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Machine learning techniques applied for the
detection of nanoparticles on surfaces using
coherent Fourier scatterometry

D. KOLENOV* AND S. F. PEREIRA

Optics Research Group, Imaging Physics Department, Faculty of Applied Sciences, Delft University of
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
*d.kolenov@tudelft.nl

Abstract: We present an efficient machine learning framework for detection and classification
of nanoparticles on surfaces that are detected in the far-field with coherent Fourier scatterometry
(CFS). We study silicon wafers contaminated with spherical polystyrene (PSL) nanoparticles
(with diameters down to λ/8). Starting from the raw data, the proposed framework does the
pre-processing and particle search. Further, the unsupervised clustering algorithms, such as
K-means and DBSCAN, are customized to be used to define the groups of signals that are
attributed to a single scatterer. Finally, the particle count versus particle size histogram is
generated. The challenging cases of the high density of scatterers, noise and drift in the dataset
are treated. We take advantage of the prior information on the size of the scatterers to minimize
the false-detections and as a consequence, provide higher discrimination ability and more accurate
particle counting. Numerical and real experiments are conducted to demonstrate the performance
of the proposed search and cluster-assessment techniques. Our results illustrate that the proposed
algorithm can detect surface contaminants correctly and effectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Much research on detection and localization of deep-subwavelength objects based on optical
scattering has been done, covering a wide range of particle types such as viruses, bacteria, dust
and nanofabricated features [1–4]. Regardless of the various approaches, the physical principle
that underlies these studies remains the same. By analysing the light that is scattered to the far
field after being reflected from a surface containing nanoparticles or other types of contamination,
one tries to get information on the density, size, material of these nanoparticles [5]. In the context
of the semiconductor industry, we can think of unwanted contamination on the silicon wafers in
the nanometer-size scale. This contamination can occur at different stages of the lithography
process, and it is important to check blank or patterned wafer as well as the mask (reticle) itself.
The reticle quality and reticle defects continue to be a top industry risk [6]. To ensure the quality
and high yield in semiconductor manufacturing, contamination due to isolated particles in the
size range of from 20 nm to 1 µm in diameter should be detected and, if possible, localised and
removed.
The main techniques to study these nanometer-size features are scanning electron (SEM),

dark and bright field microscopes. For electrically conductive materials, the surface analysis in
the reflection mode is straightforward with SEM. If the scattering objects are buried inside the
structures, transmission electron microscope (TEM) or scanning TEM (STEM) using a beam or
a focused spot of electrons can be used [7]. With these techniques, sub-nanometer resolution can
be achieved; however, it is hard to implement them in the production line, and generally, these
techniques are considered to be slow. In addition, if relatively high beam current and acceleration
voltage for the electrons are used, the analysis with SEM can also produce cracks on the surface
or permanent thermal damage.
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Subsequently, dark-field techniques, where only the scattered portion of the light is captured,
are powerful tools for high-throughput analysis. The state-of-art systems work with bare wafers,
smooth and rough films, and deliver defect detection sensitivity aimed at the 7 nm logic and
advanced memory device nodes [8]. Since the direct reflected light is eliminated from the
measured field, the incident power has to be high to produce enough scattering and sufficient
signal to noise ratio (SNR). Hence, similar to SEM, in dark-field measurements, there is a
potential to alter or damage the sample under study due to thermal effects [9].
Bright field techniques, where the reflected and the scattered light from the surface are

measured, solve the issue of the sample damaging since they use very low incident power.
However, similarly to dark-field, the small inherent scattering and consequently low SNR renders
the limit of the sensitivity. In this context, it is hard to detect tiny particle sizes, with diameters
<100 nm in bright field mode using the visible wavelengths.
To solve this issue and to allow for the detection of such particle sizes, researchers have proposed

various methods including interferometric ones such as label-free interference reflectance imaging
of IRIS or ISCAT [10] and non-conventional sensing with optical forces in optical pseudo-
electrodynamics microscopy (OPEM) [2]. Another family of techniques that are suitable to study
nanotechnology materials in far-field is based on Quantitative Phase Imaging (QPI) [11]. The
method of optical interferometric microscopy, in particular, has demonstrated an outstanding
result in detecting 20 nm wide defects in patterned wafers [12]. A volumetric (3D) analysis for
processing focus-resolved images of defects is enabled via the combination of scattered field
optical microscopy and through-focus scanning optical microscopy. The results include the
detection of sub-20 nm patterned defects [13]. Alternatively, one can obtain high sensitivity and
low power of the illumination by measuring the light that is scattered from the particles to the far
field in a smart way such that the SNR can be improved as compared to dark field techniques.
This is the core of the technique used in this paper, namely Coherent Fourier Scatterometry (CFS):
it is a low cost, robust, and suitable for the detection of polystyrene latex (PSL) nanoparticles
down to 50 nm in diameter, and possibly even smaller ones [14–17].

For the detection of very small particles using CFS, it is crucial to optimize the entire system.
Reliable numerical tools have been developed to understand the parameters that could influence
the scattering process such as polarization, beam shaping, and how the data should be collected.
Experimentally, besides a robust design, improvements directed to the detection system (such as
noise suppression by introducing heterodyne detection system and beam shaping [14,18]) have
been implemented. At last, the data processing is of extreme importance, and this is the main
subject of this paper.
The scatterometry data become useless if the algorithm that treats the data cannot effectively

discriminate between different sizes of the particles present on a particular surface. One
complicating factor is that, besides the inherent noise related to the detection of light, in a
production environment, data can be corrupted with several other sources of noise and artefacts.
In addition, the presence of extensive size-range contamination severely complicates the analysis
of individual particles. In the worst-case scenario, if the measured data is examined in the
wrong way, it can lead, for example, in the case of lithography, to a drop in system productivity.
Finally, taking into account the growing amount of data, techniques such as CFS lack the tools
of being able to process raw data sets automatically and effectively. Recently, to overcome
the challenges of detection and classification of smaller particles, machine learning methods,
including the regularized matrix-based imaging framework [19], principal component analysis
[20], and convolutional neural networks [21] were applied to image-based defect detection.
The objective of this paper is to develop a full framework for particle size classification in

scatterometry data consisting of pre-processing, signal search and histogram formation with an
algorithm that can be directly targeted at data that is corrupted with noise and drift, as well as
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including mixed-size particles per sample. For this framework, we relied on the established noise-
removal and unsupervised clustering techniques and adapted them to detect the nanoparticles.
We developed a parametrized search by thresholding that picks the differential signal shape (raw
data from the scatterometer) and relates it to the sought information (size distribution and location
of the particles). By using these techniques, we show that the nanoparticles could be accurately
quantified, even in the case of high densities. With sufficient resolution, a sample containing
a mixture of nanoparticles with 60, 80 and 100 nm has been analysed in conditions where the
data set had a lot of noise and drift due to the scanning issues related to the CFS tecnhique. Our
framework enables the demanded automatic analysis of the scatterometry data and facilitates the
validation of the detection results.

The paper is organized as follows. In Section 2, a brief overview of the measurement
process and data is presented. Section 3 contains a description of sub-problems for the data set
analysis. Section 4 describes the proposed algorithms of pre-processing, search, feature extraction,
supervised clustering, and computational complexity. Section 5 shows the experimental results
with the framework implementation and compares the accuracy of several classification algorithms
incorporated in the scheme. In Section 6 and 7 we finalize the paper with discussions, conclusions,
respectively. The summary of the functions used in this paper is given in Table 1.

Table 1. Glossary of the main functions used in the manuscript.

name explanation mathematical description

detrend Trend can be modeled and
removed from the time
series

minimize
J =

∑
x [yx − (ax + b)]2

where measured data
values yx in time x and
a, b are parameters to be
minimized

abs Modulus of the real
number

|y | =
{

y, if y ≥ 0
−y, if y<0

ceil Round up or round
towards plus infinity

y = ceil(x) = dxe =
−b−xc

dist The Euclidian distance
between a point xn and µ

dist(xn,µ) =
√
(xn − µ)2

ind1 Sampling points of the
singal at which

argmaxx y(x)

ind2 the amplitude is
maximized/minimized

argminx y(x)

size Size or cardinality of a set
is a measure for the
number of elements of
the set n

card(yx) = n

2. Methods

Measurements with CFS are done via raster-scanning a ≈ 1 µm tightly focused spot (λ = 405 nm,
NA = 0.9) over the surface of interest. The Fourier plane of the objective obtained in reflection is
imaged on the balanced detector. The sample is mounted on a 3D piezo-electric stage whose
position can be controlled with sub-nm precision (P-629.2CD by Physik Instrumente). To reduce
the amount of recorded data, and to increase speed and SNR, the Fourier plane is divided into
two halves (perpendicular to the scan direction) and subtracted from each other using a balanced
split detector (see Fig. 1). In this way, for every X-Y scanning position, only one current value
is obtained and stored as one point in the 2D scatterometry map. The differential detection
allows having high SNR because the contribution from the rough background is minimized. If
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any clean part of the surface is analyzed, the acquired signal is virtually zero. For the areas
containing particles, the spurious reflected light from the surface and light that is scattered due
to the particle interferes at the detector. The total far field in the presence of the particle will
become asymmetric as the particle is scanned through the focused beam. This implies that the
left half of the field in the pupil is different from the right half, generating a nonzero photocurrent
at the split detector, The recorded signals from the photodetector are the basis for the scattered
maps (2D X-Y distributions) [22]. One of the significant advantages of the CFS approach is its
high-sensitivity in localizing the centre of the particle in both transverse XY and longitudinal
XZ, YZ planes. When the probe is focused on the interface, by scanning a spherical nanoparticle
on the surface will render the so-called balanced pulse (positive and negative lobes of equal
intensities, see Fig. 2(b)). The zero-crossing of this pulse refers to the perfect alignment between
the centre of the nanoparticle and the focused spot [23] (green point in Fig. 2(b)). The effect of
the defocus produces unbalance of the signal as well as a drop in the SNR drop, as it has been
demonstrated in Ref. [23].

Fig. 1. Schematic of the experimental setup, showing the light path and the differential
detection principle. To obtain the scatterometer maps, the sample is scanned in the x and y
directions. For every X-Y position, the differential signal at the balanced detector is recorded.

When analysing the surface in a raster scanning fashion, one needs to choose the proper ∆y
displacement step between the parallel lines of scanning. The bigger the step, the lesser the
time it takes to cover the complete area, but the downside is that particles can be missed. The
simplified picture showing the relationship between the scanning step ∆y and the particle size
is shown in Fig. 2(a). Naturally, if one wants to detect contamination of e.g. 50 nm, the step
between lines of the scanning should be set lower than the particle diameter, for instance ∆y = 10
nm. For relatively big particles, one can expect that every time the probe interacts with the
particle, a high-enough scattering will be produced and thus the estimate for the amount of lines
where the particle is visible equals to n = d/∆y, with d being the diameter of the particle. N.B.
the SNR is the defining factor for the effective amount of lines and the influence area of the
particle is bigger than the physical size as according to its scattering cross-section. Yet, the
outlined picture highlights the idea that there is a certain minimum and maximum expected
number of beneficial signals that would emerge from using different settings of ∆y. For tiny
particles <80 nm, using the wavelength λ = 405 nm, one can expect that the scanning lines that
would go through the edges of the particle have much less SNR (see Figs. 2(a) and (c)), because
the amplitude of the scattering becomes small as the focused spot goes away from the center of
the particle. Furthermore, mismatches between the position of the particle and the scanning step
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Fig. 2. a) 2D raster scanning procedure showing scan lines in the X direction separated by
∆y = 10 nm in Y direction. The geometrical size of the studied particle is d = 50 nm. On
the left - the first scanning line coincides with the edge of the nanoparticle, and consequently
the differential signal will appear in 5 consecutive lines, with the red lines providing small
amplitude of the signal. On the right - if there is an offset between the first scanning line
and the edge of the particle, the signal due to this particle will be spread in fewer lines.
b) A typical amplitude distribution of the recorded differential signal in time as one line
containing the particle is scanned in the X direction - first maximum and then minimum
when the positive lobe is equal to the negative lobe (balanced signal). The time axes is
related to the X axis (length) by t = v.L, with v being the scanning speed and L the length
of one scan line. Red lines constrain the features of width τ and amplitude Vpk−pk of the
differential signal. c) An example of a particle response as a collection of subsequent scans
in X (separated by ∆y) is called a scattered map.

might occur (dashed lines Fig. 2(a) and in this case, even fewer scan lines containing signals
due to the particle are obtained. The rule of thumb is to have at least two signals that come
from an isolated particle that is distinguished from the background. Finally, the nanoparticles
are generally classified based on their dimensionality, where the size of the calibrated sphere is
associated with the features of Vpk−pk amplitude and time-width τ of the measured differential
signal (Fig. 2(b)). The time axes is related to the X axis (length) by t = v.L, with v being the
scanning speed and L the length of one scan line.

3. Sub-problems

The task of detection and classifying the particles using scatterometry data can be split into
sub-problems. In this section, we discuss these sub-problems: pre-processing of data, finding the
particle-like signals, estimation of the width, cluster assessment.

3.1. Pre-processing

The goal of the pre-processing task is to prepare the raw sampled data for further steps. Commonly,
a DC bias and sometimes baseline fluctuations in the signal at the detector can occur due to
vibrations and other experimental factors. For the removal of the various electronic noise,
low-pass (LP), notch filtering and wavelet-based subtraction were applied.
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3.2. Selection of suitable amplitude and width

We use two parameters for the object detection: the A amplitude (Vpk−pk/2) and the τ width of the
complete differential signal due to a single particle in the time-domain (see Fig. 2(b)). We look
for an algorithm that is robust to non-particle signals that can be present in the data. Examples
of such signals include environmental vibrations or large defects present on the surface of the
material, which we can consider as false-detections.

In the scan direction X, multiple particles may be present on one scan line since the density of
particles can be high in some areas of the surface. Multiple maxima and minima needs to be
determined on one scan line, sorted and the relative distance between different signals needs to be
determined. Each “transition" between maxima and minima is associated with the corresponding
zero-crossing position at the middle of the signal. Finally, fine adjustment is needed to define the
width of the particle-like signal accurately; this is done by parametrizing it such that it can be
distinguished from noise or another signal in the data set. Next, one needs to take care of the
particle signal appearing at the border of the scan line. In this case, if the signal was sampled for
one of the two lobes (positive or negative), the algorithm should estimate the complete width of
the pulse.

3.3. Multiple line particle detection identification

A particle-like signal is distinguished from a false detection if the centroid of the signals (position
of the zero between maxima and minima) have the same X position over multiple lines (see
Fig. 2(c)). A false detection is identified when the particle-like signal is observed in only one scan
line, and is further removed from the data. Finally, per signal group, the most clear particle-like
signal and its features (see Fig. 2(c)) are stored for the histogram. The pulse with the biggest
Vpk−pk is a good representative because it corresponds to the centre of the particle in the X and Y
directions.

There aremanywell-known algorithms for cluster determination, such as hierarchical clustering,
K-means, DBSCAN [24–26]. Almost every clustering algorithm can be tuned to penalize one
error more than the other according to the requirements. For instance, we can use the predefined
vertical step of ∆y and set the expected number of zero-crossings associated with a single particle.
Additionally, the clusters of zero-crossings (pair of X and Y coordinates) can have a characteristic
spread of σ.

4. Algorithm

In this section, we show the specific tools and algorithms we have used to solve the sub-problems
showed above. We also mention the computational efficiency and some other aspects of the
algorithms.

4.1. Pre-processing

Among various noise sources that might be present in our experiment [14], the power line
interference and the baseline wandering can strongly affect the further detection and classification
of particle signals. The 50-60 Hz local power-line frequency (bandwidth of <1 Hz) can be mostly
removed by analogue hardware during acquisition, and the remaining noise is removed digitally
using the notch filter. However, the baseline wandering is not easy to be suppressed by analogue
circuits. Hence, we take the notch-filtered waveform and subtract the wavelet decomposed version
of the same signal to recover the clean particle signal (more details in Appendix: Pre-process
filters). This step effectively introduces the point by point correction to the wandering profile.
Finally, an average filter (LP) is applied to remove glitches. This approach can be considered as
more rigorous because it relies on the sampling frequency used in the experiment. The routine is
based on a contribution from Ref. [27]. A less accurate way of dealing with the offset in the data
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can be MatLab’s detrend function that removes the best straight-fit line from the data in a vector
of the sampled points.

4.2. Selection of suitable amplitude and width

Hyperparameters:
A, τ,NullingR,Windowy

These are user-defined parameters of expected threshold amplitude A and width τ. Since the
multiple expected amplitudes and widths are passed iteratively, the results from the previous
search should not translate to the consecutive one. Let’s consider the 2D measured data Iij with
each row representing a single scan line (Y) and column representing the sampling point over the
width (X of the Fig. 2(c)). The differential signal at the detector for the i = 4 scanning lines and
with j = 4 samples in horizontal direction of scan is given in Eq. (1)

I4x4 =



I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44


(1)

The parameters of NullingR, Windowy represent the half-width and length of the region to be
zeroed w.r.t reference sampling point. Hence, for measured data, if I33 is the reference position
(centre of the particle), the NullingR = 1 and Windowy = 3 dataset becomes:

I′4x4 =



I11 I12 I13 I14
I21 0 0 0

I31 0 0 0

I41 0 0 0


(2)

Thus by, NullingR and Windowy, the user can zero the lines that are close to the reference
detected particle. Per line, the algorithm looks for the multiple peaks and minima and checks
whether their absolute values fall under the amplitude A. The retrieval of secondary peaks and
minima allows increasing the overall accuracy of the algorithm. By default, we assume every
particle-like looking signal to be a forward signal (Fig. 2(b)). The reverse signal can be stored
separately or included in the estimation process. Some key reasonings are highlighted in the
following bullet-points and also shown in Fig. 3.

• Find and store the values and indices of global line maxima ind1 and global line minima
ind2. Next, check the amplitude condition abs(max1)>A OR abs(min1)>A. Store True of
False for the first condition.

• Define whether the signal is forward (maxima appears before minima), choose between
ignoring or flipping the reverse pulses. Check whether the distance between 2 indices
abs(ind2 − ind1)<τ fits the condition of the time-width. Store True of False for the second
condition.

• When both conditions are true, a particle is roughly detected. We calculate the position
of the particle’s signal zero-crossing by taking the average between maxima and minima
position middle = ceil(abs(ind1 + ind2)/2) (ceil function rounds towards plus infinity),
perform the fine adjustment (next section) and remove the signal from the data set. The
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NullingR is global parameter that represents half-distance in indices to replace with zeroes
about the middle of the signal. The rule of thumb, in this case, is that region to be zeroed
should not exceed the time width of the particles you are looking for.

• If only the amplitude condition is satisfied, the indices of multiple minima (above threshold)
that belong to the current line are checked to fall closer to the ind1 than ind2. If other
minimum falls closer, reassign the ind2 and repeat the width check. If both conditions are
satisfied, remove the signal from the data set and apply the NullingR.

• The multiple particle search routine is to find numerous maxima (above threshold), sort
them in descending order (see Alg. 1), and, maximum by maximum, follow the steps
outlined previously. If there are multiple particles on a single line, the algorithm returns
X’s corresponding to the particles middles.

Fig. 3. Block diagram of the signal search algorithm that starts with the N signal line.

Throughout this paper, we will use the terms “zero-crossing" and “middle" interchangeably,
following the variable name of middles as defined in the MatLab software.

4.3. Fine adjustment for the boundaries of particle’s signal

Fine adjustment is the part of the search process right after the width, and amplitude conditions
are satisfied. We assume that from the middle position, the particles’ signal occupies the same
amount of samples on both sides of the signal (spherical object). The initial guess for the left
margin of the signal is leftmargin = middlesind − τ/2. To make sure that the signal doesn’t
go outside the indexing in Matlab, i.e., middlesind − τ/2< = 0, we rewrite the left margin as
index 1. In this case, in the procedure that follows, we should rely on the rightmargin to be
defined accurately and then leftmargin is recomputed based on it. Analogously, the right margin
is calculated as rightmargin = middlesind + τ/2. If a signal appears close to the right border,
we rewrite right margin as the last index of the sampled voltage vector. The crucial part of the
fine-adjustment step is to cut-out the region of signal for zoom-in study, i.e. from leftmargin to
rightmargin. The secondary minima of the cut-out region are checked to fall closer to the middle
position, compared to the initial leftmargin. If there is a closer point, it is redefined as leftmargin′ .
The reason for this is an observation that typically there is a small dip in the signal preceding the
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Fig. 4. A sketch showing the margins of the signal separating it from the background. The
fine adjustment algorithm is to go from leftmargin to leftmargin′.

quick rise in amplitude of the particle pulse. Further, we reassign the rightmargin of signal to be
the same separation as to the left rightmargin = middlesind + abs(middlesind − leftmargin′) (see
Fig. 4). Finally, the signalSize = abs(rightmargin − leftmargin′), and one can notice that in our
procedure the estimator can generalize outside the original size of the sampled vector.

4.4. Clustering of data from one single particle

The steps of the algorithm presented previously result in an array of coordinate pairs for (X,Y), that
correspond to the position of the middles (zero-crossings) of each signal and has dimensionality
2×N, where N is the number of middles. Since one particle results in a few signals at consecutive
lines of the scan, one should recognise a group of the particle-looking signals as a centroid that
represents this specific particle. In this way, the particle-size distribution histogram will identify
one particle on the sample corresponding to one cluster of signals. The centroid of the cluster
will correspond to the line with the highest Vpk−pk of the cluster, and consequently the particle’s
center.

We modify a well-known machine learning algorithms of K-means and DBSCAN to recognize
the clusters of the particle-looking signals and use prior information that can help to spot the
isolated particles. One complicating factor that can be present in the data is the random drift
between the lines when sampling. The drift manifests itself in the shift of the signal zero-crossing
(see Fig. 2(c)) position in the X direction between consecutive lines. In the Appendix: Modified
K-means, DBSCAN and comparison, we define several algorithms that can account for the drift
in the data. We compare the computational complexity of the modified K-means to the algorithm
of DBSCAN. Besides, we highlight the sensitivity of algorithms to initialization parameters.

5. Results

Throughout this section we experimentally study three different samples of the PSL particles
spin-coated on the silicon wafer. The first sample includes particles with diameters of 50 nm, the
second 100 nm, and the third a mixture of 60, 80 and 100 nm. The details on sample preparation
are outlined in the Appendix: Preparation of the samples.
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5.1. Pre-processing and search

In the high-scale IC manufacturing, typically double side polished wafers are used. The block of
pure crystalline silicon is diced and polished right before the deposition of the resist. Due to the
lack of precision in the wafer holder, unstable rotation and heat deformation, the polishing can
affect the flatness of the wafer. Additionally, the thickness of the wafer is not uniform across the
sample [28]. This effect mostly occurs at the edges of the wafer. Nevertheless, the scanners need
to provide information over the entire wafer under the study. For sensing or particle detection
applications using CFS, the probing light should be focused on the interface between air and
top surface. Due to several experimental factors during the scanning, the baseline (differential
signal when no particle is present) may fluctuate or drift from the expected zero value. Hence,
occasionally, the data set might include DC offsets mixed with low frequency noise (baseline
wadering) [29,30]. This problem can be corrected as shown in the data presented in Fig. 5(a) raw
data (top), and with baseline correction (bottom).

Fig. 5. a) Top - the side view (along Y) of the raw sampled data wherein the baseline
wandering is present. Bottom - the corresponding data after the baseline wandering is
removed. b) Top view on the same scan with the red points representing the detected
zero-crossings. c) Histogram representing the particle size distribution, based on time width
τ from detected pulses. The inset shows the calibration of size of the particle as a function
of the time width of the signal. d) Example of the line from the data set, the dashed line is
an initial guess for the time-width and left - L and right -R boundary is returned from the
fine-adjustment step. The scan speed per line is such that a scan width of 20 microns in X
takes 100 [ms].
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Further, the scattered map from the bottom Fig. 5(a) is analysed with the search algorithm
(Section 4.2) to produce the corrected data that is seen on the Fig. 5(b). Here we analyzed
a random area from the calibrated sample and the histogram nicely peaks at the position of
the τ = 7.05 [ms] that corresponds to PSL particle with 50 nm in diameter (see inset with the
callibration curve) that agrees with the recipe of the first sample. For the area that contained
only a few particles, one can notice a relatively high amount of counts, and this is because all the
localized zero-crossings contribute to the output histogram. The SNR ratio for this dataset is low
SNR = 7.14 [dB] while the algorithm can still localize the particle detections, including the one
that resides at the border of the scan, thus generalizing beyond the input data.
N.B. The particle classification in CFS is based on the width of a time-domain particle

signal. The quantitative limit of the post-processing framework for discrimination between the
different-size particles is defined by the accuracy of the fine-adjustment routine of Section 5.1.
More specifically, in the ability to find the minima closest to the rising edge of the differential
signal. If we assume the infinite sampling of the signal and low noise, there are virtually no
limitations on how accurate the position of minima can be defined, aside from those emerging
from the numerics or computational effort [31]. On the practical side, there is a limitation in
the manufacturing of the monodisperse PSLs. The target size of the particle diameter has the
uncertainty in the range of 1 − 2 nm [32].

5.2. Comparing the accuracy of clustering routines on a data set with drift

The source of the drift originates from the sampling at the detector being asynchronous process
with respect to the piezo stage movement. When the piezo controller passes the initialization
signal to the computer, the jitter and USB connection produce a random time delay before the
sampling will actually start.

One can mitigate the problem by introducing the constant waiting time tc (empirical estimate)
at the piezo before the voltage will be increased (Fig. 6(a)). Yet, the random nature of the delay
will not be equal to the introduced tc. When faster scanning is performed, the drift in the data set
gets worse. Figures 6(b)–(e) shows the same isolated nanoparticle scanned at a different speeds:
100, 90 and 50 ms per line, demonstrating an increasing amount of the distortion in the data set.

Fig. 6. a) The sampling done asynchronously, and the start sampling point (red cross) has
fluctuation in time - above. The primitive of the voltage waveform for moving the piezo
along one axis forth and back - below. The time-constant tc tries to match the start of
the piezo movement (uprising edge of the waveform) with the beginning of the sampling.
Example of the isolated nanoparticle with different amount of drift present. The non-drift
image b), an increasing amount of drift from 100, 90, 50 ms scanning time per line, c), d)
and e) correspondingly.
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We take the data corrupted with the drift and compare the accuracy (Eq. (3)) of two clustering
algorithms as the average result of 100 random initializations.

Accuracy = 1 −
����1 − Ndet

Ntrue

����
′
, (3)

whereNdet is a number of detected clusters, hence isolated particles, andNtrue the actual amount of
particles on the sample. This formula ignores the difference between the over- and under-estimate
in the Ndet. We will use the non-drift corrected “image" as a ground truth for this comparison
providing us the number for Ntrue. The non-drift “image" is achieved by establishing a new
synchronization approach with the trigger pulse generated at the piezo controller through analogue
output upon each beginning and end of the scanning line.
The first test is to use some of the global parameters such as nmin, ε , nmax,σthresh according

to the reasoning outlined in the Section 4.4 and Appendix: Modified K-means, DBSCAN and
comparison. Recommended hyperparameters come from showing the program once how the
“good cluster" looks like. A number of 100 random initializations were needed to get an idea
on how the K-means algorithm will suffer from random initialization, specifically the starting
number of clusters K and their positions are randomly initialized. On the contrary, the DBSCAN,
regardless of initialization, always converges to the same result (see Fig. 7).

Fig. 7. The true number of particles (ground truth) in red. Comparison of the DBSCAN (in
blue) and modified K-means algorithms (in black) for the three levels of drift present. 100
drift represents the least distorted data set, 90 drift dat aset with average distortion, 50 drift
is the data set with severe distortion. Recommended in a) and tuned hyperparameters in c).
Result of 81% accurate convergence by the DBSCAN for the case of 50 drift present b).

This test reveals that both algorithms can achieve relatively high accuracy >70%. As it has
been expected, accuracy on the data that contains less drift is higher and contains less uncertainty.
On average, the accuracy does not exceed 84% for the case of the DBSCAN and the algorithm
produces the same amount of clusters at every iteration. When the input data is shuffled, the
only “non-deterministic" behaviour is in the label for the cluster being assigned, but not the
composition of the cluster itself. The behaviour was firstly highlighted in the original paper of
DBSCAN [26] where the authors claimed that convergence result is independent of the order in
which the points of the database are visited expect the “rare" situations. This “rare” situations
occur when border points belong simultaneously to two clusters. This border point will be
assigned to the cluster that is considered first to avoid the overlap. In other words, there is always
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the same amount of density-reachable points from a reference point, hence the same amount of
the assigned clusters is constant.
In the next test for both algorithms, the global parameters were manually adapted to yield

higher accuracy (Fig. 7(c)). The adjustments to the K, the desired number of clusters in K-means
can be set higher than the elbow method recommends, and for the DBSCAN algorithm the ε
parameter is crucial. This test demonstrates that with the aid of completely manual tuning, higher
accuracy >80% for any type of data set can be achieved. Even more, the ε parameter in the
DBSCAN can be chosen to recover the 100% accuracy on the data set with the minor drift. N.B.
The average convergence time for the DBSCAN algorithm is 0.01 second and for the K-means
algorithm 47 seconds on laptop Dell Inspiron 7577.

5.3. Benefit of the centroids re-assignment

For the domain of the semiconductor industry, specifically for the lithography process, it is
crucial that cleaning can be performed if contamination above a certain size is present on the
sample. In this way, for instance, the very small particles are of minor importance for the pellicle
layer above the UV mask, and only if the bigger particles are present, cleaning action needs to be
taken. In the absence of the pellicle, on the contrary, one should take care only about the small
contamination landing on the mask [33]. The quantitative description of the surface, provided by
the surface scanner in this regard becomes very crucial. The confusion between the different
sizes of the scatterers on the sample should be minimal. For our system, the width of the signal
changes as scanning through the spherical particle is performed : it is highest when the scan
line passes through the center of the particle and it is smaller in consecutive lines around the
particle’s center, as shown in Fig. 8.

Fig. 8. Sketch of the signal from an isolated spherical particle visible over three consecutive
line scans. The red region represents the increase in the τ width of the signal when the scan
line passes through the centre of the particle as compared to other consecutive lines ±∆Y
(signals as dotted lines).

In the first approximation, all detected signals can be fed to the histogram as it was done in
Section 5.1. This approach would work properly if the data set would include a single particle
size or if the contamination is reasonably different. Realistically, samples contain a wide range
of particle sizes. If the pulses on the edges of the particle scan are included in the estimation
histogram, they will contribute to the interclass confusion (classes represent diameters). In the
Fig. 9 we demonstrate the outputs from the signal search algorithm and corresponding clusters
defined by the DBSCAN algorithm. This algorithm was chosen since the convergence time
is faster than the modified K-means, and it had achieved higher accuracy at the previous test.
The region of the sample under study is a good representative of the multi-class sample where
additionally to the nominal 60 and 80 nm PSL particles, there are isolated particle-looking
signals that are treated as outlier by the algorithm as well as the contamination of bigger particles
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≈ 100 nm in diameter. The results of convergence by K-means algorithm for the same data set is
presented in Appendix: Re-assignment of signal centroids by the K-means algorithm.

Fig. 9. a) The zero-crossings of the differential signals by the search algorithm and b) the
corresponding isolated particles by converged DBSCAN. The data set includes minor drift
where one scanning line of ∆x = 25µm takes 100 ms. c) Histogram when all particle-looking
signals are taken into account and d) when the signals corresponding to one particle are
clustered and only one signal (highest Vpk−pk) is taken into account to represent one particle
detection.

The first approximation histogram includes the side detection from the class of the 100 and 80
nm contributing to the class of 60 nm as well as features between the classes and it seems that
there is only a single class present in the data (see Fig. 9(c)). When all signals that corresponds
to one particle are clustered and only the highest Vpk−pk pulses from each cluster is assigned as
being one particle (Fig. 9(b)), we observe three separable classes in the histogram (Fig. 9(d)),
showing that this strategy solves the problem of particle size confusion.

6. Discussion

The approach of clustering the data has a downside, namely, the risk of losing the beneficial
signals that correspond to very tiny particles. These particles may produce only one or two scan
lines containing signals with sufficient SNR, if the selected step between the scan lines ∆y is too
big. To improve the sensitivity of the algorithm even further, a separate routine could reconsider
the outliers. This step could include adding a collection of matched filters operating in the time
domain to filter out signals with the expected duration. Alternatively, one can try to establish
spectral differences between the particle and non-particle signals (multiple wavelength approach).

While this study considered the detection of polystyrene particles, the technique could also be
applied to extract features from a measurement of particles of different materials. Scatterometry
is not an imaging technique, and some other features (such as material) can be recovered if one
can model them and obtain more diversity in the experimental data. For example, instead of only
looking at the time spam of the particle signal (related to the size of the particle), one can add
its magnitude, which is proportional to the diameter and material of the particle [34]. Another
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example is the work of Potenza et al. [35] where using similar technique, they were able to
recover the complex index of refraction of the particles, and in this way, reveal their material.
DBSCAN can yield higher accuracy than the K-means subroutine in the case when the

scale of the data is well understood. Also, the convergence of DBSCAN algorithm is fast.
Nevertheless, there is still room for implementing the K-means routine because the sensitivity to
the hyperparameters is much higher in case of the DBSCAN, including the complete failure in
defining the clusters from the initial data (see the Appendix: Modified K-means, DBSCAN and
comparison). The K-means, on the contrary, can be considered as a more robust algorithm that
yields relatively high accuracy, and at any initialization will always define a certain amount of
clusters. The K-means algorithm is scalable to large data sets while the DBSCAN can suffer
from the curse of dimensionality [36]. A final point to consider is when working on data sets
with severe drift due to scanning, high density and wide range of the particle sizes, the DBSCAN
can fail to cluster data [37].
Throughout the IC manufacturing process, large amounts of data need to be mined in a

fully automated mode [38]. With a growing amount of data, we can envision that the line-
by-line analysis of the data set can become computationally slow. Also, the total amount of
hyperparameters is significant. Search and clustering routine in total has up to 6 parameters fed
by the user. Hence, in future work, we will explore the potential of methods for handling big
data, such as deep learning and CNN [39,40].

7. Conclusions

We have demonstrated that Coherent Fourier scatterometry is capable of generating the 2D maps
with the locations and sizes of PSL nanoparticles on a surface, down to particles with a diameter
of 50 nm using low power illumiantion wavelength of λ = 405 nm (on the substrate, the input
power is P =∼ 0.026 mW). CFS relies on differential detection to minimize the contribution
from the rough background, and uses photocurrent measurement in a raster-scanning regime
generating a wealth of 2D data sets.
In this paper, we have developed a generalized framework that accurately extracts features

of the differential signal produced by the scattering of a nanoparticle and uses these features
for particle location and size determination. We have combined pre-processing with search
algorithms based on the thresholding, such as peak-to-peak amplitude, and the width in time of
the signal. The proposed method makes use of unsupervised clustering techniques to separate
particles with high density on the samples. We adapt algorithms of DBSCAN and K-means and
use them together with the simple prior.
We have tested the framework for data sets with high density of the particles, in the presence

of large experimental noise and drift. The accuracy of the algorithm resulted in the 84% for
the hyperparameters set semi-automatically, and the 100% accurate result for manually-tuned
parameters. The algorithm of DBSCAN is a go-to solution because it works much faster than
K-means. However, the latter is more robust because it is less sensitive to the change on the input
parameters.
Finally, we would like to stress that while we tested the framework for the particular case

of experimental data obtained with CFS, this method can be generalized to other experiments
that involve measurements with differential detection, such as coherent time-addressed optical
CDMA systems [41] and ferromagnetic resonance spectrometers (VNA-FMR) [42]. In these
techniques, the data set might include mechanical vibrations or other experimental fluctuations,
similar to the drift studied in this paper. We believe that the proposed framework is an essential
addition to the nanoparticle detection experimental community.
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Appendix

Pre-process filters

The input-output description of the filter operation on an input signal vector x(n), where n is the
number of samples, can be expressed in the form of the difference equation:

a(1)y(n) = b(1)x(n)+b(2)x(n−1)+. . .+b(nb+1)x(n−nb)−a(2)y(n−1)−. . .−a(na+1)y(n−na), (4)

where na is the feedback filter order, and nb is the feed-forward filter order. We design a
second-order notch digital filter, thus na = nb = 2 and Eq. (4) becomes:

a(1)y(n) = b(1)x(n) + b(2)x(n − 1) + b(3)x(n − 2) − a(2)y(n − 1) − a(3)y(n − 2), (5)

with the notch at frequency 50 Hz and a bandwidth at the -3 dB level (q-factor of 35), we have
angular frequency W = 50/(fs/2) and bandwidth BW = W/35. Thus, for sampling frequency
fs = 3 kHz, the coefficients are b = [0.998,−1.986, 0.998] and a = [1,−1.986, 0.997]. The local
power line frequency is removed from the data set and ynotch = a(1)y(n).
Further, we subtract the wavelet decomposed version of the signal ywd from the filtered

waveform ynotch effectively introducing the point by point correction to the profile. The discrete
wavelet transform (DWT) of signal ywd(n) is defined as a combination of a set of basis functions:

ywd(n) =
∞∑

k=−∞
cj(k)φj,k(n) +

J∑
j=1

∞∑
k=−∞

dj(k)ψj,k(n) (6)

where
φj,k(n) = 2j/2φ(2jn − k)
ψj,k(n) = 2j/2ψ(2jn − k)

(7)

In Eq. (6), φj,k(n) is the scaling function, ψj,k(n) is the wavelet function, cj(k) are the scaling and
dj(k) are detailed coefficients. In this paper, the Daubechies 6 scaling and wavelet functions
were used because it has been proved to be excellent in analysis of signals that contain baseline
wandering [43,44]. For computing the cj(k) and dj(k) coefficients, the low-pass (LP) and high-pass
(HP) filters are being recursively applied to a signal. When the signal is processed for the first
time, the HP filtered data gives the details and LP filtered data gives the scaling coefficients at
level 1. The more times the filters are applied, the more detailed levels of the signal representation
can be achieved. In this paper, we have used the decomposition level of j = 10 and have applied
the translation factor of k = 8 for the scaling and wavelet function. The baseline wandering is
removed and ybcor = ynotch − ywd.
Finally a simple moving average filter is applied according to Eq. (8).

y′i =
1
M

M−1∑
j=0

ybcor[i + j]. (8)

The output signal y′i is a result of averaging the points in the input signal ybcor, and M = 5 is the
number of points used in the moving average.

Modified K-means, DBSCAN and comparison

Given, for instance, the middles coordinates (X,Y), K-means clustering, can converge to a K
amount of clusters, among which per cluster we know the distance between each point and the
position of the cluster centroid mean µ. The first two algorithms are used to treat the outliers in
the clusters K:
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Algorithm 1 Sort in descending order
1: procedure sort(Xn) . Wherex1, x2, ..., xjjj ∈ R
2: inversions = 0
3: for i in 1 : n do
4: for jjj in 1 : i do
5: if X(i) > X(jjj) then
6: inversions = X(i)
7: X(i) = X(jjj)
8: X(jjj) = inversions
9: end if
10: end for
11: end for
12: return X
13: end procedure

Algorithm 2 Remove if σ improves
1: Input: (X,Y)jjj ∈ K . In cluster each middle (X,Y) is associated with dist to µ
2: Output: Nremove
3: set Nremove to zero
4: Sort the points by dist . Descending order Alg. 1
5: for b← 2 to jjjdist do
6: m← Eq.(9)
7: if m < 0.1 then
8: Nremove← b − 1
9: return Nremove
10: end if
11: end for

Where themetricm, standard deviationσ, and average µ are computed according to Eqs. (9–11).
For a random variable vector M made up of N scalar observations,

m =
σ(X,Y)jjj
σ(X,Y)jjj−1 − 1 (9)

σ =

√√√
1

N − 1
N∑
i=1
|Mi − µ|2 (10)

µ =
1
N

N∑
i=1

Mi. (11)

Example of such an algorithm (Alg. 2) applied to an arbitrary cluster is shown in Fig. 10(a).
The idea is to remove the points that are too far from the mean, and we use the constant of 10%
decrease in standard deviation (STD) to reject the outliers. The initial 8 points in cluster K are
sorted in descending order by the distance from the mean µ. When removing the first two points,
the metric m>0.1, but not when we remove the third, m<0.1 thus cluster will be reduced to the
most packed 6 points.

When the outliers are removed we want to reject the clusters that are overly spread for instance
due to the drift. In our approach, the spread of particular cluster has to be below σK<σthresh and
it is computed according to Algorithm 3.
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sorted in descending order by the distance from the mean µ. When removing the first two points,
the metric m>0.1, but not when we remove the third, m<0.1 thus cluster will be reduced to the
most packed 6 points.
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Fig. 10. a) Per cluster the outliers are removed according to predefined 10% decrease in
STD. Only the first two points will be moved to the outliers because the 3rd point is close
together with the other points; b) Global parameter of σthresh in red and, per cluster, the
estimated σ in green, is either below or outside the expected range; c) Maximum number of
points per cluster nmax, and npk<nmax is the number of points in cluster

When the outliers are removed we want to reject the clusters that are overly spread for instance
due to the drift. In our approach, the spread of particular cluster has to be below σK<σthresh and
it is computed according to Algorithm 3.
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Fig. 10. a) Per cluster the outliers are removed according to predefined 10% decrease in
STD. Only the first two points will be moved to the outliers because the 3rd point is close
together with the other points; b) Global parameter of σthresh in red and, per cluster, the
estimated σ in green, is either below or outside the expected range; c) Maximum number of
points per cluster nmax, and npk<nmax is the number of points in cluster

Algorithm 3 Compute spread
1: X←X − µ (X)
2: Y←Y − µ (Y) . cluster← centertoZero(cluster)
3: σK = σ(K(:)) . Eq. 10 operatingonclusterK

The idea here is that the user selects a single cluster that with a big confidence corresponds to
an isolated particle and passes the corresponding recommended limit of σthresh. The example of
the thresholding by spread 10(B) shows that such a limit will be met by the set of black points
but not by the red set. Finally, based on the geometric considerations outlined in Section 2 of
the paper, we add a prior on the resultant amount of points that contribute to a single cluster.
For a target particle diameter of the d, the amount of the zero-crossing points (X,Y)n ≤ d

∆y .
Alternatively, one can perform numerical simulations where the line-by-line scanning of the
focused spot is done through the range of particle sizes and by combining it with the estimates
for the characteristic noise present in the technique assess the maximum amount of lines. Further
research on this issue would be of interest; however, it is beyond the scope of this study.
Next, the two popular algorithms of K-means and DBSCAN are described and compared to

become the cluster initializers.
Classical K-means with prior
Hyperparameters: nmax,σthresh

We modify the K-means [25,45] such that it can accurately establish the isolated particles. For
validation purposes, the density of spheres is crucial, thus the algorithm needs to overcome its
inherent tendency to overestimate clusters. One difference to the original K-means is that we
introduce the outliers. The outliers include: A) clusters with single particle; B) empty clusters;
C) distant points previously included in a cluster. The option C) is treated by Algorithm 2. The
second difference is conditioning of the assigned clusters. Clusters are considered to be valid
if npk<nmax (Fig. 3(c)) and σ′([X,Y])<σthresh, where σ′([X,Y]) is spread computed for the set
of points, with a mean moved to the zero and the distance normalized to unity (Algorithm 3).
After K-means convergence (one epoch), if there are points that fail on both conditions nmax
and σ′([X,Y]), they are passed through the K-means again. The algorithm stops if all points
are assigned to either cluster or an outlier. In every epoch of the K-means, the optimal amount
of clusters is defined from the elbow method based on the average of 3 random initializations.
Hence, in our implementation, the K-means is described via following algorithm in pseudocode.

The idea here is that the user selects a single cluster that with a big confidence corresponds to
an isolated particle and passes the corresponding recommended limit of σthresh. The example of
the thresholding by spread 10(B) shows that such a limit will be met by the set of black points
but not by the red set. Finally, based on the geometric considerations outlined in Section 2 of
the paper, we add a prior on the resultant amount of points that contribute to a single cluster.
For a target particle diameter of the d, the amount of the zero-crossing points (X,Y)n ≤ d

∆y .
Alternatively, one can perform numerical simulations where the line-by-line scanning of the
focused spot is done through the range of particle sizes and by combining it with the estimates
for the characteristic noise present in the technique assess the maximum amount of lines. Further
research on this issue would be of interest; however, it is beyond the scope of this study.
Next, the two popular algorithms of K-means and DBSCAN are described and compared to

become the cluster initializers.
Classical K-means with prior
Hyperparameters: nmax,σthresh

We modify the K-means [25,45] such that it can accurately establish the isolated particles. For
validation purposes, the density of spheres is crucial, thus the algorithm needs to overcome its
inherent tendency to overestimate clusters. One difference to the original K-means is that we
introduce the outliers. The outliers include: A) clusters with single particle; B) empty clusters;
C) distant points previously included in a cluster. The option C) is treated by Algorithm 2. The
second difference is conditioning of the assigned clusters. Clusters are considered to be valid
if npk<nmax (Fig. 3(c)) and σ′([X,Y])<σthresh, where σ′([X,Y]) is spread computed for the set
of points, with a mean moved to the zero and the distance normalized to unity (Algorithm 3).
After K-means convergence (one epoch), if there are points that fail on both conditions nmax
and σ′([X,Y]), they are passed through the K-means again. The algorithm stops if all points
are assigned to either cluster or an outlier. In every epoch of the K-means, the optimal amount
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of clusters is defined from the elbow method based on the average of 3 random initializations.
Hence, in our implementation, the K-means is described via following algorithm in pseudocode.
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Algorithm 4 K-means with prior
1: procedure Kmeansp(pasp, stdLimit, thresh) .

pasp : inputpoints(X,Y), stdLimit : σthresh, thresh : nmax
2: while size(pasp) > 0 do
3: K ← optimalK . Defined by elbow method
4: kmeans(pasp,K) . Apply classical K-means
5: for 1 : K do . For each cluster
6: if Nremove , 0 then . Remove outliers in cluster, Algorithm 2
7: setsp = sortedPoints(1 : Nremove)false . Defining outliers
8: NoOutliers← reverseSort(sp)
9: end if
10: if spread(cluster) > stdLimit then . Find sparse clusters
11: highSpread← (spread(NoOutliers) > stdlimit)
12: end if
13: if size(cluster) > thresh then . Find dense clusters
14: ManyPoints← (size(NoOutliers) > thresh)
15: end if
16: goodPoints←∼ NoOutliers(highSpread AND ManyPoints)
17: badPoints← NoOutliers(highSpread AND ManyPoints)
18: if size(goodPoints ≤ 1) then . Remove single/zero point clusters
19: Remove isolated
20: end if
21: pasp← badPoints . Send not suitable points to new iteration
22: end for
23: end while
24: end procedure

DBSCAN
Hyperparameters: nmin, ε
The density-based clustering algorithm (DBSCAN) [26,46] has a straightforward advantage

in taking care of the obscure points, such that all points that are not reachable from any other
point are outliers or noise points. The two hyperparameters are inclusion radius ε and minimum
number of points in the cluster nmin. The input for the nmin is straightforward, such that it can be
any number between 1<nmin<nmax. For the ε recommendation, we use the following routine:

• Normalize the complete data set of middles to the unity, such that normX = X
max(X) and

normY = Y
max(Y) .

• Select the set of points that with a high confidence forms a cluster, via visual in-
spection, confX = {normX} and confY = {normY}. Center this cluster to the zero
centertoZero(confX, confY) (first two lines of Algorithm 3)

• Determine the average distance between points. Includes computation of Euclidian distance
between each pair of observations in separately X and Y and taking average of each vector.

As a result of K-means or DBSCAN, one can pick up the converged clusters and either: A)
Pull the features of signalSize specifically for the highest Vpk−pk from corresponding pulses in a
cluster; B) Average of the corresponding time-spans τ of points in clusters (Eq. (12)); C) The full
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cluster; B) Average of the corresponding time-spans τ of points in clusters (Eq. (12)); C) The full
amplitude of a signal itself Vpk−pk.

τ =

∑nc
i=1 τi

nc
(12)

Where nc is number of points assigned to the cluster. Correspondingly, the centroids of clusters
are stored for the mapping of the particle positions.
On computational complexity of algorithms. Comparing two algorithms
The classical K-means algorithm has a complexity O(TKn), where n is the number of input

points, K is the desired number of clusters, and T is the number of iterations needed for
convergence. It is also observed that approximately T ∝ n [47]. Hence, the effective time
complexity becomes O(n2). The K-means is a greedy algorithm since it can produce both empty
and over-populated clusters. Another drawback is the large dependence on the initialization
of cluster centers. As according to the quadratic time complexity, it should not be used in
extremely large data applications [48]. Implementation of the K-means with prior in this paper
has O(n2 · logn) time complexity.

In the DBSCAN implementation, for each of the points of the input data, we have at most one
region query. Thus, the average run time complexity of DBSCAN is query of log n times the
amount of points n, O(n · logn).
Sensitivity of K-means and DBSCAN algorithms
Sensitivity analysis was used to explore how the accuracy of algorithms would change with

slight variations in the hyperparameters. The green point in every plot represents the most
preferred initial value that yields the highest accuracy, while the offset from this point defines the
sensitivity (see Fig. 11).

Fig. 11. Sensitivity analysis of isolated changes of hyperparameters for K-means and
DBSCAN algorithms. The accuracy changes as a function of σthresh and ε , given fixed
nmax = 13 and MinPts = 4 in a) and b) correspondingly and as a function of nmax and
MinPts, given σthresh = 0.056 and ε = 0.013 in c) and d).

Preparation of the samples

Samples were prepared in a clean room class ISO 6 and we used high quality 1 inch wafers from
Ultrasil. The general procedure for the sample preparation is outlined below:
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• Clean UV/Ozone apparatus with IPA wipe and switch on for 15 minutes

• Prepare solution

• Place solution in ultrasonic bath

• Clean 1-inch Si wafer in UV Ozone for 5 minute

• Spin 0.5 ml solution on wafer @ 6100 RPM

• Place wafer in box

Solution for sample #1, 50 nm PSL: 3 droplets (Thermo scientific, Nanospheres, 3050A) in 0.5
ml demi water (from Mecrk Simplicity UV water purification system, applied in each recipe) 50
µl in 5 ml IPA (Sigma-Aldrich, 2-Propanol, anhydrous, catalogusnummer 278475-1L, applied in
each recipe) under vigorous shaking.

Solution for sample #2, 100 nm PSL: 3 droplets (Thermo scientific, Nanosspheres, 3100A) in
0.5 ml demi water. Dilute 80 µl in 5 ml IPA.

Solution for sample #3, 60 and 80 nm PSL: 1 droplet 80 nm PSL dispersion (Thermo scientific,
Nanospheres, 3080A) and 1 droplet 60 nm PSL dispersion (Thermo scientific, Nanospheres,
3060A) in 0.5 ml demi water. Dilute 70 µl in 5 ml IPA under vigorous shaking.

Fig. 12. Adapted K-means algorithm. a) The zero-crossings of the differential signals by
the search algorithm and b) the corresponding isolated particles (after clustering) obtained
by converged DBSCAN. The data set includes minor drift where one scanning line of
∆x = 25µm takes 100 ms. Histograms obtained when c) all the particle-looking signals
contribute to the histogram, and d) when the signals are clustered and only one centroid
(with maximum Vpk−pk) is assigned to represent the particle.
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Re-assignment of signal centroids by the K-means algorithm

In addition to the better performing algorithm of DBSCAN presented in Section 5.3, we
demonstrate the output of the modified K-means algorithm 12(B). The difference with the
DBSCAN algorithm is a tendency to merge the clusters that would easily be separated by the
human eye. Such cluster can be seen as cluster n. 3, which contains two separable groups of
points. The solution for this problem can be to re-initialize the algorithm multiple times until the
cluster is assigned correctly. Nevertheless, it is more informative to present average initialization
result. The algorithm is capable of separating three classes of particles, as shown in 12(D), which
is much better than the result of using all the detected signals 12(C).
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