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Abstract

Background: Parkinson’s Disease (PD), Essential tremor (ET), and dystonia are movement disorders
often misdiagnosed as one another and commonly present tremor as one of their motor symptoms. Although
similar tremor behaviors between the mentioned disorders lead to substantial misdiagnosis rates and,
consequently, subpar care, tremorous signal acquired via wearable sensors can be used to discriminate between
PD, ET, and dystonia patients. This study aims to develop three proofs-of-concept, accelerometer-based
diagnostic assistance algorithms.

Methods: Hand and arm accelerometer data of eleven dystonia, ten ET, and seven PD patients, measured
during the performance of standard clinical tremor evaluation motor tasks, is used to model three binary tremor
classification pipelines. Principal Component Analysis reduces the dimensionality of the data of each sensor. A
power spectral density-based tremor detection method (developed in a previously published study) identifies
tremor and non-tremor windows from the time-series data. The windows are used as data sources for feature
extraction. A feature matrix consisting of time and frequency-domain predictors is supplied to model-building
pipelines to predict the probability of the patients belonging to each possible class. A nested cross-validation
scheme selects and evaluates their performance. Logistic regression, Balanced Random Forest, and a voting
ensemble of the two are used as classifiers. The pipeline that yields the lowest Brier score for each classification
scenario is selected to develop the final pipeline.

Results: The Balanced Random Forest pipeline outperformed the other pipelines in all classification scenarios
(PD x no-PD, ET x no-ET, and DT x no-DT). For the PD x no-PD case, a Brier score of 0.188 (0.128) and
ROC-AUC of 0.84 were obtained. For an optimal decision threshold of 42% to classify a patient as PD, the
pipeline achieved an accuracy of 75%, specificity of 67%, and sensitivity of 100%. A label permutation test
(n=1000) was performed to assess the final pipeline’s score significance for each classification case. Only the
PD x no-PD presented a p-value < 0.05. The features extracted from rest, postural, and kinetic motor tasks had
the largest influence on the classifier’s predictions.

Conclusions: Based on hand and arm accelerometer measurements, PD patients are more easily differentiated
from other pathological tremor patients than ET and DT patients. The promising results achieved by the proof-of-
principle pipeline encourages further development of assistive diagnostic technologies in clinical practice.
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1. Introduction
Misdiagnosis of the three most common movement disorders,
Essential tremor (ET), Parkinson’s disease (PD), and dystonia,
is a recurrent problem that leads to sub-optimal treatment
and incorrect prognosis of millions of patients worldwide [1],
[2]. Moreover, misclassification of the correct disorder may
negatively affect the inclusion of the proper patients in clinical
trials. Tremor, an involuntary and oscillatory movement, is a
common symptom of these disorders, and its similar clinical
presentation among patients often is a misleading factor for
medical doctors in charge of their diagnoses [1]. However,
tremor can also be used as a source of information that helps
to discriminate between ET, PD, and dystonia.

There are no gold standard diagnostic tests for ET and dys-
tonia, and current diagnostic procedures are based on clinical
criteria and on the patients’ medical records [3], [4]. Rates of
misdiagnosis between 30 and 50% of ET patients have been
reported, where dystonia and PD are the most common missed
diagnoses [2], [5]. Additionally, up to 50% of dystonia cases
are misdiagnosed/under-diagnosed at their first encounter [3].
Misdiagnosis rates up to 34% are reported for PD [6]. Fur-
thermore, PD patients presenting tremors are more likely to
be misclassified, especially if the diagnosis is made by a non-
specialist neurologist [7]. Neuroimaging techniques are also
available as Parkinson’s disease diagnostic tools. Neverthe-
less, their adoption in clinical practice is debatable because,
as in the case of DaTSCAN imaging, the diagnostic accuracy
may be similar to the accuracy of a clinical diagnosis [8],
with the drawbacks of being more invasive procedures and
requiring high implementation costs [8], [9].

During clinical evaluation, it is common practice for doc-
tors to assess tremor visually by asking ET, PD, and dystonic
tremor (DT) patients to perform several standard motor tasks,
as tremors are expected under specific circumstances, such
as during rest, postural, and kinetic motor tasks, depending
on the patient’s diagnosis [10], [11]. The subjective nature
of the current tremor assessment procedure adds uncertainty
to the clinical evaluation of tremor [12]. An even more chal-
lenging diagnostic situation concerns the evaluation of the
disorders when non-motor symptoms are absent, as is the case
for early-stage Parkinson’s disease [13].

Studies focusing on differentiating movement disorders
from analysis of electromyography (EMG) and motion sen-
sors data (e.g., accelerometers and gyroscopes) acquired dur-
ing the performance of tremor evaluation motor tasks have
been reported, presenting promising results [14]–[17]. These

diagnostic approaches rely on the differentiation between the
disorders based on several tremor features (e.g., amplitude and
dominant frequency) extracted from the sensor measurements.

Nonetheless, key points are missing in current research:
first, there is no validated demonstration of how tremor is con-
firmed in the sensors’ recordings. As shown in [18], motion
parameters calculated based on tremorless data differ signifi-
cantly from those derived from tremorous data. Second, most
of the previous works cover only the differentiation between
essential and parkinsonian tremor patients, excluding people
who suffer from DT, which consists of a representative portion
of the misdiagnosed cases of ET and PD. Additionally, there
is a need for studies involving probabilistic machine-learning
for healthcare [19]. Probabilistic outputs from diagnostic
models enable assessing the uncertainty associated with the
predictions, which is particularly beneficial to assist medical
doctors with decision-making in diagnostic scenarios.

To tackle the issue of tremor detection, Luft et al. [18],
in 2019, proposed a power spectral density-based method to
detect tremor windows (TW) and non-tremor windows (NTW)
from accelerometer and EMG data recorded during the perfor-
mance of clinical tremor evaluation tasks. A tremor window
detection accuracy of 90% was achieved when only the accel-
eration information was used. The reporting of probabilistic
outputs from diagnostic models was addressed by Ghassemi
et al. [14] for the differentiation between ET and PD patients.
However, the authors classification accuracy as the evaluation
metric, which does not measure the quality of probabilistic
predictions.

The present work aims to develop and evaluate three
proofs-of-concept machine-learning pipelines able to differen-
tiate between the three possible binary classification cases of
PD, ET, and DT patients from accelerometer measurements
when performing standard clinical evaluation motor tasks
(rest, postural, kinetic, distraction, and entrainment tasks).
The tremor detection technique developed by Luft et al. [18]
will split the accelerometer data into TW and NTW for fur-
ther feature extraction. The models will provide as output the
probability of the patients belonging to each possible class.
The assessment of their performance will be based on the
Brier score; a strictly proper scoring rule. A scoring rule is
considered proper if it is minimized as the probabilistic pre-
dictions of a classifier, instead of its binary outputs, approach
the true probability outcome of the event being predicted. It
is considered strictly proper if the minimum is unique [20].
Additionally, the area under the Receiver Operating Character-
istic (ROC) curve, along with the ROC plot, will be assessed
for supplementary information about the models’ quality. The
ROC curve, recurrently used to assess the performance of clin-
ical tests, demonstrates the classifiers’ ability to differentiate
between the classes for different values of false positive (FP)
and false-negative (FN) rates [21].

Regarding model selection and evaluation, a nested cross-
validation (CV) scheme will be performed. The inner-loop
cross-validation will host the search for the best set of features,
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classifier hyperparameters, and data transformations, while
the outer-loop procedures will assess the model generalization
performance. This scheme assures that the reported gener-
alization performance of a model is not assessed against the
same test set used for selecting the best model, i.e., classifier
with final sets of hyperparameters, data transformations, and
features. It is important to state that if some procedures on
data, such as feature selection, a common step in classification
modeling pipelines, are done before the split of the dataset into
training and test sets, the estimated performance metrics of the
classifier are likely to be overoptimistic due to data leakage,
i.e., the unintended use of information of data from the test
set to during model training. This has been reported as one of
the most common issues in developing and reporting machine
learning models in biomedical research [22]. This work will
use Imblearn pipelines [23] to streamline the different proce-
dures on the data and the classifiers to be tested. ScikitLearn
library [24] provided most of the remaining machine-learning
tools (see appendix A).

In the end, three final pipelines, one for each classification
case, will be defined following the respective model-building
strategy considered as best for each case. The statistical signif-
icance of their performance is checked through a permutation
test.

Medical doctors could benefit from extra assistance when
diagnosing tremor patients, primarily for unclear cases, and
when the professionals work in a non-ideal resource setting
and are non-neurologists or non-movement disorder experts.
In addition, improvements in the correct inclusion of pa-
tients in clinical trials can be envisioned with such technology.
Therefore, the main research questions to be answered at the
end of this study are:

1. How reliably can essential, parkinsonian, and dystonic
tremor patients be differentiated from each other based
on accelerometer measurements?

2. What motor tasks are the most discriminative for the
included tremor patients?

Regarding the first question, we expect our methodology
to yield superior results for the PD x no-PD classification sce-
nario, following what is most common in clinical practice. As
discussed in [5], most misdiagnosed ET patients have dystonia
assigned as their movement disorder. Therefore, differenti-
ating between ET and DT should be more challenging than
differentiating between PD and ET/DT. In what concerns the
second research question, we foresee that tremor information
retrieved during distraction motor tasks, in conjunction with
rest, postural, and kinetic tasks, will assist in classifying the
types of tremor. As discussed in [25], attention level affects
tremor in PD patients, in contrast to what has been found for
ET patients [26]. Entrainment tasks, however, are usually
helpful for the differentiation between Psychogenic tremor
and PD, ET, and DT [27]. Thus, these tasks are not expected
to provide highly discriminative tremor information.

2. Materials and Methods
2.1 TIM-Tremor dataset
The classification experiments are conducted using the Tech-
nology in Motion Tremor (TIM-Tremor) dataset [28]. It aims
to develop and implement motor function evaluation technolo-
gies in clinical practice, both in diagnosis and treatment.

The dataset contains videos and accelerometer measure-
ments of tremor patients recruited from the LUMC Depart-
ment of Clinical Neurophysiology outpatient clinic, perform-
ing up to 21 standard tremor clinical evaluation motor tasks,
along with comma-separated values file with tremor severity
scores and diagnosis for each study participant. The study ex-
perimenter assessed tremor intensity, and it followed the Bain
and Findley clinical rating scale (Bain et al., 1993), ranging
from 0 to 10 (0: no tremor, 1-3: mild tremor, 4-6: moderate
tremor, 7-9: severe tremor, 10: very severe tremor). Two
scores were given for each patient, one for each arm. No
task-specific tremor scores are present in the dataset.

A neurologist, specialist in movement disorders, gave
the diagnostic labels for each patient, taking into account
the available medical information (e.g., history, anamnesis,
neurological examination, MRI or DAT scans) and the tremor
severity results provided by the study experimenter. The
diagnostic labels are no (convincing), parkinsonian, essential,
dystonic, and functional tremor. The neurologists provided
additional comments about the diagnosis of patients with the
label other. Some examples include patients diagnosed with
myoclonus.

Patient inclusion
Patients with neurological disorders were recruited between
May 2016 and October 2017. The authors included patients
aged 18 years or older, with command of the Dutch language,
who (according to their medical records) have had a hand
or arm tremor assessment appointment. Patients unable to
perform the motor tasks, either by physical or cognitive and
communicative limitations, were excluded. Of all initially
recruited 90 patients, 61 agreed to participate in the study,
with a final amount of 55 included in the dataset. All patients
gave prior informed consent according to the Declaration
of Helsinki. The LUMC committee approved the study’s
protocol.

The patient inclusion flowchart is shown in Figure 1. From
the 47 patients with sufficient data for diagnosis (according
to the study neurologists), those with essential, parkinsonian,
or dystonic tremors (28) were selected to develop the present
work further.

Data acquisition
During several standard clinical tremor evaluation tasks, par-
ticipants remained seated on a chair upright with their feet
supported on the ground. Two tri-axial ACL300 accelerome-
ters (Biometrics Ltd, Newport, UK) were taped to the forearm
and to the back of the patient’s hand most affected by tremors
(approximately 6 cm proximal and distal to the wrist joint,
respectively). The positioning of the sensors followed: z-axis
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Figure 1. Patient inclusion flowchart and diagnostic distribution. The final selection set corresponds to the patients’ data used
for the development of the pipelines. The additional analysis set will be used to evaluate patients with inconclusive diagnoses.

normal to the skin surface, and the y-axis pointing towards the
fingers. The devices have a range of +- 10g, each one with a
mass of 10 grams, sensitivity of 100mV/g, and they measured
acceleration at a 1000Hz sampling rate.

The sensors were positioned on the patients at the begin-
ning of the recording and not removed until all clinical motor
tasks were realized. The recordings took place in one go per
patient without any breaks. All data was saved in the same
folder for all the tasks performed. The data was then manually
segmented into the different tasks’ measurements. The record-
ing duration of some motor tasks was not consistent among
all patients; however, most of them took approximately 30s.

Motor tasks
Depending on the diagnostic, some patients may not dis-
play tremors for specific motor tasks and display significant
tremors for others: e.g., a patient could not show tremors at
rest but has a postural tremor when sustaining his/her arms
in front of the chest. Therefore, the patient’s performance
of various motor tasks is required for the standard clinical
evaluation of tremors.

The TIM-Tremor dataset contains measurements from
rest, posture, action, distraction, and entrainment tasks, as
they cover distinct situations on which different pathological
tremors are elucidated, thus being good candidates to provide
meaningful tremor information. A detailed description of the
performed tasks is presented in appendix B. It is important
to state that not every patient performed all motor tasks. Fig-
ure 2 presents the distribution of the available accelerometer
recordings among the tasks.

2.2 Methodology
A three-blocks methodology was adopted in the present work:
data preparation, model-building pipeline, and model selec-
tion and evaluation. It follows the simplified schematic dia-
gram depicted in Figure 3. The Python programming language
(Python Software Foundation, https://www.python.org/), along
with standard Python libraries (described in appendix A), was
used for the entirety of the methodology.

In the present work, three classification scenarios are as-

Figure 2. Available data in TIM-Tremor dataset. Varying
amounts of patients recorded each motor task.

sessed in a one-vs-all approach: PD x no-PD, ET x no-ET,
and DT x no-DT. Table 1 depicts the classes distribution in all
three cases.

Table 1. Three binary classification scenarios and classes
distribution.

Scenario Class distribution

PD x no-PD 7 PD — 21 no-PD
ET x no-ET 10 ET — 18 no-ET
DT x no-DT 11 PD — 17 no-DT

The procedures adopted in each one of the blocks of the
diagram shown in detail in Figures 4, 5, and 6, are now inves-
tigated.

Data preparation
We refer to data preparation as the processing and extraction
of motion features from the two accelerometers placed on
the participants that could discriminate between parkinsonian,
essential, and dystonic tremor patients. Raw accelerometer
recordings from the 28 patients performing the selected set of
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Figure 3. Simplified diagram of the presented three-blocks methodology.

Figure 4. Data preparation diagram. Two accelerometers on the patients’ hand and arm retrieve motion signals. Principal
Component Analysis (PCA) reduces the dimensionality of the data. A band-pass filter removes voluntary movement and
frequency content outside the pathological tremor range. The signal is windowed and passed to the power spectral
density-based tremor detection algorithm. Lastly, features in the time and frequency domain are extracted, and a feature matrix
is formed. It will be the input for the machine-learning algorithms.

motor tasks were used as input to the data preparation block,
which consists of the following steps:

1. Principal Component Analysis (PCA): the first and sec-
ond principal components from each 3D accelerometer
data were extracted. This step reduces the dimension-
ality of the data while maintaining components that
explain the signal variance. Besides removing noise,
PCA prevents redundant information since the readings
from the three sensor axes are expected to be highly
correlated. The extraction of the dominant tremor axis
(first principal component) through PCA is a required
step in the tremor detection technique developed by
Luft et al. [18]. The present work includes the second
principal component of the signal to avoid discarding
potential tremorous information during the tremor de-
tection step.

2. Filtering: hand and arm accelerometer data were band-

pass filtered (non-causal, zero-phase, 3–12 Hz, 2nd-
order Butterworth filter). This frequency band covers
most of the range of parkinsonian, essential, and dys-
tonic tremors [29] and is suitable to exclude voluntary
movement and physiological tremor information from
the signal [30].

3. Windowing: data was split into 3s windows with 1.5s
overlap, as in [18], and zero padding. The analysis
of overlapping windows decreases the chance of the
tremor detection algorithm to miss tremorous periods.

4. Tremor detection: following [18], each window was
classified either as a tremor window (TW) or a non-
tremor window (NTW). The classification relies on the
power distribution within the tremor frequency band
of the signal, acquired via the signal’s power spectral
density (PSD). In our case, a window is considered as
TW if the power within the frequency band of dominant
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Figure 5. Model selection and evaluation via nested cross-validation. The outer-loop evaluates the generalization performance
of pipelines, and the inner-loop select the best settings. After the pipeline with the lowest Brier score is identified, a final
pipeline is built based on the distribution of the inner-loop results. A permutation test(n=1000) assesses the significance of the
scores of the final pipeline.

frequency +- 0.5Hz represents 60% or more than the
power within the 3 - 12 Hz band (see appendix C).
In Luft et al. [18], by using a threshold of 40%, the
technique incorrectly identified TW in healthy controls,
both in the training and validation sets. The values
of 45% and 50% were only tried in the training set.
Therefore, a restrictive value of 60% was chosen to
minimize the false positive rate of TW classification for
the PD, ET, and DT patients.

5. Feature extraction: The presence of tremor can be task-
dependent. Therefore, the strategy used for feature
extraction in the time and frequency domain was as fol-
lows for each patient: if the presence of at least two TW
was confirmed for the acceleration signal under anal-
ysis, the patient features were calculated as the mean
of the values found for each TW. If less than two TW
were detected, the features were computed as the mean
of the values found for each NTW. As explained in
2.1, the patients’ measurements were manually split
into the corresponding motor tasks. Thus, the choice
of two TW as a minimum to acknowledge tremor in
a given motor task signal was employed to avoid pos-
sible tremorous motion recorded during the transition
between tasks. The averaging of the values found in
TWs to represent the final features is similar to what
was done by Talitckii et al. [17]. The authors, however,
used a different strategy to identify useful motion data
(in our case, TWs) from the entire signal.

We attempted to extract features covering different sig-
nal aspects, such as its linear and nonlinear autocorre-
lation, temporal statistics, complexity, and frequency
content. Features used in machine-learning studies not
related to tremor but with reported discriminative power

across different datasets were also included [31]. The
extracted predictors were divided into two groups: nu-
meric and categorical. The numeric group was further
subdivided into time and frequency-domain-based fea-
tures. Table 2 summarizes the predictors used in this
work.

The output of the data preparation step, and input to the
model-building pipelines, is a feature matrix consisting
of 16 (tasks) * 12 (features) * 2 (sensors) * 2 (PCA
components) = 268 features and 28 observations.

Model-building pipelines
Besides automating routine processes, the use of pipelines
for modeling also prevents most cases of data leakage [33].
Each step of the pipeline fits to and transforms the training
data; and transforms the test data based on the information
retrieved during its fitting step. Therefore, the chances of the
model-building process accidentally leak information from
the test set is reduced.

The built pipelines consist of steps to select features to be
used as input to the classifier; impute, scale, and encode the
features; and the classifier itself. The steps of the pipelines
varied according to the classifier to be integrated into it. The
schematic diagram shown in Figure 6 shows the overall pro-
cedure to build the models. The steps of the pipelines are now
described.

• Feature selection: a custom transformer extracts sub-
sets of features from the feature matrix and passes them
down the pipeline. These subsets are defined accord-
ing to the user and correspond to the desired groups
of motor tasks to be evaluated. The feature selection
step of the model-building pipeline served to determine
which group of motor tasks were considered by the
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Figure 6. Model-building pipelines. The pipelines contain a custom feature selector transformer that selects subsets of the
entire feature matrix to be passed down the pipeline. Predictors are divided into numerical and categorical, and appropriate data
transformations are applied. The last step of the pipeline is feeding the transformed data to the classifiers to train and then
predict on hold-out test folds. The grid-search CV is responsible for varying the combinations of features, scaling, and
imputation methods. The transformers presented are available in the Scikit-learn library [24].

models as the most discriminative between essential,
parkinsonian, and dystonic tremors.

• Column transformer: this transformer splits the features
into numerical and categorical. It was a required step
since appropriate modeling techniques depend on the
feature data type. In our case, the features presence of
tremor from the included tasks were grouped together,
forming the categorical features. The remaining contin-
uous features formed the numerical group.

Feature Imputation: some patients were missing val-
ues for the features of the tasks in which they did not
participate. Two widely used imputation strategies are
considered for the numerical predictors: to replace the
missing values by the mean or by the median of the
other patient’s respective features [34]. The imputed
category was ’no tremor’ for the categorical ones (i.e.,
presence of tremor).

Feature scaling: two scaling methods are attempted:
standardization of the predictors by removing their
mean and scaling to unit variance; and a method ro-
bust to outliers that removes the median of the variables
and scales the data according to the interquartile range.
Scaling features is required to improve performance
for many machine learning algorithms, especially those
based on distance measures, such as Euclidean distance.
Tree-based algorithms, on the other hand, can use non-
scaled input data without a decrease in performance.
The choice of an adequate scaling method depends on
the distribution of the features among the patients (e.g.,
Gaussian) and the presence of outliers. Since we are

blind to the statistical information of the features to
prevent data leakage, both methods were attempted.

Feature encoding: many machine learning algorithms
require only numerical values as input. A categorical
feature encoder assigned integer values for each unique
category value. The values of ’1’ and ’0’ were used to
represent the presence and absence of tremor during the
motor tasks, respectively.

• Classifiers: one linear and one non-linear classifiers
commonly used in scientific fields are evaluated [35].
In addition, a voting ensemble (ENS) of both classifiers
is assessed. The linear algorithm is the Logistic Regres-
sion (LR); the non-linear is the Random Forest with an
under-sampling implementation or Balanced Random
Forest (BRF) [23]. The BRF was chosen rather than
the regular RF due to its built-in strategy to account for
class imbalance during training.

Six groups of features (see Table 3) from the feature matrix
were created. The sets are extracted based on the type of motor
task the patients perform to cover the range of rest and action
(postural and kinetic) tremors. A baseline set consisting of
the tasks rest, hands in pronation, and top nose is considered,
along with variations of it, by adding or subtracting features
from the set. The baseline set was defined based on tasks used
in previous tremor studies [11], [18], [36]. It is also considered
the use of the entire feature matrix, with information from all
motor tasks.

The choice of features to represent each category was
made firstly by the availability of data. In case of a tie, the
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Table 2. Features extracted from the time signals and the corresponding description.

Feature Description

Numerical - Time-domain
Root Mean Square (RMS) Measure of the signal’s strength
CID Time-series complexity measure [32]
Tremor Stability Index (TSI) Neurophysiological measure [15]
CO FirstMin ac First minimum of the autocorrelation function [31]
CO trev 1 num Time-reversibility statistic [31]
SB BinaryStats mean longstretch1 Longest period of consecutive values above the mean [31]
Skewness Standard statistical measure
Kurtosis Standard statistical measure

Numerical - Frequency-domain
Dominant frequency Frequency with max power from the signal’s power-spectral

density
Relative tremor power Power within the frequency band of dominant frequency +-

0.5Hz
Total tremor power Power within the considered tremor frequency band (3 - 12Hz)

Categorical
Presence of tremor Tremor is considered present if two tremor windows are found

in a given patient measurement

selection was randomized. The reasons for not including a
greater range of feature groups were two: first, it was as-
sumed that features from the same group retrieve redundant
information about tremor. Second, a grid-search algorithm
(explained in the next topic below) takes these sets of fea-
tures and different data transformations methods as input to
find the best-performing models. A great variability in the
search space increases the computational time, and aligned
with small sample size, may result in models with subpar
generalization performance for unseen data [37].

Model selection and evaluation
A nested cross-validation (CV) procedure (see Figure 5) per-
forms the steps of model selection and evaluation. In nested
CV, the outer loop evaluates the model performance, and the
inner loop is used for model selection. This method ensures
that no data used for model selection is also used to assess
its performance. It is similar to what was done by Lee et al.
[38], where such steps were taken to prevent overfitting of the
model and to provide an honest estimation of its generaliza-
tion performance. In contrast to what was done in [38], the
present work does not use a leave-one-out cross-validation
procedure (LOOCV) in the model selection loop. This was
done to prevent the optimization of the pipeline variables
based on a single data sample.

• Model evaluation: LOOCV assesses the performance
of the proposed model-building pipelines. LOOCV is a
suitable evaluation method for small datasets [38]. It is
the cross-validation procedure that provides the largest
amount of training data. Each one of the observations
(28 patients) is used once as the test set to estimate
the performance of the different models trained in the

correspondent inner training folds. The results for the
outer folds of the LOOCV are averaged to obtain the
final performance metric of the pipeline. Notice that
the predictions of the samples left out, one at a time, are
done by different models built using the same pipeline
steps.

• Model selection: a repeated stratified K-fold CV, in a
5x3 configuration (i.e., K=3, five repetitions), is used
to evaluate the different models built in the inner folds.
Two-thirds of the available data in the inner folds of
the LOOCV scheme (18 samples) are used to train the
inner models, and a third (9 samples) is used for testing
(K=3). The choice of K is a trade-off between available
data for training and testing. Stratification of the data
is done based on the class label of the samples, i.e.,
the inner training and test sets seek to keep the same
proportion of observations from positive and negative
classes. Larger values of K were discarded to do not
severely restrict the size of the test sets. For each inner
fold, the cross-validation procedure is repeated five
times with different partitioning of the data. For each
classification scenario (PD x no-PD, ET x no-ET, DT x
no-DT), the positive class corresponds to the minority
class: PD, ET, and DT, respectively.

• Grid search cross-validation: a cross-validated grid
search performs an exhaustive search for the set of
features, imputation and scaling methods, and classifier
hyperparameters (see appendix D) that yield the best
performance. The search is done using each one of
the LOOCV training folds, with the cross-validation
scheme defined for model selection. In the present



Machine-learning pipelines for classification of pathological tremor patients: a proof-of-concept — 9/27

work, we have 5x3 scores for each one of these folds.
Therefore, the grid-search CV calculates the mean Brier
score across these 15 scores for each possible combina-
tion of hyperparameters, data transformation methods,
and feature sets. The combinations that result in the
lowest Brier score for each inner fold are stored.

• Final pipeline: once the best performing pipeline (with
LR, BRF, or ENS as classifier) is defined, the most fre-
quently selected hyperparameters, data transformation
methods, and feature sets in the model selection folds
(28) are used in the training of the final estimator.

• Analysis: lastly, the final estimator’s cross-validation
scores are tested for significance by permuting the la-
bels (1000 times), and the empirical p-value is calcu-
lated against the null hypothesis that features and tremor
classes are independent.

• Scoring rule: the strictly proper scoring rule Brier score
(1)

1
N

N

∑
t=1

( ft −ot)
2, (1)

assesses the quality of each model-building pipeline,
both in the outer and inner-loops. It measures the accu-
racy of probabilistic predictions, and it is defined as the
mean squared error between the predictions and their
corresponding true probabilities (100 or 0%), where N
is the number of events, and ft and ot are the predicted
probability and the true outcome of the tth event, re-
spectively. A perfect Brier score is 0, and the worst
possible score is 1. In a binary classification context, a
classifier that always predicts 50% ( ft = 0.5) for both
classes achieves a Brier score of 0.25. The final score
for each pipeline is the mean of the scores obtained
from using the predictions for each patient (LOOCV)
and the true labels, as done in [38]. The predict proba
method of each classifier instance estimated the class
probabilities, as in [3], [14].

• Supplementary score: the area under the receiver op-
erating characteristic curve (ROC AUC) is calculated
for each one of the model pipelines. It is a common
score used to assess the overall accuracy of diagnostic
tests [39]. The ROC curve is a plot of the true positive
rate (TPR) in function of the false positive rate (FPR)
for different decision thresholds used to discriminate
between the classes, providing information about the
ability of the assessed classifier to correctly rank its
predictions [40]. In the present work, for all the classi-
fication cases, the correct prediction of both classes is
considered equally important.

Table 3. Groups of features based on the performed
motor-tasks.

Group ID Tasks included

Group 1 rest, pro, nose
Group 2 rest, pro
Group 3 pro, nose
Group 4 rest, pro, nose, tapping
Group 5 rest, pro, nose, higher
Group 6 All motor tasks

3. Results
This section is divided into two parts: main results and addi-
tional analysis. The main results correspond to the ones ob-
tained following the proposed methodology (section 2). The
additional analysis presents the class probabilities assigned
by the final pipeline for patients in TIM-Tremor dataset that
were labeled as not presenting convincing tremor (NCT) or as
possible ET (PET).

3.1 Main results
Brier score and ROC-AUC
The pipelines with BRF as the classifier outperformed the
other pipelines relying on LR or ENS for all classification
scenarios. The Brier score and ROC-AUC obtained by the
BRF pipelines for each scenario is shown in Table 4, along
with the best set of motor tasks, imputation method, and
hyperparameters that yielded the best performances. The
results for the remaining pipelines are found in appendix E.
The ROC curves for all pipelines (including a hypothetical
model with no skill) are presented in Figure 7.

Permutation test
A final pipeline was defined for each classification scenario
based on the most selected hyperparameters, imputation method,
and motor tasks from the inner-folds of the model-evaluation
procedure (see section 2.2). The significances of the scores
obtained by the final pipelines in a LOOCV procedure are
presented in Figure 10.

Selection of motor tasks, hyperparameters, and data trans-
formations
Figure 8 presents the distribution (aggregate of inner-folds
selections) of the selected classifier hyperparameters, motor
tasks, and data transformations for the PD x no-PD classi-
fication scenario and the BRF pipeline. The distribution of
selected motor tasks by all three pipelines in the PD x no-PD
case is shown in Figure 9. It is clearly observed the consistent
selection of the Group 1 for all pipelines, especially for the
BRF. The settings’ distributions for the remaining classifica-
tion scenarios are shown in appendix E.

Predicted probabilities
As discussed in section 1, the reporting of class probabilities
for patients is essential in a decision-making setting. Thus,
Table 5 depicts the predicted probabilities assigned for each
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patient by the model-building procedure with BRF as the
classifier for the PD x no-PD scenario. However, if binary
labels are desired, a threshold needs to be defined to map the
predicted probabilities to binary classes. An optimal threshold
that balances TPR and FPR can be found by maximizing
the geometric mean of sensitivity and specificity, which is
defined as the square root of the product between sensitivity
and specificity [41]. In our case, 42% was found to be the
optimal threshold that should be used to classify a patient
as having PD. For this threshold, the BRF pipeline yields an
accuracy of 75% (21 out of 28 correctly classified patients),
sensitivity of 100%, and specificity of 67%. If the threshold is
set to 50%, the BRF pipeline achieves an accuracy, sensitivity,
and specificity of 71%.

Table 5. Predicted class probabilities of the 28 patients by the
BRF pipeline - PD x no-PD.

Patient ID Diagnosis Predicted Probability (%)
PD NoPD

T002 no-PD 41 59
T004 PD 62 38
T005 no-PD 33 67
T006 no-PD 60 40
T008 no-PD 68 32
T010 no-PD 54 46
T012 PD 60 40
T013 PD 48 52
T014 PD 42 58
T019 no-PD 39 61
T020 PD 68 32
T022 PD 66 34
T023 no-PD 48 52
T024 PD 74 26
T026 no-PD 29 71
T027 no-PD 17 83
T028 no-PD 30 70
T029 no-PD 35 65
T030 no-PD 35 65
T031 no-PD 35 65
T032 no-PD 75 25
T036 no-PD 36 64
T039 no-PD 28 72
T042 no-PD 57 43
T045 no-PD 22 78
T046 no-PD 57 43
T050 no-PD 33 67
T052 no-PD 39 61

3.2 Additional analysis
Predicted probabilities for inconclusive diagnoses
Data from seven patients in the TIM-Tremor dataset consid-
ered as with no (convincing) tremor (NCT) or with a diagnosis
of possible ET (PET) were used as input to the PD x no-PD

final pipeline which used the initial 28 patients’ data for train-
ing. The predicted probabilities assigned by the model are
shown in Table 6.

Table 6. Predicted class probabilities of inconclusive patients
by the BRF pipeline - PD x no-PD

Patient ID Diagnosis Predicted Probability (%)
PD NoPD

T001 NCT 36 64
T003 NCT 74 26
T007 NCT 41 59
T025 NCT 33 67
T049 NCT 37 63
T021 PET 44 56
T038 PET 45 55

4. Discussion
4.1 Main results
Brier score and ROC-AUC
For all three diagnostic scenarios, at least one pipeline per-
formed better than a hypothetical classifier that assigns 50%
of chance for both positive and negative classes (Brier score
= 0.25). As displayed in Figure 7, the pipelines with a linear
classifier (LR) achieved the lowest scores among all scenarios,
while the ones with a non-linear classifier (BRF) obtained the
best results. The pipelines with a voting ensemble classifier
performed better than random in the PD x no-PD and ET x
no-ET case. These results suggest that the classes are not
linearly separable by using the presented methodology.

The evaluation scores for the PD x no-PD scenario were
significantly higher than the ones corresponding to the remain-
ing scenarios, confirming our expectations. A possible reason
for the subpar performance in the remaining classification
scenarios could be because dystonia is the most frequent dif-
ferential diagnosis of ET [5]. Therefore, the classifiers could
have simply not found the underlying structure in the data
delineating between ET and DT. On top of that, the use of only
accelerometers to record tremor motion restricts the acquisi-
tion of tremor information. As discussed in [10], [11], tremor
disorders may differ from each other based on tremor direc-
tionality. For instance, the study of Sternberg et al. [11] sug-
gests that ET patients manifest more wrist flexion-extension
tremor than PD patients during sustained arm extension (task
pro in the present work). Thus, the additional measurements
of angular rate with an inertial measurement unit (IMU), for
instance, could increase the performance of tremor classifi-
cation models. Other possibilities include a potential lack of
discriminative power of the features and motor tasks used as
inputs to the pipelines, and an eventual mislabeling of some
ET and DT patients in the TIM-Tremor dataset, either during
data collection or due to diagnostic error.

Regarding PD x no-PD, it is interesting to notice that al-
though the pipeline with BRF as classifier achieved the highest
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Table 4. Pipelines’ results. The Brier score and ROC-AUC represents the estimated generalization performance. The
bottom-four rows are the selected parameters to build the final pipeline. These parameters were chosen based on the inner-fold
results of the model-selection grid-search procedure.

Results PD x no-PD ET x no-ET DT x no-DT

Brier score 0.188 (0.128) 0.235 (0.156) 0.230 (0.061)
ROC-AUC 0.84 0.70 0.69

Best set of motor tasks Group 1 Group 4 Group 6
Imputation method mean mean median
min samples split 4 4 2
min samples leaf 1 1 1

Figure 7. Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) score for all pipelines, for each
classification case.

Figure 8. Distribution of selected parameters for the BRF -
PD x no-PD. pipeline.

ROC AUC score, ENS performed better in part of the upper-
left region of the ROC plot (Figure 7). This fact suggests that
the linear model predictions contributed positively to some of
the predictions of the BRF. Therefore, for a hypothetical diag-
nostic scenario using the developed models, the ENS-based
pipeline should be considered the best if an operating point in
that region (around 0.3% FPR) is desired.

Considering the ET x no-ET and the DT x no-DT cases, it
is shown that, at some point, the ROC-AUC scores presented
long horizontal lines. It means that even continuously increas-

ing the FPR rate, no additional sample was assigned to the
positive class. Additionally, it can be seen inclined segments
in the plots. This type of phenomenon occurs when there
is a tie, i.e., a region of uncertainty that appears when posi-
tive and negative samples are assigned to the same predicted
probability [42].

Permutation test
The superior performance of the pipelines in classifying PD x
no-PD patients when compared to the other diagnostic scenar-
ios is further evidenced by the results of the permutation tests
10. It is observed that although the BRF pipelines obtained a
Brier score below 0.25 and a ROC-AUC above 0.5 for all di-
agnostic cases (see Figure 4), statistical significance (p-value
< 0.05) of the scores of the final BRF pipelines was only
achieved for PD x no-PD, which was the case that presented
the lowest Brier score.

Predicted probabilities
The report of assigned class probabilities allows patients and
care providers to account for uncertainty in the decision of
treatment plans and follow-up consultations, for instance [19].
It is observed from Table 5 that the predictions are rarely close
to 100% or 0%. The reasons for this behavior, common to
the Random Forest classifier, are explained in [43]. The BRF
pipeline predictions for patients T008 and T032 are particu-
larly interesting. Despite their diagnoses of no-PD and the
discussed predictions behavior of the classifier, significant PD
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Figure 9. Frequency of selection for each group of features, corresponding to different motor tasks. Balanced Random Forest
(BRF), voting ensemble (ENS), and logistic regression (LR) pipelines - PD x no-PD. Note that the scale of the plots are not the
same.

probabilities were assigned to them.
An interesting discussion arises from the adjustment of

the decision threshold used to classify the patients. If the
optimal threshold of 42% for PD prediction is used, instead
of 50%, patients T013, T014 would be correctly classified.

Most discriminative set of motor tasks
Insights about the motor tasks considered by the estimators as
the most important for their outputs will only be drawn from
the PD x no-PD results since it is the case that yielded a final
pipeline that had statistical significance for its performance.

As shown in Figure 9, the Group 1 of motor tasks was
consistently chosen in the model selection loop (5x3 CV) for
all the pipelines. This suggests that the inclusion of other mo-
tor tasks tends to add noisy, redundant, or irrelevant features
to the feature space. For the BRF pipeline, Group 5, which
adds features from the entrainment task 2 Hz higher, was
selected for three out of the 28 leave-one-out cross-validation
folds. Contrary to our expectations, Group 4, which adds
the distraction task tapping, was selected only once. The
same happened for the Group 2, which removes the kinetic
task top nose. These results suggest that for the diagnostic
scenario of PD x no-PD, motor tasks other than the standard
set of rest, posture, and kinetic tasks are not needed for the
differentiation of tremor patients by using the methodology
introduced in this study.

4.2 Additional analysis
Distribution of specific features
A particular interest arises over the patients identified with
tremorous accelerometer measurements according to the tremor
detection technique developed by Luft et al. [18]. Another
point of discussion is the distribution of the neurophysiologi-
cal measure TSI [15] among the patients due to its reported
great performance in the differentiation of PD and ET patients.
As done in Luft et al. [18], a discussion over the variability in
values of TSI calculated based on TW and NTW takes place
in this section. Figure 11 presents scatter plots of the analyzed
features.

Some aspects observed in Figure 11 call our attention:
first, tremor was detected in all PD patients during the rest
task, based on the first principal component of the hand ac-
celerometer signal. The manifestation of rest tremor in PD
patients is a recurrently reported PD symptom [15], [18], [30],
[36]. However, tremor was not detected for all PD patients
when the second principal component was used as input to
the tremor detection method used in the present work. It is
interesting to see that at least two PD patients also presented
tremor during the hands in pronation and top nose tasks. Pos-
tural tremors may occur in PD, but, contrarily, kinetic tremors
are rarely seen in such patients [11].

Concerning the features related to the TSI, it can be seen
that higher TSI values were found for patients who did not
have tremor detected during the performance of all tasks in-
cluded in Figure 11 compared to those that presented tremor.
This is in accordance with what was reported by Luft et al.
[18]: TSI calculated based on NTWs presents higher values
compared to TSI calculated in reliance on TWs.

Predicted probabilities for inconclusive diagnoses
One patient (T003) had a predicted probability of having PD
higher than 50% (Table 6). In agreement with the treating
neurologists’ diagnosis, both PET patients presented a higher
no-PD probability than PD.

An interesting point of discussion arises when the pres-
ence of tremor is assessed for those patients: tremor was
detected in the rest task for two NCT patients (T003 and
T025), and in the top nose task for patient T025 (labeled
as jaw tremor). As previously discussed, the occurrence of
tremors in that task is common in PD. Perhaps that was one
of the reasons for the higher assigned PD class probability for
patient T003 compared to the remaining NCT patients. Figure
12 depicts the scatter plots of the features for the inconclusive
diagnoses cases. The dependence on tremor occurrence for
the low TSI values persisted in this analysis.

4.3 Limitations and recommendations
One limitation of this study is the amount of PD, ET, and
DT patients included in the TIM-Tremor dataset. Additional
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Figure 10. Permutation tests (n=1000) for the final BRF
pipelines trained with fixed settings.

data is required to develop a more generalizable classification
model, as more diverse patient characteristics will be used for
model training.

A more in-depth analysis of the distributions of features
among the patients is required to gain insights into the dif-
ference in performance among the three diagnostic scenarios.
Since we were blinded to the feature distribution during this
work’s development (to avoid data leakage), this prior data
analysis stage was not possible.

On top of that, the present work results are restricted by
the ground-truth labels assigned to each patient. Even though
neurologists specialists in movement disorders performed the
diagnoses of the included patients, misdiagnosis can still oc-
cur. The possibility that some of the attributed labels were
switched for one another during the dataset’s creation cannot
be discarded.

For future works in tremor classification, the use of sensors
able to retrieve angular rate information of the patients is

recommended. Also, the duration of the measurements of
motor tasks should be set the same for all participants.

The adoption of machine-learning techniques in clinical
settings is still in its early stages. More robust models devel-
oped and evaluated based on larger and distinct datasets are re-
quired. Nevertheless, models developed as proofs-of-concept
are the initial step towards integrating novel diagnostic tech-
nologies in the medical field. Future works should focus first
on acquiring quality data that are more representative of the
problem being solved.

5. Conclusion
In this study, linear and non-linear machine-learning pipelines
were developed to predict class probabilities of tremor pa-
tients diagnosed with PD, dystonia, and ET. The presented
methodology showed to be suitable for the differentiation be-
tween PD and ET/DT patients. A set of one rest, one postural,
and one kinetic motor task proved to contain the most dis-
criminative group of features for the PD x no-PD diagnostic
scenario. For an optimal decision threshold of 42% to classify
a patient as PD, the pipeline achieved an accuracy of 75%,
specificity of 67%, and sensitivity of 100%. In agreement with
[18], TSI calculated based on TWs presented lower values
when compared to TSI obtained from NTWs. In addition, pa-
tients labeled as NCT had tremor episodes detected during the
performance of rest and postural motor tasks. Also, the pre-
dicted class probabilities assigned by a final model for patients
labeled as PET conformed with their labels (higher chance
of the no-PD class). The promising results achieved by the
proof-of-principle pipeline encourages further development
of assistive diagnostic technologies in clinical practice.
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Figure 11. Scatter plots of TSI and presence of tremor features. The top three plots correspond to the features obtained from
the first principal component of the hand accelerometer signal. The bottom three refer to the features obtained from the second
principal component. The rest, hands in pronation, and top nose tasks are analysed as they were considered the most
discriminative set of motor tasks. The lower amount of data samples for the top nose task is due to the absence of recordings
for some patients.
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Figure 12. Scatter plots of TSI and presence of tremor features for the inconclusive diagnoses cases. The top three plots
correspond to the features obtained from the first principal component of the hand accelerometer signal. The bottom three refer
to the features obtained from the second principal component. Note that the patient with jaw tremor did not perform the
top nose task.
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A. Python libraries
The Python libraries used in the current study are described in Table 7.

Table 7. Python libraries

Library Version Description

Scikit-learn [24] 0.24.1 Machine-learning tools
Imblearn [23] 0.8.0 Machine-learning tools
Pandas [44] 1.2.4 Data analysis and manipulation

Matplotlib [45] 3.3.4 Data visualization
Seaborn [46] 0.11.1 Data visualization
Numpy [47] 1.20.1 Scientific computing
Scipy [48] 1.6.2 Scientific computing
tsfresh [49] 0.18.0 Time-series features
hctsa [50] — Time-series features

B. Description of motor tasks
Table 8 describes the motor tasks performed by the patients during data collection.

C. Tremor detection
Examples of TW and NTW detected using the method developed by Luft et al. [18] are presented in Figure 13. The detection
does not depend on the intensity of the tremor, but on its power concentration around the peak tremor frequency (peak frequency
+- 0.5Hz).

D. Classifiers’ hyperparameters
The search for the best combination of classifier hyperparameters was performed by the grid-search cross-validation procedure
discussed in section 2.2. According to [37], the variability in the search space should remain low when dealing with small
datasets in order to prevent lack of generalization performance for unseen data. Table 9 shows the hyperparameters that were
varied during grid-search.
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Table 8. Motor tasks and description. Adapted from the TIM-Tremor [28] dataset documentation.

Task Description

Rest
Rest Resting the arms on the chair handles.
Rest in supination Resting the arms on the chair handles, hands in supination

position.

Postural
Hands in pronation Both arms outstretched forward, hands in pronation position.
Top top Both hands in front of the chest with tips of the index fingers

almost touching each other, elbows lifted sideways at approx.
90 degrees angle.

Thumbs up Holding the fingertips in front of each other, with the elbows
lifted at 90 degrees angle.

Weight The affected arm outstretched forward, with a weight attached
to the wrist.

Extra pose Holding a pose proposed by the medical expert to better visual-
ize the tremor.

Action
Top nose Touching the top of the nose with the right/left index finger.
Writing Writing a given sentence.
Spiral Drawing a spiral.
Extra writing Extra writing task with a special pen, or diverging from the

standard writing task.

Distraction
Months backward Naming the months backwards, with the most affected arm

outstretched forward.
Counting Counting backwards from 100 in steps of 7, with the most

affected arm outstretched forward.
Finger tapping Tapping using the index and thumb of the contralateral hand.
Playing piano Moving the thumb of the contralateral hand across all fingers

from the index to the pinky finger, and back.
Following Following a moving pointer, with the index finger of the con-

tralateral hand.

Entrainment
2 Hz higher Tapping with the contralateral hand in the rhythm of a flashing

light, 2 Hz higher than the frequency estimated at rest.
2 Hz lower Tapping with the contralateral hand in the rhythm of a flashing

light, 2 Hz lower than the frequency estimated at rest.
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Figure 13. TW and NTW (and corresponding power spectral density) detected in the band-pass filtered first principal
component of the hand accelerometer signal for the patient T022, during the performance of the rest motor task. The peak
tremor frequency is 4Hz. The colored area represent the region around the tremor frequency.

Balanced Random Forest

• min sample split: determines the minimum number of samples required to slit an internal node of each decision tree in
the BRF.

• min sample leaf: determines the number of samples required to be at a leaf node of each decision tree in the BRF.

Default values of the other hyperparameters were used. All hyperparameters and their explanation can be seen in the
Imblearn library documentation [23].

Logistic regression

• C: it is the inverse of the regularization strength. Smaller values of C implies in stronger regularization. Regularization is
related to lowering the variance of the model (increase in generalization power) by introducing a bias to it.

• penalty: term introduced to the loss function of the model. L1 or L2 regularization.

The solver selected for the LR classifier was the liblinear. The class weight hyperparameter was set as ’balanced’. Default
values were used for the remaining hyperparameters, according to the Scikitlearn library documentation [24].

Voting Ensemble
No hyperparameters were varied for the ENS classifier. The voting strategy selected was ’soft’. The classifier average the
probabilities predicted by the LR and BRF to yield its final prediction. More information can be found in the Scikitlearn library
documentation [24].
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Table 9. Classifiers hyperparameter that are optimized in the inner-loop of the a nested cross-validation procedure.

Classifier Hyperparameter Values

Balanced Random Forest min sample split [2, 4]
Balanced Random Forest min sample leaf [1, 2]

Logistic regression C [0.01, 0.1, 1]
Logistic regression penalty [’l1’, ’l2’]

E. Extra results
This section is divided in three parts: scores, predicted probabilities, and grid-search CV results. The results of all pipelines and
for all classification scenarios are shown.

Scores
The Brier score and ROC-AUC achieved by all pipelines in each one of the classification scenarios are presented in Table 10.
Although the ENS pipeline showed a Brier score lower lower than the BRF pipeline for the PD x no-PD case, the latter reached
a higher ROC-AUC and a lower standard deviation of its Brier score. This suggests that the BRF pipeline has a higher class
discrimination power. In addition, the BRF pipeline presented a higher stability in the selection of the group of motor tasks
during grid-search CV compared to the ENS pipeline, consistently selecting the same group in 23 out of 28 folds, against 18 for
the latter 14. In the other two diagnostic case, the BRF pipeline obtained the same Brier score as the ENS, but with higher
ROC-AUC. Therefore, the BRF pipeline was considered the best for all classification scenarios.

Table 10. Pipelines’ scores. The Brier score and ROC-AUC represents the estimated generalization performance.

Results LR BRF ENS

PD x no-PD
Brier score 0.229 (0.319) 0.188 (0.128) 0.180 (0.195)
ROC-AUC 0.63 0.84 0.81

ET x no-ET
Brier score 0.330 (0.303) 0.235 (0.156) 0.235 (0.156)
ROC-AUC 0.40 0.70 0.58

DT x no-DT
Brier score 0.333 (0.176) 0.230 (0.061) 0.230 (0.061)
ROC-AUC 0.32 0.69 0.36

Predicted probabilities
The assigned probabilities for the positive classes in the PD x no-PD, ET x no-ET, and DT x no-DT scenarios are shown in
tables 11, 12, and 13, respectively. We can note the higher tendency of the LR pipeline in predicting probabilities closer to 100
and 0% than the BRF pipeline, as discussed in [43].

Overall, the DT x no-DT case yielded the lowest scores. It is interesting to note that for this scenario, the LR pipeline
assigned probabilities of 50 or close to 50% for several patients, reassuring the difficulty in differentiating DT and ET patients
[5].

Table 11. Predicted class probabilities of the 28 patients by all pipelines - PD x no-PD.

Patient ID Diagnosis Predicted PD Probability (%)
LR BRF ENS

T002 no-PD 15 41 20
T004 PD 2 62 31
T005 no-PD 73 33 65
T006 no-PD 42 60 59

Continued on next column
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Continued Table 11

Patient ID Diagnosis Predicted PD Probability (%)
LR BRF ENS

T008 no-PD 100 68 80
T010 no-PD 2 54 27
T012 PD 23 60 42
T013 PD 39 48 43
T014 PD 87 42 71
T019 no-PD 19 39 22
T020 PD 58 68 71
T022 PD 38 66 72
T023 no-PD 24 48 51
T024 PD 8 74 30
T026 no-PD 8 29 15
T027 no-PD 2 17 14
T028 no-PD 42 30 38
T029 no-PD 6 35 24
T030 no-PD 37 35 22
T031 no-PD 26 35 21
T032 no-PD 88 75 81
T036 no-PD 10 36 27
T039 no-PD 0 28 15
T042 no-PD 8 57 28
T045 no-PD 0 22 11
T046 no-PD 6 57 26
T050 no-PD 4 33 20
T052 no-PD 16 39 20

Table 12. Predicted class probabilities of the 28 patients by the all pipelines - ET x no-ET.

Patient ID Diagnosis Predicted ET Probability (%)
LR BRF ENS

T002 no-ET 50 38 37
T004 no-ET 68 59 61
T005 ET 20 71 34
T006 ET 4 17 10
T008 ET 0 23 10
T010 no-ET 53 51 64
T012 no-ET 27 41 22
T013 no-ET 41 38 24
T014 no-ET 0 33 21
T019 no-ET 71 66 70
T020 no-ET 42 52 26
T022 no-ET 44 30 45
T023 ET 68 64 66
T024 no-ET 0 30 18
T026 ET 50 73 83
T027 ET 91 66 79
T028 ET 50 68 75
T029 no-ET 53 54 74

Continued on next column
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Continued Table 12

Patient ID Diagnosis Predicted ET Probability (%)
LR BRF ENS

T030 no-ET 49 54 46
T031 no-ET 73 60 76
T032 no-ET 32 39 16
T036 no-ET 49 64 44
T039 no-ET 0 59 57
T042 no-ET 26 29 15
T045 ET 1 48 24
T046 no-ET 25 49 26
T050 ET 14 75 44
T052 ET 16 52 61

Table 13. Predicted class probabilities of the 28 patients by the all pipelines - DT x no-DT.

Patient ID Diagnosis Predicted DT Probability (%)
LR BRF ENS

T002 DT 53 53 66
T004 no-DT 50 38 56
T005 no-DT 50 49 30
T006 no-DT 50 36 38
T008 no-DT 50 44 72
T010 DT 38 45 22
T012 no-DT 50 44 35
T013 no-DT 50 41 32
T014 no-DT 50 56 77
T019 DT 41 48 24
T020 no-DT 50 47 26
T022 no-DT 50 48 37
T023 no-DT 50 49 39
T024 no-DT 50 47 47
T026 no-DT 99 50 66
T027 no-DT 82 51 71
T028 no-DT 50 45 26
T029 DT 19 62 28
T030 DT 50 66 79
T031 DT 50 47 70
T032 DT 21 52 27
T036 DT 50 49 25
T039 DT 50 52 76
T042 DT 49 56 28
T045 no-DT 57 62 37
T046 DT 50 42 26
T050 no-DT 54 51 48
T052 no-DT 57 45 75

Grid-search results
The distribution of the selected motor tasks, data transformation methods, and classifier hyperparameters are depicted in figures
14, 15, and 16 for PD x no-PD, ET x no-ET, and DT x no-DT, respectively.
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Figure 14. Selection distribution of motor tasks, data transformation methods, and hyperparameters - PD x no-PD.
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Figure 15. Selection distribution of motor tasks, data transformation methods, and hyperparameters - ET x no-ET.
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Figure 16. Selection distribution of motor tasks, data transformation methods, and hyperparameters - DT x no-DT.


	Introduction
	Materials and Methods
	TIM-Tremor dataset
	Methodology

	Results
	Main results
	Additional analysis

	Discussion
	Main results
	Additional analysis
	Limitations and recommendations

	Conclusion
	Python libraries
	Description of motor tasks
	Tremor detection
	Classifiers' hyperparameters
	Extra results

