to the control actions. In Chapter 5 we used additional
SRL objectives to learn the mapping from the observations to the manifold, while
Chapter 6 used a different optimizer for the mapping from the manifold to the
actions. The separation could be taken further. It would be interesting to ask the
questions related to the training data distribution that were asked in Chapter 3
separately for the state encoder (the mapping to the manifold) and the mapping
from the manifold (or state) to the actions. In fact, we could take a step further
back. While this thesis has motivated the use of deep neural networks for robotic
control problems, this motivation mostly applied to the state encoder. It would be
interesting to use a different (more stable and local) method for the state to action
mapping. While the state encoder should be general, and able to deal with high
dimensional data, the mapping from the learned state representation to actions
might not have these constraints. If these parts are (partly) uncoupled, the action
selection mapping could be performed by a local method on the manifold—trained
with on-policy data—while the state encoder is still trained globally—potentially
using data that is less closely related to the optimal policy than when the entire
policy is trained with the same data.

To make DRL more feasible for robotics, the sample complexity of DRL algorithms
will need to be brought down significantly further. To contribute to this goal, this
thesis has focused on extracting as much knowledge as possible from collected
data. An alternative to this is to increase the use of prior knowledge. This prior
knowledge can relate to many aspects of the problems, such as a solution strategy
(in the form of demonstrations, reward functions or additional optimization objec-
tives), or the environment dynamics and tasks (through simulators and network
structure). As argued, some of these sources will not be available in the situations
where the tasks that need to be learned by a robot were not foreseen. Ideally,
the included prior knowledge should therefore be very general. One such source
of general prior knowledge about control problems are the classical control algo-
rithms that DRL controllers are (partly) replacing. For instance, by embedding
differentiable versions of filters and observers, the model search space could be
reduced further without introducing too much of a task specific bias. Here again,
the true underlying question is how, when, and why deep reinforcement learning
works, and when would it be a good idea to (not) use it. Hopefully the next few
years will bring more insights into these questions.

124

125

A
Benchmarks

This appendix provides additional information on the physical control set-ups and
simulation benchmarks used in this thesis.

A.1 | 2-link robot arm

The physical robot arm setup depicted in Figure 3.1 consists of two links that
are connected through a motorized joint. The arm hangs down from another
motorized joint. The angle between the base and the first link is θ1 and the angle
of the second link with respect to the first link is θ2. Both joints are physically
constrained to θ1, θ2 ∈ [−π2 ,

π
2]. The control signals u1, u2 represent scaled versions

of the voltages to the motors in the joints. To prevent damage to the physical setup
due to jittering, the control signal to the setup is filtered with a low-pass filter:

uk = 0.9uk−1 + 0.1ak.

To ensure the Markov property is satisfied, the observation at time k consists of
the angles and angular velocities of the joints and the preceding motor signals
uk−1), as well as the reference:

ok =
[
θ1k θ2k

˙θ1k
˙θ2k u1k−1 u2k−1 rxk ryk

]T (A.1)

The reference in A.1 is given in Cartesian coordinates whereas the state of the
arm is observed in angular coordinates. It is left up to the neural networks to
learn the mapping between the two and to deal with the fact that some reference
positions can be reached through multiple arm configurations.

The reward for taking action a after observing o at time k is based on the distance
between the Cartesian coordinates of the end of the second link at time-step k+1,
as shown in Figure 3.1, and the reference position at time-step k:

r(ok, ak, ok+1) = w1d
2
k + w2(1− e−αd

2
k) + w3‖θ̇k‖2 (A.2)

126 | Benchmarks

with

d2
k =

∥∥∥∥∥
[
rxk − xk+1
ryk − yk+1

] ∥∥∥∥∥
2

2

,

x = sin(θ1) + sin(θ1 + θ2),
y = cos(θ1) + cos(θ1 + θ2).

The first term in (A.2) ensures that the initial learning is quick. Even when the
policy is very bad the quadratic cost ensures that it is clear that moving towards
the reference position is better than moving away from it. Using a quadratic term
alone will not result in good final policies, however, since such a cost function is
very flat close to the reference. The second term adds a steep drop in the cost
very close to the reference to solve this problem. The third term discourages the
highly oscillatory responses that might otherwise result. The constants in (A.2)
that are used in the experiments are w1 = 0.2, w2 = 0.4, w3 = 8, α = 100.

The forgetting factor γ is calculated via:

γ = e
−Tsτγ

Where Ts is the sampling period and τγ is the look-ahead horizon in seconds. For
this horizon a value of 2.5 seconds was used, which gives γ = 0.996 for the used
control frequency of 100 Hz.

A.2 | Pendulum and Magman simulations

Here, a more detailed mathematical description is given of the pendulum swing-
up and magnetic manipulation benchmarks. A high level description of these
benchmarks was given in Section 3.4. Implementations of these benchmarks are
available online.1

The benchmarks will be described based on their true physical environment states
s and control signals u. In the main body of this thesis we instead deal with
normalized observations and actions: o ∈ [−1, 1]n, a ∈ [−1, 1]m. See Figure 2.1 for
a description of the symbols used.

The dynamics of both problems are defined as differential equations, which we use
to calculate the next environment state s′ as a function of the current state s and
control signal u using the (fourth order) Runge-Kutta method. The reward is in
both cases given by:

1https://github.com/timdebruin/CoR-control-benchmarks

Benchmarks | 127

r = −(W1||s′| − sref |+W2|u|). (A.3)

In both cases a fixed reference state sref is used.

Pendulum Swing-Up

For the pendulum swing-up task, the state s is given by the angle θ ∈ [−π, π] and
angular velocity θ̇ of a pendulum, which starts out hanging down under gravity
sk=0 = [θ θ̇]T = [0 0]T . For the normalization of the velocities, θmin = −30 rad s−1

and θmax = 30 rad s−1 are used. The action space is one dimensional: it is the
voltage applied to a motor that exerts torque on the pendulum u ∈ [−3, 3] V. The
angular acceleration of the pendulum is given by:

θ̈ = −Mgl sin(θ)− (b+K2/R)θ̇ + (K/R)u
J

.

Where J = 9.41× 10−4 kg m2,M = 5.5× 10−2 kg, g = 9.81 m s−2, l = 4.2× 10−2 m,
b = 3× 10−6 kg m2 s−1, K = 5.36× 10−2 kg m2 s−2 A−1 and R = 9.5 V A−1 are
respectively the pendulum inertia, the pendulum mass, the acceleration due to
gravity, pendulum length, viscous damping coefficient, the torque constant and
the rotor resistance (Alibekov et al., 2018). For this taskW1 = [50 1] andW2 = 10
and sref = [−π 0]T = [π 0]T . The absolute value of the state is used in (A.3).

Magnetic Manipulation
In the magnetic manipulation problem, the action space represents the squared
currents through four electromagnets under the track; uj ∈ [0, 0.6]A2 for j =
1, 2, 3, 4. The state of the problem is defined as the position x ∈ [−0.035, 0.105]
m of the ball relative to the center of the first magnet and the velocity ẋ m s−1 of
the ball: s = [x ẋ]T . For the normalization of the velocities, ẋmin = −0.4 m s−1

and ẋmax = 0.4 m s−1 are used. When the position of the ball exceeds the bounds,
the position is set to the bound and the velocity is set to 0.01 m s−1 away from the
wall. An additional reward of −1 is given for the time-step at which the collision
occurred. The acceleration of the ball is given by:

ẍ = − b

m
ẋ+ 1

m

4∑
j=1

g (x, j)uj ,

with
g(x, j) = −c1 (x− 0.025j)(

(x− 0.025j)2 + c2

)3 .

Here, g(x, j) is the nonlinear magnetic force equation, m = 3.200× 10−2 kg the
ball mass, and b = 1.613× 10−2 N s m−1 the viscous friction of the ball on the

128 | Benchmarks

rail. The parameters c1 and c2 were empirically determined from experiments on
a physical setup to be c1 = 5.520× 10−10 N m5 A−1 and c2 = 1.750× 10−4 m2

(Alibekov et al., 2018).

For the magnetic manipulation problem we take W1 = [100 5], W2 = [0 0 0 0],
sk=0 = [0 0]T and sref = [0.035 0]T in (A.3).

A.3 | CarRacing-v0

We use the de CarRacing-v0 benchmark of the OpenAI gym suite (Brockman
et al., 2016), with the following adjustments:

Input pre-processing: To reduce the memory usage of the replay buffer, we
convert the original 96x96x3 rgb images to 84x84 gray-scale images. Our initial
tests showed that this did not affect the learning performance.

Action discretization: The original task has 3 continuous action dimensions:
the steering angle ∈ [−1, 1], accelerator ∈ [0, 1] and break ∈ [0, 1] inputs. We
discretize the action space by using the following 7 actions:

Table A.1: Discrete actions used during the CarRacing experiments.

action steering acceleration breaking

1 -1 0.2 0
2 -0.5 0.5 0
3 0 0.5 0
4 0 0.8 0
5 0 0 0.8
6 0.5 0.5 0
7 1 0.2 0

A.4 | Atari

We used the OpenAI gym interface (Brockman et al., 2016), together with the Ope-
nAI baselines wrap_deepmind function2 to the interface with the EnduroNoFrameskip-v4
and FreewayNoFrameskip-v4 environments. The wrap_deepmind function per-
forms the following modifications to make the environments behave as in the orig-
inal DQN paper (Mnih et al., 2015):

2https://github.com/openai/baselines

Benchmarks | 129

• On games with multiple lives, episodes end (T = 1) when a life is lost, but
the environment is only reset after all lives are lost.

• Rewards are clipped using the sign function to be one of {−1, 0, 1}.

• Observations are converted to 84x84 gray-scale images, and four subsequent
images are stacked into one new observation.

130

131

B
Implementation details

This appendix describes additional implementation details of the experiments in
this thesis.

B.1 | Physical arm experiments

The networks used for both the actor and the critic are fully connected networks
with Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) nonlinearities. Both
networks have two hidden layers of equal size. In the critic network the action in-
puts come into the network before the second hidden layer. The number of hidden
units in both networks is chosen such that they have around 10000 parameters
each. This gives the actor network 94 neurons per hidden layer and the critic
network 93 neurons per hidden layer. As in (Lillicrap et al., 2016), batch normal-
ization (Ioffe and Szegedy, 2015) is used on the inputs to all layers of the actor
network and all layers prior to the action input of the critic network. On the critic
network, an L2 weight decay penalty of 0.5 · 10−2 was used. The Adam (Kingma
and Ba, 2015) optimization algorithm is used to train the neural networks. This
optimization algorithm is appropriate for non-stationary objective functions and
noisy gradients, which makes it suitable for reinforcement learning problems.

The experiments in this paper have been run in a growing batch setting (Lange
et al., 2012a). Each trial consists of 40 episodes of 60 seconds. During these trials
the experiences are added to the experience database. Between episodes the neural
networks are updated based on the experiences in the complete database. For each
separate trial in the experiment the initialization of the networks and the training
references are unique and the database is reset. When the database is full the first
experiences are overwritten in a first in first out manner.

The noise process that is used is an Ohrnstein-Uhlenbeck process:

O(k) = O(k − 1)− αO(k − 1) + βN (0, 1) (B.1)

With α = 0.6, β = 0.4 and N (0, 1) is Gaussian noise with a mean of 0.0 and stan-
dard deviation 1.0. During training the references are determined stochastically

132 | Implementation details

and in such a way that they can be reached with both joints θ1, θ2 ∈ [−0.5, 0.5].
They are changed periodically during the trials. After each learning run the final
policy is evaluated with a fixed sequence of predetermined references in the same
range.

B.2 | Experience buffer experiments (Chapters 3 and 4)

This section discusses the chosen hyperparameters of the methods discussed in
Chapters 3 and 4. Only those hyperparameters that were not explicitly mentioned
in the earlier sections of this work are mentioned here.

B.2.1 Neural Networks
This subsection describes the architecture and training procedure of the used neu-
ral networks.

Swing-up and Magman

To perform the experiments on these benchmarks, the DDPG method of Lillicrap
et al. (2016) was reimplemented in Torch (Collobert et al., 2011a). For all ex-
periments except for the control experiment in Appendix C, the actor and critic
networks had the following configuration:

The actor is a fully connected network with two hidden layers, each with 50 units.
The hidden layers have rectified linear activation functions. The output layer has
hyperbolic tangent nonlinearities to map to the normalized action space.

The critic is a fully connected network with three hidden layers. The layers have
rectified linear activation functions and 50, 50 and 20 units respectively. The
observation is the input to the first hidden layer, while the action is concatenated
with the output of the first hidden layer and used as input to the second hidden
layer. The output layer is linear.

To train the networks, the ADAM optimization algorithm is used (Kingma and
Ba, 2015). We use a batch size of 16 to calculate the gradients. For all experiments
we use 0.9 and 0.999 as the exponential decay rates of the first and second order
moment estimates respectively. The step-sizes used are 10−4 for the actor and
10−3 for the critic. We additionally use L2 regularization on the critic weights of
5× 10−3.

For the DQN experiments, a critic network similar to the DDPG critic was used.
The critic only differs in the fact that instead of having actions as an input,
the output size is increased to the number of discrete actions considered. The
parameters θ− of the target critic are updated to equal the online parameters θ
every 200 batch updates.

Implementation details | 133

Roboschool Benchmarks

For the experiments on the Roboschool benchmarks, we use a slightly modified
version of the DDPG implementation in the openAI baselines (Dhariwal et al.,
2017) repository. We have adapted the baselines code to include the experience
selection methods considered in this section. Our adapted code is available online.1
We here summarize the relevant differences from the implementation used on the
simple benchmarks.

The actor and critic networks have two hidden layers with 64 units each. Layer
normalization (Ba et al., 2016) is used in both networks after both hidden layers.
The multiplier of the L2 regularization on the weights of the critic with is 1× 10−2.
A batch size of 64 is used, with a sample reuse of 32. Training is performed every
100 environment steps, rather than after completed episodes.

B.2.2 Exploration

Swing-Up and Magman

We use an Ornstein-Uhlenbeck noise process (Uhlenbeck and Ornstein, 1930) (B.1)
as advocated by Lillicrap et al. (2016). We use α = 5.14, β = 0.3. Using this
temporally correlated noise allows for more effective exploration in domains such as
the pendulum swing-up. It also reduces the amount of damage on physical systems
relative to uncorrelated noise (Koryakovskiy et al., 2017). For high frequencies,
uncorrelated noise is unlikely to result in more than some small oscillations around
the downward equilibrium position.

The noise signal is clipped between -1 and 1 after which it is added to the policy
action, which is also clipped to get the normalized version of the control action a.

For the DQN experiments, epsilon greedy exploration was used with the proba-
bility of taking an action uniformly at random decaying linearly from ε = 0.7 to
ε = 0.01 over the first 500 episodes.

Roboschool Benchmarks

For easy comparison to other work, we use the exploration strategy included in
the baselines code. This means that for the Roboschool benchmarks we do not
decay the strength of the exploration signal over time. Compared to our other
benchmarks, the second difference is that the noise is added in the parameter
space of the policy rather than directly in the action space (Plappert et al., 2018).
The amplitude of the noise on the parameters is scaled such that the standard
deviation of the exploration signal in action-space is 0.2.

1The code is available at https://github.com/timdebruin/baselines-experience-selection.

134 | Implementation details

B.2.3 Baseline Controller

In this work we use the fuzzy Q-iteration algorithm of Buşoniu et al. (2010) as a
baseline. This algorithm uses full knowledge of the system dynamics and reward
function to compute a controller that has a proven bound on its sub-optimality
for the deterministic (noise-free) case.

For the tests with sensor and actuator noise, the same controller as in the noise-
free setting is used. To make the performance normalization (Section 3.5) fair,
the performance of the controller is taken as the mean of 50 repetitions of taking
the maximum obtained mean reward per episode over 1000 episodes with different
realizations of the noise:

rbaseline with noise = 1
50

50∑
i=1

max(rmean
episode i,1, . . . , r

mean
episode i,1000).

Note that although this equalizes the chances of getting a favorable realization of
the sensor and actuator noise sequences, it does not compensate for the fact that
the fuzzy Q-iteration algorithm is unsuitable for noisy environments. Since the
DDPG method used in this work can adjust the learned policy to the presence
of noise in the environment, it outperforms the baseline in some situations. This
is not an issue since we are interested in the relative performance of different
experience selection strategies and only use the baseline as a reference point.

B.3 | State representation Learning (Chapter 5)

This section contains some additional details of the implementation of the exper-
iments that were reported on in Chapter 5.

Optimization was done with the ADAM algorithm, using a learning rate of 3 ·10−4

and β1 = 0.9, β2 = 0.999 (Kingma and Ba, 2015).

Epsilon greedy exploration was used with a ε = 0.15 during training. To evaluate
the performance of the learned controllers, tests were performed on the test track
for 2000 environment steps with ε = 0.05 to ensure some variation in the roll-outs
and to test robustness. We used a discount factor of γ = 0.95. The considered
actions were a ∈ {[−0.5, 0.2], [0.5, 0.2], [−0.2, 0.4], [0.2, 0.4], [0, 0.6], [0,−0.8]}, with
the first dimension the steering command and the second the acceleration / break
command. Experiences were stored in a replay buffer with a capacity of 2 · 104.
We used a batch size S = 16 and a sample reuse of 16.

Implementation details | 135

B.4 | Optimization (Chapter 6)

This section contains details of the implementation of the experiments that were
reported on in Chapter 6.

B.4.1 CarRacing-v0

On this benchmark we use the standard DQN architecture apart from added layer
normalization and a policy head, as represented in Table B.1:

Table B.1: Used DQN architecture for the CarRacing benchmark

Input: 84x84 8-bit gray scale images cast to 32 bit float and divided by 255
Conv1: 8x8x32 (stride 4, ReLU)
Conv2: 4x4x64 (stride 2, ReLU)
Conv3: 3x3x64 (stride 1, ReLU)

Fully connected + layer norm(Ba et al., 2016): 512 ReLU (s̄)
policy head: Stop Gradient
policy head: Fully connected 7, softmax Q̂-head: Fully connected 7, linear

During the gradient based phase, the parameter noise magnitude σ is updated as
described in the main paper to choose actions that differ from the policy with a
probability ε = 0.1. The first 200 episodes are performed with a random policy
(actions are sampled uniformly at random in the action space) to fill the experience
buffer.

For the DQN and DDPG algorithms we used the following hyper-parameters and
implementation details (in addition to those mentioned in the main paper).

• DQN (Mnih et al., 2015):

– optimizer: ADAM(Kingma and Ba, 2015)

∗ learning rate: ·10−4

∗ β1 = 0.9, β2 = 0.999
∗ ε = 10−4

– experience buffer size: 106 experiences

– batch size: 32

– parameter update every 4 environment steps, frozen parameter update
every 104 environment steps

– parameter gradient clipping: 10

136 | Implementation details

– loss functions:
∗ TDE: Huber loss with δ = 1
∗ 0.01 · ||θq,a||2
∗ cross entropy for policy head

– γ = 0.99

• DDPG (Lillicrap et al., 2016):

– optimizer: ADAM(Kingma and Ba, 2015)
∗ learning rate: ·10−3 for the critic and ·10−4 for the actor
∗ β1 = 0.9, β2 = 0.999
∗ ε = 10−8

– experience buffer size: 105 experiences
– batch size: 64
– parameter update every steps, frozen parameter update step with τ =

0.001
– parameter gradient clipping: 10
– loss function:

∗ TDE: Huber loss with δ = 1
∗ 0.01 · ||θq||2

– γ = 0.95
– σa = 0.2

For DQN, we do not allow the gradients of the policy head to back-propagate into
the state encoder.

SRL experiment

For the experiment with state representation losses mentioned in the main paper,
we added the following subnetworks and losses:

• Auto encoding:

– Loss: 10 * ‖o− ô‖2

– Subnetwork: s̄→ fully connected ELU layer with 441 units→ reshaped
to (21,21,1) → (3,3,32) transpose convolution with stride 2, ELU acti-
vation and batch normalization → (3,3,1) transpose convolution with
stride 2, ELU activation and batch normalization → ô.

Implementation details | 137

• Reward prediction:

– Loss: 0.5(r − r̂)2

– Subnetwork: s̄ concatenated with one hot representation of a → fully
connected ELU layer with 32 units → fully connected linear layer with
1 unit → r̂.

• Forward dynamics:

– Loss: 10
∥∥∥s̄′ − ˆ̄′s

∥∥∥2

– Subnetwork: s̄ concatenated with one hot representation of a → fully
connected ELU layer with 64 units → fully connected linear layer with
512 units → ˆ̄′s.

• Inverse dynamics:

– Loss: 1 · cross entropy based on actually taken action a and the assigned
probability.

– Subnetwork: s̄ concatenated with s̄′ → fully connected ELU layer with
64 units → softmax layer with 7 units.

138

139

C
Additional results

This section contains additional analyses and figures that were left out of the main
body of the paper for brevity.

C.1 | Experience buffer experiments (Chapters 3 and 4)

Performance on the Magman Benchmark as a Function of Network Size

In the main body of the paper, a number of experiments are shown in which the
performance of the magman benchmark is better with a small FIFO experience
buffer than it is when retaining all experiences. As we use relatively small neural
networks on the magman benchmark, it could be expected that at least part of the
reason that training on all experiences results in poorer performance is that the
function approximator simply does not have enough capacity to accurately cover
the state-action space. We therefore compare the performance of the networks
used on the magman benchmark in the main body of this work to that of the
original DDPG architecture, which has more than 40 times as many parameters.
Table C.1 compares the network architectures and the number of parameters of
these architectures. It can be seen from Figure C.1 that, while the larger network is
able to learn more successfully from the FULL DB buffer, it is outperformed by both
the small and the large network using the FIFO buffer. The eventual performance

Architecture hidden layer units parameters swing-up parameters magman

Small-critic [50, 50, 20] 3791 3941
Small-actor [50, 50] 2751 2904
DDPG original-critic [400, 300] 122101 123001
DDPG original-actor [400, 300] 121801 122704

Table C.1: The architectures of the networks compared in this section, with the number of
parameters.

140 | Additional results

0 250 500 750 1000 1250 1500 1750
Episode

0.75

0.80

0.85

0.90

0.95

1.00
µ
r

Magman

selection and network
FULL DB[PER] - small
FULL DB[PER] - DDPG original
FIFO[PER+IS] - small
FIFO[PER+IS] - DDPG original

Figure C.1: Influence of network size on the performance of the magman benchmark, when re-
taining all 4× 105 experiences (FULL DB) versus retaining only the last 104 experiences (FIFO).
The small policy network used for most of the experiments on the magman has 2904 parameters,
while the original DDPG network has 122704 parameters on the magman benchmark. In both
cases the critic networks had slightly more parameters.

is best for our smaller network trained on a small buffer, although learning is
somewhat faster with the larger network.

Sensitivity Analysis α

In both the PER sampling as well as the TDE and Expl retention methods, the
parameter α (4.2) determines how strongly the used experience utility proxy influ-
ences the selection method. Here, we show the sensitivity of both Expl (Figure C.2)
and PER (Figure C.3) with respect to this parameter.

In Figure C.2 it can be seen that on the Pendulum benchmark, where Expl re-
tention has already been shown to aid stability, increasing α helps to improve the
final performance more. This increased stability comes at the cost of somewhat
reduced maximum performance. With PER sampling it does not seem to hurt the
learning speed. On the Magman benchmark, where FIFO retention works better
than Expl retention, increasing α (and thus relying more on the wrong proxy for
the benchmark) hurts performance. Interesting to see is that compared to uniform
sampling, PER speeds up the learning for low values of α, while it hurts for large
values of α. This demonstrates again the need to choose both parts of experience
selection with care.

In Figure C.3 it can again be seen that the benefits of PER are mostly to the speed
of learning. Improvements to the maximum and final performance are possible

Additional results | 141

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

µ
fi

na
l

r

Pendulum swing-up

Sampling
Uniform
PER
PER+IS

0.80

0.85

0.90

0.95

1.00

µ
fi

na
l

r

Magman

0.96

0.97

0.98

0.99

µ
m

ax
r

0.965

0.970

0.975

0.980

0.985

0.990

0.995

µ
m

ax
r

FIFO Expl(0.25) Expl(0.50) Expl(1.20)
retention

120

140

160

180

200

220

240

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

FIFO Expl(0.25) Expl(0.50) Expl(1.20)
retention

200

250

300

350

400

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

Figure C.2: Influence of α in the Expl algorithm for different sampling strategies.

when α is chosen correctly, but depend mostly on the contents of the buffer that
PER is sampling from.

142 | Additional results

0.65

0.70

0.75

0.80

0.85

0.90

0.95

µ
fi

na
l

r

Pendulum swing-up

0.75

0.80

0.85

0.90

0.95

1.00

µ
fi

na
l

r

Magman

Buffer capacity
4 · 105

1 · 104

0.94

0.95

0.96

0.97

0.98

0.99

µ
m

ax
r

0.95

0.96

0.97

0.98

0.99

1.00

µ
m

ax
r

0.0 0.4 0.6 0.7 0.8 1.0
prioritized alpha

120

140

160

180

200

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

0.0 0.4 0.6 0.7 0.8 1.0
prioritized alpha

200

250

300

350

400

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

Figure C.3: Influence of α in the PER algorithm for the Full DB strategy (buffer capacity =
4× 105) and FIFO retention (buffer capacity 1× 10−4).

Additional results | 143

Additional Figures
This subsection contains several figures that were left out of the main text of
this work for brevity. They show the same experiments as Figures 3.7, 3.9, 4.6,
according to the remaining performance criteria.

0.0 0.05 0.1 0.25 0.5
synthetic sample fraction

0.6

0.7

0.8

0.9

1.0

µ
m

ax
r

DDPG (state)
DDPG (action)
DQN (state)
DQN (action)

Figure C.4: RL algorithm dependent effect of adding synthetic experiences to the FIFO[Uniform]
method on the maximum performance per episode µmax

r on the pendulum swing-up benchmark.
The effect on the final performance and the rise-time is given in Figure 3.8.

10 25 50 100 150 200
Sampling frequency [Hz]

0

100

200

300

400

500

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

Pendulum swing-up

Synthetic
none
state [0.5]
action [0.5]

10 25 50 100 150 200
Sampling frequency [Hz]

Magman

Figure C.5: Sampling frequency dependent effect on the learning speed of adding synthetic
experiences to the FIFO[Uniform] method. The effect on the final and maximum performance is
given in Figure 3.10.

144 | Additional results

0.0 0.01 0.1 1.0
synthetic sample refresh probability

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

µ
m

ax
r

Pendulum swing-up

0.0 0.01 0.1 1.0
synthetic sample refresh probability

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Magman

Synthetic fraction
state [0.1]
state [0.5]
action [0.1]
action [0.5]

(a) Effect on µmax
r .

0.0 0.01 0.1 1.0
synthetic sample refresh probability

120

140

160

180

200

220

Ri
se
-t
im

e
0.
8
[e
pi
so
de
s]

Pendulum swing-up

0.0 0.01 0.1 1.0
synthetic sample refresh probability

150

200

250

300

350

400

450

Magman

Synthetic fraction
state [0.1]
state [0.5]
action [0.1]
action [0.5]

(b) Effect on Rise-time 0.8.

Figure C.6: The effects on the performance of the FIFO[Uniform] method when changing a
fraction of the observed experiences with synthetic experiences, when the synthetic experiences
are updated only with a certain probability each time they are overwritten. The effects on µfinal

r

is shown in Figure 3.9.

Additional results | 145

Episode

0.6

0.7

0.8

0.9

µ
r
(s
wi
ng

up
)

Train performance

Selection method
FIFO
Resv

TDE(1.2)
EXPL(1.2)

Episode

µ
r
(s
wi
ng

up
)

Generalization performance

0 500 1000 1500 2000
Episode

0.5

0.6

0.7

0.8

0.9

µ
r
(m

ag
m
an
)

0 500 1000 1500 2000
Episode

µ
r
(m

ag
m
an
)

Figure C.7: Training and generalization performance of the experience retention methods
proposed in Chapter 4 with Uniform sampling.

146 | Additional results

0.04 0.1 0.2 0.318 0.5 1.0

2000

3000

4000

5000

6000

fin
al

re
tu
rn

InvertedDoublePendulum

0.01 0.02 0.028 0.04 0.1 0.2 1.0
-60

-50

-40

-30

-20

-10

0

10

Reacher

0.04 0.1 0.2 0.5 0.644 1.0
200

400

600

800

1000

fin
al

re
tu
rn

Hopper

0.04 0.1 0.164 0.2 0.5 1.0

100

200

300

400

500

Walker2d

0.04 0.1 0.2 0.264 0.5 1.0
buffer size [million experiences]

0

200

400

600

fin
al

re
tu
rn

HalfCheetah

0.04 0.1 0.2 0.5 0.7 1.0
buffer size [million experiences]

-200

0

200

400

Ant

Retention
FIFO
TDE(1.2)
EXPL(1.2)

Reservoir
Full DB

Figure C.8: Mean performance during the last 2× 105 training steps of a 1× 106 step training
run on the Roboschool benchmarks as a function of the retention strategy and buffer size. Results
for the individual runs and their means are shown.

Additional results | 147

0.04 0.1 0.2 0.318 0.5 1.0
2000

2200

2400

2600

2800

3000

3200

m
ea
n
re
tu
rn

InvertedDoublePendulum

0.01 0.02 0.028 0.04 0.1 0.2 1.0

-25

-20

-15

-10

-5

0

5

10
Reacher

0.04 0.1 0.2 0.5 0.644 1.0
200

300

400

500

m
ea
n
re
tu
rn

Hopper

0.04 0.1 0.164 0.2 0.5 1.0

100

150

200

250

300

350

400
Walker2d

0.04 0.1 0.2 0.264 0.5 1.0
buffer size [million experiences]

0

100

200

300

400

m
ea
n
re
tu
rn

HalfCheetah

0.04 0.1 0.2 0.5 0.7 1.0
buffer size [million experiences]

-200

-100

0

100

200

300

Ant

Retention
FIFO
TDE(1.2)
EXPL(1.2)

Reservoir
Full DB

Figure C.9: Mean performance during the whole training run on the Roboschool benchmarks
as a function of the retention strategy and buffer size. Results for the individual runs and their
means are shown.

148 | Additional results

C.2 | Optimization (Chapter 6)

For Figure 6.2b of the main paper, we show in Figure C.10 how the mean and
worst performance per iteration compared to the best performance per iteration.
In Figure C.11, the same is shown with added SRL losses during the gradient
based optimization phase. Both figures show the median of 3 runs.

0 20000 40000
850

860

870

880

890

900

910

920

930

U
n
d

is
co

u
n
te

d
 r

e
tu

rn

max

0 20000 40000

Episodes

650

700

750

800

850

900

mean

0 20000 40000

300

400

500

600

700

800

900

min

D
Q

N
(e

p
)

C
M

A
-E

S
(

0
)

ep

10k
0.10

0.25

0.50

2.5k

0

Figure C.10: Best, mean and worst performance per iteration on the CarRacing benchmark
(accompanies Figure 6.2b of the main paper).

0 20000 40000
850

860

870

880

890

900

910

920

930

U
n
d

is
co

u
n
te

d
 r

e
tu

rn

max

0 20000 40000

Episodes

820

830

840

850

860

870

880

890

900

mean

0 20000 40000
740

760

780

800

820

840

860

880

900

min

DQN+SRL(2.5k) CMA-ES(0 : 0.25)

DQN+SRL(10k) CMA-ES(0 : 0.25)

Figure C.11: Learning curves for the CarRacing experiment with added state representation
learning losses.

149

References

Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., and Levine, S. (2016). “Learning to
poke by poking: Experiential learning of intuitive physics”. Neural Information
Processing Systems (NIPS).

Alibekov, E., Kubalík, J., and Babuška, R. (2018). “Policy derivation methods
for critic-only reinforcement learning in continuous action spaces”. Engineering
Applications of Artificial Intelligence, 69, pp. 178–187.

Andre, D., Friedman, N., and Parr, R. (1997). “Generalized prioritized sweeping”.
Advances In Neural Information Processing Systems (NIPS), pp. 1001–1007.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
McGrew, B., Tobin, J., Abbeel, O.P., and Zaremba, W. (2017). “Hindsight
experience replay”. Advances in Neural Information Processing Systems, pp.
5048–5058.

Aslanides, J., Leike, J., and Hutter, M. (2017). “Universal reinforcement learn-
ing algorithms: Survey and experiments”. International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1403–1410.

Ba, J.L., Kiros, J.R., and Hinton, G.E. (2016). “Layer normalization”. ArXiv
preprint arXiv:1607.06450.

Baird, L.C. (1994). “Reinforcement learning in continuous time: Advantage up-
dating”. World Congress on Computational Intelligence (WCCI), volume 4, pp.
2448–2453.

Banerjee, B. and Peng, J. (2004). “Performance bounded reinforcement learning
in strategic interactions”. AAAI National Conference on Artificial Intelligence
(AAAI), volume 4, pp. 2–7.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mordatch, I. (2017). “Emer-
gent complexity via multi-agent competition”. arXiv preprint arXiv:1710.03748.

Barreto, A., Munos, R., Schaul, T., and Silver, D. (2017). “Successor features
for transfer in reinforcement learning”. Neural Information Processing Systems
(NIPS).

Barrett, S., Taylor, M., and Stone, P. (2010). “Transfer learning for reinforcement
learning on a physical robot”. Adaptive Learning Agents Workshop, Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS -
ALA).

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.

150 | References

(2016a). “Unifying count-based exploration and intrinsic motivation”. Advances
in Neural Information Processing Systems (NIPS), pp. 1471–1479.

Bellemare, M.G., Ostrovski, G., Guez, A., Thomas, P.S., and Munos, R. (2016b).
“Increasing the action gap: New operators for reinforcement learning.” Conf.
Artificial Intelligence (AAAI).

Bengio, Y., Courville, A., and Vincent, P. (2013). “Representation learning: A re-
view and new perspectives”. IEEE transactions on pattern analysis and machine
intelligence, 35(8), pp. 1798–1828.

Bengio, Y., Delalleau, O., and Roux, N.L. (2006). “The curse of highly variable
functions for local kernel machines”. Advances in neural information processing
systems, pp. 107–114.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). “Curriculum
learning”. International Conference on Machine Learning (ICML), pp. 41–48.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
and Zaremba, W. (2016). “Openai gym”. CoRR, abs/1606.01540.

Bruin, T. de, Kober, J., Tuyls, K., and Babuška, R. (2018a). “Experience selec-
tion in deep reinforcement learning for control”. Journal of Machine Learning
Research, 19(9), pp. 1–56.

Bruin, T. de, Kober, J., Tuyls, K., and Babuška, R. (2015). “The importance of
experience replay database composition in deep reinforcement learning”. Deep
Reinforcement Learning Workshop, Advances in Neural Information Processing
Systems (NIPS - DRLWS).

Bruin, T. de, Kober, J., Tuyls, K., and Babuška, R. (2016a). “Improved deep rein-
forcement learning for robotics through distribution-based experience retention”.
International Conference on Intelligent Robots and Systems (IROS).

Bruin, T. de, Kober, J., Tuyls, K., and Babuška, R. (2016b). “Off policy experience
retention for deep actor critic learning”. Deep Reinforcement Learning Work-
shop, Advances in Neural Information Processing Systems (NIPS - DRLWS).

Bruin, T. de, Kober, J., Tuyls, K., and Babuška, R. (2018b). “Integrating state
representation learning into deep reinforcement learning”. IEEE Robotics and
Automation Letters, 3(3), pp. 1394–1401.

Buşoniu, L., Ernst, D., Babuška, R., and De Schutter, B. (2010). “Approximate
dynamic programming with a fuzzy parameterization”. Automatica, 46(5), pp.
804–814.

Caarls, W. and Schuitema, E. (2016). “Parallel online temporal difference learn-

References | 151

ing for motor control”. IEEE Transactions on Neural Networks and Learning
Systems, 27(7), pp. 1457–1468.

Carter, S., Armstrong, Z., Schubert, L., Johnson, I., and Olah, C. (2019). “Acti-
vation atlas”. Distill. Https://distill.pub/2019/activation-atlas.

Caruana, R. (1993). “Multitask connectionist learning”. Connectionist Models
Summer School.

Chentanez, N., Barto, A.G., and Singh, S.P. (2004). “Intrinsically motivated
reinforcement learning”. Advances in Neural Information Processing Systems
(NIPS), pp. 1281–1288.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., and LeCun, Y. (2015).
“The loss surfaces of multilayer networks”. Artificial Intelligence and Statistics,
pp. 192–204.

Ciosek, K. and Whiteson, S. (2017). “OFFER: off-environment reinforcement
learning”. AAAI Conference on Artificial Intelligence (AAAI).

Coates, J. and Bollegala, D. (2018). “Frustratingly easy meta-embedding–
computing meta-embeddings by averaging source word embeddings”. arXiv
preprint arXiv:1804.05262.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011a). “Torch7: A Matlab-like
environment for machine learning”. BigLearn Workshop, Advances in Neural
Information Processing Systems (NIPS - BLWS).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa,
P. (2011b). “Natural language processing (almost) from scratch”. Journal of
Machine Learning Research, 12(Aug), pp. 2493–2537.

Dayan, P. (1993). “Improving generalization for temporal difference learning: The
successor representation”. Neural Computation, 5(4), pp. 613–624.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A.,
Schulman, J., Sidor, S., and Wu, Y. (2017). “OpenAI Baselines”. https:
//github.com/openai/baselines.

Domhan, T., Springenberg, J.T., and Hutter, F. (2015). “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of learn-
ing curves.” International Joint Conference on Artificial Intelligence (IJCAI),
volume 15, pp. 3460–3468.

Efron, B. (1992). “Bootstrap methods: Another look at the jackknife”. Break-
throughs in Statistics, pp. 569–593.

Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. (2016).

https://github.com/openai/baselines
https://github.com/openai/baselines

152 | References

“Deep spatial autoencoders for visuomotor learning”. Int. Conf. Robotics and
Automation (ICRA).

François-Lavet, V., Fonteneau, R., and Ernst, D. (2015). “How to discount
deep reinforcement learning: Towards new dynamic strategies”. ArXiv preprint
arXiv:1512.02011.

Franklin, G.F., Powell, D.J., and Workman, M.L. (1998). “Digital control of
dynamic systems”, volume 3. Addison-Wesley Menlo Park.

Freund, Y., Schapire, R., and Abe, N. (1999). “A short introduction to boosting”.
Journal of Japanese Society for Artificial Intelligence, 14(771-780), p. 1612.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). “The elements of statistical
learning”. 10. Springer series in statistics New York.

Garcıa, J. and Fernández, F. (2015). “A comprehensive survey on safe reinforce-
ment learning”. Journal of Machine Learning Research, 16(1), pp. 1437–1480.

Ghadirzadeh, A., Maki, A., Kragic, D., and Björkman, M. (2017). “Deep predictive
policy training using reinforcement learning”. arXiv:1703.00727.

Giusti, A., Guzzi, J., Ciresan, D., He, F.L., Rodriguez, J.P., Fontana, F., Faessler,
M., Forster, C., Schmidhuber, J., Di Caro, G., Scaramuzza, D., and Gam-
bardella, L. (2016). “A machine learning approach to visual perception of forest
trails for mobile robots”. IEEE Robotics and Automation Letters.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). “Deep learning”,
volume 1. MIT press Cambridge.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). “Generative adversarial nets”. Advances
in Neural Information Processing Systems (NIPS), pp. 2672–2680.

Goodfellow, I.J., Mirza, M., Da, X., Courville, A., and Bengio, Y. (2013). “An em-
pirical investigation of catastrophic forgeting in gradient-based neural networks”.
ArXiv preprint arXiv:1312.6211.

Greensmith, E., Bartlett, P.L., and Baxter, J. (2004). “Variance reduction tech-
niques for gradient estimates in reinforcement learning”. Journal of Machine
Learning Research, 5(Nov), pp. 1471–1530.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R.E., and Levine, S. (2017a). “Q-
prop: sample-efficient policy gradient with an off-policy critic”. International
Conference on Learning Representations (ICLR).

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). “Continuous deep Q-
learning with model-based acceleration”. ArXiv preprint arXiv:1603.00748.

References | 153

Gu, S., Lillicrap, T., Turner, R.E., Ghahramani, Z., Schölkopf, B., and Levine, S.
(2017b). “Interpolated policy gradient: Merging on-policy and off-policy gradient
estimation for deep reinforcement learning”. Advances in Neural Information
Processing Systems, pp. 3849–3858.

Ha, D. and Schmidhuber, J. (2018). “World models”. arXiv preprint
arXiv:1803.10122.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). “Reinforcement learning
with deep energy-based policies”. Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pp. 1352–1361.

Hansen, N., Akimoto, Y., and Baudis, P. (2019). “CMA-ES/pycma on Github”.
Zenodo, DOI:10.5281/zenodo.2559634. URL https://doi.org/10.5281/zenodo.
2559634.

Hansen, N. and Ostermeier, A. (2001). “Completely derandomized self-adaptation
in evolution strategies”. Evolutionary computation, 9(2), pp. 159–195.

Hasselt, H. van (2010). “Double q-learning”. Advances in Neural Information
Processing Systems, pp. 2613–2621.

Hasselt, H. van, Guez, A., Hessel, M., Mnih, V., and Silver, D. (2016). “Learn-
ing values across many orders of magnitude”. Neural Information Processing
Systems (NIPS).

Hausknecht, M., Lehman, J., Miikkulainen, R., and Stone, P. (2014). “A neu-
roevolution approach to general atari game playing”. IEEE Transactions on
Computational Intelligence and AI in Games, 6(4), pp. 355–366.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger,
D. (2017). “Deep reinforcement learning that matters”. arXiv preprint
arXiv:1709.06560.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., and Silver, D. (2017). “Rainbow: Combining
improvements in deep reinforcement learning”. arXiv preprint arXiv:1710.02298.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al. (2012). “Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research
groups”. IEEE Signal processing magazine, 29(6), pp. 82–97.

Hinton, G., Vinyals, O., and Dean, J. (2015). “Distilling the knowledge in a neural
network”. arXiv preprint arXiv:1503.02531.

Hinton, G.E. (2007). “To recognize shapes, first learn to generate images”. Progress

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

154 | References

in Brain Research, 165, pp. 535–547.

Hinton, G.E. and Salakhutdinov, R.R. (2006). “Reducing the dimensionality of
data with neural networks”. Science, 313(5786), pp. 504–507.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al. (2001). “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies”.

Hoof, H. van, Chen, N., Karl, M., Smagt, P. van der, and Peters, J. (2016). “Stable
reinforcement learning with autoencoders for tactile and visual data”. Int. Conf.
Intelligent Robots and Systems (IROS).

Hornik, K. (1991). “Approximation capabilities of multilayer feedforward net-
works”. Neural networks, 4(2), pp. 251–257.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P.
(2016). “VIME: Variational information maximizing exploration”. Advances in
Neural Information Processing Systems (NIPS), pp. 1109–1117.

Ioffe, S. and Szegedy, C. (2015). “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift”. Int. Conf. Machine Learning
(ICML).

Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D., and
Kavukcuoglu, K. (2017). “Reinforcement learning with unsupervised auxiliary
tasks”. Int. Conf. Learning Representations (ICLR).

Jonschkowski, R. and Brock, O. (2015). “Learning state representations with
robotic priors”. Autonomous Robots, 39(3), pp. 407–428.

Jonschkowski, R., Hafner, R., Scholz, J., and Riedmiller, M. (2017). “PVEs:
Position-velocity encoders for unsupervised learning of structured state repre-
sentations”. New Frontiers for Deep Learning in Robotics Workshop at RSS.

Kakade, S. and Langford, J. (2002). “Approximately optimal approximate rein-
forcement learning”. ICML, volume 2, pp. 267–274.

Karras, T., Laine, S., and Aila, T. (2018). “A style-based generator architecture
for generative adversarial networks”. arXiv preprint arXiv:1812.04948.

Kingma, D. and Ba, J. (2015). “Adam: A method for stochastic optimization”.
International Conference for Learning Representations (ICLR).

Klimov, O. (2017). “OpenAI Roboschool”. https://github.com/openai/roboschool.

Kober, J., Bagnell, J.A., and Peters, J. (2013). “Reinforcement learning in robotics:
a survey”. International Journal of Robotics Research (IJRR), 32(11), pp. 1238–
1274.

https://github.com/openai/roboschool

References | 155

Koryakovskiy, I., Vallery, H., Babuška, R., and Caarls, W. (2017). “Evaluation
of physical damage associated with action selection strategies in reinforcement
learning”. IFAC World Congress.

Koutník, J., Cuccu, G., Schmidhuber, J., and Gomez, F. (2013). “Evolving large-
scale neural networks for vision-based reinforcement learning”. Proceedings of
the 15th annual conference on Genetic and evolutionary computation, pp. 1061–
1068.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). “Imagenet classification
with deep convolutional neural networks”. Advances in neural information pro-
cessing systems, pp. 1097–1105.

Kulkarni, T.D., Saeedi, A., Gautam, S., and Gershman, S.J. (2016). “Deep suc-
cessor reinforcement learning”. arXiv:1606.02396.

Kuvayev, L. and Sutton, R.S. (1996). “Model-based reinforcement learning with an
approximate, learned model”. Yale Workshop on Adaptive Learning Systems.

Lange, S., Gabel, T., and Riedmiller, M. (2012a). “Batch reinforcement learning”.
Reinforcement learning, pp. 45–73.

Lange, S., Riedmiller, M., and Voigtlander, A. (2012b). “Autonomous reinforce-
ment learning on raw visual input data in a real world application”. Int. Joint
Conf. Neural Networks (IJCNN).

Lee, A.X., Levine, S., and Abbeel, P. (2017). “Learning visual servoing with deep
features and fitted Q-iteration”. Int. Conf. Learning Representations (ICLR).

Levine, N., Zahavy, T., Mankowitz, D.J., Tamar, A., and Mannor, S. (2017). “Shal-
low updates for deep reinforcement learning”. Advances in Neural Information
Processing Systems, pp. 3135–3145.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). “End-to-end training of
deep visuomotor policies”. Journal of Machine Learning Research, 17(39), pp.
1–40.

Levine, S. and Koltun, V. (2013). “Guided policy search”. International Conference
on Machine Learning, pp. 1–9.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2016). “Continuous control with deep reinforcement learning”.
International Conference on Learning Representations (ICLR).

Lin, H.W., Tegmark, M., and Rolnick, D. (2017). “Why does deep and cheap
learning work so well?” Journal of Statistical Physics, 168(6), pp. 1223–1247.

Lin, L.J. (1992). “Self-improving reactive agents based on reinforcement learning,

156 | References

planning and teaching”. Machine Learning, 8(3-4), pp. 293–321.

Lipton, Z.C., Gao, J., Li, L., Li, X., Ahmed, F., and Deng, L. (2016). “Efficient
exploration for dialogue policy learning with BBQ networks & replay buffer spik-
ing”. ArXiv preprint arXiv:1608.05081.

Liu, G.H., Siravuru, A., Prabhakar, S., Veloso, M., and Kantor, G. (2017).
“Learning end-to-end multimodal sensor policies for autonomous navigation”.
arXiv:1705.10422.

Loshchilov, I. and Hutter, F. (2015). “Online batch selection for faster training of
neural networks”. ArXiv preprint arXiv:1511.06343.

Mania, H., Guy, A., and Recht, B. (2018). “Simple random search provides a com-
petitive approach to reinforcement learning”. arXiv preprint arXiv:1803.07055.

Marbach, P. and Tsitsiklis, J.N. (2003). “Approximate gradient methods in policy-
space optimization of markov reward processes”. Discrete Event Dynamic Sys-
tems, 13(1-2), pp. 111–148.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., et al. (2017). “Learning to navigate in
complex environments”. Int. Conf. Learning Representations (ICLR).

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). “Asynchronous methods for deep reinforcement
learning”. International Conference on Machine Learning, pp. 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al. (2015).
“Human-level control through deep reinforcement learning”. Nature, 518(7540),
pp. 529–533.

Moniz, J.R.A., Patra, B., and Garg, S. (2019). “Compression and localization in
reinforcement learning for atari games”. arXiv preprint arXiv:1904.09489.

Montavon, G., Orr, G.B., and Müller, K.R., editors (2012). “Neural networks:
Tricks of the trade”. Lecture Notes in Computer Science (LNCS). Springer, 2nd
edition.

Montufar, G.F., Pascanu, R., Cho, K., and Bengio, Y. (2014). “On the number
of linear regions of deep neural networks”. Advances in Neural Information
Processing Systems (NIPS), pp. 2924–2932.

Moore, A.W. and Atkeson, C.G. (1993). “Prioritized sweeping: reinforcement
learning with less data and less time”. Machine Learning, 13(1), pp. 103–130.

Munk, J., Kober, J., and Babuška, R. (2016). “Learning state representation for

References | 157

deep actor-critic control”. Conf. Decision and Control (CDC).

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016). “Safe and
efficient off-policy reinforcement learning”. Advances in Neural Information
Processing Systems, pp. 1054–1062.

Nair, V. and Hinton, G.E. (2010). “Rectified linear units improve restricted boltz-
mann machines”. Int. Conf. Machine Learning (ICML).

Narasimhan, K., Kulkarni, T., and Barzilay, R. (2015). “Language understanding
for text-based games using deep reinforcement learning”. Empirical Methods in
Natural Language Processing (EMNLP).

Needell, D., Srebro, N., and Ward, R. (2016). “Stochastic gradient descent,
weighted sampling, and the randomized Kaczmarz algorithm”. Mathematical
Programming, 155(1-2), pp. 549–573.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A.Y. (2011). “Multi-
modal deep learning”. Int. Conf. Machine Learning (ICML).

Olah, C., Mordvintsev, A., and Schubert, L. (2017). “Feature visualization”. Distill,
2(11), p. e7.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). “Deep exploration
via bootstrapped DQN”. Advances In Neural Information Processing Systems
(NIPS), pp. 4026–4034.

Parisotto, E., Ba, J.L., and Salakhutdinov, R. (2015). “Actor-mimic: Deep multi-
task and transfer reinforcement learning”. arXiv preprint arXiv:1511.06342.

Pérez Dattari, R., Celemin, C., Ruiz Del Solar, J., and Kober, J. (2019). “Continu-
ous control for high-dimensional state spaces: An interactive learning approach”.
IEEE International Conference on Robotics and Automation (ICRA).

Pieters, M. and Wiering, M.A. (2016). “Q-learning with experience replay in a dy-
namic environment”. Symposium Series on Computational Intelligence (SSCI),
pp. 1–8.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., As-
four, T., Abbeel, P., and Andrychowicz, M. (2018). “Parameter space noise for
exploration”. International Conference on Learning Representations (ICLR).

Precup, D., Sutton, R.S., and Singh, S.P. (2000). “Eligibility traces for off-policy
policy evaluation.” ICML, pp. 759–766.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J.
(2016). “On the expressive power of deep neural networks”. arXiv preprint
arXiv:1606.05336.

158 | References

Rajeswaran, A., Lowrey, K., Todorov, E.V., and Kakade, S.M. (2017). “Towards
generalization and simplicity in continuous control”. Advances In Neural Infor-
mation Processing Systems (NIPS), pp. 6550–6561.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent”. Advances in neural information
processing systems, pp. 693–701.

Riedmiller, M. (2005). “Neural fitted q iteration–first experiences with a data effi-
cient neural reinforcement learning method”. European Conference on Machine
Learning, pp. 317–328.

Rusu, A.A., Vecerik, M., Rothörl, T., Heess, N., Pascanu, R., and Hadsell, R.
(2016). “Sim-to-real robot learning from pixels with progressive nets”. ArXiv
preprint arXiv:1610.04286.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). “Evolution
strategies as a scalable alternative to reinforcement learning”. arXiv preprint
arXiv:1703.03864.

Salimans, T. and Kingma, D.P. (2016). “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks”. Advances in Neural
Information Processing Systems, pp. 901–909.

Schaal, S. (1999). “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, 3(6), pp. 233–242.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). “Universal value func-
tion approximators”. International Conference on Machine Learning, pp. 1312–
1320.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience
replay”. International Conference on Learning Representations (ICLR).

Schmidhuber, J. (1991). “A possibility for implementing curiosity and boredom
in model-building neural controllers”. From Animals to Animats: International
Conference on Simulation of Adaptive Behavior (SAB).

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015a). “Trust
region policy optimization”. International Conference on Machine Learning, pp.
1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). “High-
dimensional continuous control using generalized advantage estimation”. arXiv
preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). “Prox-

References | 159

imal policy optimization algorithms”. arXiv preprint arXiv:1707.06347.

Seo, Y.W. and Zhang, B.T. (2000). “Learning user’s preferences by analyzing web-
browsing behaviors”. International Conference on Autonomous Agents (ICAA),
pp. 381–387.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T. (2016). “Loss is its
own reward: Self-supervision for reinforcement learning”. arXiv:1612.07307.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). “Mastering the game of go with deep neural networks and tree search”.
nature, 529(7587), pp. 484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.
(2014). “Deterministic policy gradient algorithms”. International Conference on
Machine Learning (ICML).

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). “Mastering the game
of Go without human knowledge”. Nature, 550(7676), pp. 354–359.

Skinner, B.F. (1958). “Reinforcement today”. American Psychologist, 13(3), p. 94.

Stachenfeld, K.L., Botvinick, M.M., and Gershman, S.J. (2017). “The hippocampus
as a predictive map”. Nature Neuroscience, 20(11), pp. 1643–1653.

Stulp, F. and Sigaud, O. (2012). “Path integral policy improvement with covari-
ance matrix adaptation”. Proceedings of the 29th International Conference on
Machine Learning (ICML).

Sutton, R.S. (1991). “Dyna, an integrated architecture for learning, planning, and
reacting”. ACM SIGART Bulletin, 2(4), pp. 160–163.

Sutton, R.S. and Barto, A.G. (2018). “Reinforcement learning: An introduction”.
MIT press.

Sutton, R.S., McAllester, D.A., Singh, S.P., and Mansour, Y. (2000). “Policy
gradient methods for reinforcement learning with function approximation”. Ad-
vances in neural information processing systems, pp. 1057–1063.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2016). “Sequential
decision making with coherent risk”. IEEE Transactions on Automatic Control.

Tieleman, T. and Hinton, G. (2012). “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude”. COURSERA: Neural networks
for machine learning, 4(2), pp. 26–31.

160 | References

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R.E., Ghahramani, Z., and Levine, S.
(2018). “The mirage of action-dependent baselines in reinforcement learning”.
arXiv preprint arXiv:1802.10031.

Uhlenbeck, G.E. and Ornstein, L.S. (1930). “On the theory of the Brownian mo-
tion”. Physical Review, 36(5), p. 823.

Valiant, L.G. (1984). “A theory of the learnable”. Communications of the ACM,
27(11), pp. 1134–1142.

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning
with double q-learning”. Conf. Artificial Intelligence (AAAI).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł., and Polosukhin, I. (2017). “Attention is all you need”. Advances in
Neural Information Processing Systems, pp. 5998–6008.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). “Show and tell: A
neural image caption generator”. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Vitter, J.S. (1985). “Random sampling with a reservoir”. ACM Transactions on
Mathematical Software (TOMS), 11(1), pp. 37–57.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and
Freitas, N. de (2017). “Sample efficient actor-critic with experience replay”.
International Conference on Learning Representations (ICLR).

Watkins, C.J.C.H. (1989). “Learning from delayed rewards”. Ph.D. thesis, King’s
College, Cambridge.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. (2015). “Embed
to control: A locally linear latent dynamics model for control from raw images”.
Neural Information Processing Systems (NIPS).

Williams, R.J. and Peng, J. (1991). “Function optimization using connectionist
reinforcement learning algorithms”. Connection Science, 3(3), pp. 241–268.

Wiskott, L. and Sejnowski, T.J. (2002). “Slow feature analysis: Unsupervised
learning of invariances”. Neural Computation, 14(4), pp. 715–770.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., and Sum-
ner, A. (2000). “Torcs, the open racing car simulator”. Software available at
http://torcs.sourceforge.net.

Yoshida, N. (2016). “Gym-torcs”. Software available at https://github.com/ugo-
nama-kun/gym_torcs.

References | 161

Zeghidour, N., Xu, Q., Liptchinsky, V., Usunier, N., Synnaeve, G., and Col-
lobert, R. (2018). “Fully convolutional speech recognition”. arXiv preprint
arXiv:1812.06864.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). “Un-
derstanding deep learning requires rethinking generalization”. arXiv preprint
arXiv:1611.03530.

Zhang, J., Springenberg, J.T., Boedecker, J., and Burgard, W. (2017). “Deep rein-
forcement learning with successor features for navigation across similar environ-
ments”. Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, pp. 2371–2378.

162

163

Acknowledgements

I had never considered the possibility of doing a PhD until I was asked if I would
be interested in one. I didn’t quite know what a PhD entailed but I did not think
it was something that I would be good enough for—although I did not mention
that at the time. Now, having nearly finished, I can happily look back on one
of the best experiences of my life. For four years I got to do fun projects while
being surrounded by smart, funny, kind, and generous people—all while somehow
getting paid as well. To everyone I encountered during those years I would like to
say a heartfelt thank you. In particular:

To Robert, Jens and Karl. Thank you for entrusting me with the project and
recognizing my potential before I did so myself. I am very grateful for the freedom
you gave me to deviate from your plans, and the fact that you managed to make
me feel like an equal despite looking up to your academic accomplishments. Above
all, I feel lucky to have had you as my (co-)promotors because you are all such
genuinely nice people. Robert, after the MSc, I was very happy to work together
for four more years. I have always enjoyed our discussions and the times you sud-
denly dropped by to show a new plot of an experiment you performed based on
discussions we had. I think it is really cool to see how you lead a whole group
while still doing experiments and taking the time to talk about the personal and
professional details of the lives of the people you supervise. Velmi vám děkuji!
Jens, in describing your supervision style to potential new PhD candidates I real-
ized how perfectly you struck the balance; taking a hands off approach and giving
us the freedom to find our own path, while always being available with helpful
insights when asked. For me, that really made the PhD perfect. I also liked that
you were truly “one of us”. I will miss the shared lunches and the “ducklings”
meetings. Vielen Dank! Karl, you were physically further away, and your per-
petual out-of-office replies always claimed that you would be hard to reach. Yet
I never found that to be the case. You always made time for meetings to discuss
anything from papers to career advice—even when rushing to finish six conference
papers simultaneously! Heel erg bedankt!

I mentioned that I did not know what a PhD entailed before I started one. In fact,
it took me years before I felt like I knew what I should be doing. Fortunately, I
did not go on the journey of discovery alone. In Andy, Cees and Ivan I had friends
who’s academic qualities were beyond any doubt to me. The fact that they were
lost with me made me realize that maybe we weren’t lost at all.

While being lost together is better than being lost alone, it also helps when someone
who knows the path points you in the right direction. For this I especially want to
thank Kim, who not only guided me through my MSc thesis—setting the example

164 | Acknowledgements

of how to be a good PhD supervisor—but then continued to come back to share
laughs, foosball matches, good talks and advice even after leaving the university.
I also want to thank Subu, Jan-Maarten and Fahrid for patiently showing me the
ropes in the early days.

I want to thank my office mates for the many laughs, talks, and what they taught
me. They were also my first point of reference of what quality of work to strive
for. There was Wouter, who came to join my project. The speed with which he
absorbed the required knowledge was an eye-opener to me, and forced me to go
faster myself. Besides laughs we also shared a very serious ongoing battle on the
foosball table, where I was forced to improve a lot, although never quite enough.
There was Linda, who due to her abundance in talents and accomplishments I
prefer not to use as a reference point—but definitely enjoyed sharing an office
with. There were Sebastiaan and Hongpeng, who set the bar when it came to
positive attitude, Sjoerd who reminded me to always question the rules. There
was the always friendly Carlos who with his COACH method that worked so
annoyingly well and Ajith, Sherin and Charel, who showed how to never give up
when faced with a seemingly insurmountable task like parsing the works of Friston.
Besides the people in the office I would also like to thank Thomas, Reinier, Vahab,
Mukunda, Bruno, Sander, Javier, Anqi and Sachin for being great colleagues.

Doing a PhD also involved teaching and supervising, which turned out to be a lot
of fun. I very much enjoyed supervising Siddharth, Thijs, Vasos and Carlo, due to
their enthusiasm and the creativity in their research. I enjoyed sharing TA duties
with Sander, who set an excellent example.

In some sense universities are very weird places. To do research, it is necessary to
be adaptive. And yet a university is a large bureaucratic institution. Thanks to
Marieke, Heleen, Kiran, Hanneke, Karin and Hans not only does work get done,
but it gets done in a really pleasant environment.

I also want to thank the people of the Intelligent and Interactive Systems group in
Innsbruck for my fun research stay there: Justus and Connie for the hospitality,
Philipp for going above and beyond in our work together and Jakob, Bart, Senka,
Xiang, Athanasios and Erwan for making me feel instantly at home.

I want to thank my wonderful parents Paul and Judith for their continued support,
cheerleading and feedback. For you, I will try to work on my Dutch.

Before agreeing to do a PhD I was thinking of moving to Australia to be with the
girl of my dreams. Not only did she help convince me to do the PhD, but she
came over and made me a happy person even during the infamous third year PhD
slump. Therefore my final big tank you goes out to you, Rebecca. I am looking
forward to all our future adventures!

165

About the author

14-02-1989 Born in Amsterdam, the Netherlands.

Education

2007–2012 BSc Mechanical Engineering
Delft University of Technology
Minor: Software Design

2013–2015 MSc Systems and Control
Delft University of Technology
Thesis: Railway Track Circuit Fault Diagnosis using

Recurrent Neural Networks
Supervisor: Ir. K. Verbert
Supervisor: Prof. dr. R. Babuška

2015–2019 PhD.
Delft University of Technology
Thesis: Sample Efficient Deep Reinforcement

Learning for Control
Promotor: Prof. dr. R. Babuška
Promotor: Prof. dr. K. Tuyls
Co-promotor: Dr.-Ing J. Kober

Awards

2016 Qualcomm Innovation Fellowship Europe

Visiting Scholar

2016 Intelligent and Interactive Systems
University of Innsbruck

166

167

List of publications

Journal papers
"Experience selection in deep reinforcement learning for control"
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
the Journal of Machine Learning Research (JMLR), 2018

"Reinforcement learning for control:
Performance, stability, and deep approximators"
Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, Ivana Palunko
Annual Reviews in Control (ARC), 2018

"Integrating State Representation Learning into Deep Reinforcement Learning"
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
IEEE Robotics and Automation Letters (RA-L / ICRA), 2018

Conference papers
"Improved Deep Reinforcement Learning for Robotics Through Distribution-based
Experience Retention"
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
EEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016

Workshop papers
"Off-policy experience retention for deep actor-critic learning"
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
Deep Reinforcement Learning Workshop, Advances in Neural Information Process-
ing Systems (NIPS), 2016

"The importance of experience replay database composition in deep reinforcement
learning"
Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
Deep Reinforcement Learning Workshop, Advances in Neural Information Process-
ing Systems (NIPS), 2015

	Front matter
	Summary
	Samenvatting

	Content chapters
	Introduction
	Robots that learn
	This thesis

	Deep Reinforcement Learning
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning

	Experience buffer contents
	Introduction
	Motivating example
	Related work
	Experimental Benchmarks
	Performance Measures
	Main Contribution: Analysis of Experience utility
	Summary

	Experience selection
	Introduction
	Preliminaries
	Experience Selection Strategy Notation
	The Limitations of a Single Proxy
	Main Contribution: New Experience-Selection Strategies
	Experience Selection Results
	Conclusions and Recommendations

	State Representation Learning
	Introduction
	Learning Objectives
	Main Contribution: Integration Methods
	Experiments
	Results
	Conclusions

	Beyond Gradient-Based Optimization
	Introduction
	Related work
	Main Contribution: Optimization Method
	Experiments
	Conclusion and future work

	Back matter
	Conclusions
	Conclusions
	Discussion and Outlook

	Appendix Benchmarks
	2-link robot arm
	Pendulum and Magman simulations
	CarRacing-v0
	Atari

	Appendix Implementation details
	Physical arm experiments
	Experience buffer experiments (Chapters 3 and 4)
	State representation Learning (Chapter 5)
	Optimization (Chapter 6)

	Appendix Additional results
	Experience buffer experiments (Chapters 3 and 4)
	Optimization (Chapter 6)

	References
	Acknowledgements
	About the author
	List of publications

