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SUMMARY

Phase aberrations in optical systems, which occur in various applications such as astron-
omy, microscopy and ophthalmology, degrade the quality of obtained images. The exact
cause and nature of the aberrations depends on the application. In astronomy, turbu-
lence within the Earth’s atmosphere creates fluctuations of the refractive index, leading
to phase aberrations.

In order to compensate for the distorting effect of aberrations, adaptive optics (AO)
systems are used to correct for phase aberrations in real-time. A deformable mirror (DM)
is often used to apply the necessary corrections to improve the image quality. Due to
the temporally dynamic nature of atmospheric turbulence and the corresponding phase
aberrations, estimation errors caused by delays within the AO control loop are a signif-
icant part of the total estimation error. Accurate prediction of the phase aberrations is
therefore an important aspect when aiming to improve the performance of AO systems.

Reconstructing the phase aberrations from focal plane images only is known as fo-
cal plane wavefront sensing. Many focal plane sensing methods are based on solving
the phase retrieval problem, which is the problem of reconstructing the phase aberra-
tions from the point spread function (PSF). Due to the non-linear optimization prob-
lem that underlies phase retrieval, developing real-time solvers is very challenging and
a wavefront sensor (WFS) is often included to avoid the phase retrieval problem. Due to
the linear relation between the phase aberration (i.e. wavefront) and WFS signal, WFS-
based AO is often preferred over the wavefront sensorless (WFSless) AO systems that use
focal plane sensing. There are, however, also a number of disadvantages. First, the ad-
dition of extra hardware components, including the WFS and a beam splitter, makes the
system more complex and expensive than WFSless systems. Second, splitting the light
between the focal plane camera and WFS results in non-common path aberrations (NC-
PAs), which can be a limiting factor in high-resolution imaging systems.

This thesis addresses challenges in WFSless AO systems regarding the temporal evo-
lution of the phase aberrations to obtain accurate predictions and the development of
computationally efficient methods. Three methods are presented.

Firstly, a method is presented which reduces the number of variables in the phase
retrieval problem by representing the complex-valued generalized pupil function (GPF)
as a linear combination of Gaussian radial basis functions (GRBFs). The almost local
character of the GRBFs make them a flexible basis with respect to the pupil geometry
and a suitable modal decomposition when representing aberrations with higher spatial
frequencies.

Secondly, a method to obtain a high-resolution prediction of time-varying aberra-
tions using a single focal plane image is presented. By reformulating phase retrieval
for temporally dynamic aberrations into a non-linear Kalman filtering framework, this
method is able to obtain more accurate predictions. The knowledge of a model for the
aberration dynamics is shown to be a valuable source of prior information that can help

xi



xii SUMMARY

with problems regarding uniqueness and convergence. An efficient implementation of a
non-linear Kalman filter algorithm is presented, whose computational complexity scales
almost linearly with the number of pixels of the focal plane camera.

Thirdly, another predictive WFSless AO method is presented, which relies on the lin-
ear relation between the mean square of the aberration gradient and the change in sec-
ond moment of the PSF. By applying a Kalman filter, this method is able to predict and
compensate for time-varying aberrations using a single focal plane image. Only a small
number of DM actuators are updated based on new measurements each sampling time,
where the information provided by the Kalman filter is used to select the actuators that
are expected to lead to the largest improvements in performance. An optimal controller
is designed to sequentially update these selected DM modes.



SAMENVATTING

Fase-aberraties in optische systemen komen voor in verschillende toepassingen zoals
astronomie, microscopie en oftalmologie, en verminderen de beeldkwaliteit. De exacte
oorzaak en aard van de afwijkingen is afhankelijk van de toepassing. In astronomie wor-
den de fase-aberraties veroorzaakt door fluctuaties van de brekingsindex wegens turbu-
lentie in de atmosfeer van de aarde.

Adaptieve optica (AO) systemen worden gebruikt om in real-time te compenseren
voor het verstorende effect van fase-aberraties. Vaak wordt een vervormbare spiegel ge-
bruikt om de nodige correcties aan te brengen en zo de beeldkwaliteit te verbeteren.
Vanwege de dynamische aard van atmosferische turbulentie en de bijbehorende fase-
aberraties, zijn fouten die worden veroorzaakt door vertragingen binnen de AO-regellus
een significant deel van de totale schattingsfout. Een nauwkeurige voorspelling van de
fase-aberratie is daarom een belangrijk aspect van het verbeteren van de prestaties van
AO-systemen.

Het reconstrueren van de fase-aberraties met alleen brandvlakbeelden staat bekend
als focal plane wavefront sensing (brandvlak golffront detectie). Veel brandvlakdetectie-
methoden zijn gebaseerd op het oplossen van het phase retrieval probleem (faseherstel-
probleem): het reconstrueren van de fase-aberraties van de puntspreidingsfunctie (PSF).
Vanwege het niet-lineaire optimalisatieprobleem dat ten grondslag ligt aan het phase
retrieval probleem, is het ontwikkelen van real-time algoritmes een grote uitdaging en
wordt er vaak een wavefront sensor (golffrontsensor), WFS, gebruikt om het phase re-
trieval probleem te vermijden. Door de lineaire relatie tussen de fase-aberraties en het
WFS-signaal, heeft op WFS gebaseerde AO vaak de voorkeur boven de wavefront sen-
sorless (golffrontsensorloze), WFSless, AO-systemen die gebruikmaken van focal plane
sensors. Er zijn echter ook een aantal nadelen. Ten eerste maakt de toevoeging van ex-
tra hardwarecomponenten, waaronder de WFS en een beam splitter, het systeem com-
plexer en duurder dan WFSless-systemen. Ten tweede resulteert het splitsen van het licht
tussen de focal plane camera en WFS in non-common path aberraties (NCPAs), die een
beperkende factor kunnen zijn in beeldvormingssystemen met hoge resolutie.

Dit proefschrift behandelt uitdagingen in WFSless AO-systemen met betrekking tot
het verkrijgen van nauwkeurige voorspellingen van dynamische fase-aberraties en het
ontwikkelen van computationeel efficiënte phase retrieval algoritmes. Er worden drie
methoden gepresenteerd.

Eerst wordt een methode gepresenteerd die het aantal variabelen in het phase retrie-
val vermindert door de gegeneraliseerde pupilfunctie (GPF) voor te stellen als een line-
aire combinatie van Gaussische radiale basisfuncties (GRBFs). Het lokale karakter van de
GRBFs maakt ze een flexibele basis met betrekking tot de vorm van de pupil en een ge-
schikte modale decompositie voor het benaderen van aberraties met hogere ruimtelijke
frequenties.

xiii



xiv SAMENVATTING

Ten tweede wordt een methode gepresenteerd om in hoge resolutie tijdsvariërende
aberraties te voorspellen met behulp van een enkel brandvlakbeeld. Door phase retrie-
val voor temporeel dynamische aberraties te herformuleren in een niet-lineair Kalman-
filterraamwerk, is deze methode in staat om nauwkeurigere voorspellingen te verkrijgen.
Het hebben van een dynamisch model van de aberratie blijkt een waardevolle bron van
informatie te zijn die kan helpen bij problemen zoals uniciteit en convergentie. Daar-
naast wordt er een efficiënte implementatie van een niet-lineair Kalman-filteralgoritme
gepresenteerd, waarvan de rekencomplexiteit bijna lineair schaalt met het aantal pixels
van de camera.

Ten derde wordt een andere voorspellende WFSless AO-methode gepresenteerd, die
berust op de lineaire relatie tussen het gemiddelde kwadraat van de aberratiegradiënt
en de verandering in het tweede moment van de PSF. Door gebruikt te maken van een
Kalman-filter kan deze methode dynamische aberraties voorspellen en corrigeren met
behulp van een enkel brandvlakbeeld. Per tijdsstap wordt slechts een klein aantal spie-
gelactuatoren in real-time bijgewerkt op basis van nieuwe metingen, waarbij de infor-
matie van de Kalman-filter wordt gebruikt om de spiegelactuatoren te selecteren die
naar verwachting tot de grootste prestatieverbeteringen zullen leiden. Ook is een op-
timale controller ontworpen om deze geselecteerde spiegelactuatoren bij te werken.



1
INTRODUCTION

This chapter contains the necessary background information of the remaining chapters
in this thesis. The applications that are central to this thesis are static wavefront recon-
struction and phase retrieval on one side, and optimal prediction and control for dy-
namic aberrations in AO systems on the other. Besides the basics of imaging and adap-
tive optics, it will present several insights relevant to these applications in the field of
linear algebra, system modelling, system identification and Kalman filter theory as well
as an analysis of the current problems with prediction and phase retrieval methods in
AO systems. Since the theory will always be paired to an application, they will be intro-
duced as such. Section 1.1 will introduce the basics of imaging atmospheric turbulence.
Section 1.2 presents the phase retrieval problem and contains an overview of existing
methods to solve it. Afterwards, the main applications of the theory presented in this
thesis, adaptive optics (AO), is introduced in Section 1.3. Section 1.4 will continue on
this topic and focuses on the methods used to predict temporal dynamic aberrations
for AO systems and will address the importance of accurately modelling the aberration
dynamics. The problems with existing methods for large-scale AO systems will be dis-
cussed in Section 1.5, here an overview of the recent advances of structured modelling of
AO systems to decrease this computational burden is presented. Finally, the motivation
and structure of this thesis will be presented in Section 1.6.

1.1. IMAGING THROUGH ATMOSPHERIC TURBULENCE
Before focusing on the challenges arising in adaptive optics systems, an introduction to
some basic theory regarding imaging through atmospheric turbulence is given.

1.1.1. IMAGE FORMATION AND PHASE ABERRATIONS
This thesis focuses on phase aberrations caused by atmospheric turbulence in optical
systems for astronomy. The representation of optical systems using Fourier optics is
central to this thesis. There exists many textbooks and papers that treat Fourier optics
and optical image formation in detail [1–4], the reader is referred to these works if more

1
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2 1. INTRODUCTION

background knowledge is required.
The resolution of imaging through atmospheric turbulence is defined by two main

factors. Firstly, due to the finite size of the aperture, diffraction becomes a limiting factor
on the resolution. Secondly, phase aberrations to the optical field has a deteriorating ef-
fect on the image. These phase aberrations are caused by changes in the refractive index
due to turbulent air, which will be further discussed in Section 1.1.2. The complex op-
tical field at the telescope aperture, also known as the generalized pupil function (GPF),
will be defined as follows:

X (ρ,θ) = A(ρ,θ)exp(iΦ(ρ,θ)), (1.1)

where ρ,θ are the polar coordinates in the pupil plane and A(ρ,θ) and Φ(ρ,θ) are the
amplitude apodisation function and phase aberration respectively.

When the propagation distance of the light between the pupil and focal plane is suf-
ficiently large, the obtained image can be accurately approximated by the Fraunhofer
diffraction integral [2, 3]. This approximation states that the field in the back focal plane
is proportional to the Fourier transform of the GPF, i.e. when defining Fc (·) as the two-
dimensional (continuous) Fourier transform, the complex field at the focal plane be-
comes

I (ζ,ω) ∝Fc
(
X (ρ,θ)

)
, (1.2)

where ζ,ω are polar coordinates in the focal plane. The intensity of this field is known as
the point spread function (PSF), as it can be seen as the image of a point source. Denoting
the PSF by Y , it is defined by the following non-linear relation:

Y (ζ,ω) ∝|Fc
(
X (ρ,θ).

) |2. (1.3)

When there are no phase aberrations, i.e. Φ = 0, diffraction due to finite the aperture
size creates an image known as the Airy disk [4]. When introducing the angular distance,
ψ= ζ/ f , f being the focal length of the lens, the Airy disk is described by

Ya(ψ) = πD2

4λ2

(
2J1(πDψ/λ)

πDψ/λ

)2

(1.4)

where J1 is the Bessel function of the first kind. The first dark ring of the Airy disk is
located at an angular distance of 1.22λ/D rad from the center. This distance is significant
as it defines the Rayleigh resolution criterion, stating that objects at an angular distance
smaller than 1.22λ/D can no longer be distinguished.

When considering an extended object instead of a point source and assuming inco-
herent illumination, the image in the focal plane is given by the convolution between the
object intensity and the PSF. Hence, the PSF can be seen as the smoothing or blurring ef-
fect on the projection of the object onto the image plane. This also means that the PSF
can be used as a measure of the quality of the image of interest. Typically, the “width”
of the PSF is an important measure for the resolution of an optical system. Often, mea-
sures such as the full width at half maximum (FWHM), Encircled energy and Strehl ratio
are used to quantify this width. This thesis will occasionally use the notion of the Strehl
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ratio, defined as the ratio between the aberrated PSF and the aberration free PSF. Often,
the Strehl ratio S and the mean squared error of the phaseσ2

φ are related via the extended
Marechal approximation, stating that

S ≈ exp
(
−σ2

φ

)
, (1.5)

which is considered to be valid as long as σ2
φ. 4 rad [4]. This shows that maximizing the

Strehl ratio also means that the phase variance is minimized [5]. Because of this direct
relation,σ2

φ will commonly be used as a measure of the resolution of the imaging system,
but this can be converted into an expression of S via (1.5).

When the Fourier transform of the PSF is taken, the optical transfer function (OTF)
is obtained [4]. The OTF is a complex valued function that gives useful insights into the
range of spatial frequencies the imaging system is able to see. Due to the finite aperture,
the amplitude of the OTF is zero for any frequency larger than D/λ, known as the cut-off
frequency. In the absence of phase aberrations, this cut-off frequency defines the reso-
lution of the imaging system and such systems are referred to as diffraction limited. In
contrast, for very large aperture diameters D , the phase aberrations become the limiting
factor. These systems are called seeing limited. In astronomy, the cause of these phase
aberrations is turbulence inside the Earth’s atmosphere.

1.1.2. ATMOSPHERIC TURBULENCE
The main cause of phase aberrations in AO systems for astronomy is caused by fluctua-
tions of the refractive index in the Earth’s atmosphere. The behaviour of the atmospheric
turbulence is commonly modelled statistically, because the process has too many ran-
dom variables to formulate a closed-form solution. The most well-known model of the
effect of turbulence on the wavefront was presented almost a century ago by Kolmogorov
[6] and has often been clearly summarized and explained in literature [3].

The central idea in the Kolmogorov turbulence model is that kinetic energy in pock-
ets of air, called eddies, is transferred into smaller eddies. The outer scale L0 is used to
define the average size of the largest eddies, whereas the inner scale l0 represents the av-
erage size of the smallest eddies. When considering a scale smaller than the inner scale,
the turbulence is no longer self-sustaining due to energy dissipation caused by friction.

Phase aberrations perceived by a telescope are related to the change of refractive
index via the following integral:

φ(x, y, z) = 2π

λ

∫ ∞

0
n(x, y, z)d z, (1.6)

where z is the spatial coordinate in the direction of propagation of the light, x, y are the
spatial coordinates orthogonal to z and λ is the wavelength. According to Kolmogorov’s
model, the change of refractive index between two points in space, ρ ∈ R3 and ρ+∆ρ,
only depends on their absolute distance ∆ρ = |∆ρ| apart. The change is often repre-
sented by a statistical measure of random fields called a structure function, which is
closely related to its auto-correlation. The refractive index structure function Dn(∆ρ),
following Kolmogorov’s model, is defined as

Dn(∆ρ) =
∫ (

n(ρ)−n(ρ+∆ρ)
)2 dρ =C 2

n∆ρ
2/3, (1.7)
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where Cn is called the refractive index structure parameter, which generally varies with
the height above the ground. Due to this dependency on the height above the ground,
the total atmosphere is usually represented by a finite number of discrete thin layers at
different heights, called phase screens. For each phase screen, a structure function for
the phase difference defined in (1.6) can be formulated. This so-called phase structure
function can be found to equal

Dφ(∆ζ) = 6.88
∆ζ

r0
, (1.8)

where ∆ζ ∈ R2 is the vector between two points within the phase screen and ∆ζ = |∆ζ|.
The parameter r0 is called the Fried parameter [7], and is a measure of the turbulence
strength along the line of sight for a specific wavelength λ, where a smaller value of r0

indicates more severe atmospheric conditions. Typical values of r0 range from 5 cm to
20 cm depending on the atmospheric conditions. The ratio of the telescope diameter D
over the Fried parameter defines the severity of the aberrations on the optical system.
Assuming the Kolmogorov model, it follows that [8]

σ2
φ =

(
D

r0

)5/3

. (1.9)

One interpretation of the Fried parameter is that the RMS phase aberration over a circle
of diameter r0 (i.e. D = r0 in the equation above) is approximately 1 rad. As a conse-
quence, for a telescope with a diameter larger than r0, the phase aberration will become
the limiting factor on the system’s resolution instead of the diffraction limit. Increasing
the telescope diameter will not lead to a better resolution, which shows the importance
of compensating for phase aberrations for larger ground based telescopes.

The power spectral density (PSD) of the phase aberrations can be derived from the
structure function. The PSD for the Kolmogorov model is

ΨK
φ (κ) = 0.49r−5/3

0 κ−11/3, (1.10)

showing that the power is larger for smaller values of the angular spatial frequency κ in
rad/m. This insight can be used to show that the main contribution within the phase
aberration is caused by modes with lower spatial frequencies [8]. This insights implies
that, rather than a zonal basis, a modal basis might be an efficient way to represent the
wavefront aberrations caused by turbulence using a smaller number of variables, see
also Section 1.2.4 for more details on a modal representation of the wavefront. However,
it should be noted that this expression is only valid for κ within the range 1/L0 ¿ κ¿
1/l0. Other models have been proposed to represent the PSDs, including the Von Kar-
man model [3, 9], which is also used for simulation purposes throughout this thesis. The
Von Karman PSD takes into account the saturation given by the outer scale L0:

ΨV K
φ (k) = (

0.49r−5/3
0

)(
κ2 +κ2

0

)−11/6
, (1.11)

where κ0 = 2π/L0. The covariance function of the phase aberration can be deduced from
the PSD. For the Von Karman model, the covariance function can be shown to equal [10]

Cφ(∆ζ) =α
(

L0

r0

)5/3 (
2π∆ζ

L0

)5/6

K5/6

(
2π
∆ζ

L0

)
, (1.12)
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where K5/6 is the modified Bessel function of the third type and α is a constant: α =
Γ(11/6)2−5/6π8/3(24/5Γ(6/5))5/6. Finally, the modified Von Karman model includes the
influence of both the inner and outer scale on the PSD [3, 9]:

ΨmV K
φ (κ) = (

0.49r−5/3
0

)
exp

(−κ2/κ2
m

)(
κ2 +κ2

0

)−11/6
, (1.13)

with κm = 5.92/l0.
Kolmogorov’s model only describes the spatial changes of the phase aberrations.

However, atmospheric turbulence also is subject to temporal changes. These temporal
changes, or temporal dynamics, of the wavefront can be represented using Taylor’s frozen
flow hypothesis [11], which states that each phase screen moves at a constant speed in
a constant direction. When considering multiple layers, the overal windspeed can be
approximated by a weighted average velocity:

v̄ =
(∫

C 2
n(z)|v(z)|5/3d z∫

C 2
n(z)d z

)5/3

. (1.14)

The time it takes for the turbulence to move a distance r0, is called the coherence time
τ0 = r0/v̄ and it plays an important role in quantifying the strength of the turbulence
dynamics.

A technique that aims to correct for these phase aberrations is adaptive optics (AO)
[4, 12, 13], which will be discussed in Section 1.3.

1.2. THE PHASE RETRIEVAL PROBLEM
The previous section discussed how phase aberrations deteriorate the image quality in
telescopes. This section will discuss the problem that aims to retrieve the phase aberra-
tion from one or multiple PSF measurements.

1.2.1. THE PRINCIPLES OF PHASE RETRIEVAL
When observing the image of a point source though a distorting medium, a camera
would capture the aberrated PSF defined in (1.3). As discussed in Section 1.1.1, it is com-
mon in optical systems with large apertures, such as large ground-based telescopes, for
the aberrations to be the limiting factor on the resolution of the optical system. There-
fore, the phase aberrations have to be compensated for in order to obtain a higher res-
olution. As a consequence, estimating the existing phase aberrations (or the complete
GPF) becomes a topic of interest. Reconstructing the phase aberrations from the PSF is
known as the phase retrieval problem and is widely studied in literature, see [14, 15] for
a recent overview.

Unfortunately, cameras only capture the amplitude of the complex field I . If the full
complex field in the image plane would be known, the GPF could simply be calculated by
applying the two-dimensional inverse-DFT operator on this complex field. This relation
shows that finding the GPF is trivial as soon as the phase of I is known, such that this
problem is also known as the phase retrieval problem.

The most general formulation of the phase retrieval problem is to define it as the
problem of obtaining a complex vector x ∈Cn based on a set of measurements:

yi = |〈 fi , x〉|2, k = 1, . . . , p , (1.15)
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where fi ∈ Cn will be referred to as measurement vectors. In the case of Fourier optics,
the problem is also known as Fourier phase retrieval, where the elements in the mea-
surement vectors fi are based on the underlying relation given by the two-dimensional
Fourier transform as in (1.3).

Compared to the notation of the theory introduced in Section 1.1.1, a clear difference
is that the phase retrieval problem considers a (discrete) vector representation of the
problem, rather than the (continuous) functions that were used to define the relation
between the GPF and PSF in (1.3). The PSF is usually captured using a charge-coupled
device (CCD) camera, which is a photon detector that captures the arriving photons on
a discrete grid of pixels. By sampling the output of the function in (1.3), the relation can
be rewritten using the discrete Fourier transform (DFT) instead:

Y = |F (X ) |2, (1.16)

where Y ∈ Rp̄×p̄ , X ∈ Cn̄×n̄ are the sampled PSF and GPF respectively and F represents
the oversampled two-dimensional DFT, such that p̄ > n̄. The reason for this oversam-
pling is to satisfy the Nyquist sampling theorem in order to avoid aliasing. This theorem
states that, when the measurements are performed on a p̄ × p̄ grid of pixels, the highest
resolution grid on which the GPF can be reconstructed is of size n̄ × n̄ with n̄ = p̄/2.

The oversampled DFT can be computed by applying the DFT on a matrix Xp ∈Cp̄×p̄ ,
which is constructed by zero-padding the matrix X around the edges to the correspond-
ing size. This means that in practice, the resolution of the reconstruction is always lim-
ited to half the resolution of the camera capturing the PSF. Often, a vectorized formula-
tion of the (1.16) will be used, which is defined as

y = |Fvec (x) |2, (1.17)

such that y ∈Rp , x ∈Cn , p = p̄2 and n = n̄2. The operator Fvec represents the vectorized
formulation of the DFT, i.e. Fvec (x) = vec (F (X )).

The one-dimensional DFT can be expressed as a matrix-vector multiplication by us-
ing the DFT matrix D . Also here, oversampling is assumed with p = 2n, such that the
resulting DFT matrix will be of dimensions D ∈ Cp̄×n̄ . For the two-dimensional DFT,
(1.17) can be reformulated as the intensity of a matrix-vector product as follows:

y = |F x |2, (1.18)

where F := D ⊗D , with ⊗ being the Kronecker product. Notice that, considering the
standard definition of (1.15), the matrix F contains all the vectors fi on its rows.

Although this matrix formulation shows how the Fourier phase retrieval problem is
a specific case of the general phase retrieval problem, the DFT is usually not computed
via this matrix vector multiplication. Due to efficient algorithms such as the fast Fourier
transform (FFT), computing the DFT via a matrix-vector multiplication is not compu-
tationally efficient. However, when only one (or a few) elements of the DFT have to
be computed, this formulation becomes more efficient than computing the complete
transform using the FFT.
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1.2.2. PHASE RETRIEVAL AS A LEAST SQUARES PROBLEM

The above definition allows for the (Fourier) phase retrieval problem to be formulated as
a non-linear least-squares problem:

min
x∈Cn

∥∥y −|F (x) |2∥∥2
2 . (1.19)

Although this thesis will focus on the Fourier phase retrieval case, the theory presented
in this section can easily be extended to other types of measurements.

The optimization problem in (1.19) is non-convex, making it more difficult to solve
and it is often not possible to guarantee that the global optimum is found. Over the
past decades, many different types of algorithms have been proposed to solve the phase
retrieval problem, which will be discussed in Section 1.2.3. One major difficulty with
the phase retrieval problem is that there is not a unique solution when only a single PSF
image is available. For more information regarding the uniqueness of the phase retrieval
problem, the reader is referred to the overview papers [14, 15] and the references therein.

The non-uniqueness has led to a large body of literature that considers the availabil-
ity of possible prior information to the optimization problem of (1.19) [1]. Prior infor-
mation can be used as a constraint to the optimization problem, which might not only
overcome the uniqueness problem, but may also help with the general issue of having a
non-convex cost function.

There are many possible sources that can give useful prior information. One possible
source concerns knowledge of the amplitude of the GPF, a in (1.1). This could be knowl-
edge of the support of the GPF, i.e. whether pixels are inside or outside the aperture, or
(partial) knowledge of the values of a. In general, prior information on the amplitude a
can be included into the following constrained optimization problem:

min
x∈Cn

‖y −|F (x) |2‖ (1.20)

s.t.a ∈A , (1.21)

where A defines the set of vectors that satisfies the prior knowledge of a.

Another common method to obtain extra information is to increase the number of
sensors. The availability of multiple simultaneous measurements with different addi-
tional known phase aberrations, known as phase diversity [16–18], is a frequently used
technique to resolve uniqueness issues and improve the overall performance of phase
retrieval algorithms. By taking multiple images along the optical axis around the focal
plane, a known defocus phase aberration is added to each measurement. When adding
a known phase aberrationφD to system, the observed PSF changes as follows:

yD = |F (
x ¯exp( jφD )

) |2 := |FD (x) |2, (1.22)

where the vector φD is usually referred to as the phase diversity. By stacking the mea-
surements into a larger vector, the phase diversity technique leads to the following opti-
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mization problem:

min
x∈Cn

∥∥∥∥∥∥∥∥∥∥


yD1

yD2

...
yDL

−

∣∣∣∣∣∣∣∣∣∣


FD1 (x)
FD2 (x)

...
FDL (x)

x

∣∣∣∣∣∣∣∣∣∣

2∥∥∥∥∥∥∥∥∥∥

2

2

(1.23)

s.t.a ∈A , (1.24)

with the subscript D` denoting the `-th measurement with diversity term φD`
.

Finally, when solving the phase retrieval problem over a time-series of phase aber-
rations, in which the aberrations slowly change over time, knowledge of the temporal
behaviour of the wavefront can be used as a source of additional information. In Section
1.3, an application that deals with such temporally dynamic aberrations, called adap-
tive optics, is introduced. A common assumption in adaptive optics algorithms is that
the temporal dynamics are constant between two consecutive measurements. It will be
argued in Section 1.4 and further in Chapters 3 and 4 that accurately modelling the aber-
ration dynamics and using this knowledge can significantly improve the performance of
many adaptive optics algorithms.

1.2.3. PHASE RETRIEVAL ALGORITHMS
With the phase retrieval problem defined, this subsection focuses on the different classes
of algorithms that have been developed over the past decades. Throughout this thesis,
the many phase retrieval methods are divided into three categories: alternating pro-
jection methods, convex optimization-based methods and non-convex optimization-
based methods. A detailed overview of phase retrieval algorithms can be found in [14,
15].

ALTERNATING PROJECTION METHODS

The earliest algorithms that were developed to solve the phase retrieval problem all be-
long to the so-called alternating projection (AP) methods. The pioneering work was done
by Gerchberg & Saxton [19] and Fienup [20]. However, these early methods have severe
limitations when high levels of noise are present. Over the years, many other algorithms
have been introduced that aim to overcome these limitations [21–26]. A more detailed
overview and explanation of projection methods and the difference between algorithms
can be found in [1, 14, 27].

When applied to the Fourier phase retrieval problem, the required projections can
be carried out efficiently using the fast Fourier transform (FFT). This makes alternating
projection methods in many cases still the fastest class of methods to solve the Fourier
phase retrieval problem. However, there are several drawbacks. First of all, there does
not exist a global convergence result [28]. Furthermore, in contrast to the other classes
to be presented, AP methods do not explicitly minimize a cost function, making them
more difficult to use when certain prior knowledge has to be taken into account. This last
item will become a bigger issue when dealing with a temporal dynamic wavefront as, for
example, taking into account the prior information on the distribution of the stochastic
variable x is more challenging.
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CONVEX OPTIMIZATION METHODS

A different approach to solve the phase retrieval problem is to reformulate it using a con-
vex relaxation of the non-linear optimization problem in (1.19). This class of methods
was first presented after the realization that the relation in (1.15) can be reformulated
as: yi = trace

(
F̄i X̄

)
, where F̄i = fi f H

i and X̄ = x x H . By replacing the original parame-
ter vector x by rank 1 matrix X̄ , the measurement becomes linear in terms of this new
higher dimensional variable. This technique is called “lifting” and was first used to solve
the phase retrieval problem in the PhaseLift algorithm [29, 30]. Since X̄ should be of
rank 1, a rank constraint should be added to the optimization problem. However, due
to the non-convexity of a rank constraint, a convex relaxation applied by replacing the
rank constraint with its convex surrogate trace(X̄ ), resulting in a complex semi-definite
program. Once this has been solved for X̄ , an estimate for x can be retrieved form the
singular value decomposition of X̄ .

Besides the PhaseLift algorithm, other algorithms have been presented that use con-
vex relaxations of the original non-convex optimization problem, such as: PhaseCut [31],
which uses a different convex relaxation, PhaseMax [32], which presents a convex opti-
mization method that avoids lifting the variable and COPR [33], which is a fast iterative
method for large-scale phase retrieval problems that also avoids lifting.

An important advantage of this class of phase retrieval methods is the existence of
recovery guarantees. It has been shown that under certain conditions, the true solution
is recovered with high probability [31, 34, 35]. These results often only hold for random
measurement vectors, i.e. in cases where the vectors fi in (1.15) would be drawn from a
random distribution instead of given by the Fourier transform. However, numerical ex-
periments have shown that they often perform well on certain structured non-random
phase retrieval problems [31]. Despite the theoretical guarantees, convex optimization
methods also have a number of drawbacks. Firstly, the methods are computationally
demanding since lifting the variable means a quadratic increase in the number of un-
knowns, making them challenging to use for large-scale applications. Secondly, by sub-
stituting the true parameter vector with a quadratic expression, adding prior knowledge
to the optimization problem is still not straightforward.

NON-CONVEX OPTIMIZATION METHODS

A third class of phase retrieval methods has gained a lot of attention in the past years.
Starting with the Wirtinger flow algorithm [36], many algorithms have been formulated
that solve the phase retrieval problem in its original non-convex optimization formula-
tion using various non-linear optimization algorithms [37–41].

An advantage of these algorithms over AP methods is that there exist recovery guar-
antees under specific conditions. Usually, the convergence of the optimization algo-
rithms heavily relies on accurate initializers, random measurement vectors and a suffi-
ciently large number of measurements [36–38, 41]. Since these methods directly operate
in the original parameter dimension, they have an advantage over the convex optimiza-
tion methods in terms of algorithm run-time and storage requirements. However, for
the Fourier phase retrieval case, finding an accurate initializer is often difficult, which
causes problems regarding the convergence of the non-linear optimization algorithms.
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1.2.4. MODAL REPRESENTATION USING BASIS FUNCTIONS
The introduction of the phase retrieval problem in Section 1.2 assumed that the GPF is
reconstructed in terms of a zonal and discretized (i.e. pixel) basis. However, other types
of basis functions have been used to represent the wavefront or GPF.

A general advantage of any modal decompositions is that it is an efficient way to de-
crease the number of parameters that are needed to characterize the wavefront or GPF,
while maintaining the desired resolution of the reconstruction. Especially for compu-
tationally demanding phase retrieval methods, such as the (non-)convex optimization-
based methods presented in Section 1.2.3, this decrease in computational burden can
lead to significantly faster algorithms, see e.g. [33, 42]. Moreover, when the basis consists
of smooth functions, a modal decomposition can be a way to enforce a certain smooth-
ness in the reconstruction, which can be advantageous under noisy circumstances.

MODAL REPRESENTATION OF THE WAVEFRONT

As mentioned in Section 1.1.2, Kolmogorov’s turbulence model states that the PSD of the
wavefront decreases in value when the spatial frequency of a certain mode in the wave-
front decreases. Therefore, choosing a modal basis instead of a zonal basis to represent
the wavefront can be a good way to reduce the dimensionality of the phase retrieval
problem.

The most well-known set of basis functions to represent the wavefront are the Zernike
polynomials [8]. Representing the wavefront in terms of Zernike polynomials gives a
modal decomposition of the wavefront in terms of a set of orthogonal basis functions:

Φ(ρ,θ) = ∑
n,m

ζm
n Z m

n (ρ,θ), (1.25)

where the indices n ∈N0 and m ∈Z denote the radial order and the azimuthal frequency
of the Zernike polynomial Z m

n . The polynomials are the product of a radial polynomial
R |m|

n (ρ) and a trigonometric function Θm
n (θ),

Z m
n (ρ,θ) =αm

n R |m|
n Θm

n (θ), (1.26)

with the following definitions of Rm
n (ρ) and Θm

n (θ):

Θm
n (θ) =

{
cos(mθ) for m ≥ 0

−si n(mθ) for m < 0
,

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s (n − s)!

s!
( n+m

2 − s
)
!
( n−m

2 − s
)
!
ρn−2s .

(1.27)

Throughout this thesis, the normalization coefficients αm
n are given by

αm
n =

{p
n +1 for m = 0p
2(n +1) for m 6= 0

. (1.28)

Due to the fact that Zernike polynomials are widely used in optics, a number of modes
are given conventional names. This thesis will use the following names for the polyno-
mials with indices (m,n): (0,0) is called piston, (1,1) tip, (−1,1) tilt and (0,2) is called
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defocus. Defocus was mentioned before in Section 1.2 as one of the most common aber-
rations applied by the phase diversity method.

Zernike polynomials are particularly interesting when considering wavefront aber-
rations due to atmospheric turbulence since they can be ordered based on their spa-
tial frequencies. This means that according to Kolmogorov’s model, the modes with a
small order n will be most prevalent in the wavefront [8]. For example, it was shown that
when removing tip, tilt and defocus, the total phase variance of (1.9) is reduced from
1.029(D/r0)5/3 to 0.111(D/r0)5/3. Using this insight, the necessary order of the Zernike
polynomials to represent the wavefront can be chosen, depending on the desired resid-
ual phase variance of the decomposition.

MODAL REPRESENTATION OF THE GPF

In the general phase retrieval problem, not only the wavefront, but the complete (complex-
valued) GPF is reconstructed. Therefore, it can be desired to extend the modal basis to
fit a complex valued field. By extending Zernike polynomials into the complex domain,
the so-called extended Nijboer-Zernike (ENZ) polynomials are obtained [43, 44]. Using
a set of complex-valued polynomials, the GPF can be approximated as a series of ENZ
polynomials:

X (ρ,θ) = ∑
n,m

βm
n N m

n (ρ,θ). (1.29)

n and m denote respectively the radial order and azimuthal frequency of the ENZ poly-
nomial N m

n (ρ,θ), which is defined by

N m
n (ρ,θ) =p

n +1R |m|
n (ρ)exp(i mθ). (1.30)

Similar to the ordering of Zernike polynomials, also the ENZ polynomials can be ordered
according to their radial order and they share similar advantageous properties with the
real-valued Zernike polynomials. Although ENZ polynomials have been proven to be
suitable polynomials in representing the GPF of an aberrated optical system, they have
a number of drawbacks. First of all, they are defined on a circular aperture only, making
them less flexible for systems with different aperture shapes. Secondly, they are subject
to Runge’s phenomenon, which leads to oscillations on the edges of the pupil. ENZ poly-
nomials have been used to represent the GPF to solve the phase retrieval problem in [42],
where it was shown that a few polynomials can accurately capture the wavefront while
significantly speeding up the computations, especially for convex optimization-based
phase retrieval methods.

Recently, the use of Gaussian radial basis functions (GRBFs) was proposed as an al-
ternative to ENZ polynomials [45], where the GPF was approximated by a linear combi-
nation of real-valued GBBFs:

X (ρ,θ) = AG (ρ,θ)
Nγ∑

k=1
γkGk (ρ,θ), (1.31)

where Gk (ρ,θ) are the GRBFs:

Gk (ρ,θ) = e−λk (ρ2+%2
k−2ρ%k cos(θ−ϑk )), (1.32)
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Figure 1.1: Schematic representation of a typical AO system. Adapted from Fig. 3.1

γi ∈C are complex-valued coefficients and (%k ,ϑk ) are the polar coordinates of the GRBFs’
centers. The function AG (ρ,θ) is an optional pupil function, with unit values inside and
zero values outside of the aperture. The parameter λk is often referred to as the shape
parameter and defines the width of the GRBFs.

It was shown that by using GRBFs for an analytic evaluation of the diffraction inte-
gral, an improvement in terms of accuracy and execution time was achieved [45]. The
freedom to choose the locations and width of each GRBF separately results in a flexible
basis that is easy to adapt. For example, it can be fitted to non-circular apertures or the
number of GRBFs can be increased and decreased locally to create a multi-resolution
scheme when desired. This increased flexibility can be further extended by considering
multiple layers of GRBFs with different centers and widths per layer to improve the ac-
curacy. An important drawback of the GRBF method is, however, that the functions are
not orthogonal, which can lead to ill-conditioned optimization problems when solving
the phase retrieval problem. Methods have been proposed to improve the conditioning
in which a new set of basis functions is formulated that spans the same basis as the orig-
inal set of basis functions, see e.g. [46]. A method that solves the phase retrieval problem
using a decomposition in terms of GRBFs is presented in Chapter 2.

1.3. ADAPTIVE OPTICS
This section will address the basic idea of a classic single conjugate adaptive optics (AO)
system. For a more detailed theory on adaptive optics, the reader is referred to one of
the many textbooks [4, 12, 13]. A schematic representation of an AO system is shown in
Figure 1.1.

1.3.1. THE MAIN IDEA OF ADAPTIVE OPTICS

As discussed in Section 1.1.1, wavefront aberrations result into a deterioration of the im-
age quality in optical systems. In astronomy, these wavefront aberrations are caused by
turbulence in the Earth’s atmosphere. Adaptive optics systems aim at compensating for
this deteriorating effect by using a wavefront modulating device, such as a deformable
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mirror (DM). Usually, a wavefront sensor (WFS) is used to obtain an estimate of the aber-
rated wavefront, which is then processed by a controller to compute the shape of the
DM. This subsection will introduce the main components in a classical AO system and
shortly addresses adaptive optics from the perspective of control theory. More advanced
control methods for AO systems will be discussed in Sections 1.4 and 1.5.

THE DEFORMABLE MIRROR

To compensate for the wavefront aberrations, one or multiple actuators, typically de-
formable mirrors, are included within the AO system. Deformable mirrors are, as their
name suggests, able to change the shape of their reflective surface. In this way, they are
able to modulate the wavefront observed by the camera.

In practice, systems often contain multiple deformable mirrors, each of them having
a specific function. Recall from Section 1.2.4 that Kolmogorov’s model of atmospheric
turbulence states that modes with low spatial frequencies, e.g. low-order Zernike poly-
nomials such as tip, tilt and defocus, are most prevalent in the wavefront. Therefore,
it is common that there is a separate mirror to correct for the tip and tilt modes in the
wavefront. Furthermore, a so-called woofer-tweeter setup is frequently used, where the
woofer aims to compensate for the low-frequency but large-amplitude modes, and the
tweeter is included to compensate for the modes with high spatial frequencies but small
amplitudes.

In this thesis, the temporal dynamics of a deformable mirror will be ignored. This is
based on the assumption that one sampling time of the AO loop is much longer than the
time it takes for the transient response of the DM to fade out. Moreover, DMs typically
have their first resonant frequency much larger than the sampling frequencies of the
sensor. The temporal dynamics of the DM are often approximated by a one step time
delay.

The phase modulating effect of the DM can be represented on a discrete n̄ × n̄ sam-
pling grid, which will be denoted by ΦDM (k),∈ Rn̄×n̄ . It is commonly modelled via a
linear combination of the effect that each actuator has on the wavefront, their so-called
influence functions Hi ∈ Rn̄×n̄ , i = 1, . . . ,m. This, combined with the one step delay, im-
plies the following model of the DM:

ΦDM (k) =
m∑

i=1
Hi ui (k −1). (1.33)

By vectorizing the wavefront into a vector φDM (k) ∈Rn , this becomes

φDM (k) = Hu(k −1), (1.34)

such that u(k) ∈ Rm contains all the input signals ui to the DM and H ∈ Rn×m is known
as the mirror’s influence matrix. The space spanned by the columns of this influence
matrix defines the shapes the mirror is able to take with respect to the sampling grid.
Since any mirror with a finite amount of actuators cannot take any arbitrary shape, a so-
called fitting error is introduced, which is defined as the difference between the desired
induced phase by the DM and the true applied correction. The fitting error has been
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found to scale as follows [4]:

σ2
f i t = c f

(
da

r0

)5/3

(1.35)

where da is the distance between actuators projected on the aperture and c f is a con-
stant depending on the type of deformable mirror. For membrane mirrors, c f = 0.28.

FOCAL-PLANE CAMERA

The focal-plane camera, sometimes referred to as the science camera, is usually only
used to obtain an image of the object of interest. Improving the sharpness of this image
is eventually the main goal of the AO system. However, the image captured by the focal-
plane camera does contain information on the wavefront aberrations. The process of
using a camera located in a focal plane of the telescope to reconstruct the wavefront
is often referred to as focal-plane sensing. When the observed object is a point source,
focal-plane sensing requires solving the phase retrieval problem discussed in Section
1.2.

In this thesis, it is assumed that the focal-plane camera is a CCD camera that captures
the aberrated PSF of (1.16). In practice the images are corrupted by measurement noise.
There are multiple sources of measurement noise in CCD cameras, including the shot
noise, which has a Poissonian distribution, and read-out noise, which is usually assumed
to be zero-mean white Gaussian noise. Considering a single pixel value of a captured
image, denoted by y , the combined influence of these noise sources can be modelled as
follows:

y = ytr ue + vshot + vr ead , (1.36)

where ytr ue is the number of photons in a hypothetical noiseless case. The read-out
noise modelled as a zero-mean white Gaussian noise vr ead ∼N (0,σ2

r ), whereas the con-
tribution of the shot noise is represented by vshot , such that (ytr ue +vshot ) ∼ Poi s(ytr ue ).
When this reasoning is extended to the vectorized camera measurement containing all
pixels, the focal-plane camera measurement can be modelled as

y(k) = |Fvec (x) |2 +v y (k), (1.37)

where the vector v y is the combined influence of both the shot noise and read-out noise.
Since the Poisson distribution is known to converge to a Gaussian distribution when

the number of arriving photons is large, i.e.,

lim
ytr ue→∞Poi s(ytr ue ) =N (ytr ue , ytr ue ), (1.38)

the following Gaussian approximation is implied:

Poi s(ytr ue ) ≈N (ytr ue , ytr ue ). (1.39)

Using this as an approximation, the total measurement noise v = vshot + vr ead can be
modelled as follows when ytr ue is large:

vy ∼N (0, ytr ue +σ2
r ). (1.40)
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THE WAVEFRONT SENSOR

Since retrieving the wavefront estimation from focal-plane images alone is complicated
and computationally demanding, dedicated pupil-plane wavefront sensors are a crucial
element in AO systems when a fast reconstruction of the wavefront is desired. An impor-
tant difference between the pupil-plane wavefront sensor and the focal-plane camera
is, as the name suggest, the placement of the sensor. Pupil-plane sensors are placed in
a plane that is conjugated to the pupil plane of the telescope. Although there exist a
number of different pupil-plane wavefront sensors, the most commonly used sensor in
astronomy is the Shack-Hartmann (SH) sensor.

The SH sensor consists of a grid of small lenses (referred to as lenslets), each of which
focuses a local part of the aperture (referred to as a subaperture) onto a photon sensor.
When considering a single guide star, the image obtained by the SH sensor is an array
of focused images of guide stars. These focused images are usually referred to as (focal)
spots. When the wavefront is perfectly flat within each subaperture, the spots are visible
as a set of Airy patterns located on a regular grid, and the center of each spot is in the
center of their corresponding subaperture. When the wavefront within each subaper-
ture is not flat, the spots will get distorted as well. In particular, the average tilt within
each subaperture moves the center of the spot away from the center of the subaperture.
Therefore, the distance between the spot location and the center of the subaperture de-
fines the local tilt in this particular subaperture. By measuring these distances for all
subapertures, an estimate of the spatial gradient of the wavefront can be computed.

One main advantage of the SH sensor with respect to focal-plane sensing is that it
provides a measurement that is linearly related to the wavefront aberrations. This sig-
nificantly simplifies the wavefront reconstruction problem. Considering a discretized
wavefront φ ∈ Rn and its corresponding discretized grid of local gradients s ∈ Rq , the
following linear relation can be defined:

s =Gφ, (1.41)

where G ∈ Rq×n is known as the geometry matrix. Due to camera noise, the discretiza-
tion into pixels and the discretization of the pixel values, the measurement values are
corrupted by noise. Usually, the measurement noise is approximated by a zero-mean
white Gaussian noise. That is, the WFS measurements are modelled by

s(k) =Gφ(k)+vs (k), (1.42)

with vs (k) ∼N (0,Rs ), Rs = rs I .
Since the WFS signal only contains information about the average gradient of the

wavefront within each subaperture, i.e. the local tip-tilt modes, all higher order aber-
rations per suberapertures are not measured. According to the Nyquist-Shannon sam-
pling theorem, the maximum spatial frequency of the wavefront captured by the WFS
is 1/(2ds ), ds being the diameter of each subaperture. Furthermore, because of the ge-
ometry of the WFS lenslets, there are two modes in the wavefront for which the sensor
is blind, known as the piston and waffle mode. This is reflected by the fact that the ma-
trix G is rank-deficient and the unobservable modes span the nullspace of the matrix G .
The piston mode is just the average value of the phase aberration and does not affect
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the image quality, such that it is often neglected. The waffle mode is a very high spatial
frequency mode, so Kolmogorov’s model of turbulence suggests that its influence on the
wavefront aberrations is limited.

1.3.2. CLOSING THE LOOP
The last remaining component of the AO system in the scheme of Figure 1.1 is the con-
troller. The controller computes the signal to the DM, u(k), based on the sensor mea-
surements and aims to flatten the residual wavefront. Assuming a turbulent wavefront
denoted by φ(k) and wavefront induced by the DM φDM (k) as in (1.34), the residual
wavefront is defined as

ε(k) =φ(k)−φDM (k) =φ(k)−Hu(k −1), (1.43)

such that the SH sensor measurement of (1.42) becomes

s(k) =Gε(k)+vs (k). (1.44)

Usually, the controller uses the signal from the WFS. However, there are AO control sys-
tems that do not use a dedicated WFS, but instead the image from the focal-plane cam-
era directly. These systems are known as wavefront sensorless (WFSless) adaptive optics
systems. This subsection will be limited to the classical control methods, which do use a
dedicated WFS. WFSless control will be discussed in Section 1.3.3.

In general, the computation of the “optimal” control signal u(k) can be split into two
separate steps. The first step is a wavefront reconstruction step, which can be defined
as finding an estimate of the wavefront given the sensor measurement s(k). The second
step is a projection of the estimated wavefront onto the actuator space of the DM.

Early methods have treated the wavefront reconstruction problem as a determin-
istic least-squares problem [47–49]. In a deterministic setting, the wavefront estimate
becomes the solution to a linear least squares problem of the form:

ε̂(k) = argmin
ε(k)

‖s(k)−Gε(k)‖2
2 =G†s(k), (1.45)

where ε̂(k) represents the reconstructed wavefront and G† represents the pseudo-inverse
of the matrix G . Due to the low-rank property of the matrix G , G† is usually computed
using the truncated SVD, see [50] for details.

The drawback of treating wavefront reconstruction as a deterministic least squares
problem is that its solution is usually very sensitive to measurement noise. Therefore,
methods have been proposed that take the stochastic nature of the problem into account
[51–53]. Treating wavefront reconstruction as a stochastic least squares problem requires
a priori knowledge of the distribution of the wavefront. In Section 1.1.2, it was discussed
that the spatial covariance of the wavefront is assumed to be zero-mean white noise:

φ∼N (0,Cφ), where Cφ = E
[
φ(k)φT (k)

] ∈Rn×n , (1.46)

where the entries of the covariance matrix Cφ can be computed via (1.12). In the closed-
loop case, however, the WFS measures the residual wavefront ε(k) rather than φ(k).
Therefore, the assumption is made that E [ε(k)εT (k)] = Cφ. With this assumption, the
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stochastic least squares problem can be formulated as a regularized weighted least-squares
problem:

ε̂(k) = argmin
ε(k)

‖s(k)−Gε(k)‖2
R−1

s
+‖ε(k)‖2

C−1
φ

=
(
GT R−1

s G +C−1
φ

)−1
GT R−1

s s(k). (1.47)

The stochastic least-squares problem is much more robust against measurement noise,
and therefore preferred when (an estimate of) the matrices Cφ and Rs are available.

The second step of the control problem is the projection of the reconstructed wave-
front ε̂(k) onto the actuator space of the DM. Using the linear model of the DM given in
(1.34) and since φ̂(k) = ε̂(k)+Hu(k−1), this boils down to solving a simple deterministic
least squares problem which has the following closed-form solution:

u(k) = H †φ̂(k +1) = H †ε̂(k +1)+u(k −1). (1.48)

The problem with this method is that, as shown in the above equation, it requires knowl-
edge of ε̂(k +1) at time instance k. Typically, this is where the classical controller makes
the assumption that, when the sampling frequency is large enough, φ̂(k+1) = φ̂(k). Un-
der this assumption, the overall controller becomes

u(k) = H †
(
GT R−1

s G +C−1
φ

)−1
GT R−1

s︸ ︷︷ ︸
M

s(k)+u(k −1), (1.49)

where the matrix M is often referred to as the controller gain matrix. Of course, this
controller is but an example, and there are many other methods possible to compute a
gain matrix M .

Although the gain matrix derived above is optimal in theory, practical issues, such as
model inaccuracies or limitations of the range in which the DM can be controlled, mean
that adaptations of this control method can lead to a better performance. Therefore, it is
common to use a proportional-integrator (PI) controller based on this gain matrix [53]:

u(k) = c1M s(k)+ c2u(k −1) (1.50)

where c1, c2 are two tuning parameters.
It will be discussed in Section 1.3.4 that the assumption φ̂(k +1) = φ̂(k) is the source

of the so-called temporal error. Therefore, including a better one-step-ahead prediction
of φ̂(k +1) based on φ̂(k) can significantly improve the controller performance, which
will be the topic of Section 1.4.

1.3.3. FOCAL-PLANE SENSING AND WAVEFRONT SENSORLESS AO
Although AO systems typically have a dedicated WFS, there is a second class of control
methods for AO often called wavefront sensorless (WFSless) AO methods. One class of
WFSless AO methods typically uses optimization methods to maximize a certain perfor-
mance metric by iteratively updating the DM. Various of such WFSless AO algorithms
have been developed using different optimization techniques [54–58]. These methods
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typically require many iterations in which a new image is obtained in order to converge.
Therefore, a recent development in WFSless AO is a class of methods, often referred to as
model-based WFSless AO, in which a model of the metric is used to speed up the correc-
tion [59], see [59–66] and the references therein for examples of such algorithms. Model-
based WFSless AO methods are, due to their faster convergence, promising for real-time
AO applications in which the aberration is time-varying.

It was previously mentioned that, when a dedicated WFS was included in the AO
system, the control problem can be seen as two separate steps. First, the wavefront
is reconstructed from the sensor signal and second, this wavefront is projected onto
the actuator space. This two-step approach can also be extended to the WFSless case.
The second step remains the same as in the WFS-based control case, but the wavefront
reconstruction step becomes significantly more complicated as it involves solving the
phase retrieval problem. Section 1.2 discussed that from a single PSF image only, it is
often impossible to retrieve the wavefront without certain prior knowledge.

Advantages of focal-plane sensing methods are that they require no, or little, extra
optical components, making the system simple and inexpensive. Moreover, the absence
of a beam splitter avoids non-common path aberrations (NCPAs), which occur when us-
ing a pupil-plane WFS due to different optical paths to the WFS and focal-plane camera.
The main drawback of using focal-plane sensors, however, is the non-linear relation be-
tween the image in the focal plane and the wavefront, which creates a challenge for AO
systems with respect to finding an accurate reconstruction in real time [18]. The non-
linear relation between the wavefront and the image causes an increased computational
burden. Approximations of the non-linear relation using a first- or second-order Taylor
expansion can be used to speed up the reconstruction. It was shown that when the phase
is small, a first-order approximation of the relation can be used to obtain a closed-form
solution to the phase retrieval problem [67].

A number of iterative methods have been proposed that use a first- or second-order
Taylor approximation to represent the non-linear relation between the wavefront and
PSF [68–70]. By adopting an iterative framework in which the Taylor expansion is rede-
fined at each iteration around the current estimate, the limited range of the small-phase
approximation can be extended. Moreover, when considering a closed-loop situation
with a high sample frequency such thatφ(k+1) ≈φ(k), and with a controller that is able
to fully regulate the residual wavefront, i.e. H in (1.34) is full-rank, the control signal
can be chosen such that ε̂(k +1) = ε̂(k) = 0. This realization implies that in such scenar-
ios, the Taylor approximation only has to be computed around zero phase, which can
be done offline and can be used to speed up the wavefront reconstruction significantly.
Another advantage of such an iterative approach is that the phase diversity images can
also be collected sequentially [71]. Since the deformable mirror applies a different cor-
rection at each iteration, the correction change can be seen as a source of phase diversity
between two consecutive measurements.

The combination of the larger computational burden compared to pupil-plane sens-
ing algorithms and the use of the assumption φ(k +1) ≈ φ(k), implies that focal-plane
sensors are mainly suited for the estimation of quasi-static aberrations and calibration
procedures. Therefore, the need for an accurate one-step-ahead predictor is even greater
for these algorithms than for WFS-based control when aiming to reconstruct and control
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faster evolving aberrations.

1.3.4. TEMPORAL DYNAMICS IN ATMOSPHERIC TURBULENCE

The temporal dynamics of aberrations caused by atmospheric turbulence was briefly
discussed in Section 1.1.2. It was mentioned how by using Taylor’s frozen flow hypothesis,
the turbulence can be modelled as finite set of layers, each of them moving in a constant
direction with a constant speed. This subsection will discuss the effect of aberration
dynamics on the performance of an AO system.

Taylor’s frozen flow hypothesis can be used to relate the spatial and temporal statis-
tics, sometimes referred to as spatio-temporal correlations. Defining the wavefront of
a single turbulence layer at time instance t as φ(ζ, t ), where ζ ∈ R2 denotes the spatial
coordinates, this relation is as follows:

φ(ζ, t +∆t ) =φ(ζ−ν∆t , t ), (1.51)

where ν ∈ R2 is represents the direction and speed of translation of the phase screen.
The importance of this equation is that it can be used to transform the temporal change
into a spatial distance, opening up the possibility to apply Kolmogorov’s theory not only
to represent the spatial, but also the temporal statistics.

It was previously mentioned that there is an inevitable delay between the WFS cap-
turing an image and the DM actually applying its correction. This was modelled by as-
suming a delay in the DM model (1.34). During this time delay, the wavefront aberrations
will have evolved. The error caused by this time delay is called the temporal error and
can be computed via

σ2
temp = ct

(
fG

fs

)5/3

, (1.52)

where fG is known as the Greenwood frequency: fG = 0.427v̄/r0 [72, 73], ct is a scaling
factor which depends on the type of controller, and fs is the control loop’s sampling
frequency.

Since the temporal error increases proportional to
(

fG / fs
)5/3, the Greenwood fre-

quency, or its related Greenwood time delay: τ0 = 0.314r0/v̄ , is often used as a measure
to determine the distorting effect of the dynamics on the image quality. For large Green-
wood frequencies, i.e. large v̄ or small r0, the temporal error can become the limiting
factor of the control system. This leaves two options to improve the performance of the
AO system. The first being to increase the sampling frequency fs , which is limited by the
hardware (cameras, DM) and the computation of the control action. The second option,
which is a central part of this thesis, is to predict the wavefront aberration.

1.4. PREDICTION FOR ADAPTIVE OPTICS SYSTEMS
In order to decrease the temporal error, it is necessary to predict the wavefront aberra-
tions. This section will discuss prediction methods for adaptive optics system and mod-
elling the turbulence dynamics and the measurement noise.
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1.4.1. MODELLING THE WAVEFRONT DYNAMICS
When modelling the dynamic wavefront aberrations caused by atmospheric turbulence,
vector auto-regressive (VAR) models are a popular choice to capture the dynamic evolu-
tion. These VAR models are of the form:

φ(k +1) =
r−1∑
i=0

Aiφ(k − i )+w (k), (1.53)

where the matrices Ai ∈ Rn×n are the VAR coefficients and w (k) ∼ N (0,Q) is a Gaus-
sian zero-mean white noise signal with covariance matrix Q. When considering a single
turbulence layer, a VAR model of order r = 1 is often sufficient to accurately capture the
model dynamics. For multiple layers, higher order models can improve the accuracy.
This thesis, however, mainly focuses on VAR models of order r = 1, as they often result
in a prediction that is accurate enough, while having a limited number of parameters,
making them suitable for large-scale AO applications. This computational advantage is
further explained in Section 1.5.

A more general representation of the turbulence dynamics would be to model it by a
state-space model:

x(k +1) = Ax x(k)+wx (k), (1.54)

φ(k) =Cx x(k)+vx (k), (1.55)

where x(k) ∈ Rnx is known as the state and wx (k) and vx (k) are zero-mean Gaussian
white noise signals with covariance matrices Qx and Rx respectively. Although this model
is more general and, therefore, theoretically more precise in capturing the turbulence
dynamics, it also has its drawbacks. The main drawback is that the state x(k) does not
necessarily represent a physical quantity, making it difficult to interpret in practice. This
leads to problems in large-scale applications, when one would like to formulate compu-
tationally efficient structured models.

There are many available methods for deriving a turbulence dynamics model. In
general, these methods can be split in two categories: data-driven methods and methods
using first-principles. Methods that obtain the model from first principles often assume
a simple model structure, such as a first order VAR (VAR-1) model, i.e., taking r = 1 in
(1.53):

φ(k +1) = Aφ(k)+w (k), (1.56)

where the matrices A and Q are unknown and have to be determined. These meth-
ods require prior knowledge of certain characteristics of the turbulence, including the
wavefront’s covariance matrix Cφ and average wind speed v̄ . Combined with the spatio-
temporal correlations of (1.51), given by the frozen-flow hypothesis, having such prior
knowledge allows for the computation of the covariance of the current and delayed wave-
front: Cφ,1 = E [φ(k)φT (k −1)]. Using this knowledge, the matrix A can be derived via

A =Cφ,1C−1
φ . (1.57)

With A known, the relation in (1.56) can be used to compute Q as

Q =Cφ− ACφAT . (1.58)
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When there is no accurate prior information available, the model can be computed from
data. Continuing the example of a VAR model of order 1, a possible data-driven approach
to identify the matrices A and Q will be presented next.

The first step of such a data-driven approach is to obtain a time-series of open-loop
sensor data: {ŝ(k), k = 1,2, . . . ,K }, which can be transformed in wavefront data: {φ̂(k), k =
1,2, . . . ,K }, for example using one of the wavefront reconstruction techniques discussed
in Section 1.3.2. Next, sample covariance approximations of the matrices Cφ and Cφ,1

can be determined:

Cφ = 1

K

K∑
i=1

φ(i )φT (i ), Cφ,1 = 1

K −1

K−1∑
i=1

φ(i +1)φT (i ), (1.59)

after which A and Q can be computed via (1.57) and (1.58). Of course, this example is a
very simple and straightforward approach to data-driven system identification. Differ-
ent approaches and methods to fit VAR or state-space models to data are discussed in
textbooks such as [50, 74]. Using the VAR-1 model to represent the turbulence, the fol-
lowing vector auto-regressive model with exogenous inputs (VARX) represents the resid-
ual wavefront in closed-loop:

ε(k +1) = ε(k)−Hu(k)+ AHu(k −1)+w (k). (1.60)

A number of AO specific data-driven methods have been presented in the literature that
use a dynamic model to predict the wavefront aberrations, e.g. [75, 76]. However, many
system identification methods are mainly suitable for small- to medium-scale AO sys-
tems. Large-scale AO systems typically assume a dimensionality n > 104, which creates
problems regarding the large number of unknowns to be estimated, e.g. a full matrix
A has 108 unknowns. Therefore, without special techniques to reduce the number of
model parameters, these methods would require an immense amount of data and avail-
able storage, which is not realistic. Typically, the system matrices are modelled using
structured representations, as will be discussed in Section 1.5.

1.4.2. OPTIMAL PREDICTION FROM WFS MEASUREMENTS
Combining the SH sensor model of (1.42) and the model of (1.60) to represent the resid-
ual wavefront, the following linear state-space system can be derived for an AO system:

ε(k +1) = Aε(k)−Hu(k)+ AHu(k −1)+w (k) (1.61)

s(k) =Gε(k)+vs (k), (1.62)

where w (k) ∼ N (0,Q) and vs (k) ∼ N (0,Rs ) are known as the process noise and mea-
surement noise respectively. The Gaussian distribution of the noise signals allows for
the use of a Kalman filter to filter and predict the residual wavefront ε(k).

Kalman filters are widely used as state observers and have been studied extensively
since their first presentation by Kalman [77]. Nowadays, they are standard tools for fil-
tering and prediction of linear state-space systems and can be found in many textbooks,
e.g. [50]. At each time step k, the Kalman filter performs two steps. First, the measure-
ment update is performed, which optimally combines a new measurement with a previ-
ous state estimate ε̂(k|k −1) into a new state estimate, ε̂(k|k). The second step, the time
update, uses this new state estimate and computes a prediction of the state, ε̂(k +1|k).
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Measures of the accuracy of the estimates ε̂(k|k) and ε̂(k +1|k) are expressed by the
state error-covariance matrices P (k|k) and P (k +1|k) respectively, defined as

P (k|k) = E
[
(ε(k)− ε̂(k|k)) (ε(k)− ε̂(k|k))T ]

, (1.63)

P (k +1|k) = E
[
(ε(k +1)− ε̂(k +1|k)) (ε(k +1)− ε̂(k +1|k))T ]

. (1.64)

The Kalman filter computes the time and measurement update such that their corre-
sponding error covariance matrices are minimal. For a proof of the minimal variance
property of Kalman filters, the reader is referred to [50].

The measurement update can be formulated as the solution to a stochastic least-
squares problem:

ε̂(k|k) = argmin
ε(k)

‖ε̂(k|k −1)−ε(k)‖2
P−1(k|k−1) +‖s(k)−Gε(k)‖2

R−1
s

, (1.65)

= ε̂(k|k −1)+K ′(k) (s(k)−Gε̂(k|k −1)) , (1.66)

where

K ′(k) = P (k|k −1)GT (
Rs +GP (k|k −1)GT )−1

. (1.67)

This optimization problem clearly has similarities with the wavefront reconstruction
problem in (1.47). The most notable differences being that, instead of a certain assumed
prior knowledge on the distribution of the random variable ε(k), it uses the statistical
information from the time update of the previous time step, ε(k) ∼N (ε̂(k|k−1),P (k|k−
1)). The time update follows from propagating the measurement update estimate one
time-step ahead using the state update equation of (1.61):

ε̂(k +1|k) = Aε̂(k|k)−Hu(k)+ AHu(k −1) (1.68)

= (A−K (k)G) ε̂(k|k −1)+K (k)s(k)−Hu(k)+ AHu(k −1), (1.69)

where K (k) = AK ′(k) is usually referred to as the Kalman gain. The input signals to con-
trol the shape of the DM, u(k) and u(k − 1), can be chosen freely and depend on the
control algorithm.

In order to perform the measurement update, the error-covariance matrices have to
be updated. Given the previous time update, P (k|k − 1), the next combined time and
measurement update is given by the Riccati difference equation. Using the assumption
that E [w (k)vs (k)T ] = 0, this update becomes:

P (k +1|k) =AP (k|k −1)AT +Q . . .

− AP (k|k −1)GT (
Rs +GP (k|k −1)GT )−1

GP T (k|k −1)AT . (1.70)

When the state-space model is time-invariant, as is the case for the model given by (1.61
- 1.62), the recursions for P (k|k −1) and K (k) converge to constant matrices. These con-
stant matrices are computed by solving the discrete algebraic Riccati equation (DARE):

P = APAT +Q − APGT (
Rs +GPGT )−1

GP T AT , (1.71)
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such that the Kalman gain K becomes

K = APGT (
Rs +GPGT )−1

. (1.72)

The optimal one-step-ahead prediction, ε̂(k+1|k), can be mapped onto the actuator
space in order to compute the control action. Optimal controllers of this form, such
as the linear quadratic regulator, have been previously presented for AO systems and
can significantly improve the performance over classical methods, see [78–81] amongst
others. Besides the VAR-1 model representation of the spatio-temporal correlations of
the wavefront, the general state-space formulation can also be used to optimally predict
the wavefront. This has been done in [76], which proposes an H2-optimal controller
where the turbulence dynamics were identified from data using a subspace algorithm.

1.4.3. PREDICTION AND FOCAL-PLANE SENSING
When a focal-plane sensor is considered instead of a pupil-plane wavefront sensor, the
state-space system describing the measurements in a dynamic situation becomes:

ε(k +1) = Aε(k)−Hu(k)+ AHu(k −1)+w (k) (1.73)

y(k) = ∣∣F (
a ¯exp( jε(k))

)∣∣2 +v y (k), (1.74)

using the Gaussian noise approximation of (1.40), such that v y (k) ∼ N (0,Ry (k)). Two
important differences with the state-space model in (1.61 - 1.62) are visible. First, the
output equation (1.62) is non-linear. Second, the measurement noise covariance matrix
is time-varying. Moreover, it should be noted that the measurement noise is a combina-
tion of Poissonian and Gaussian noise as explained in Section 1.3.1 and that modelling
it by a Gaussian noise is merely an approximation.

The Kalman filter theory as described in the previous subsection cannot be applied
to this non-linear model directly. However, a vast body of literature has formed over
the past decades presenting methods that propose different approaches and approxima-
tions to overcome problems caused by the non-linearity, see [82–93]. Some notable non-
linear filters include the extended Kalman filter (EKF) [82], iterated extended Kalman fil-
ter (IKF) [90], unscented Kalman filter (UKF) [83], ensemble Kalman filter (EnKF) [93],
cubature filter [87] and the particle filter [92]. Extending the theory of the previous sub-
section therefore implies the use of any of these non-linear filters. Although in principle
any of these methods is a valid candidate to be used for dynamic focal-plane wavefront
sensing, this thesis will only consider the EKF and IKF.

The theory of the focal-plane wavefront sensing method in [68] has been extended to
a dynamic framework by using the EKF [94–96]. The results of these methods show that
for small aberrations, this application of the EKF is able to accurately track the wave-
front dynamics. One major drawback of this approach is the large computational bur-
den, making these methods only suitable for small-scale AO systems dealing with slow-
moving aberrations or for post-processing purposes. Moreover, these methods were
shown to work when considering two images with phase diversity, which can lead to
problems regarding non-common path aberrations. In the field of WFSless AO, most
methods still neglect the aberration dynamics. A fast implementation of a second moment-
based WFSless AO method was proposed in [97], which aimed to improve the perfor-
mance of this class of model-based WFSless AO algorithms for time-varying aberrations.
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However, this method still does not predict the evolution of the aberration over time,
thereby still assuming that the wavefront remains approximately unchanged between
taking two consecutive images.

Currently, no alternatives have been proposed that present a rigorous approach to
obtain, in a computationally efficient manner, an accurate prediction of the wavefront
based on PSF images only. This missing area in literature has been one of the main moti-
vations for this thesis. Chapters 3 and 4 propose methods that present methods that use
Kalman filter theory in a computationally efficient framework.

1.5. STRUCTURED MODELLING FOR LARGE-SCALE ADAPTIVE OP-
TICS SYSTEMS

A problem with many predictive methods for AO systems is that they are very computa-
tionally demanding, which makes them challenging to use in an AO system running at a
sampling frequency of typically 100-2000 Hz. This section will discuss the bottlenecks in
the existing methods and will also discuss a number of algorithms that have been pro-
posed to lift (part of) this computational burden. In particular, it will focus on a number
computationally efficient structured models that have been shown to accurately model
the complete AO system.

The computational bottlenecks when considering large-scale AO systems can be split
in two categories: online and offline. Offline computations represent the computations
that are not constrained by the sampling frequency of the control loop, whereas online
computations have to be performed within one sampling time. For classical Kalman
filter-based predictive algorithms, the offline bottleneck is the computation of the Kalman
gain K by solving the DARE, which has a computational complexity that scales with
O (n3). The online computations of the one-step-ahead prediction involve dense matrix-
vector multiplications that scale with O (n2), which can be problematic for large-scale AO
systems (which can reach dimensions of n > 104).

A common approach to overcome these bottlenecks is to represent the system dy-
namics using structured models. A number of important matrix structures will be shortly
introduced in this section. First, the appearance of sparse system matrices is discussed.
Afterwards, it is shown how the system matrices can be approximated as a sum of Kro-
necker products, which can also be seen as a tensor-train representation. Finally, the
specific usefulness of the FFT algorithm to efficiently compute the DFT is mentioned.

1.5.1. SPARSITY STRUCTURES IN AO SYSTEMS

The appearance of sparsity structures in AO systems has been mentioned in several
works in literature. For example, a common assumption for methods aiming for a scal-
able solution of the DARE is to take A = aI , with 0 < a < 1, due to the fact that turbulence
is a spatially homogeneous process [98], which is a very special case of a sparse matrix.
Moreover, the fact that the inverse of the covariance matrix of the wavefront, C−1

φ , can
be represented by a sparse and banded matrix was previously shown [53]. Also the ma-
trices G and H are sparse and banded due to the local nature of the measurements and
assuming local actuator influence on the wavefront.

This realisation of sparsity structures in AO systems has been used in a number of
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methods to efficiently solve the DARE [98–101]. Although this simple dynamic model
A = aI makes it possible to compute the Kalman gain in a scalable manner, it has severe
shortcomings in terms of the accuracy of the predicted wavefront for larger wind speeds
and lower sampling frequencies. Furthermore, these methods rely on first principles to
compute the covariance matrix Q, which implies knowledge of parameters such as the
wind speed and Fried parameter beforehand.

This thesis will consider more accurate dynamic models, where A is banded and
sparse rather than diagonal, and where the computation of the system matrices does not
rely on first principles. One systematic approach to arrive at a more general and accu-
rate sparsity structure is to use that the wavefront is reconstructed on a two-dimensional
regular grid of sampling points, and that the turbulence can be accurately modelled us-
ing Taylor’s frozen flow hypothesis. Considering, for the sake of simplicity, a single tur-
bulence layer, it becomes clear that the temporal evolution of the wavefront, seen from
each sampling point, has a local nature, that is, the wavefront at time instance k is merely
a slightly shifted version of k−1. The reason this can be seen as “local” dynamics is that,
in order to predict the value of the wavefront at a single sampling point, past data of
other sampling points in its neighbourhood will suffice.

This intuitive formulation of the temporal evolution of the wavefront can be formal-
ized using graphical modelling. Graphical models are widely used in many different sci-
entific fields, as they can offer a useful insight into matrix structures to describe statisti-
cal distributions and various types of dynamic models. More information on graphical
models can be found in many textbooks written on this topic, such as [102]. Two math-
ematical concepts in graph theory that are central to showing the sparsity structures ap-
pearing in VAR(X) models are causality [103] and conditional independence [102]. Using
these two notions, the sparsity of the system matrices can be determined [104]. By as-
suming Taylor’s frozen turbulence hypothesis of (1.51) to define the causality relations,
and using insights from Kolmogorov’s turbulence model to define the conditional inde-
pendence relations, it was shown that this theory can be extended to AO systems [105].
This work showed that the following one-step-ahead predictor could accurately predict
the evolution of the SH signal:

ŝ(k +1|k) =
r−1∑
i=0

Ai s(k − i ), (1.75)

where all matrices Ai are sparse and banded. Moreover, the sparsity of C−1
φ , which was

previously mentioned in AO literature [53], also follows from the graphical model rep-
resentation due to conditional independence relations between sampling points. An
advantage of the method presented in [105] is that it is fully data-driven, such that it is
not necessary to have accurate knowledge on physical quantities such as the wind speed
and Fried parameter.

An important side note to the presence of sparsity in the system matrices is that it
only holds if there is a certain locality between the two variables it relates. The matrix
A in (1.56) is only sparse the evolution of φ(k) happens on a local scale. Similarly, the
actuator influence matrix H is only sparse if each influence function of the DM only
has a local influence on the wavefront. This form of locality holds, for example, when
assuming Taylor’s frozen turbulence hypothesis. It was shown that the sparsity pattern of
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the matrix A in (1.56) depends on the direction and absolute displacement of the phase
screen per sampling time [105].

The presence of this sparsity is an important reason for choosing the VAR model to
represent the aberration dynamics over the state-space model. Since the state x(k) in
(1.54) generally does not represent a physical quantity with such local features, the spar-
sity structure will be destroyed in the matrix Ax .

1.5.2. SYSTEM MATRICES AS A SUM OF KRONECKER PRODUCT
Recently, it was presented that the two-dimensional grid on which the sensor and wave-
front is represented in AO systems does not only cause the appearance of sparsity struc-
tures in AO systems, but also that many matrices could be approximated as a sum of Kro-
necker products of sparse (banded) matrices [106]. This realisation can be shown again
by using Taylor’s frozen flow hypothesis. According to this assumption, the dynamics of
each phase screen can be considered to be a translation on a two-dimensional plane. By
decoupling the translations in each dimensions, such a movement can be modelled as
follows [106]:

A0,lΦ(k +1)A0,r = A1,lΦ(k)A1,r +WΦ(k), (1.76)

where Φ(k) ∈Rn̄×n̄ represents the wavefront on its original two-dimensional grid. When
vectorizing this formulation, the following model is obtained:

A0φ(k +1) = A1φ(k)+wφ(k), (1.77)

where A0 = AT
0,r ⊗ A0,l and A1 = AT

1,r ⊗ A1,l .
A matrix that can be decomposed as a single Kronecker product is often referred to as

having a Kronecker rank equal to 1. It was further shown that by increasing the Kronecker
rank, the accuracy can be improved [107, 108]. In these works, a higher order VAR model
was used to directly estimate a one-step-ahead prediction of the SH signal s(k):

ŝ(k +1|k) =
r−1∑
i=0

rK∑
j=1

(
AT

r,i , j ⊗ Al ,i , j

)
s(k − i ), (1.78)

such that r represents the temporal order of the VAR model and rK is the Kronecker
rank. By keeping the wavefront in its original matrix form, this model can be seen as a
tensor model. This simple tensor model was further extended into a higher-order tensor
representation to formulate a tensor-based predictive controller for large-scale AO in
[109], which used the following predictor:

ŝ(k +1|k) =
t−1∑
i=0

rK∑
j=1

(
AT

1,i , j ⊗ A2,i , j ⊗ . . .⊗ Ad ,i , j

)
s(k − i ), (1.79)

such that d is the dimensionality of the tensor. An advantage of this method, besides the
computationally efficient scheme, is that the control law is fully data-driven and does
not require any prior information.

Besides the turbulence dynamics, Kronecker structures also appear in other matri-
ces. For example, the SH geometry matrix G can, when assuming a square aperture, be
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formulated using Kronecker products as G = [(G1 ⊗G2)T (G2 ⊗G1)T ]T , where the two
blocks represents the slopes in x- and y-direction, respectively. Moreover, the DM in-
fluence matrix H can often be approximated as H = H1 ⊗ H2 when assuming a square
aperture. This relation holds only when the influence functions Hi in (1.33) are sepa-
rable functions, i.e. Hi are all rank-1 matrices. One of such two-dimensional separa-
ble functions is the two-dimensional Gaussian function, which often accurately capture
the influence function of the DM actuators. Also the Gaussian radial basis function dis-
cussed in Section 1.2.4 are separable.

1.5.3. THE IMPORTANCE OF THE FFT ALGORITHM
The equation defining the relation between the PSF and wavefront, given by (1.16), con-
tains another special structure that can be used in efficient computations. It was stated
in (1.16) that, in a matrix formulation, the DFT can be seen as a matrix vector product of
the form:

Fvec (x) = (D ⊗D)x , (1.80)

and, using the relation vec(AX B) = (B H ⊗ A)vec(X ), this also means that

F (x) = D X DT . (1.81)

This shows that the DFT has clear similarities with the Kronecker structures presented
in the previous subsection. This is expected, as the two-dimensional DFT is a separable
function. However, the DFT has more properties, as the matrix D itself is symmetric,
unitary and highly structured. FFT algorithms exploit the structures in the DFT matrix,
decreasing the computational complexity of computing the DFT of an n-dimensional
signal to O (n logn).

Many methods that rely on computations of the PSF from a known GPF and vice
versa, exploit the speed of FFT algorithms to formulate fast algorithms. A well-known
example is the Gerchberg-Saxton phase retrieval algorithm. Modal decompositions as
discussed in Section 1.2.4 are less likely to speed up this class of algorithms, the main
reason being that AP methods are fast due to their efficient exploitation of the underly-
ing matrix structures by the using the FFT. Decomposing the wavefront or GPF in modal
basis functions can destroy those structures, which will increase the computational com-
plexity of the algorithm.

1.5.4. OTHER MATRIX STRUCTURES
Although the existing literature mainly seems to focus on sparsity and Kronecker/tensor
structures in AO, there are other structures that could be of interest. With the recent
increase in popularity of the Ensemble Kalman filters (EnKF), its usefulness for AO was
shown in [110]. The EnKF is based on the propagation of a small ensemble of states,
which, in a way, means that the EnKF relies on a low-rank approximation of the error-
covariance matrix P . Especially when P is banded, a technique called localization can be
used to improve the performance of the filter. Since P is not necessarily banded for AO
systems, these implicit low-rank approximations are not based on an underlying phys-
ical structure, such that the approximation might introduce more significant model er-
rors than other structured models.
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Finally, a structure that often appears in the modelling of interconnected systems
is the sequantially semi-separable (SSS) matrix structure. This structure has been used
to predict the wavefront in [111]. This method, however, relies heavily on the frozen
flow assumption and decomposes the wavefront into columns that are being shifted over
time. By doing so, when the direction of the wind is known, the problem is reduced to
being only one-dimensional.

1.6. MOTIVATION AND OUTLINE OF THE THESIS
The presented algorithms for large-scale AO systems in Section 1.5 have in common that
they consider an AO system that includes a Shack-Hartmann wavefront sensor. From an
optimization perspective, the main advantage of using a WFS is that in this case wave-
front estimation involves solving a convex optimization problem. Due to the non-linear
relation between the wavefront and PSF, focal-plane sensing will involve non-convex op-
timization, which is notoriously harder to solve and has limited theoretical guarantees
in terms of uniqueness of the solution and convergence to a global (or even local) opti-
mum. Therefore, estimating the wavefront from PSF images only is usually not consid-
ered a suitable candidate for large-scale AO.

Nonetheless, this thesis will focus the reconstruction (and/or compensation of) wave-
front aberrations based on PSF images. The wavefront aberrations are assumed to have
a certain temporal dynamics and the wavefront reconstructions should ideally be per-
formed in real-time, making accurate predictions and computationally efficient algo-
rithms important aspects of this thesis.

Very briefly summarized, this thesis can be seen as an analysis of the challenges aris-
ing for focal-plane reconstruction methods and it presents several algorithms that, each
in their own way, deal with these challenges. The remainder of this section will further
discuss the main motivations of this thesis and presents the outline of the chapters.

1.6.1. MOTIVATION OF THE THESIS
In order to accentuate the connections between the separate chapters, two main moti-
vations, some of which have already been mentioned in earlier sections, are discussed.
Although each chapter focuses on a different setting with their own distinct motivation
and main contributions, they can be grouped into two main research directions. The
first is to consider the temporal dynamics of the wavefront aberrations as a source of
useful information which can be used to improve focal-plane wavefront reconstruction
methods. The second is to develop algorithms that keep in mind the immense num-
ber of inputs, outputs and variables present in large-scale AO systems. Although both of
these topics are by now well-established in WFS-based wavefront estimation algorithms,
similar research into large-scale dynamic aberrations for focal-plane methods is new, to
the best knowledge of the author.

USING TEMPORAL DYNAMICS AS A SOURCE OF USEFUL INFORMATION

As explained in Section 1.1.2, the cause of the wavefront aberrations in ground-based
telescopes is the presence of turbulence within the Earth’s atmosphere. Since turbu-
lence is a physical process with a certain temporal evolution, the wavefront aberrations
will be changing over time. Estimating the wavefront while neglecting these temporal
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dynamics results in an additional estimation error, known as the temporal error given by
1.52. Minimizing this temporal error forms an additional challenge on top of the large-
scale and non-linear optimization challenge that is already being faced, as the developed
techniques need to model the wavefront dynamics and predict its evolution over time.
Although most of the theory presented in this thesis is developed with the application
of AO for astronomy in mind, the theory can be extended to other applications that face
similar challenges regarding temporally dynamic aberrations.

The view that the temporal evolution of the wavefront dynamics mainly forms an
additional source of errors on top of an already difficult problem, however, might not be
complete. One of the most important realizations of this thesis is that wavefront aberra-
tions also give an extra insight when estimating a time-series of wavefront aberrations.
In some cases, the temporal evolution can even be seen as a source of information rather
than a source of errors. This reasoning has been a central concept in filtering and estima-
tion techniques. State-observers, such as the Kalman filter, have been developed to use
the temporal dynamics of a model to their advantage in reconstructing and predicting
hidden states in the system. Similarly, the wavefront dynamics can be used to overcome
certain issues regarding non-uniqueness of the phase retrieval problem by reformulat-
ing the problem as a filtering problem, as the the notion of uniqueness of the (static)
phase retrieval has become the notion of observability in a filtering context.

A number of different classes of algorithms for the phase retrieval problem were dis-
cussed in Section 1.2.3. Each algorithm typically has one or several important limitations
that decrease their applicability in AO systems. For example, some algorithms have a
large sensitivity to measurement noise, a heavy dependence on an accurate initial esti-
mate, or the need for many phase diversity images to be taken simultaneously. Kalman
filters are known to optimally deal with measurement noise and their prediction nat-
urally forms a good initial estimate to the phase retrieval problem. Furthermore, the
additional information given by a dynamic model has the potential to be used in order
to overcome problems regarding uniqueness and convergence.

Of course, it has to be assumed that an accurate model of the aberration dynamics,
e.g. the model given by (1.73)-(1.74), is known or can be computed. Section 1.4 dis-
cussed several approaches to obtain a model of the temporal evolution of the wavefronts
from first principles and from data. As the required information necessary to model the
dynamics from first principles is not available, this thesis uses data-driven methods to
identify the model dynamics. In particular, it will apply structured modelling and system
identification techniques that exploit the sparsity of the system matrices as discussed in
Section 1.5.1.

This vision of the wavefront dynamics as a source of prior information and the link
between focal-plane wavefront estimation and non-linear Kalman filtering forms one of
the research directions in this thesis. In chapters 3 and 4, it will be analyzed whether
modelling the temporal evolution of wavefront aberrations and applying Kalman filter
theory can help focal-plane sensing and WFSless AO methods not only to obtain a more
accurate prediction, but also to overcome problems regarding uniqueness, convergence
and robustness to noise.
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DEALING WITH LARGE-SCALE AO SYSTEMS

Another challenge for the development of AO algorithms in general is the large number
of inputs, outputs and variables that have to be modelled and estimated. Dealing with
large amounts of data and variables causes issues with large computer storage require-
ments and computational complexity. Especially for the non-linear optimization prob-
lem underlying focal-plane sensing, conventional solvers are unsuitable for large-scale
and real-time application. For example, the classical extended Kalman filter mentioned
in Section 1.4.3 requires a number of elementary computations per time step that scales
with O (n3), n being the total number of pixels of the wavefront reconstruction. Perform-
ing the wavefront reconstruction in as little time as possible is thus an important criteria
for suitable methods and the development of new computationally efficient algorithms
is necessary in order to make focal-plane wavefront sensing suitable for large-scale AO
systems.

The most straightforward way of lifting this curse of dimensionality is to decrease
the number of variables in the optimization problem. Since decreasing the size of the
optical system itself is not an option, one could decrease the number of variables by us-
ing a modal description of the GPF or wavefront. As discussed in Section 1.2.4, Zernike
polynomials have been used for many decades as a modal representation of the wave-
front in AO and this representation was extended to the complex-valued GPF with the
introduction of extended Nijboer-Zernike polynomials. Other basis functions have not
gained such wide-spread popularity and their behaviour and advantages for modelling
aberrated optical fields have not been widely studied. This has left an opportunity to
investigate different modal basis functions to represent the wavefront or GPF. Chapter
1 analyzes the advantages of Gaussian radial basis functions over ENZ polynomials for
solving high-resolution phase retrieval problems.

Adopting a lower-dimensional modal representation is not the only way to decrease
the number of variables. Some iterative WFSless AO methods have been proposed that
only partially update the aberration correction per time step, which can significantly re-
duce the number of variables. However, this does not solve the problem as it just shifts
the majority of the computation to a future time. When it is not necessary for all modes
to be updated from the measurements, for example because they can be accurately pre-
dicted based on an available model, this approach becomes relevant. Such a method will
be discussed in Chapter 4, which uses the knowledge of the wavefront’s temporal evolu-
tion to predict the majority of the wavefront, only updating the uncertain areas based on
new measurements. This shows that the two main motivations of this thesis are related,
as one of the uses of having and knowing the temporal dynamics can be to reduce the
complexity of WFSless AO algorithms.

1.6.2. OUTLINE OF THE THESIS

The organization of the remaining chapters is summarized below. Each chapter can be
read independently, as the necessary background, literature and notations are reintro-
duced within each chapter separately. The contents of Chapters 2, 3 and 4 have been
published elsewhere. The publications on which these chapters are based are listed.

Chapter 2: Modal-based phase retrieval using Gaussian radial basis functions
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This chapter uses Gaussian radial basis functions to represent the generalized pupil func-
tion for solving the phase retrieval problem. The contents of this chapter have been pub-
lished in:

Piscaer, P., Gupta, A., Soloviev, O., Verhaegen, M., Modal-based phase retrieval using
Gaussian radial basis functions, JOSA A, 35, 1233 (2018)

Chapter 3: Phase retrieval of large-scale time-varying aberrations using a non-linear
Kalman filtering framework
A computationally efficient framework in which a single focal-plane image is used to ob-
tain a high-resolution reconstruction of a dynamic aberration is presented in this chap-
ter. A non-linear Kalman filter implementation is developed whose computational com-
plexity scales almost linearly with the number of pixels of the focal-plane camera. This
chapter has been published in:

Piscaer, P., Soloviev, O., Verhaegen, M. Phase retrieval of large-scale time-varying aber-
rations using a non-linear Kalman filtering framework, JOSA A 38, 25 (2021)

Chapter 4: Predictive wavefront sensorless adaptive optics for time-varying aberra-
tions
In this chapter, a new wavefront sensorless adaptive optics method is presented that is
based on the linear relation between the mean square of the aberration gradient and the
change in second moment of the image. The new algorithm applies Kalman filter the-
ory to formulate an optimal controller that updates the actuators sequentially, by using
the information of the Kalman filter to select and update the actuators. This chapter has
been published in:

Piscaer, P., Soloviev, O., Verhaegen, M. Predictive wavefront sensorless adaptive optics for
time-varying aberrations, JOSA A, 36, 1810 (2019)

Chapter 5: Conclusions and recommendations
In the final chapter of this thesis, the main findings are summarized and a number sug-
gestions for future research are presented.

Matlab code
Finally, MATLAB code has been developed during this thesis that aims to develop a re-
alistic simulation test-bench for advanced control and prediction methods for AO based
on the OOMAO toolbox [112]. The code is available on the following Bitbucket reposi-
tory:

https://bitbucket.org/csi-dcsc/aotestbench.

Besides it being a general framework that needs to be extended, it contains the imple-
mentation of a number of methods including modal-based phase retrieval using Gaus-
sian radial basis functions and the efficient non-linear Kalman filter presented in Chap-
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ter 3. This code has furthermore been discussed in:

Piscaer, P., Soloviev, O., Verhaegen, M. Challenges in simulating advanced control meth-
ods for AO, Proc. SPIE 11448, Adaptive Optics Systems VII (2020)
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2
MODAL-BASED PHASE RETRIEVAL

USING GAUSSIAN RADIAL BASIS

FUNCTIONS

In this chapter, we propose the use of Gaussian radial basis functions (GRBF) to model the
generalized pupil function for phase retrieval. The selection of the GRBF hyper-parameters
are analyzed to achieve an increased accuracy of approximation. The performance of the
GRBF-based method is compared in a simulation study with another modal-based ap-
proach considering extended Nijboer-Zernike (ENZ) polynomials. The almost local char-
acter of the GRBF makes them a much more flexible basis with respect to the pupil ge-
ometry. It has been shown that for aberrations containing higher spatial frequencies, the
GRBF outperform ENZ polynomials significantly even on a circular pupil. Moreover, the
flexibility has been demonstrated by considering the phase retrieval problem on an annu-
lar pupil.

The contents of this chapter have been published in Piscaer, P., et al. Modal-based phase retrieval using Gaus-
sian radial basis functions, JOSA A 35, 1233 (2018).
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2.1. INTRODUCTION
In the phase retrieval (PR) problem, the phase of a complex-valued function is recovered
from measurements of the magnitude of its Fourier transform. This inverse problem
has many different applications in optical imaging; see [1] for a contemporary overview.
Algorithmic phase retrieval based optical wavefront reconstruction offers an attractive
means of estimating the complex generalized pupil function (GPF) from a set of mea-
surements of the point-spread functions (PSF) in adaptive optics due to its experimental
simplicity [1, 2]. Moreover, other additional optical components, such as beam splitters
and wavefront sensors, are not necessary, avoiding problems related to non-common
path errors and a loss in observed light intensity.

Phase retrieval algorithms can be divided into two subcategories. The classical and
still most commonly implemented class of algorithms are the alternating projection (AP)
methods, pioneered by Gerchberg and Saxton [3] and Fienup [4]. Recently, optimization-
based algorithms representing the PR as a matrix completion problem have been devel-
oped [5–7]. The solution requires solving a matrix rank minimization problem, which
is NP-hard. A convex relaxation was proposed using the trace norm as a convex sur-
rogate to the rank operator, approximating the problem with a semidefinite program.
More recently, another optimization-based approach to solve the phase retrieval prob-
lem was presented in [8]. This algorithm is shown to be superior in terms of compu-
tational complexity, making it more suitable for larger-scale phase retrieval problems.
Both classes of algorithms use multiple images at different defocus planes, in order to
resolve non-uniqueness issues. This technique improves the stability by incorporating
extra information in the intensity measurements [2] and is one possible implementation
of the more general concept of structured illumination (see [5]). A superiority in terms
of convergence towards a unique solution and stability for noisy measurements makes
the convex optimization-based approaches an interesting alternative to the AP methods
[5, 9]. Moreover, these algorithms solve the PR problem by explicitly minimizing a cost
function, making it easier to introduce structures such as sparsity.

The standard approach in both classes of algorithms is to aim for the recovery of
the complete GPF in a pixel-basis, such that the measured PSF is the magnitude of the
2-dimensional Fourier transform of the signal to be recovered. Exploiting the compu-
tational efficiency of the fast Fourier transform, AP methods can be implemented very
efficiently. However, the large number of variables corresponding to the pixel-wise rep-
resentation are problematic for the optimization-based algorithms, making them suit-
able for small-scale applications only. In this chapter, we reduce the number of variables
by modelling the GPF as a linear combination of modes as an alternative to the zonal
pixel-by-pixel model. This approach was shown to be promising for the adaptive optics
application [10], allowing the use of optimization-based phase retrieval on a conven-
tional computer. A trade-off between approximation accuracy of the modal basis and
computational effort defines the required number of modes to be used.

The complex-valued Zernike polynomials introduced as a consequence of the Ex-
tended Nijboer-Zernike (ENZ) theory [11, 12] formed the chosen basis in [10]. The ma-
jor limitation of the global ENZ polynomial representation is that each term extends its
influence over a circular pupil, making it inflexible with respect to the pupil geometry.
The Zernike theory can be adapted to other pupil geometries. However, this requires a
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complex reformulation of the basis for every different pupil. Moreover, they are subject
to Runge’s phenomenon, leading to oscillations on the edges of the domain. Recently,
GPF approximation based on Gaussian radial basis functions (GRBF) was used for semi-
analytic evaluation of the diffraction integral as an alternative to ENZ polynomials. An
improvement in terms of complexity, accuracy and execution time was achieved [13]. An
important feature of the GRBF is the almost local character of each function. Since the
width and location of the GRBF are free to choose for each basis function, it offers a more
intuitive basis to represent the GPF that is easier to implement for any arbitrary aperture
geometry. This creates an increased flexibility to the geometry of the pupil function and
the possibility to model local details and sharp features compared to ENZ polynomials.

This chapter is concerned with the application of GRBF as a modal decomposition of
the GPF as an alternative for ENZ polynomials. The choice of several hyper-parameters
that define the shape and placement of the GRBF are investigated. The relation be-
tween the numerical conditioning and the accuracy of the solution to PR problems is
important in practical implementations [2, 14]. When the standard representation is ill-
conditioned, algorithms such as RBF-QR [15] have been proposed to transform the GRBF
into a well-conditioned basis. Therefore, this aspect of conditioning is not evaluated in
this chapter. To test the performance of the new method, phase retrieval simulations
are performed. Two types of aberrations are considered. First, aberration data is gen-
erated from a Zernike polynomial basis with its coefficients sampled from an assumed
distribution based on empirically determined correction capabilities of a deformable
mirror (DM) [10]. Secondly, aberrations corresponding to the correction capabilities of
a higher-order DM are derived experimentally to create a phase disturbance with higher
spatial frequencies. The PSF is simulated at multiple planes along the optical axis, intro-
ducing phase diversity in terms of defocus. The two different classes of basis functions,
GRBF and ENZ polynomials, are compared in terms of their theoretical fitting accuracy
and performance in modal-based phase retrieval algorithms.

The structure of the chapter is as follows. The formulation of the modal-based PR
problem as an optimization problem is presented in Section 2.2. An overview of the dif-
ferent basis functions used to approximate the GPF is also contained in this section. The
aberration data generation and simulation experiment design are discussed in Section
2.3. The theoretical GPF fitting accuracy for the GRBF, including the tuning of the hyper-
parameters, is explained in Section 2.4. The simulation results for aberration retrieval
for a number of different cases are presented in Section 2.5. Finally, the conclusions are
drawn in Section 2.6.

2.2. MODAL BASED PHASE RETRIEVAL
A mathematical formulation of the phase retrieval problem is briefly presented in this
section. The effects of aberrations on an optical system can be modelled using the gen-
eralized pupil function (GPF). The GPF is a complex function [2]

P (ρ,θ) = A(ρ,θ)exp(iΦ(ρ,θ)), (2.1)

where A(·) and Φ(·) are real-valued functions that denote the amplitude apodization
function and phase aberration respectively and (ρ,θ) are the normalized polar coordi-
nates on the exit pupil plane. Under the assumption of purely phase aberrated systems
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with circular exit pupils, A(ρ,θ) is modelled as a characteristic function with unity values
inside the pupil and zero outside. The field in the focal plane is related to that in the exit
pupil by the following integral:

U (r,φ, f ) = 1

π

∫ 1

0

∫ 2π

0
exp(i f ρ2)P (ρ,θ)

×exp(i 2πrρcos(θ−φ))ρdρdθ,
(2.2)

where (r,φ) are the polar coordinates in the focal region normalized with respect to the
axial diffraction unit (λ/NA), NA being the image-side numerical aperture of the optical
system. The defocus parameter f is used to deliberately introduce a defocus aberration
to the GPF and is necessary for the convergence of optimization based phase retrieval
algorithms [5]. U (r,φ, f ) is the complex-valued point-spread function corresponding to
the GPF. Only the intensity image of U (r,φ, f ), called the point-spread function (PSF), is
observed by the camera:

y(r,φ, f ) = |U (r,φ, f )|2. (2.3)

In this chapter, we will define the phase retrieval (PR) problem as recovering the phase
aberration Φ(ρ,θ) from multiple focal-plane intensity measurements y(r,φ, f ) with dif-
ferent introduced defocus f . Often, we will adopt a sampled representation in which
both the GPF and (complex) PSF are sampled on an equally spaced square grid, denoted
by P ∈ CNp×Np and Ui ∈ CNu×Nu respectively, where the subscript i indicates the image

at focal position f = fi . The intensity measurements of Ui are vectorized into yi ∈ RN 2
u .

The number of diversity images will be denoted by N f .
A more concrete formulation of the phase retrieval problem requires a convenient

and systematic parametrization of the GPF. The most flexible parametrization is a pixel-
lation of the pupil, as it can be used with any pupil geometry. However, the pixel-basis
requires a large number of parameters to be identified using PR. The large number of
variables is problematic for the optimization based algorithms, since they cannot exploit
the computational efficiency of the FFT as is done by alternating projection algorithms.
Parametrizations based on approximating the GPF as a linear superposition of a small
number of basis functions reduces the size of the problem dramatically, since it requires
estimation of just a complex scalar coefficient for each of the basis functions. The intro-
duction of this modal-decomposition allows the use of the computationally demanding
optimization-based algorithms on a conventional computer [10]. Next, two different
modal representations are presented.

2.2.1. EXTENDED NIJBOER-ZERNIKE POLYNOMIALS
The phase aberrationΦ can be analyzed by the orthogonal set of basis functions formed
by the circle polynomials, Z m

n , introduced by Zernike,

Φ(ρ,θ) = ∑
n,m

ζm
n Z m

n (ρ,θ), (2.4)

where indices n ∈ N0 and m ∈ Z respectively denote the radial order and the azimuthal
frequency of the Zernike polynomial Z m

n such that n−|m| > 0 and even. The polynomi-
als are given by the product of a radial polynomial R |m|

n (ρ) and a trigonometric function
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Θm
n (θ) with suitable normalization cm

n ,

Z m
n (ρ,θ) = cm

n R |m|
n Θm

n (θ). (2.5)

where,

cm
n =

{p
n +1 m = 0p
2(n +1) m 6= 0

, Θm
n (θ) =

{
cos(mθ) m ≥ 0

−si n(mθ) m < 0
,

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s (n − s)!

s!
( n+m

2 − s
)
!
( n−m

2 − s
)
!
ρn−2s .

(2.6)

The representation of phase aberration Φ in terms of Zernike polynomials was general-
ized to represent the GPF under the Extended Nijboer-Zernike (ENZ) theory [11]. The
GPF is approximated as a truncated series of ENZ polynomials [12],

P̂E (ρ,θ) = ∑
n,m

βm
n N m

n (ρ,θ). (2.7)

Here, n and m denote, respectively, the radial order and azimuthal frequency of the ENZ
polynomial N m

n (ρ,θ):

N m
n (ρ,θ) =p

n +1R |m|
n (ρ)exp(i mθ). (2.8)

The polynomials are ordered according to their radial order, such that the coefficients
can be collected into a single vectorβ ∈CNβ where Nβ = (nM+1)(nM+2)/2, nM being the
maximum radial order considered. The normalization used here is as given in [10].

2.2.2. GAUSSIAN RADIAL BASIS FUNCTIONS
Alternatively, the pupil function can be approximated by a linear combination of Gaus-
sian radial basis functions (GRBFs) [13]. The complex GPF is approximated by a real-
valued, radially-symmetric GRBF,

P̂R (ρ,θ) = A(ρ,θ)
Nγ∑

k=1
γkΨk (ρ,θ), (2.9)

Ψk (ρ,θ) = e−λk (ρ2+%2
k−2ρ%k cos(θ−ϑk )), (2.10)

where γk ∈ C, (%k ,ϑk ) are the polar coordinates of the GRBF nodes on a polar grid and
A(ρ,θ) is the same as in (2.1). Also, λk > 0 is the shape parameter inversely proportional
to the width of the GRBF. Numerical conditioning of the basis is an important issue in
RBF approximation. It should be noted that, in contrast to ENZ polynomials, the GRBFs
are not orthogonal. Severe ill-conditioning can occur in the flat basis function limit
(λk → 0). In the literature, methods have been proposed that yield a well-conditioned
basis, in which the basis functions are different, but together span the same space as
the original GRBF set (see e.g. [15]). However, for the applications in this chapter, λk

was chosen large enough such that no problems occurred due to ill-conditioning. To
illustrate its shape, an example of a single GRBF is shown in Figure 2.1.
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Figure 2.1: An example of a Gaussian radial basis function as defined in (2.10). The exact center location and
width of the GRBF are defined by the parameters (%k ,ϑk ) and λk respectively.

2.2.3. PHASE RETRIEVAL AS AN OPTIMIZATION PROBLEM
Both modal representations in (2.7) and (2.9) can be expressed in the following form:

P̂ (ρ,θ) =
Nα∑

k=1
αkBk (ρ,θ) (2.11)

with coefficients αk ∈ C and the basis functions Bk (ρ,θ) represent either the ENZ poly-
nomials or GRBFs. By sampling the the GPF on a regular Np ×Np grid, such that each
pixel corresponds to a location (ρi ,θi ), i = 1, . . . , N 2

p , the basis functions and the esti-
mated GPF can both be represented as a matrices:

P̂ =
Nα∑

k=1
αk Bk (2.12)

with Bk ∈ CNp×Np and P̂ ∈ CNp×Np . After vectorizing this representation, the modal de-
composition becomes a single matrix-vector multiplication:

p̂ = Bα, (2.13)

such p̂ ∈CN 2
p , α ∈CNα and the k-th column of B ∈CN 2

p×Nα is a vectorized representation
of Bk .

Due to the linearity property of the diffraction integral in (2.2), the predicted PSF is a
linear combination of transformed basis functions weighted by the same coefficients as
the GPF. This transformation is performed using the two-dimensional discrete Fourier
transform (DFT) denoted by F {·}. A sampled representation of U is represented on an
Nu ×Nu grid, where Nu = DNp , D ≥ 1 being a constant related to the diffraction limit of
the optical system. The increase in dimensions Nu −Np is computationally realized by
zero-padding of the GPF before taking the 2D-DFT. For an image at a position along the
optical axis corresponding to a defocus parameter of fd , the estimated complex image
Ûd can be written as:

Ûd =
Nα∑

k=1
αkCd ,k , (2.14)
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where Cd ,k =F {Bk ¯Pd } ∈CNu×Nu , ¯ represents the element-wise product and Pd is the
defocus function exp(i fdρ

2) sampled on the same Np × Np grid as the basis functions
extended with the correct zero-padding. Also, the modal decomposition of the complex
image Ud can be represented as a matrix-vector multiplication, i.e. we define the vector-

ization of Ûd as ûd ∈CN 2
u such that

ûd =Cdα, (2.15)

with the k-th column of Cd ∈ CN 2
u×Nα containing the vectorized representation of Cd ,k .

Finally, the estimated intensity measurement (i.e. the PSF) is given by

ŷd = |Cdα|2. (2.16)

The PR problem is formulated as the minimisation of the error between the mea-
surements yd and the estimated PSF ŷd , leading to the following optimization problem:

min
α∈CNα

N f∑
d=1

∥∥yd −|Cdα|2
∥∥ , (2.17)

where ‖ · ‖ denotes a vector norm of interest. This problem will be solved using an effi-
cient optimization-based phase retrieval algorithm called COPR [8]. In principle, other
optimization-based algorithms such as PhaseLift can be used. However, they are too
computationally demanding for even medium sized problems. Since the goal of this
method is to show the advantage of GRBFs for high-order aberrations, which require a
larger number of basis functions, COPR is chosen because of its superior speed.

2.3. SIMULATION DESIGN
This section discusses the simulations that will be performed to analyze the advantage of
using GRBF over ENZ polynomials. By considering their advantages and disadvantages
as outlined in the introduction, we expect to show an improvement of GRBFs over ENZ
polynomials for several cases. First of all, GRBFs are by definition more flexible to differ-
ent pupil geometries, since ENZ polynomials are defined over the unit disk only. More-
over, it is expected that the GRBF representation is more suitable to fit higher spatial fre-
quencies in the GPF. To validate this, we will test the PR problem on both low-order and
high-order aberrations. The generation of both phase types are discussed below. Finally,
the implementation details for the performed simulation experiments are presented.

2.3.1. GENERATION OF LOW-ORDER ABERRATIONS
For the generation of aberrations containing only lower spatial frequencies, the phase is
represented in terms of Zernike polynomials:

Φ(ρ,θ) = ∑
n,m

ζm
n Z m

n (ρ,θ), (2.18)

where Z m
n are the Zernike polynomials and the coefficients ζm

n are drawn from an as-
sumed distribution. The distribution is based on the experimentally derived correction
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(a) Low-order aberration (b) High-order aberration

Figure 2.2: Example of a low-order and high-order aberration generated as described in Section 2.3.1 and 2.3.2
respectively. The amplitude of the phase can be scaled to any desired value.

capabilities of a low-order membrane DM [10], which followed approximately an ex-
ponential decrease in the values for ζm

n for increasing radial orders. The total number of
Zernike terms considered is denoted by Nz = (nz+1)(nz+2)/2, where nz is the maximum
radial order considered. In the following, Nz = 66, i.e. we consider Zernike polynomials
up to the tenth radial order. Moreover, ζ0

0,ζ−1
1 ,ζ1

1 = 0, i.e. the piston and tip-tilt modes
are not included. The remaining 63 coefficients are vectorized after ordering them by
increasing radial order (Noll’s sequential index) into ζ. The standard deviation of the
normal distribution generating the k-th index ζk is computed as cl exp(k), where cl is a
scaling factor to control the amplitude of the aberration. An example of such a generated
wavefront is shown in Figure 2.2a.

2.3.2. GENERATION OF HIGH-ORDER ABERRATIONS
For the generation of aberrations with higher spatial frequencies, a similar experiment
as in [10] is repeated for a high-order DM, having Nm = 952 actuators (Boston Micro-
machines KiloDM [16] ). The control signal to each of the actuators ui is collected into
the vector u ∈ RNm . Because of the large number of actuators, an accurate Zernike rep-
resentation of the wavefront would require too many parameters. Therefore, the DM
infulence matrix H ∈RNs×Nm is identified such that it satisfies the relation s = Hu, where
s ∈ RNs contains all the local slopes in the wavefront measured with a high-resolution
Shack-Hartmann wavefront sensor (Ns = 42632). For the identification of the matrix H ,
a set of 2000 random vectors ũ1, . . . , ũ2000 are drawn from a normal distribution, and cor-
responding measurements s̃1, . . . , s̃2000 are collected. The matrix H is identified enforcing
a sparsity pattern in the matrix, such that the number of non-zero elements is 14.01% of
the total number of elements. The accuracy of the identification is very sensitive to the
measurement noise of the sensor and optical misalignments in the experimental setup.
After a careful calibration, the identification of H resulted into an average variance ac-
counted for (VAF) [17], defined as

V AF =
(

1−
∑2000

i=1 ‖s̃i −H ũi‖2
2∑2000

i=1 ‖s̃i‖2
2

)
·100% (2.19)

of 84.31%. A set of sensor measurements si is simulated using random input vectors ui

drawn from a normal distribution, such that si = ch Hui , ch being a scaling parameter
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to control the phase amplitude. The corresponding wavefront Φi , sampled on a regular
Np×Np grid, is reconstructed from si using the method described in [18]. The resolution
Np is limited by the resolution of the Shack-Hartmann sensor at Np ≤ 146. Np = 64 is
used to simulate the aberration unless mentioned otherwise. A square of Np ×Np is cut
from the centre of the original 146×146 image. An example of a high-order wavefront
aberration is shown in Figure 2.2b.

2.3.3. APPROXIMATING THE GENERALIZED PUPIL FUNCTION
To quantify the theoretical accuracy for each basis to fit the GPF, the least-squares error
approximating a given GPF is considered. The aberration Φ is generated as discussed in
Sections 2.3.1 or 2.3.2 on an Np × Np grid. Similar to (2.13), a sampled representation

of the true GPF can be defined as a vector p ∈ CN 2
p . By solving the following complex

least-squares problem
α̂LS = arg min

α∈CNα
‖p−Bα‖2

2, (2.20)

a theoretical best estimate of the GPF using the defined basis can be computed as p̂LS =
Bα̂LS . The normalized real-valued root mean square (RMS) of the complex-valued ap-
proximation error p− p̂LS , denoted by εp,LS , defines the measure of its ability to fit the
GPF, i.e.

εp,LS = ‖p− p̂LS‖2

‖p‖2
. (2.21)

Since we are mainly interested in finding the correct phase Φ, we define the vectorized

phase as φ ∈RN 2
p and the phase corresponding to the estimated GPF as φ̂LS ∈RN 2

p , such
that the normalized RMS phase error is:

εφ,LS = ‖φ− φ̂LS‖2

‖φ‖2
. (2.22)

Because of the dependence on the number of GRBF Nα and the stochastic nature of the
aberration, a Monte Carlo experiment is performed for various values of Nα by using 100
draws of the simulated GPF.

Besides using this experiment to show the theoretical accuracy to fit the GPF, the
method in this paragraph is used to tune the GRBF hyper parameters in the next section.
In principle, the RMS error of the PSF fit obtained by solving the phase retrieval problem
can also be used. However, since this is much more computationally demanding than
computing the least-squares fit of the GPF directly, it would be too time consuming and
is therefore not considered.

2.3.4. PHASE RETRIEVAL EXPERIMENT
The phase retrieval problem defined in (2.17) is solved using the COPR algorithm [8].
First, the PSF data is simulated by taking the 2D-FFT of the GPF corresponding to the
simulated aberration Φ as discussed in Section 2.2 for D = 2. Four diversity images, at
f1 = 0, f2 =−1, f3 = 2 and f4 =−3 rad, are computed and vectorized into yi , i = 1,2,3,4. A
Monte Carlo experiment solving the PR problem for 25 different aberration realizations
is performed for a certain combination of Nα and aberration type (low-/high-order).
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(a) (b) (c)

Figure 2.3: Examples of node distributions on a 2D grid for a unit disk pupil aperture: (a) Rectangular, (b)
Halton and (c) Fibonacci.

From the solution of the phase retrieval problem, we obtain a solution α̂. An esti-
mate of the PSF and GPF is obtained via ŷi =Ci α̂ and p̂ = Bα̂ respectively. The normal-
ized RMSE of the PSF and phase will be used as a scalar quantity to express the accuracy.
One major difficulty in comparing the phase is caused by the fact that the phase retrieval
solution provides an estimate up to a constant offset (piston) and each pixel is wrapped
on the range [−π,π]. This is solved by extracting the phase of the estimated GPF, un-
wrapping it using a two-dimensional phase unwrapping algorithm [19], and removing
the piston. Similar to (2.22), the real-valued normalized RMSE of the phase is defined as:

εφ = ‖φ− φ̂‖2

‖φ‖2
. (2.23)

The cost function in (2.17) minimizes the PSF fitting error rather than the GPF. A measure
representing the fit of the PSF is defined in a similar way:

εy =
∑N f

i=1

∥∥yi − ŷi
∥∥

2∑N f

i=1

∥∥yi
∥∥

2

. (2.24)

The results of this experiment are discussed in Section 2.5.

2.4. FITTING ACCURACY OF GRBF
The increased flexibility of the GRBF follows directly from the introduced freedom in
terms of its hyper-parameters. Each single GRBF has two parameters: its centre location
pair (ρk ,θk ) and shape parameter λk . Together they define the shape and location of
the GRBF in the pupil plane. If they were to be chosen independent from each other,
they would introduce 2Nα hyper-parameters to the phase retrieval problem. Estimat-
ing them is a highly non-linear problem usually solved by cross-validation [13]. In this
section, by using their physical interpretation in the imaging application, we propose
to reduce the number of parameters to one single shape parameter λ and a predefined
node distribution.
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2.4.1. NODE DISTRIBUTION
Instead of choosing the centre (%k ,ϑk ) of each basis function separately, a number of
fixed configurations are considered. In this way, the centres are no longer a hyper-
parameter to be determined. Since we assume to have no specific a priori knowledge
of the GPF, we are looking for a general distribution that is able to fit any generic GPF
realization. There are many regular and quasi-random grids that can work as a suitable
node distribution. Examples are a rectangular grid with equally spaced points, a Halton-
points-based grid generated from quasi-random number sequence [20] and a planar Fi-
bonacci grid defined using a spiral represented in polar coordinates, i.e. for the kth point
[14]:

%k = %0

p
k −1/2, ϑk = 2πk/ϕ, (2.25)

where %0 is an arbitrary scale factor and ϕ= (1+p
5)/2 is the Golden ratio. These distri-

butions are visualized in Fig 2.3. All grids are defined over an area slightly larger than the
unit disk (a disk with radius 1.05) to deal with the Gibbs phenomenon [13].

The Fibonacci grid has proven to be a competitive and robust choice when the shape
parameter is optimally chosen [14]. For completeness, the simulations in this chapter
have been implemented for all three grids in Figure 2.3. This showed a performance that
is similar for all grids, but slightly in favor of the Fibonacci configuration. Therefore, only
the Fibonacci configuration is included in the results.

2.4.2. SHAPE PARAMETER
The choice of shape parameter is significant, as it affects numerical stability, accuracy
of fit and speed of convergence. The practical design of the shape parameter is data
dependent, in that it depends on the variance of the wavefront aberration and its spatial
frequency content. As the data of the GPF is not available beforehand, it is desirable
to find a systematic empirical approach of shape parameter selection. To reduce the
number of hyper-parameters, a single constant λ is assumed for each GRBF. Moreover,
especially for the regular grids (rectangular and Fibonacci), a constant λ is a reasonable
assumption when there is no prior knowledge of the GPF.

To determine the value of the parameter λ, we compare the RMS of the approxima-
tion error with the GRBF basis for different values of λwith the method discussed in Sec-
tion 2.3.3. First of all, since the selection of the hyper-parameter depends on the chosen
node distribution and the total number of nodes, the influence ofλ is shown for different
values of Nα. Moreover, as it is shown to depend on the type of aberration, the test is re-
peated for both the low-order and high-order aberrations discussed in Sections 2.3.1 and
2.3.2. Figure 2.4 shows εp,LS , as defined in (2.21), for various combinations of λ and Nα

on the Fibonacci grid. It is clear that both for the low-order and high-order aberration,
the trend is very similar. Both start with a steep increase in performance by increasing
λ up to a value that is depending on Nα. At a certain point, which is denoted by λ∗, the
steep slope turns into a more constant and smoother curve. This point, indicated by the
asterisks in Figure 2.4, is the same for both the low-order and high-order aberrations and
seems to be dependent on Nα only. However, where for the low-order aberration εp,LS

starts to increase immediately, it still slightly decreases for the high-order aberration. As
can be seen in Figure 2.4, the optimal value of λ, λopt , is in the range of 1 to 10 for the
low-order and between 10 and 40 for the high-order aberrations.
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(b) High-order aberration

Figure 2.4: Influence of λ on the mean value of εp,LS in a Monte Carlo simulation. The same simulation is
performed on both low- and high-order aberration data discussed in Sections 2.3.1 and 2.3.2 for Np = 64 on a
circular aperture with a radius of 1.

Nα GRBF-LO ENZ-LO GRBF-HO ENZ-HO
65 6.56 ·10−3 9.46 ·10−3 5.16 ·10−1 5.74·10−1

90 2.23 ·10−3 3.60 ·10−3 4.09 ·10−1 4.83·10−1

119 5.82 ·10−4 8.94 ·10−4 3.18 ·10−1 3.98·10−1

152 1.48 ·10−4 2.90 ·10−4 2.42 ·10−1 3.21·10−1

189 5.04 ·10−5 1.01 ·10−4 1.89 ·10−1 2.58·10−1

230 1.42 ·10−5 2.98 ·10−5 1.42 ·10−1 2.07·10−1

275 5.84 ·10−6 7.06 ·10−6 1.10 ·10−1 1.65·10−1

Table 2.1: Mean values of εφ,LS using GRBFs and ENZ polynomials in the Monte Carlo simulation. For the
GRBFs, λ=λopt found using a grid search minimizing the GPF error εp,LS .

In practice, the nature of the GPF is unknown and one does not have a set of GPFs
with the same statistical properties as the one to be estimated. This makes the optimal
value of λ more difficult to find. However, λ∗ can be used as a lower-bound to the se-
lection of λ and it can be derived from knowing the GRBF centre locations only. It is
shown that εp,LS is not very sensitive for choosing λ larger than λ∗. Therefore, it is a safe
choice to select λ > λ∗, depending on the desired smoothness of the reconstruction of
the wavefront.

As pointed out in Section 2.2, the basis can become severely ill-conditioned when
λ→ 0. This should be kept in mind when selecting the value of λ when the number of
basis function is small. In this case, it is advised to choose λÀ λ∗ to avoid problems
while solving the phase retrieval problem. One can use the RBF-QR algorithm [15] to
improve the conditioning and transform the obtained coefficients back into the original
basis. As the focus of this chapter is on capturing high-order aberrations with a relatively
large amount of basis functions, this has not been implemented. The value of λ dur-
ing the phase retrieval simulations was increased manually when the found λopt caused
problems regarding ill-conditioning.
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2.4.3. COMPARISON TO ENZ
After λopt is selected for the chosen node distribution, the fitting accuracy can be com-
pared to that of ENZ polynomials. The mean phase approximation errors εφ,LS for both
the low-order and high-order aberrations are summarized in Table 2.1. From Table 2.1,
we can conclude that the mean values of εφ,LS indicate a higher fitting accuracy of GRBFs
over ENZ polynomials on average. It should be mentioned that the variance over the
Monte Carlo draws was found to be approximately within 10% of the mean values for
high-order aberrations, but was much more significant for low-order aberrations with
values of the same order of magnitude as its mean. A more comprehensive analysis dis-
cussing the importance of this large variance is included in Section 2.5. Moreover, the
final value of εφ,LS for the high-order aberration is still significant with a minimum of
0.11 for Nα = 275. This should be kept in mind when performing the phase retrieval sim-
ulations. The performance shown here gives a theoretical minimum of the error for each
specific set of basis functions. Because the phase retrieval simulation will use the RMS
of the phase error (εφ in (2.23)) as a measure, we have only presented the theoretical
minimal phase errors εφ,LS is this section. The obtained errors from the phase retrieval
simulation will be compared to the values in this table to validate if the algorithm has
converged to the optimal solution. A similar table can be made for εp,LS but is not in-
cluded here since it shows an equivalent trend.

2.5. PHASE RETRIEVAL SIMULATION RESULTS
As discussed in Section 2.3, a simulation is performed to analyze the performance of
the different basis functions to the phase retrieval problem. In this section, a number
of cases will be considered that demonstrate the advantages of using GRBFs in modal-
based phase retrieval. For each combination of Nα and aberration type, an experiment
as described in Section 2.3.4 is performed to find the value of λ that gives the best fit
in the least-squares sense. The scaling constants cl and ch introduced in Section 2.3.1
and 2.3.2 are chosen such that the average RMS-value of Φ in the Monte Carlo simula-
tion RMS(Φ) ≈ 0.75 for both low- and high-order aberrations. The performance of the
method for higher values of RMS(Φ) will be shortly discussed in the following paragraph.

2.5.1. LOW- AND HIGH-ORDER ABERRATIONS

To show the performance of the GRBF for aberrations containing different spatial fre-
quencies, the phase retrieval problem is solved for both the low- and high-order aberra-
tions. The simulation results when considering only low-order aberrations are visualized
in Figure 2.5a and 2.5c. A clear decrease of the normalized RMSE is visible for both the
PSF and phase as the number of used basis functions increase. Both the ENZ polynomi-
als and GRBFs obtain a very accurate fit, approaching the theoretical optimum of Table
2.1. The variance over the multiple draws in the Monte Carlo simulation is relatively
large, such that both methods lead to a roughly equivalent performance.

The phase retrieval simulation results for the high-order aberrations are shown in
Figure 2.5b and 2.5d. The GRBFs still approximate the theoretical value of Table 2.1 quite
closely. On the other hand, the ENZ polynomials fit starts to deviate more from the theo-
retical minimum when more basis functions are considered. This phenomenon together
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Figure 2.5: Comparison of the results of the phase retrieval simulation between low- and high-order aberra-
tions for varying number of basis functions Nα. The boxplots show the normalized RMSE εy and εφ (see (2.23)
and (2.24)) for a circular pupil with Np = 64 and RMS(Φ) ≈ 0.75 rad. The boxes indicate the 25th and 75th
percentile of the results in the Monte Carlo simulation. Lines are drawn through the medians of the data. Data
outliers due to remaining phase ambiguities are discarded.
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Figure 2.6: Phase retrieval results for low-order and high-order aberrations for for RMS(Φ) ≈ 1.5 rad. The
presentation of the results is similar to Fig. 2.5.

with the much less significant variance than in the low-order aberration case make the
differences appear much clearer. The decrease in performance from the theoretical min-
imum indicates that the phase retrieval algorithm is less able to converge to the optimal
solution when ENZ polynomials are used.

To investigate the performance of the method for higher phase amplitudes, the phase
retrieval simulations for both the low-order and high-order aberrations are repeated for
a higher value of RMS(Φ). Figure 2.6 shows the normalized RMS phase error εφ for
RMS(Φ) ≈ 1.5 rad. All other conditions are kept the same as in the experiment above
such that they can be compared to Figure 2.5a and 2.5b, where RMS(Φ) ≈ 0.75. Both
errors increase when RMS(Φ) increases. The same improving trend in the performance
is visible when using more basis functions.

From this analysis, the GRBFs appear most beneficial when approximating aberra-
tions containing high spatial frequencies with a relatively large amount of basis func-
tions. An example of such an approximation is shown in Figure 2.7 for Np = 128 and
Nα = 377. One thing that stands out when comparing the estimations with GRBFs and
ENZ polynomials are the ringing artifacts that appear when using ENZ. Since these rings
are a consequence of the phase retrieval solution and do not appear in the least-squares
approximation, they cause a gap between the theoretical value of Table 2.1 and the ob-
tained phase retrieval solution when using ENZ polynomials.

2.5.2. NON-CIRCULAR APERTURE

An important property of the GRBFs is its independence on the pupil geometry. Since
each basis function can be centered around an arbitrary location on the pupil, it is pos-
sible to concentrate the information on any specific shape. In contrast, ENZ polynomi-
als are defined on the unit circle only. Although the Zernike theory can be adapted for
other pupil geometries, it requires complex theoretical reformulation (see, e.g. [12]). The
GRBFs provide a much simpler implementation, in which the user can locate the basis
functions. As a result, the basis can be easily adapted to any arbitrary shape without
needing any complex theory.

To demonstrate the advantage of this locality, an extreme case is considered in which
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Figure 2.7: An example of the retrieved phase for a high-order aberration, Np = 128 and Nα = 377. From left to
right, the first row shows the true phase aberration, the retrieved phase estimate using GRBFs and the retrieved
estimate using ENZ polynomials. The second row shows the errors for GRBFs (εφ = 0.42) and ENZ polynomials
(εφ = 0.57) respectively. The figures are truncated to the color scale shown.

an annular pupil is defined with unity outer radius and an inner radius of 0.7. The centers
of the GRBFs are located on a ring with inner radius 0.65 and outer radius 1.05 follow-
ing the Fibonacci node distribution. Compared to the circular aperture, the number of
non-zero pixels in the GPF has decreased. Therefore, it would be expected that when
the same number of basis functions are considered, the normalized error should de-
crease. The phase retrieval results for this annular aperture are summarized in Fig. 2.8,
showing that the difference in performance between GRBF and ENZ is more significant
than in the same situation with the circular aperture (recall Fig. 2.5). The normalized
error for the GRBFs has indeed decreased compared to the circular aperture. Because
the ENZ polynomials have not been redefined on the new pupil, the error for the ENZ
basis has increased significantly. This demonstrates the advantage that GRBFs have on
non-circular apertures. An explanation for this decrease in performance when using
ENZ polynomials becomes apparent when looking at an example of the retrieved phase
in Fig. 2.9. Note how the estimate using GRBF is more detailed, but the estimate corre-
sponding to the ENZ polynomial basis shows that the oscillations around the edges have
become more significant due to the thin aperture shape.

2.5.3. GAUSSIAN MEASUREMENT NOISE
Finally, zero-mean white Gaussian noise is added to the simulation measurements yi

to consider the robustness of the estimation with respect to noise. Since the intensity
measurements are by definition positive, negative values in the simulated measurement
are truncated to zero. For the conciseness of this chapter, a single case regarding a low-
order aberration is considered on a circular aperture, and Nα = 65 basis functions are
used. The results are shown in Fig. 2.10. The noise is sampled from a single zero-mean
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Figure 2.8: Comparison of the results of the phase retrieval simulation between low- and high-order aberra-
tions for varying number of basis functions Nα. The boxplots show the normalized RMSE εy and εφ (see (2.23)
and (2.24)) for an annular pupil with Np = 64 and RMS(Φ) ≈ 0.75 rad. The boxes indicate the 25th and 75th
percentile of the results in the Monte Carlo simulation. Lines are drawn through the medians of the data. Data
outliers due to remaining phase ambiguities are discarded.
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Figure 2.9: An example of the retrieved phase for a high-order aberration, Np = 128 and Nα = 377. From left to
right, the first row shows the true phase aberration, the retrieved phase estimate using GRBFs and the retrieved
estimate using ENZ polynomials. The second row shows the errors for GRBFs (εφ = 0.27) and ENZ polynomials
(εφ = 0.68) respectively. The figures are truncated to the color scale shown

Gaussian distribution and the SNR is defined with respect to the average power of the
image yi . The noise affects the estimate for both the ENZ and GRBF basis similarly for
higher SNR. For an SNR of 5−10 dB, the ENZ polynomials give a normalized error higher
than 1, implying a completely inaccurate estimate.

2.6. CONCLUSION
The problem of reconstructing phase aberrations using a modal approach for optimization-
based phase retrieval algorithms has been considered in this chapter. The otherwise too
computationally demanding optimization-based algorithms [5, 8] can be implemented
on a standard desktop computer in this modal-based framework [10]. In this chapter,
the application of GRBFs to model the GPF has been explored as an alternative to the
existing ENZ polynomials [10, 11]. Because of its computational efficiency, the COPR al-
gorithm [8] is used to solve the PR problem. One important advantage of GRBFs is the
increased flexibility introduced by user-defined hyper-parameters determining the lo-
cation and shape of each basis function. The number of hyper-parameters are reduced
to a single parameter describing the size of a single GRBF by assuming a predefined dis-
tribution of the centres. Guidelines have been proposed to find the hyper-parameter
that leads to the best fit. It was shown that the obtained basis using GRBFs is better able
to approximate the GPF than ENZ polynomials. Moreover, the solution to the PR prob-
lem has been considered for both the GRBF and ENZ polynomial basis. Simulations
have shown that GRBFs are significantly better to approximate aberrations that contain
higher spatial frequencies. The increased flexibility of GRBFs has been demonstrated by
solving the phase retrieval problem for an annular pupil. Finally, also the robustness to
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Figure 2.10: Normalized RMS phase error εφ (defined in (2.23)) as a function of the SNR for low-order aber-
rations with an average RMS(Φ) ≈ 0.75, using Nα = 65 basis functions. The black dotted line shows the error
without noise.

Gaussian measurement noise was in favor of GRBFs, showing a lower noise sensitivity.
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3
PHASE RETRIEVAL OF LARGE-SCALE

TIME-VARYING ABERRATIONS

USING A NON-LINEAR KALMAN

FILTERING FRAMEWORK

This chapter presents a computationally efficient framework in which a single focal-plane
image is used to obtain a high-resolution reconstruction of dynamic aberrations. As-
suming small phase aberrations, a non-linear Kalman filter implementation is developed
whose computational complexity scales close to linearly with the number of pixels of the
focal-plane camera. The performance of the method is tested in a simulation of an adap-
tive optics system, where the small-phase assumption is enforced by considering a closed-
loop system that uses a low-resolution wavefront sensor to control a deformable mirror.
The results confirm the computational efficiency of the algorithm and show a large ro-
bustness against noise and model uncertainties.

The contents of this chapter have been published in Piscaer, P., Soloviev, O., Verhaegen, M. Phase retrieval of
large-scale time-varying aberrations using a non-linear Kalman filtering framework, JOSA A 38, 25 (2021).
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KALMAN FILTERING FRAMEWORK

3.1. INTRODUCTION
Adaptive optics (AO) systems correct in real-time for phase aberrations in optical sys-
tems. A deformable mirror (DM) is used to correct for the phase aberrations and counter
their effects on the image quality. Often, the light is split between a wavefront sensor
(WFS), which measures the phase aberration, and a focal-plane camera, which cap-
tures the image of interest. The reason for including a dedicated WFS is that retriev-
ing the aberrations from focal-plane images alone is very challenging, as most methods
are based on iterative algorithms, which are difficult to apply in real time for temporally
dynamic wavefronts. Despite the challenges, focal-plane wavefront sensing is still an
active field, as it simplifies the optical setup and eliminates errors due to non-common
path aberrations (NCPAs). Assuming a point source, the focal-plane camera captures the
point spread function (PSF). The problem of retrieving the static phase aberrations from
the PSF is known as the phase retrieval (PR) problem.

Many PR algorithms have been developed, these can be split into three main classes.
The first and still the most commonly used class is based on the alternating projections
(AP). The most well-known AP methods include [1, 2], but many more have been devel-
oped. See [3] for an overview and [4] for a recent state of the art method. A second class
of methods reformulates the PR problem as a convex optimization problem [5, 6]. De-
spite promising convergence results, these methods are very computationally demand-
ing for larger AO systems. More recently, a third class, which solves the PR problem in its
original non-convex framework, has gained attention [7–10]. A problem of this class of
methods is the need of an accurate initial guess of the wavefront, usually computed via
techniques that require a restrictive measurement setup and many more measurements
than unknowns [7, 8].

Another approach to focal-plane wavefront sensing is to assume that the phase to be
estimated is small [11] and to apply a linear or quadratic approximation of the PSF. This
approach includes methods such as ILPD [12], LIFT [13] and Fast & Furious [14]. These
method are restricted to small wavefronts (RMS-value below 0.5 rad [12]). In addition, in
[15], the approach was used to estimate dynamic aberrations using a non-linear Kalman
filtering (KF) framework.

Where the KF implementation proposed in [15] is unpractical for large-scale appli-
cations due to its large computational complexity, this chapter presents a computation-
ally efficient framework in which a single focal-plane image is used to obtain a high-
resolution reconstruction of dynamic aberrations. By exploiting special matrix struc-
tures and efficient linear algebra operations specific to AO systems, the number of ele-
mentary computations scale just more than linearly (n log(n)) with the total number of
pixels n of the reconstruction. This computational complexity is of the same order as
computationally efficient small-phase methods [14] and much faster than the existing
KF-based method [15] (which scales with n3). The low computational complexity opens
up the possibility for real-time large-scale applications.

An additional goal of this chapter is to address the advantages of reformulating the PR
problem for dynamic aberrations into a Kalman filtering framework. Due to the similari-
ties between the KF measurement update and the PR problem, the issue of uniqueness of
the PR problem becomes issue of observability within the KF framework. Consequently,
even when there is no unique solution to the PR problem when using a single image, the
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full dynamic system considered by the KF can become observable. In addition, it will be
discussed how the KF measurement update can be interpreted as an optimally weighted
regularization to the static PR problem.

The KF framework makes the method applicable to cases where the phase aberra-
tions change over time, i.e. dynamic phase aberrations. Moreover, by including the
temporal and statistical models of the turbulence and sensors, the KF is known to be
robust against modelling errors and measurement noise, making it particularly suitable
for dealing with dynamic aberrations and noisy measurements. Small-phase aberrations
have also been assumed in other algorithms that aim to estimate temporal dynamic
aberrations [15, 16]. Possible applications include estimating NCPAs (which occur in
various fields such as astronomy [17, 18] and ophthalmology [19, 20]), wind induced dy-
namic non-common path vibrations [21] or the low-wind effect [18]. This method could
also be used to estimate spatial (rather than temporal) dynamics due to anisoplanatic
conditions in astronomy [22], ophthalmology [23] and microscopy [24]. Small-phase
aberrations are the typical situation considering a closed-loop AO system [12], making
the algorithm well-suited to estimate AO-corrected atmospheric residuals.

The proposed algorithm establishes a generic framework which can be applied pro-
vided its requirements are satisfied (small-phase aberrations with continuous dynamic
evolution). As an illustration, a simulation of a closed-loop AO system for astronomy us-
ing the open-source Matlab software OOMAO [25] is performed, giving a detailed analy-
sis of the robustness of the method against modelling inaccuracies and noise. A simple
WFS-based controller compensates for the dominant low-order modes in the wavefront
in order to keep the wavefront sufficiently small. It should be stressed that this case study
is merely an example and should be considered as an illustration of the performance of
the method under varying temporal dynamics, noise conditions, and RMS-values of the
aberration.

This chapter is structured as follows. Section 3.2 gives an introduction to modelling
AO systems and dynamic aberrations. A computationally efficient representation of the
model and its identification procedure is described in Section 3.3. The advantage of
using KFs in WFSless AO systems is discussed in Section 3.4. The main contribution of
this chapter, an efficient implementation of the KF, is introduced in Section 3.5. Section
3.6 discusses the simulation environment and the results are presented in Section 3.7.
Finally, the main conclusions are summarized in Section 3.8. Frequently used symbols
are listed in Table 3.1.

3.2. MODELLING THE AO SYSTEM
To provide an illustration of the algorithm’s performance, a typical closed-loop AO sys-
tem for astronomy depicted in Figure 3.1 will be used. This section introduces the com-
ponents, aberration dynamics and measurement noise models.

3.2.1. OVERVIEW OF THE AO SYSTEM
The effect of the phase aberration on the optical system will be represented in terms of
the generalized pupil function (GPF):

X (ρ,θ) =A (ρ,θ)exp
(
iΦ(ρ,θ)

)
, (3.1)
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Table 3.1: A list of frequently used notations and symbols.

cX Average number of non-zero elements per row/column of any sparse
banded matrix X

m Number of actuators inside the aperture
n̄, n Size of grid in pupil plane (n̄×n̄) and number of pixels inside aperture

respectively
p̄, p Size of grid in the image plane (p̄ × p̄) and p = p̄2

q̄ Size of lenslet grid of the WFS (q̄ × q̄)
φ(k) Aberrated residual wavefront
a Pupil plane amplitude
u(k) DM control signal
v (k), R(k) Measurement noise and its covariance matrix
y(k) Point spread function (PSF)
A,Q Turbulence dynamics model (see (3.10))
Jφ, cφ Taylor expansion of y(k) (see (3.20))
F , Fvec Zero-padded 2D DFT and Fvec {·} := vec(F {·})
Jφ,M ,B Efficient operators (see Eqs. (3.21,3.35,3.36))
N (µ,P ) Gaussian random process (mean µ, covariance P )
SX Set of all matrices that satisfy a chosen sparsity pattern for matrix X .

Controller

Aberrated wavefront

CCD

Light from telescope

Beam splitter

WFS

DM

Residual

Wavefront
Post-processing

Figure 3.1: Schematic of the classic AO system for astronomy.

where ρ, θ represent the normalized polar coordinates in the pupil plane, and A (ρ,θ)
andΦ(ρ,θ) represent the amplitude apodization function and phase aberration, respec-
tively. Assuming uniform illumination, A (ρ,θ) will correspond to the characteristic func-
tion with a constant value inside the pupil and zero outside. The image along the optical
axis around the focal plane can be expressed in terms of the GPF via the following inte-
gral:

I (ζ,ω,δ) = 1

π

∫ 1

0

∫ 2π

0
exp

(
iδζ2)X (ρ,θ)exp(2πiζρ cos(θ−ω))ρdρdθ, (3.2)

where ζ, ω are the normalized polar coordinates in the focal plane and δ represents the
position along the optical axis with respect to the focal plane. The PSF corresponding to
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the GPF is defined as the intensity of I (ζ,ω,δ):

Y (ζ,ω,δ) = |I (ζ,ω,δ)|2. (3.3)

The pupil plane coordinates will be sampled on a regular n̄ × n̄ grid of pixels. The dis-
cretized GPF, its amplitude and its phase (the wavefront) will be denoted by X ∈ Cn̄×n̄ ,
A ∈Rn̄×n̄ and Φ ∈Rn̄×n̄ respectively, related via

X =A ¯exp iΦ, (3.4)

where ¯ represents an element-wise product of two vectors or matrices. Often, a vec-
torized representation will be used in which only the pixels inside the aperture, i.e. the
non-zero elements in A , will be considered:

x = a ¯exp iφ, (3.5)

so that a ∈ Rn , x ∈ Cn and φ ∈ Rn . Moreover, due to the circular aperture, it can be
concluded that n < n̄2.

Similarly, the image plane coordinates are sampled on a p̄ × p̄ grid and the PSF will
be denoted by Y ∈ Rp̄×p̄ . A discrete adaptation of (3.2) becomes the two-dimensional
discrete Fourier transform (DFT) denoted by F {·}:

Y = |F {X } |2. (3.6)

To obtain a Nyquist sampled measurement, it is necessary for simulation purposes that
the matrix X ∈ Cn̄×n̄ is padded with zeros to the dimension of p̄ × p̄, where p̄ = 2n̄. A
vectorized representation of (3.6) is defined by

y = |Fvec {x}|2, (3.7)

where Fvec {·} := vec(F {·}) and y ∈ Rp : y := vec(Y ) such that p = p̄2, with vec(·) repre-
senting a vectorization of a matrix.

The WFS is assumed to have a square grid of q̄ × q̄ lenslets. Measurements from
lenslets that do not collect enough light due to their position outside the aperture will be
discarded. The effect of the DM on the wavefront is modelled by its influence functions.
The actuators are placed such that their centers lie on a (q̄+1)×(q̄+1) grid located at the
corners of the WFS lenslet subapertures (known as Fried geometry). Actuators outside
of the aperture will be discarded, hence the number of active actuators m < (q̄+1)2. The
wavefront correction by the DM will be denoted by Φdm ∈Rn̄×n̄ , and it is defined as

Φdm =
m∑
`=1

B`u`, (3.8)

where B` ∈ Rn̄×n̄ represents the DM influence functions. The control commands u` ∈
R, ` = 1, . . . ,m are stored in a vector u ∈ Rm . A vectorized formulation of Φdm is repre-
sented by φdm ∈Rn : φdm := vec (Φdm), and

φdm = Bu, (3.9)

such that each column ` of B ∈Rn×m is equal to vec (B`).
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3.2.2. DYNAMIC ABERRATION MODEL
In astronomy, the phase aberrations are caused by turbulence in the Earth’s atmosphere.
Since atmospheric turbulence is a well-studied source of dynamic aberrations, it is one
of the main reasons for choosing the astronomy example to illustrate the algorithm’s
performance. The temporal dynamics are usually modelled by assuming Taylor’s frozen
turbulence assumption, where the atmosphere is modelled by multiple layers each mov-
ing in a constant direction and speed. The layer’s combined influence on the wavefront
is denoted by φt ∈ Rn . The temporal dynamics of φt is estimated by a Vector Auto-
Regressive (VAR) model of order one, i.e.,

φt (k +1) = Aφt (k)+w (k), (3.10)

with k specifying the time index, A ∈ Rn×n , and where w (k) ∈ Rn is a Gaussian random
process with zero mean and covariance matrix Q ∈ Rn×n , which will be denoted in this
chapter as w (k) ∼ N (0,Q), where the symbol ∼ declares the statistical distribution of
the variable on its left. VAR models have been a popular choice to model aberration
dynamics and have been particularly used to model turbulence dynamics [26]. During
the simulations, the turbulence will be simulated using OOMAO, so the model (3.10) is
not the true model driving the turbulence dynamics. More detailed information in how
to obtain the VAR model from data is discussed in Section 3.3.

Closing the loop using the DM model of (3.9), the residual wavefront φ(k) ∈ Rn , de-
fined as φ(k) =φt (k)−φdm(k), which combined with (3.10), becomes

φ(k +1) = Aφ(k)−Bu(k)+ ABu(k −1)+w (k). (3.11)

Finally, using φ as the state and (3.11) as the state update equation, a state-space model
[27] can be formulated by including the measured PSF as an output equation:

y(k) = |Fvec
{

a ¯exp(iφ(k))
} |2 +v (k). (3.12)

The measurement noise v (k) is in reality a combination of Guassian read-out noise and
Poissonian shot-noise, but will be modelled as a Gaussian process: v (k) ∼ N (0,R(k)),
this will be motivated in the next subsection.

3.2.3. MEASUREMENT NOISE MODEL
The true measurement noise can be seen as combination of Gaussian read-out noise
and Poissonian shot noise, i.e.,

y = ytr ue +vshot +vr ead , (3.13)

where ytr ue is the number of photons that would have arrived at each pixel of the cam-
era in the noiseless case. The read-out noise is a zero-mean white Gaussian noise vr ead ∼
N (0,σ2

r I ). The shot noise is known to be corresponding to a Poisson distribution: (ytr ue+
vshot ) ∼ Poi s(ytr ue ).

By approximating the Poisson distribution by a Gaussian distribution, the use of
Kalman filter theory is allowed. An important reason this approximation is adopted is
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that the Poisson distribution is known to converge to a Gaussian distribution when ytr ue

is large, i.e.,

lim
ytr ue→∞Poi s(ytr ue ) =N (ytr ue , ytr ue ), (3.14)

where in this case ytr ue represents a single pixel. Consequently, if ytr ue is large,

y ≈ ytr ue + ṽshot + vr ead , (3.15)

with ṽshot ∼N (0, ytr ue ) and vr ead ∼N (0,σ2
r ). Since the read-out and shot noise can be

considered to be uncorrelated, the total noise is v := ṽshot + vr ead , v ∼N (0, ytr ue +σ2
r ).

Of course, this remains an approximation, so the robustness of the method against this
modelling inaccuracy will be discussed in Section 3.7.

When the approximation of (3.15) is extended to the multivariate case of (3.13), the
approximation of the shot noise becomes: ṽshot (k) ∼ N (0,diag(y(k))), with diag(y) a
diagonal matrix with the entries of y on its diagonal. The total measurement noise, given
by v (k) in (3.12), will be modelled by

v (k) ∼N (0,R(k)), with R(k) =σ2
r I +diag(y(k)). (3.16)

In the simulations, the shot noise and read-out noise will be simulated according to their
true distributions, and the approximation (3.16) is not used to simulate the noise.

Furthermore, since the number of arriving photons (ytr ue ) influences the severity of
the noise, the brightness of the point source becomes an important parameter. A com-
monly used unit for the flux of photons arriving at the telescope is the (Vega) magnitude,
βm . The relation βm and the photon flux β f in photons/m2/s depends on the photo-
metric system:

β f = cβ10−
2
5βm , (3.17)

with constant cβ ≈ 8.97 ·109 for the simulations in Section 3.7.

3.3. STRUCTURES AND EFFICIENT COMPUTATIONS IN AO SYS-
TEMS

This section discusses a number of structures of matrices that appear in the state-space
model defined by (3.11) and (3.12). The model structures and efficient operators pre-
sented in this section will be used to develop an efficient non-linear Kalman filter imple-
mentation discussed in Section 3.5.

3.3.1. IDENTIFICATION OF STRUCTURED MATRICES IN DYNAMIC ABERRA-
TION MODELS

The key realization for efficiently modelling the aberration dynamics is that the VARX
model of (3.11) can be accurately represented by highly sparse matrices A, Q−1 and B .
When a type of DM is considered for which its actuators only have a local influence on
the total wavefront, B will be a sparse matrix. The remainder of this subsection will focus
on the sparsity of the matrices A and Q−1.
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To support this assumption, a graphical model representation of the VARX model can
be considered [28]. An intuitive interpretation of the theory in [28] to atmospheric tur-
bulence implies that the matrices A and Q−1 are sparse banded matrices. This banded
sparsity corresponds to the ability of predicting a single pixel only using those in its close
neighbourhood. Such an assumption holds, for example, in situations where the turbu-
lence can indeed be approximated by Taylor’s frozen flow hypothesis, as is done in this
work. The sparsity structure of the matrices A and Q−1 is defined by the sets SA and SQ−1

respectively, each denoting the location of the non-zero entries in their corresponding
matrix. A more detailed analysis of sparsity structures in dynamic AO systems can be
found in [29, 30]. Sparsity structures in AO systems are not unique to the dynamic aber-
ration model. For example, [31] shows that sparsity structure can also be exploited for
static wavefront reconstruction.

To compute A and Q−1, different approaches are possible, depending on the avail-
able information, such as computing them from first principles, choosing them by man-
ual tuning, or via system identification techniques [27]. The remainder of this subsection
will show how A and Q−1 can be computed via system identification; however, if the co-
variance matrix Cφ = E

[
φ(k)φT (k)

]
is known, A and Q are related via Q =Cφ− ACφAT .

To identify A and Q−1 from data, a time series with Ni d time samples of open-loop
wavefront data is retrieved using either a dedicated WFS or any WFSless wavefront re-
construction method. This batch will be denoted by

{
φi d (i )|i = 1,2, . . . , Ni d

}
. The matrix

A can be identified by solving the following constrained least squares problem [27]:

min
A

‖AΦ1 −Φ2‖2
F

s.t. A ∈SA ,
(3.18)

where Φ1 = [φi d (1) · · ·φi d (Ni d −1)] and Φ2 = [φi d (2) · · ·φi d (Ni d )]. The set SA describes
the set of all matrices A that have a desired sparsity pattern. Since the exact optimal
sparsity pattern is usually unknown, but rather an over-approximation is used, 1-norm
regularization on A can be added to further increase the sparsity [30].

Having computed an estimate of A, an estimate of w (k) can be found by computing
ŵ (k) =φi d (k+1)−Aφi d (k) for k = 1, . . . , Ni d −1. Afterwards, a sample covariance matrix,

Qs = 1

Ni d −1

Ni d−1∑
i=1

ŵ (k)ŵ T (k), (3.19)

can be computed such that a sparse approximation of Q−1
s could serve as an estimate

of Q−1. Alternatively, Q−1
s can be estimated directly from ŵ (k) by creating a matrix W ,

where each k-th column of W corresponds to 1p
Ni d−1

ŵ (k). Next, a matrixΞ is computed

such that ΞW = O, O ∈ Rn×n being an orthonormal matrix. This matrix Ξ can be found
using the Gramm-Schmidt method and Q−1

s can then be computed via Q−1
s =ΞTΞ, since

Qs =W W T =Ξ−1OOTΞ−T =Ξ−1Ξ−T . Hence,Ξ can be seen as the inverse square root of
Qs . Since Q−1 is expected to be banded and sparse, its square root Ξ is expected to have
an accurate sparse approximation. During the Gramm-Schmidt procedure, the desired
sparsity pattern of Ξ can easily be enforced, both speeding up the process and finding a
sparse approximation.
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Since the model of (3.10) is not capable of exactly representing the true turbulence
dynamics, manually fine-tuning Q̂ could improve the performance. Also, when n is very
large and the dataset Ni d is limited, problems could occur regarding ill-conditioning of
the matrix Qs . One simple way of tuning Q̂ is to take it equal to Qs+γI . As a rule of thumb
throughout this chapter, γ is tuned such that mean(diag(ΞTΞ)) = 1/mean(diag(Q̂)).

Furthermore, for applications where the sparsity of Q−1 would be unknown, finding
a sparse inverse of an sample covariance Qs has been studied well in graphical modelling
literature. Several algorithms have been presented that solve this problem, which can be
used to increase the sparsity of the estimate Q−1 further when desired, see for example
[32].

3.3.2. EFFICIENT COMPUTATIONS OF THE OUTPUT EQUATION

Since the output equation is non-linear, a first-order Taylor approximation with respect
to φ can be used to linearlize (3.12). The first-order Taylor approximation around the
initial estimate φ̂ will be denoted by

y(k) ≈ Jφ̂(φ(k)− φ̂)+cφ̂+v (k), (3.20)

where, if we define f (φ) = |Fvec
{

a ¯exp(iφ)
} |2, cφ̂ = f (φ̂) and Jφ̂ = f ′(φ̂), i.e., the Jaco-

bian matrix corresponding f (φ) evaluated at φ̂.
Although there are no sparse matrices in the output equation (3.12), the efficient

FFT algorithm can be used to compute the 2D DFT. For the first-order Taylor approxi-
mation of (3.20), an efficient computation of the matrix-vector multiplication Jφ̂φ can
be formulated using the FFT algorithm, thereby avoiding the explicit computation of the
complete Jacobian. When introducing x̂ = a ¯ exp(i φ̂) and ŷ = Fvec {x̂}, the following
operators can be introduced:

Jφ̂φ→Jφ̂(φ),ℜ(
2i ŷ ¯Fvec

{
x̂ ¯φ})

, (3.21)

J T
φ̂
ψ→J T

φ̂
(ψ),ℜ(−2i ŷ∗¯F−1

vec

{
x̂∗¯ψ})

, (3.22)

where F−1
vec {·} represents the vectorized 2D inverse DFT, and ŷ∗ and x̂∗ represent the

element-wise complex conjugates of ŷ and x̂ , respectively. In Section 3.5, both the spar-
sity structures of A and Q−1, and the operators in Eqs. (3.21-3.22) will be used to develop
an efficient non-linear Kalman filter implementation.

3.4. KALMAN FILTERS FOR WFSLESS AO
Kalman filters are widely used as a state observer for many applications and they are
treated in many textbooks [27]. At each time step k, the Kalman filter involves two steps:
a measurement update and a time update. The goal of the measurement update is to
optimally combine a new measurement y(k) with a previous state estimate φ̂(k|k − 1)
into an improved update φ̂(k|k). The time update uses the dynamical model to predict
the state for the next time step, which will be denoted by φ̂(k +1|k).

The accuracy of the estimates is expressed in terms of the error-covariance matrices
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P (k +1|k) and P (k|k) for the time update and measurement update, respectively:

P (k +1|k) := E [(φ(k)− φ̂(k +1|k))(φ(k)− φ̂(k +1|k))T ], (3.23)

P (k|k) := E [(φ(k)− φ̂(k|k))(φ(k)− φ̂(k|k))T ]. (3.24)

The Kalman filter computes the estimates φ̂(k +1|k) and φ̂(k|k), such that their error-
covariance matrices are minimal [27]. Since the state equation (3.11) is linear, the time
update will be equivalent to the classical Kalman filter. The measurement update can be
formulated as a regularized non-linear least squares problem:

φ̂(k|k) = arg min
φ∈Rn

∥∥φ̂(k|k −1)−φ∥∥2
P−1(k|k−1) + . . .∥∥∥y(k)− ∣∣Fvec

{
a ¯exp(iφ)

}∣∣2
∥∥∥2

R−1(k)
,

(3.25)

where the weight matrix P (k|k−1) is the error-covariance matrix corresponding toφ(k)−
φ̂(k|k−1). Because of the non-linearity of the output equation of the state-space model,
a non-linear adaptation of the measurement update has to be used.

3.4.1. KALMAN FILTERING AND THE PHASE RETRIEVAL PROBLEM
If the Kalman filter measurement update is compared to the phase retrieval problem,
many similarities appear, see for example [33] for an overview of different phase estima-
tion methods. Many algorithms have been proposed that aim to solve the PR problem
in its original non-convex optimization framework [7, 10]. In general, the optimization
framework could be formulated as

min
x∈Cn

‖y −|Fvec (x)|2‖2
Wy

+‖x̂ −x‖2
Wx

, (3.26)

where Wx ,Wy are weight matrices and for any vector α and matrix M : ‖α‖2
M :=αH Mα.

Most methods do not use the second term as there generally is no prior information
(x̂ , Wx ) considered to be available. Due to the non-convexity of the first term, a very
accurate initial condition is computed first before attempting to solve the problem using
either a gradient descent or second-order optimization algorithm. Obtaining this initial
estimate when considering Fourier measurements is not trivial. This is where a Kalman
filter and knowledge of the aberration dynamics can be used to its advantage.

When the amplitude in the pupil plane a is known, the problem can be rewritten to
solve for φ directly:

min
φ∈Rn

‖y −|Fvec {a ¯exp(iφ)}|2‖2
Wy

+‖φ̂−φ‖2
Wφ

, (3.27)

with Wφ another weighting matrix. Although this formulation of the PR problem is not
often used in existing literature due to the required extra information a and the extra
non-linearity caused by the exponential exp(iφ), it is more convenient for the dynamic
case due to the convenient linear state update equation (3.11) in terms of φ. Moreover,
when aiming to reconstruct the wavefront from a single image, knowledge of a is a signif-
icant advantage for obtaining a good performance. Considering the formulation of the
phase retrieval problem as in (3.27) and comparing it to the Kalman filter measurement



3.4. KALMAN FILTERS FOR WFSLESS AO

3

71

update of (3.25), the similarities are obvious. The Kalman filter provides a framework to
define optimal weight matrices Wφ and Wy , and uses the model dynamics to find the

initial estimate φ̂.

3.4.2. SOLVING THE PHASE RETRIEVAL PROBLEM USING A KALMAN FILTER
The next step is to solve the non-linear measurement update (3.25). The most well-
known method is to use a linear Taylor approximation to solve the non-linear mea-
surement update, which is known in Kalman filter theory as the Extended Kalman fil-
ter (EKF). In this chapter, the Gauss-Newton algorithm is applied to the non-linear op-
timization problem. Solving the measurement update (3.25) using the Gauss-Newton
algorithm leads to a filter is known as the iterated extended Kalman filter (IKF) [34]. The
IKF, as the name suggests, is an iterative version of the EKF. It is interesting to draw sim-
ilarities here with other existing PR algorithms in literature that aim to solve the related
formulation of (3.26) via a gradient descend or Gauss-Newton optimization schemes
[7, 10].

When a straightforward implementation of the IKF is used, the iterations of the mea-
surement update become as follows: initializing φ0 = φ̂(k|k −1) and P0 = P (k|k −1), for
`= 0,1, . . . ,L:

φ`+1 = (I −K` Jφ` )φ̂(k|k −1)+K`

(
y(k)−cφ` + Jφ`φ`

)
, (3.28)

P`+1 =
(
I −K` Jφ`

)
P (k|k −1), (3.29)

with Jφ` and cφ` as defined in (3.20), where

K` = P (k|k −1)J T
φ`

(
Jφ`P (k|k −1)J T

φ`
+R(k)

)−1
, (3.30)

and, after the last iteration, φ̂(k|k) = φL and P (k|k) = PL . The time update becomes
equal to the standard KF update:

φ̂(k +1|k) = Aφ̂(k|k)−Bu(k)+ ABu(k −1), (3.31)

P (k +1|k) = AP (k|k)AT +Q. (3.32)

The most important problem with this method is its large computational complexity;
therefore, a computationally efficient formulation of the IKF is presented in Section 3.5.

3.4.3. ADVANTAGE DYNAMIC VERSUS STATIC APPROACH
This subsection discusses the advantages of considering the dynamic case with respect
to the static case. For both cases, we restrict this discussion to the case in which the pupil
plane amplitude is considered to be known, i.e. the optimization problem of (3.27).

In the static case, without any knowledge of the model dynamics, phase retrieval
aims to solve (3.27) for Wy = I and Wφ = 0 (i.e., disregarding the second term). This often
creates problems regarding the non-uniqueness of the solution when only a single im-
age is used, and, without an accurate initial guess, algorithms usually do not converge to
an accurate solution. Usually, the uniqueness problem is overcome by considering mul-
tiple images along the optical axis (also known as phase diversity [35]), but this involves
splitting the light further and re-introduces the problem with NCPAs.
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When considering the dynamic case, the phase retrieval problem is reformulated as
the measurement update of the Kalman filter, i.e. (3.25). Compared to the static case, the
problem of uniqueness becomes the problem of observability [27]. Where the unique-
ness in the static case is purely defined by the output equation, observability depends on
both the output equation and the state dynamics. Even when the output equation alone
does not lead to a unique solution in the static case, adding knowledge of the dynam-
ics can make the system observable. As a consequence, the Kalman filter measurement
update in (3.25) is much more likely to result in an accurate estimate compared to the
the static case. The prior information φ̂(k|k −1), P (k|k −1),R(k) obtained from the dy-
namic model and noise model, acts as an optimally weighted regularization to the static

phase retrieval problem. Since the regularization term
∥∥φ̂(k|k −1)−φ∥∥2

P−1(k|k−1) is con-
vex, it significantly helps solvers aiming to solve the non-linear optimization problem in
(3.25). The addition of this extra knowledge opens the possibility for considering situa-
tions impossible to accurately solve in the static case, such as only considering a single
out-of-focus image, or even considering a single in-focus image.

Another advantage of this optimally weighted regularization term is that, due to the
extra knowledge of the measurement noise, the algorithm also becomes much less sen-
sitive to noise. A common method to deal with measurement noise in the static case is
to hard-threshold the image and discard all measured pixels in y(k) smaller than ymi n

from the measurements. Since the optimal choice of ymi n depends on the noise level
σr , the value of ymi n is difficult to optimally tune. The Kalman filter does not need this
truncation parameter as the noise is already taken into account by the application of the
weighting matrices R(k) and P (k|k −1), resulting in a more consistent algorithm under
noisy circumstances.

3.5. EFFICIENT NON-LINEAR KALMAN FILTER IMPLEMENTATION

In Section 3.3, it was discussed how, due to the underlying nature of the dynamics, the
inverse covariance matrices corresponding to φ(k) and w (k) (i.e. C−1

φ and Q−1) are ex-
pected to be sparse. As a consequence, the inverse error-covariance matrix of the KF,
P−1, is expected to have an accurate sparse approximation as well. Therefore, the in-
formation filter representation of the KF is used, which only uses the inverse error co-
variance matrices P−1(k|k) and P−1(k + 1|k). To summarise, the new filter consists of
4 main steps: (1) compute the measurement update φ̂(k|k) via (3.25), (2) compute in-
verse error-covariance matrix P−1(k|k), (3) compute time update φ̂(k + 1|k) via (3.31)
and, (4) compute inverse error-covariance matrix P−1(k +1|k). The computation of the
time update φ̂(k +1|k) (step 3) is straightforward. Since the matrix A and B are sparse,
this update can be performed very efficiently. Efficient implementations of the other
steps will be discussed in the remainder of this section.

The notation O (·) will be used to describe how the number of elementary compu-
tations (+,−,×,÷) scale with respect to certain parameters. For example, the notation
O (n3) represents that if the system dimension n doubles, the number of required ele-
mentary computations increase by a factor 23 = 8. A method is considered to scale bet-
ter with respect to the system dimensions when the exponent is as low as possible. All
computational complexities will be summarized in Table 3.2.
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Table 3.2: Computational complexities per step of the algorithm. pc represents the rank of the approximated
term in (3.37), L is number of the IKF iterations, LCG is the average number of CG iterations. The other symbols
are included in Table 3.1.

Step in algorithm Computational complexity
Compute φ̂(k|k) by solving (3.34) via CG method O (n(cP−1 + logn)LLCG )
Explicitly computing pc rows of the Jacobian O (npc )
Sparse low-rank approximation of P−1(k|k) in (3.37) O (npc cP−1 )
Compute φ̂(k +1|k) via (3.31) O (ncA +mcB )
Computing sparse inverse approximation via solving (3.39) O (n(c3

Γ
+ cM2 c2

Γ
))

Sparse approximation of P−1(k +1|k) in (3.40) O (nc2
M1

cP−1 )

An important advantage of the implementation presented is that the state measure-
ment update is computed efficiently using the full PSF as input, i.e. no truncation or
cropping of the image is performed. The only necessary approximations are in the up-
dates of the matrix P−1. Since P−1 acts as just a weight matrix in the measurement up-
date, it is expected that small inaccuracies in P−1 affects the performance of the algo-
rithm much less significantly than manually truncating the data y(k).

3.5.1. STATE MEASUREMENT UPDATE
Recall the Kalman filter measurement update formulation given by (3.25). Introducing
the increment δφ` :=φ`+1 −φ`, the `-th iteration of the IKF measurement update can
be reformulated into the following optimization problem:

δφ` = arg min
δφ∈Rn

∥∥φ̂(k|k −1)−φ`−δφ
∥∥2

P−1(k|k−1) +
∥∥y(k)− Jφ`δφ−cφ`

∥∥2
R−1(k) , (3.33)

whereφ`+1 = δφ`+φ` is equal to the results presented in (3.28). Since computing (3.28)
by using (3.30) has a computational complexity of O (n3), it is too computationally de-
manding for large values of n. Therefore, the above least-squares problem is solved using
an iterative solver that exploits the fast operators (3.21) and (3.22). One possible itera-
tive algorithm is the conjugate gradient (CG) algorithm, which can be found in many
textbooks, e.g. [36].

First, the normal equations corresponding to the least squares problem are formu-
lated: (

J T
φ`

R−1(k)Jφ` +P−1(k|k −1)
)
δφ= . . . (3.34)

J T
φ`

R−1(k)
(

y(k)−cφ`
)+P−1(k|k −1)

(
φ̂(k|k −1)−φ`

)
,

such that the matrix on the left hand side is square, symmetric and positive definite. With
the insights of Section 3.3, evaluating the vectors on both the left- and right-hand side of
this system of equations requires only matrix vector multiplications with sparse matrices
P−1 and R−1 and the operators (3.21) and (3.22). Hence, two new efficient operators are
introduced:

M (δφ;`,k) :=J T
φ`

(
R−1(k)Jφ`

(
δφ

))+P−1(k|k −1)δφ, (3.35)

B(y ;`,k) :=J T
φ`

(
R−1(k)

(
y(k)−cφ`

))+P−1(k|k −1)
(
φ̂(k|k −1)−φ`

)
, (3.36)
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Algorithm 1 Efficient IKF Meausurement update

1: procedure IKF-MU(y(k),δφ0, tol )
2: φ0 ← φ̂(k|k −1)
3: for `← 1 : L do . Start IKF iterations
4: r0 ←B(y(k);`,k)−M (δφ0;`,k) . (3.35),(3.36)
5: p0 ← r0
6: i ← 0
7: while r T r > tol do . Start CG iterations
8: zi ←M (δφi ;`,k) . (3.35)

9: αi ←
r T

i ri

pT
i zi

10: δφi+1 ← δφi +αi pi
11: ri+1 ← ri −αi zi

12: βi ←
r T

i+1ri+1

r T
i ri

13: pi+1 = ri+1 −βi pk
14: i ← i +1
15: φ`+1 ← δφi+1 +φ` . End CG iterations

16: φ̂(k|k) ←φ` . End IKF iterations
17: return

such that M (δφ;`,k) is equal to the vector on the left-hand side of (3.34) and B(y(k);`,k)
to the right-hand side. Since R−1 is diagonal, both (3.35) and (3.36) have a computational
complexity of O (n(cP−1 + logn)), cP−1 being the average number of non-zero elements
per row/column of P−1. This allows the CG algorithm to find the solution φ̂(k|k) in a
computational efficient manner, presented in Algorithm 1.

3.5.2. ERROR-COVARIANCE MEASUREMENT UPDATE

The next step is to find an update of the matrix P−1(k|k):

P−1(k|k) = P−1(k|k −1)+ J T
φ`

R−1(k)Jφ` , (3.37)

which has two difficulties. First of all, computing term J T
φ`

R−1(k)Jφ` using the operators

(3.21) and (3.22) still has a complexity of O (n2 log(n)). Secondly, the same term is not
necessarily sparse, so in order to maintain a sparse matrix P−1(k|k), a sparse approxi-
mation has to be made. The approximation that is proposed is to represent the matrix
J T
φ`

R−1(k)Jφ` as a low-rank, sparse matrix. By assuming the low-rank property, only a
small part of the Jacobian has to be computed. The sparsity property is necessary to
obtain a sparse updated matrix that can be efficiently used in the next time step.

The method for computing the low-rank approximation is based on a common pro-
cedure in phase retrieval algorithms, which is to discard dark pixels in the PSF that are
highly corrupted by noise. Since the proposed method is to be used for small phase
aberrations only, it is expected that the PSF will be relatively sharp and its brightest pix-
els will be concentrated around its center. Hence, most of the information used for the
measurement update is contained in the center pixels, and, consequently, the update
P−1(k|k) will mainly depend on the part of the Jacobian corresponding to these center
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pixels. Explicitly computing the rows of the Jacobian corresponding to the pixels located
in the (much smaller) p̄c × p̄c center square, has a computational complexity of O (npc ),
where pc := p̄2

c .

Finally, it is used that the desired sparsity pattern of P−1(k|k) is known; therefore,
only the elements of J T

φ`
R−1(k)Jφ` that correspond to this sparsity pattern have to be

computed. When there are an average of cP−1 non-zero elements per row of P−1(k|k),
the total computational of this step is O (npc cP−1 ).

3.5.3. ERROR-COVARIANCE TIME UPDATE

After computing the time update via (3.31), the corresponding inverse error covariance
matrix can be computed via

P−1(k +1|k) =Q−1 −M1
(
P−1(k|k)+M2

)−1
M T

1 , (3.38)

where M1 := Q−1 A and M2 := AT Q−1 A can be pre-computed offline to speed up the
computations. Notice that all matrices A,Q−1 and P−1(k|k) are sparse banded matrices,

but that the inverse
(
P−1(k|k)+M2

)−1
is not sparse in general. However, it is known

that since the matrix P−1(k|k)+M2 is a banded and positive definite matrix, its inverse
belongs to the class of off-diagonal decaying matrices and can be approximated by a
sparse matrix [37].

The computation of this approximation of P−1(k +1|k) is split in two steps. First, the
following approximate sparse inverse matrix is computed via

Γ̂= argmin
Γ

∥∥(
P−1(k|k)+M2

)
Γ− I

∥∥2
F

s.t. Γ ∈SΓ

(3.39)

such that Γ̂ is a sparse estimate of
(
P−1(k|k)+M2

)−1
and SΓ is the set of all matrices cor-

responding to the desired (chosen) sparsity pattern for Γ. The second step is to compute

P−1(k +1|k) =Q−1 −M1ΓM T
1 . (3.40)

The sparsity of P−1(k +1|k) (defined by the set SP−1 ) is known. Hence, when computing
(3.40), only the entries in P−1(k+1|k) corresponding to this desired sparsity pattern SP−1

have to be computed.

To analyze the computational complexity, the average number of non-zeros per row/
column of the matrices Γ, M1 and M2 are denoted by cΓ,cM1 and cM2 , respectively, and
the sets of matrices corresponding to the chosen sparsity patterns of M1 and M2 will be
defined as SM1 and SM2 , respectively. For the sake of simplifying the notations, we re-
strict this analysis to the typical case where all matrices are banded and where cΓ ≥ cM1

is chosen such that SM1 ⊆SΓ. By exploiting the sparsity structures and only computing
the elements of P−1(k + 1|k) that are in the sparsity set SP−1 , the computational com-
plexity of (3.40) will be of the order O (nc2

M1
cP−1 ) and computing the matrix Γ̂ in (3.39)

will be of the order O (n(c3
Γ+ cM2 c2

Γ)).
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Parameter Standard value
Fried parameter r0 [m] 0.2
Wind speed ν, layer 1 [m/s] 12
Wind speed ν, layer 2 [m/s] 16
Source magnitude βm 8
read-out noise σr [photons] 2
Telescope diameter D [m] 1
WFS lenslet grid size q̄ 6
DM grid size q̄ +1 7
Wavefront grid size n̄ 30
Sample frequency fs [Hz] 500
Outer scale L0 [m] 15

Table 3.3: Simulation parameters. If not mentioned otherwise, the standard values are used. Turbulence layer
2 is located at an altitude of 5000 m and is moving at an angle of 90◦ w.r.t. layer 1 located at 0m. The conversion
of magnitude βm to photon flux is given by (3.17). The source is a single natural guide star.

3.6. SIMULATION DESIGN
This section discusses the simulation environment used to provide an illustration of
the IKF’s performance. For the first-order Taylor approximation in (3.20) to hold, the
RMS-value of the wavefront observed by the focal-plane camera, denoted by RMS(φ),
should be sufficiently small. Unfortunately, for larger telescope diameters and realistic
atmospheric conditions, RMS(φ) will be too large; therefore, it is chosen to position the
IKF within a closed-loop AO system, as small-phase aberrations are the typical situation
within a control loop [12]. In this example, a WFS-based minimum variance estimate
(WFS-MVE) of the wavefront is used to drive the controller [38]. The goal of this paral-
lel controller is to compensate for dominant low-order aberrations in the wavefront in
order to keep RMS(φ) sufficiently low. The open source Matlab toolbox OOMAO [25] is
used to simulate the turbulence and AO system.

The WFS-MVE will also be used as a baseline during the performance evaluations,
as it defines the value of RMS(φ) to be estimated by the focal-plane wavefront sensing
methods. It is important to note that the WFS-MVE should not be interpreted as the
optimal performance of WFS-based methods in general, as the SH sensor only estimates
the low-order aberrations due to its limited number of lenslets.

In order to put the performance of the IKF in further perspective, it is compared to
an alternating projection (AP) method based on the Gerchberg-Saxton [1] algorithm in
a phase diversity framework [35] (referred to as AP-PD). To improve the convergence
of the AP-PD algorithm, its estimate at the previous time instance is used as an initial
estimate, and all pixels observing less than ymi n = 5 photons are set to zero to decrease
the influence of the measurement noise.

It should be emphasized that the AP-PD method assumes to have two phase diver-
sity images taken simultaneously along the optical axis, while the proposed IKF only
uses a single focal-plane image. Although the AP-PD method has this unfair advantage
over the IKF method, it will provide an estimate of the expected maximum achievable
performance of classical PR methods. Due to its access to two diversity images, the per-
formance of AP-PD should not be significantly affected by the aberration dynamics and
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therefore serves as a benchmark to see if the IKF can achieve a similar performance un-
der highly dynamic circumstances.

As a measure of performance, the distance d(k) in the pupil plane between the true
and estimated GPF will be used in order to avoid issues regarding phase-unwrapping:

d(k) = min
φp∈[0,2π]

‖x(k)−e iφp x̂(k|k)‖2
2, (3.41)

where x(k) = a ¯ e iφ(k) and x̂(k|k) = a ¯ e i φ̂(k|k), for φ̂(k|k) as given in (3.25). The scalar
φp expresses the piston offset between the real and estimated phase. A normalization of
this distance is defined as

dn(k) = d(k)

‖x(k)‖2
2

. (3.42)

Once a time sequence of ktot steps has been obtained, a scalar measure of the accuracy
over the full time sequence is computed by taking the root mean square: RMS(dn), where
dn ∈Rktot is a vector containing dn(k), k = 1, . . . ,ktot .

3.7. RESULTS
This section presents the results of the simulations discussed in the previous section. All
parameters have their standard value of Table 3.3 unless mentioned otherwise.

3.7.1. COMPUTATIONAL EFFICIENCY

The main result presented in this chapter is the scalable IKF implementation; therefore,
the computational efficiency of the algorithm in terms of execution time will be tested
for an increasing system size. In this experiment, the telescope diameter D , number of
WFS lenslets q̄ , and resolution of the reconstruction n̄ are increased in a way such that
their relative ratios are still the same as in Table 3.3. For each parameter setting, a time
sequences of 50 steps is simulated and the execution time is tracked for each time step.
The increase in computational burden due to the higher resolution is visualised in Figure
3.2 and compared with the straightforward IKF presentation of Section 3.4. Comparing
the results of the efficient IKF with the reference line of O (n) confirms the almost linear
complexity (O (n log(n))) of the efficient implementation. The improvement in terms of
the scalability of the new algorithm opens up the possibility for a real-time implementa-
tion.

3.7.2. INFLUENCE OF THE WAVEFRONT DYNAMICS AND RMS-VALUE

Next, the robustness of the method with respect to the wavefront dynamics and value of
RMS(φ) is investigated by varying ν and r0. For each parameter setting, 10 independent
time sequences of 500 steps are simulated in a Monte Carlo simulation. The results in
Figure 3.3 show that the IKF algorithm performs significantly better for moderate condi-
tions (low ν, large r0). This can be explained by two factors.

Firstly, since the VAR-1 aberration dynamics model is more accurate at mild condi-
tions, varying ν and r0 will provide information on the limits of the method with respect
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Figure 3.2: Computation time per time step for an increasing resolution n. The boxes indicate the 25th and
75th percentile over the time sequence. Lines are drawn through the medians. The dotted lines present a slope
corresponding to a complexity of O (n3) and O (n) for reference purposes. "Efficient IKF" is the new method,
"IKF" is the IKF implementation of Section 3.4.

to the accompanying model. This effect explains the decrease in performance when in-
creasing ν, as the wind speed has the largest influence on the accuracy of the model.

Secondly, since the IKF relies on a linear Taylor approximation, it is expected to rely
significantly on the magnitude of the residual aberrations, RMS(φ). When RMS(φ) be-
comes too large, the Taylor approximation will no longer be valid at this range. Conse-
quently, the performance will rely on the accuracy of the controller since the accuracy of
the WFS-MVE determines the value of RMS(φ). The clear dependence on RMS(φ) is vi-
sualised in Figure 3.3b, which shows corresponding values of RMS(φ) for a certain choice
of r0 on the top horizontal axis. This shows that the method is able to track aberrations
up to a value of RMS(φ) ≈ 1 rad.

Since the wavefront estimates φ̂(k|k) are compared and not the predictions φ̂(k +
1|k), the AP-PD algorithm is influenced much less by the atmospheric conditions. This
is expected, since it uses multiple simultaneous images and it does not rely on prior
information given by a dynamical model or a linear approximation.

The results of Figure 3.3b are particularly interesting since it gives useful insights
with respect to the estimation of NCPAs. That is, the residual wavefront φ represents
a mismatch between the WFS-based wavefront reconstruction and the corresponding
measured PSF image. Hence, this implies that compensating for NCPAs should not be
a problem under two assumptions. The first being that the total residual aberration has
RMS(φ) < 1 rad, and the second that the dynamics of the NCPAs are contained within
the dynamical model.

3.7.3. ROBUSTNESS TO MEASUREMENT NOISE

The robustness to measurement noise was previously addressed in Section 3.4, where
it was argued that the KF algorithm is expected to have an increased performance un-
der noisy conditions without user defined tuning parameters. The influence of the shot
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(a) Results for varying ν. The value shown on the x-axis is the speed of the
layer 1. The speed of layer 2 is changed accordingly.
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Figure 3.3: Results for varying the atmospheric conditions. The boxplots show the RMS of the normalized
distance of (3.42). The boxes indicate the 25th and 75th percentile of the results in a Monte Carlo simulation.
Lines are drawn through the medians. "Efficient IKF" has a single focal-plane camera out of focus, whereas
"Eff. IKF (focus img.)" has a camera placed in focus. The AP-PD method uses two phase diversity images.

noise is now investigated by varying the brightness of the source. Figure 3.4 shows the
performance for an increasing magnitude βm , i.e. a decreasing brightness in terms of
photon flux β f (see (3.17)). The performance of the IKF deteriorates much less signifi-
cantly when the magnitude is increased compared to the AP-PD algorithm. This shows
that the IKF is more robust for low signal-to-noise ratios, which occur in low brightness
conditions, than classical phase diversity methods. Moreover, under low-noise condi-
tions, it shows that the IKF, using only a single focal-plane image, is able to retrieve an
estimate that is as accurate as the AP-PD method, which uses two images. The low me-
dians show that even when using a single in focus image, the IKF performs well in most
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Figure 3.4: Results for varying the brightness of the source. The presentation of the boxplots is the same as Fig.
3.3.

cases, but the performance is much less consistent considering the large spread of the
boxplots.

3.8. CONCLUSIONS
A computationally efficient framework has been proposed in which a single focal-plane
image is used to obtain a high-resolution reconstruction of dynamic aberrations. The
framework is based on a reformulation of the phase retrieval problem for dynamic aber-
rations into a Kalman filtering framework using a simple identified model of the dynam-
ics. The computationally efficient implementation scales almost linearly with the num-
ber of pixels of the focal-plane camera, making the method suitable for high-resolution
AO systems and opening up a real-time implementation as a topic for future research.
In a simulation study, the low computational complexity was confirmed, and the accu-
racy of the method was analysed under varying conditions. It was discovered that the
Kalman filter (using a single focal-plane image) is able to obtain an estimate that is as
accurate as phase diversity methods (using two focal-plane images), even when consid-
ering highly dynamic aberrations. Moreover, it was shown that the Kalman filter is able
to maintain a much better performance than classical phase diversity methods when
considering lower signal-to-noise ratios. Finally, although in general measuring the PSF
out of focus usually increases the performance, a single in focus PSF image was able to
achieve satisfying results in many cases.
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4
PREDICTIVE WAVEFRONT

SENSORLESS ADAPTIVE OPTICS FOR

TIME-VARYING ABERRATIONS

A new wavefront sensorless adaptive optics method is presented that can accurately cor-
rect for time-varying aberrations using a single focal plane image at each sample instance.
The linear relation between the mean square of the aberration gradient and the change in
second moment of the image forms the basis of the presented method. The new algorithm
results in significant improvements when an accurate model of the aberration’s temporal
dynamics is known, by applying a Kalman filter and optimal control. Moreover, where
existing wavefront sensorless adaptive optics methods update all modes sequentially, the
information of the Kalman filter is used to select and update the modes that are expected
to give the largest improvement in performance. The performance is analyzed in a simu-
lation of an adaptive optics system for atmospheric turbulence. The results show that the
new method is able to correct for the aberration more accurately for larger wind speeds
and higher noise levels than existing algorithms.

The contents of this chapter have been published in Piscaer, P., Soloviev, O., Verhaegen, M., Predictive wave-
front sensorless adaptive optics for time-varying aberrations, JOSA A 36, 1810 (2019).
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4.1. INTRODUCTION
Wavefront sensorless (WFSless) adaptive optics (AO) systems are systems in which the
aberrations of the wavefront have to be corrected without using a dedicated wavefront
sensor (WFS). Instead, only the images of a focal-plane camera are used. The correction
is applied to a deformable mirror (DM) in order to minimize the effect of the aberration
on the image quality. Finding an accurate correction without a WFS is challenging be-
cause of the non-linearity of the underlying optimization problem. Various WFSless AO
algorithms have been developed [1–4]. The common features of these methods is that
they are all iterative and require many measurements to converge. Recently, WFSless AO
also has gained attention in free-space optical communication leading to new develop-
ments [5, 6].

Alternatively, an accurate correction can be found by solving the phase retrieval prob-
lem [7]. However, this either requires additional constraints, such as knowledge of the
field’s amplitude in the pupil plane, or requires multiple simultaneous measurements at
different positions along the optical axis. Furthermore, the phase retrieval problem for
AO systems is computationally very demanding and would limit the sampling frequency
of the control loop significantly [8].

A recent development in WFSless AO is an approach that only requires m +1 mea-
surements, where m is the number corrected modes [9, 10] and is often referred to as
model-based or second moment (SM)-based WFSless AO. A modal basis is used that is
spanned by the influence functions of the deformable mirror. This type of method has
been shown to converge faster than other optimization algorithms [11]. The key of this
approach is the linear relation between the mean square of the phase aberration gradi-
ent and the change in SM of the point spread function (PSF). By exploiting this linear
relation, a closed-form expression of the correction can be computed. In contrast with
iterative algorithms, this method is, due to its fast convergence, promising for real-time
AO applications in which the aberration is time varying.

However, this method is still only useful when the aberrations are static or changing
very slowly over time. Since the method relies on the assumption that the aberration
is not changing over taking all m +1 measurement images, the performance decreases
rapidly when the aberrations are moving faster. In [11], a method is used that requires
the aberration not to change over only two measurement images. However, this method
does not aim to predict the evolution of the aberration over time, nor discusses the effect
of measurement noise on the method’s performance. Modelling the aberration’s tempo-
ral behaviour and the application of Kalman filter theory has been proven to be success-
ful to deal with time-varying aberrations and measurement noise in the field of AO for
astronomy [12, 13]. Therefore, the effects of including a temporal aberration model and
Kalman filter for WFSless AO are studied in this chapter.

This chapter presents an extension of the methods described in [9, 11, 14] for aber-
rations that are continuously changing over time and for which an accurate temporal
model is available or can be identified. An example of an application that deals with this
type of aberrations is AO for astronomy [12]. From now on, these aberrations will be
referred to as dynamic or time-varying aberrations. When a dynamic model of the aber-
ration is available, Kalman filter theory and optimal control is applied to close the loop
and compute the optimal DM commands. The Kalman filter is used to predict the aber-
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Figure 4.1: Schematic representation of a WFSless AO setup.

ration in the future and to select and update the measurement image(s) that are expected
to give the largest improvement in performance. The performance will be analysed in a
simulation study of an AO system that corrects for aberrations caused by atmospheric
turbulence and is compared to the method in [14].

The remainder of this chapter is structured as follows. First, the existing framework
of SM-based WFSless AO is explained and its limitation for dynamic aberration correc-
tion is discussed. Section 4.3 presents the new SM-based WFSless AO method for time
varying aberrations. The simulation environment is discussed in Section 4.4, which con-
siders a case study of dynamic aberrations caused by atmospheric turbulence. The per-
formance of the new method is presented in Section 4.5, where it is compared to the
existing SM-based WFSless AO method [14]. The main conclusions are summarized in
Section 4.6.

4.2. SECOND MOMENT-BASED WAVEFRONT SENSORLESS ADAP-
TIVE OPTICS

A SM-based approach to WFSless AO has already been shown to outperform the iterative
algorithms in terms of convergence speeds when applying correction for a static aberra-
tion. Recently, this was also applied to the case of dynamic aberrations [14]. For com-
pleteness, this section summarizes the theory of this SM-based WFSless AO approach. A
scheme of a WFSless AO setup is shown in Figure 4.1.

The main goal of WFSless AO is to correct for a residual phase aberration in the pupil

plane, φ(χ), with pupil-plane coordinates χ= [
χ1 χ2

]T ∈R2. Define the PSF I (ζ,φ) with
image-plane coordinates ζ ∈R2 as

I (ζ,φ) =
∣∣∣F (

A (χ)e iφ(χ)
)∣∣∣2

, (4.1)

where F (·) is the 2D Fourier transform and A is the amplitude apodization function.
The unaberrated PSF will be denoted by I (ζ,0). Furthermore, the SM of the aberrated
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PSF is defined as

z(φ) =
∫
R2

I (ζ,φ)|ζ|2dζ. (4.2)

An important relation that forms the basis of this method is that the difference between
SM of the aberrated PSF and that of the unaberrated PSF is proportional to the mean
square gradient of the wavefront [10]. It has been shown that∫

R2

(
I (ζ,φ)− I (ζ,0)

) |ζ|2dζ= 1

4π2

∫
R2

A 2(χ)|∇φ(χ)|2dχ, (4.3)

i.e., the SM of the intensity distribution change in the focal plane is proportional to the
integral of the square of the phase derivative multiplied by the amplitude apodization
function. This can be denoted more compactly as

z(φ)− z(0) = c0‖∇φ‖2
2, (4.4)

where z(0) is the SM of the unaberrated PSF and c0 = 1
4π2 [10]. Notice that (4.4) is a scalar

equation. Decreasing the information of an image into a scalar and the compact modal
description of our aberration reduces the dimensionality of the WFSless AO problem
and opens the possibility for applying real-time filtering and prediction to improve the
performance in the dynamic case.

4.2.1. STATIC ABERRATION CORRECTION
Define the deformable mirror influence functions as E j (χ) for each actuator j = 1, . . . ,m.
Each actuator is poked independently such that this phase will be added to the exist-
ing residual aberrated wavefront φ(χ). It is important to notice that, since a residual
wavefront is observed by the focal-plane camera, computed control signals will always
be incremental and have to be added on top of the current control signal.

An inherent property of the SM-based WFSless AO approach for control is that it will
always be unable to compensate for the part of the aberration that is orthogonal to the
DM basis. However, the true aberration, φ̃(χ), actually is

φ̃(χ) =φ(χ)+φ⊥(χ), (4.5)

where

φ(χ) =
m∑

j=1
u j E j (χ), (4.6)

such that φ(χ) represents the part of the aberration that is within the span of the DM
influence functions, and φ⊥(χ) is the part orthogonal to it. Generally, in the derivation
of the control law, it is assumed that φ̃(χ) =φ(χ), such that only φ(χ) will be estimated.
However, it has to be noted that this is an approximation and that φ⊥(χ) will have an
influence on the measurements in practice [15]. Also in the simulations,φ⊥(χ) will affect
the measurements.
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SM-based WFSless AO aims to find the coefficients u j describing the aberration most
accurately. In the general SM-based WFSless AO method [9], each actuator is poked se-
quentially. When poking actuator j with an amplitude β on top of the current control
signals, the total phase of the field measured by the camera will be

φ j (χ) =βE j (χ)+φ(χ). (4.7)

Defining the matrix S ∈Rm×m and vector s ∈Rm as

Si j =
∫ ∫

R2

(
∂Ei

∂χ1

∂E j

∂χ1
+ ∂Ei

∂χ2

∂E j

∂χ2

)
dχ1dχ2, (4.8)

si =
∫ ∫

R2

(
∂Ei

∂χ1

)2

+
(
∂Ei

∂χ2

)2

dχ1dχ2, (4.9)

with Si j denoting the element on row i and column j in the matrix S and si denoting
element i in the vector s. Using the linear relation of (4.4), we can form the following
system of linear equations:

ym ,

 z(φ1)− z(φ)
...

z(φm)− z(φ)

=Cm u + ym,0, (4.10)

where ym ∈ Rm , Cm = 2βc0S, ym,0 = β2c0s, c0 = 1
4π2 (see [10] for a more detailed deriva-

tion). The vector u ∈Rm contains the ideal increment of DM control commands u j that
have to be added to the current DM control signal. Solving (4.10) for u gives us the modal
description of the aberration φ(χ) as in (4.6). From (4.10), a closed-form solution for u
can be expressed as

u =C−1
m

(
ym − ym,0

)
. (4.11)

Once the control u has been applied, a new measurement ym is computed by sequen-
tially poking the actuators, and a new control increment u is computed.

4.2.2. CHALLENGES FOR TIME-VARYING ABERRATIONS
When the method described in Section 4.2.1 is applied to time-varying aberrations, some
difficulties arise. Denote the dynamic aberrated wavefront by φ(χ, t ), with t describing
the current discrete time instance. Furthermore, assume it takes Ti seconds to collect
an image and compute its SM. A total of m + 1 images have to be taken. First, a refer-
ence image is taken, followed by m images, each corresponding to poking a different
actuator. When sequentially poking all actuators and including the fact that φ(χ, t ) is
time-varying, the total phase aberration corresponding to the image with the j th actua-
tor poked, previously (4.7), becomes time-varying:

φ j (χ, t + j Ti ) =βE j (χ)+φ(χ, t + j Ti ). (4.12)

This causes the reference image to be taken at time instance t , while the image after
poking the last actuator is at time t +mTi . Therefore, there is a time difference of mTi
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between the reference image and the image corresponding to poking actuator m. A de-
tailed discussion of the timeline of this control problem is given Section 4.3. When there
is no compensation for this delay, this will introduce an error, since the equation (4.10)
is no longer valid.

One way of decreasing the effect of this time delay is to update the actuators one by
one, taking a new reference image in between. However, the linear system of equations
(4.10) is in general not a decoupled system. A new basis can be formulated in order
to have a diagonal matrix C . Such a diagonalization is proposed in [11] and used for
dynamic aberrations in [14]. For completeness, this is shortly summarized in the next
subsection. It should be noted that, although the maximum time difference between the
images can be reduced from (m + 1)Ti to just 2Ti , not all problems are resolved. First
of all, there is still a (small) delay between the two images that is not taken into account
in [11]. Second, there is a time of 2mTi between updating the same mode again. These
problems will be treated by the new method proposed in Section 4.3.

4.2.3. DIAGONALIZING THE LINEAR SYSTEM
The closed-form solution of (4.11) can be separated along the elements of u when Cm is
diagonal. The singular value decomposition (SVD) of S,

S =UΣU T , (4.13)

can be used to formulate a new basis that results in a decoupled linear equation. Σ is
a diagonal matrix and is shown to correspond to the correlation matrix (formerly S for
the basis of (4.6)) for the basis described by basis functions Ẽ j (χ) = E(χ)U j , j = 1, . . . ,m
[11], where E = [E1(χ),E2(χ), . . . ,Em(χ)] and U j the j th column of U . Consequently, the
update in terms of the new basis becomes

ud =C−1
d

(
yd ,m − yd ,0

)
, (4.14)

where yd contains the changes of the SM of the PSF corresponding to actuating the new
set of modes Ẽ j (χ), Cd = 2βc0Σ and yd ,0 is a vector containing the diagonal elements
of β2c0Σ. Since C−1

d is diagonal, it is no longer necessary to wait until m measurement
images are taken, but the elements in ud can be updated after a reference image and a
single measurement image.

4.3. PREDICTIVE SECOND MOMENT-BASED WFSLESS AO
In order to have a more systematic approach of dealing with time varying aberrations,
a dynamic model that exploits the spatio-temporal relations in the wavefront will be
used. Combining the aberration dynamics with (4.10), a linear state-space model is ob-
tained. The pupil plane coordinates χ are discretized and sampled on an n-by-n grid,

such that the wavefront at time instance t can be represented by the vector φ(t ) ∈ Rn2
.

Similarly, the DM influence functions E j (χ) are sampled on the same square grid and

each function is represented by the vector e j ∈ Rn2
. The influence matrix is defined as

E = [e1, e2, . . . , em] ∈Rn2×m . For reasons discussed in the previous section, it is assumed
that the wavefront can be written as (4.6), such that only the part of the aberration that
is within the span of the DM influence functions will be modelled.
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First, without considering the time index yet, a general modal basis with coefficient
vector x ∈ Rm is defined to represent any wavefront φ(χ) in (4.6). The relation between
the coefficient vector u and x of either basis is given by an invertible matrix B ∈ Rm×m

such that

x = Bu. (4.15)

Using this modal basis, the observable part of the phase, φ, can per definition be mod-
elled as

φ= Eu = EB−1x . (4.16)

In the simulations, both x and u will correspond to the same modal basis, i.e. B = I . It
should be noted that although both x and u represent coefficients belonging to a basis
spanning the same space, they will be used to represent different processes x(t ) and u(t )
in the remainder of this chapter. This will be clarified in Sections 4.3.1 and 4.3.2 of this
section, in which a dynamic model of the wavefront will be expressed in terms of x(t )
and a Kalman filter is derived.

The output y(t ) ∈ Rp will be similar to (4.10). Due to the use of a Kalman filter, it
is possible to update the DM with a smaller number of images by poking a selection of
actuators, i.e., any p ≤ m can be taken without diagonalizing the system as in Section
4.2.3. The exact definition of y(t ) and the reason that p can be different from m will be
explained further in the following subsections. Since the collection of one image is done
once every Ti seconds, the total time it takes to collect the data for the measurement
vector y(t ) is (p+1)Ti seconds. The output is updated every T = (p+1)Ti seconds, while
the input will still be updated every Ti seconds. As a result, the model becomes a so-
called multi-rate linear time-invariant system, where the input and output are obtained
over different sample periods. Although the input and output sampling rate are differ-
ent, they are uniformly sampled and the sample times coincide every p +1 samples. A
schematic representation of one output sample time is shown in Figure 4.2.

The next subsection will discuss the temporal model of the open loop aberration.
Afterwards, the resulting closed-loop state-space system and a Kalman filter implemen-
tation is discussed, followed by an optimal controller using the predictions from the
Kalman filter. In the last subsection of this section, it is explained how the information
given by the Kalman filter can be used to select which actuator to poke for the next mea-
surement. Table 4.1 gives an overview of important notations that are used throughout
this section.

4.3.1. DYNAMIC ABERRATION MODEL
The temporal dynamics of the aberration caused by the turbulence, denoted by xt (k) ∈
Rm , will be described by a vector auto regressive (VAR) model of order 1. Two different
models are defined. One has the output sample time T , and the other has the input
sample time Ti . The two models are the following:

xt (kTi +Ti ) = A f xt (kTi )+w f (kTi ), (4.17)

xt (kT +T ) = Axt (kT )+w (kT ) (4.18)
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Table 4.1: Table of notations

m Number of actuators
p Number of selected modes per update

z(·) Second moment of the PSF. See (4.2)
x(t ) State vector (residual aberration in mode coefficients)
u(t ) Input vector (actuator command)
y(t ) Output vector (change in second moment)

A, A f ,Q,Q f Aberration dynamics. See (4.17) and (4.18).
B Transformation matrix. See (4.15).

C (t ), y0(t ) The rows of Cm or y0,m that are in I (t )
I (t ) The set of p active actuators

T Output sampling time
Ti Input sampling time
β The amplitude of actuation
φ(t ) vectorized residual phase aberration
φ j (t ) φ plus actuator j poked. See (4.12)
χ Pupil plane coordinates

where w f (k) and w (k) are zero-mean Gaussian processes with covariance matrices Q f

and Q respectively, i.e. w f (k) ∼ N (0,Q f ) and w (k) ∼ N (0,Q). The simulations will
focus on the example of aberrations introduced by atmospheric turbulence. However,
it should be noted that the proposed method works for any type of dynamic aberration
that can be accurately represented by this type of model.

The matrices A, A f , Q and Q f can be derived from first principles, requiring knowl-
edge of the turbulence statistics, wind direction and wind speed. When this knowledge
is not available, the system matrices can be identified when a sufficiently large dataset
of open-loop aberration data {xt (kTi ), k = 1,2, . . . , Ni d } is available. With this data, the
identification of the matrices A, A f , Q and Q f follows from a linear least-squares prob-
lem [16]. The simulations will use a simulated identification dataset to identify the sys-
tem dynamics. The exact method to obtain this identification dataset in practice is be-
yond the scope of this chapter. Since the model identification is done offline, a WFS
can be temporally included in the AO system or computational complex methods can
be used to collect this dataset. When a wavefront sensor is included in the system dur-
ing the identification data collection, the wavefront sensor measurements can be used
to reconstruct a wavefront which is then mapped onto the desired modes to form the
identification dataset. Alternatively, when additional constraints are available, such as a
sparsity constraint or knowledge of the amplitude in the pupil plane, or when multiple
images along the optical axis can be taken, there are existing methods that can obtain
the identification dataset from solving the phase retrieval problem on a time series of
focal-plane images (see [7] for an overview).

4.3.2. KALMAN FILTER IMPLEMENTATION
The loop is closed by the DM. The influence of the DM on the wavefront is defined as

xm(kTi ) = Bu(kTi −Ti ), (4.19)
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T = (p+ 1)Ti

Ti

u(kT ) u(kT + Ti) u(kT + 2Ti) u(kT + pTi)

ref. image image I1 image I2 image Ip−1 image Ip

Construct y(kT + T )

Active control:

kT kT + TkT + Ti kT + 2Ti kT + 3Ti kT + (p− 1)Ti kT + pTi

Eq. (31)Eq. (30)

x̂(kT |kT )

Eq. (32)

x̂(kT + T |kT + T )

Eq. (32)

Images taken:
Known at t = kT

y(kT ),
u(t), t ≤ kT − Ti

I(kT + T )

φ(kT + Ti) φI1
(kT + 2Ti) φI2

(kT + 3Ti) φIp
(kT + T )

Current wavefront:

Eq. (30)

Eq. (29)

Figure 4.2: Schematic representation of the processes in one output sample time from kT until (k +1)T . The
lines indicate the computation of the element in the box at it end, using the element(s) in the box it originates.
Equation numbers are added to indicate which relation is used.

where the delay represents the fact that the DM can not respond instanteneously, and
B is the transformation matrix defined in (4.15). In closed loop, the residual aberration,
denoted by x(t ) ∈Rm , is defined as

x(kTi ) = xt (kTi )+xm(kTi ). (4.20)

For the output y(kT ) ∈Rp , only a selection of images are taken and processed. Each out-
put sample time a selection of p actuators, from the total of m actuators in our DM, is
poked and the corresponding images are taken. Defining I (kT ) = {I1, . . . ,Ip } ⊆ {1,2, . . . ,m}
as the set of p distinct integer elements corresponding to the actuators that will be poked
for the next measurement, the output equation y(kT ), based on (4.10), is

y(kT ),

z(φI1 (kT − (p −1)Ti ))− z(φ(kT −pTi ))
...

z(φIp (kT ))− z(φ(kT −pTi ))


=C (kT )x(kT )+ y0(kT )+v (kT ), (4.21)

where v (kT ) ∼ N (0,R(kT )). Moreover, C (kT ) ∈ Rp×m and y0(kT ) ∈ Rp are chosen to
be the selection of rows, given by the elements in I (kT ), of Cm and ym,0 in (4.10), re-
spectively. This choice implies that the temporal changes in the aberrated wavefront in
between images can still be neglected, i.e., it is assumed that x(kT − j Ti ) = x(kT ), for
j = 1, . . . , p. The validity of this simplification in closed loop will be discussed in the next
subsection after introducing the optimal control law.

Combining (4.21) with Eq. (4.18, 4.19, 4.20), the following single-rate state-space
model can be derived, which is sampled at the output sampling rate:

x(kT +T ) = Ax(kT )+Bu(kT )− ABu(kT −T )+w (kT ), (4.22)

y(kT ) =C (kT )x(kT )+ y0(kT )+v (kT ). (4.23)
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Next, a Kalman filter is derived for this system. Kalman filter theory can be found in
many textbooks, such as [16], but due to the special nature of the output, the implemen-
tation is discussed in detail.

To arrive at an optimal prediction of the state vector, the Kalman filter essentially
performs two steps: a measurement update, in which a newly obtained measurement is
used to improve the current estimate of the state vector x(t ), and a time update, where
the model is used to predict that state vector. The measurement update is computed
every output sample time and is given by

x̂(kT |kT ) = x̂(kT |kT −T )+K (kT )
(

y(kT )−C (kT )x̂(kT |kT −T )− y0(kT )
)
, (4.24)

where the Kalman gain K (kT ) ∈ Rm×p is computed using a square root implementation
of the Riccati equation [16]. The time update gives the optimal prediction of the state
vector one output sample time ahead:

x̂(kT +T |kT ) = A
(
x̂(kT |kT )−Bu(kT −Ti )

)+Bu(kT +pTi ). (4.25)

In between the measurements, a different time update is done each input sample time by
using the model in (4.17). This prediction of the state vector in between measurements
is given by

x̂(kT + ( j +1)Ti |kT ) = A f
(
x̂(kT + j Ti |kT )−Bu(kT + ( j −1)Ti )

)+Bu(kT + j Ti ),
(4.26)

for j = 0,1, . . . , p − 1. At moment (k + 1)T , a new measurement is obtained and a new
measurement update like (4.24) is performed.

4.3.3. OPTIMAL CONTROL
The derived optimal state prediction in (4.25) and (4.26) is used to create an optimal con-
troller. The control law aims to minimize the norms of the predicted residual wavefront
coefficients, i.e.,

min
u(kT+( j−1)Ti )

∥∥x̂(kT + j Ti |kT )
∥∥2

2 , j = 1,2, . . . , p +1. (4.27)

Here, x̂(kT + j Ti |kT ), j = 1,2, . . . , p is defined by (4.26), and x̂(kT +T |kT ) by (4.25). Due
to the fact that B is invertible, solving (4.27) for u, and applying these inputs in (4.25) and
(4.26), per definition results in

x̂(kT + j Ti |kT ) = 0, for j = 1,2, . . . , p +1, (4.28)

as the least squares problem (4.27) boils down to solving a linear system of equations.
(4.28) can be interpreted as follows. When the optimal control action according to (4.27)
is applied, the expected residual wavefront is always equal to zero, i.e., it is expected to be
a flat wavefront. This does not mean that the wavefront will actually be flat in practice,
but it does show that with the available knowledge at time instance kT , the flat wavefront
is the optimal estimate. With this insight, it can be concluded that the assumption that
the residual wavefront has not changed between taking images, which was implied in
(4.21), is optimal as long as an optimal controller is used as described in this paragraph.
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Solving (4.27) and using that x̂(kT + j Ti |kT ) = 0, for j = 1,2, . . . , p +1, gives the fol-
lowing simplified optimal control actions:

u(kT ) = B−1 A f (x̂(kT |kT )−Bu(kT −Ti )) , (4.29)

u(kT + j Ti ) = B−1 A f Bu(kT + ( j −1)Ti ), for j = 1, . . . , p −1, (4.30)

u(kT +pTi ) = B−1 A (x̂(kT |kT )−Bu(kT −Ti )) . (4.31)

Consequently, the predictions of the state vector in (4.25) and (4.26) never have to be
computed explicitly, as they per definition equal zero, and the measurement update sim-
plifies to

x̂(kT |kT ) = K (kT )
(

y(kT )− y0(kT )
)

. (4.32)

4.3.4. ACTUATOR SELECTION ALGORITHM
Besides a more accurate prediction, having a model of the aberration dynamics results
in another important advantage of this method. In [14], all modes are actuated sequen-
tially and this is repeated after the last mode was actuated. In this section, a method
is proposed that uses the information from the Kalman filter, rather than sequentially
poking all modes. In other words, it uses the information in the Kalman filter to decide
which set I (kT ) in (4.21) will give the most informative measurements.

The selection method is based on the realization that the state error covariance ma-
trix of the Kalman filter,

P (kT + j Ti |kT ) := E
[(

x(kT + j Ti )− x̂(kT + j Ti |kT )
)(

x(kT + j Ti )− x̂(kT + j Ti |kT )
)T

]
,

(4.33)

describes the uncertainty of the estimate. In order to have a scalar measure, trace[P (kT+
j Ti |kT )] ∈ R can be used to quantify the uncertainty. Minimizing this trace will mean
a better estimate of the state vector, resulting in a better performance of the method.
Therefore, the output channels that cause the biggest expected decrease in the trace of
the covariance matrix of the state error in the Kalman filter are selected.

The basis of the actuator selection method lies in the fact that both the time and mea-
surement update of the state error covariance do not require an actual measurement,
but can be computed from the Riccati equation [16]. Consequently, at time t = kT , the
values of e.g. P (kT +T |kT +T ) can be computed before actually observing the measure-
ment at t = kT +T , assuming the selection of actuators I (kT +T ), i.e. C (kT +T ) and
y0(kT +T ) in (4.21), is known.

Of course, I (kT +T ) is not known, but is the unknown still to be determined. How-
ever, it is known that there are only a finite number of sets possible. Theoretically, it is
possible to compute P (kT +T |kT +T ) for all possible set I (kT +T ), but for larger values
of p there are too many possible combinations of actuators and this is therefore not prac-
tical. However, it is possible to compute the state error covariance matrix corresponding
to poking a single actuator, i.e. P (kT +2Ti |kT +2Ti ). This leads to the following simple
algorithm.

The first step is to compute, at t = kT , all possible values of P (kT + 2Ti |kT + 2Ti ).
This requires solving the Riccati equation m times such that m different matrices are
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Parameter Standard value Range
r0 [m] 0.2 0.1 − 0.35

v [m/s] 1.6 0.2 − 16
σy 1 10−2 − 5
p 3 1 − 35
m 37 -

fs [Hz] 1000 −
L0 [m] 20 −
D [m] 1 −

Table 4.2: This table contains the simulation parameters. The parameters will have their “standard value” in
each experiment when not explicitly mentioned otherwise. The last column shows the range in which they
have been varied in an experiment.

obtained. The second step is to compare the value of trace[P (kT + 2Ti |kT + 2Ti )] for
each matrix. The p actuators that have lead to the p smallest values of trace[P (kT +
2Ti |kT +2Ti )] are defined as the next set of actuators to be updated, I (kT +T ).

As a result of this actuator selection method, it is expected that the actuators located
in an area where the dynamic model of the aberration is less accurate are updated more
frequently. The Kalman filter including the optimal control law and actuator selection
method are implemented in a simulation study that is discussed in the following section.

4.4. SIMULATION OF AO FOR ATMOSPHERIC TURBULENCE

The performance of the method is shown in a simulation of an AO system for atmo-
spheric turbulence, where the aberrations in the wavefront shown in Figure 4.1 are caused
by atmospheric turbulence, and are compared to another SM-based WFSless AO algo-
rithm for dynamic aberrations [14]. This section will discuss the simulation conditions
and discusses the implementation details of the algorithm. Table 4.2 summarizes the
most important simulation parameters. The results of the simulations are presented in
Section 4.5.

4.4.1. ADAPTIVE OPTICS SIMULATION DESIGN

The phase aberrations caused by the atmospheric turbulence is simulated using OOMAO
[17]. A single turbulence layer is considered with Fried parameter r0, outer scale L0 and
wind speed v . The telescope diameter will be fixed at D = 1 m and sample frequency at
fs = 1000 Hz, i.e. Ti = 1

1000 s. In order to have a fair comparison between different wind
speeds, a collection of wavefronts on a n×n grid of pixels have been generated at a speed
of 1 pixel/Ti over a period of Ñ time samples. The simulated sequence of wavefronts are
stored in a three dimensional tensor of dimension n ×n × Ñ . Afterwards, linear inter-
polation along the third dimension of this tensor is performed to obtain wavefronts at
slower or faster wind speeds. A set of 20 turbulent wavefronts, each containing N = 2000
time samples, is created for each combination of parameters and the performance of the
algorithm is tested in a Monte Carlo simulation.

The DM consists of a square grid of m1×m1 actuators with Gaussian influence func-
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d

D

Figure 4.3: Actuator placement for m1 = 7. The m = 37 active actuator centers are represented by ■. This center
serves as the local origin of this actuators’ influence function (i.e. χ1 =χ2 = 0 in (4.34)).

tions:

Ei (χ) = e ln(λ)
(
(χ2

1+χ2
2)/d

)2

, (4.34)

where d is the distance between actuators in the pupil plane and λ > 0 is the coupling
parameter, defining the width of the functions. A schematic representation is shown in
Figure 4.3. During the simulations, m1 = 7, λ = 0.1 and d = D/(m1 +1) = 0.125 m. The
actuators at the corners of the square are removed since they have little influence inside
the circular aperture, such that in total of m = 37 active actuators are used. The influence
of the actuator on the closed-loop aberration is simulated as in (4.20).

The PSF images are simulated according to the definition in (4.1) and sampled on
an equally spaced square grid. As a result, the SM of this discretized image becomes a
weighted sum of the PSF pixel values.

4.4.2. MEASUREMENT NOISE

The camera noise in each pixel can be modelled as a combination of Gaussian (read-out
noise) and Poissonian noise (shot noise). For pixels with large mean values, Poisson dis-
tributions can be accurately approximated by a Gaussian distribution. For small pixel
values, the influence of the shot noise becomes less significant with respect to the Gaus-
sian read-out noise. Furthermore, low-valued pixels have a very low SNR and are there-
fore often truncated when processing the images. Since the SM is a weighted sum of the
pixel values, the noise contribution to the SM is expected to be approximately Gaussian
and can be estimated based on the intensity measurement and camera properties.

In practice, methods such as truncation of low-valued pixels and filtering have to
be used to decrease the effect of the measurement noise on the SM. However, it has
been decided that this will not be included in the analysis. Instead, in order to have a
clear analysis of the noise sensitivity of the algorithm itself, the noise signal v (kT ) will
be simulated directly as a Gaussian noise, v (kT ) ∼N (0,σ2

y I ).
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4.5. SIMULATION RESULTS
The results of the simulations will be discussed in this section. A number of parameters
will be varied in order to study the performance of the methods under different circum-
stances. First, the wind velocity, v , is varied to see whether the improvements of the new
method are indeed more clear for faster moving turbulence. Second, the Fried param-
eter, r0, is changed to see which method is better to deal with more severe aberrations.
Third, the influence of increasing the number of actuators that is updated per measure-
ment, p, is discussed. Finally, the noise sensitivity is analyzed by varying the parameter
σy in the measurement noise covariance R =σ2

y I . The rest of the parameters will be kept
constant in order to have a fair comparison. The standard values of the parameters can
be found in Table 4.2.

In the legends of the figures, the new method will be referred to as “Dynamic SM”,
as it includes a temporal dynamic model of the aberrations plus the SM model (4.10).
It is compared to an existing method [14], which is referred to as “Static SM”, as it is
based on the assumption that the change in aberration between two input sampling
times is negligible, i.e., the aberration is approximately static over this time period. The
parameterβ is seen as an important tuning parameter in both methods. Whenβ is taken
too small, the SNR will be very low. Too large values of β will create too many speckles
in the PSF for the output to still be informative. Therefore, it has an optimal value that
depends on the current simulation conditions and measurement noise level. During the
following simulations, β has been tuned for each different set of parameters using a grid
search in order to improve the performance for both the static and dynamic SM-based
method.

The main goal is to decrease the effect of the aberration on the image. Therefore,
the Strehl ratio is used as a measure of performance. The Strehl ratio is computed as the
fraction of the maximum pixel value of the aberrated PSF over the maximum pixel value
of the unaberrated PSF. A higher Strehl ratio indicates a better performance. Also, since
the method is based on minimizing the SM of the PSF, this will be occasionally used as a
measure. Since each simulation takes N time samples, the mean Strehl value and SM for
each simulation will be used and the Monte Carlo simulation is visualized in boxplots.

4.5.1. INCREASING WIND SPEED
It is expected that the new method, due to its predictive capabilities and smart actuator
selection algorithm, can handle much larger wind speeds than the static method for the
same AO system. It should be noted that for both the static and dynamic SM-based
methods, besides the Fried parameter r0 and sample frequency fs , the performance at a
certain wind speed is influenced by the number of actuators m and the spatial sample
distance of the actuators d . This is due to the fact that only one actuator can be poked at
the same time. So when m is increased, more modes have to be updated within the same
time span, and when d is decreased, the turbulence is moving the distance between
actuators in a shorter time. Therefore, in order to improve the performance under larger
wind speeds or when increasing the number of DM actuators, it might be necessary to
increase the sample frequency fs . For the simulations in this paragraph, m and fs are
fixed at the values in Table 4.2.

The wind speed is varied between 0.2 and 16 m/s and the other parameters are kept
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Figure 4.4: Results for varying the wind speed. The other simulation parameters are given in Table 4.2. “Dy-
namic SM” represents the method presented in this chapter, “Static SM” is the existing method presented in
[14]. The boxes indicate the 25th and 75th percentile of the results in the Monte Carlo simulation and the lines
are drawn through the medians.

constant at their standard values according to Table 4.2. The results of this simulation
are shown in Figure 4.4. From observing the Strehl ratio in Figure 4.4a, the new method
is clearly better, most notably for higher wind speeds. Even for lower wind speeds, the
new method outperforms the existing approach. This can be explained by the fact that
the Kalman filter is more suited in dealing with measurement noise. In Figure 4.4b, the
SM of the PSF is shown. Even when the static method improves the image quality in
terms of the Strehl ratio at lower wind speeds, the SM of the PSF is larger than in the case
without adaptive optics. This is caused by the fact that under the noisy conditions in
this simulation, the static method introduces high-frequency aberrations erroneously in
the compensation. The oscillating trend of the static method’s line is due to the differ-
ent step lengths of the interpolation when generating the wavefront data as discussed in
Section 4.4.1. Interpolation of a time-varying aberration has in general a smoothing ef-
fect on the SM of the aberrated PSF. This effect is usually very small, as is seen in the line
corresponding to no control, but seems to be amplified by the static method. Since this
smoothing effect can be seen as a small amount of noise on the data, this issue indicates
again the high noise sensitivity of the static method compared to the dynamic method.

It should be noted that due to the small number of DM actuators, the fitting error is
relatively large and the maximum achievable Strehl ratio for this AO configuration is ap-
proximately 0.83. So at very low wind speeds the new method approaches the theoretical
optimum. In order to improve the theoretical maximum closed-loop performance, the
fitting error should be decreased by using a DM with more actuators. However, as dis-
cussed in the beginning of this paragraph, having more actuators within the same size
aperture corresponds to more modes to be updated in the same time. This would require
that also the sample frequency fs is increased in order to maintain a good performance
for high wind speeds.
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(a) Varying p for both the dynamic and the static method.
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(b) Varying p and v for the dynamic method only.

Figure 4.5: Results of the new algorithm for different values of p. (a) p is varied while all the other parameters
are kept at their standard values given in Table 4.2. The presentation of the results is similar to Figure 4.4.
(b) Influence of the wind speed on the best choice of p, only the median Strehl ratio over the Monte Carlo
simulations are shown.

4.5.2. NUMBER OF IMAGES IN OUTPUT

In the previous simulation it was assumed that p = 3 such that three output channels are
observed within one output sample time. The method allows for any p that satisfies 1 ≤
p ≤ m. Varying p can possibly lead to a better performance and needs to be investigated.
Decreasing p corresponds to a smaller output sampling time T , having the advantage
that the measurement updates are more frequent. However, the drawback is that, since
per (p + 1)Ti seconds p output channels are created, more time is spent per acquired
output channel when p is small. On the other hand, increasing p increases the output
sampling time T , but means that less time is spent per acquired output channel. For the
sake of a complete comparison, a multivariate output is also considered for the existing
method of [14]. It should be mentioned that in the original method, varying p was not
discussed and p was chosen to equal 1.

The results for varying p while keeping the other parameters equal to their standard
value in Table 4.2, is shown in Figure 4.5a. It clearly shows how p = 1 is not the optimal
value in this case, but larger values are more optimal. The effect of p for other wind
speeds is shown in Figure 4.5b. Only the medians over the Monte Carlo runs are plotted.
Although all lines have similar trends, it is visible that p = 1 does not always lead to the
best results. Especially in the region where the wind speed is low, p = 5 is better than
p = 1 as was also clear from Figure 4.5a.

The effect of the actuator selection method described in Section 4.3.4 is very clearly
visible in Figure 4.6. For the same actuator configuration as in Figure 4.3 and a single tur-
bulence layer moving from left to right over this aperture, this figure shows the amount
of times a certain actuator was deemed to be in the set of most informative actuators.
The actuators located at the edge where the new turbulence comes in are much more
regularly chosen than the other actuators. This is expected, since the aberration towards
the center and right side of the aperture is merely a shift of the wavefront at a previous
time instance. The aberration at the left side of the aperture was unknown at this previ-
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Figure 4.6: Example of the most often selected actuators by the method described in Section 4.3.4. The simu-
lation parameters equal to the standard values in Table 4.2 with N = 1000 sample times and the configuration
of the DM is as in Figure 4.3. The color scale displays how many times this actuator was chosen to be part of
the subset I .

ous time instance and more difficult to model.

4.5.3. STRONGER ABERRATIONS

As the aberrations become more severe, the PSF images will become more distorted.
Therefore, a decrease in performance is expected for any algorithm. If the same per-
formance for a lower Fried parameter is desired, the number of actuators have to be
increased. Figure 4.7 shows the performance of the method for r0 varying between 0.1 m
and 0.35 m while all other parameters are fixed at their standard value given in Table 4.2.
The top line indicated by “DM optimal” corresponds to a controller that assumes per-
fect knowledge of the residual wavefront and maps it onto the DM. So it represents the
theoretical optimal performance when using this DM. When the turbulence strength in-
creases, the performance of both methods decreases as expected. Especially turbulence
strengths r0 ≥ 0.2, the new method clearly outperforms the existing method.

4.5.4. NOISE SENSITIVITY

As discussed before, the influence of the camera noise on the SM will be approximately
Gaussian. Therefore, the Gaussian measurement noise is added to the output y(kT ) in
order to simulate noisy conditions. In these results, the measurement noise variance
is supposed to be known. In practice, this must be calibrated based on the exact noise
properties of the camera and PSF intensity. The influence of the measurement noise on
the results is shown in Figure 4.8. For low noise, i.e. σy ≤ 0.1, the existing method has
an advantage. When there is a significant measurement noise, which will be the case in
any practical system, the new method is clearly better. This is expected since the Kalman
filter is designed to optimally deal with measurement noise, whereas the original method
ignored any noise present in the system.
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Figure 4.7: The Strehl ratio for different values of the Fried parameter r0. The presentation of the results is
similar to Figure 4.4. The line indicated by “DM optimal” displays the maximum possible performance of the
DM for each turbulence strength.
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Figure 4.8: The Strehl ratio for different measurement noise values. The presentation of the results is similar to
Figure 4.4.

4.6. CONCLUSION

A method has been presented to extend the SM-based WFSless AO to the case of time
varying aberrations. It combines the knowledge of an accurate temporal model of the
aberration dynamics with the linear relation between the SM of the PSF and the mean
square of the residual phase aberration. The result is that the AO problem can be cast
into a Kalman filtering and optimal control problem. Where all previous methods had to
update the actuators sequentially, the new algorithm automatically selects the actuators
that are expected to lead to the most informative update. Actuators placed at locations
where the model is accurate can be updated with only a small number of images over
time. The improved performance has been shown in a simulation study of an AO system
for atmospheric turbulence. It was shown that the new method leads to an improved
performance for both lower and higher wind speeds and for higher noise levels.
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5
CONCLUSIONS AND FUTURE

RESEARCH

5.1. CONCLUSIONS
This thesis has presented several methods for the estimation of large-scale and/or time-
varying wavefronts using focal-plane sensing methods. Each of these methods have their
own motivations and contributions, which have been discussed in the corresponding
chapters.

In Chapter 2 Gaussian radial basis functions (GRBFs) were used as a modal repre-
sentation of the GPF. The advantage of a modal basis is that the number of parameters
in the phase retrieval problem can be decreased, making modal representations a suit-
able candidate for wavefront reconstruction for large-scale AO. The GRBFs showed an
increased reconstruction accuracy with respect to extended Nijboer-Zernike polynomi-
als for aberrations with high spatial frequencies and for non-circular aperture shapes.

Where Chapter 2 only considered phase retrieval of static aberrations, Chapters 3 and
4 presented focal-plane sensing techniques for time-varying aberrations. In addition, it
was assumed that a single focal-plane image was available per time-step. Chapter 3 pre-
sented an algorithm for high-resolution time-varying wavefront estimation. Assuming
a phase that is small enough, this algorithm is based on an extension of the phase re-
trieval framework for dynamic aberrations by reformulating it into a non-linear Kalman
filtering framework. A computationally efficient non-linear Kalman filter was developed
whose computational complexity scales close to linearly with the number of pixels of the
wavefront reconstruction.

A different approach to focal-plane sensing from a single image, which does not ex-
plicitly consider the phase retrieval problem, was used in Chapter 4. This method was
based on the linear relation between the mean square of the aberration gradient and
the change in second moment of the PSF, which was then extended to the case of time-
varying aberrations. By using a modal basis that spans the same space as the actuator
influence functions, the actuators can be updated sequentially. A Kalman filter is used to
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design an optimal controller that selects the modes that are expected to give the greatest
increase in performance.

The remainder of this chapter can be seen as a discussion regarding the main conclu-
sions and limitations with respect to the motivation of this thesis, followed by a number
of suggestions for future research. As presented in Section 1.6, the motivation of this
thesis was to develop algorithms that are able to: use temporal dynamics as a source of
useful information and/or deal with large-scale AO systems.

USING TEMPORAL DYNAMICS AS A SOURCE OF USEFUL INFORMATION

The methods presented in Chapters 3 and 4 fall within this category. The presence of
temporal dynamics at first seems to be an additional challenge on top of the already
complicated focal-plane sensing problem. In these methods, however, the available
knowledge of the aberration dynamics is used to their advantage, making them frequently
outperform the static methods in the case of quasi-static aberrations.

In Chapter 3, the similarities between the (static) phase retrieval problem and Kalman
filtering were discussed. It was argued how the Kalman filter can be seen as a optimally
weighted regularized version of classic non-linear least squares underlying the phase
retrieval problem. By adopting this reformulation, the issue of non-uniqueness of the
phase retrieval problem was shown to be transformed into the, often less restrictive, no-
tion of observability. As a consequence, the Kalman filter is able to obtain an accurate
reconstruction using a single focal-plane image only, which is often not possible using
focal-plane sensing methods that assume a static wavefront. Although adding a small
known defocus to the captured images was shown to significantly improve the perfor-
mance, even a single in-focus measurement of the PSF often resulted in an accurate
wavefront reconstruction.

The Kalman filter relies on the availability of accurate prior information and, hence,
on the availability of an accurate model of the wavefront dynamics. If the model is not
accurate enough, errors in the prior information used by the Kalman filter measurement
update might result in a significant increase of the estimation error. Obtaining such a
model is not trivial as it needs to be identified from data. In practice, this puts a limit on
the severeness of the wavefront dynamics that can be compensated for, as faster evolv-
ing aberrations are typically more challenging to model. Taking the example of aberra-
tions caused by atmospheric turbulence and assuming a frozen flow representation of
the phase screens, a measure of the severeness of the dynamics from the perspective of
the algorithms is given by the average shift of the phase screens in terms of pixels widths
per sampling time. So, for faster wind speeds, decreasing the resolution, i.e. increas-
ing the pixel width, or increasing the sampling frequency, could be ways to improve the
accuracy of the dynamic model.

The alternative model-based WFSless AO approach, which used the linear relation
between the change in second moment of the PSF and the mean square of the aberra-
tion gradient, was extended in order to take the aberration dynamics into account in
Chapter 4. In this algorithm, the knowledge of the temporal evolution incorporated in
the Kalman filter was used to select the modes, in this case the actuators, to be updated
at each sampling time. The remaining modes were updated according to the model of
the wavefront dynamics.
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An interesting phenomenon was observed, in which the actuators that were located
on the edge of the aperture were updated much more frequently than the ones at the
center. When assuming aberrations whose temporal evolution have a shifting nature,
prediction of the wavefront around the aperture’s edges is more challenging, as less in-
formation is available. Hence, the results coincide with what intuitively would be ex-
pected.

A consequence of this smart updating scheme is that fewer modes have to be up-
dated based on measurements in comparison to a simple sequential updating scheme.
As the method is intrinsically limited by the sample time of the focal-plane camera, less
frequent measurement updates for modes that can rely on the (open-loop) time updates,
means that the algorithm can be used for aberrations that have a significantly faster tem-
poral evolution. However, relying too much on the time updates will result in a signifi-
cant decrease in the accuracy of the wavefront prediction. Within a certain time span,
a minimum amount of measurements have to be taken in order to reach a certain de-
sired accuracy since a perfect model will never be available. This number (for example
in number of measurements per second) depends on the wind speed, total number of
modes to be estimated and the accuracy of the dynamic model. In practice, this results in
the fact that this class of model-based WFSless AO methods is mainly suited for systems
with with either slowly evolving aberrations or a small number of basis functions.

DEALING WITH LARGE-SCALE AO SYSTEMS

All the algorithms developed in Chapters 2, 3 and 4 have been developed with compu-
tational efficiency in mind. The reduction of parameters in the phase retrieval problem
by adopting a modal basis of the GPF in Chapter 2 resulted in a significant decrease in
computational complexity. Although effective, this type of complexity reduction has an
obvious trade-off with the maximum spatial frequencies that can be reconstructed, as it
implicitly decreases the resolution of the reconstruction. It should be stated here that
the use of GRBFs is not equivalent to simply reducing the resolution of the reconstruc-
tion. Since the smooth set of basis functions acts as a type of smoothness constraint
on the phase retrieval problem, the GRBFs are expected to outperform the simple low-
resolution pixel basis under noisy circumstances, which is one of the main advantages
of a modal representation.

A less straightforward way of reducing the computational complexity is presented
by the algorithm of Chapter 3. This method efficiently reconstructs the wavefront in its
original resolution by exploiting special matrix structures within the model of the AO sys-
tem. Other assumptions, however, have to be made in order for this efficient algorithm
to work in practice. Most notably, the phase aberrations have to be small enough for the
necessary linearizations to hold, making the method suitable for estimating small-phase
aberrations only.

The method of Chapter 4 is not limited by such a small-phase approximation. In ad-
dition, by reducing the information in the measured images to merely the changes in the
second moment, which are scalar values, the computations that need to be performed
by this class algorithms are of a much simpler nature than that of phase retrieval-based
algorithms. However, the limitations of this method, which were previously discussed,
do have consequences on the maximum number of modes (i.e. actuators) for which this
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algorithm can be used. Although increasing the sampling frequency of the camera is in
theory a method to decrease this limitation, it does not solve this issue, as a decreased
time to collect enough photons to capture the image will result in a decreased signal-
to-noise ratio. Therefore, the applicability of this method in large-scale AO systems is
limited. Especially for aberrations with a fast temporal evolution, this method would
only be able to keep up with the estimation of a small number of modes.

5.2. FUTURE RESEARCH
The presented methods in this thesis were all tested in simulations studies. In order to
validate the true performance of the algorithms, further testing under more realistic cir-
cumstances, such as in laboratory experiments, is required. Although the methods were
designed with the application of AO for astronomy in mind, the methods are not limited
nor specifically designed for this application. Their applicability in other areas such as
microscopy and ophthalmology or for modelling spatial instead of temporal dynamics
(e.g. due to anisoplanatic conditions in astronomy) can be an interesting research direc-
tion. Besides these general recommendations, the remainder of this chapter will discuss
a number of specific topics that could be of interest. Some of the ideas presented have
already been investigated during the development of this thesis, and might lead to addi-
tional publications in the near future.

SPARSE KALMAN FILTER FOR WFS-BASED AO
Although the focus of this thesis has been on focal-plane wavefront sensing, AO sys-
tems with a dedicated pupil-plane WFS still require more research into the development
of computationally efficient predictive algorithms. Due to the linear relation between
the WFS signal and phase aberrations, WFS-based methods are, for many applications,
still preferable over focal-plane sensing methods. During this thesis, the development
of efficient Kalman filtering for WFS-based techniques by exploiting sparsity has been
investigated. It was decided to not include this research as a chapter of this thesis, but a
journal publication is currently under preparation:

Cerqueira, P., Piscaer, P., Verhaegen, M. Sparse Data-Driven Wavefront Prediction for
Large-Scale Adaptive Optics, JOSA A, (2021)

The main idea in sparse Kalman filters for WFS-based AO is similar to the graphi-
cal modelling approach that underlies the sparsity when modelling the wavefront. Due
to the local nature of each entry in the SH-sensor measurement vector, a sparse vector
auto-regressive (VAR) model similar to the one that was used to describe the temporal
evolution of the phase aberrations, can be used to describe the temporal evolution of the
output of the WFS-based state-space model (i.e. the SH-signal). As the coefficient ma-
trices of this VAR model can be seen as the Markov parameters of the state-space model,
they can be used in the derivation of the Kalman gain.

Unfortunately, the Kalman gain itself is per definition not sparse. The gain describes
the relation between the SH-signal, which are the local spatial gradients of the wavefront,
and the wavefront itself, such that it can be interpreted as some kind of integration op-
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erator. In order to capture global shapes in the wavefronts, e.g. low-order Zernike modes
such as tip-tilt, defocus and astigmatism, the Kalman gain should therefore be dense.

The main idea that was pursued in this research is that, although the Kalman filter
itself has to be dense in order to capture global modes, a sparse approximation of the
Kalman filter might still accurately approximate the local shapes of the wavefront. Ac-
cording to this hypothesis, the main approximation error should mainly consist of low
spatial-frequency modes, which could be compensated for by a secondary low-resolution
dense Kalman filter. In this manner, a two-step approach is obtained. First, an approxi-
mate sparse Kalman gain is used to estimate the high-spatial frequency content in high
resolution. Second, a small-scale dense Kalman filter is used to estimate the remaining
approximation error, which is expected to contain mainly low spatial-frequency modes.

SYSTEM IDENTIFICATION FOR SINGLE FOCAL-PLANE CAMERA SYSTEMS

An important challenge, which was only briefly addressed in this thesis, is the devel-
opment of a realistic and systematic method to obtain an accurate dataset containing
a time-series of the wavefront aberrations necessary for the system identification step.
Errors in the identification dataset will inevitably result in modelling errors, which de-
crease the accuracy of the wavefront estimation. As the methods of Chapters 3 and 4
assume a single focal-plane camera only and no WFS, obtaining this data-set without or
with only limited hardware changes is not trivial. When choosing the identification data
collection method, it is therefore important to take into account the hardware changes
that have to be made.

The data collection and the corresponding wavefront reconstruction, using either
focal-plane or pupil-plane sensing techniques, can be performed offline. That is, these
reconstruction algorithms do not need to be able to reconstruct the wavefront in real-
time. This does not mean that the system identification step can take arbitrarily long.
Throughout this thesis, the aberration dynamics were represented by a time-invariant
model. In reality, the conditions (such as the wind speeds and Fried parameter consid-
ering the astronomy application) will themselves slowly change over time. After a certain
time, it is therefore necessary to re-identify the model or update it accordingly. Updat-
ing the model without opening the loop, e.g. using closed-loop system identification
techniques, could be another interesting area for future research.

MULTI-LAYER BASIS AND LOCAL UPDATES USING GRBFS

The modal phase retrieval method in Chapter 2 only considered a small number of con-
figurations in which the GRBFs were placed. Depending on the exact application, there
might be other possible configurations that could further improve the performance. Due
to the local nature of the GRBFs, it might also be beneficial to not limit oneself to a fixed
set of GRBFs with a constant shape.

For example, multiple “layers” of GRBFs could be used, where the first layer contains
a small number of wide GRBFs (i.e. having a small shape parameter in Chapter 2), the
second layer a slightly larger number of GRBFs with a narrower shape, and so on. An-
other idea is to constantly update the locations and shapes of the GRBFs based on the
expected shape of the wavefront. In areas that seem to contain sharp features or require
the modelling of local details, the concentration of GRBFs could be increased and their
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shapes could be narrowed. In this way, when applying GRBFs to real-time algorithms,
the computational power could be focused on local areas that are most crucial during
that specific sampling period.

STRUCTURED MODAL BASIS

The GRBFs used in Chapter 2 were shown to perform best when assuming a planar Fi-
bonacci grid. It should be stressed, however, that its capability to accurately represent
the GPF is not the only topic of interest when choosing a modal basis. When the basis
has to be used in a real-time algorithm, computational efficiency is equally important.

Although the number of parameters can be decreased when assuming a modal rep-
resentation of the GPF, it does not guarantee that any modal basis with a smaller num-
ber of variables will result in a more efficient solution of the phase retrieval problem.
The classic pixel-wise representation of the GPF can be exploited in phase retrieval al-
gorithms such as the alternating projection (AP) methods. The efficient structure of the
two-dimensional DFT, which defines the relation between the GPF and PSF, is preserved
when maintaining the pixel basis and FFT methods can be use to develop computation-
ally efficient algorithms. For an arbitrary modal representation of the GPF, this structure
is often lost and FFT algorithms can no longer be used, making them much slower than
the pixel-wise representation of the GPF.

Returning to the example of GRBFs, placing the GRBFs on a regular rectangular grid
instead of the Fibonacci grid means that the property of separability of the 2D-DFT can
be maintained. For this modal decomposition, the matrix representing the linear rela-
tion between the focal-plane image and the modal coefficients, can be expressed using a
Kronecker product of two smaller matrices. It is not clear whether there are other struc-
tures within this set of basis functions that can be exploited further by either AP methods
or any other class of phase retrieval algorithms. If a set of modal basis functions would
be found that preserves the efficient structures of the DFT or that possesses a different
computationally efficient property, the practical applicability of basis functions in phase
retrieval and WFSless AO could be further extended.

OPTIMAL CONTROLLER DESIGN USING NON-LINEAR KALMAN FILTER

Although the results of Chapter 3 present a promising computationally efficient algo-
rithm, there is still much to be done before focal-plane sensing can be used for appli-
cations that require real-time compensation of high-resolution dynamic aberrations, as
is the case for the new generation of extremely large telescopes. Firstly, the provided al-
gorithm has only been tested in an open-loop setting. An optimal controller can be de-
signed to close the loop based on the predictions of the Kalman filter, but performance
and stability of such a controller requires separate research. In a closed-loop scenario,
modelling errors and measurement noise can potentially be more problematic and the
small-phase assumption can become more challenging to enforce over time. Secondly,
even though the method presented showed a significant decrease in run-time and a low
computational complexity, the run-time of the implemented algorithm was still not fast
enough for real-time application. The development of a practical real-time algorithm
would require a separate, more detailed, study into the current computational bottle-
necks of the algorithm, and a more efficient software implementation is required to sat-
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isfy the desired computation time constraints.

NON-LINEAR KALMAN FILTER FOR ESTIMATING THE GPF
The method in Chapter 3 restricted itself to the case in which the amplitude of the GPF
was known exactly and in which only the phase had to be estimated. In principle, the
theory could be extended to the case in which the amplitude of the GPF was only ap-
proximately known, or even to the estimation of the complex-valued GPF at once. This
means dropping the prior knowledge of the amplitude and an additional non-linearity
to the state-equation. Developing such an algorithm will, therefore, deal with several
new challenges, making this extension far from trivial.
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