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Summary  
 
Shell structures can be either calculated with complex mathematics and 
differential geometry, or with the help of finite element method (FEM) 
software. Neither method gives the designer sufficient insight about the 
behaviour of the shell in the early design stage. The first method is for most 
designers too complex, it requires proficiency in at higher order mathematics 
and it can be only used for shells the geometry of which can be described by 
analytical equations. The second method is more accessible for most designers, 
and in combination with 3D modelling software is an attractive alternative to 
the cumbersome mathematics. However, the disadvantage of using FEM 
software is that the analytical relations between the different parameters 
important for obtaining insight into the structural behaviour of the shell is lost.   
 
The ideal tool for designers would take the best of both methods: the analytical 
insight of the mathematics and the relatively easy access of FEM and 3D 
modelling software. The aim of the research done presented in this thesis is to 
do precisely that. By extending the well-known beam-analogy and its relations 
for an arch to shell structures a construct of relations is available for providing 
the designer with insight and means to influence the geometry of the shell and 
the resulting stress state.  
 
The proposed hypotheses are based on classic analytical geometry and 
mechanics, especially analogies and methods developed in the past to 
elucidate the complex mathematics and mechanics for the purpose of insight 
[1]. The theory of graphic statics, reciprocal diagrams, complementary and 
potential energy was used to develop the method of solving the thrust 
network. Analogies such as the moment-hill for out-of-plane loaded slabs and 
the static-geometric analogy for thin shells as well as the load path theorem 
and stress functions were used to develop the slab – shell analogy. 
 
Two approximate hypotheses are proposed in this thesis, the first is used to 
solve 3D indeterminate thrust networks by using complementary energy. The 
second hypothesis extends the beam – arch analogy in two directions to the 
slab – shell analogy; this method produces results in range of solutions found in 
classical shell theory. 
 
The result of the different examples has been checked with the help of well-
known solutions of classical shell mechanics, FEM calculations or graphic 
statics. Examples with relatively basic analytical formulas have been used to 
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elucidate the proposed method and for other examples simple purpose made 
tools based on the method have been used. Some simplifications have been 
made to avoid unnecessary complications in the derivation of the proposed 
method, such as only applying a uniformly distributed load. But most of the 
simplifications are not technically necessary; the conclusion and 
recommendations section include some suggestions have been added for 
extending the method. 
 
The inception of numeric methods for analysing structures in the 1960s was the 
end of the development of analytical mechanics for shell structures. This thesis 
aims to continue this development by tying the used theories and analogies 
together and bridge the gap with the numeric methods and to increase the 
understanding of the structural performance of shell structures. 
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Samenvatting 
 
Het berekenen van schaalconstructies kan op twee manieren, met behulp van 
complexe wiskundige toegepaste mechanica en met de eindige elementen 
methode (EEM). Beide methoden zijn niet bevredigend om in een vroeg 
stadium de ontwerper bij te staan met het maken van onderbouwde 
beslissingen. De eerste wijze is voor de meeste ontwerpers en ingenieurs te 
complex en tijd rovend. De tweede wijze is, in combinatie met 3D modelleer 
programma’s, veel toegankelijker voor de meeste ontwerpers en ingenieurs, 
het nadeel is wel dat bij numerieke methoden de analytische samenhang 
tussen de verschillende parameters die inzicht geven in het constructieve 
gedrag van de schaal verdwijnt.  
 
De meeste ideale werkwijze zou een compromis zijn met de beste ingrediënten 
van beide methoden, het analytische inzicht van de complexe wiskunde en 
schaalmechanica en het gebruikersgemak van EEM en 3D modelleersoftware. 
De doelstelling van dit onderzoek is een methode te ontwikkelen die precies 
dat doet. De bekende balk – kabel / booganalogie zal uitgebreid worden naar 
schalen. Dit geeft de ontwerper en ingenieur voldoende inzicht om in de eerste 
ontwerpfase afgewogen beslissingen te maken over het ontwerp. 
 
De voorgestelde hypothesen voor benaderingen zijn gebaseerd op klassieke 
geometrie en mechanica. Er wordt gebruik gemaakt van eerder ontwikkelde 
analogieën die als doel hadden om naast de complexe wiskunde en mechanica 
inzicht te bieden, en deze zijn gebruikt voor het ontwikkelen van de theorieën 
en methodes van dit onderzoek. De grafo-statica, de leer van wederkerige 
diagrammen en complementaire en potentiële energie zijn gebruikt om druk 
netwerken op te lossen. Analogieën als de momentenheuvel van platen, de 
statisch-geometrische analogie voor dunne schalen alsmede spanningsfuncties 
en de “load path” theorie zijn gebruikt voor de ontwikkeling van de plaat – 
schaal analogie. 
  
Twee hypothesen worden gepresenteerd in dit onderzoek, de eerste lost 
statisch onbepaalde 3D stangenveelhoeken (druk netwerken ) op met behulp 
van complementaire energie. The tweede methode breidt de balk – boog 
analogie uit in twee richtingen, de plaat – schaal analogie, deze methode levert 
resultaten vergelijkbaar met oplossingen uit de klassieke schaaltheorie. 
 
De verschillende resultaten in dit onderzoek zijn geverifieerd met behulp van 
bekende oplossingen in de schaalmechanica, EEM berekeningen en grafo-
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statica. Voorbeelden zijn uitgewerkt met relatief eenvoudige analytische 
formules, anderen met voor dit onderzoek speciaal ontwikkelde tools. Om in 
staat te zijn de voorgesteld methoden helder te presenteren zijn 
vereenvoudigingen aangenomen, zoals uitsluitend gelijkmatig verdeelde 
belastingen. De meeste vereenvoudigingen zijn technisch gezien niet 
noodzakelijk; in de aanbevelingen worden suggesties gedaan voor het 
uitbreiden van de methode. 
 
De geboorte van numerieke methoden voor het analyseren van constructies in 
de jaren 60 van de vorige eeuw betekende nagenoeg het einde van de 
ontwikkeling van analytische mechanica voor schalen. Deze thesis beoogd de 
ontwikkeling weer op te pakken en een brug te slaan naar de numerieke 
methoden, met als doel om het inzicht in schalen te verhogen.  
  



  

14 
 

Notations 
 
w displacement  
q uniformly distributed line load, force density 
EI bending stiffness 
M 
z 
H 
f, f* 
V 

bending moment 
shape function 
horizontal thrust, mean curvature 
rise 
support reaction, shear force, vertical load distribution, volume 

mxx, myy bending moment slab 
ν 
ϕ 

Poisson’s ratio 
redundancy, stress function 

𝑀𝑀�  
ζ 

Moment-hill 
thurst surface 

p uniformly distributed surface load 
vx, vy, vn, vt shear force slab, vertical load distribution 
Q total force density 
N 
F 

axial / normal force 
point load 

l span, length 
s scaling factor, slope 
α angle, (shape) coef�icient, ratio of strip length 
σ stress 
EA extensional stiffness 
ε strain 
u displacement 
E energy 
A 
C, c 
r 
Π 
κxx, κyy, κxy 
kx, ky, kxy 
a 
nxx nyy, nxy  
𝑛𝑛�xx 𝑛𝑛�yy, 𝑛𝑛�xy 
rx, ry, rxy 
b 
t 

area 
constant 
position vector 
functional 
curvature (deformation) 
curvature (geometry) 
length, distance 
membrane force 
projected membrane force 
radii 
width, distance 
height cross section 
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e 
h 
β 
φ 
θ 
P 
r 
K 
D 
g 

eccentricity 
height, distributed horizontal thrust 
angle, ratio of loads 
rotation 
slope of fold, rotation 
total uniformly distributed surface load 
radius 
bending stiffness strip 
bending stiffness slab 
change of Gaussian curvature 
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1 Introduction 
 

1.1 Background and motivation 
 
This research is partly based on more than 25 years of experience teaching 
structural mechanics and spatial structures to students of Architecture and Civil 
Engineering of Delft University of Technology and internationally. Therefore, 
this part of the introduction strays somewhat from the conventional 
introduction of a PhD thesis. It is impossible not to take into account the very 
different background to which this thesis has been developed. For the readers 
to get a level of understanding of the motives behind this research some words 
should be dedicated to the authors position as teacher and researcher, they 
were instrumental to writing this thesis. 
 
The text of the thesis should be read as one continuous “train of thought”, 
whereby the written words, the images and formulas form one coherent 
proposition resulting in the hypotheses. The propositions will be underpinned 
by analytical and pictorial validations.  
 
The purpose of this thesis is to analyse the structural behaviour of shell 
structures by studying the way the applied loads flow naturally through the 
shells surface (cross section) to its supports and how the flow off forces relates 
to the shell’s geometry. This will give a fundamental understanding of the 
behaviour of shell structures and will thus provide the means to design these 
with form efficiently and elegance, as has been done by engineers such as 
Heinz Isler, Felix Candela and Eduardo Torroja.  
 
Shells have geometrical and mechanical properties which have a close 
relationship for transferring loads and determine its structural performance. 
For many years shell structures have excited interest, especially their seemingly 
enigmatic states of equilibrium in relation to their form. Thin shells spanning 
long distances are a sight of beauty. However, just as professor Ekkehard 
Ramm [2] once called shells are the prima donnas of structures, the designing 
of these gracious structures has many pitfalls. An ill-shaped curved geometry, 
which is not always a real shell in the sense that the predominant part of the 
load is carried by membrane forces but are just curved surfaces loaded in 
bending, or incorrect shaped edge can totally ruin the shell’s structural 
behaviour and the shell consequently performs poorly resulting in a failed 
design.  
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Many scientists, from Timoshenko to Flügge, over the years have formulated 
very useful shell theories for analytically calculating the internal forces and 
stresses in shells. These theories are usually very mathematically complex but 
give some insight into the relation between the stresses and the shell’s 
geometry and are nearly always only applicable to shells with simple 
mathematically describable geometries. Some engineers, like Heinz Isler, have 
performed physical experiments on shell structures to try to uncover more of 
the form-force relationship [3].  
 
Nowadays, 3D modelling software and computational structural analysis are 
utilized by architects and engineers in the design of irregular curved surfaces. 
Most of the classical shell theories fail to provide analytical solutions for these 
complex shapes and thus the structures are calculated numerically with the 
help of the finite element method (FEM). In doing so, the relations, which are 
enclosed in analytical solutions are lost, making the relationship between the 
internal forces and the geometry even less insightful. This lack of insight makes 
designing these types of shells even more difficult for the designer and 
engineer.  
 
The designer gets insight of the relation between the internal forces, loads and 
their geometry by graphical solutions, force polygons and form diagrams, for 
linear 2D structures such as cables and arches and thrust networks for 
discretized shells [4]. What even graphical solutions do not always reveal is why 
a (ratio of) curve(s) or the number and location of supports results in a certain 
load path. This is especially the case for 3D thrust networks. 
 
The principal load path of an applied load to a shell is not easy to determine, 
because most shells are highly indeterminate. The principal stresses and their 
trajectories, often calculated with the aid of finite element methods, are not 
exactly the load path, the trajectories of the vertical component of the internal 
forces which carries the load. This means that to determine a thrust network 
for analysing a shell’s state of stress, with or without making an additional 
finite element calculation, an infinite amount of possible load paths have to be 
considered as they are all possible. The best fit solutions are several possible 
states of equilibriums within the thickness of the shell’s surface or predefined 
design envelope. However, the “correct” solution is not provided by this 
method which makes it impossible without the finite element method to find 
the correct internal forces for a given geometry, loading and boundary 
conditions.  
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As can be seen with experiments of hanging models of deformable cloth or 
latex sheets, they are naturally shaped by gravity loading. Their load path and 
unique thrust surface are inseparably linked with the gravity shaped surface 
and its curvature. This means that there is a unique solution for each shell’s 
thrust surface under a specific loading and boundary condition. In this case the 
thrust surface is the shell’s shape function. But these do not always have to be 
the same surface. As an example, the shape function of a spherical dome is not 
equal to its thrust surface.  
 
The ratio of curvatures of the surface in conjunction with the boundary 
conditions determine the shell’s state of indeterminacy. By solving the 
relationship between curvature and load path the unique thrust surface can be 
derived and thus the problem has been solved: a qualitative and quantitative 
relation between form and force.  
 
The author’s curiosity and search for knowledge and insight into shells started 
with the Blob revolution at the start of the 21st century [5]. Students of 
Architecture discovered the extensive possibilities ushered by the newly 
available 3D modelling software and in particular the ease with which complex 
curved surfaces could be drawn and explored in CAD. These types of forms 
were quickly called Blobs. It is unclear where the word BLOB came from, some 
sources refer to Binary Large OBject another to shapeless object as can be seen 
in the 50’s movie “The Blob”, which was very popular with students at the time 
of the Blob revolution.  
 

Figure 1 Ski Hall [image 6], design by Henno Hanselaar (2003) 
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One of the early blob-like shell structures the author encountered was the ski-
hall designed by a graduate student of his at the time of the Blob revolution, 
Henno Hanselaar, fig. 1 [6]. Together with colleague Karel Vollers the author 
ran in the first decade of this century the Blob graduation studio of the master 
track Building Technology at TU Delft.  
 
As a curvature analysis of the ski-hall shows the “shell-like” blob or “blob-like” 
shell is highly irregular curved, with areas where clastic and anti-clastic 
curvatures alternate. As can be observed of a Gaussian curvature analysis of 
the designs surface. The irregular curvature, illustrated in the Gaussian 
curvature analysis (fig. 2), makes it impossible to calculate the stresses with 
analytical equations.  

 
Therefore, a FEM calculation was performed in order to determine the internal 
forces, stresses and deformations. For the FEM analysis shell elements where 
used. The outcome was unsurprising in that the location of the best and worst 
preforming areas on the surface were unpredictable. On the one hand this 
highlights the power of FEM calculation, but on the other hand the complexity 
of the geometry makes it difficult to intuitively predict the performance. It is 
therefore cumbersome to steer the design in a certain desired direction.  
 
Due to the extreme curvature change in the lower part of the ski-hall the 
displacements in the valley are considerable. By altering the curvature 
problems would arise in another part of the surface. It is not easy to mentally 
predict which local curvatures would have a positive or negative effect. The 
only way to find this out was by trial and error and by altering the geometry 
and run another FEM calculation. Hanselaar “solved” the weak valley by adding 
a spider like truss on the of the surface, this proved to be effective, fig. 3. 

Figure 2 Gaussian curvature analysis Ski Hall [image 6] 
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In particular the Ski-hall design of 2003 became a recurring theme in 
subsequent years and are present to this day. The problematic nature of the 
structural behaviour versus the fascinating shape proved to be a challenge for 
the author and the student research group. Methods would be developed to 
get a grip on the this “shell”, not always successfully but the understanding of 
“complex geometry surfaces”, the new name for blobs, slowly grew [7]. 
 
Nowadays there are optimization routines, like Bi-Directional Evolutionary 
Structural Optimization (BESO) [8], available to come to the best possible 
irregular curved surfaces with the minimum of stresses and deformations [9]. 
But these numerical routines are in fact automatized “black box” methods, 
they provide little analytical or qualitative insight. The goal of the Blob 
graduation studio was to develop methods and tools to expand the insight 
whilst designing shell structures. 
 
One of the methods developed was the “Rain Flow” analysis [10] [11]. The 
hypothesis of this method was: “Like a rain flow, loads will flow along curves 
with the steepest ascent on the shell to its supports”. This is not correct, as will 
be shown later in this thesis, but gave the input for this research, fig. 4. The aim 
of this method is to use particles to simulate the flow of the loads that role 
over the surface, close to the gradient representing the vertical component of 
the axial forces of a thrust line of an arch or cable. This is similar, to the 
gradients of the moment hill, which represent the shear forces of a slab, loaded 
out-of-plane. 
 
 
 
 
 
 

Figure 3 deflections by FEM calculation Ski Hall before and after added spider truss [image 6] 
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Although the “rain flow” analysis is not correct it does give some insight into 
how the edges of shells need to be shaped for an optimal performance. If the 
particles flow over an edge, usually curved downwards, then it can be expected 
that a large part of the load needs to be carried by shear forces and bending 
moments, fig. 5. The load cannot be sufficiently resolved in-plane to make 
equilibrium with internal membrane forces. 

 
Edges which are turned upward divert the loads away from the edge, these 
edges are unloaded and will perform well, fig. 6. The shells of Felix Candela 
often have these types of edges. 

Figure 4 "Rain flow” analysis Ski hall [images 10, 52] 

Figure 5 downward edge Ski Hall [image 52] 

Figure 6 upward edge Skil Hall [52], Los Manantiales by Felix Candela [images 6] 
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Another student project is the shell designed and constructed by students from 
Delft and Montpellier during the Morpharchitecture workshop in Lyon. This 
shell also adheres to the “rain flow” principle. The result is a very light weight 
shell with all the right curves to ensure the most optimal load transfer, fig.7. 
 

 
The research for this thesis starts from the fascination to uncover the 
fundamental principles that govern the structural behaviour of shell structures. 
The curiosity was fed by work done with students by making models, physical, 
analytic and numeric. The work presented in this thesis was done in silence, 
contemplating over what was discovered, after the fun part with the students 
was completed. And page after page trying to turn this insight into analytical 
formulas, so that the relations expressed in elegant mathematics can be the 
basis of new graphic models. To be used for the exploration and design of 
elegant shell structures. 
 
In the past research was mostly concerned with finding analytical formulas to 
be able to calculate a design of shell structures. Many classic handbooks have 
been written in the first part of the last century, such by Timoshenko [12], 
Flügge [13], Novozhilov [14], Love [15], Haas [16], Csonka, Girkman [17], 
Billington [18], Ramaswamy, Heyman, Calladine [19], Born, Dischinger [20] and 
many other. Their content is predominately mathematical, and for most 
designers and modern-day engineers difficult to read. Other engineers, such as 
Candela [21], Torroja [22], Nervi [23] and Isler (fig. 8) [24] took a more practical 
approach. Between approximately 1930 and 1990 they built many elegantly 
shaped thin concrete shells [25]. By the 1960s the main wave of shell building 
was all but over, different reasons have been suggested to explain this. Such as 
rising labour costs of building shells, to shells being out of fashion etc [26].  

Figure 7 shell Morpharchitecture workshop Lyon 
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The other important development in the 1960s was the inception of 
computational methods such as the finite element method (FEM) which made 
it possible to calculate complex structures without the cumbersome 
mathematics [27]. Especially for irregular shapes, which are nearly impossible 
to describe with mathematical formulas, the FEM was a good alternative and 
made their analysis possible. This development all but stopped the further 
progress of analytical methods which slowly faded and was eventually mostly 
confined to libraries.  
 
At the beginning of the 21st century due to newly developed parametric 
software graphic statics was rediscovered by researchers, architects and 
engineers. This made it possible to create interactive animation between the 
different form diagrams and their respective force polygons. O’Dwyer [28], 
Ochsendorf and Block [29] expanded graphic statics from arches and cable to 
3D thrust networks. William Baker, Allan McRobie, Chris Williams any many 
others took the development on graphic statics further with the help of 
rediscovered work from James Clerk Maxwell on reciprocal diagrams. These 
principles were used to develop the polyhedral Airy stress function.  
Researchers such as Chris Calladine and Sergio Pellegrino worked on mechanics 
and rigidity theory. Wolfgang Beranek was the first to introduce the “shower 
analogy” as an addition to the moment hill for slabs, which analogies will be 
used and expanded for use to shells in this dissertation [30]. Their research is 
part of the basis of this thesis. 
 

  

Figure 8 scanning of the Bellinzona shell model of Heinz Iser, 
Burgdorf, Switzerland by team from TU Delft, July 2011   
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1.2 Research objectives 
 
The aim of this thesis is it to close the gap between the mathematical theory of 
shell structures and the recent developments in the field of graphic statics and 
reciprocal diagrams and to apply these to the understanding of shells 
structures. Because of the inability of computational methods such as FEM, to 
give analytical insight into the behaviour of shell structures this thesis will 
concentrate on trying to continue with the development of analytical methods, 
but without the complex mathematics. The aim is to develop semi-analytical 
methods which can form the basis of computational tools, like the example of 
parametric software being used for graphic statics, such as RhinoVAULT. In this 
thesis some results will be presented of the use of parametric tools used for 
creating M-hills, stress functions and thrust surfaces. 
 
From the start of the research for this thesis it was always presumed by the 
author that the load path or distribution was the key for understanding the 
behaviour of shells. Aided by the curvatures of the shell the load path 
determines the internal membrane forces and whether out-of-plane ones are 
needed to ensure equilibrium, this in case due to incorrect curvatures the 
membrane forces would not be able to do this by themselves. The relational 
diagram below shows the initial hypothesis from which the research started. It 
will be shown that the load path is determined by the moment hill of the load 
on an equivalent flat slab. The curvatures are represented by the shape 
function of the shell. In addition, it will be explained that the force network is a 
simplified discretized version of the thrust surface. The initial relational 
diagram has slightly changed into the one which forms the basis of the research 
hypothesis as result of knowledge gained over the years, fig. 9 [31]. 
   

 
Figure 9 initial relational diagram  
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The differential equations which govern beams, slabs and shell structures 
consists of two parts. The first relates to equilibrium, the second part to cross 
sectional and material properties, these are the constitutive and kinematic 
relations, respectively.  

The solutions for statically determined structures only concerns the first part of 
the differential equations. Like the cable / arch equation, which can be 
represented by graphic statics via a form diagram of the structure and its 
reciprocal force polygon. Once the load distribution has been determined what 
remains is a scaling issue, this occurs when moving the pole in the direction of  
the closing string. The rise of the arch f is reciprocal to the thrust H, and their 
product is constant. If the pole moves perpendicular to the closing string the 
load distribution alters, the vertical support reactions change as does the 
curvature of the arch, fig. 10. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4
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𝐸𝐸𝐸𝐸
⎩
⎨

⎧𝑑𝑑
2𝑀𝑀
𝑑𝑑𝑥𝑥2

=  −𝑒𝑒 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

=  −
𝑀𝑀
𝐸𝐸𝐸𝐸

  

𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

𝑒𝑒 = −𝐻𝐻
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

                       𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝐻𝐻𝐻𝐻 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

2𝐷𝐷,𝑤𝑤ℎ𝑏𝑏𝑛𝑛 𝑏𝑏𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑝𝑝𝑒𝑒𝑐𝑐𝑏𝑏 𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑚𝑚:  
→ 𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑏𝑏 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ / 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑛𝑛𝑐𝑐 𝑒𝑒𝑛𝑛𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏𝑑𝑑  
 

Figure 10 reciprocity between form diagram and force polygon 
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For shell structures statically determined solutions are less straight forward, 
due to their 3D geometry. For a funicular cable or arch structure, the tension or 
thrust line is equal to their shape function. For arches it is important not to 
have bending, although for arches a discrepancy between the thrust line and 
shape is possible resulting in bending. Shells have an extra dimension in space 
compared to arches which can provide for membrane forces that cancel out-of-
plane bending, like hoop forces in domes. 
 
For shells the load distribution is coupled to the curvatures of its geometry and 
the type of the boundary condition. If the curvatures (k) are fixed but the 
overall height of the shell is changed it is a scaling problem, i.e. the load 
distribution remains unchanged. But when the ratio of the curvature is changed 
the load distribution changes accordingly, fig. 11. 

 
Thrust networks are statically indeterminate; they are in fact three dimensional 
trusses, whose configuration is made-up of lines of actions along which its 
forces act and which as a whole is in equilibrium with the loads (imposed 
and/or self-weight). It is proposed that the indeterminacy is solved with the 
help of complementary energy, in which the constitutive relations are used. 
This is elaborated in the first part of the thesis, in the second part the load path 
theorem (moment-hill) of slabs loaded out-of-plane is extended to shells 
structures. The moment-hill is the 3-dimensional representation of weighted 
sum of the bending moment of the slab in two directions (𝑀𝑀�).   
 

 
 

𝑘𝑘𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

  

𝑘𝑘𝑦𝑦𝑦𝑦 =
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

  

𝑘𝑘𝑥𝑥𝑦𝑦 =
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 

 

3𝐷𝐷,𝑤𝑤ℎ𝑏𝑏𝑛𝑛 𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐: 
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ / 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏𝑐𝑐 
 

Figure 11 load path of shell in relation to its curvature [image 61] 

𝑀𝑀� =
𝑏𝑏𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦

1 + 𝜈𝜈
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The moment hill (𝑀𝑀�) is the alternative solution, next to that of the deflections 
w, of the slab equation, which in most cases is a statically indeterminant 
problem. The slab equation can be split via the M-hill in two parts, one that 
allows the M-hill to be solved via the membrane analogy due to the similar 
structure of the differential equation, see section 8.3. The other part is a direct 
relation of the M-hill with the load p, this provides the route to the load path: 
the “shower analogy”, fig. 12 [30]. 
 

Like a rain flow the loads will discharge along the curves with the steepest 
ascent (n-direction) on the surface of the moment-hill. This determines the 
load distribu�on and thus the load path.  
 

 
When considering the equilibrium of halve of a uniformly distributed load q a 
function can be derived, this is the line of equilibrium. It depends on a 
geometry of the loaded structure what this line represents, for a straight beam 
it is the moment diagram, for a structure without internal bending moments it 
is equivalent to their shape function. These curved structures are either arches 
or cables, depending if they are curved upwards or downwards. For both cases 
the slope of M represents the vertical load distribution V.  

𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ, 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝑚𝑚𝑛𝑛 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑛𝑛

= 𝑏𝑏𝑏𝑏𝑥𝑥  

𝑚𝑚𝑡𝑡 =
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𝜕𝜕𝑒𝑒
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⎩
⎪
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𝜕𝜕𝑥𝑥2
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Figure 12 the moment-hill and the “shower analogy” [image right 30] 
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1
8
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�𝑀𝑀 = 𝐻𝐻𝑧𝑧 ⇒ 𝐻𝐻 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒
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1.3 Research hypothesis 
  
For cables and arches the relationship between the shape function, the thrust 
line, the moment diagram and the stress function is unambiguous. The relation 
is direct because the cable or arch has a horizontal component H, which is 
constant in any cross section. The thrust line is in fact equal to the shape 
function and equivalent to the moment diagram, the stress function plays a 
subordinate role because of the two-dimensional nature of the cable and arch 
and the fact that the horizontal thrust is constant, fig.13. For arches the 
difference between the thrust line and its shape function is equal to the 
resulting bending moment imposed onto the arch.  

 
For shell structures the relationship between the shape function (z), the stress 
function (φ), the thrust surface (ζ) and the moment hill (𝑀𝑀�) is more 
complicated, fig. 14. This is because of the 3-dimensional nature of shell 
structures which, compared with 2-dimensional arches, leads to a larger 
number of possible solutions for a given situation. It can be stated that the 
relation between the four functions for arches is a reduction of a higher order 
hierarchy. 

Figure 14 relational diagram hypothesis 

Figure 13 the beam - arch analogy [image 101] 
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The driver of the relation between geometry and mechanical behaviour of shell 
structures is the flow of forces. For arches this is unambiguous, but for shell 
structures there are for a given load case many lower bound solutions possible 
that ensure equilibrium. In contrast to arches, if the thrust surface deviates 
from the shape function this does not automatically result in out-of-plane 
bending. Also, the thrust surface is not necessarily equal to the moment hill. In 
fact, now there is a trade-off possible between the four functions, yet they are 
all linked to the flow of forces / load path. 

 
In this thesis the relation between the four functions will be explored, and how 
they shape the flow of forces of the shell in conjunction with its geometry.  

𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 
 
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑉𝑉 = 𝐻𝐻  
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥���

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 /
𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

 

 
 
 
 

𝑒𝑒 = −
𝑑𝑑𝑉𝑉
𝑑𝑑𝑥𝑥

  
 
 
 

⎩
⎨

⎧𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 𝑒𝑒 = −𝐻𝐻
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 𝑒𝑒 = −
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

 

 
 
 

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏: 
 
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑚𝑚𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

−
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦�������������

𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 /
𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

  

𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑚𝑚𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥�������������

𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 /
𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

 

 𝑝𝑝 = −�
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦 �

 

 
 

⎩
⎪
⎨

⎪
⎧𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 𝑝𝑝 = −�

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

− 2
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏: 𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

,𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑀𝑀� = 𝑏𝑏𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦

 

 
 

The beam – arch analogy                                              The slab – shell analogy 

Figure 15 the beam - arch & slab - shell analogy [image 101] 
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The hypothesis states that the established relation between the moment 
diagram of a beam, the stress function and the thrust line / shape function of 
the equivalent arch, having a corresponding load and boundary conditions, also 
holds for the moment-hill of out-of-plane loaded slabs and their equivalent 
shell structure.  
 
The hypothesis is valid for thin shells. In fact, the beam – arch analogy is the 
simplified version for one direction of the slab – shell analogy, fig. 15. The 
thrust surface is a reciprocal diagram, see chapter 8, of the stress function and 
it therefore not part of the slab – shell analogy equations.  
 
The flow of forces or load transfer is central for both the slab- and the shell 
structure. For the slab the load transfer goes via the moment hill. For the 
membrane shells, thus without bending moments needing to assist in 
transferring the load, the load transfer goes via an interaction between the 
curvatures of the shape function and the stress function of the shell (fig. 16), 
see chapter 7 and 8.  
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Figure 16 the beam - arch & slab - shell relations [image left 100] 
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The bending stiffness of the slab D is equivalent to the ratio of the curvatures 
and the stress function of the shell and their interdependency, and determines 
the load transfer. 

 

As an example of the slab – shell analogy are the skylights, fig. 18. These where 
form found by inflating a membrane [32], which is equivalent to the moment-
hill of an out-of-plane loaded slab. The flow of forces (load path) of the skylight 
(shell) is represented by the trajectories of the maximum shear forces vn of the 
slab, which are the curves of steepest ascent of the M-hill, fig. 17. For further 
elaboration see section 8.3. 

𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏, 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑦𝑦 𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑑𝑑 𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑏𝑏𝑐𝑐𝑐𝑐 𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐:  
𝑒𝑒𝑛𝑛𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑦𝑦 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝 
𝑐𝑐𝑦𝑦 = 1.4 𝑐𝑐𝑥𝑥 
 
𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 𝑏𝑏 𝑒𝑒𝑐𝑐 𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝𝑒𝑒𝑐𝑐:𝐷𝐷 = 𝐾𝐾𝑥𝑥 = 𝐾𝐾𝑦𝑦 = 𝐾𝐾𝑥𝑥𝑦𝑦 
𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 𝑏𝑏 & 𝑐𝑐 𝑏𝑏𝑠𝑠𝑏𝑏 𝑒𝑒𝑠𝑠𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝𝑒𝑒𝑐𝑐: 𝐾𝐾𝑥𝑥 ≠ 𝐾𝐾𝑦𝑦 ≠ 𝐾𝐾𝑥𝑥𝑦𝑦   
 
𝑇𝑇ℎ𝑏𝑏 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 ℎ𝑒𝑒𝑐𝑐𝑐𝑐,𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑒𝑒𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 
𝑑𝑑𝑏𝑏𝑝𝑝𝑏𝑏𝑛𝑛𝑑𝑑𝑐𝑐 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚  
𝑐𝑐𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝑛𝑛𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐 𝐾𝐾𝑥𝑥  𝑏𝑏𝑛𝑛𝑑𝑑 𝐾𝐾𝑦𝑦 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑐𝑐  

𝑐𝑐𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝑛𝑛𝑏𝑏𝑐𝑐𝑐𝑐 𝐾𝐾𝑥𝑥𝑦𝑦 =  
𝐾𝐾𝑥𝑥 + 𝐾𝐾𝑦𝑦

2
. 

 
𝐹𝐹𝑒𝑒𝑠𝑠 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  
𝑑𝑑𝑏𝑏𝑝𝑝𝑏𝑏𝑛𝑛𝑑𝑑𝑐𝑐 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 𝑒𝑒ℎ𝑏𝑏  
𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐: 𝑘𝑘𝑥𝑥𝑥𝑥,𝑘𝑘𝑦𝑦𝑦𝑦 𝑏𝑏𝑛𝑛𝑑𝑑 𝑘𝑘𝑥𝑥𝑦𝑦.  
 
 
 
 
𝑒𝑒𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 [30] 

  

Figure 18 “rain flow” of skylight, image provided with 
courtesy by John Chilton  

Figure 17 trajectories of the moment hill with a square 
base, hinge supported along all edges 
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1.4 Thesis structure 
 
The thesis is structured in three parts, the first part (chapters 2 to 4) concerns 
trusses and cables and the second part (chapters 5 and 6) arches and the third 
part (chapters 7 and 8) focusses on shell structures.  
 
The thesis starts with a round up and an additional perspective to the classic 
approach on the fundamentals of form diagrams and force polygons. 
Reciprocal characteristics of trusses and cables are discussed, to which the 
theory of rigidity will be applied. Indeterminacy in graphic statics will be 
introduced and applied to 3D graphic statics with the help of complementary 
and potential energy.  
  
The second part starts with statically indeterminate arches and to solve these 
with complementary energy and concludes with a discussion of the stress 
function in relation to the other fundamental function of arches, the shape 
function and the thrust line. 
 
The third part concentrates around the relationship of the four fundamental 
function for shell structures; the shape function, the thrust surface, the 
moment hill and the stress function. Different shapes of shells will be used to 
exemplify this relationship and different methods will be presented to solve 
these equations. The second part concludes with a method to also take into 
account out-of-plane bending if the geometry of the shell is such that it is not 
possible to carry all the loads via membrane forces. 
 
Results throughout the thesis will be shown of analytical examples, or from 
computational tools based on theories and methods that have been developed 
in the context of this thesis. These tools have been developed with help of 
master graduate students from the faculties of Architecture and the Built 
Environment and Civil Engineering and Geosciences of the Delft University of 
Technology, whereby the theoretical input was provided by the author. 
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2 General properties of force polygons and form diagrams  
 

2.1 Introduction 
 
The practical use of graphic statics for visually representing the state of 
equilibrium of funicular structures, such as cables and arches, has been well 
established for centuries [33]. Funicular in the sense means structures whose 
centroidal axis coincides with the line of action of all its forces, known for 
arches as a “thrust line”. Another way of describing a funicular is the infinite 
collection of points forming a line in which in each point all its forces are in 
equilibrium.  
The force polygon is the graphical representation of the equilibrium of the 
forces in the structure which topology is the form diagram, such as the shape of 
an arch or a cable. It is a well-established fact that the force polygon (FP) and 
form diagram (FD) are reciprocal diagrams, fig. 19 [34]. 

 
Some of the properties that describe this reciprocity, meaning mutually 
corresponding and dependent, will be further elaborated in this chapter with 
the help of formulas.  

2.2 Sign convention  
 
In this thesis we will not be using the classic Bow’s notation for graphic statics 
[35]. Bow’s notation uses the reciprocal properties between the form diagram 
and force polygon. It numbers the surfaces in the form diagram which refer 

Figure 19 reciprocal relation between form diagram and force polygon 
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their reciprocal point in the force polygon. In this thesis the surfaces of the 
force polygons will be numbered which will refer to their reciprocal points in 
the form diagram, fig. 20 [36]. This makes it easier to directly observe the 
forces which act on a point in the structure. This is also a direct link between 
the pairs of lines of both diagrams, which represent the forces and their 
respective lines of action. 

 

2.3 General reciprocity of a basic form diagram and its force polygon 
 
In this chapter general rules will be established concerning 2D force polygons 
and form diagrams, such as cables and arches. In chapters 3 and 4 these will be 
expanded  to 3D for the purpose of constructing thrust surfaces for shell 
structures.  
To exemplify the reciprocity a basic form diagram will be explored representing 
a cable with one point load (∑F ) and with level supports. Their form diagram 
and a force polygon have a reciprocal relation as can be observed through 
uniform triangles (eq. 1), fig. 21. Because the structure is statically determined 
any change in the rise f will not change the vertical support reactions Vi . 

𝐵𝐵𝑒𝑒𝑤𝑤′𝑐𝑐 𝑛𝑛𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
𝑒𝑒𝐻𝐻 𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦𝑚𝑚𝑒𝑒𝑛𝑛  
𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 𝑒𝑒𝑤𝑤𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐, 𝑏𝑏𝑏𝑏𝑚𝑚𝑒𝑒𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑏𝑏𝑛𝑛𝑑𝑑 𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒, 
𝑒𝑒𝑒𝑒𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏 𝑒𝑒𝐻𝐻 𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏  
𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐 𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑤𝑤𝑒𝑒  
𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑤𝑤𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐  
 
𝐹𝐹𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 
𝑒𝑒ℎ𝑏𝑏𝑠𝑠𝑏𝑏 𝑒𝑒𝑐𝑐 𝑏𝑏 𝑑𝑑𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑛𝑛𝑐𝑐𝑏𝑏 𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛  
 𝑒𝑒ℎ𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦𝑚𝑚𝑒𝑒𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒𝑒𝑒𝑐𝑐  
𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏 𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏 
  
 
 

Figure 20 notation of form diagram and force polygon 
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Compared to an equivalent beam with the same span and load the shape of the 
form diagram corresponds with the shape of its bending moment diagram. The 
product of the horizontal force H and the rise f of the cable is constant and 
remains such for any change of f and is equal to the maximum moment Mmax of 
the equivalent beam (eq. 2).  
  

𝐻𝐻,𝐻𝐻 𝑏𝑏𝑠𝑠𝑏𝑏 𝑚𝑚𝑏𝑏𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐;  𝑥𝑥𝑖𝑖  ,𝑉𝑉𝑖𝑖  𝑏𝑏𝑠𝑠𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒𝑐𝑐 

tan𝛼𝛼𝐴𝐴 =
𝐻𝐻
𝑥𝑥𝐴𝐴

=  
𝑉𝑉𝐴𝐴
𝐻𝐻  → 𝐻𝐻𝐻𝐻 = 𝑉𝑉𝐴𝐴 𝑥𝑥𝐴𝐴 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

tan𝛼𝛼𝐵𝐵 =
𝐻𝐻
𝑥𝑥𝐵𝐵

=  
𝑉𝑉𝐵𝐵
𝐻𝐻  → 𝐻𝐻𝐻𝐻 = 𝑉𝑉𝐵𝐵  𝑥𝑥𝐵𝐵 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  

→    
𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵

=
𝑉𝑉𝐵𝐵
𝑉𝑉𝐴𝐴

                                                        (1) 

Figure 21 basic form diagram 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑉𝑉𝐴𝐴 𝑥𝑥𝐴𝐴 = 𝑉𝑉𝐵𝐵  𝑥𝑥𝐵𝐵 
 

𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐵𝐵 = Σ𝐹𝐹 →
𝐻𝐻𝐻𝐻
𝑥𝑥𝐴𝐴

+
𝐻𝐻𝐻𝐻
𝑥𝑥𝐴𝐴

= Σ𝐹𝐹 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 = 𝑐𝑐 

→ 𝐻𝐻𝐻𝐻 = Σ𝐹𝐹
(𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵)

𝑐𝑐 = 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥              (2𝑏𝑏) 

 
   

𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 = 𝑐𝑐 →
𝐻𝐻𝐻𝐻
𝑉𝑉𝐴𝐴

+
𝐻𝐻𝐻𝐻
𝑉𝑉𝐵𝐵

= 𝑐𝑐 

→ 𝐻𝐻𝐻𝐻 = 𝑐𝑐
(𝑉𝑉𝐴𝐴𝑉𝑉𝐵𝐵)
Σ𝐹𝐹 = 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥                  (2𝑏𝑏) 
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Any change in position of the pole of the force polygon has a reciprocal effect 
on the point of application of the total force ∑F in the form diagram and vice 
versa. So if either the rise f or the horizontal force H changes and because their 
product is constant these two points, the pole and point of application, move in 
opposite directions. 
 
The force density of a bar is the ratio of its axial force over the length of the bar 
(eq. 3). The total force density Q, the summation of all the individual force 
densities of each bar, of this system can also be expressed in either a function 
of the horizontal force H or the total load ∑F (eq. 5). The geometric factor sf 
(eq. 6) for the change of f in the form diagram represents the reciprocal effect 
on the force polygon. The total force density will also change accordingly to the 
same factor (eq. 7). 

The principles of these relations hold for all cable and arch structures with 
different loads, apart from the last part of (eq. 5), which for truncated form 
diagrams will be altered, this will be discussed further in section 2.7. 
 
There are a few basic ways to reconfigure a form diagram and its reciprocal 
force polygon. When one of them is reconfigured the other will automatically 
follow and the basic relations will remain applicable to both. The properties of 
reconfiguration through scaling the FP / FD or changing the load distribution, 
by horizontally moving the point of  application, will be briefly discussed.  

𝑄𝑄 =
𝑁𝑁𝐴𝐴
𝑐𝑐𝐴𝐴

+ 
𝑁𝑁𝐵𝐵
𝑐𝑐𝐵𝐵

                        (3)  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 
𝑁𝑁𝑖𝑖
𝐻𝐻 =

𝑐𝑐𝑖𝑖
𝑥𝑥𝑖𝑖

 ;  
𝑁𝑁𝑖𝑖
𝑉𝑉𝑖𝑖  

=
𝑐𝑐𝑖𝑖
𝐻𝐻      (4) 

→ 𝑄𝑄 =  
𝐻𝐻
𝑥𝑥𝐴𝐴

+ 
𝐻𝐻
𝑥𝑥𝐵𝐵

=  
Σ𝐹𝐹
𝐻𝐻       (5) 

𝑐𝑐𝑓𝑓 =  
𝐻𝐻+1
𝐻𝐻  ;  

1
𝑐𝑐𝑓𝑓

=  
𝐻𝐻+1
𝐻𝐻          (6) 

𝑄𝑄+1 =  
1
𝑐𝑐𝑓𝑓

 𝑄𝑄                           (7) 
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a. scaling FP / FD 
It is possible to scale either the form diagram or the force polygon by a 
scaling factor. The properties below will alter according to this scaling 
factors, sFP and sFD.  

By scaling the force polygon but leaving the form diagram intact the total 
force density increases. And by scaling the form diagram and leaving the 
force polygon intact the total force density decreases. 
 

b. moving horizontally the point of application of the total load ∑F 
The horizontal force H stays constant but the position of the total load 
shifts horizontally and thus the total force density changes accordingly as 
does the load distribution. The vertical support reactions in A and B 
change in the same ratio smo as the horizontal distance of ∑F. 
Note that if the pole of the force polygon moves whilst having a constant 
H and constant total load the rise f of the form diagram changes. This is 
due to the uniformity of their respective triangles.  

𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦𝑚𝑚𝑒𝑒𝑛𝑛: 

𝑐𝑐𝐹𝐹𝐹𝐹 =
𝐻𝐻+1
𝐻𝐻 =

Σ𝐹𝐹+1
Σ𝐹𝐹   

𝑄𝑄𝑖𝑖+1 = 𝑐𝑐𝐹𝐹𝐹𝐹 𝑄𝑄𝑖𝑖 
 
𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏:  

𝑐𝑐𝐹𝐹𝐹𝐹 =
𝐻𝐻+1
𝐻𝐻 =

𝑐𝑐+1
𝑐𝑐   

𝑄𝑄+1 =
1
𝑐𝑐𝐹𝐹𝐹𝐹

 𝑄𝑄 

 
 

𝑐𝑐𝑚𝑚𝑚𝑚 =
𝑥𝑥𝐴𝐴,𝑖𝑖𝑥𝑥𝐵𝐵,𝑖𝑖

𝑥𝑥𝐴𝐴,𝑖𝑖+1𝑥𝑥𝐵𝐵,𝑖𝑖+1
=

𝑉𝑉𝐴𝐴,𝑖𝑖𝑉𝑉𝐵𝐵,𝑖𝑖

𝑉𝑉𝐴𝐴,𝑖𝑖+1𝑉𝑉𝐵𝐵,𝑖𝑖+1
  

𝑄𝑄+1 = 𝑐𝑐𝑚𝑚𝑚𝑚 𝑄𝑄𝑖𝑖 
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2.4 General reciprocity of a basic configuration with non-level supports 
 
In a more general case consider a cable with non-level supports loaded by a 
point load. Like the case with level supports the uniform triangles, which can be 
observed in the form diagram and the force polygon, have a reciprocal relation 
(eq. 8). Also with non-level supports, by moving the point of application of the 
total load in the form diagram, the pole of the force polygon moves in a 
reciprocal manner along the closing string. 
The force polygon can be split along a line parallel to the closing string, both 
parts belong to one of the supports. Hereby the vertical support reactions SA 
and SB are determined as well as the support reaction along the closing string 
S0. This line in the force polygon cuts the vector of the total force ∑F in point 0. 

 
For an equivalent beam with the same span and load the shape of the form 
diagram corresponds with its bending moment diagram, and has the same 
maximum moment (eq. 9). 
 
 
 

𝐻𝐻, 𝑆𝑆0 𝑏𝑏𝑠𝑠𝑏𝑏 𝑚𝑚𝑏𝑏𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐;  𝜉𝜉𝑖𝑖 , 𝑆𝑆𝑖𝑖  𝑏𝑏𝑠𝑠𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒𝑐𝑐  
𝐻𝐻
𝜉𝜉𝐴𝐴

=
𝑆𝑆𝐴𝐴
𝑆𝑆0
⇒  𝑆𝑆0𝐻𝐻 = 𝑆𝑆𝐴𝐴𝜉𝜉𝐴𝐴 𝑏𝑏𝑠𝑠𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

𝐻𝐻
𝜉𝜉𝐵𝐵

=
𝑆𝑆𝐵𝐵
𝑆𝑆0

⇒  𝑆𝑆0𝐻𝐻 = 𝑆𝑆𝐵𝐵𝜉𝜉𝐵𝐵  𝑏𝑏𝑠𝑠𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

⇒
𝜉𝜉𝐴𝐴
𝜉𝜉𝐵𝐵

=
𝑆𝑆𝐵𝐵
𝑆𝑆𝐴𝐴

                                                 (8) 

𝐻𝐻𝐻𝐻 = 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒                       (9) 
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The ratio of the position of the line of action lF of the total force ∑F is equal to 
the ratio of the vertical support reactions, the line of action lF and point 0 are 
reciprocal.  
When the pole of the force polygon is moved the shape of the form diagram 
changes. By moving point 0 in the force polygon the line of action lF and thus 
the point of application moves in the form diagram, as seen in section 2.3. 

 
 

2.5 Truncated form diagrams, subdivision of the total load 
 
Cables and arches usually have multiple loads, for this a truncated basic 
configuration can be used. The truncation of the form diagram is the result of 
splitting the total load in several point loads. The total load ∑F and its 
corresponding point of application is the vertex of the envelope of the form 
diagram where the lines of action of the total load and of the reactions forces 
Ri , which are also the tangents of the form diagram at the supports, meet. This 
point is in the case of a uniformly distributed load comparable to a control 
point of a quadratic Bezier curve. 
  

𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒: 
𝜉𝜉𝐴𝐴
𝜉𝜉𝐵𝐵

=
𝑆𝑆𝐵𝐵
𝑆𝑆𝐴𝐴
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The force polygon retains its overall shape when the total load is split, yet the 
point of application stays the same, but will be subdivided into more triangles 
representing the different point loads. The rays of the force polygons are the 
tangents of the parabola in the case of a uniformly distributed load and in the 
case of discreet point loads it coincides with the straight members which form 
the form diagram. 
When the form diagram is scaled, by increasing or decreasing f and thus 
moving the control point, the other location coordinate for each node zi which 
define the form diagram in respect to the closing string will be scaled according 
to the same factor (eq. 10).  

𝑆𝑆𝑓𝑓 =
𝐻𝐻+1
𝐻𝐻 =  

𝑧𝑧𝑖𝑖+1
𝑧𝑧𝑖𝑖

 → 𝑧𝑧𝑖𝑖+1 = 𝑆𝑆𝑓𝑓 ∙  𝑧𝑧𝑖𝑖        (10) 

𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐵𝐵 = Σ𝐹𝐹 = 10 

𝐻𝐻𝐻𝐻 = Σ𝐹𝐹
(𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵)

𝑐𝑐 = 10
625 ∙ 935

16 = 382
5

= 𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 
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2.6 Relation form diagram and force polygon 
 
The classic understanding of the geometric reciprocity between a (truncated) 
form diagram and it’s force polygons is between points and triangles.  
 

 
 

A reciprocal relation between the form diagram and the force polygon has 
already been introduced in sections 2.3 and 2.4 are the uniform triangles which 
are observed in both and are reciprocal to each other (eq. 11). These can also 
be found in a truncated form diagram. When the basic form diagrams from 2.3 
and 2.4 are truncated, thus with more than one load, more triangles will 
appear in the form diagram. This has as a consequence that both of the two 
uniform triangles which constitute the basic form diagram will be scaled back 
to accommodate additional triangles as a result more loads (eq. 12). The slopes 
of reciprocal triangles in the form diagram and the force polygons are equal 
(eq. 13). The rise of each triangle in the form diagram ∆zi is equal to the 
incremental equivalent moment over the base of the triangle if it was part of a 
beam divided by the horizontal thrust H. This is essentially the same 
relationship as between the rise f of the envelope of the truncated form 
diagram and the equivalent maximum moment (eq. 2 & 14). And it also 
represents the discretization of expression for the load transfer of a cable with 
a uniformly distributed load (eq. 15). 
  

𝐻𝐻
𝑉𝑉𝑎𝑎

=
𝑥𝑥𝑎𝑎
𝐻𝐻                                                   (11) 

𝑥𝑥𝑎𝑎
𝐻𝐻 =

𝑥𝑥𝑖𝑖
△ 𝑧𝑧𝑖𝑖

                                              (12) 

𝑉𝑉𝑖𝑖
𝐻𝐻 =

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

⇒ △ 𝑧𝑧𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝐻𝐻 𝑥𝑥𝑖𝑖 =

△𝑀𝑀𝑖𝑖

𝐻𝐻  (13) 

𝐻𝐻 =
𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥

𝐻𝐻                                               (14) 

𝑉𝑉𝑖𝑖 = 𝐻𝐻
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

≡ 𝑉𝑉 = 𝐻𝐻
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥                    (15) 
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Each element of the form diagram has a triangle that corresponds to its 
reciprocal in the force polygon. If the triangles of the form diagram are 
assembled in a similar configuration of that of a force polygon this will most 
likely not result in the polygon being in equilibrium. To achieve this each 
triangle needs to be scaled individually. This scaling is the force density (eq. 16), 
which connects each triangle in the form diagram with its reciprocal in the 
force polygon. Thus the correct force polygon is obtained. 
 

 
 

 
 
An example where all the individual force densities are equal is a cable with a 
discretized uniformly distributed load, which result in a form diagram with the 
shape of a parabola. 

𝑒𝑒𝑖𝑖 =
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

=
𝑉𝑉𝑖𝑖
△ 𝑧𝑧𝑖𝑖

=
𝐻𝐻
𝑥𝑥𝑖𝑖

   

(16) 

𝑒𝑒𝑖𝑖 =
𝐻𝐻
𝑥𝑥𝑖𝑖

:𝑄𝑄 = �
𝐻𝐻
𝑥𝑥𝑖𝑖

 

 
𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒, 𝑒𝑒ℎ𝑒𝑒𝑐𝑐 𝑒𝑒𝑛𝑛𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑒𝑒𝑐𝑐  
𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑧𝑧𝑏𝑏𝑑𝑑: 𝑒𝑒𝑖𝑖 = 1  
𝑥𝑥𝑖𝑖 ⇒ ∞, 𝑒𝑒ℎ𝑒𝑒𝑐𝑐 𝑒𝑒𝑛𝑛𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑒𝑒𝑐𝑐  
𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐: 𝑄𝑄 ⇒ ∞ 
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If the discretisation of the parabolic cable goes to infinity the total force density 
Q also goes to infinity. 
 
Although each assemblage of triangles can be scaled to produce a closed force 
polygon, in which all forces are in equilibrium, they do not automatically result 
in a closed form diagram, in which all the loads are in equilibrium. If total 
summation of the rises of triangles is not zero, then the closing string will be 
discontinuous and thus there will be no equilibrium (eq. 17).   
 

 

2.7 Relation force density and equilibrium 
 
If the difference of the two location coordinates at each end of a member ∆zi , 
the rise of a triangle, is taken as a ratio of f we get the shape coefficients of the 
form diagram αi (eq. 18). These remain constant when the form diagram is 
scaled.  

𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑑𝑑 𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏: 
�△𝑧𝑧𝑖𝑖 = 0             (17)  

 

𝛼𝛼𝑖𝑖 =
△ 𝑧𝑧𝑖𝑖
𝐻𝐻            (18) 
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By comparing a set of reciprocal triangles from the form diagram and the force 
polygon it can be observed that the ratio of two sides are equal (eq. 19). By 
reworking this ratio with the triangle scaling factor, the force density, the result 
is the kernel of the well-known expression of equilibrium used in the force-
density method to find equilibrium solutions for cable nets (eq. 20). 
 

Expanding the procedure to a point of a cable with point loads (eq. 21), the 
derivation results in the classic force-density relations (eq. 22). Thus graphic 
statics has been used to established the relation between the form diagram, 
the force polygon and the force density (eq. 23), and is a function of horizontal 

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻 ⇒ 𝐻𝐻

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

= 𝐹𝐹𝑖𝑖𝑖𝑖     (19) 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒𝑖𝑖 = 𝑧𝑧
𝐻𝐻
𝑥𝑥𝑖𝑖

=
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

 

⇒ △ 𝑧𝑧𝑖𝑖
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝐹𝐹𝑖𝑖𝑖𝑖                        (20) 

𝐻𝐻∗

𝜉𝜉𝑎𝑎
=
𝑆𝑆𝑎𝑎
𝑆𝑆0

                                      (19) 

 
 
 

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹
𝐻𝐻

 

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹 − 𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻

 

_____________________ − 
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

−
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻

                     (21) 

 
 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒𝑖𝑖 =
𝐻𝐻
𝑥𝑥𝑖𝑖

=
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

, 𝑒𝑒𝑖𝑖 =
𝐻𝐻
𝑥𝑥𝑖𝑖

=
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

 

 

 △ 𝑧𝑧𝑖𝑖
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖
−△ 𝑧𝑧𝑖𝑖

𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝐹𝐹𝑖𝑖𝑖𝑖 ⇒       (22) 

 
△ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧ℎ𝑖𝑖 , △ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑗𝑗 − 𝑧𝑧𝑖𝑖𝑖𝑖  
 

(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧ℎ𝑖𝑖)
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

+ (𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑗𝑗)
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝐹𝐹𝑖𝑖𝑖𝑖 
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thrust H and the rise f. The negative sign in equation 22 becomes positive at 
the node where the slope of the form diagram changes from positive to 
negative. Which also acts like a drainage divide of the load transfer.   
  

 
 
 
 
 
 
 
 
 
 
 

For each node of the form diagram, which has a point load, an equilibrium 
equation (eq. 24) can be set-up using the derived expression (eq. 22). When all 
these equations are put together there can be observed from the result that all 
the relations relating to the nodes between the two outmost free nodes (a and 
d), which are directly connected to the supports (l and r), fall away (eq. 25).  
The ratio of the location coordinate za of node a and the length of member 1, 
which connects node a to support l, is equal to the ratio f and length of the 
envelop of the form diagram between the support l and the point of 
application of the total load, the uniform triangle (eq. 26).  

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

−
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝛼𝛼𝑖𝑖 =
△ 𝑧𝑧𝑖𝑖
𝐻𝐻 ,𝛼𝛼𝑖𝑖 =

△ 𝑧𝑧𝑖𝑖
𝐻𝐻  

⇒ 𝐻𝐻(
𝛼𝛼𝑖𝑖
𝑥𝑥𝑖𝑖
−
𝛼𝛼𝑖𝑖
𝑥𝑥𝑖𝑖

)
�������
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 𝑙𝑙𝑖𝑖𝑎𝑎𝑑𝑑𝑠𝑠𝑎𝑎𝑚𝑚

=
𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻�

𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚 𝑎𝑎𝑚𝑚𝑖𝑖𝑦𝑦𝑑𝑑𝑚𝑚𝑛𝑛

       (23) 
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The relation between the force density and the equilibrium of the system has 
been established (eq. 27). This expression is equal to that for the basic system 
with only one point load discussed in section 2.2, which actually forms the 
envelope of  the form diagram with multiple point loads or a uniformly 
distributed load. 

 
The total force density of a form diagram can also be determined by using the 
shape coefficients and the vertical projection of the axial force (Vi). This is 
however only possible for inclined elements not for a horizontal one for which 
∆zi and αi are zero. A horizontal element is the watershed of the load transfer 
(Vi). Using this alternate formulation (eq. 28) allows the total force density to 
give insight into the load transfer of the system in relation to the rise, i.e. 
morphology of the system.  

 

𝑄𝑄 = 𝛴𝛴
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝐻𝐻 �𝛴𝛴
1
𝑥𝑥𝑖𝑖
� =

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥

𝐻𝐻 �𝛴𝛴
1
𝑥𝑥𝑖𝑖
� ⇒

1
𝐻𝐻 �
𝛴𝛴
𝑉𝑉𝑖𝑖
𝛼𝛼𝑖𝑖
� + �

𝐻𝐻
𝑐𝑐𝑖𝑖
�

�
𝑚𝑚𝑛𝑛𝑖𝑖𝑦𝑦 ℎ𝑚𝑚𝑠𝑠𝑖𝑖𝑜𝑜𝑚𝑚𝑛𝑛𝑡𝑡𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

(28) 

 
 

𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑠𝑠 = 0  

(𝑧𝑧𝑎𝑎 −  𝑧𝑧𝑖𝑖)
𝑁𝑁1
𝑐𝑐1

+ (𝑧𝑧𝑎𝑎 −  𝑧𝑧𝑏𝑏)
𝑁𝑁2
𝑐𝑐2
− 𝐹𝐹𝑎𝑎 = 0            (24) 

(𝑧𝑧𝑏𝑏 −  𝑧𝑧𝑎𝑎)
𝑁𝑁2
𝑐𝑐2

+ (𝑧𝑧𝑏𝑏 −  𝑧𝑧𝑓𝑓)
𝑁𝑁3
𝑐𝑐3
− 𝐹𝐹𝑏𝑏 = 0 

(𝑧𝑧𝑓𝑓 −  𝑧𝑧𝑏𝑏)
𝑁𝑁3
𝑐𝑐3

+ (𝑧𝑧𝑓𝑓 −  𝑧𝑧𝑙𝑙)
𝑁𝑁4
𝑐𝑐4
− 𝐹𝐹𝑓𝑓 = 0  

(𝑧𝑧𝑙𝑙 −  𝑧𝑧𝑓𝑓)
𝑁𝑁4
𝑐𝑐4

+ (𝑧𝑧𝑙𝑙 −  𝑧𝑧𝑠𝑠)
𝑁𝑁5
𝑐𝑐5
− 𝐹𝐹𝑙𝑙 = 0    + 

---------------------------------------------------------- 

𝑧𝑧𝑎𝑎
𝑁𝑁1
𝑐𝑐1

+ 𝑧𝑧𝑙𝑙
𝑁𝑁5
𝑐𝑐5

= 𝐹𝐹𝑎𝑎 + 𝐹𝐹𝑏𝑏 + 𝐹𝐹𝑓𝑓 + 𝐹𝐹𝑙𝑙 = Σ𝐹𝐹 ⇒  (25) 

 
 
𝑧𝑧𝑎𝑎
𝑐𝑐1

=
𝐻𝐻
𝑐𝑐𝑎𝑎

,
𝑧𝑧𝑙𝑙
𝑐𝑐5

=
𝐻𝐻
𝑐𝑐𝑏𝑏

                                                    (26) 

 

 𝐻𝐻
𝑁𝑁1
𝑐𝑐𝑎𝑎

+ 𝐻𝐻
𝑁𝑁5
𝑐𝑐𝑏𝑏

= 𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑠𝑠 = 𝐹𝐹𝑡𝑡𝑚𝑚𝑡𝑡 = Σ𝐹𝐹                 (27) 
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Expanding on this expression for the force density (eq. 28) for a system with 
multiple point loads it can be observed that the first part relates to the 
envelope (or a system with just one point load). The other parts are a result of 
the division of the total load into multiple point loads and thus the truncation 
of the form diagram of which the envelop forms its tangent and with the latter 
part referring to a horizontal element.  
 
By using the expressions of (eq. 1) from section 2.3, the part that relates to an 
eventual horizontal element can be rewritten so that the entire relation of the 
total force density is a function of the rise of the point of application of the 
total load f (eq. 29). Because all the elements of the function remain constant 
when either f or its reciprocal H change it is established that the total force 
density of a funicular system (cable of arch) is a function of f. 

By comparing a cable to the equivalent beam the total force density can be 
determined in three ways: 

- total force density expressing the load transfer (Vi) 
- total force density related to the “moment” distribution 
- total force density relating to the cable  

𝛴𝛴𝐹𝐹 = 𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑠𝑠 

𝑄𝑄 =
𝛴𝛴𝐹𝐹
𝐻𝐻 +

1
𝐻𝐻 �

𝑉𝑉𝑖𝑖(1 − 𝛼𝛼𝑖𝑖)
𝛼𝛼𝑖𝑖

+
𝑉𝑉𝑠𝑠(1 − 𝛼𝛼𝑠𝑠)

𝛼𝛼𝑠𝑠
� +

1
𝐻𝐻 �𝛴𝛴

𝑉𝑉𝑖𝑖𝑛𝑛
𝛼𝛼𝑖𝑖𝑛𝑛

� + �
𝐻𝐻
𝑐𝑐𝑖𝑖
�

�
𝑚𝑚𝑛𝑛𝑖𝑖𝑦𝑦 ℎ𝑚𝑚𝑠𝑠𝑖𝑖𝑜𝑜𝑚𝑚𝑛𝑛𝑡𝑡𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

 

𝑄𝑄 =
𝛴𝛴𝐹𝐹
𝐻𝐻 +

1
𝐻𝐻 �

𝑉𝑉𝑖𝑖(1 − 𝛼𝛼𝑖𝑖)
𝛼𝛼𝑖𝑖

+
𝑉𝑉𝑠𝑠(1 − 𝛼𝛼𝑠𝑠)

𝛼𝛼𝑠𝑠
� +

1
𝐻𝐻 �𝛴𝛴

𝑉𝑉𝑖𝑖𝑛𝑛
𝛼𝛼𝑖𝑖𝑛𝑛

� +
1
𝐻𝐻 �
𝑉𝑉𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑉𝑉𝑠𝑠𝑥𝑥𝑠𝑠

2𝑐𝑐𝑖𝑖
�

�����������
𝑚𝑚𝑛𝑛𝑖𝑖𝑦𝑦 ℎ𝑚𝑚𝑠𝑠𝑖𝑖𝑜𝑜𝑚𝑚𝑛𝑛𝑡𝑡𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

(29) 
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2.8 Relation equilibrium, discretization and cable equation 
 
In section 2.7 the classic force-density equilibrium relation was derived. This 
equilibrium equation is used by the force-density method (Sheck, Linkwitz) [37] 
to form find membrane structures but also forms the basis of the thrust 
network analysis (O’Dwyer, Block, Ochsendorf). This relation is in fact the 
discretized version of the cable relation using the finite difference method.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because the force polygon is the reciprocal diagram of the form diagram, in this 
case a cable, it also represents the discretized version of the differential 
equation. Because of the similar structure of the first part of the beam 
equation to the cable equation the bending moment diagram can be 
constructed using a force polygon. 

△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

−
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

=
𝐹𝐹𝑖𝑖𝑖𝑖
𝐻𝐻  

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: △ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧ℎ𝑖𝑖 , △ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑗𝑗 − 𝑧𝑧𝑖𝑖𝑖𝑖 
𝑏𝑏𝑛𝑛𝑑𝑑: 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 = △ 𝑥𝑥,  
𝐹𝐹𝑖𝑖𝑖𝑖 =△ 𝑥𝑥 𝑒𝑒 
 
𝑧𝑧𝑖𝑖𝑗𝑗 − 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧ℎ𝑖𝑖

△ 𝑥𝑥 = −
△ 𝑥𝑥 𝑒𝑒
𝐻𝐻 ⇒ 𝐻𝐻

𝑧𝑧𝑖𝑖𝑗𝑗 − 2𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧ℎ𝑖𝑖
(△ 𝑥𝑥)2 = −𝑒𝑒     (30) 

 
𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

⇒ 𝐻𝐻
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2 = −𝑒𝑒 

 
 

𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑝𝑝𝑏𝑏𝑠𝑠𝑒𝑒 𝑒𝑒𝐻𝐻 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

𝑒𝑒 = −
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2    

𝑉𝑉 =
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥  

𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

𝑒𝑒 = −𝐻𝐻
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2  

𝑉𝑉 = 𝐻𝐻
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥                       
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An example of a cantilever with loads and the construction of the bending 
moment diagram with the help of the force polygon and its reciprocal form 
diagram [38]. 

 

The form diagram and the force polygon of a cable or arch are in fact the 
graphical representation of their differential equation. 
 

Figure 22 drawing the moment diagram by using the beam - cable analogy [images 38] 

𝑉𝑉𝑖𝑖 =
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

𝐻𝐻 = �(△ 𝑥𝑥 ∙ 𝑝𝑝) 

𝑁𝑁𝑖𝑖 = �𝐻𝐻2 + 𝑉𝑉𝑖𝑖2�
1/2

 

      = �𝐻𝐻2 + �
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

𝐻𝐻�
2

�

1
2

 

      = 𝐻𝐻�1 + �
△ 𝑧𝑧𝑖𝑖
𝑥𝑥𝑖𝑖

�
2

�

1
2
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The version presented in section 2.7 is for cables and arches but can be 
expanded in 3D for membranes and thrust networks. Derived here, is the 3D 
version for an orthogonal grid as basis for the discretization. For both force-
density and thrust networks other non-orthotropic grids as bases can also be 
used. This does not change the load transfer in x- and y-directions. 
 
The discretization used for the force-density and thrust networks results in a 
version of the cable equation [39] with the part relating to the twist of the grid 
omitted, which means there are no in-plane shear forces to help carry the load. 
This is of course a result of discretizing the membrane and thrust surface into a 
grid. For an anti-clastic membrane as a minimal surface or a cable nets this is 
reasonable, but for thrust surfaces this does not result in the optimal load 
transfer and is therefore a sub-optimal shape. 
 
  

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝐹𝐹𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛 =△ 𝑥𝑥△ 𝑦𝑦 𝑝𝑝𝑜𝑜  
𝑧𝑧𝑚𝑚𝑛𝑛 = 𝑧𝑧𝑖𝑖𝑖𝑖 
 

⇒ 𝐻𝐻𝑥𝑥
𝑧𝑧𝑖𝑖𝑗𝑗 − 2𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧ℎ𝑖𝑖

(△ 𝑥𝑥)2

+ 𝐻𝐻𝑦𝑦
𝑧𝑧𝑛𝑛𝑚𝑚 − 2𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑚𝑚

(△ 𝑦𝑦)2 = − 𝐹𝐹𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛 

 
 
𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

⇒ 𝐻𝐻𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 + 𝐻𝐻𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = −𝑝𝑝𝑜𝑜 
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2.9 From the cable equation via force density to the thrust network 
 
The discretized version of the cable equation from section 2.8 can be 
generalized. The result is the force-density equation in the version for the 
horizontal projected forces. The classic force-density equation contains the 
axial forces in the links of the mesh and their length. But their force-densities 
are equal to those in the horizontally projected plane.  

The version presented here form the basis for the thrust network analysis [40]. 
As with the cable and arch for a thrust network the form diagram and the force 
polygon are reciprocal diagrams.  
The height of the thrust network has yet to be determined, there are many 
solutions possible which ensure equilibrium. Multiple reciprocal force polygons 
are possible for the same horizontal projection (primal grid) of the thrust 
networks form diagram.   

Figure 23 thrust network and its horizontal projections [images 89]  

𝐻𝐻𝑖𝑖
△ 𝑧𝑧𝑖𝑖
𝑐𝑐𝑎𝑎,𝑖𝑖

+ 𝐻𝐻𝑖𝑖
△ 𝑧𝑧𝑖𝑖
𝑐𝑐𝑎𝑎,𝑖𝑖

+ 𝐻𝐻𝑛𝑛
△ 𝑧𝑧𝑛𝑛
𝑐𝑐𝑎𝑎,𝑛𝑛

+ 𝐻𝐻𝑚𝑚
△ 𝑧𝑧𝑚𝑚
𝑐𝑐𝑎𝑎,𝑚𝑚

− 𝐹𝐹𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛 = 0 

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑐𝑐𝑎𝑎,𝑖𝑖 = �∆𝑥𝑥2 + ∆𝑦𝑦2 
 
△ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧ℎ𝑖𝑖, △ 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑗𝑗, 
△ 𝑧𝑧𝑛𝑛 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑛𝑛𝑚𝑚 , △ 𝑧𝑧𝑚𝑚 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑚𝑚 ,𝑏𝑏𝑛𝑛𝑑𝑑 𝑧𝑧𝑚𝑚𝑛𝑛 = 𝑧𝑧𝑖𝑖𝑖𝑖  
 

�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧ℎ𝑖𝑖�
𝐻𝐻𝑖𝑖
𝑐𝑐𝑎𝑎,𝑖𝑖

+ �𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑗𝑗�
𝐻𝐻𝑖𝑖
𝑐𝑐𝑎𝑎,𝑖𝑖

+ �𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑛𝑛𝑚𝑚�
𝐻𝐻𝑛𝑛
𝑐𝑐𝑎𝑎,𝑛𝑛

+ �𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑚𝑚�
𝐻𝐻𝑚𝑚
𝑐𝑐𝑎𝑎,𝑚𝑚

− 𝐹𝐹𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛 = 0 

𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑑𝑑𝑏𝑏𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦: 𝑒𝑒𝑖𝑖 =
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

=
𝐻𝐻𝑖𝑖
𝑐𝑐𝑎𝑎,𝑖𝑖
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Each viable solution has a different set of z-coordinates and thus different ratio 
of “curvatures” of the network and accompanying load distribution. It should 
be noted that for the thrust network shear elements are omitted. The 
individual link can only take up axial forces. 

 

Once a solution has been chosen, a closed polygon of the horizontally 
projected force is set, the ratio between the z-coordinates for each node of the 
network is fixed. As with the force polygon and form diagram of the arch, the 
thrust network is scalable. Whereby the load distribution remains unaltered. 
The horizontal forces are reciprocal to the z-coordinates and just as for the arch 
their product is constant throughout the scaling.  
In fact the thrust network is equivalent to the moment hill of a twistless case of 
a slab loaded out-of-plane, this will be explained in more detail in section 8.2. 
  

𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘:  
𝐻𝐻𝑖𝑖  𝑧𝑧𝑖𝑖 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒  
𝑒𝑒ℎ𝑏𝑏 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘   
 

Figure 24 thrust network and possible solutions [images 103] 
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3 Reciprocal characteristics of cables and trusses; and energy methods  
 

3.1 Introduction 
 
The relation between funicular cables and a specific type of truss structures is 
explored in this chapter. What will be established is the reciprocity of the force 
diagram of the funicular cable structure and the force polygon of the truss 
structure and thus the reciprocity of their respective force polygon and form 
diagram. This reciprocity concerns their state of rigidity [41], the funicular cable 
structure having mechanisms and the truss structure having independent 
states of self-stress (degree of static indeterminacy) of the same order [42]. 

  
Cables are used to illustrate this approach here, but the general properties also 
hold for the other type of funicular structure, the arch. But because these can 
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be statically indeterminate relations become more complicated, which will be 
further discussed in chapter 4. 
 
It can be observed in the force polygons of the trusses which are statically 
indeterminate (s >1), that its state of equilibrium of the applied load and the 
state of self-stress are complementary. The difference in the force polygon 
between the statically determinate and statically indeterminate state is the 
force polygon of the state of self-stress. 
 

3.2 Some properties of the state of rigidity  
 
In a closed system the internal horizontal force due to the vertical load and the 
topology of the structures is taken up by the structure itself. The internal forces 
form a “closed loop” with respect to its horizontal component. If the horizontal 
component has to be taken up by the structures support reaction it is called an 
open system. 
For example a truss with a redundancy of s = 1 will keep its state of rigidity if 
one of its support reactions is altered but an extra strut is added to take up the 
horizontal component, in that case it changes from an open system to a closed 
system.   
 

𝑑𝑑𝑑𝑑 − 𝑏𝑏 − 𝑘𝑘 = 𝑏𝑏 − 𝑐𝑐 
2 ∙ 5 − 4 − 2 ∙ 2 =  2 

𝑏𝑏 = 2 
𝑐𝑐 = 0 

 

Figure 25 image right of mechanisms of cable is from “Mechanics of Kinematically Indeterminate 
Structures” by Sergio Pellegrino.  
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3.3 Statically (in)determinate trusses 
 
A funicular cable and a truss structure with only one load and respectively 
two ties or bars are both statically determinate (s = 0). If the total load ∑F is 
divided into more point loads along the cable, and thus the force polygon is 
subdivided, it still remains statically determinate. If its reciprocal diagram for 
the truss structure, the form diagram, is subdivided and thus extra bars are 
added it becomes statically indeterminate. This will further be discussed with 
the help of an example.  

𝑐𝑐1 = 15 4⁄  
𝑐𝑐2 = 3 
𝑐𝑐3 = 3 
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A two bar truss is suspended from two hinges and has one load and is statically 
determinate. The internal forces can be represented unambiguously by its 
reciprocal diagram, the force polygon .  
When the truss structure becomes statically indeterminate by adding an extra 
bar there are theoretically an infinite amount of solutions possible which 
ensures equilibrium [43]. The initial force polygon belonging to the two bar 
truss can be endlessly truncated to suit these possibilities. There is only one 
exact solution, the one with the lowest complementary energy [44]. This 
solution can also be obtained by making for example a FEM calculation of the 
problem. 

For the purpose of comparing the statically determinate truss (s = 0) with two 
cases of statically indeterminate trusses (s = 1 and 2), first some properties of 
the statically determinate truss are given. They are the total force density of 
the system and the equilibrium equation, their relation was discussed in 2.7.  

The solution for the statically indeterminate trusses are determined next. 

𝐻𝐻𝑒𝑒𝑠𝑠 𝑐𝑐 = 0 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

=
𝑁𝑁1

15
4�

+
𝑁𝑁2
5

=
4

5� 𝐹𝐹
15

4�
+

3
5� 𝐹𝐹
5

=
1
3
𝐹𝐹 =

𝐹𝐹
𝐻𝐻
⇒ 

𝑄𝑄 ∙ 𝐻𝐻 =
4
5
𝑁𝑁1 +

3
5
𝑁𝑁2 = 𝐹𝐹: 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 
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a. solving the redundancy for s = 1 
The redundant ϕ , which is the force in the vertical bar, will be solved by 
determining the lowest complementary energy of the system. 

For determining the total complementary energy the equilibrium 
equations need to be set up (EA is presumed to be constant).The total 
complementary energy can be accordingly calculated and minimized, 
thus resulting in the exact solution. When the redundant ϕ has been 
solved the other internal forces can be calculated. This method is 
relatively simple. 

𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑦𝑦 𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚𝑦𝑦 𝑒𝑒𝑐𝑐 𝑏𝑏𝑥𝑥𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑑𝑑 𝑒𝑒𝑛𝑛 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐: 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖 =
1
2
𝜎𝜎2

𝐸𝐸   
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑦𝑦 𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚𝑦𝑦 𝑝𝑝𝑏𝑏𝑠𝑠 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒 𝑒𝑒𝐻𝐻 𝑏𝑏𝑏𝑏𝑠𝑠 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚𝑒𝑒ℎ: 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖 = �
1
2
𝜎𝜎2

𝐸𝐸

𝑉𝑉

0
 𝑑𝑑𝑉𝑉 =

1
2
𝑁𝑁2

𝐸𝐸𝐸𝐸  

𝐻𝐻𝑒𝑒𝑠𝑠 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑠𝑠 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚𝑒𝑒ℎ 𝑐𝑐:  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖 =
1
2
𝑁𝑁2

𝐸𝐸𝐸𝐸 𝑐𝑐 
 

Σ𝐹𝐹𝑣𝑣𝑚𝑚𝑠𝑠𝑡𝑡 = 0 ⇒
4
5
𝑁𝑁1 + 𝜙𝜙 + 

3
5
𝑁𝑁2 = 𝐹𝐹 

Σ𝐹𝐹ℎ𝑚𝑚𝑠𝑠 = 0 ⇒
3
5
𝑁𝑁1 −

4
5
𝑁𝑁2 = 0 ⇒ 𝑁𝑁1 =

4
3
𝑁𝑁2 

 
 

𝑁𝑁1 =
4
5

(𝐹𝐹 − 𝜙𝜙) 

𝑁𝑁2 =
3
5

(𝐹𝐹 − 𝜙𝜙) 

𝑁𝑁3 = 𝜙𝜙 
 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 𝑁𝑁12𝑐𝑐1 + 𝑁𝑁22𝑐𝑐2 + 𝑁𝑁32𝑐𝑐3 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =
21
10

𝐹𝐹2 −
42
10

𝐹𝐹𝜙𝜙 +
36
10

𝜙𝜙2 
𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝑑𝑑𝜙𝜙
= 0 ⇒ 𝜙𝜙 =

7
12

𝐹𝐹 

𝑁𝑁1 =
4

12
𝐹𝐹,𝑁𝑁2 =

3
12

𝐹𝐹,𝑁𝑁3 =
7

12
𝐹𝐹 
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b. solving the redundancy for s = 2 
As a follow-up to the previous example an additional bar is added to the 
truss, thus making the degree of indeterminacy equal to two. This means 
that there are two redundancies: ϕ1 and ϕ2, the consequence of this 
being one equation for the complementary energy with two unknowns. 
In addition to equilibrium equation to set up the total complementary 
energy we will use compatibility to express one redundancy in another 
and thus reducing to number of unknowns to one and directly solve the 
problem. 

The equilibrium equation again is used to set up the equation for the 
complementary energy: 

Including compatibility the equation for the complementary energy and 
its solution becomes:  

compatibility  
 
 
 
 
 
 
 
 

𝜀𝜀1 =
4

5� 𝑒𝑒𝑦𝑦
𝑐𝑐1

+
3

5� 𝑒𝑒𝑥𝑥
𝑐𝑐1

: 𝜀𝜀2 =
3

5� 𝑒𝑒𝑦𝑦
𝑐𝑐2

−
4

5� 𝑒𝑒𝑥𝑥
𝑐𝑐2

  

𝜀𝜀3 =
𝑒𝑒𝑦𝑦
𝑐𝑐3

: 𝜀𝜀4 =
4

5� 𝑒𝑒𝑦𝑦
𝑐𝑐4

−
3

5� 𝑒𝑒𝑥𝑥
𝑐𝑐4

  

 
50𝜀𝜀1 + 25𝜀𝜀2 − 57𝜀𝜀3 + 25𝜀𝜀4 = 0  
⇒ 50𝑁𝑁1 + 25𝑁𝑁2 − 57𝑁𝑁3 + 25𝑁𝑁4 = 0 
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =
43125

676
𝐹𝐹2 −

367440
1352

𝐹𝐹𝜙𝜙1 +
12364356

42250
𝜙𝜙12  

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁
𝑑𝑑𝜙𝜙1

= 0 ⇒ 𝜙𝜙1 =
625

1346
𝐹𝐹 

𝜙𝜙2 =
55
13

𝐹𝐹 −
112
13

𝜙𝜙1 =
310

1346
𝐹𝐹  

𝑁𝑁1 =
490

1346
𝐹𝐹,      𝑁𝑁2 =

135
1346

𝐹𝐹 

 𝑁𝑁3 = 𝜙𝜙1 =
625

1346
𝐹𝐹,      𝑁𝑁4 = 𝜙𝜙2 =

310
1346

𝐹𝐹 

 
 
 
 
 

Σ𝐹𝐹𝑣𝑣𝑚𝑚𝑠𝑠𝑡𝑡 = 0 ⇒
4
5
𝑁𝑁1 + 𝜙𝜙1 +

4
5
𝜙𝜙2 +

3
5
𝑁𝑁2 = 𝐹𝐹  

Σ𝐹𝐹ℎ𝑚𝑚𝑠𝑠 = 0 ⇒
3
5
𝑁𝑁1 −

3
5
𝜙𝜙2 −

4
5
𝑁𝑁2 = 0 

 

𝑁𝑁1 =
4
5

(𝐹𝐹 − 𝜙𝜙1 −
7

20
𝜙𝜙2)  

𝑁𝑁2 =
3
5
�𝐹𝐹 − 𝜙𝜙1 −

8
5
𝜙𝜙2� 

𝑁𝑁3 = 𝜙𝜙1,𝑁𝑁4 = 𝜙𝜙2 
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If we use the full variational method to set up the equation for the 
complementary energy we can dispense with the additional compatibility 
condition, this is satisfied by the minimisation of the complementary 
energy. We arrive at the same solution.  

 
In other words: if there are more states of equilibrium statically admissible, the 
situation with the minimum complementary energy will prevail. 
 
The method discussed above can be generalised: 
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =
3(350𝐹𝐹2 − 700𝐹𝐹𝜙𝜙1 − 620𝐹𝐹𝜙𝜙2 + 600𝜙𝜙12 + 620𝜙𝜙1𝜙𝜙2 + 721𝜙𝜙22)

500
 

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁
𝜕𝜕𝜙𝜙1

=
3(60𝜙𝜙1 + 31𝜙𝜙2 − 35𝐹𝐹)

25
= 0 ⇒ 𝜙𝜙1 =

625
1346

𝐹𝐹  

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁
𝜕𝜕𝜙𝜙2

=
3(310𝜙𝜙1 + 721𝜙𝜙2 − 310𝐹𝐹)

250
= 0 ⇒ 𝜙𝜙2 =

310
1346

𝐹𝐹 

 

𝑁𝑁1 =
490

1346
𝐹𝐹,      𝑁𝑁2 =

135
1346

𝐹𝐹 

𝑁𝑁3 = 𝜙𝜙1 =
625

1346
𝐹𝐹,      𝑁𝑁4 = 𝜙𝜙2 =

310
1346

𝐹𝐹 

 
 
 
 
 
 
 
 
 
− 𝑚𝑚𝑏𝑏𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑐𝑐 𝑏𝑏𝑏𝑏𝑒𝑒ℎ𝑒𝑒𝑑𝑑 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑤𝑤𝑏𝑏𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑦𝑦 𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚𝑦𝑦: 
  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =  �𝑁𝑁𝑖𝑖2

𝑖𝑖

𝑐𝑐𝑖𝑖 ⇒ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝑁𝑁𝑖𝑖𝑖𝑖

= 0  
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For completeness the general method will be demonstrated by solving the first 
example in this section with s = 1. 

The following observations can be made:  
1. When calculating the total force density Q of both examples the 
redundancies ϕi fall out of the addition. Which means that for each possible 
solution for equilibrium the total force density is constant, including the exact 
solution. The total force density is equal to a parameter α times the total load. 
In the next section it is shown that the coefficient α is the reciprocal value of 
the rise f of the form diagram.  
The total force density is stays constant and is equal to the coefficient α, for 
both systems. So by adding a bar to the truss and thus increasing the degree of 
indeterminacy does not change the value of α. 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =  �𝑁𝑁𝑖𝑖2

𝑖𝑖

𝑐𝑐𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =  𝑁𝑁12 3
3
4

+ 𝑁𝑁22 5 + 𝑁𝑁32 3 → 𝑏𝑏𝑒𝑒𝑛𝑛  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏: 

Σ𝐹𝐹𝑣𝑣𝑚𝑚𝑠𝑠𝑡𝑡 = 0 ⇒ 𝐹𝐹 − (𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3) = 0 ⇒ 𝐹𝐹 − �
4
5
𝑁𝑁1 +

3
5
𝑁𝑁2 + 𝑁𝑁3� = 0 ⇒ 𝑁𝑁3 =

5
3
𝑁𝑁2 − 𝐹𝐹 

Σ𝐹𝐹ℎ𝑚𝑚𝑠𝑠 = 0 ⇒ 𝐻𝐻1 − 𝐻𝐻2 = 0 ⇒
3
5
𝑁𝑁1 −

4
5
𝑁𝑁2 = 0 ⇒ 𝑁𝑁1 =

4
3
𝑁𝑁2 

 
⇒ 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 2𝑁𝑁22 − 𝐹𝐹𝑁𝑁2 + 𝐹𝐹2 → 𝑏𝑏𝑒𝑒𝑛𝑛 
 

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝑁𝑁𝑖𝑖𝑖𝑖

=  4𝑁𝑁2 − 𝐹𝐹 = 0 ⇒ 𝑁𝑁2 =
3

12
𝐹𝐹 

⇒ 𝑁𝑁1 =
4

12
𝐹𝐹, 𝑁𝑁3 =

7
12

𝐹𝐹 

 
 
 
 
 
 
 
 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏, 𝑐𝑐 = 0: 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

=
𝑁𝑁1

15
4�

+
𝑁𝑁2
5

=
4

5� 𝐹𝐹
15

4�
+

3
5� 𝐹𝐹
5

=
1
3
𝐹𝐹 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏, 𝑐𝑐 = 1: 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

+
𝑁𝑁3
𝑐𝑐3

=
4
5 (𝐹𝐹 − 𝜙𝜙)

15
4�

+
3
5 (𝐹𝐹 − 𝜙𝜙)

5
+
𝜙𝜙
3

=
1
3
𝐹𝐹  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏, 𝑐𝑐 = 2: 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

+
𝑁𝑁3
𝑐𝑐3

+
𝑁𝑁4
𝑐𝑐4

=
4
5 �𝐹𝐹 − 𝜙𝜙1 −

7
20𝜙𝜙2�

15
4�

+
3
5 �𝐹𝐹 − 𝜙𝜙1 −

8
5𝜙𝜙2�

5
+
𝜙𝜙1
3

+
𝜙𝜙2

15
4�

=
1
3
𝐹𝐹 

⇒ 𝑄𝑄 =  Σ
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

=  𝛼𝛼𝐹𝐹 
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2. As already has been shown is that if the individual force density for each bar 
is multiplied with the parameter α the equation of the total force density turns 
into the equilibrium equation, see also 2.7. 

3. The total force density of the complementary state of self-stress, see section 
3.1, is equal to zero for a certain type of geometry, see section 3.7.    

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏 𝑐𝑐 = 1: 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

+
𝑁𝑁3
𝑐𝑐3

=
𝑁𝑁1

15
4�

+
𝑁𝑁2
5

+
𝑁𝑁3
3

= 𝛼𝛼𝐹𝐹 =
1
3
𝐹𝐹 ⇒ 

 
4
5
𝑁𝑁1 +

3
5

 𝑁𝑁2 + 𝑁𝑁3 = 𝐹𝐹: 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏 𝑐𝑐 = 2: 

𝑄𝑄 =
𝑁𝑁1
𝑐𝑐1

+
𝑁𝑁2
𝑐𝑐2

+
𝑁𝑁3
𝑐𝑐3

+
𝑁𝑁4
𝑐𝑐4

=
𝑁𝑁1

15
4�

+
𝑁𝑁2
5

+
𝑁𝑁3
3

+
𝑁𝑁4

15
4�

=
1
3
𝐹𝐹 ⇒ 

4
5
𝑁𝑁1 +

3
5

 𝑁𝑁2 + 𝑁𝑁3 +
4
5
𝑁𝑁4 = 𝐹𝐹: 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  

 
 
 
 
 
 
 
 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏, 𝑐𝑐 = 2: 

𝑄𝑄 =
𝑁𝑁�1
𝑐𝑐1

+
𝑁𝑁�2
𝑐𝑐2

+
𝑁𝑁�3
𝑐𝑐3

+
𝑁𝑁�4
𝑐𝑐4

=
1467

3365� 𝐹𝐹
15

4�
+

3363
6730� 𝐹𝐹
5

−
625

1346� 𝐹𝐹
3

−
310

1346� 𝐹𝐹
15

4�
= 0 

 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑒𝑒𝐻𝐻 𝑐𝑐𝑏𝑏𝑐𝑐𝐻𝐻 − 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐:  
𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏, 𝑐𝑐 = 1: 

𝑄𝑄 =
𝑁𝑁�1
𝑐𝑐1

+
𝑁𝑁�2
𝑐𝑐2

+
𝑁𝑁�3
𝑐𝑐3

=
7

15� 𝐹𝐹
15

4�
+

7
20� 𝐹𝐹
5

−
7

12� 𝐹𝐹
3

= 0  
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3.4 Example from statically determinate to statically indeterminate truss 
 
This example starts with a statically indeterminate truss, with a central vertical 
axis of symmetry [45]. The internal axial forces and the support reaction will be 
determined by using the variational method of the lowest complementary 
energy. With this outcome the force polygon of the truss can be drawn. By 
altering the support conditions by adding two struts to the truss, thus the 
kinematic constraints, it becomes statically determinate.  
 

 

 
Not only does the truss become statically determinate, it also becomes a 
mechanism. If their respective force polygons are compared it can be observed 
that the slope of the supports reaction align with their accompanying struts for 
the statically determinate truss. This is not so for the statically indeterminate 
truss. 
 

2 ∙ 4 − 5 − 4 =  −1  
𝑏𝑏 = 0  
𝑐𝑐 = 1 
 

2 ∙ 6 − 7 − 4 =  1  
𝑏𝑏 = 1  
𝑐𝑐 = 0 
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𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = �𝑁𝑁𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =  𝑁𝑁1210 + 𝑁𝑁2210 + 𝑁𝑁3211 + 𝑁𝑁423√5 + 𝑁𝑁523√5 → 𝑏𝑏𝑒𝑒𝑛𝑛 
   
𝑑𝑑𝑒𝑒𝑏𝑏 𝑒𝑒𝑒𝑒 𝑐𝑐𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑦𝑦: 𝑁𝑁1 = 𝑁𝑁2 𝑏𝑏𝑛𝑛𝑑𝑑 𝑁𝑁4 = 𝑁𝑁5 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑚𝑚𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑏𝑏𝑛𝑛𝑑𝑑 ℎ𝑒𝑒𝑠𝑠𝑒𝑒𝑧𝑧𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏: 

𝐹𝐹 − (𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉4 + 𝑉𝑉5) = 0 ⇒ 𝐹𝐹 − �
8
5
𝑁𝑁1 +

2
5
√5𝑁𝑁4� = 0 ⇒ 𝑁𝑁1 =

5
8
𝐹𝐹 −

1
4
√5𝑁𝑁4 

𝑉𝑉4 + 𝑉𝑉5 − 𝑁𝑁3 = 0 ⇒
1
5
√5𝑁𝑁4 +

1
5
√5𝑁𝑁4 − 𝑁𝑁3 = 0 ⇒ 𝑁𝑁1 =

2
5
√5𝑁𝑁4  

𝐻𝐻 − (𝐻𝐻1 + 𝐻𝐻4) = 0 ⇒ 𝐻𝐻 −
3
5
𝑁𝑁1 +

2
5
√5𝑁𝑁4 = 0 ⇒ 𝐻𝐻 =

11
5
𝑁𝑁1 − 𝐹𝐹  

 

⇒ 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = �6√5 +
1204

80
�𝑁𝑁42 −

500
80

√5𝐹𝐹𝑁𝑁4 +
625
80

𝐹𝐹2 → 𝑏𝑏𝑒𝑒𝑛𝑛  

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝑁𝑁𝑖𝑖𝑖𝑖

= �12√5 +
602
80

�𝑁𝑁4 −
125
80

√5𝐹𝐹 = 0 ⇒ 𝑁𝑁4 =
125�301√5 − 600�

37202
𝐹𝐹 

 

𝑁𝑁1 =
10�1875√5 − 2378�

37202
𝐹𝐹,𝑁𝑁3 =

50�−600√5 + 1505�
37202

𝐹𝐹  

𝐻𝐻 =
22(1875√5 − 4069)

37202
𝐹𝐹 
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3.5 General reciprocity of cables and trusses 
 
The relation between the total force density Q and the equilibrium equation 
has been discussed in sections 2.7 and 3.3. The relation between the force 
density and the load F is constant and is determined by the coefficient α.  

 
The coefficient α is the reciprocal value of the rise f of the FD. The total force 
density and the equilibrium equation can now be expressed as a function of f, 
see also 2.3 equation (5). 
 

 
Using the reciprocity of the properties between the truss and funicular 
structures, it is possible to derive a similar set of relations for the funicular 
system. The equivalent coefficient α* is the reciprocal value of the thrust H of 
the FP. 
 
 
 
 
 
 
 
 

𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐: 

𝑄𝑄 = �
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

= 𝛼𝛼𝐹𝐹 ⇒�
𝑁𝑁𝑖𝑖
𝛼𝛼𝑐𝑐𝑖𝑖

= 𝐹𝐹 

 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

�𝑁𝑁𝑖𝑖  sin𝜃𝜃𝑖𝑖 = 𝐹𝐹 ⇔�
𝑁𝑁𝑖𝑖
𝛼𝛼𝑐𝑐𝑖𝑖

= 𝐹𝐹  

�sin𝜃𝜃𝑖𝑖 =
𝐻𝐻
𝑐𝑐𝑖𝑖

      ⇔       sin𝜃𝜃𝑖𝑖 =
1
𝛼𝛼𝑐𝑐𝑖𝑖

� ⇒ 𝛼𝛼 =
1
𝐻𝐻  

⇒�
𝑁𝑁𝑖𝑖𝐻𝐻
𝑐𝑐𝑖𝑖

= 𝐹𝐹 

𝑄𝑄 = �
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

=
𝐹𝐹
𝐻𝐻 
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This chapter shows the relation between funicular systems and their reciprocal 
truss structures. It is interesting that there are multiple solutions that ensure 
equilibrium for the type of statically indeterminate trusses discussed in this 
chapter which means its force polygon changes and thus the form diagram of 
the funicular systems changes accordingly. But what does not change in this 
situation are the form diagram of the truss and the force polygon of the 
funicular system. 

𝑑𝑑𝑒𝑒𝑏𝑏 𝑒𝑒𝑒𝑒 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦 
 
𝐻𝐻𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠: 

�
𝑐𝑐𝑖𝑖
𝑁𝑁𝑖𝑖

= 𝛼𝛼∗𝑐𝑐 ⇒�
𝑐𝑐

𝛼𝛼∗𝑁𝑁𝑖𝑖
= 𝑐𝑐 

 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

�𝑐𝑐𝑖𝑖 sin𝜃𝜃𝑖𝑖 = 𝑐𝑐 ⇔�
𝑐𝑐𝑖𝑖

𝛼𝛼∗𝑁𝑁𝑖𝑖
= 𝑐𝑐  

�sin𝜃𝜃𝑖𝑖 =
𝐻𝐻
𝑁𝑁𝑖𝑖

     ⇔    sin𝜃𝜃𝑖𝑖 =
1

𝛼𝛼∗𝑁𝑁𝑖𝑖
� ⇒ 𝛼𝛼∗ =

1
𝐻𝐻  

⇒�
𝑐𝑐𝑖𝑖𝐻𝐻
𝑁𝑁𝑖𝑖

= 𝑐𝑐 

�
𝑐𝑐𝑖𝑖
𝑁𝑁𝑖𝑖

=
𝑐𝑐
𝐻𝐻 
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The next two diagrams show an overview of the reciprocal relation between 
funicular systems and truss structures.  

 
 

  

𝐹𝐹
𝐻𝐻 ⇔

𝑐𝑐
𝐻𝐻 
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3.6 Maxwell’s load path of cables and arches  
 
Maxwell’s load path theorem [46] is well known, especially in relation to 
trusses, and basically states that the difference in the sum of the tension load 
paths (product of the axial force Ni in a member and its length li) and the 
compression load paths is equal to the dot product of the external loads and 
reactions and their position vectors from an arbitrary point. The latter comes 
down to the dot product of the magnitude of the external force and its line of 
action, the distance of the external force travels over its line of action in 
relation to the supports of the structure. Maxwell’s theorem means that the 
internal energy generated by the  axial forces is equal to the work done by 
external loads. Maxwell’s theorem is usually applied to truss structures, hence 
members which are in tension and compression.  

If the theorem is applied to cables and arches then the internal forces are only 
compression or tension respectively. 
Maxwell theorem can be used to find a minimal load path by minimizing the 
total volume of the structure for a given allowable σ stress in all members. 

In the first example, a precursor for load path of a dome in section 7.1,  the 
optimum ratio between the rise f* and the span l of a parabolic arch with a 
uniformly distributed load will be found. The span will remain constant [47].  

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ: 
�𝑁𝑁𝑡𝑡𝑖𝑖
𝑖𝑖

𝑐𝑐𝑡𝑡𝑖𝑖 −�𝑁𝑁𝑓𝑓𝑖𝑖
𝑖𝑖

𝑐𝑐𝑓𝑓𝑖𝑖
���������������

𝑖𝑖𝑛𝑛𝑡𝑡𝑚𝑚𝑠𝑠𝑛𝑛𝑎𝑎𝑖𝑖 𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠

= �𝐹𝐹𝚤𝚤��⃗
𝑖𝑖

∙ 𝑠𝑠𝚤𝚤��⃗
�����

𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙𝑠𝑠, 𝑠𝑠𝑚𝑚𝑎𝑎𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛𝑠𝑠

 

 

𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ,𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑚𝑚𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑏𝑏:  

𝑏𝑏𝑒𝑒𝑛𝑛�𝑉𝑉𝑖𝑖
𝑖𝑖

= 𝑏𝑏𝑒𝑒𝑛𝑛�𝐸𝐸𝑖𝑖𝑐𝑐𝑖𝑖
𝑖𝑖

= 𝑏𝑏𝑒𝑒𝑛𝑛
1
𝜎𝜎�

|𝑁𝑁𝑖𝑖|𝑐𝑐𝑖𝑖
𝑖𝑖
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Because of the shape function the geometry of the parabolic arch is fixed. The 
shape function is a function of the rise f* of the arch. Thus the only parameter 
determining the optimization is the rise f*, the shape coefficients αi remain 
constant for every value of f*.  

In the next example, a precursor for section 3.7, the optimum ratio between 
the rise f* and the span l of a discretized arch with point loads will be found. 
The shape coefficients of the form diagram αi and rise of the point of 
application of the total load f will be used. Also in this example the geometry is 
fixed and the horizontal spacing xi between the loads remains constant.  

 

�𝑁𝑁𝑖𝑖
𝑖𝑖

𝑐𝑐𝑖𝑖 = 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑉𝑉𝑖𝑖 △ 𝑧𝑧𝑖𝑖 + 𝐻𝐻𝑥𝑥𝑖𝑖  
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: △ 𝑧𝑧𝑖𝑖 = 𝛼𝛼𝑖𝑖𝐻𝐻;𝐻𝐻𝐻𝐻 = 𝐶𝐶𝐻𝐻𝑓𝑓 = constant 

⇒ 𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑉𝑉𝑖𝑖𝛼𝛼𝑖𝑖𝐻𝐻 +
𝐶𝐶𝐻𝐻𝑓𝑓
𝐻𝐻 𝑥𝑥𝑖𝑖 

 

𝑧𝑧 = 𝐻𝐻∗
(𝑐𝑐2 − 4𝑥𝑥2)

𝑐𝑐2
;  𝐿𝐿𝑠𝑠 = � 𝑑𝑑𝑐𝑐

1
2𝑖𝑖

−12𝑖𝑖
;𝑑𝑑𝑐𝑐 = �1 + �

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥
�
2

�

1
2
𝑑𝑑𝑥𝑥 

  

𝑑𝑑𝑐𝑐 = �1 +
64𝐻𝐻∗2𝑥𝑥2

𝑐𝑐4
�

1
2
𝑑𝑑𝑥𝑥  
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1
2 = ��

𝑒𝑒𝑐𝑐2

8𝐻𝐻∗
�
2

+ (𝑒𝑒𝑥𝑥)2�

1
2

=
𝑒𝑒(𝑐𝑐4 + 64𝐻𝐻∗2𝑥𝑥2)

1
2

8𝐻𝐻∗
  

𝑁𝑁𝑑𝑑𝑐𝑐 = �
𝑒𝑒(𝑐𝑐4 + 64𝐻𝐻∗2𝑥𝑥2)

1
2

8𝐻𝐻∗
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64𝐻𝐻∗2𝑥𝑥2

𝑐𝑐4
�
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2
𝑑𝑑𝑥𝑥 =

𝑒𝑒(𝑐𝑐4 + 64𝐻𝐻∗2𝑥𝑥2)
8𝑐𝑐2𝐻𝐻∗

𝑑𝑑𝑥𝑥 

  
𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ: 
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→ 𝑏𝑏𝑒𝑒𝑛𝑛 

 
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑤𝑤𝑏𝑏𝑐𝑐𝑒𝑒 𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ 𝑚𝑚𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒: 

⇒
𝑑𝑑
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=
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The result corresponds to that  to that one of the parabolic arch. There is a 
small difference due to the discretization.  

 

𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒: 
𝐻𝐻𝐻𝐻 = 8 ∙ 8 = 64 

  
𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ:  
𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 + 𝑁𝑁4𝑐𝑐4 + 𝑁𝑁5𝑐𝑐5 → min 
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𝐻𝐻
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𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑤𝑤𝑏𝑏𝑐𝑐𝑒𝑒 𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ 𝑚𝑚𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑐𝑐 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒:  

⇒
𝑑𝑑
𝑑𝑑𝐻𝐻
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𝐻𝐻2
= 0 ⇒ 𝐻𝐻 =

16√6
3
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=
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6
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𝐻𝐻∗
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=
√6
6
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𝐻𝐻𝐻𝐻 = 64 ⇒ 𝐻𝐻 =
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3
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The only parameter as object for optimization when Maxwell’s theorem is used 
in this example is f, in other words only the span – rise ratio can be altered. 
Because the product Hf is constant, the form diagram and the force polygon 
change in reciprocal ways.  

 
What cannot be examined by using Maxwell’s theorem as described in the 
previous examples is the determination of the position of the loads along the 
axis of the arch, thus different values for the shape coefficients αi and the 
horizontal spacing xi between the different loads along the arch or cable that 
make up the total load ∑F. This total load can be subdivided in different loads in 
infinite ways provided the form diagram stays within the bounding envelop and 
the two reactions left and right of the arch follow the slope of the boundary 
envelop so the vertical support reactions remain unaltered.  
 
When Maxwell’s theorem is used while keeping the force polygon constant, 
notably the horizontal reaction H, it results in an optimal arch or cable with a 
rise f* that goes to zero. The reason for this is that although the product of H 
and its line of action l remains constant, the line of action of the loads goes to 
zero and thus the external work done decreases and thus the lower the total 
load path the more optimal the structure according Maxwell’s theorem. But  a 
very shallow arch or cable is not practical. 
 
The next section discusses how Maxwell’s theorem is used to test solutions for 
an optimal position for the subdivided loads, with different values for the 
horizontal spacing xi and the shape coefficients αi. This principle is a result of 
the reciprocal properties of cables and trusses. 
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3.7 Variational principles of cables and trusses  

 
As is observed that for a statically indeterminate truss with any given number 
of branches there are an infinite amount of solutions possible which ensure 
equilibrium. In the case of the truss the topology of the form diagram remains 
constant for each alternative solution of the force diagram, although its 
solution remains within the bounding envelop. The redundancies can be solved 
by using the variational method of the lowest complementary energy and 
taking into account the relations of equilibrium. 

It is also observed that in general for a given load there are equal amounts of 
configurations possible for the cable which ensure equilibrium within its 
bounding envelope. The force polygon of the cable is the reciprocal diagram of 
the form diagram of the truss. In section 3.3 it was shown that the reciprocal 
parameters of the cables / arches and trusses are the axial force of a member 
and the length a member, and vice versa. The dual relation for an unloaded 
cable (network) is the functional of the force density method, which is 
equivalent to the result of a form finding process by means of solved force 
density equations. 
The functional of the force density method Π� is the variational principle of the 
force density method.  

Π� =  �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏
𝑖𝑖

 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =  �  𝑁𝑁𝑖𝑖2

𝑖𝑖

𝑐𝑐𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 
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If the state of self-stress (s in the Maxwell-Calladine equation) is not zero for a 
truss it is statically indeterminant which redundants can be solved with the 
variational method of the lowest complementary energy. If the state of self-
stress is not zero for a cable its (unloaded) equilibrium geometry has to be form 
found which can be done with the variational principle of the force density 
method. 
 
This is explained with the next example, a small 3D anti-clastic cable 
configuration comprising of 4 ties. All nodes except node 1, which is to be form 
found, are pinned. The dimension of the design space is 2 by 2 by 2, and chosen 
force density of all ties is equal to 2.  

In order to solve the coordinates of node 1 first the force density equation are 
solved. 

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑥𝑥1 − 𝑥𝑥2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑥𝑥1 − 𝑥𝑥3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑥𝑥1 − 𝑥𝑥4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑥𝑥1 − 𝑥𝑥5) = 0  

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑦𝑦1 − 𝑦𝑦2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑦𝑦1 − 𝑦𝑦3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑦𝑦1 − 𝑦𝑦4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑦𝑦1 − 𝑦𝑦5) = 0  

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑧𝑧1 − 𝑧𝑧2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑧𝑧1 − 𝑧𝑧3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑧𝑧1 − 𝑧𝑧4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑧𝑧1 − 𝑧𝑧5) = 0  

 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒 =
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

=
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

=
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

=
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

= 2  

 
𝑏𝑏𝑛𝑛𝑑𝑑: 𝑥𝑥2 = 𝑥𝑥3 = 𝑦𝑦2 = 𝑦𝑦5 =  𝑧𝑧3 = 𝑧𝑧5 = 0 
 𝑥𝑥4 = 𝑥𝑥5 = 𝑦𝑦3 = 𝑦𝑦4 = 𝑧𝑧2 = 𝑧𝑧4 = 2 
 
→ 𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏: 𝑥𝑥1 = 𝑦𝑦1 = 𝑧𝑧1 = 1 
 

𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐: 
𝑑𝑑𝑑𝑑 − 𝑏𝑏 − 𝑘𝑘 = 𝑏𝑏 − 𝑐𝑐  
 
3 ∙ 5 − 4 − 4 ∙ 3 = −1  
→ 𝑏𝑏 − 𝑐𝑐 = −1 
𝑏𝑏 = 0 
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The variational principle of the force density method will now be applied to 
check the previously found coordinates. An established theorem of the force 
density method is: for each equilibrium state of an unloaded network the sum 
of the squared lengths weighted by the force densities is minimal [48, 49]. 

As expected, the results are equal. The length of the ties are now known and 
the axial forces can be determined which represent the pre-stress of the 
unloaded network. 
 
This example demonstrates the dual relation of cables and trusses. For 
statically indeterminant trusses the sum of the squared bar axial forces 
weighted by their length has to be minimal. Similarly, the equilibrium geometry 
of cable structures can be determined from the sum of the squared tie lengths 
weighted by their force densities has to be minimal. 
 
In section 3.4 it was observed that in case of a state of self-stress for a certain 
type of geometry the total force density Q is equal to zero, these geometries 
are synclastic. For anti-clastic geometries, such as tent structures, the total 
force density of a state of self-stress is positive and not zero. Anti-clastic 
geometries can be pre-stressed which results in an overall state of stress in 
tension, because pre-stress of an anti-clastic geometry is possible without an 

Π� = �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏   
𝑖𝑖

 

𝑒𝑒(𝑐𝑐𝑎𝑎2 + 𝑐𝑐𝑏𝑏2 + 𝑐𝑐𝑓𝑓2 + 𝑐𝑐𝑙𝑙2) → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒 = 2 
 
𝑐𝑐𝑎𝑎2 = (𝑥𝑥1 − 0)2 + (𝑦𝑦1 − 0)2 + (𝑧𝑧1 − 2)2 
𝑐𝑐𝑏𝑏2 = (𝑥𝑥1 − 0)2 + (𝑦𝑦1 − 2)2 + (𝑧𝑧1 − 0)2 
𝑐𝑐𝑓𝑓2 = (𝑥𝑥1 − 2)2 + (𝑦𝑦1 − 2)2 + (𝑧𝑧1 − 2)2 
𝑐𝑐𝑙𝑙2 = (𝑥𝑥1 − 2)2 + (𝑦𝑦1 − 0)2 + (𝑧𝑧1 − 0)2 
 
→ 2(4𝑥𝑥12 + 4𝑦𝑦12 + 4𝑧𝑧12 − 8𝑥𝑥1 − 8𝑦𝑦1 − 8𝑧𝑧1 + 24) → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
𝜕𝜕
𝜕𝜕𝑥𝑥1

=  16𝑥𝑥1 − 16 = 0 → 𝑥𝑥1 = 1 

𝜕𝜕
𝜕𝜕𝑦𝑦1

=  16𝑦𝑦1 − 16 = 0 → 𝑦𝑦1 = 1 

𝜕𝜕
𝜕𝜕𝑧𝑧1

=  16𝑧𝑧1 − 16 = 0 → 𝑧𝑧1 = 1 
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external surface load p. Synclastic structures cannot be submitted to a pre-
stress without an external load p.  
 
 To illustrate this principle, consider the anti-clastic form found geometry will 
be changed into a synclastic geometry by bringing the two top members down 
to the same plane as the other two members. For this synclastic geometry 
there is a state of self-stress, two members in compression and two in tension. 

 
If the geometry of an anti-clastic surface goes from a discretized network to a 
continuous field (function) it becomes a membrane or a tent. 

When the network is increasingly refined its upper limit case of summing the 
individual force densities of the increasing number of members results in the 
total force density Q going to infinity.  
  

𝑐𝑐𝑦𝑦𝑛𝑛𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐: 
𝑑𝑑𝑑𝑑 − 𝑏𝑏 − 𝑘𝑘 = 𝑏𝑏 − 𝑐𝑐  
 
3 ∙ 5 − 4 − 4 ∙ 3 = −1  
→ 𝑏𝑏 − 𝑐𝑐 = −1 
𝑏𝑏 = 0 

  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑒𝑒𝐻𝐻 𝑐𝑐𝑏𝑏𝑐𝑐𝐻𝐻 − 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐:  
 
𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑐𝑐𝑦𝑦𝑛𝑛𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏:  

𝑄𝑄 =
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

+
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

+
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

+
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

=
√3
√3

−
√3
√3

+
√3
√3

−
√3
√3

= 0  

 
𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑦𝑦 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏: 

𝑄𝑄 =
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

+
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

+
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

+
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

= 2 + 2 + 2 + 2 = 8  

 

       𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐 ∶ 

⇒ �𝑄𝑄 = �
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖
⇒ ∞� ⇒ 

 

Figure 26 anti-clastic network / surface, image right of membrane by courtesy of Arno Pronk 
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The energy and functional relations are also applicable to 3D truss and cable 
structures. For soap films, such as a catenoid the potential surface energy is 
minimized, the constitutive relation does not influence the shape [50]. The 
catenoid is a minimal surface, thus it’s mean curvature is equal to zero, as a 
consequence of the potential surface energy being proportional to the surface 
area [51, 52], and being minimal. A soap film has no out of plane loads. 

 
The 3D statically indeterminate truss is the reciprocal of a (soap film) catenoid. 
The 2D version of the truss is the reciprocal of the catenary, the catenoid is the 
surface of revolution of the catenary. The loads of the catenary are a result of 
the hoop force of the catenoid, and are not out of plane loads.  

If the slopes of the lengths li are set, the force density can be replaced by the 
axial force Ni.  

𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒𝑑𝑑:𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏  

𝐻𝐻 =
1
2

(𝜅𝜅1 + 𝜅𝜅2) = 0  
𝐻𝐻 =  𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏 

𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑎𝑎𝑓𝑓𝑚𝑚 =  𝐷𝐷�𝑐𝑐𝑖𝑖2

𝑖𝑖

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  

𝐷𝐷 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑝𝑝𝑜𝑜 = 0 

Π� =  �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏
𝑖𝑖

  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒𝑖𝑖 =
𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

=
𝐻𝐻
𝑥𝑥𝑖𝑖

, 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘 𝑒𝑒𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝐹𝐹𝐹𝐹 𝑒𝑒𝑐𝑐 𝑐𝑐𝑏𝑏𝑒𝑒 →   

𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 =  �  𝑐𝑐𝑖𝑖2

𝑖𝑖

𝑁𝑁𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

Figure 27 area optimization of cylinder [image 52] 
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As an example the shape of a symmetric arch with two point loads will be 
found. 

The example is derived from an arch with a uniformly distributed load, which is 
split into the two equivalent point loads. It is the first step from the 
development of drawing a bending moment diagram of a thrust line from one 
point load (the total load ∑F) to a uniformly distributed load which results in a 
parabola. This results in the position of the two loads at one quarter of the 
span at either side from the supports. The variational method is used in which 
the equilibrium equations are replaced by the minimisation of the potential 
energy. The horizontal thrust H is constant and the arc segments have the same 
slopes as their equivalent rays in the force polygon: xi is set by li. 

𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 =  �  𝑐𝑐𝑖𝑖2

𝑖𝑖

𝑁𝑁𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  

𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 =  𝑐𝑐12
1
2√

2𝑒𝑒𝑐𝑐 + 𝑐𝑐22
1
2
𝑒𝑒𝑐𝑐 + 𝑐𝑐32

1
2√

2𝑒𝑒𝑐𝑐 → 𝑏𝑏𝑒𝑒𝑛𝑛 

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦: 

𝑐𝑐 − (𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) = 0 ⇒ 𝑐𝑐 − �
1
2√

2𝑐𝑐1 + 𝑐𝑐2 +
1
2√

2𝑐𝑐3� = 0 ⇒ 𝑐𝑐1 = √2𝑐𝑐 − √2𝑐𝑐2 − 𝑐𝑐3 

 

�
𝜕𝜕𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡

𝜕𝜕𝑐𝑐2
= 0 ⇒ 𝑐𝑐3 = √2𝑐𝑐 − 𝑐𝑐2 �√2 +

1
2
� 

�
𝜕𝜕𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡

𝜕𝜕𝑐𝑐3
= 0 ⇒ 𝑐𝑐2 = 𝑐𝑐 − √2𝑐𝑐3 

 

⇒ 𝑐𝑐1 = 𝑐𝑐3 = �1 −
1
2√

2� 𝑐𝑐;  𝑐𝑐2 = �2 − √2�𝑐𝑐 
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The result of this procedure is surprising, it is not the same as the first step of 
splitting the total load ∑F resulting in a parabola. The length of the segments of 
the arch either side of the point load is equal. The total load path according to 
Maxwell is lower than the “parabolic” solution, although the total length ls of 
the arch is approximately the same.  

In the next example the same total load ∑F will be split into four equal point 
loads. Also this conventionally results in a discretised version of a parabola in 
which the arch segments are the tangents of the parabola.  
 
Again the segments of the arch halfway the loads and the supports are exactly 
equal. If the point loads with evenly distributed along these segments we get a 
constant load along the axis of the arch, in other words we have the shape of a 
catenary. The total load path is lower than the parabolic solution with 
approximately the same total length. Again the horizontal thrust H is constant 
and arc segments have the same angles as their equivalent rays in the force 
polygon. 
 

𝑁𝑁1 = √2
𝑒𝑒𝑐𝑐
2

:𝑁𝑁2 =
𝑒𝑒𝑐𝑐
2

: 𝑁𝑁3 = √2
𝑒𝑒𝑐𝑐
2

  
 
"𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏"  

𝑐𝑐1∗ = 𝑐𝑐3∗ =
1
4√

2 𝑐𝑐: 𝑐𝑐2∗ =
1
2
𝑐𝑐  

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐: 𝑁𝑁1𝑐𝑐1∗ + 𝑁𝑁2𝑐𝑐2∗ + 𝑁𝑁3𝑐𝑐3∗ =
3
4
𝑒𝑒𝑐𝑐2 = 0.75 𝑒𝑒𝑐𝑐2  

𝑐𝑐𝑠𝑠 =
√2 + 1

2
𝑐𝑐 ≈ 1.20710 𝑐𝑐  

𝐻𝐻∗ =
1
4
𝑐𝑐 = 0.25 𝑐𝑐  

 
"𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦"  

𝑐𝑐1 = 𝑐𝑐3 = �1 −
1
2√

2�  𝑐𝑐: 𝑐𝑐2 = �2 − √2� 𝑐𝑐  

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐: 𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 =
1
2√

2𝑒𝑒𝑐𝑐2 ≈ 0.70710 𝑒𝑒𝑐𝑐2  

𝑐𝑐𝑠𝑠 = 4 − 2√2 𝑐𝑐 ≈ 1.17157 𝑐𝑐  

𝐻𝐻∗ =
√2 − 1

2
𝑐𝑐 ≈ 0.20710 𝑐𝑐  
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𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 = �𝑐𝑐𝑖𝑖2𝑁𝑁𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 
𝑖𝑖

 

𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 =  𝑐𝑐122√2 + 𝑐𝑐222√5 + 𝑐𝑐324 + 𝑐𝑐422√5 + 𝑐𝑐524√2 → 𝑏𝑏𝑒𝑒𝑛𝑛 
  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦: 

𝑐𝑐 − (𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 + 𝑥𝑥1) = 0 ⇒ 16 − �
1
2√

2𝑐𝑐1 +
2
5
√5𝑐𝑐2 + 𝑐𝑐3 +

2
5
√5𝑐𝑐4 +

1
2√

2𝑐𝑐5� = 0 

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑦𝑦: 𝑐𝑐1 = 𝑐𝑐5: 𝑐𝑐2 = 𝑐𝑐4 

⇒ 𝑐𝑐1 = 8√2 −
2
5√

10𝑐𝑐2 −
1
2√

2𝑐𝑐3 

 
 
 

�
𝜕𝜕𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡

𝜕𝜕𝑐𝑐2
= 0 ⇒ 𝑐𝑐3 = 16 −

4
5
√5𝑐𝑐2 −

5
8√

2𝑐𝑐2 

�
𝜕𝜕𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡

𝜕𝜕𝑐𝑐3
= 0 ⇒ 𝑐𝑐2 = 40√5 −

5
2
√5𝑐𝑐3 −

5
4√

10𝑐𝑐3 

 
 

⇒ 𝑐𝑐1 =  𝑐𝑐5 =
400

50 + 32√5 + 25√2
∶ 𝑐𝑐2 =  𝑐𝑐4 =

640
50 + 32√5 + 25√2

∶ 𝑐𝑐3 =
800

50 + 32√5 + 25√2
  

𝑐𝑐1 +
1
2
𝑐𝑐2 =

𝑐𝑐1 + 𝑐𝑐2
2

=
720

50 + 32√5 + 25√2
≈ 4.588 
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From these examples and the rules of reciprocity we can conclude the 
following for this method. It provides for an arch (or cable) the thrust line with 
the most evenly “distributed” load along its axis with the lowest total load path 
with the longest possible total length, the catenary.  
In other words: if there are more modes of displacement kinematically 
admissible whilst considering the arch as flexible (cable or thrust line), the 
shape with the minimum potential energy will prevail. 
The catenary is the revolved curve that forms the catenoid. The loads of the 
catenary are actually the resolved components of the hoop forces, and can 
therefore be considered as the in-plane tension and not as out-of-plane loads.  
 
Maxwell’s method in these cases with fixed internal axial forces Ni would 
produce a near flat thrust line, yet it can be used to find the optimal span – rise 
ratio. 
 

 
  

𝑁𝑁1 = 𝑁𝑁5 = 4√2:𝑁𝑁2 = 𝑁𝑁4 = 2√5: 𝑁𝑁3 = 4 
  
"𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏"  
𝑐𝑐1 = 𝑐𝑐5 = 2√2: 𝑐𝑐2 = 𝑐𝑐4 = 2√5: 𝑐𝑐3 = 4 
 
𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐: 𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 + 𝑁𝑁4𝑐𝑐4 + 𝑁𝑁5𝑐𝑐5 = 88  
 
𝑐𝑐𝑠𝑠 = 4√2 + 4√5 + 4 ≈ 18.60112  

𝐻𝐻∗ =
1
2√

2𝑐𝑐1 +
1
5
√5𝑐𝑐2 = 4 

 
"𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦" / 𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑧𝑧𝑏𝑏𝑑𝑑 𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦  

𝑐𝑐1 = 𝑐𝑐5 =
400

50 + 32√5 + 25√2
: 𝑐𝑐2 = 𝑐𝑐4 =

640
50 + 32√5 + 25√2

: 𝑐𝑐3 =
800

50 + 32√5 + 25√2
 

 

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐: 𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 + 𝑁𝑁4𝑐𝑐4 + 𝑁𝑁5𝑐𝑐5 =
3200√2 + 2560√5 + 2880

50 + 32√5 + 25√2
≈ 85.71702 

  

𝑐𝑐𝑠𝑠 =
2880

50 + 32√5 + 25√2
≈ 18.35452 

𝐻𝐻∗ =
1
2√

2𝑐𝑐1 +
1
5
√5𝑐𝑐2 ≈ 3.62667 
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If the discretized catenary, the result of the minimization of the potential 
energy, is compared with the analytical solution it can be concluded that the 
segments have the same tangents of the catenary function like with the 
parabola as the result of truncation, see section 2.5. The energy solution is an 
approximation, the finer the discretization the higher the rise will be and the 
closer to the analytical solution the result will be. 
 

 
Comparing the results of the catenary function to those for the discretized 
catenary the fit is very close. 
A last remark in this section, the force polygon for the discretized parabola and 
catenary is the same, due to the differing distance of the applied loads along 
their axis the two form diagrams are achieved.  

𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑦𝑦 

𝑒𝑒 =
𝐹𝐹 ∙ 4
𝑐𝑐𝑠𝑠

=
2 ∙ 4

18.35452
≈ 0.43586: 𝐻𝐻 = 4: 𝑐𝑐 = 16 

𝑧𝑧(𝑥𝑥) =
𝐻𝐻
𝑒𝑒
�cosh

𝑒𝑒(𝑥𝑥 − 𝑐𝑐 2)⁄
𝐻𝐻

− cosh
𝑒𝑒𝑐𝑐 2⁄
𝐻𝐻

� 

⇒ 𝑧𝑧(𝑥𝑥) =
4

0.43586
�cosh

0.43586 �𝑥𝑥 − 16
2 �

4
− cosh

0.43586 ∙ 16
2

4
� 

= 9.17726 �cosh
0.43586(𝑥𝑥 − 8)

4
− cosh(0.87172)�  

 

𝑐𝑐𝑠𝑠 = � �1 + �
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥
�
2

�

1
2
𝑑𝑑𝑥𝑥 = � cosh �

𝑥𝑥 − 8
9.17726

� 𝑑𝑑𝑥𝑥 ≈ 18.10478 
16

0

16

0
 

 
𝐻𝐻∗ = 𝑧𝑧(8) ≈ 3.71335 
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3.8 Overview of variational principles 
 
 
Short overview of the variational principle as given in this chapter, with their 
respective characteristics and applications. 
 
 

- variational principle of the force density: 

 
o use to find the equilibrium geometry for an unloaded network 
o the length and the angles of the bars of the network are not fixed 

(nodes of network are free) 
 
 

- variational principle of complementary energy: 

 
o to solve the redundancies of a loaded truss or network in 

equilibrium, to find the correct force polygon 
o the length and the angles of the bars of the network are fixed, the 

form diagram is fixed 
(nodes are fixed) 

 
 

- variational principle of potential energy: 

 
o to optimize the form diagram by minimizing its developed length 

or surface area (Ni = constant) or total load path (Ni ≠ constant) 
o angles of forces and bars are fixed, the force polygon is fixed 

(nodes of network are free but with conditions) 
 

Π� =  �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏
𝑖𝑖

  

   
 
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑡𝑡𝑚𝑚𝑡𝑡 =  �  𝑁𝑁𝑖𝑖2

𝑖𝑖

𝑐𝑐𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

 𝐸𝐸𝑎𝑎𝑚𝑚𝑡𝑡,𝑡𝑡𝑚𝑚𝑡𝑡 =  �  𝑐𝑐𝑖𝑖2

𝑖𝑖

𝑁𝑁𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
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3.9 Similarities of methods for examining extrema 
 
In section 3.7 the variational method of minimizing the potential energy was 
used. This method has a similarity to other methods for examining extremes of 
a function, such as the method of least squares and the stretched grid method. 
These methods have in common a quadratic function which reaches its 
minimum of maximum value when its derivative is equal to zero. 

The method of least squares minimizes the sum of squared residuals R, or 
explained in another more visualising way it expresses the sum of the areas of 
the squares minimized [53]. This method is used to find a compression only 
thrust network that is as close as possible, “best-fit”, to a given surface, such as 
a gothic vault [54]. 

 
The stretched grid method [55]  is equivalent to the variational method of 
minimizing the potential energy (Π), and is related to elastic grids. This method 
is used to find a minimum surface, based on the total energy balance of a nodal 
network. Similar to the example in section 3.7 regarding the catenoid and the 
catenary.  

Π� =  �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏
𝑖𝑖

  

�
𝜕𝜕Π�
𝜕𝜕𝑐𝑐𝑖𝑖

= 0
𝑖𝑖=1

 

𝑅𝑅(𝑏𝑏, 𝑏𝑏) = ��𝑦𝑦𝑛𝑛 − (𝑏𝑏𝑥𝑥𝑛𝑛 + 𝑏𝑏)�
2

𝑁𝑁

𝑛𝑛=1

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑏𝑏 = 0: 

𝜕𝜕𝑅𝑅
𝜕𝜕𝑏𝑏 = 0: 

 
 
 
 
 
 

y ax b= +

https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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As a very simple example of the stretched grid method an asymmetric grid cell 
(quad) with the mid node (5) displaced from the centre of the cell. By 
minimizing the total potential energy of the system this becomes symmetric.  
 

 
 

The formation of the minimal surface the catenoid by means of the stretched 
grid method results, thus minimizing the total potential energy, result in a 
solution equal to the example in section 3.7.  

Π = 𝐷𝐷�𝑐𝑐𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

 →�
𝜕𝜕Π

𝜕𝜕∆𝑥𝑥𝑗𝑗𝑖𝑖𝑖𝑖=1

= 0  

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 
𝐷𝐷 = 𝑏𝑏𝑛𝑛 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑛𝑛𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 𝑒𝑒𝐻𝐻 𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑐𝑐 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘 
𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚𝑒𝑒ℎ 𝑒𝑒𝐻𝐻 𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒  
∆𝑥𝑥 = 𝑑𝑑𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 𝑒𝑒𝐻𝐻 𝑏𝑏 𝑛𝑛𝑒𝑒𝑑𝑑𝑏𝑏  
𝑑𝑑 = 𝑒𝑒ℎ𝑏𝑏 𝑛𝑛𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 𝑒𝑒𝐻𝐻 𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠 𝑛𝑛𝑒𝑒𝑑𝑑𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏  
𝑘𝑘 = 𝑒𝑒ℎ𝑏𝑏 𝑛𝑛𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑥𝑥𝑒𝑒𝑐𝑐 
 Figure 28 “tightening up” a node [image 55] 

Figure 29 minimizing a surface [images 55] 
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The topology of the mesh of grids is also of important. For the example of 
section 3.7 the total surface area, bounded by two closed circles, is minimized 
resulting in a catenoid. The topology of this mesh was orthogonal. The catenoid 
with a triangular mesh and also found by minimizing the total potential energy, 
which is proportional to the surface area, allows non-planar quads on the 
surface to be approximated by triangles. This should result in smoother 
surfaces [56]. 

 
The choice of topology for the grid of a thrust network is of significance. Four 
sided surface (quads) grids are unable to contain shear forces as the members 
of the network are extension only. Thus the load can only be carried by axial 
forces. When a quad thrust network is used as a simulation of a shell structure, 
thus neglecting its in-plane shear forces, the result is a compression only thrust 
network. Thus negating the possible tension membrane forces of the shell 
which are a result of its shear forces. In order to be able to transfer shear 
forces, diagonals have to be added to the quads. This holds for all networks 
which have no in-plane form stability. More in detail see section 8.2.  

Figure 30 influence mesh topology on smoothness of surface [image left 56] 

Figure 31 thrust network: left in-plane form stable, right not form stable 
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4 Indeterminate 3D graphic statics 
 

4.1 Introduction 
 
In chapter 2 formulas were derived to quantify the relations of and between 
form diagrams and force polygons of funicular structures, such as cables and 
arches in 2D. The structures from chapter 2 are statically determinate. Their 
vertical support reactions are obtained by solving equations of equilibrium or 
by using graphic statics, in the same way as for beams.  
 
Funicular structures in 3D are an enigma, statically indeterminate in respect of 
their support reactions and their load transfer. If the vertical reactions are 
known then the relations of chapter 2 and 3 can be used to construct the 3D 
form diagram and force polygon. In this chapter an approach will be set out to 
determine the vertical reactions and the forces in the 3D network using the 
energy method of variation. 

4.2 Statically (in)determinate 3D trusses 
 
In section 3.3 statically indeterminate trusses in 2D were solved by using the 
variational method of the lowest complementary energy. This can be expanded 
to statically indeterminate trusses in 3D [57].  

 
Although the truss has a form diagram which is reciprocal to the force polygon 
of a funicular structure (section 3.5), its form diagram has a similar shape if the 
funicular structure has only one point load, see section 2.3. For this structure 
the product of the horizontal force H and the rise of the cable f is constant. This 
is not so for the truss. For the funicular structures the relation between the 

Figure 32 indeterminate 3D truss [image 57] 
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form diagram and the force polygon are only based on equilibrium and are 
statically determinate in 2D. For the truss structure the stiffness has to be 
taken into account due to its indeterminate state, as well as its equilibrium. So 
when its rise f is altered the horizontal support reactions H do not change in 
the same reciprocal way like with the funicular structures.  
Funicular structures in 3D are usually not statically determinate. Based on the 
variational method of the lowest complementary energy and the reciprocity 
between funicular and truss structures the alternate method to determine 
their support reactions is derived.   

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = �𝑁𝑁𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 𝑁𝑁125 + 𝑁𝑁223√2 + 𝑁𝑁323√2 + 𝑁𝑁423√2 → 𝑏𝑏𝑒𝑒𝑛𝑛 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏: 
Σ𝐹𝐹𝑥𝑥 = 0  

𝑁𝑁3
1
2√

2 − 𝑁𝑁1
4
5

= 0 

  
Σ𝐹𝐹𝑦𝑦 = 0  

𝑁𝑁2
1
2√

2 − 𝑁𝑁4
1
2√

2 = 0 

 
Σ𝐹𝐹𝑜𝑜 = 0  

𝑁𝑁1
3
5

+ 𝑁𝑁2
1
2√

2 + 𝑁𝑁3
1
2√

2 + 𝑁𝑁4
1
2√

2 = Σ𝐹𝐹 

 

⇒ 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 =
243√2

25
𝑁𝑁12 + 5𝑁𝑁12 −

42√2
5

𝐹𝐹𝑁𝑁1 + 3√2𝐹𝐹2 = 0 

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝑁𝑁𝑖𝑖𝑖𝑖

=
486√2

25
𝑁𝑁1 + 10𝑁𝑁1 −

42√2
5

𝐹𝐹 = 0  

 

⇒ 𝑁𝑁1 =
14580 − 3750√2

29278
𝐹𝐹 ≈ 0.31684 𝐹𝐹 

𝑁𝑁2 = 𝑁𝑁4 =
5250 + 4433√2

29278
𝐹𝐹 ≈ 0.39344 𝐹𝐹  

𝑁𝑁3 =
11664√2 − 6000

29278
𝐹𝐹 ≈ 0.35847 𝐹𝐹 ⇒ 

 
 
 
 
 
 
 
 

𝑉𝑉1 =
3
5𝑁𝑁1 ≈ 0,190𝐹𝐹  

𝑉𝑉2 =
1
2√2 𝑁𝑁2 ≈ 0,278𝐹𝐹  

𝑉𝑉3 =
1
2√2 𝑁𝑁3 ≈ 0,253𝐹𝐹  

𝑉𝑉4 =
1
2√

2 𝑁𝑁4 ≈ 0,278𝐹𝐹  
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4.3 An alternative method to determine vertical support reactions 
 
The axial force Ni is used in the variational method of the lowest 
complementary energy for the truss. The axial force can be resolved into the 
vertical component Vi and the horizontal thrust H. Consider the rise f of the 
truss with two bars and one point load being lowered downwards until it 
approaches zero. The horizontal thrust H and the complementary energy will 
go to infinity because the load can no longer by carried by the axial force. The 
load is carried by a shear force equal to the vertical component Vi , similar to a 
beam. 
 
The form diagram of a funicular structure has no physical properties because its 
topology represents the lines of action of the forces and thus has no stiffness, 
thereby it is assumed that the axial forces do not result in strains which have an 
influence on the distribution of the internal forces. Only the state of 
equilibrium is represented in the force polygon which determines this 
distribution.  
The load distribution of a funicular structure is equivalent to that of a beam, 
which was explained in section 2.3. The constant product of the funicular 
structure Hf represents the maximum moment in the beam as a result of the 
total load ΣF. And the support reactions of the two systems are equal. This 
principle will be used to determine the support reactions of a 3D form diagram 
with an equivalent grid. 
Additionally in order to solve the support reactions of a 3D funicular structure it 
has to be presumed that is has no physical properties. But it is again a 
collection of intersecting lines of action which form a network in equilibrium. 
The equivalent grid needs to have the same relation to the 3D network as the 
beam to the 2D funicular structure. This means the equivalent grid also has no 
physical properties. Thus let’s assume the beam has no strains (curvature), this 
implies it has an infinite (bending) stiffness. 
  
Returning to the total equation of the complementary energy the first two 
parts have to be omitted. The energy as result of the axial forces disappears 
because a beam or grid is a truss with rise f is equal to zero. The second part 
relating to the bending moments in the beam or grid also disappears because it 
has an infinite bending stiffness. The last part regarding the vertical forces and 
thus also the vertical support reactions remains.  
In other words a truss with a rise of “zero” results in a beam so that the H and f 
fall out of the energy of the axial force Ni and only the part relating to the 
vertical force Vi and span ai are left. 
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The variational method of the lowest complementary energy with respect to 
the shear forces is used to determine the vertical support reactions.  

 
In the next section some examples will be used to explain the method, and test 
it for suitability and accuracy. This will first be done on statically determinate 
beams and grid and then statically indeterminate grids. 
  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = �
1

2𝐸𝐸𝐸𝐸𝑁𝑁𝑖𝑖
2𝑑𝑑𝑥𝑥 +

𝑖𝑖𝑖𝑖

0
�

1
2𝐸𝐸𝐸𝐸𝑀𝑀𝑖𝑖

2𝑑𝑑𝑥𝑥 +
𝑖𝑖𝑖𝑖

0
�

1
2𝐺𝐺𝐸𝐸𝑠𝑠ℎ

𝑉𝑉𝑖𝑖2𝑑𝑑𝑥𝑥
𝑖𝑖𝑖𝑖

0
→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

 

 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = �𝑁𝑁𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

= ��𝑉𝑉𝑖𝑖2 + 𝐻𝐻2��𝑏𝑏𝑖𝑖2 + 𝐻𝐻2�1 2⁄

𝑖𝑖

→ 𝑏𝑏𝑒𝑒𝑛𝑛 

𝐻𝐻 → 0: 𝑁𝑁𝑖𝑖 → ∞:𝐻𝐻 → ∞ ⇒ 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 → ∞  
 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝐸𝐸𝐸𝐸 = ∞ ⇒ 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
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4.4 Determinate and indeterminate examples   
 

a. statically determinate examples 
The first example is a beam with a point load. The proposed method 
results in the exact solution.  
The next example is a grid in three directions with one central load and 
with one axis of symmetry. For grids in addition to the equilibrium of the 
forces also the rotational equilibrium around both axis out of plane are 
needed. This also produces the exact result. 
This is followed by another grid in three directions with a central load but 
without an axis of symmetry. The result is nearly exact, there is a small 
error. For statically determinate examples this method is redundant 
because the equations of equilibrium are sufficient. These examples are 
included to show the general application of the proposed method, but it 
is mainly intended for use solving statically indeterminate 3D funicular 
networks. 
 

example 1   

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑉𝑉𝐴𝐴2𝑥𝑥𝐴𝐴 + 𝑉𝑉𝐵𝐵2𝑥𝑥𝐵𝐵 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑥𝑥𝐴𝐴 = 𝛼𝛼𝑥𝑥𝐵𝐵: 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 = 𝑐𝑐 
  
𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏:  
𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐵𝐵 = Σ𝐹𝐹 ⇒ 𝑉𝑉𝐵𝐵 = Σ𝐹𝐹 − 𝑉𝑉𝐴𝐴  
 
𝑉𝑉𝐴𝐴2𝛼𝛼𝑥𝑥𝐵𝐵 + (Σ𝐹𝐹 − 2Σ𝐹𝐹𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐴𝐴2)𝑥𝑥𝐵𝐵 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
  

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉
𝜕𝜕𝑉𝑉𝐴𝐴

= 𝛼𝛼𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐴𝐴 − Σ𝐹𝐹 = 0 ⇒ 𝑉𝑉𝐴𝐴 =
Σ𝐹𝐹

1 + 𝛼𝛼
=
𝑥𝑥𝐵𝐵
𝑐𝑐
Σ𝐹𝐹  

 

𝑉𝑉𝐵𝐵 =
𝛼𝛼Σ𝐹𝐹

1 + 𝛼𝛼
=
𝑥𝑥𝐴𝐴
𝑐𝑐
Σ𝐹𝐹  
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example 2 

 
 
  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑉𝑉12𝑐𝑐1 + 𝑉𝑉22𝑐𝑐2 + 𝑉𝑉32𝑐𝑐3 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
𝑉𝑉121 + 𝑉𝑉221 + 𝑉𝑉321 ⟶𝑏𝑏𝑒𝑒𝑛𝑛 
 
𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏:  
Σ𝑀𝑀𝑥𝑥 = 0 

𝑉𝑉2
1
2√

3 − 𝑉𝑉3
1
2√

3 = 0 ⇒ 𝑉𝑉2 = 𝑉𝑉3 

 
Σ𝑀𝑀𝑦𝑦 = 0 

𝑉𝑉11 − 𝑉𝑉2
1
2
− 𝑉𝑉3

1
2

= 0 ⇒ 𝑉𝑉2 = 2𝑉𝑉1 − 𝑉𝑉3 

 
Σ𝐹𝐹𝑜𝑜 = 0 
𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 = Σ𝐹𝐹 ⇒ 𝑉𝑉3 = Σ𝐹𝐹 − 2𝑉𝑉1 
  
𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = (Σ𝐹𝐹)2 − 2Σ𝐹𝐹𝑉𝑉1 + 3𝑉𝑉12 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
 

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉
𝜕𝜕𝑉𝑉1

= −Σ𝐹𝐹 + 3𝑉𝑉1 = 0 ⇒ 𝑉𝑉1 =
1
3
Σ𝐹𝐹  

𝑉𝑉2 =
1
3
Σ𝐹𝐹: 𝑉𝑉3 =

1
3
Σ𝐹𝐹 
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example 3  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑉𝑉12𝑐𝑐1 + 𝑉𝑉22𝑐𝑐2 + 𝑉𝑉32𝑐𝑐3 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
 

𝑉𝑉12
√61

3
+ 𝑉𝑉22

√34
3

+ 𝑉𝑉32
√109

3
⟶𝑏𝑏𝑒𝑒𝑛𝑛 

 
𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏:  

Σ𝑀𝑀𝑥𝑥 = 0
𝑉𝑉2 + 𝑉𝑉3 − 2𝑉𝑉1 = 0

Σ𝑀𝑀𝑦𝑦 = 0
𝑉𝑉1 + 𝑉𝑉2 − 2𝑉𝑉3 = 0

�𝑉𝑉2 = 𝑉𝑉3  

 
Σ𝐹𝐹𝑜𝑜 = 0 
𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 = Σ𝐹𝐹 
  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 =
√61

3
Σ𝐹𝐹 −

4√61
3

Σ𝐹𝐹𝑉𝑉3 +
4√61

3
𝑉𝑉32 +

√34
3

𝑉𝑉32 +
√109

3
𝑉𝑉32 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 

 

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉
𝜕𝜕𝑉𝑉3

= −
4√61

3
Σ𝐹𝐹 +

8√61
3

𝑉𝑉3 +
2√34

3
𝑉𝑉3 +

2√109
3

𝑉𝑉3 = 0  

⇒ 𝑉𝑉3 =
4√61

8√61 + 2√34 + 2√109
Σ𝐹𝐹 ≈ 0.32876 Σ𝐹𝐹 

𝑉𝑉2 =
4√61

8√61 + 2√34 + 2√109
Σ𝐹𝐹 ≈ 0.32876 Σ𝐹𝐹  

𝑉𝑉1 =
2√34 + 2√109

8√61 + 2√34 + 2√109
Σ𝐹𝐹 ≈ 0.34246 Σ𝐹𝐹 

𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑑𝑑𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏: 
�𝑀𝑀𝑦𝑦 = 0 

𝑉𝑉3 ∙
10
3 − 𝑉𝑉2 ∙

5
3 − 𝑉𝑉1 ∙

5
3 = 0 

�𝑀𝑀𝑥𝑥 = 0 

𝑉𝑉3 ∙ 1 + 𝑉𝑉2 ∙ 1 − 𝑉𝑉1 ∙ 2 = 0  
�𝐹𝐹𝑜𝑜 = 0 

𝑉𝑉3 + 𝑉𝑉2 + 𝑉𝑉1 − Σ𝐹𝐹 = 0 

→ 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉3 =
1
3Σ𝐹𝐹 ≈ 0.333 Σ𝐹𝐹 
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b. statically indeterminate examples 
The first example is a grid in four directions with no axis of symmetry and 
a central load. The results obtained are in good agreement with those 
obtained from finite element analysis. 

 
example 1  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑉𝑉12𝑐𝑐1 + 𝑉𝑉22𝑐𝑐2 + 𝑉𝑉32𝑐𝑐3 + 𝑉𝑉42𝑐𝑐4 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
 

𝑉𝑉12√10 + 𝑉𝑉22
16
3

+ 𝑉𝑉32
16
3

+ 𝑉𝑉42
2√73

3
⟶𝑏𝑏𝑒𝑒𝑛𝑛 

 
𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏:  
Σ𝑀𝑀𝑥𝑥 = 0 

𝑉𝑉1 1 + 𝑉𝑉4
16
3
− 𝑉𝑉2

16
3

= 0 ⇒ 𝑉𝑉4 = 𝑉𝑉2 −
3

16
𝑉𝑉1 

 
Σ𝑀𝑀𝑦𝑦 = 0 

𝑉𝑉4 2 + 𝑉𝑉3
16
3
− 𝑉𝑉13 = 0 ⇒ 𝑉𝑉3 =

9
16

𝑉𝑉1 −
6

16
𝑉𝑉4 

 
Σ𝐹𝐹𝑜𝑜 = 0 

𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + 𝑉𝑉4 = Σ𝐹𝐹 ⇒ 𝑉𝑉2 =
8

13
Σ𝐹𝐹 −

185
208

𝑉𝑉1 

  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = √10𝑉𝑉12 +
1024
507

(Σ𝐹𝐹)2 −
2960
507

Σ𝐹𝐹𝑉𝑉1 +
34225
8112

𝑉𝑉12 +
13467
2704

𝑉𝑉12 −
402
169

Σ𝐹𝐹𝑉𝑉1 +
48

169
(Σ𝐹𝐹)2

+
128√73

507
(Σ𝐹𝐹)2 −

448√73
507

Σ𝐹𝐹𝑉𝑉1 +
392√73

507
𝑉𝑉12 ⟶ 𝑏𝑏𝑒𝑒𝑛𝑛 
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The next example refers back to section 4.2. The grid is the horizontal 
projection of this truss, so the rise f is zero. The difference is that the 
truss is composed of bars whose bar lengths determines their axial 
stiffness ratios (EA is presumed constant) and thus the load distribution 
and that the grid has infinitely stiff beams.  
 
The results for the vertical support reactions are compared with a finite 
element calculation (GSA) and corresponds closely. Compared to the 
vertical support reactions of the truss of section 4.2, there is a small 
difference of about 5 percent.  
 
 

  

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉
𝜕𝜕𝑉𝑉1

=
37313
2028

𝑉𝑉1 + 2√10𝑉𝑉1 +
784√73

507
𝑉𝑉1 −

448√73
507

Σ𝐹𝐹 −
4166
507

Σ𝐹𝐹 = 0 

 

⇒ 𝑉𝑉1 =
33328 + 3584√73

74626 + 8112√10 + 6272√73
Σ𝐹𝐹 ≈ 0.41561 Σ𝐹𝐹  

𝑉𝑉2 =
16281 + 4992√10 + 672√73

74626 + 8112√10 + 6272√73
Σ𝐹𝐹 ≈ 0.24572 Σ𝐹𝐹 

 𝑉𝑉3 =
14985 − 1872√10 + 2016√73
74626 + 8112√10 + 6272√73

Σ𝐹𝐹 ≈ 0.17086 Σ𝐹𝐹  

𝑉𝑉4 =
10032 + 4992√10

74626 + 8112√10 + 6272√73
Σ𝐹𝐹 ≈ 0.16779 Σ𝐹𝐹 

  
𝐻𝐻𝑒𝑒𝑠𝑠 Σ𝐹𝐹 = 1000:                                     𝐹𝐹𝐸𝐸𝑀𝑀 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝐻𝐻𝑒𝑒𝑠𝑠 Σ𝐹𝐹 = 1000 (𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐸𝐸𝐸𝐸 =  ∞): 
𝑉𝑉1 = 415.61                                            415.9 
𝑉𝑉2 = 245.72                                            245.5 
𝑉𝑉3 = 170.86                                            171.1 
𝑉𝑉4 = 167.79                                            167.5 
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example 2  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉 = �𝑉𝑉𝑖𝑖2𝑐𝑐𝑖𝑖
𝑖𝑖

→ 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

  
𝑉𝑉12𝑐𝑐1 + 𝑉𝑉22𝑐𝑐2 + 𝑉𝑉32𝑐𝑐3 + 𝑉𝑉42𝑐𝑐4 → 𝑏𝑏𝑒𝑒𝑛𝑛 
𝑉𝑉124 + 𝑉𝑉223 + 𝑉𝑉323 + 𝑉𝑉423 → 𝑏𝑏𝑒𝑒𝑛𝑛 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏:  
Σ𝑀𝑀𝑥𝑥 = 0 
𝑉𝑉14 − 𝑉𝑉33 = 0  
 
Σ𝑀𝑀𝑦𝑦 = 0 
𝑉𝑉23 − 𝑉𝑉43 = 0 
  
Σ𝐹𝐹𝑜𝑜 = 0  
𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + 𝑉𝑉4 =  Σ𝐹𝐹 
  
35
2
𝑉𝑉12 − 7 Σ𝐹𝐹𝑉𝑉1 → 𝑏𝑏𝑒𝑒𝑛𝑛 

  

�
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑉𝑉
𝜕𝜕𝑉𝑉1

= 35𝑉𝑉1 − 7 Σ𝐹𝐹 = 0                        𝐹𝐹𝐸𝐸𝑀𝑀 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 (𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐸𝐸𝐸𝐸 =  ∞):  

⇒ 𝑉𝑉1 =
1
5

 Σ𝐹𝐹 = 0.2 Σ𝐹𝐹                                           0.1999 Σ𝐹𝐹   

𝑉𝑉2 = 𝑉𝑉3 = 𝑉𝑉4 =
4

15
 Σ𝐹𝐹 ≈ 0.2666 Σ𝐹𝐹                  0.2667 Σ𝐹𝐹  

 
𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑒𝑒𝐻𝐻 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏𝑛𝑛𝑒𝑒 3𝐷𝐷 𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐 𝐻𝐻𝑠𝑠𝑒𝑒𝑏𝑏 𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 4.2:  
𝑉𝑉1 ≈ 0,190𝐹𝐹  
𝑉𝑉2 ≈ 0,278𝐹𝐹  
𝑉𝑉3 ≈ 0,253𝐹𝐹  
𝑉𝑉4 ≈ 0,278𝐹𝐹  
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4.5 Form diagrams, networks in 3D 
 

Constructing 2D form diagrams using force polygons are not difficult as they 
are statically determinate. 3D networks or form diagrams are more difficult to 
construct as they are in nearly all cases statically indeterminate. The problems 
that need to be solved are the determination of the vertical support reactions 
and the shape and topology of the network, the discretized thrust surface. 
Together they determine the load path and multiple solutions could are 
possible. For a 3D funicular network the vertical support reactions can be 
calculated by using the proposed method in this chapter. Hereby the global 
load transfer is determined, the next step is find the correct shape and 
topology of the network (see also section 3.8). 
A 3D funicular network can be treated like the 2D version, which means that 
the relations and methods derived in section 4.4 can be used.  

𝐻𝐻𝑖𝑖𝐻𝐻 = 𝑉𝑉𝑖𝑖𝑏𝑏𝑖𝑖 ⇒ 𝐻𝐻�𝐻𝐻𝑖𝑖
𝑖𝑖

= �𝑉𝑉𝑖𝑖𝑏𝑏𝑖𝑖
𝑖𝑖

= 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 = 𝑀𝑀𝑡𝑡𝑚𝑚𝑡𝑡  

𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏:  
𝑀𝑀𝑡𝑡𝑚𝑚𝑡𝑡 = 𝑉𝑉1𝑏𝑏1 + 𝑉𝑉2𝑏𝑏2 + 𝑉𝑉3𝑏𝑏3 + 𝑉𝑉4𝑏𝑏4 
𝑀𝑀𝑡𝑡𝑚𝑚𝑡𝑡 = (𝐻𝐻1 + 𝐻𝐻2 + 𝐻𝐻3 + 𝐻𝐻4)𝐻𝐻 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

𝑉𝑉𝑖𝑖 =
𝐻𝐻
𝑐𝑐𝑖𝑖
𝑁𝑁𝑖𝑖: 𝐻𝐻𝑖𝑖 =

𝑏𝑏𝑖𝑖
𝑐𝑐𝑖𝑖
𝑁𝑁𝑖𝑖:𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑑𝑑𝑏𝑏𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦: 𝑒𝑒𝑖𝑖 =

𝑁𝑁𝑖𝑖
𝑐𝑐𝑖𝑖

  

Σ𝐹𝐹 = �𝑉𝑉𝑖𝑖 = 
𝑖𝑖

�𝑁𝑁𝑖𝑖
𝐻𝐻
𝑐𝑐𝑖𝑖

=  𝐻𝐻
𝑖𝑖

�𝑒𝑒𝑖𝑖 ⇒ 𝑄𝑄 =
1
𝐻𝐻  Σ𝐹𝐹

𝑖𝑖

  

𝑀𝑀𝑡𝑡𝑚𝑚𝑡𝑡 = �𝑉𝑉𝑖𝑖𝑏𝑏𝑖𝑖
𝑖𝑖

= �𝑁𝑁𝑖𝑖
𝐻𝐻
𝑐𝑐𝑖𝑖
𝑏𝑏𝑖𝑖 = 𝐻𝐻�𝑏𝑏𝑖𝑖

𝑖𝑖𝑖𝑖

𝑒𝑒𝑖𝑖 

𝑅𝑅𝑖𝑖 = �𝑉𝑉𝑖𝑖2 +𝐻𝐻𝑖𝑖2 
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According to the membrane shell theory, which disregards the shells material 
properties, equilibrium with the loads can be achieved taking into account of 
the correct boundary conditions. That means the problem becomes statically 
determinate. A distinct example is a spherical dome, loaded by self-weight or a 
uniformly distributed load. This can be solved using the membrane equations 
or graphic statics [58] [59]. Due to the axis of symmetry the dome can be 
regarded as a pseudo 2D problem, similar to the catenary which is the 2D cross 
section of the catenoid. The hoop forces in a dome act like additional loads on 
the arch-like wedge shaped cross section to ensure equilibrium. There is only 
one possible load path which excludes eccentricities and thus moments and the 
system is statically determinate. The difference with the catenoid is that the 
axis of catenary coincides with the thrust line of the load, as a result the force 
polygon of the catenary has a pole. In the case of the dome the axis of the 
dome is not equal to the thrust line of the load. The resolved components of 
the hoop force guarantees that the rays of the force polygon follow the axis of 
the dome, its force polygon does not have one pole, but results in a membrane 
state of equilibrium. 

 
From the previous two examples a fundamental distinction has to be made 
between the thrust line or surface of the load and the shape of the cable, arch 
or shell. This will be discussed in the chapter 7 in more detail in relation to shell 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
 
𝑛𝑛𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥

+ 2
𝑛𝑛𝑥𝑥𝑦𝑦
𝑠𝑠𝑥𝑥𝑦𝑦

+
𝑛𝑛𝑦𝑦𝑦𝑦
𝑠𝑠𝑦𝑦

= −𝑝𝑝𝑜𝑜 

 
 

Figure 33 meridian and hoop forces of dome [image 59] 
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structures. The thrust line and thrust surface can always be determined. They 
represent the lines of action of the loads and the internal forces of the 2D and 
3D form diagrams which have no material properties. The problem for 3D cases 
is finding which thrust surface is the correct one. As there are multiple 
admissible load paths, hence shapes and topologies of the thrust surface that 
ensure equilibrium given its loads and support conditions, there will always be 
a solution with the lowest complementary energy. As is the case with soap 
films and bubbles. 

 
An elliptic paraboloid on semi-rigid edges with a uniform load has a membrane 
solution. There is an Airy stress function solution of the partial second order 
differential equation (Pucher’s equation) [60], which only takes into account 
equilibrium and not the shells material properties. This makes the problem 
statically determinate, there is one admissible load path given the load and 
boundary conditions. As in the case of the dome the thrust surface of the load 
and the surface of the shell do not coincide, corrective hoop forces similar to 
the dome provide the moment free membrane solution.  
 
In the case of the same shell but different support conditions, namely on four 
corner points, and with free edges, bending moments and shear forces are 
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needed to ensure equilibrium. This problem therefore now becomes statically 
indeterminate. Obviously the membrane or Pucher’s equation do not suffice in 
these cases, due to being both based on equilibrium only. 

 

In section 2.5 a total load was subdivided into a uniformly distributed load, if 
this is done with sufficient steps the discretized result converges to a parabola, 
where the rays of the force polygon are the tangents of the parabola. In section 
4.3 it was explained that a 3D form diagram, like the 2D example of the 
uniformly distributed load, has no physical properties. Its topology represents 
the lines of action of the forces.  

 
To solve a 3D statically indeterminate case such as described above, the 
following method is proposed. But first we have to distinguish between 
statically determinate and indeterminate cases.  
 
A triangular based shell on three supports with free edges and a square based 
shell on four supports with four edges are statically determinate (two axis of 
symmetry). In both cases the point of application of the total load, which 

Figure 34 elliptic paraboloid  [image 11] 

2𝐷𝐷:𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏  

𝑉𝑉 = �𝑒𝑒 𝑑𝑑𝑥𝑥 = 𝑒𝑒𝑥𝑥 + 𝑐𝑐… 

𝑀𝑀 = �𝑒𝑒𝑥𝑥 𝑑𝑑𝑥𝑥 =
1
2 𝑒𝑒𝑥𝑥

2 + 𝑐𝑐…  

𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 𝑒𝑒𝐻𝐻 𝑏𝑏𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑: 
𝐻𝐻 = 2𝐻𝐻∗ 
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represents a uniformly distributed load, is to be found in the centroid of both 
horizontal planes. The 3D form diagram can be truncated in the same way as 
the 2D case of the uniformly distributed load (section 2.5).  
 
For the 2D case this result in a parabolic shaped form diagram, for a 3D surface 
of revolution in a parabolic or cubic one, parabolic if the position of subdivided 
loads are set at an equal horizontal distance, cubic if the position of subdivided 
loads are free to “relax” in the horizontal plane like in the examples of section 
3.7. The first truncation result in the horizontal tangent plan. For the parabolic 
cases this is half from the base to the point of application of the total load [61] 
and for the cubic case this one third.  

 
 The load transfer is in two directions for the 3D case, that explains why the 
form diagram is parabolic or cubic. With the triangular, especially an equilateral 
one, and square based examples it can be observed that load transfer is in two 
directions and that the central part of the form diagram, thrust surface, is 
parabolic or cubic. The free edges will need to be funicular “arch” shaped to 
ensure moment free edges. 

3𝐷𝐷: 𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐  

𝑚𝑚 = �𝑒𝑒𝑥𝑥 𝑑𝑑𝑥𝑥 =
1
2 𝑒𝑒𝑥𝑥

2 + 𝑐𝑐… 

𝑏𝑏 = �
1
2 𝑒𝑒𝑥𝑥

2𝑑𝑑𝑥𝑥 =
1
6 𝑒𝑒𝑥𝑥

3 + 𝑐𝑐…  

𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒 𝑒𝑒𝐻𝐻 𝑏𝑏𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑: 
𝐻𝐻 = 3𝐻𝐻∗ 

Figure 35 parabola by subdividing load 
[image 61] 
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Shells on four and more supports with free edges which have a non-symmetric 
floor plan and a uniformly distributed load are statically indeterminate.  
The correct form diagram or funicular network can be found by following the 
procedure listed below. The topology of the network grid is important, see 
section 3.9. 
 

- Calculate the vertical support reactions, as described in section 4.3 and 
4.4. 

- Determine the position of the total load with respect to the positions of 
the supports in the horizontal plane, which for a uniformly distributed 
load is the same position of the centroid of the area of the load. 

- Assume a rise f from the horizontal plane for the point of application of 
the total load, see beginning of this section. 

- Determine the horizontal support reactions, using the method given at 
the beginning of this section. 
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- Subdivide the total uniform load by making a first truncation of the 
parabolic or cubic envelop into as many subdivided loads as there are 
supports. Place the subdivided loads in the nodes of the network. 

o This involves setting the position of the subdivided loads in the 
centroid of the area of the uniformly distributed load it represents 
in the horizontal plane (parabolic). Use the force density equations 
to arrive at an arbitrary equilibrium network by setting a value for 
the force density and taking into account the angles of the support 
reactions Ri. Iteratively minimising the total complementary 
energy of the network by varying the force densities, and thus the 
heights of the network nodes. 

o As a possible second step let the position of the subdivided loads 
free in the horizontal plane (cubic), then minimise the total 
potential energy of the network, keeping the support reactions 
constant. This results in a more compact network, the load is now 
uniform along the surface arc lengths instead of projected, similar 
to that of self-weight. 

 
- The sum of the product of the horizontal reactions and the rise f is 

constant with constant vertical support reactions, so the overall height of 
the funicular network can be altered (scaled, see section 2.5). 

- Further refining the network ‘s mesh by more subdivisions of the load 
and truncation leads to a better approximation of the network, 
minimising the complementary or potential energy again as described in 
previous steps. 

 
 
The correct form diagram or funicular network can also be achieved without 
first estimating the vertical and horizontal support reactions, as is done at the 
beginning of this section. It would also be possible to start with a horizontal 
projection of the form diagram (section 2.9) of an initial trial network, use the 
force density equations to arrive at an arbitrary equilibrium network by setting 
a value for the force density and then minimising its total complementary and 
potentially the potential energy. 
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Note that if the shell’s ground base is non-symmetric the tangent plane will no 
longer be horizontal as for the case of the symmetric based shell. The 
horizontally projected forces of the truncation must be in equilibrium by 
forming a closed force polygon. This could mean that as result of the first trial 
truncation by subdividing the total load ∑F into loads they are different to their 
corresponding vertical support reactions. By tilting the tangent plane to ensure 
equilibrium the subdivided loads will re-distribute whilst keeping the vertical 
support reaction constant. This is automatically the result of minimising the 
complementary or potential energy. 

 
 
 
 
 
  

𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹3 + 𝐹𝐹4 = ∑𝐹𝐹  
𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + 𝑉𝑉4 = ∑𝐹𝐹 
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4.6 The degree of accuracy of energy approximations 
 
With the example of section 3.7 the degree of the accuracy of energy principles 
will be discussed. The force density is in this case not constant for all lines of 
action, the top two lines of action now only have half of the value.  
 

After the equilibrium geometry has been found via the variational principle of 
the force density, which is equivalent to solving the force density equation for 
an unloaded case, the network will be loaded with a point load F in node 1.  

Π� = �𝑐𝑐𝑖𝑖2 𝑒𝑒𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏   
𝑖𝑖

 

𝑒𝑒𝑖𝑖(𝑐𝑐𝑎𝑎2 + 𝑐𝑐𝑏𝑏2 + 𝑐𝑐𝑓𝑓2 + 𝑐𝑐𝑙𝑙2) → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒𝑎𝑎,𝑓𝑓 =
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

=
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

= 1 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒𝑏𝑏,𝑙𝑙 =
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

=
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

= 2 

 
𝑐𝑐𝑎𝑎2 = (𝑥𝑥1 − 0)2 + (𝑦𝑦1 − 0)2 + (𝑧𝑧1 − 2)2 
𝑐𝑐𝑏𝑏2 = (𝑥𝑥1 − 0)2 + (𝑦𝑦1 − 2)2 + (𝑧𝑧1 − 0)2 
𝑐𝑐𝑓𝑓2 = (𝑥𝑥1 − 2)2 + (𝑦𝑦1 − 2)2 + (𝑧𝑧1 − 2)2 
𝑐𝑐𝑙𝑙2 = (𝑥𝑥1 − 2)2 + (𝑦𝑦1 − 0)2 + (𝑧𝑧1 − 0)2 
 
→ (6𝑥𝑥12 + 6𝑦𝑦12 + 6𝑧𝑧12 − 12𝑥𝑥1 − 12𝑦𝑦1 − 8𝑧𝑧1 + 32) → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
𝜕𝜕
𝜕𝜕𝑥𝑥1

=  12𝑥𝑥1 − 12 = 0 → 𝑥𝑥1 = 1 

𝜕𝜕
𝜕𝜕𝑦𝑦1

=  12𝑦𝑦1 − 12 = 0 → 𝑦𝑦1 = 1 

𝜕𝜕
𝜕𝜕𝑧𝑧1

=  12𝑧𝑧1 − 8 = 0 → 𝑧𝑧1 =
2
3 
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As seen in section 3.7, using the force density equations leads to the same 
results. 

The forces of the network will be determined by the variational principle of 
complementary energy. Note this network is not comprised of physical bars, 
but constitutes a network of lines of action of forces in equilibrium. Thus a 3D 
form diagram, a thrust network, is formed. 

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑥𝑥1 − 𝑥𝑥2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑥𝑥1 − 𝑥𝑥3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑥𝑥1 − 𝑥𝑥4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑥𝑥1 − 𝑥𝑥5) = 0  

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑦𝑦1 − 𝑦𝑦2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑦𝑦1 − 𝑦𝑦3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑦𝑦1 − 𝑦𝑦4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑦𝑦1 − 𝑦𝑦5) = 0  

𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

(𝑧𝑧1 − 𝑧𝑧2) +
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

(𝑧𝑧1 − 𝑧𝑧3) +
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

(𝑧𝑧1 − 𝑧𝑧4) +
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

(𝑧𝑧1 − 𝑧𝑧5) = 0  

 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑒𝑒𝑎𝑎,𝑓𝑓 =
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

=
𝑁𝑁𝑓𝑓
𝑐𝑐𝑓𝑓

= 1 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒𝑏𝑏,𝑙𝑙 =
𝑁𝑁𝑏𝑏
𝑐𝑐𝑏𝑏

=
𝑁𝑁𝑙𝑙
𝑐𝑐𝑙𝑙

= 2  

 
𝑏𝑏𝑛𝑛𝑑𝑑: 𝑥𝑥2 = 𝑥𝑥3 = 𝑦𝑦2 = 𝑦𝑦5 =  𝑧𝑧3 = 𝑧𝑧5 = 0 
 𝑥𝑥4 = 𝑥𝑥5 = 𝑦𝑦3 = 𝑦𝑦4 = 𝑧𝑧2 = 𝑧𝑧4 = 2 
 

→ 𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏: 𝑥𝑥1 = 𝑦𝑦1 = 1 , 𝑧𝑧1 =  
2
3 

 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑡𝑡𝑚𝑚𝑡𝑡 =  �  𝑁𝑁𝑖𝑖2

𝑖𝑖

𝑐𝑐𝑖𝑖 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 

𝑐𝑐𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑒𝑒𝑦𝑦: 

 𝑐𝑐𝑎𝑎 = 𝑐𝑐𝑓𝑓 =  �12 + 12 + �
4
3
�
2

�

1
2

=
1
3√

34  

𝑐𝑐𝑏𝑏 = 𝑐𝑐𝑙𝑙 =  �12 + 12 + �
2
3
�
2

�

1
2

=
1
3√

22  

𝑁𝑁𝑎𝑎 = 𝑁𝑁𝑓𝑓 𝑏𝑏𝑛𝑛𝑑𝑑 𝑁𝑁𝑏𝑏 = 𝑁𝑁𝑙𝑙   

𝑉𝑉𝑎𝑎,𝑓𝑓 =
2√2
√17

𝑁𝑁𝑎𝑎,𝑓𝑓 𝑏𝑏𝑛𝑛𝑑𝑑 𝑉𝑉𝑏𝑏,𝑙𝑙 =
√2
√11

𝑁𝑁𝑏𝑏,𝑙𝑙 

 
𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑏𝑏: 𝐹𝐹 − (𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑏𝑏 + 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑙𝑙) = 0  
 
𝑁𝑁𝑎𝑎2𝑐𝑐𝑎𝑎 + 𝑁𝑁𝑏𝑏2𝑐𝑐𝑏𝑏 + 𝑁𝑁𝑓𝑓2𝑐𝑐𝑓𝑓 + 𝑁𝑁𝑙𝑙2𝑐𝑐𝑙𝑙 → 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏  
 
𝜕𝜕
𝜕𝜕𝑁𝑁𝑏𝑏

=
�4�17√17 + 44√11�𝑁𝑁𝑏𝑏 − 17√374𝐹𝐹�

66√2
= 0  

→  𝑁𝑁𝑏𝑏 = 𝑁𝑁𝑙𝑙 = −
17√187�17√17 − 44√11�

32766√2
𝐹𝐹 ≈ 0.38047 𝐹𝐹  
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By means of symmetry the la & lb – and lc & ld – part can be considered as being 
statically determinate, each loaded by F/2. Compared with their vertical 
component of the force N, or the vertical support reaction, the result of the 
variational principle will have a small margin of error of the order of 3%.  

 
Although this example is not a thrust network it does exemplify the use of 
complementary energy. The solutions for 3D graphic statics are always an 
approximation, also by means of variational principles, but they do provide the 
lowest energy solutions. 
  

𝑉𝑉𝑏𝑏 = 𝑉𝑉𝑙𝑙 =
√2
√11

𝑁𝑁𝑏𝑏 ≈ 0.16223 𝐹𝐹  

𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑓𝑓 ≈ 0.33777 𝐹𝐹  
 
𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑐𝑐𝑒𝑒𝑐𝑐  
𝑒𝑒𝐻𝐻 𝑐𝑐𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑦𝑦:  
 
𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝐻𝐻 𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑏𝑏 𝑐𝑐𝑏𝑏/ 𝑐𝑐𝑎𝑎 =  1

2� → 
𝑉𝑉𝑏𝑏 = 𝑉𝑉𝑙𝑙 = 0.16666 𝐹𝐹  
𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑓𝑓 = 0.33333 𝐹𝐹  
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5 Thrust line of statically indeterminate arches  
 

5.1 Introduction 
 
There is only one unambiguous solution for the thrust line of a statistically 
determinate arch and it can be  determined easily. Because of the statically 
determinacy of the arch we know that the thrust line must pass through the 
point where the moments are equal to zero, such as the hinges. The thrust line 
thus can be drawn using a force polygon, which is its reciprocal figure.  

 

 
 

This is not the case for statically indeterminate arches with hinged supports, 
which degree of indeterminacy is: s = 1. A range of possible solutions exist that 
satisfy equilibrium, consequently each solution is viable. To be able to 
determine the correct solution, several analytical and numerical methods can 
be used, such as a FEM or the finite difference method. The correct solution is 
the one in which the statically indeterminacy, which determines the support 
reaction and the internal forces of the system, is solved. In the case of the arch 
the rise f of the thrust line or the horizontal reaction force H can be solved. The 
method used here is analogous to that in the previous chapters. To determine 
the value of the redundant is to minimize the complementary energy of the 
system [62] [63]. 
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Figure 36 relation of arch and force polygon [images 62] 
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The total complementary energy of a system exists out of two parts, one due to 
extension (N) and the other due to bending (M). 

Because we are only concerned with the minimum complementary energy we 
can simplify this formula for the case of an arch with a uniform (prismatic) cross 
section. 

 

For most arches and shells the thickness t is much smaller than the  
arc length of the arch/shell  ls. In section 5.6 it will be shown that the energy 
due to extension (N) is much smaller than the bending energy and can 
therefore be neglected. The equation for the complementary energy reduces 
to. 

 

In section 5.5 the procedure will be explained in detail and will be 
demonstrated with an example and an analytical proof of this theorem [64]. 

 

5.2 Relation between the thrust line and the axis of the arch  
 
We will use an example in the next section to elaborate on the method of 
solving the redundant  (H or f) by using the full expression to determine the 
complementary energy and minimizing this for the system. This will be done by 
varying the magnitude of the horizontal reaction force H until the minimum 
value has been reached. 
For this procedure we need information from both the actual arch and a - for 
now assumed - course of the thrust line. The force polygon of the thrust line 
gives a direct relation between the loads in the arch or thrust line and the 
internal axial of the thrust line. The axis of the arch and the thrust line will 
probably not coincide, which means the axial force of the thrust line has an 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁&𝑀𝑀 =  
1
2
𝑁𝑁2𝑐𝑐𝑠𝑠
𝐸𝐸𝐸𝐸 +

1
2
𝑀𝑀2𝑐𝑐𝑠𝑠
𝐸𝐸𝐸𝐸  

 
𝑐𝑐𝑠𝑠 = 𝑏𝑏𝑠𝑠𝑐𝑐 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚ℎ𝑒𝑒 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑠𝑠𝑐𝑐ℎ 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐻𝐻𝑒𝑒𝑠𝑠 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑚𝑚𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠 𝑐𝑐𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝐸𝐸 = 𝑏𝑏𝑒𝑒: 𝐸𝐸 =  
1

12𝑏𝑏𝑒𝑒
2 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁&𝑀𝑀 =  𝑁𝑁2𝑐𝑐𝑠𝑠 +
12
𝑒𝑒2 𝑀𝑀

2𝑐𝑐𝑠𝑠  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 =  
12
𝑒𝑒2 𝑀𝑀

2𝑐𝑐𝑠𝑠  
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eccentricity to the axis of the arch thus resulting in bending moments in the 
arch. It must be noted for completeness that it is entirely possible that the 
thrust line and the axis of the arch coincide, forming a funicular arch thus 
without bending moments. 
 

 
 

The information required from the arch concerns its geometry, the applied 
loads and the support conditions, which we will limit in this text to hinges.  By 
assuming a magnitude for the horizontal thrust H together with the applied 
loads F a force polygon can be constructed. This force polygon has a reciprocal 
diagram which forms the thrust line of the arch.  
Because of the discrepancy between the axis of the arch and the thrust line, 
the internal axial forces (Ni , Vi , Mi) of the structure can be related to the force 
Fi of the thrust line. The bending moment Mi depends on the distance 
(eccentricity e) between the axis and the thrust line. There are several ways to 
determine this, but because horizontal reaction force H (=FH) is the redundant, 
the bending moment will be determined by multiplying FH with the vertical 
eccentricity ev. In this way we can set up an equation for the complementary 
energy of the system with only one parameter or unknown, the redundancy FH. 

𝑀𝑀𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑏𝑏𝐹𝐹                    𝑀𝑀𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑏𝑏𝑁𝑁                 𝑀𝑀𝑖𝑖 = 𝐹𝐹𝐻𝐻𝑏𝑏𝑉𝑉 

Figure 37 relation eccentricity with axis arch [images 63] 
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We can graphically represent the relation between the force polygon of the 
thrust line and the structure (axis) in one force polygon. The classical force 
polygon shows the forces Fi of the thrust line, and by decomposing these forces 
according to the slope of the respective segments into which the arch is 
discretised, we get the internal forces (Ni , Vi) of the structure, we can 
represent these in the same diagram.  
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5.3 Solving the indeterminate horizontal thrust 
 
As an example the structure can be discretised into straight segments with the 
loads (F) applied to the folds between the segments and their local coordinate 
system defined. The redundant FH (H) will be solved by minimizing the 
complementary energy due to bending of the system. It is acceptable to 
neglect the  energy due to extension, as will be shown in section 5.6. 

 

 
Figure 38 relation trust line with axis arch [images 63] 

 
For the above three bar arch the total complementary energy will be 
analytically determined and minimized. For this example the spacing between 
the loads is equal.  

 
First equations are set-up to quantify the vertical distance between the arch 
and the assumed thrust line (excentricity ev) based on a viable presupposed 
force polygon (ensure equilibrium). With the help of these, the moments in the 
structure will be determined expressed as a function of the redundancy FH. The 
squared moments will be integrated over the arc length of the arch, for each 
segment, which results in the total complementary energy of the structure, and 
is minimized to ascertain the exact solution for FH.  

𝛿𝛿𝑥𝑥1 =  𝛿𝛿𝑥𝑥2 =  𝛿𝛿𝑥𝑥3 =  𝛿𝛿𝑥𝑥                 
                

                 
               

                 
                



  

115 
 

The goal is to express the outcome for FH in terms only pertaining to 
parameters of the geometry of the arch; the horizontal and vertical projected 
distance of each segment (δxi , δhi) and the segment length (li). For this it is 
necessary to replace in the expression for the eccentricities the rise of each 
segment of the thrust line δhti . This is also takes care of the necessity to 
include the vertical component of the axial force in each segment Fiv which is 
related to the load (F) of the structure. 
 

 
The expressions for the eccentricities can be multiplied with the redundancy FH 
to determine the bending moments in each segment. 
 

 

𝛿𝛿ℎ𝑡𝑡1 =
𝐹𝐹1𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥  

𝛿𝛿ℎ𝑡𝑡2 =
𝐹𝐹2𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥  

𝛿𝛿ℎ𝑡𝑡3 =
𝐹𝐹3𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥  

 
 
                
                
                

𝑀𝑀1 = 𝐹𝐹𝐻𝐻𝑏𝑏𝑣𝑣1 =  𝐹𝐹𝐻𝐻 �
𝛿𝛿ℎ1
𝑐𝑐1

−
𝐹𝐹1𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥
𝑐𝑐1
� 𝑥𝑥 

𝑀𝑀2 = 𝐹𝐹𝐻𝐻𝑏𝑏𝑣𝑣2 =  𝐹𝐹𝐻𝐻 �
𝛿𝛿ℎ2
𝑐𝑐2

−
𝐹𝐹2𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥
𝑐𝑐2
� 𝑥𝑥 − 𝐹𝐹1𝑣𝑣𝛿𝛿𝑥𝑥 + 𝐹𝐹𝐻𝐻𝛿𝛿ℎ1 

𝑀𝑀3 = 𝐹𝐹𝐻𝐻𝑏𝑏𝑣𝑣3 = 𝐹𝐹𝐻𝐻 �−
𝛿𝛿ℎ3
𝑐𝑐3

+
𝐹𝐹3𝑣𝑣
𝐹𝐹𝐻𝐻

𝛿𝛿𝑥𝑥
𝑐𝑐3
� 𝑥𝑥 − 𝐹𝐹3𝑣𝑣𝛿𝛿𝑥𝑥 + 𝐹𝐹𝐻𝐻𝛿𝛿ℎ3 

 
 
                
                
                

𝑏𝑏𝑣𝑣1 = (𝛿𝛿ℎ1 − 𝛿𝛿ℎ𝑡𝑡1)
𝑥𝑥
𝑐𝑐1

  

𝑏𝑏𝑣𝑣1 = (𝛿𝛿ℎ1 − 𝛿𝛿ℎ𝑡𝑡2)
𝑥𝑥
𝑐𝑐2

+ (𝛿𝛿ℎ1 − 𝛿𝛿ℎ𝑡𝑡1)  

𝑏𝑏𝑣𝑣1 = (𝛿𝛿ℎ3 − 𝛿𝛿ℎ𝑡𝑡3)
−𝑥𝑥 + 𝑐𝑐3

𝑐𝑐3
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By integrating these moments over the length of each segment, we arrive at 
the total complementary energy of the structure, where the last five terms are 
not a funtion of Fh. In the next section it will be shown that these relate to the 
transfer of the load. 

 
By minimizing this we get an exact solution for the redundant FH. 
 

 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = � 𝑀𝑀1
2

𝑖𝑖1

0
𝑑𝑑𝑥𝑥 + � 𝑀𝑀2

2
𝑖𝑖2

0
𝑑𝑑𝑥𝑥 + � 𝑀𝑀3

2
𝑖𝑖3

0
𝑑𝑑𝑥𝑥 = 

1
3 𝛿𝛿ℎ1

2𝑐𝑐1𝐹𝐹𝐻𝐻2 + �
1
3 𝛿𝛿ℎ2

2 + 𝛿𝛿ℎ1𝛿𝛿ℎ2 + 𝛿𝛿ℎ12� 𝑐𝑐2𝐹𝐹𝐻𝐻2 +
1
3 𝛿𝛿ℎ3

2𝑐𝑐3𝐹𝐹𝐻𝐻2 − 
2
3𝐹𝐹1𝑣𝑣  𝛿𝛿ℎ1𝛿𝛿𝑥𝑥𝑐𝑐1𝐹𝐹𝐻𝐻 − �𝐹𝐹1𝑣𝑣(2𝛿𝛿ℎ1 + 𝛿𝛿ℎ2) + 𝐹𝐹2𝑣𝑣 �𝛿𝛿ℎ1 +

2
3 𝛿𝛿ℎ2�� 𝛿𝛿𝑥𝑥𝑐𝑐2𝐹𝐹𝐻𝐻 −

2
3𝐹𝐹3𝑣𝑣𝛿𝛿ℎ3𝛿𝛿𝑥𝑥𝑐𝑐3𝐹𝐹𝐻𝐻 + 

1
3𝐹𝐹1𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐1 +
1
3𝐹𝐹2𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐2 +
1
3𝐹𝐹3𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐3 + 𝐹𝐹1𝑣𝑣2 𝛿𝛿𝑥𝑥2𝑐𝑐2 + 𝐹𝐹1𝑣𝑣𝐹𝐹2𝑣𝑣𝛿𝛿𝑥𝑥2𝑐𝑐2�������������������������������������������
𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 𝑡𝑡𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠

 

                
                
                

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀

𝑑𝑑𝐹𝐹𝐻𝐻
= 0 ⇒ 

 

𝐹𝐹𝐻𝐻 =
𝐹𝐹1𝑣𝑣𝛿𝛿𝑥𝑥 �

2
3 𝛿𝛿ℎ1𝑐𝑐1 + 2𝛿𝛿ℎ1𝑐𝑐2 + 𝛿𝛿ℎ2𝑐𝑐2� + 𝐹𝐹2𝑣𝑣𝛿𝛿𝑥𝑥 �𝛿𝛿ℎ1𝑐𝑐2 + 2

3 𝛿𝛿ℎ2𝑐𝑐2� + 𝐹𝐹3𝑣𝑣𝛿𝛿𝑥𝑥 �
2
3 𝛿𝛿ℎ3𝑐𝑐3�

2
3 𝛿𝛿ℎ1

2𝑐𝑐1 + 2
3 𝛿𝛿ℎ2

2𝑐𝑐2 + 2
3 𝛿𝛿ℎ3

2𝑐𝑐3 + 2𝛿𝛿ℎ12𝑐𝑐2 + 2𝛿𝛿ℎ1𝛿𝛿ℎ2𝑐𝑐2
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The images below provide a visual overview of the process. Figure (e) shows 
the area that has been integrated to get the structures total complementary 
(bending) energy. 

 
This section will be concluded with a numerical elaboration. For this we need to 
make an initial assumption of the force polygon and thus the thrust line. 
The value for FH calculated by minimizing the total complementary (bending) 
energy is 3375 N. The value obtained from a FEM (GSA) calculation, in which of 
course the energy due to extension is not neglected, is 3374 N, that is an error 
of 0.03%. When the value of FH has been calculated, the correct force polygon 
and thrust line can be drawn. 

Figure 39 graphic representation of the complementary energy arch [images 63] 
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5.4 The two load cases and Maxwell’s load path for indeterminate arches 
 
The total complementary energy due to bending has two parts. The first part is 
a function of the horizontal thrust H, the second part is only related to the 
vertical forces in the system. This part remains constant if the horizontal thrust 
changes by scaling the force polygon. It relates to the load transfer and is 
equivalent to the load transfer of a beam with the same load and span. In fact 
there are two load cases each with their own energy. We further elaborate 
using the example of the previous section. 
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When the static indeterminacy, the horizontal thrust, is solved the resulting 
total energy has the smallest possible difference between the energy of the 
two load cases.  

 
 
Another way of solving the statical indeterminacy is thus minimizing the 
difference between the two energy parts.  
 

 
This result is the same solution for the horizontal thrust. 
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝐻𝐻 =  
1
3 𝛿𝛿ℎ1

2𝑐𝑐1𝐹𝐹𝐻𝐻2 + �
1
3 𝛿𝛿ℎ2

2 + 𝛿𝛿ℎ1𝛿𝛿ℎ2 + 𝛿𝛿ℎ12� 𝑐𝑐2𝐹𝐹𝐻𝐻2 +
1
3 𝛿𝛿ℎ3

2𝑐𝑐3𝐹𝐹𝐻𝐻2 −
2
3𝐹𝐹1𝑣𝑣  𝛿𝛿ℎ1𝛿𝛿𝑥𝑥𝑐𝑐1𝐹𝐹𝐻𝐻  

−�𝐹𝐹1𝑣𝑣(2𝛿𝛿ℎ1 + 𝛿𝛿ℎ2) + 𝐹𝐹2𝑣𝑣 �𝛿𝛿ℎ1 +
2
3 𝛿𝛿ℎ2�� 𝛿𝛿𝑥𝑥𝑐𝑐2𝐹𝐹𝐻𝐻 −

2
3𝐹𝐹3𝑣𝑣𝛿𝛿ℎ3𝛿𝛿𝑥𝑥𝑐𝑐3𝐹𝐹𝐻𝐻 = −1154.25 

 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝑉𝑉 =
1
3𝐹𝐹1𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐1 +
1
3𝐹𝐹2𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐2 +
1
3𝐹𝐹3𝑣𝑣

2 𝛿𝛿𝑥𝑥2𝑐𝑐3 + 𝐹𝐹1𝑣𝑣2 𝛿𝛿𝑥𝑥2𝑐𝑐2 + 𝐹𝐹1𝑣𝑣𝐹𝐹2𝑣𝑣𝛿𝛿𝑥𝑥2𝑐𝑐2 = 1164  
 
𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝑉𝑉 − 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝐻𝐻 = 1164 − 1154.25 = 9.75 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝐻𝐻 = 101
1
3𝐹𝐹𝐻𝐻

2 − 684𝐹𝐹𝐻𝐻 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀:𝑉𝑉 = 1164  
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 101
1
3𝐹𝐹𝐻𝐻

2 − 684𝐹𝐹𝐻𝐻 + 1164 → 𝑏𝑏𝑒𝑒𝑛𝑛 ⇒ 𝐹𝐹𝐻𝐻 = 3.375  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 101
1
3 (3.375)2 − 684(3.375) + 1164 = 9.75 
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To-date, Maxwell’s load path theorem is has only been used for statically 
determinate structures.  

 
But this theorem is also applicable for statically indeterminate arches. The 
reason for this is that the summation of the work done by the shear forces over 
all members is always zero. The work done by bending in each cross section is 
also zero, the tension is equal to the compression in each cross section. The 
load path for the arch is slightly lower than for the thrust line. 

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ: 
�𝑁𝑁𝑡𝑡𝑖𝑖
𝑖𝑖

𝑐𝑐𝑡𝑡𝑖𝑖 −�𝑁𝑁𝑓𝑓𝑖𝑖
𝑖𝑖

𝑐𝑐𝑓𝑓𝑖𝑖
���������������

𝑖𝑖𝑛𝑛𝑡𝑡𝑚𝑚𝑠𝑠𝑛𝑛𝑎𝑎𝑖𝑖 𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠

= �𝐹𝐹𝚤𝚤��⃗
𝑖𝑖

∙ 𝑠𝑠𝚤𝚤��⃗
�����

𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙𝑠𝑠, 𝑠𝑠𝑚𝑚𝑎𝑎𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛𝑠𝑠

 

 

cos𝜃𝜃1 =
𝐹𝐹𝜃𝜃1
2𝐹𝐹 =

𝛿𝛿ℎ1
𝑐𝑐1

 

⇒ 𝐹𝐹𝜃𝜃1𝑐𝑐1 = 2𝐹𝐹 ∙ 𝛿𝛿ℎ1 

𝑐𝑐1 = 5 
𝑐𝑐2 = 3 
𝑐𝑐3 = 5 
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𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ: 
 
𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 
2𝐹𝐹 𝛿𝛿ℎ1 + 𝐹𝐹 𝛿𝛿ℎ3 + 𝐹𝐹𝐻𝐻3𝛿𝛿𝑥𝑥 = 24000 + 12000 + 30375 = 66375 
𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 = 30125 + 10125 + 26174 = 66375 
 
𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏: 

2𝐹𝐹
40
9 + 𝐹𝐹

32
9 + 𝐹𝐹𝐻𝐻 9 =

80000
3 +

32000
3 + 30375 = 67708

1
3  

𝑁𝑁1𝑐𝑐1 + 𝑁𝑁2𝑐𝑐2 + 𝑁𝑁3𝑐𝑐3 =
291125

9 +
99125

9 +
219125

9 = 67708
1
3 
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5.5 Procedure of the method  
 
The hand calculation of a relatively simple example in the previous section is 
cumbersome. With more complex examples the complexity will increase 
rapidly. This makes a computational procedure attractive to solve the 
redundant FH. 

 
 

A parametric platform makes a good design tool and is advised as a basis for 
the computational procedure, allowing a real-time feedback and to be able to 
present the results of the process visually. Some parameters are fixed, for 
example relating to the geometry of the arch, or the given loads. Other 
parameters depend on the redundant FH which is the unknown to be solved. 
We will denote the two types of parameter with: fixed f and dependant d. 
 
The following parameters are needed. 

- geometry of the arch: 
a) the horizontal projected distance of each segment (δxi) f 
b) the vertical projected distance of each segment (δhi) f  
c) the segments length (li) f 
d) the angle of each segment with the horizontal axis (βsi) f 

 
- draw a force polygon (d) based on the loads (f) which ensures 

equilibrium 
 

- geometry of the thrust line (based on viable presupposed force polygon): 
a) the horizontal projected distance of each segment (δxi), equal to 

arch f 
b) the vertical projected distance of each segment (δhti) d 
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c) the angle of each segment with the horizontal axis (βti) d 
 

- calculate the total complementary energy of the system: 
a) determine the internal axial force arch d:  

b) calculate the eccentricities along the arc length (local coordinate 
system) d: evi 

 
c) calculate the total extension complementary energy d 

d)  calculate the total bending complementary energy d 

This can be done by numerically integrating the area of (Mi)2 along 
the arc length. 

 
e) vary the value of FH until the total complementary Ec,nm energy is at 

a minimum to attain its correct value.  
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An alternative procedure is to square the difference of the area’s under the 
arch and the thrust line of the load, the eccentricity, and minimized these to 
solve the redundancy f and H. 

𝐹𝐹𝐻𝐻𝐻𝐻 = 3000
20
3

= 20000 

 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝛿𝛿ℎ𝑡𝑡𝑖𝑖 = 𝛼𝛼𝑖𝑖𝐻𝐻  

𝛼𝛼1 =
50
20
3

=
3
4

: 𝛼𝛼2 =
1

20
3

=
3

20
:𝛼𝛼3 =

4
20
3

=
3
5

  

 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 

𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =  𝛿𝛿𝑥𝑥 �
1
2
𝛿𝛿ℎ1 + 𝛿𝛿ℎ1 +

1
2
𝛿𝛿ℎ3� = 3 �

1
2

4 + 4 +
1
2

4� = 24  
 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏:  

𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =  
1
2
𝛿𝛿ℎ𝑡𝑡1𝛿𝛿𝑥𝑥 + �𝛿𝛿ℎ𝑡𝑡1 −

1
2
𝛿𝛿ℎ𝑡𝑡2� 𝛿𝛿𝑥𝑥 +

1
2
𝛿𝛿ℎ𝑡𝑡3𝛿𝛿𝑥𝑥 

=
1
2

3
4
𝐻𝐻 3 + �

3
4
𝐻𝐻 −

1
2

3
20

𝐻𝐻�3 +
1
2

3
5
𝐻𝐻 3 =

81
20

𝐻𝐻 

  

𝑏𝑏𝑣𝑣 =  𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 − 𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
81
20

𝐻𝐻 − 24 

 

 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2 = 𝐹𝐹𝐻𝐻2 �
6561𝐻𝐻2

400
−

972𝐻𝐻
5

+ 576� → 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑑𝑑 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀
𝑑𝑑𝐻𝐻

= 0 ⇒
6561
200

𝐻𝐻 −
972

5
= 0 ⇒ 𝐻𝐻 =

160
27

  

𝐹𝐹𝐻𝐻𝐻𝐻 = 20000 ⇒ 𝐹𝐹𝐻𝐻 = 20000
27

160
= 3375 
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The simplified procedure with only the equivalent area’s gives an exact solution 
if the arch and the loads are symmetric. By numerically subtracting the area’s 
under the arch and the thrust line of the load the information on the 
distribution of the eccentricity along the axis is lost. This results in a small error 
in this example due to the arch’s asymmetry. But this method gives a 
sufficiently good result for design purposes.  

𝐹𝐹𝐻𝐻𝐻𝐻 = 3000
20
3

= 20000 
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𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏:  

𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =  
81
20

𝐻𝐻 

 

𝑏𝑏𝑣𝑣 =  𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 − 𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
81
20

𝐻𝐻 − 27 

 

 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2 = 𝐹𝐹𝐻𝐻2 �
6561𝐻𝐻2

400
−

2187𝐻𝐻
10

+ 729� → 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑑𝑑 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀
𝑑𝑑𝐻𝐻

= 0 ⇒
6561
200

𝐻𝐻 −
2187

10
= 0 ⇒ 𝐻𝐻 =

20
3

  

𝐹𝐹𝐻𝐻𝐻𝐻 = 20000 ⇒ 𝐹𝐹𝐻𝐻 = 20000
3

200
= 3000      (𝑏𝑏𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 2.57%) 

 𝑏𝑏𝑥𝑥𝑏𝑏𝑐𝑐𝑒𝑒: 𝐹𝐹𝐻𝐻 = 2923 
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5.6 Contribution of extension to complementary energy  
 
The complementary energy is taken into account as a result of the axial force, 
extension.  
 

 
In the expression for the horizontal thrust the contribution due to the axial 
force can be neglected if the height of the arch is of an order smaller than the 
dimensions related to the height and span of the arch. Basically the extension 
of the members is neglected. 
 

 
  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 𝑁𝑁𝑖𝑖2𝑐𝑐𝑖𝑖 = (𝐹𝐹𝑖𝑖 cos 𝛾𝛾𝑖𝑖)2𝑐𝑐𝑖𝑖 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝐹𝐹𝑖𝑖2 = 𝐹𝐹𝐻𝐻2 + 𝐹𝐹𝑖𝑖𝑉𝑉2   
 
𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 + 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 

12
𝑒𝑒2

⎣
⎢
⎢
⎢
⎢
⎡

1
3 𝛿𝛿ℎ1

2𝑐𝑐1𝐹𝐹𝐻𝐻2 + �
1
3 𝛿𝛿ℎ2

2 + 𝛿𝛿ℎ1𝛿𝛿ℎ2 + 𝛿𝛿ℎ12� 𝑐𝑐2𝐹𝐹𝐻𝐻2 +
1
3 𝛿𝛿ℎ3

2𝑐𝑐3𝐹𝐹𝐻𝐻2

−
2
3𝐹𝐹1𝑣𝑣  𝛿𝛿ℎ1𝛿𝛿𝑥𝑥𝑐𝑐1𝐹𝐹𝐻𝐻 − �𝐹𝐹1𝑣𝑣(2𝛿𝛿ℎ1 + 𝛿𝛿ℎ2) + 𝐹𝐹2𝑣𝑣 �𝛿𝛿ℎ1 +

2
3 𝛿𝛿ℎ2�� 𝛿𝛿𝑥𝑥𝑐𝑐2𝐹𝐹𝐻𝐻

−
2
3𝐹𝐹3𝑣𝑣𝛿𝛿ℎ3𝛿𝛿𝑥𝑥𝑐𝑐3𝐹𝐹𝐻𝐻 ⎦

⎥
⎥
⎥
⎥
⎤

 

+(𝐹𝐹𝐻𝐻2 + 𝐹𝐹1𝑉𝑉2 )𝑐𝑐1 cos2 𝛾𝛾1 + (𝐹𝐹𝐻𝐻2 + 𝐹𝐹2𝑉𝑉2 )𝑐𝑐2 cos2 𝛾𝛾2 + (𝐹𝐹𝐻𝐻2 + 𝐹𝐹3𝑉𝑉2 )𝑐𝑐3 cos2 𝛾𝛾3 
 

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀&𝑁𝑁

𝑑𝑑𝐹𝐹𝐻𝐻
= 0 ⇒ 

 
𝑏𝑏𝑛𝑛𝑑𝑑 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑏𝑏𝑏𝑏𝑥𝑥𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠 cos2 𝛾𝛾𝑖𝑖 = 1:  

𝐹𝐹𝐻𝐻 =
12 �𝐹𝐹1𝑣𝑣𝛿𝛿𝑥𝑥 �

2
3 𝛿𝛿ℎ1𝑐𝑐1 + 2𝛿𝛿ℎ1𝑐𝑐2 + 𝛿𝛿ℎ2𝑐𝑐2� + 𝐹𝐹2𝑣𝑣𝛿𝛿𝑥𝑥 �𝛿𝛿ℎ1𝑐𝑐2 + 2

3 𝛿𝛿ℎ2𝑐𝑐2� + 𝐹𝐹3𝑣𝑣𝛿𝛿𝑥𝑥 �
2
3 𝛿𝛿ℎ3𝑐𝑐3��

12 �23 𝛿𝛿ℎ1
2𝑐𝑐1 + 2

3 𝛿𝛿ℎ2
2𝑐𝑐2 + 2

3 𝛿𝛿ℎ3
2𝑐𝑐3 + 2𝛿𝛿ℎ12𝑐𝑐2 + 2𝛿𝛿ℎ1𝛿𝛿ℎ2𝑐𝑐2� + 𝑒𝑒2[2𝑐𝑐1 + 2𝑐𝑐2 + 2𝑐𝑐3]�������������

𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖 𝑚𝑚𝑛𝑛𝑚𝑚𝑠𝑠𝑑𝑑𝑦𝑦 𝑁𝑁

  

𝑒𝑒𝐻𝐻 𝑒𝑒 ≪ 𝛿𝛿𝑥𝑥, 𝛿𝛿ℎ𝑖𝑖 , 𝑐𝑐𝑖𝑖  𝑒𝑒ℎ𝑏𝑏𝑛𝑛 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑦𝑦 𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚𝑦𝑦 𝑁𝑁 𝑐𝑐𝑏𝑏𝑛𝑛 𝑏𝑏𝑏𝑏 𝑛𝑛𝑏𝑏𝑚𝑚𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 
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5.7 Example semi-circular arch 

The method of this chapter will be demonstrated by the next two examples. 
For a semi-circular statically indeterminate arch with a uniformly distributed 
load the horizontal thrust is determined by minimizing the complementary 
energy, this results in a near exact solution. 
  

𝑐𝑐𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑐𝑐𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  
𝑦𝑦𝑎𝑎𝑠𝑠𝑓𝑓ℎ = (𝑥𝑥𝑐𝑐 − 𝑥𝑥2)1 2⁄  
  
𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏 𝑒𝑒𝑛𝑛𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 (𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏): 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝐻𝐻 =  
𝑒𝑒𝑐𝑐2

8𝐹𝐹𝐻𝐻
  

 

𝑦𝑦𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 = 𝐻𝐻 −
𝐻𝐻(𝑥𝑥 − 𝑅𝑅)2

𝑅𝑅2
=

𝑒𝑒
𝐹𝐹𝐻𝐻

𝑥𝑥𝑐𝑐 − 𝑥𝑥2

2
  

𝑏𝑏𝑣𝑣 = 𝑦𝑦𝑎𝑎𝑠𝑠𝑓𝑓ℎ − 𝑦𝑦𝑎𝑎𝑠𝑠𝑓𝑓ℎ = �(𝑥𝑥𝑐𝑐 − 𝑥𝑥2)1 2⁄ − �
𝑒𝑒
𝐹𝐹𝐻𝐻

𝑥𝑥𝑐𝑐 − 𝑥𝑥2

2
�� 

 
 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2  
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = � 𝑀𝑀2𝑑𝑑𝑥𝑥 =
𝑖𝑖

0
 𝐹𝐹𝐻𝐻2 � �(𝑥𝑥𝑐𝑐 − 𝑥𝑥2)1 2⁄ − �

𝑒𝑒
𝐹𝐹𝐻𝐻

𝑥𝑥𝑐𝑐 − 𝑥𝑥2

2
��

2

𝑑𝑑𝑥𝑥 → 𝑏𝑏𝑒𝑒𝑛𝑛
𝑖𝑖

0
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 =
𝑐𝑐3

6
𝐹𝐹𝐻𝐻2 −

3𝜋𝜋𝑐𝑐4

128
𝑒𝑒𝐹𝐹𝐻𝐻 +

𝑐𝑐5

120
𝑒𝑒2 → 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀&𝑁𝑁

𝑑𝑑𝐹𝐹𝐻𝐻
= 0 ⇒

𝑐𝑐3

3
𝐹𝐹𝐻𝐻 −

3𝜋𝜋𝑐𝑐4

128
𝑒𝑒 = 0 

 

⇒ 𝐹𝐹𝐻𝐻 =  
9𝜋𝜋

128
𝑒𝑒𝑐𝑐 ≈ 0.221 𝑒𝑒𝑐𝑐      (𝑏𝑏𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 4.1%) 

𝑏𝑏𝑥𝑥𝑏𝑏𝑐𝑐𝑒𝑒: 𝐹𝐹𝐻𝐻 =  
2

3𝜋𝜋
𝑒𝑒𝑐𝑐 ≈ 0.212 𝑒𝑒𝑐𝑐 

 

1
2

R l=



  

129 
 

Here is shown the solution using the squared difference of the areas under the 
arch and the thrust line of the load, minimising these to solve the redundancy f, 
which results in the exact solution, with the contribution of the extension being 
neglected. The result with this method is more exact if, apart from an 
approximately symmetric geometry, there are multiple loads or a distributed 
load.  

Now the redundancy f is solved, and the precise rise of the thrust line is known, 
the horizontal thrust Fh is also fixed. The moments in the arch can now be 
determined, this is done be considering the arch as a superposition of two load 
cases; the beam loaded by the uniformly distributed load q and the curved arch 
loaded by the horizontal thrust Fh [65]. 
 
 
 

𝑐𝑐𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑐𝑐𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  
𝑦𝑦 = (2𝑅𝑅𝑥𝑥 − 𝑥𝑥2)1 2⁄   
 
𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏 𝑒𝑒𝑛𝑛𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 (𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏): 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝐹𝐹𝐻𝐻 =  
𝑒𝑒𝑐𝑐2

8𝐻𝐻
=
𝑒𝑒𝑅𝑅2

2𝐻𝐻
 

𝑦𝑦 = 𝐻𝐻 −
𝐻𝐻(𝑥𝑥 − 𝑅𝑅)2

𝑅𝑅2
  

 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  

𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
1
2
𝜋𝜋𝑅𝑅2  

𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏:  

𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =
4
3
𝐻𝐻𝑅𝑅 

 

𝑏𝑏𝑣𝑣 = 𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 − 𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
4
3
𝐻𝐻𝑅𝑅 −

1
2
𝜋𝜋𝑅𝑅2 =

8𝐻𝐻𝑅𝑅 − 3𝜋𝜋𝑅𝑅2

6
 

 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2 = 𝐹𝐹𝐻𝐻2 �
16𝐻𝐻2𝑅𝑅2

9
−

4𝜋𝜋𝐻𝐻𝑅𝑅3

3
+
𝜋𝜋2𝑅𝑅2

4
� → 𝑏𝑏𝑒𝑒𝑛𝑛 

𝑑𝑑𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀
𝑑𝑑𝐹𝐹𝑓𝑓

= 0 ⇒
32𝑅𝑅2

9
𝐻𝐻 −

4𝜋𝜋𝑅𝑅3

3
= 0 

⇒ 𝐻𝐻 =  
3𝜋𝜋
8
𝑅𝑅 

𝐹𝐹𝐻𝐻 =  
𝑒𝑒𝑅𝑅2

2𝐻𝐻
⇒ 𝐻𝐻 =

𝑒𝑒𝑅𝑅2

2𝐹𝐹𝐻𝐻
=

3𝜋𝜋
8
𝑅𝑅 

⇒ 𝐹𝐹𝐻𝐻 =  
4

3𝜋𝜋
𝑒𝑒𝑅𝑅 
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Bending moments should be avoided as much as possible when designing an 
arch. A well designed arch should carry its load efficiently mainly through axial 
forces instead of bending moments. It is important to assess the structural 
behavior and to analyze the load-transfer mechanism of an arch during the 
design process. 
 

Two methods to assess the efficiency of the arch will be presented here; one 
on the stress level with the ratio between the axial (σn) and bending (σm) 
stresses and via the strain-energy with the ratio of the axial (En) and bending 
(Em) strain-energy [66, 67]. 
 
 
 
 
 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝐹𝐹𝐻𝐻 =
4

3𝜋𝜋
𝑒𝑒𝑅𝑅 =

2
3𝜋𝜋

𝑒𝑒𝑐𝑐  

⇒ 𝑦𝑦𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =
3𝜋𝜋(𝑥𝑥𝑐𝑐 − 𝑥𝑥2)

4𝑐𝑐
  

𝑀𝑀𝐹𝐹𝐻𝐻 =  𝐹𝐹𝐻𝐻 ∙ 𝑦𝑦𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
2

3𝜋𝜋
𝑒𝑒𝑐𝑐 ∙ (𝑥𝑥𝑐𝑐 − 𝑥𝑥2)

1
2 =

2𝑒𝑒𝑐𝑐(𝑥𝑥𝑐𝑐 − 𝑥𝑥2)
1
2

3𝜋𝜋
  

𝑀𝑀𝑞𝑞 = −
𝑒𝑒𝑥𝑥
2

(𝑐𝑐 − 𝑥𝑥) 

𝑀𝑀𝑎𝑎𝑠𝑠𝑓𝑓ℎ = 𝑀𝑀𝑞𝑞 + 𝑀𝑀𝐹𝐹𝐻𝐻 =
−3𝜋𝜋𝑥𝑥(𝑐𝑐 − 𝑥𝑥) + 4𝑐𝑐(𝑥𝑥𝑐𝑐 − 𝑥𝑥2)

1
2

6𝜋𝜋
𝑒𝑒 

𝑀𝑀𝑎𝑎𝑠𝑠𝑓𝑓ℎ = 𝑀𝑀𝑞𝑞 + 𝐹𝐹𝐻𝐻 ∙ 𝑦𝑦𝑎𝑎𝑠𝑠𝑓𝑓ℎ  
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When the ratios are close to 1, the load transfer is primarily done by the axial 
force. The more the ratio moves to zero, bending will become predominate. 
With the results of a finite element analysis of the arch an assessment has been 
performed with both methods. In each point along the arc length the 
assessment has been determined and is represented in the graph.  

𝐻𝐻𝑒𝑒𝑠𝑠 𝑏𝑏 = 1:  
𝜎𝜎𝑛𝑛 =

𝑛𝑛
𝑒𝑒

𝜎𝜎𝑚𝑚 =
6𝑏𝑏
𝑒𝑒2
�𝑆𝑆𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒: 

𝜎𝜎𝑛𝑛
𝜎𝜎𝑚𝑚 + 𝜎𝜎𝑛𝑛

= 

𝑛𝑛
6𝑏𝑏
𝑒𝑒 + 𝑛𝑛

∙ 100% 

 

𝐻𝐻𝑒𝑒𝑠𝑠 𝑏𝑏 = 1:  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  
𝜀𝜀 =

𝑛𝑛
𝐸𝐸𝑒𝑒  𝑏𝑏𝑛𝑛𝑑𝑑 𝜅𝜅 =

𝑏𝑏

𝐸𝐸 1
12 𝑒𝑒

3
  

𝐸𝐸𝑛𝑛 =
1
2
𝑛𝑛2

𝐸𝐸𝑒𝑒

𝐸𝐸𝑚𝑚 =
1
2

𝑏𝑏2

𝐸𝐸 1
12 𝑒𝑒

3⎭
⎪
⎬

⎪
⎫

𝑆𝑆𝑒𝑒𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛 𝑏𝑏𝑛𝑛𝑏𝑏𝑠𝑠𝑚𝑚𝑦𝑦 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒: 
𝐸𝐸𝑛𝑛

𝐸𝐸𝑚𝑚 + 𝐸𝐸𝑛𝑛
=

𝑛𝑛2

12𝑏𝑏2

𝑒𝑒2 + 𝑛𝑛2
∙ 100% 

Figure 40 stress and strain energy ratio’s along the axis of the arch[ image 66] 
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In the next example the semi-circular arch is loaded by four point loads. The 
loads have a value and are placed in such a way that the areas under the arch 
and the thrust line are equal, the force polygon and accompanying thrust line 
are thus given. This results immediately in the correct solution; Ecompl,M = 0, thus 
demonstrating the equivalent areas method. The eccentricity of the thrust line, 
which is the difference between the areas under the arch and the thrust line, 
can be used to extend Pucher’s equation to include bending, see section 6.3.  

𝑐𝑐𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑐𝑐𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  
𝑦𝑦 = (2𝑅𝑅𝑥𝑥 − 𝑥𝑥2)1 2⁄   
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 
𝑅𝑅 = 4: 𝛿𝛿𝑥𝑥 = 2 
 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  

𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ =
1
2
𝜋𝜋𝑅𝑅2 = 8𝜋𝜋  

 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏:  

𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 = 2 �
1
2
∙

1
2
𝛿𝛿ℎ𝑡𝑡1𝛿𝛿𝑥𝑥� + 2 �𝛿𝛿ℎ𝑡𝑡1𝛿𝛿𝑥𝑥 +

1
2
𝛿𝛿ℎ𝑡𝑡2𝛿𝛿𝑥𝑥� + (𝛿𝛿ℎ𝑡𝑡1 + 𝛿𝛿ℎ𝑡𝑡2)𝛿𝛿𝑥𝑥 = 8𝜋𝜋 

𝑏𝑏𝑣𝑣 = 𝐸𝐸𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 − 𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ = 8𝜋𝜋 − 8𝜋𝜋 = 0 
 𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2 = 0 
 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐹𝐹𝐻𝐻 = 2: Σ𝑀𝑀𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡,𝑎𝑎𝑎𝑎𝑚𝑚𝑥𝑥 = 0 ⇒ 
3
5
𝜋𝜋1 +

5
5
𝜋𝜋3 + 2

7
5
𝜋𝜋 −

8
5
𝜋𝜋4 = 0 
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6 The stress function of arches 
 

6.1 Introduction 
 
There are two expressions using stress functions for internal forces which are 
relevant for arches, the 4th order in-plane stress equation which includes the 
condition of compatibility, and the 2nd order Pucher’s equation which is only 
based on equilibrium. 
Because the plane stress equation also concerns compatibility it is suited to 
solve statically indeterminate problems depending on the support conditions. 
Pucher’s equation is used for membrane solutions, which disregard bending 
moments [68]. In fact Pucher’s equation is closely related to the membrane 
and cable equations. 
 

The plane stress equation does not contain geometric information about 
curved structures. The other three equations incorporate the shape of the 
curved surface by means of the shape function. The cable equation and 
Pucher’s equation, in contrast to the membrane equation, is concerned with 
the horizontal projection of the internal forces and the horizontal support 
reactions respectively. If the curved surface is very shallow, then the three 2nd 

𝑝𝑝𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥4 + 2

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4 = 0 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 

𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 ,𝑛𝑛𝑥𝑥𝑦𝑦 = −

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 ,𝑛𝑛𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2  

𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 − 2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 +

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = −𝑝𝑝𝑜𝑜 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 ,𝑛𝑛�𝑥𝑥𝑥𝑥 = −

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 ,𝑛𝑛�𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2  

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝑛𝑛𝑥𝑥𝑥𝑥  
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 + 2𝑛𝑛𝑥𝑥𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 + 𝑛𝑛𝑦𝑦𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = −𝑝𝑝𝑜𝑜  

𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

𝐻𝐻𝑥𝑥  
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 + 2𝐻𝐻𝑥𝑥𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 + 𝐻𝐻𝑦𝑦

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = −𝑝𝑝𝑜𝑜   
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order equations are practically similar, where the cable equation as given here 
represents a discretised surface, such as cable nets. But the horizontal support 
reactions can also be represented as a uniformly distributed force. 
 

6.2 Funicular arches 
 
In chapter 2 it was explained that the form diagram (shape function) of a cable 
or arch, which in these cases was the funicular line, is similar to the bending 
moment diagram for a beam with the same load, span and support conditions. 
Here an explanation is given using the stress and shape functions, and Pucher’s 
equation. 

 
Two examples will be used, one with a uniformly distributed load and one with 
a linear distributed load. For both cases a shape function based on the load 
transfer can be derived, the arch will have the same exact shape. For the 
uniformly distributed load this results in the parabolic form diagram and the 
linear distributed load in a cubic form diagram. 
 

�𝑀𝑀𝑠𝑠 = 0: 
𝑉𝑉𝐴𝐴𝑥𝑥 − 𝐹𝐹1𝑏𝑏1 − 𝐹𝐹2𝑏𝑏2 �������������

𝑀𝑀𝑥𝑥

− 𝐻𝐻 ∙ 𝑧𝑧𝑖𝑖 = 0 

 
𝑀𝑀𝑥𝑥 = 𝐻𝐻 ∙ 𝑧𝑧𝑖𝑖 
 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 = −𝑝𝑝𝑜𝑜 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  

 
𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 / 𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 

𝐻𝐻 
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2 = −𝑒𝑒 ⇒ 𝑉𝑉 = 𝐻𝐻

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥  

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:  
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2 = −𝑒𝑒 ⇒ 𝑉𝑉 =

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥  
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Pucher’s equation will be used for both examples to derive the stress function. 

 
Interestingly the second derivatives of the shape function (load / arch) and of 
the stress function are reciprocal and their product is equal to the load. 

𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑: 
𝑧𝑧(𝑥𝑥) = −𝑐𝑐1𝑥𝑥2 + 𝑐𝑐2 
𝑧𝑧(0) = −𝑐𝑐102 + 𝑐𝑐2 = 𝐻𝐻∗ 
𝑧𝑧(𝑏𝑏) = −𝑐𝑐1𝑏𝑏2 + 𝑐𝑐2 = 0  

⇒ 𝑐𝑐1 =
𝐻𝐻∗

𝑏𝑏2 ;  𝑐𝑐2 = 𝐻𝐻∗  

𝑧𝑧(𝑥𝑥) = 𝐻𝐻∗ �1 −
𝑥𝑥2

𝑏𝑏2�
 

 
 
  
𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑: 
𝑧𝑧(𝑥𝑥) = −𝑐𝑐1𝑥𝑥3 + 𝑐𝑐2𝑥𝑥 

𝑧𝑧�𝑐𝑐 2� � = −𝑐𝑐1�𝑐𝑐 2� �
3

+ 𝑐𝑐2𝑥𝑥 = 𝐻𝐻∗ 
𝑧𝑧(𝑐𝑐) = −𝑐𝑐1𝑐𝑐3 + 𝑐𝑐2𝑥𝑥 = 0  

⇒ 𝑐𝑐1 =
8𝐻𝐻∗

3𝑐𝑐3 ;  𝑐𝑐2 =
8𝐻𝐻∗

3𝑐𝑐   

𝑧𝑧(𝑥𝑥) =
8𝐻𝐻∗

3𝑐𝑐3 �
𝑐𝑐𝑥𝑥 −

𝑥𝑥3

𝑐𝑐 �
 

 
 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= 𝑒𝑒 

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) = 𝐻𝐻∗ �1 −
𝑥𝑥2

𝑏𝑏2
� ⇒

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= −
2𝐻𝐻∗

𝑏𝑏2
  

𝜙𝜙 = �
𝑒𝑒

−2𝐻𝐻∗
𝑏𝑏2

𝑑𝑑𝑦𝑦 ⇒ 𝜙𝜙 = −
𝑒𝑒𝑏𝑏2

4𝐻𝐻∗
𝑦𝑦2 + ⋯ 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −
𝑒𝑒𝑏𝑏2

2𝐻𝐻∗
= 𝐻𝐻  

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= 𝑒𝑒 ⇒ ( −
𝑏𝑏2

2𝐻𝐻∗���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

𝑒𝑒⏟
𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙

)

�����������
𝐻𝐻

∙ −
2𝐻𝐻∗

𝑏𝑏2���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

= 𝑒𝑒  

𝑀𝑀𝑚𝑚𝑞𝑞𝑓𝑓𝑖𝑖𝑣𝑣(𝑥𝑥) =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
𝑒𝑒𝑏𝑏2

2𝐻𝐻∗
∙ 𝐻𝐻∗ �1 −

𝑥𝑥2

𝑏𝑏2
� =

𝑒𝑒(𝑏𝑏2 − 𝑥𝑥2)
2
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The diagram of the equivalent moment, the product of the horizontal thrust H 
and the shape function, is the mirror image of the shape function. 

  
It can be observed this holds for both examples. 
 

Note that the apex of both the equivalent moment and the shape function is 
eccentric. 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

=
𝑒𝑒𝑥𝑥
𝑐𝑐

 

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
8𝐻𝐻∗

3𝑐𝑐2
�𝑐𝑐𝑥𝑥 −

𝑥𝑥3

𝑐𝑐
� ⇒

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= −
16𝐻𝐻∗𝑥𝑥
𝑐𝑐3

  

𝜙𝜙 = �
𝑒𝑒𝑥𝑥
𝑐𝑐

−16𝐻𝐻∗𝑥𝑥
𝑐𝑐3

𝑑𝑑𝑦𝑦 ⇒ 𝜙𝜙 = −
𝑒𝑒𝑐𝑐2

4𝐻𝐻∗
𝑦𝑦2 + ⋯ 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
= 𝐻𝐻  

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

=
𝑒𝑒𝑥𝑥
𝑐𝑐
⇒ (−

𝑐𝑐3

16𝐻𝐻∗𝑥𝑥�����
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

𝑒𝑒𝑥𝑥
𝑐𝑐�

𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙

)

�����������
𝐻𝐻

∙ −
16𝐻𝐻∗𝑥𝑥
𝑐𝑐3�����

𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

=
𝑒𝑒𝑥𝑥
𝑐𝑐

  

𝑀𝑀𝑚𝑚𝑞𝑞𝑓𝑓𝑖𝑖𝑣𝑣(𝑥𝑥) =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
∙

8𝐻𝐻∗

3𝑐𝑐2
�𝑐𝑐𝑥𝑥 −

𝑥𝑥3

𝑐𝑐
� =

𝑒𝑒(𝑐𝑐2𝑥𝑥 − 𝑥𝑥3)
6𝑐𝑐
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The consequence of this is that the form diagram, the shape function, is equal 
to the thrust line of the load and thus equal to the equivalent bending moment 
diagram. 
 
The distribution of the shear force of the equivalent beam and the transfer of 
the vertical load of the arch or cable are equal and produce the already derived 
horizontal thrust. 

This example looks trivial, but it is important as it shows that if the shape 
function of the arch is exactly the same as the thrust line, the form diagram, it 
is equal to the moment diagram of the equivalent beam. 
 
If the parabolic arch is rotated around the z-axis to form a shell of revolution 
with a uniformly distributed load there will be hoop forces besides meridian 
forces, see chapter 7. 
 
Both the shape function and the stress function are parabolic. If the arch is a 2D 
structure in a plane surface then the horizontal thrust is a discrete force. But it 
can be observed that both functions are in fact a 3D surface. Which are mono- 
clastic surfaces along an axis in perpendicular directions.  

𝐻𝐻∗ =
𝑒𝑒𝑏𝑏2

2𝐻𝐻 ⇐ �
𝑉𝑉 =

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥 = −𝑒𝑒𝑥𝑥

𝑉𝑉 = 𝐻𝐻
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥 = −𝐻𝐻

2𝐻𝐻∗

𝑏𝑏2 𝑥𝑥
 

 

𝐻𝐻∗ =
𝑒𝑒𝑐𝑐2

16𝐻𝐻 ⇐ �
𝑉𝑉 =

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥 =

𝑒𝑒𝑐𝑐
6 −

𝑒𝑒
2𝑐𝑐 𝑥𝑥

2

𝑉𝑉 = 𝐻𝐻
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥 = 𝐻𝐻 �

8𝐻𝐻∗

3𝑐𝑐 −
8𝐻𝐻∗

𝑐𝑐3 𝑥𝑥2�
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The thrust is therefore uniformly distributed, h [N/m]. The discrete value of the 
thrust H [N] / h [N/m] is the difference in slope of the stress function. 
 

 
  

𝜙𝜙(𝑦𝑦) =
𝑝𝑝𝑏𝑏2

4𝐻𝐻∗
𝑦𝑦2 

𝑐𝑐 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

=
𝑝𝑝𝑏𝑏2

2𝐻𝐻∗
𝑦𝑦2  

𝐻𝐻 = ℎ ∙ 2𝑏𝑏 = �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
2
− �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
1

= 𝜃𝜃  

𝐻𝐻𝑒𝑒𝑠𝑠: 𝑏𝑏 =
1
2

,𝑦𝑦 =
1
2

 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = −
1
2

  

𝑐𝑐1 = 𝑐𝑐2 =
𝑝𝑝𝑏𝑏2

4𝐻𝐻∗
⇒ 𝜃𝜃1 2⁄ = 𝑐𝑐1 + 𝑐𝑐2 =

𝑝𝑝𝑏𝑏2

2𝐻𝐻∗
⇒ ℎ =

𝑝𝑝𝑏𝑏2

2𝐻𝐻∗
  

𝐻𝐻𝑒𝑒𝑠𝑠: 𝑏𝑏 = 1,𝑦𝑦 = 1 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = −1  

𝑐𝑐1 = 𝑐𝑐2 =
𝑝𝑝𝑏𝑏2

2𝐻𝐻∗
⇒ 𝜃𝜃1 = 𝑐𝑐1 + 𝑐𝑐2 =

𝑝𝑝𝑏𝑏2

𝐻𝐻∗
⇒ ℎ =

𝑝𝑝𝑏𝑏2

2𝐻𝐻∗
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6.3 Non funicular arches 
 
In this example the load and the arch have different functions. The load being a 
linear distributed load has a cubic shape function and the arch shape is 
parabolic. 

 
First the relation has to be established between the two functions. This is done 
by minimising the complementary energy, as shown in chapter 5. It seems the 
rise mid span of both functions is equal. Because the thrust line and the axis of 
the arch do not coincide, bending moments in the arch are expected.  

𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)

𝑐𝑐2
 

 
𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑛𝑛𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑: 

�̃�𝑧𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙(𝑥𝑥) =
8ℎ
3𝑐𝑐2

�𝑐𝑐𝑥𝑥 −
𝑥𝑥3

𝑐𝑐
�  

 
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑏𝑏𝑠𝑠𝑐𝑐ℎ:  

𝐸𝐸𝑎𝑎𝑠𝑠𝑓𝑓ℎ = �
4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)

𝑐𝑐2
 𝑑𝑑𝑥𝑥 =

2𝑐𝑐𝐻𝐻∗

3

𝑖𝑖

0
  

𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑:  

𝐸𝐸𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 = �
8ℎ
3𝑐𝑐2

�𝑐𝑐𝑥𝑥 −
𝑥𝑥3

𝑐𝑐
�  𝑑𝑑𝑥𝑥 =

2𝑐𝑐ℎ
3

𝑖𝑖

0
 

  

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑀𝑀 = 𝑀𝑀2 = 𝐹𝐹𝐻𝐻2𝑏𝑏𝑣𝑣2 = 𝐹𝐹𝐻𝐻2 �
2𝑐𝑐𝐻𝐻∗

3
−

2𝑐𝑐ℎ
3
� → 𝑏𝑏𝑒𝑒𝑛𝑛  

⇒ 𝐻𝐻∗ = ℎ 
 
 
  

𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 

𝑧𝑧(𝑥𝑥)  = −𝑐𝑐1�𝑥𝑥 − 𝑐𝑐
2� �

2
+ 𝑐𝑐2 

𝑧𝑧(0)  = −𝑐𝑐1�0 − 𝑐𝑐
2� �

2
+ 𝑐𝑐2 = 0 

𝑧𝑧�𝑐𝑐 2� � = −𝑐𝑐1�𝑐𝑐 2� − 𝑐𝑐
2� �

2
+ 𝑐𝑐2 = 𝐻𝐻∗ 

⇒ 𝑐𝑐1 = −
4𝐻𝐻∗

𝑐𝑐2 ;  𝑐𝑐2 = 𝐻𝐻∗  

𝑧𝑧(𝑥𝑥)  =
4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)

𝑐𝑐2   
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For this case Pucher’s equation will be extended by adding the second order 
differential equation (M-hill) of the beam that concerns equilibrium. The stress 
function will be derived, and again the second derivatives of the functions for 
the thrust line and the stress function are reciprocal but its product is no longer 
equal to the load but is only a part of it. The difference of load is carried by 
bending and shear forces in the arch. The moment distribution can be derived 
from this difference.  

 
It can also be concluded that the symmetric part of the linear distributed load 
for which the thrust line is parabolic is carried by the symmetric and parabolic 
arch. The antisymmetric part of the load results in bending in the arch. 
 

 
The cubic thrust line of the linear distributed load is “split” into a parabolic one, 
which is the axis of the arch, and for the symmetric load and bending of the 
arch for the antisymmetric load.  
 

𝑏𝑏𝑥𝑥𝑒𝑒𝑏𝑏𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2�����

𝐹𝐹𝑓𝑓𝑓𝑓ℎ𝑚𝑚𝑠𝑠′𝑠𝑠 𝑚𝑚𝑞𝑞𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

+ 
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2�

𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑞𝑞𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

= −𝑒𝑒  

 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2�����

𝐹𝐹𝑓𝑓𝑓𝑓ℎ𝑚𝑚𝑠𝑠′𝑠𝑠 𝑚𝑚𝑞𝑞𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

=
𝑒𝑒
2  

 

 
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2�

𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑞𝑞𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

= 𝑒𝑒 �
𝑥𝑥
𝑐𝑐 −

1
2�

  

 

𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2 +

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2 =

𝑒𝑒𝑥𝑥
𝑐𝑐  

𝑒𝑒 �
𝑥𝑥
𝑐𝑐 −

1
2� + ( −

𝑐𝑐2

8𝐻𝐻∗���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

𝑒𝑒
2⏟

𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙

) ∙ −
8𝐻𝐻∗

𝑐𝑐2���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

=
𝑒𝑒𝑥𝑥
𝑐𝑐   

⇒ 𝑒𝑒 �
𝑥𝑥
𝑐𝑐
−

1
2� +

𝑒𝑒
2 =

𝑒𝑒𝑥𝑥
𝑐𝑐  
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The mechanics of the load transfer is partly by the moment hill (slope of the 
moment diagram / shear force) and partly by the slope on the shape of the 
arch (“arch action”). 

The first part is accompanied by bending moments and the second part by an 
axial force. 
 

𝑀𝑀(𝑥𝑥) =
𝑒𝑒(2𝑥𝑥3 − 3𝑐𝑐𝑥𝑥2 + 𝑐𝑐2𝑥𝑥)

12𝑐𝑐   

𝑉𝑉(𝑥𝑥) =
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥 =

𝑒𝑒(6𝑥𝑥2 − 6𝑐𝑐𝑥𝑥 + 𝑐𝑐2)
12𝑐𝑐  

 
 

𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

+
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

=
𝑒𝑒𝑥𝑥
𝑐𝑐

  

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)

𝑐𝑐2
⇒
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

= −
8𝐻𝐻∗

𝑐𝑐2
∶  �̃�𝑧𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙(𝑥𝑥) =

8ℎ
3𝑐𝑐2

�𝑐𝑐𝑥𝑥 −
𝑥𝑥3

𝑐𝑐
� ⇒

𝑑𝑑2�̃�𝑧
𝑑𝑑𝑥𝑥2

= −
16ℎ𝑥𝑥
𝑐𝑐3

 

𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝐻𝐻 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑:𝜙𝜙 = �
𝑒𝑒𝑥𝑥
𝑐𝑐
𝑑𝑑2�̃�𝑧
𝑑𝑑𝑥𝑥2

𝑑𝑑𝑦𝑦 =�
𝑒𝑒𝑥𝑥
𝑐𝑐

−16ℎ𝑥𝑥𝑐𝑐3
𝑑𝑑𝑦𝑦 ⇒𝜙𝜙 = −

𝑒𝑒𝑐𝑐2

32ℎ
𝑦𝑦2+.. 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

= −
𝑒𝑒𝑐𝑐2

16ℎ
= −

𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
= 𝐻𝐻  

𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

+
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

=
𝑒𝑒𝑥𝑥
𝑐𝑐
⇒
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

+ ( −
𝑐𝑐2

8𝐻𝐻∗���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

𝑒𝑒
2⏟

𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙

)

�����������
𝐻𝐻

∙ −
8𝐻𝐻∗

𝑐𝑐2���
𝑠𝑠𝑚𝑚𝑓𝑓𝑖𝑖𝑎𝑎𝑠𝑠𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖

=
𝑒𝑒𝑥𝑥
𝑐𝑐

  

⇒
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

= 𝑒𝑒 �
𝑥𝑥
𝑐𝑐
−

1
2
�  

𝑀𝑀(𝑥𝑥) = �𝑒𝑒�
𝑥𝑥
𝑐𝑐
−

1
2
� 𝑑𝑑𝑥𝑥 = 𝑒𝑒 �

𝑥𝑥3

6𝑐𝑐
−
𝑥𝑥2

4
� + 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2 

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

𝑀𝑀(0) = 𝑀𝑀(𝑐𝑐) = 0 ⇒ 𝐶𝐶1 =
𝑒𝑒𝑐𝑐
12

;𝐶𝐶2 = 0  

𝑀𝑀(𝑥𝑥) =
𝑒𝑒(2𝑥𝑥3 − 3𝑐𝑐𝑥𝑥2 + 𝑐𝑐2𝑥𝑥)

12𝑐𝑐
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The moment diagram of the equivalent beam is no longer equal to the shape 
function of the arch, but it is still equal to the thrust line of the linear 
distributed load.  

If this example is revolved around the vertical axis at mid span the load will be 
carried by membrane forces only; meridian, hoop and shear forces. 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2�

𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

∙
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2�

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 𝑎𝑎𝑠𝑠𝑓𝑓ℎ / 𝑓𝑓𝑎𝑎𝑏𝑏𝑖𝑖𝑚𝑚

= 𝑒𝑒 

𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2�

𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑞𝑞𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

+
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2�

𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

∙
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2�

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 𝑎𝑎𝑠𝑠𝑓𝑓ℎ / 𝑓𝑓𝑎𝑎𝑏𝑏𝑖𝑖𝑚𝑚

= 𝑒𝑒  

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

+
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2�

𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥�

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 𝑎𝑎𝑠𝑠𝑓𝑓ℎ / 𝑓𝑓𝑎𝑎𝑏𝑏𝑖𝑖𝑚𝑚

= 𝑉𝑉 

 

𝑀𝑀𝑚𝑚𝑞𝑞𝑓𝑓𝑖𝑖𝑣𝑣(𝑥𝑥) =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

∙ �̃�𝑧𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙(𝑥𝑥) =
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
∙

8𝐻𝐻∗

3𝑐𝑐2
�𝑐𝑐𝑥𝑥 −

𝑥𝑥3

𝑐𝑐
� =

𝑒𝑒(𝑐𝑐2𝑥𝑥 − 𝑥𝑥3)
6𝑐𝑐

 

 𝑀𝑀𝑚𝑚𝑞𝑞𝑓𝑓𝑖𝑖𝑣𝑣(𝑥𝑥) = 𝐻𝐻 ∙ 𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) −𝑀𝑀(𝑥𝑥) =
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
∙

4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)
𝑐𝑐2

−
𝑒𝑒(2𝑥𝑥3 − 3𝑐𝑐2𝑥𝑥 + 𝑐𝑐2𝑥𝑥)

12𝑐𝑐
=
𝑒𝑒(𝑐𝑐2𝑥𝑥 − 𝑥𝑥3)

6𝑐𝑐
 

 

𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑒𝑒𝑠𝑠𝑏𝑏𝑛𝑛𝑐𝑐𝐻𝐻𝑏𝑏𝑠𝑠: 

𝑉𝑉 = 𝐻𝐻
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥�

"𝑎𝑎𝑠𝑠𝑓𝑓ℎ 𝑎𝑎𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛"

+
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥�

𝑠𝑠ℎ𝑚𝑚𝑎𝑎𝑠𝑠 𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚 /
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

 

= −
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
4𝐻𝐻∗(𝑐𝑐 − 2𝑥𝑥)

𝑐𝑐2
+
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥

 

𝑉𝑉 = −
𝑒𝑒(𝑐𝑐 − 2𝑥𝑥)

4
+
𝑒𝑒(6𝑥𝑥2 − 6𝑐𝑐𝑥𝑥 + 𝑐𝑐2)

12𝑐𝑐
 

=
𝑒𝑒(3𝑥𝑥2 − 𝑐𝑐2)

6𝑐𝑐
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The purpose of these examples is to distinguish between the moment hill, 
stress function, function of the load (thrust line, form diagram) and the shape 
function of the structure (arch, cable).  
These different functions can be expanded from arches and cables to shells and 
membranes, as shown in chapters 7 and 8. 
 
In chapter 5 the moment in the arch was determined by multiplying the 
horizontal thrust with the eccentricity ev of the thrust line in respect to the axis 
of the arch. The eccentricity is obtained by subtracting the function of the 
thrust line from the shape function of the arch.  
 
By using the eccentricity the 2nd order differential equation, thus Pucher’s 
equation including bending, in one direction can be reformulated as a function 
of the stress function, the shape function and the eccentricity with the thrust 
line.  

The reformulated equation of Pucher is applicable to arches, for shell 
structures the relationship between the stress function and the shape function 
is more complex, see chapter 8. With arches deviations of the thrust line from 
its axis results in bending moments. For shell structures this is not always the 
case, additional internal forces (e.g. the hoop forces in domes) can alter the 
shape of the thrust surface of the load so that it does coincides with the shells 
centroidal plane and thus avoiding bending moment, see chapter 7. But if 
additional internal forces are not sufficient to ensure a membrane state of 
stress in a shell, bending moment and shear forces will be needed, see sections 
8.10 and 8.11. 
 
 

𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛𝑏𝑏 𝑑𝑑𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

−𝑝𝑝𝑜𝑜 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 

𝑠𝑠𝑏𝑏𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑑𝑑 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

−𝑒𝑒 =  
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2 �

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2 +

𝑑𝑑2𝑏𝑏𝑣𝑣
𝑑𝑑𝑥𝑥2 �
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Using the reformulated Pucher’s equation results in the same equations for the 
bending moment M, the load transfer V and the load q. 

 

𝑏𝑏𝑣𝑣(𝑥𝑥) = �̃�𝑧𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙(𝑥𝑥) − 𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 

𝑏𝑏𝑣𝑣 =
8𝐻𝐻∗

3𝑐𝑐2
�𝑐𝑐𝑥𝑥 −

𝑥𝑥3

𝑐𝑐
� −

4𝐻𝐻∗(𝑐𝑐𝑥𝑥 − 𝑥𝑥2)
𝑐𝑐2

= −
8𝐻𝐻∗𝑥𝑥3 − 12𝑐𝑐𝐻𝐻∗𝑥𝑥2 + 4𝑐𝑐2𝐻𝐻∗𝑥𝑥

3𝑐𝑐3
 

 

𝑀𝑀(𝑥𝑥) = 𝐻𝐻 ∙ 𝑏𝑏𝑣𝑣(𝑥𝑥) =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

∙ 𝑏𝑏𝑣𝑣(𝑥𝑥) = −
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
�−

8𝐻𝐻∗𝑥𝑥3 − 12𝑐𝑐𝐻𝐻∗𝑥𝑥2 + 4𝑐𝑐2𝐻𝐻∗𝑥𝑥
3𝑐𝑐3

� 

=
𝑒𝑒(2𝑥𝑥3 − 3𝑐𝑐𝑥𝑥2 + 𝑐𝑐2𝑥𝑥)

12𝑐𝑐
 

 

𝑉𝑉 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥

⇒ 𝑉𝑉 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

�
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑏𝑏𝑣𝑣
𝑑𝑑𝑥𝑥

�  

𝑒𝑒 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

+
𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2

⇒ 𝑒𝑒 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

�
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

+
𝑑𝑑2𝑏𝑏𝑣𝑣
𝑑𝑑𝑥𝑥2

�  

 

𝑉𝑉 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

�
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑏𝑏𝑣𝑣
𝑑𝑑𝑥𝑥

� = −
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
 �

4𝐻𝐻∗(𝑐𝑐 − 2𝑥𝑥)
𝑐𝑐2

−
24𝐻𝐻∗𝑥𝑥2 − 24𝑐𝑐𝐻𝐻∗𝑥𝑥 + 4𝑐𝑐2𝐻𝐻∗

3𝑐𝑐3
� =

𝑒𝑒(3𝑥𝑥2 − 𝑐𝑐2)
6𝑐𝑐

 

𝑒𝑒 =
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2

�
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

+
𝑑𝑑2𝑏𝑏𝑣𝑣
𝑑𝑑𝑥𝑥2

� = −
𝑒𝑒𝑐𝑐2

16𝐻𝐻∗
�−

8𝐻𝐻∗

𝑐𝑐2
−

8𝐻𝐻∗(2𝑥𝑥 − 𝑐𝑐)
𝑐𝑐3

� =
𝑒𝑒𝑥𝑥
𝑐𝑐

 

𝑒𝑒𝑐𝑐
6  

𝑒𝑒𝑐𝑐
3  
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6.4 General properties of stress functions 
 
In this section the static-geometric analogy in the equations of thin shell 
structures [69] will be generalized to beams, this extends to the application of 
the first and second moment-area theorem’s of Mohr.  
A general solution to the plane stress equation will be presented for beams and 
the solution for an arch by means of the plane stress equation will be 
compared to the solution of Pucher’s equation. 

For beams the parameters that are covered by the differential equation range 
from the load q to the displacement w, in the static-geometric analogy this 
ranges from the Gaussian curvature kG to the stress function ф. 
For this purpose a beam is compared to the cross section of a stress function of 
a slab-like beam. Here is a duality, the beam is a line element where the 
internal forces are a function of the coordinate along the axis and the slab like 
beam adheres to the plane stress equation and is thus as a surface element a 
function of both axis of the surface.  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 −  𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦 𝐻𝐻𝑒𝑒𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐 

𝑒𝑒 = 𝐸𝐸𝐸𝐸
𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4                                                       𝑘𝑘𝐺𝐺 =

1
𝐸𝐸𝑒𝑒
𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4  

𝑉𝑉 = −𝐸𝐸𝐸𝐸
𝑑𝑑3𝑤𝑤
𝑑𝑑𝑥𝑥3   

𝑀𝑀 = −𝐸𝐸𝐸𝐸
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2  , 𝜅𝜅 =  

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2                          𝑛𝑛 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  

𝜑𝜑 =
𝑑𝑑𝑤𝑤
𝑑𝑑𝑥𝑥                                                              𝑐𝑐 =  

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥  

𝑤𝑤                                                                        𝜙𝜙 
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The internal forces of a beam can be determined using the stress function [70], 
again here is a duality. The internal forces of a beam are only a function of the 
coordinate along the axis and the stress functions are a function of a surface, 
the surface of the beam. In beam theory we assume the beam is just a line 
element and we reintroduce the second dimension, the height, back when the 
stresses are calculated.  

 
Now the static-geometric analogy has been established for beams, it is possible 
to apply Mohr’s moment-area theorems to the stress function [71]. 
This will be done by a generalisation of Mohr's first and second moment-area 
theorem: 
 

- the change in rotation (ϕ) / slope (s), the first derivative of the function, 
over a distance along the axis is equal to the area of the second 
derivative over that distance 

- the intersection of the tangents of the rotations / slopes is in the same 
position, along the axis, as the centroid of the area of the diagram of the 
second derivative 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:                              𝑝𝑝𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝐸𝐸𝐸𝐸
𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4 = 𝑒𝑒                                      

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4 = 0  

                                                             𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

                                                             𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  

 
 
 

𝑁𝑁𝑥𝑥 = � 𝑛𝑛𝑥𝑥𝑥𝑥 𝑑𝑑𝑦𝑦 =
𝑦𝑦2

𝑦𝑦1
�

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  𝑑𝑑𝑦𝑦 = �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦�𝑦𝑦2

−
𝑦𝑦2

𝑦𝑦1
�
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦�𝑦𝑦1

= 𝑐𝑐2 − 𝑐𝑐1 = �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦�𝑦𝑦

 

  

𝑀𝑀 = � (𝑦𝑦 − 𝑦𝑦1)𝑛𝑛𝑥𝑥𝑥𝑥 𝑑𝑑𝑦𝑦 =
𝑦𝑦2

𝑦𝑦1
� (𝑦𝑦 − 𝑦𝑦1)

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 𝑑𝑑𝑦𝑦 = �(𝑦𝑦 − 𝑦𝑦1)

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦�𝑦𝑦1

𝑦𝑦2
−

𝑦𝑦2

𝑦𝑦1
�

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦  𝑑𝑑𝑦𝑦

𝑦𝑦2

𝑦𝑦1
 

⇒ 𝑀𝑀 = (𝑦𝑦2 − 𝑦𝑦1)𝑐𝑐2 − [𝜙𝜙2 − 𝜙𝜙1] 
 
 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 − 𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦   
𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝜑𝜑2 − 𝜑𝜑1 = �
𝑀𝑀
𝐸𝐸𝐸𝐸 𝑑𝑑𝑥𝑥 =

𝑥𝑥2

𝑥𝑥1
� 𝜅𝜅 𝑑𝑑𝑥𝑥 =
𝑥𝑥2

𝑥𝑥1
𝜃𝜃                              𝑐𝑐2 − 𝑐𝑐1 = � 𝑛𝑛𝑑𝑑𝑦𝑦 =

𝑦𝑦2

𝑦𝑦1
𝑁𝑁 

 
  
𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝑤𝑤2 − 𝑤𝑤1 = 𝜑𝜑1(𝑥𝑥2 − 𝑥𝑥1) + �
𝑀𝑀
𝐸𝐸𝐸𝐸 (𝑥𝑥2 − 𝑥𝑥)𝑑𝑑𝑥𝑥

𝑥𝑥2

𝑥𝑥1
             𝜙𝜙2 − 𝜙𝜙1 = 𝑐𝑐1(𝑦𝑦2 − 𝑦𝑦1) + � 𝑛𝑛(𝑦𝑦2 − 𝑦𝑦)𝑑𝑑𝑦𝑦

𝑦𝑦2

𝑦𝑦1
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𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐 − 𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦   
𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝜑𝜑2 − 𝜑𝜑1 = �
𝑀𝑀
𝐸𝐸𝐸𝐸
𝑑𝑑𝑥𝑥 =

𝑥𝑥2

𝑥𝑥1
� 𝜅𝜅 𝑑𝑑𝑥𝑥 =
𝑥𝑥2

𝑥𝑥1
𝜃𝜃                              𝑐𝑐2 − 𝑐𝑐1 = � 𝑛𝑛𝑑𝑑𝑦𝑦 =

𝑦𝑦2

𝑦𝑦1
𝑁𝑁  

𝜑𝜑2 − 𝜑𝜑1  =
𝑀𝑀
𝐸𝐸𝐸𝐸

                                                                        𝑐𝑐2 − 𝑐𝑐1 = 0 −
1
2
ℎ
2
∙

6
ℎ2
𝑀𝑀 = −

ℎ
4

6
ℎ2
𝑝𝑝𝑐𝑐2

8
= −

3
16

𝑝𝑝𝑐𝑐2

ℎ
= 𝑁𝑁𝑥𝑥 

 
  
𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝑤𝑤2 − 𝑤𝑤1 = 𝜑𝜑1(𝑥𝑥2 − 𝑥𝑥1) + �
𝑀𝑀
𝐸𝐸𝐸𝐸

(𝑥𝑥2 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥2

𝑥𝑥1
              𝜙𝜙2 − 𝜙𝜙1 = 𝑐𝑐1(𝑦𝑦2 − 𝑦𝑦1) + � 𝑛𝑛(𝑦𝑦2 − 𝑦𝑦)𝑑𝑑𝑦𝑦

𝑦𝑦2

𝑦𝑦1
 

𝑤𝑤2 − 𝑤𝑤1 = −
𝑀𝑀
𝐸𝐸𝐸𝐸

∙ −𝑐𝑐 +
𝑀𝑀
𝐸𝐸𝐸𝐸

∙ −
𝑐𝑐
2

=
𝑀𝑀𝑐𝑐2

2𝐸𝐸𝐸𝐸
                           𝜙𝜙2 − 𝜙𝜙1 = −

3
16

𝑝𝑝𝑐𝑐2

ℎ
∙ −

ℎ
2

+ −
3

16
𝑝𝑝𝑐𝑐2

ℎ
∙ −

ℎ
6

=
1

16
𝑝𝑝𝑐𝑐2 =

1
2
𝑀𝑀  

                                                                                              ⇒  𝜙𝜙0 − 𝜙𝜙1 = 𝑀𝑀 
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6.5 Applications of the stress function to beams 
 
The first application is a bar with a centric axial force. The stress function is 
parabolic which results in a constant stress distribution [72].  

 
The stress function is a product of the force (x-direction) and stress distribution 
(y-direction). When the stress function is discretized the difference of the slope 
of the tangents is equal to the axial force.   

𝑐𝑐 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

= −𝐹𝐹
ℎ

 𝑦𝑦 

𝐻𝐻𝑒𝑒𝑠𝑠: 𝑦𝑦 =
ℎ
2  𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = −

ℎ
2 

𝑐𝑐0 = 𝑐𝑐2 =
𝐹𝐹

2
⇒ 𝑐𝑐0 + 𝑐𝑐2 = 𝐹𝐹  

 
 
 
 
 
 
 
 
 
𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝑐𝑐2 − 𝑐𝑐0 = −
𝐹𝐹

ℎ
−
𝐹𝐹

ℎ
= −𝐹𝐹  

𝑀𝑀𝑒𝑒ℎ𝑠𝑠′𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏: 

𝜙𝜙2 − 𝜙𝜙0 =
𝐹𝐹

ℎ

ℎ

2
−
𝐹𝐹

ℎ

ℎ

2

ℎ

4
=
𝐹𝐹ℎ
8  

 

𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −
𝐹𝐹
ℎ

  

𝜙𝜙 = �−
𝐹𝐹
ℎ

 𝑑𝑑𝑦𝑦 = −
𝐹𝐹
ℎ
𝑦𝑦2 + 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  
𝐶𝐶1 = 0  

𝜙𝜙�ℎ 2� � = −
𝐹𝐹
ℎ
�ℎ 2� �

2
+ 𝐶𝐶2 = 0  

⇒ 𝐶𝐶2 =
𝐹𝐹ℎ
8

  

𝜙𝜙 = 𝐹𝐹 ∙
(ℎ2 − 4𝑦𝑦2)

8ℎ
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The next example is a classic one, a simply supported beam with a uniformly 
distributed load [73]. The solution gives the stress distribution in the beam as 
can be expected from the beam theory, but it does not completely satisfy the 
plane stress differential equation, although the difference is very small. 

In section 6.4 it was shown that the rise along the x-axis of the stress function is 
equal to the bending moment in the beam M. Thus the stress function consists 
of two parts, the function of the bending moment (x-direction), and a function 
for the stress distribution (y-direction). 
 

𝑝𝑝𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 
𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥4 + 2

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4 = 0 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:  

𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 ,𝑛𝑛𝑥𝑥𝑦𝑦 = −

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 ,𝑛𝑛𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜙𝜙 = 𝑀𝑀(𝑥𝑥) ∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3  

𝜙𝜙 =
𝑒𝑒(𝑐𝑐2 − 4𝑥𝑥2)

8���������
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3  

  

𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2  =

𝑒𝑒(𝑐𝑐2 − 4𝑥𝑥2)
8 ∙

6(2𝑦𝑦 − ℎ)
ℎ3  

𝑛𝑛𝑦𝑦𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2  = −𝑒𝑒 ∙

(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)
ℎ3  

𝑛𝑛𝑥𝑥𝑦𝑦 = −
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦  = −𝑒𝑒𝑥𝑥 ∙

6𝑦𝑦(ℎ − 𝑦𝑦)
ℎ3  
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The change of y-slope in y-direction gives the internal compression and tension 
forces, which are equal, and multiplied with the internal arm gives the internal 
moment which is in equilibrium with the load. 
 
As observed the difference of slope along the stress function results in discrete 
internal forces as opposed to distributed internal forces of the stress functions.  

 
The curvatures of the surface of the stress function represent the stresses [74]. 
The principle stress trajectories are equivalent to the principle trajectories of 
the curvatures of the surface. Each meet at an angle of 90 degrees. 
  

:

:

:

x
y

y
x

xy yx
yx

change of y slope in y direction

N
y

change of x slope in x direction

N
x

change of y slope in x direction /
change of x slope in y direction

N N
y x

− −

 ∂φ
=  ∂ 

− −

∂φ =  ∂ 
− −
− −

 ∂φ ∂φ = ≡ =   ∂ ∂  

𝑧𝑧 = 𝜙𝜙(𝑥𝑥,𝑦𝑦) 

𝑛𝑛𝑥𝑥𝑥𝑥 =  
𝜕𝜕𝜙𝜙2

𝜕𝜕𝑦𝑦2 ≡ 𝜅𝜅𝜙𝜙,𝑦𝑦𝑦𝑦  

𝑛𝑛𝑦𝑦𝑦𝑦 =  
𝜕𝜕𝜙𝜙2

𝜕𝜕𝑥𝑥2  ≡ 𝜅𝜅𝜙𝜙,𝑥𝑥𝑥𝑥  

𝑛𝑛𝑥𝑥𝑦𝑦 =  −
𝜕𝜕𝜙𝜙2

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 ≡  − 𝜅𝜅𝜙𝜙,𝑥𝑥𝑦𝑦 

𝑛𝑛1,2 =
𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦

2 ± ��
𝑛𝑛𝑥𝑥𝑥𝑥 − 𝑛𝑛𝑦𝑦𝑦𝑦

2 �
2

+ 𝑛𝑛𝑥𝑥𝑦𝑦2  

𝑛𝑛1,2 =
𝜅𝜅𝜙𝜙,𝑦𝑦𝑦𝑦 + 𝜅𝜅𝜙𝜙,𝑥𝑥𝑥𝑥

2 ± ��
𝜅𝜅𝜙𝜙,𝑦𝑦𝑦𝑦 − 𝜅𝜅𝜙𝜙,𝑥𝑥𝑥𝑥

2 �
2

+ 𝜅𝜅𝜙𝜙,𝑥𝑥𝑦𝑦
2  

→ 𝑛𝑛1 ≡ 𝜅𝜅𝜙𝜙,2 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛2 ≡ 𝜅𝜅𝜙𝜙,1   
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A numerical example of the problem. 

 
The stress function of the analytic solution, previously discussed, is shown 
below. The stress function has been discretized, resulting in the polyhedral 
stress function.  

 
For the smooth stress function the change of slopes gives the discrete internal 
forces and its curvatures the stresses. The discretized version concentrates the 
curvature in kinks which are equivalent to the forces in that fold.  
 
The projection onto a horizontal plane serves as the solution of the forces in 
the  bars of a truss with the same loads. Along each fold of the discretized 
stress function lies a bar. The way the discretization is carried out determines 
the topology of the truss. The reciprocal figure of the truss, the form diagram, 
is its force polygon; also known as the Cremona diagram. 

Figure 41 (polyhedral) stress function truss [images 101] 
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Interestingly the way the stress function is discretised to form the polyhedral 
stress function determines the topology of the truss and the Cremona diagram 
in the horizontal projection [75] [76]. The support reactions remain equal. 

Figure 42 slopes of polyhedral stress function equals bar forces of the truss 
[images Pim Buskermolen] 
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The reciprocal figure of the horizontal projections of the trajectories of the 
smooth stress surface produces a smooth “force polygon”, which is equivalent 
to the Cremona diagram, the discretized version of the example. 
 

 
 
A few beams with different loads and different boundary conditions will be 
examined next.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 43 stress trajectories beam and reciprocal diagram [images Yu-Chou Chiang] 
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For a beam with a different boundary condition, in this case fixed outer edges, 
the stress function is also a product of the bending moment diagram and the 
3rd order polynomial needed the obtain the correct stress distribution.  
 

Two variants of the 3rd order polynomial are used in this chapter, depending on 
the position of the origin of the coordinate system on the beam surface. 
  

𝜙𝜙 = 𝑀𝑀(𝑥𝑥) ∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3  

𝜙𝜙 =
𝑒𝑒(𝑐𝑐2 − 12𝑥𝑥2)

24���������
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐻𝐻𝑒𝑒𝑠𝑠 𝑥𝑥 =  0: 

𝜙𝜙 =
𝑒𝑒𝑐𝑐2

8
∙

2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3

ℎ3
 

 𝐻𝐻𝑒𝑒𝑠𝑠 𝑦𝑦 =
1
2
ℎ,𝑦𝑦 = 0: 

�
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
1

= −
3

16
𝑒𝑒𝑐𝑐2

ℎ
, �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
2

= 0  

 
𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏 𝑒𝑒𝐻𝐻 𝑦𝑦 − 𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑏𝑏 𝑒𝑒𝑛𝑛 𝑦𝑦 − 𝑑𝑑𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

�
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
2
− �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
1

= �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦
�
𝑦𝑦

= 0 −−
3

16
𝑒𝑒𝑐𝑐2

ℎ
= 𝑁𝑁𝑥𝑥  

𝑁𝑁𝑥𝑥 ∙
2
3
ℎ =

3
16

𝑒𝑒𝑐𝑐2

ℎ
2
3
ℎ =

1
8
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(3ℎ2𝑦𝑦 − 4𝑦𝑦3 + ℎ3)
2ℎ3  

  



  

155 
 

We conclude this section with examples of cantilevers with different load 
cases. Their stress functions all have a same function in the y-direction and thus 
a similar stress distribution. The moment depends on the load and boundary 
condition. 
 

 

#1.    𝜙𝜙 =
𝑒𝑒(𝑥𝑥2 − 2𝑥𝑥𝑐𝑐 + 𝑐𝑐2)

24�����������
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3   

#2.    𝜙𝜙 = 𝐹𝐹(𝑐𝑐 − 𝑥𝑥)�����
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3
  

#3.    𝜙𝜙 = 𝑀𝑀⏟
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3  

 
 
  
 
 
 
 
 
 

𝜙𝜙 = 𝑀𝑀(𝑥𝑥)���
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)
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𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑙𝑙𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠𝑖𝑖𝑏𝑏𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛
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6.6 Applications of the stress function to arches 
 
Two alternative approaches may be used for deriving the stress function for 
arches. Pucher’s equation can be used, as shown in section 6.2 and 6.3, which 
would be an obvious choice because it includes the shape function of the 
curved form of the arch. The other approach is to use the plane stress 
equation. This equation does not include the shape of the arch, thus its effect 
needs to be incorporated in the resulting expression. 
The problem with Pucher’s equation applied to arches is that its result is 
implicit. It produces the horizontal projection of the axial load in the arch, 
which for the arch is equal to the horizontal thrust, but not the stress 
distribution over the height of the cross section of the arch. 
 
If an arch has bending moments due to its shape and the load, the stress 
function needs to express a combination of stresses as a result of axial forces 
and bending moments.  
With the plane stress equation a combination of stresses can be obtained by 
the superposition of the cases of the bar with a centric axial force and the 
simply supported beam with a uniformly distributed load, both separately 
discussed in section 6.5. The resulting stress function gives the stress 
distribution of the height of surface area of the beam. 

  

𝜙𝜙 = 𝐹𝐹⏟
𝑛𝑛𝑚𝑚𝑠𝑠𝑚𝑚𝑎𝑎𝑖𝑖 𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑚𝑚

∙
(ℎ2 − 4𝑦𝑦2)

8ℎ +
𝑒𝑒(𝑐𝑐2 − 4𝑥𝑥2)

8���������
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

∙
(2𝑦𝑦3 − 3ℎ𝑦𝑦2 + ℎ3)

ℎ3   

𝑛𝑛𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2 = −

𝐹𝐹
ℎ ±

𝑒𝑒(𝑐𝑐2 − 4𝑥𝑥2)
8 ∙

6(2𝑦𝑦 − ℎ)
ℎ3   
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Arches with straight elements, portal frames, can be interpreted as continuous 
beams on multiple supports with the outer two spans bent inwards to form the 
portal frame [77].  

 
 
A portal frame, like most arches, has axial forces and bending moments. For 
this case the combined stress function, presented in the previous paragraph 
can used. And again the moment distribution can be recognized along the 
outer boundary of the stress function. 
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For funicular curved arches, like the parabolic one with a uniformly distributed 
load, Pucher’s equation was used in section 6.2. As mentioned this do not 
result in a stress distribution over the cross section. A transformation formula 
has to be used to obtain the axial force in the arch from the projected force, 
which is the result of the solution of Pucher’s equation. From the axial force the 
stress can be obtained. 

The alternative to the Pucher stress function is the one derived for the bar with 
a axial force by means of the plane stress equation. This will provide direct 
information on the stress distribution over the cross section. The stress 
function needs some adjustment, the first part which concerns the axial force 
will be in the global coordinate system (x-axis) and the second part concerning 
the stress distribution over the height h of the cross section, in the local 
coordinate (ȳ-axis) system of the arch.  
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(ℎ2 − 4𝑦𝑦�2)
8ℎ
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A semi-circular arch with a uniformly distributed load will have bending 
moments, because the thrust line will not coincide with the axis of the arch 
resulting in eccentricities and thus bending moments. 
In section 5.7 this case was solved and a similar stress function can be used as 
described in the previous paragraph. 
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6.7 Graphic statics of stress functions  
 
Now the static-geometric analogy has been established for beams, graphic 
statics can be used to construct a stress function. 
 
A form diagram and its reciprocal force polygon is the graphical representation 
of the cable equation. The part of the beam equation that deals with 
equilibrium is equivalent to the cable equation. It was shown that the shape 
function of the cable is equivalent to the bending moment diagram. The second 
part of the beam equation that deals with compatibility and stiffness has the 
same structure as does the stress function. As a conclusion they can all be 
represented by means of graphic statics [78] . 

 
 
 
 
 
 

△𝑤𝑤 = 𝜑𝜑 △ 𝑥𝑥                        △𝜙𝜙 = 𝑐𝑐 △ 𝑦𝑦 
 

△𝜑𝜑 =
𝑀𝑀△ 𝑥𝑥
𝐸𝐸𝐸𝐸

                       △ 𝑐𝑐 =
𝑛𝑛 △ 𝑦𝑦

1
 

 
 
      △ 𝑧𝑧 = 𝑐𝑐 △ 𝑥𝑥

△ 𝑐𝑐 =
𝐹𝐹
𝐻𝐻

� ⇒
△ 𝑧𝑧
△ 𝑥𝑥

=
△ 𝑥𝑥𝑒𝑒
𝐻𝐻

⇒ 𝐻𝐻
△ 𝑧𝑧

(△ 𝑥𝑥)2 = 𝑒𝑒 

 

⎩
⎨

⎧𝐻𝐻
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2 = 𝑒𝑒

𝑑𝑑2𝑀𝑀
𝑑𝑑𝑥𝑥2 = 𝑒𝑒

                     

⎩
⎪
⎨

⎪
⎧𝑑𝑑

2𝑤𝑤
𝑑𝑑𝑥𝑥2 = −

𝑀𝑀
𝐸𝐸𝐸𝐸

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2 = 𝑛𝑛
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As an example the simply supported beam with a uniformly distributed load 
and the stress function, from section 6.4, to establish the static-geometric 
analogy for beams [79] will be used.  

 
For the first example the line of deflection is constructed, for the second 
example the stress function.  

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2 = −

𝑀𝑀
𝐸𝐸𝐸𝐸 

 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑦𝑦2 = 𝑛𝑛 

 

Figure 44 reciprocal diagrams: moment M form diagram and 
deflection w polygon [images 79] 
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Referring back to the example of a uniformly loaded parabolic arch and its 
accompanying stress function of section 6.2, the stress function will be 
represented by means of graphic statics. 
Both the shape function and the stress function of the arch are a function of 
the rise of the arch f*.  

 
If the stress function as a form diagram is discretized it can be represented by a 
similar polygon as the force polygon of an arch. The slope of the folds (ϴ) in the 
discretized stress function represent summarised forces. Because the polygon 
represents the slopes of the stress function the horizontal distance of the 
polygon has unit 1. If the discretized stress function and its reciprocal diagram 
the polygon is scaled the ratio between slopes of the folds remains constant, 
the stress function is an isotropic surface [80]. 
 

 

𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 𝑐𝑐𝐻𝐻∗ =
𝐻𝐻+1
∗

𝐻𝐻∗
=
𝜙𝜙𝑒𝑒+1
𝜙𝜙𝑒𝑒

 

 𝜃𝜃 = 2𝜃𝜃1 + 2𝜃𝜃2 
𝜃𝜃1 = 𝜃𝜃2 
 

𝑧𝑧(𝑥𝑥) = 𝐻𝐻∗ �1 −
𝑥𝑥2

𝑏𝑏2�
 

𝜙𝜙(𝑦𝑦) =
𝑝𝑝𝑏𝑏2

4𝐻𝐻∗ 𝑦𝑦
2  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑝𝑝[𝑁𝑁 𝑏𝑏2⁄ ] 
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If the rise of the arch f* is scaled the force polygon and the stress function 
polygons are scaled accordingly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this chapter the relationship has been explored between the shape function, 
the stress function, thrust line and the M-hill of the arch. This lays the basis for 
establishing the relations between these four functions for shell structure. 
Chapter 7 concerns with membrane shells and in particular axisymmetric ones, 
and in chapter 8 the general theory of the four functions will be presented. 
  

�𝐹𝐹 = 2𝑝𝑝𝑏𝑏 

𝜃𝜃 = 𝐻𝐻 
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7 The stress function of membrane shells 
 

7.1 Introduction 
 
In this chapter the relation will be explored between the fundamental 
characteristics that determine the relation between the geometric and 
mechanical properties of shells structures. The shell’s geometry is described by 
the shape function. The stress function ensures equilibrium, the thrust surface 
is equivalent the thrust line of arches. The moment hill associated with slabs 
has a similar relation to the thrust surface as the moment line of a beam has to 
the shape of an equivalent arch or cable. 
For simplicity this chapter will focus on membrane shells only to introduce the 
relations, and mainly axisymmetric shells. In the next chapter bending of the  
shell will be addressed. In chapter 7 and 8 the assumed load is uniformly 
distributed p = pz and Poisson’s ratio is assumed equal to zero. 
 

7.2 The cubic funicular arch 
 
To establish the thrust surface of an axisymmetric membrane shell loaded by a 
uniformly distributed load p, first the thrust line of the equivalent arch will be 
derived. 
 
 
 
 
 
 
 
 
 
 

𝑒𝑒 =
2𝑒𝑒0𝑥𝑥
𝑐𝑐

                                                                       𝑀𝑀 =
𝑒𝑒0𝑐𝑐2

3
�
𝑐𝑐 − 𝑥𝑥
𝑐𝑐
� 
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An orange peel part will be taken from an axisymmetric shell and modelled as a 
beam, which results in a triangular load q on the beam. For half of this beam 
standard formulas can be used to determine the bending moments, and by 
adding an additional load case to eliminate any support reactions midway this 
results in the bending moment diagram. 
 

 
By using the analogy between the bending moment diagram and the shape of a 
cable or its inverse, the arch we arrive at the funicular thrust line for the load 
case. 
 

 
The result is a cubic shape function, which can also be determined by using 
graphic statics. Het horizontal thrust H is constant throughout the arch.  

𝐹𝐹 = 𝜋𝜋𝑏𝑏2𝑝𝑝  
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𝐹𝐹

2𝑏𝑏
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The shape depends on the ratio of span a to rise h. Because of the beam 
analogy Maxwell’s load path theorem can be used to obtain the optimum ratio.  
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𝑀𝑀 =  �𝑉𝑉𝑑𝑑𝑥𝑥 = 𝐻𝐻�
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 = 𝐻𝐻𝑧𝑧 

𝑀𝑀 =  
𝑒𝑒0(𝑏𝑏3 − 𝑥𝑥3)

3𝑏𝑏
=
𝑒𝑒0𝑏𝑏2

3ℎ
∙ 𝑧𝑧 

 

→ 𝑧𝑧 =  
ℎ(𝑏𝑏3 − 𝑥𝑥3)

𝑏𝑏3
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7.3 The cubic funicular shell 
 
In order to obtain the funicular shell [81], equivalent to the funicular arch, with 
a uniformly distributed load there are no hoop forces which consequently 
means that the horizontal thrust “H” has to be constant, as with the arch [82].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The result is the same cubic shape function as found for the funicular arch.  

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑛𝑛𝑠𝑠𝑠𝑠𝑥𝑥 cos𝜑𝜑) = 0 

→ 𝑛𝑛𝑠𝑠𝑠𝑠𝑥𝑥 cos𝜑𝜑 = "𝐻𝐻" = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑠𝑠1𝑝𝑝∟ = 𝑠𝑠1𝑝𝑝 cos2 𝜑𝜑 

→ 𝑝𝑝𝑠𝑠1𝑥𝑥 cos3 𝜑𝜑 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: cos𝜑𝜑 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑐𝑐

=
𝑑𝑑𝑥𝑥
𝑠𝑠1𝑑𝑑𝜑𝜑

 

𝑏𝑏𝑛𝑛𝑑𝑑: 𝑠𝑠1 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝜑𝜑

1
cos𝜑𝜑

 

→ 𝑝𝑝𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝜑𝜑

cos2 𝜑𝜑 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

 

𝑝𝑝𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝜑𝜑

cos2 𝜑𝜑 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  

𝑝𝑝𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝜑𝜑

cos2 𝜑𝜑 =
𝑥𝑥0
2

(𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) 

→ 𝑥𝑥 𝑑𝑑𝑥𝑥 =
𝑥𝑥0

2𝑝𝑝 cos2 𝜑𝜑
 𝑑𝑑𝜑𝜑 

→ �𝑥𝑥 𝑑𝑑𝑥𝑥 = �
𝑥𝑥0

2𝑝𝑝 cos2 𝜑𝜑
 𝑑𝑑𝜑𝜑 

→
𝑥𝑥2

2
+ 𝑐𝑐 =

𝑥𝑥0
2𝑝𝑝

tan𝜑𝜑 + 𝑐𝑐 

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑝𝑝 = 1 

→ 𝑥𝑥2 = 𝑥𝑥0 tan𝜑𝜑 

→ tan𝜑𝜑 =
𝑥𝑥2

𝑥𝑥0
=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

 

→ 𝑑𝑑𝑧𝑧 =
𝑥𝑥2

𝑥𝑥0
 𝑑𝑑𝑥𝑥 

→ 𝑧𝑧 = �
𝑥𝑥2

𝑥𝑥0
 𝑑𝑑𝑥𝑥 

→ 𝑧𝑧 =
𝑥𝑥3

3𝑥𝑥0
+ 𝑐𝑐 

𝑧𝑧 =
𝑥𝑥3

3𝑥𝑥0
+ 𝑐𝑐  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑥𝑥 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑧𝑧 = 0  

𝑐𝑐 = −
𝑏𝑏3

3𝑥𝑥0
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑥𝑥 = 0 𝑏𝑏𝑛𝑛𝑑𝑑 𝑧𝑧 = ℎ  

𝑥𝑥0 =
−𝑏𝑏3

3ℎ
, 𝑐𝑐 = ℎ 

→ 𝑧𝑧 =
ℎ(𝑏𝑏3 − 𝑥𝑥3)

𝑏𝑏3
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The increment of the horizontal thrust “H” has to be equal to zero. Which 
means that the shape of the dome is determined by the change of slope which 
is equivalent to the change of the vertical component of the internal force and 
that carries the load. 

 
The horizontal thrust “H” is constant but the horizontal projection of the 
meridian forces 𝑛𝑛�rr is not, this is a function of the radius of the dome.  
  

𝑧𝑧 =
ℎ(𝑏𝑏3 − 𝑥𝑥3)

𝑏𝑏3
 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

= −
3ℎ𝑥𝑥2

𝑏𝑏3
=  −

3ℎ𝑥𝑥3
𝑏𝑏3
𝑥𝑥

 

𝑥𝑥
𝑧𝑧

=
3ℎ𝑥𝑥3
𝑏𝑏3
𝑥𝑥

→ 𝑧𝑧 =
𝑏𝑏3

3ℎ𝑥𝑥
 

𝑠𝑠2 = (𝑥𝑥2 + (
𝑏𝑏3

3ℎ𝑥𝑥
)2)

1
2 =

(9𝑥𝑥4ℎ2 + 𝑏𝑏6)
1
2

3ℎ𝑥𝑥
 

 

"𝐻𝐻" = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 → 𝑉𝑉 ≡ "𝐻𝐻"
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

  
𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑛𝑛𝑐𝑐𝑠𝑠𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑒𝑒𝐻𝐻 𝑉𝑉 𝑒𝑒𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏𝑛𝑛𝑒𝑒 𝑒𝑒𝑒𝑒  

𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑛𝑛𝑐𝑐𝑠𝑠𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑏𝑏 
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

   

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: "𝐻𝐻𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑖𝑖" =   𝑛𝑛�𝑠𝑠𝑠𝑠 ∙ 2𝜋𝜋𝑥𝑥  
"𝐻𝐻" = 𝑛𝑛𝑠𝑠𝑠𝑠𝑥𝑥 cos𝜑𝜑 =   𝑛𝑛�𝑠𝑠𝑠𝑠𝑥𝑥 
→ 𝑛𝑛𝑠𝑠𝑠𝑠 cos𝜑𝜑 =   𝑛𝑛�𝑠𝑠𝑠𝑠 
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The total horizontal thrust “H” can also be represented with Dischinger’s 
graphic method  [83] to represent the summation of the load and membrane 
forces. The result is very similar to the arch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The horizontal component of the membrane force goes to infinity at the axis of 
revolution of the shell. But to ensure equilibrium and even when there are no 
membrane hoop forces there must be a force at the summit of the dome. 

 𝐹𝐹𝑖𝑖 = 𝜋𝜋𝑥𝑥𝑖𝑖2𝑝𝑝 
 

2𝜋𝜋 𝑏𝑏 𝑛𝑛𝑠𝑠𝑠𝑠 sin𝜑𝜑 = 𝜋𝜋𝑏𝑏2 𝑝𝑝 

 →  𝑛𝑛𝑠𝑠𝑠𝑠 =
𝑝𝑝𝑠𝑠2
2

  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠2 =
(9𝑥𝑥4ℎ2 + 𝑏𝑏6)

1
2

3ℎ𝑥𝑥
 

→  𝑛𝑛𝑠𝑠𝑠𝑠 =
𝑝𝑝(9𝑥𝑥4ℎ2 + 𝑏𝑏6)

1
2

6ℎ𝑥𝑥
 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: cos𝜑𝜑 =
𝑧𝑧
𝑠𝑠2

=
𝑏𝑏3

(9𝑥𝑥4ℎ2 + 𝑏𝑏6)
1
2

 

𝑛𝑛�𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑠𝑠𝑠𝑠 cos𝛼𝛼 =
𝑝𝑝𝑏𝑏3

6ℎ𝑥𝑥
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑥𝑥 = 𝑏𝑏 

 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎 = 𝑛𝑛𝑠𝑠𝑠𝑠 cos𝛼𝛼 =
𝑝𝑝𝑏𝑏2

6ℎ
 

 "𝐻𝐻" = 𝑛𝑛�𝑠𝑠𝑠𝑠𝑥𝑥 =
𝑝𝑝𝑏𝑏3

6ℎ
 

 

"𝐻𝐻𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑖𝑖" =   𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎 ∙ 2𝜋𝜋𝑏𝑏 =
𝜋𝜋𝑏𝑏3𝑝𝑝
3ℎ

  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: "𝐻𝐻" = 𝑁𝑁𝑠𝑠ℎ = 𝑁𝑁�𝑠𝑠  
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By making a cross section through the dome and regarding all the horizontal 
forces this force can be determined. And by multiplying this with the rise of the 
dome we arrive at the moment equilibrium. Later it will be shown that this 
aligns with the moment equilibrium due to the vertical forces.  
 

 
Because the dome is a surface of revolution Maxwell’s load path theorem can 
be used to obtain the optimum ratio. We arrive at the same result as found for 
the funicular arch. 
  

𝑧𝑧 =
ℎ(𝑏𝑏3 − 𝑥𝑥3)

𝑏𝑏3
;𝐸𝐸𝑠𝑠 = � � �1 + �

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥
�
2

�

1
2
𝑥𝑥

2𝜋𝜋

0
𝑑𝑑𝑥𝑥

𝑎𝑎

0
𝑑𝑑𝜃𝜃 

 𝑛𝑛𝑠𝑠𝑠𝑠 =
𝑝𝑝(9𝑥𝑥4ℎ2 + 𝑏𝑏6)

1
2

6ℎ𝑥𝑥
 

 
𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑𝑝𝑝𝑏𝑏𝑒𝑒ℎ: 

𝑉𝑉 =
1
𝜎𝜎
� �  𝑛𝑛𝑠𝑠𝑠𝑠 �1 + �

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥
�
2

�

1
2
𝑥𝑥

𝑎𝑎

0
𝑑𝑑𝑥𝑥

2𝜋𝜋

0
𝑑𝑑𝜃𝜃 =

1
𝜎𝜎
� �

(9𝑥𝑥4ℎ2 + 𝑏𝑏6)𝑝𝑝
6ℎ𝑏𝑏6

𝑎𝑎

0
𝑑𝑑𝑥𝑥

2𝜋𝜋

0
𝑑𝑑𝜃𝜃 =

𝜋𝜋𝑝𝑝(5𝑏𝑏2 + 9ℎ2)
15𝑏𝑏ℎ

𝑏𝑏𝑒𝑒𝑛𝑛 

 
 
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑤𝑤𝑏𝑏𝑐𝑐𝑒𝑒 𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑𝑝𝑝𝑏𝑏𝑒𝑒ℎ 𝑚𝑚𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒: 

⇒
𝑑𝑑
𝑑𝑑ℎ

=
𝜋𝜋𝑝𝑝(9ℎ2 − 5𝑏𝑏2)

15𝑏𝑏ℎ2
= 0 ⇒ ℎ =

√5
3
𝑏𝑏 

ℎ
𝑏𝑏

=
√5
3
≈ 0,74535 

𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 = � 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎

𝜋𝜋
2

−𝜋𝜋2

cos𝜃𝜃 𝑑𝑑𝑐𝑐 = � 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎

𝜋𝜋
2

−𝜋𝜋2

cos𝜃𝜃 𝑏𝑏 𝑑𝑑𝜃𝜃 =  2𝑏𝑏 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎   

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎 =
𝑝𝑝𝑏𝑏2

6ℎ
→ 𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 =

𝑝𝑝𝑏𝑏3

3ℎ
  

𝑀𝑀𝑡𝑡 = 𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 ∙ ℎ =
𝑝𝑝𝑏𝑏3

3
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7.4 The spherical dome  
 
The spherical dome loaded by a uniformly distributed load p has membrane 
forces in both directions of the principle curvatures, unlike the funicular dome. 
The membranes forces in question are the meridian forces nrr and hoop forces 
nθθ, there are no shear membrane forces [84]. 

The formulas that describe this problem are well known and can be found in 
most handbooks on shell structures. The focus here is on the relation between 
the thrust surface of the load p and the dome, similar to that of the thrust line 
and an arch. Due to the load and the fact that the dome has 3 dimensions there 
are membrane hoop forces in compression and tension.  
 
The hoop forces has a similar function as the bending moments in an arch if the 
thrust line does not coincide with the axis of the arch. It corrects the path of 
the thrust surface so it does coincide with the axis of the dome, so in this case 
no bending moments are needed. This can be presented by graphic statics.  
 

 
The thrust surface has its own shape function, and for the dome with the 
uniformly distributed load we can use the shape of the cubic funicular shell for 

𝑧𝑧 = (𝑏𝑏2 − 𝑥𝑥2)
1
2 
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the accompanying thrust surface. Where the hoop forces are zero in the dome 
the thrust surface cuts the dome, for this load case under an angle of 45 
degrees. 
 
For the thrust surface the correct ratio of rise h to span a* need to be 
determined in relation to the dome. For this the ratio is used for the optimum 
load path by using Maxwell’s theorem.  
 
It can be observed that the thrust surface of the load falls out- and inside of the 
span of the dome. Given the fact that the hoop forces are not zero at the spring 
of the dome this seems reasonable. In fact the membrane forces of the dome 
are the result of two load cases, the cubic funicular shell (with no hoop forces) 
and the corrective hoop forces. The result of these two load cases coincides 
with the axis of the dome. 
 

 
Again Dischinger’s graphic method can be used including the horizontal 
component of the hoop forces 𝑁𝑁�𝜃𝜃ℎ in the meridian direction.  
 
  

𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑑𝑑𝑒𝑒𝑏𝑏𝑏𝑏: 𝑧𝑧 = (𝑏𝑏2 − 𝑥𝑥2)
1
2 

𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏 𝑑𝑑𝑒𝑒𝑏𝑏𝑏𝑏: 𝜁𝜁 =
ℎ(𝑏𝑏∗3 − 𝑥𝑥3)

𝑏𝑏∗3
=
√5 𝑏𝑏∗(𝑏𝑏∗3 − 𝑥𝑥3)

3𝑏𝑏∗3
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑏𝑏∗ ≈ 1.19589𝑏𝑏 
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𝐹𝐹 = 𝜋𝜋𝑝𝑝𝑥𝑥2   
𝑁𝑁𝑠𝑠 = 𝑛𝑛𝑠𝑠𝑠𝑠2𝜋𝜋𝑥𝑥    
𝑁𝑁𝑠𝑠ℎ = 𝑁𝑁�𝑠𝑠 = 𝑛𝑛�𝑠𝑠𝑠𝑠2𝜋𝜋𝑥𝑥 
 
 
𝐻𝐻𝜃𝜃 = 𝑁𝑁�𝜃𝜃ℎ 
 
 
 

𝐹𝐹 =  𝜋𝜋𝑏𝑏2𝑝𝑝  
𝐹𝐹𝑖𝑖 = 𝜋𝜋𝑥𝑥𝑖𝑖2𝑝𝑝 
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7.5 Deriving the stress function by means of the moment-hill 
 
To establish the relationship between the moment-hill, thrust surface/shape 
function (for membrane shells these are equal) and the stress function this 
section starts with considering a mono-clastic shell before the axisymmetric 
shells will be discussed.  

 
The beam – cable/arch analogy, thus a constant horizontal thrust, will be used 
in combination with the moment diagram to derive the shape function and the 
stress function. 

The result is a parabolic shell. The distributed horizontal thrust 𝐻𝐻� is the 
projected meridian forces 𝑛𝑛�𝑥𝑥𝑥𝑥 and constant, which is confirmed with 
Dischinger’s graphic method.  

 𝑀𝑀� =
𝑝𝑝(𝑏𝑏2 − 𝑥𝑥2)

2
 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐻𝐻�ℎ =  
1
2
𝑝𝑝𝑏𝑏2 → 𝐻𝐻� =

𝑝𝑝𝑏𝑏2

2ℎ
 

 

𝑀𝑀 = 𝐻𝐻�𝑧𝑧 → 𝑧𝑧 =  
ℎ(𝑏𝑏2 − 𝑥𝑥2)

𝑏𝑏2
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

+ 𝑝𝑝 = 0 → 𝜙𝜙 =
𝑏𝑏2𝑝𝑝
4ℎ

 𝑦𝑦2 + 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑧𝑧 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 = −
𝑏𝑏4𝑝𝑝
4ℎ

  

𝜙𝜙 = −
𝑏𝑏2𝑝𝑝
4ℎ

(𝑏𝑏2 − 𝑦𝑦2) 

𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= 𝐻𝐻� =
𝑏𝑏2𝑝𝑝
2ℎ

= 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

𝐹𝐹 = 2𝑏𝑏𝑏𝑏𝑝𝑝  
𝐹𝐹𝑖𝑖 = 2𝑥𝑥𝑖𝑖𝑏𝑏𝑝𝑝 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑁𝑁�𝑥𝑥 =   𝑛𝑛�𝑥𝑥𝑥𝑥 ∙ 𝑏𝑏 
 
 

𝑀𝑀� =
𝑝𝑝(𝑏𝑏2 − 𝑥𝑥2)

2
;  𝑚𝑚 =

𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

=  −𝑥𝑥𝑝𝑝 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥 =
1
2
𝑝𝑝𝑏𝑏2 
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The moment-hill, associated with slabs, determines the flow of forces of the 
loads. The loads flow along the moment-hill’s steepest descent toward the 
supports.  

 
The moment-hill will be used for a parabolic shell of revolution to determine 
the stress function. The moment-hill of the previous parabolic shell will be used 
now because it concerns a shell of revolution, half of the previous moment-hill 
will be used as the load transfer is in two direction instead of one. It is 
important to establish that for both example’s the distributed horizontal thrust 
𝐻𝐻�, thus the projected meridian forces 𝑛𝑛�rr is constant.  
  

𝑚𝑚𝑠𝑠 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

= 𝑏𝑏𝑏𝑏𝑥𝑥, 𝑚𝑚𝜃𝜃 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝜃𝜃

= 0 

 

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  𝑧𝑧 =  
ℎ(𝑏𝑏2 − 𝑠𝑠2)

𝑏𝑏2
   

𝑒𝑒𝑏𝑏𝑘𝑘𝑏𝑏: 𝑀𝑀� =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
→  

𝑀𝑀 = 𝐻𝐻�𝑧𝑧 → 𝐻𝐻� =
𝑀𝑀
𝑧𝑧

= 𝑛𝑛�𝑠𝑠𝑠𝑠 =
𝑝𝑝𝑏𝑏2

4ℎ
= 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝑝𝑝 = 0 

 𝑠𝑠2 = 𝑥𝑥2 + 𝑦𝑦2 → ∇2=
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

=
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

+
1
𝑠𝑠
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠

 

→
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

+
1
𝑠𝑠
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

+ 𝑝𝑝 = 0,𝑛𝑛�𝑠𝑠𝑠𝑠 =
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

, 𝑛𝑛�𝜃𝜃𝜃𝜃 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

  
 

−
2ℎ
𝑏𝑏2
𝑝𝑝𝑏𝑏2

4ℎ
+

1
𝑠𝑠
∙ −

2ℎ𝑠𝑠
𝑏𝑏2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

+ 𝑝𝑝 = 0 →
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

=
𝑝𝑝𝑏𝑏2

4ℎ
  

𝜙𝜙 =  
𝑏𝑏2𝑝𝑝
8ℎ

𝑠𝑠2 + 𝐶𝐶,𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑧𝑧 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 = −
𝑏𝑏4𝑝𝑝
8ℎ

 

→ 𝜙𝜙 = −
𝑏𝑏2𝑝𝑝
8ℎ

(𝑏𝑏2 − 𝑠𝑠2) 

 𝑛𝑛�𝑠𝑠𝑠𝑠 =  𝑛𝑛�𝜃𝜃𝜃𝜃 =
𝑝𝑝𝑏𝑏2

4ℎ
  

𝑚𝑚𝑠𝑠 =
𝑑𝑑𝑀𝑀
𝑑𝑑𝑠𝑠

= −𝑝𝑝𝑠𝑠  

𝐹𝐹 =  𝜋𝜋𝑏𝑏2𝑝𝑝  
𝐹𝐹𝑖𝑖 = 𝜋𝜋𝑠𝑠𝑖𝑖2𝑝𝑝 
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The parabolic shell of revolution has a relation with an inflated membrane, 
both principle membrane forces are constant and there are no shear 
membrane forces [85].  
  

𝐹𝐹𝑖𝑖
𝑁𝑁𝑠𝑠ℎ

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

  𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑁𝑁𝑠𝑠ℎ = 𝑛𝑛�𝑠𝑠𝑠𝑠2𝜋𝜋𝑠𝑠  

𝜋𝜋𝑠𝑠2𝑝𝑝
𝑛𝑛�𝑠𝑠𝑠𝑠2𝜋𝜋𝑠𝑠

=  
2ℎ𝑠𝑠
𝑏𝑏2

→ 𝑛𝑛�𝑠𝑠𝑠𝑠 =
𝑏𝑏2𝑝𝑝
4ℎ

= 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 

  
𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏: 
𝐹𝐹𝑖𝑖
𝑁𝑁𝑠𝑠ℎ

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=  
𝑚𝑚𝑠𝑠
𝑛𝑛�𝑠𝑠𝑠𝑠

=  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

 
1
𝑛𝑛�𝑠𝑠𝑠𝑠

  

 
𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 ℎ𝑒𝑒𝑐𝑐𝑐𝑐  
𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐,𝑛𝑛�𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 
 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝑛𝑛𝑥𝑥𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2𝑛𝑛𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑛𝑛𝑦𝑦𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

− 𝑝𝑝 = 0  

𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏,𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛𝑥𝑥𝑥𝑥 =  𝑛𝑛𝑦𝑦𝑦𝑦 = 𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛𝑥𝑥𝑦𝑦 = 0 

→ 𝑛𝑛�
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

− 𝑝𝑝 = 0  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑧𝑧 =
𝑝𝑝

4𝑛𝑛
(𝑥𝑥2 + 𝑦𝑦2 − 𝑏𝑏2)  

→  𝑛𝑛 �
𝑝𝑝

2𝑛𝑛
+

𝑝𝑝
2𝑛𝑛
� − 𝑝𝑝 = 0 

  

𝑛𝑛 ≈ 𝑛𝑛� =  
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

=
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 

→  𝜙𝜙 =  
𝑛𝑛�
2

(𝑥𝑥2 + 𝑦𝑦2 − 𝑏𝑏2) =
𝑛𝑛�
2

(𝑠𝑠2 − 𝑏𝑏2)  

𝑀𝑀 = 𝑛𝑛� ∙ 𝑧𝑧 = 𝑛𝑛� ∙
𝑝𝑝

4𝑛𝑛�
(𝑠𝑠2 − 𝑏𝑏2) =  

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
4

  
 

𝑥𝑥2 + 𝑦𝑦2 = 𝑠𝑠2 
 
 
 

Figure 45 photo of soap bubble [image https://creativecommons.org/licenses/by-sa/4.0/] 
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7.6 Stress function of axisymmetric membrane shells 
 
With the help of the moment-hill the stress function can be derived for 
different axisymmetric membrane shells with an uniformly distributed load. 
  

𝑚𝑚𝑠𝑠 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

= 𝑏𝑏𝑏𝑏𝑥𝑥, 𝑚𝑚𝜃𝜃 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝜃𝜃

= 0  
𝑚𝑚𝑠𝑠
𝑛𝑛�𝑠𝑠𝑠𝑠

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

→ 𝑛𝑛�𝑠𝑠𝑠𝑠
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

= 𝑚𝑚𝑠𝑠 →
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

=
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

  

𝑀𝑀� =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
→ 𝑚𝑚𝑠𝑠 =

𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

= −
𝑝𝑝𝑠𝑠
2

  
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

=
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

 

 

𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 𝑧𝑧 =
ℎ(𝑏𝑏 − 𝑠𝑠)

𝑏𝑏
  

→
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙ −
ℎ
𝑏𝑏

=
𝑝𝑝𝑠𝑠
2
→ �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 = �−
𝑝𝑝𝑠𝑠2𝑏𝑏
2ℎ

𝑑𝑑𝑠𝑠 →𝜙𝜙 = −
𝑏𝑏𝑝𝑝𝑠𝑠3

6ℎ
+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 =
𝑝𝑝𝑏𝑏4

6ℎ
  

𝜙𝜙 =
𝑏𝑏(𝑏𝑏3 − 𝑠𝑠3)

6ℎ
𝑝𝑝 

 

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 𝑧𝑧 =
ℎ(𝑏𝑏2 − 𝑠𝑠2)

𝑏𝑏2
  

→
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙ −
2ℎ𝑠𝑠
𝑏𝑏2

=
𝑝𝑝𝑠𝑠
2
→ 𝜙𝜙 = �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 = �−
𝑝𝑝𝑠𝑠𝑏𝑏2

4ℎ
𝑑𝑑𝑠𝑠 = −

𝑏𝑏2𝑝𝑝𝑠𝑠2

8ℎ
+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 =
𝑝𝑝𝑏𝑏4

8ℎ
  

𝜙𝜙 =
𝑏𝑏2(𝑏𝑏2 − 𝑠𝑠2)

8ℎ
𝑝𝑝 

 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 𝑧𝑧 =
ℎ(𝑏𝑏3 − 𝑠𝑠3)

𝑏𝑏3
  

→
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙ −
3ℎ𝑠𝑠2

𝑏𝑏3
=
𝑝𝑝𝑠𝑠
2
→ 𝜙𝜙 = �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 = �−
𝑝𝑝𝑏𝑏3

6ℎ
𝑑𝑑𝑠𝑠 = −

𝑏𝑏3𝑝𝑝𝑠𝑠
6ℎ

+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 = −
𝑝𝑝𝑏𝑏4

6ℎ
  

𝜙𝜙 =
𝑏𝑏3(𝑏𝑏 − 𝑠𝑠)

6ℎ
𝑝𝑝 

 

𝑐𝑐𝑝𝑝ℎ𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 𝑧𝑧 = (𝑏𝑏2 − 𝑠𝑠2)
1
2  

→
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙ −
𝑠𝑠

(𝑏𝑏2 − 𝑠𝑠2)
1
2

=
𝑝𝑝𝑠𝑠
2
→ 𝜙𝜙 = �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 = �−
𝑝𝑝𝑠𝑠(𝑏𝑏2 − 𝑠𝑠2)

1
2

2
𝑑𝑑𝑠𝑠 =

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
3
2

6
+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 = 0  

𝜙𝜙 =
(𝑏𝑏2 − 𝑠𝑠2)

3
2

6
𝑝𝑝  

 
𝑏𝑏𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑏𝑏 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝐻𝐻𝑦𝑦 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

+
1
𝑠𝑠
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

− 𝑝𝑝 = 0 
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Note that for the different shells the total horizontal thrust 𝑁𝑁�𝑠𝑠 is not always 
equal to the projected meridian forces 𝑛𝑛�rr: 

If the horizontal thrust 𝑁𝑁�𝑠𝑠 is equal to zero then there are no hoop forces in the 
shell, the cubic shells, and the stress function is a mono-clastic surface like a 
cone.  

− 𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:       𝑁𝑁�𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒,         𝑛𝑛�𝑠𝑠𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
− 𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  𝑁𝑁�𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒, 𝑛𝑛�𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
− 𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:           𝑁𝑁�𝑠𝑠 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒,         𝑛𝑛�𝑠𝑠𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
− 𝑐𝑐𝑝𝑝ℎ𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:   𝑁𝑁�𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒,         𝑛𝑛�𝑠𝑠𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
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When the stress function has been derived the membrane forces can be 
determined. These correspond with those found in classical shell theory. 

The membrane forces can be represented with the help of the following 
diagram. 
  

𝑛𝑛�𝑠𝑠𝑠𝑠 =
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

,𝑛𝑛�𝜃𝜃𝜃𝜃 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

  

𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑛𝑛�𝑠𝑠𝑠𝑠
1

cos𝜑𝜑
,𝑛𝑛𝜃𝜃𝜃𝜃 = 𝑛𝑛�𝜃𝜃𝜃𝜃 cos𝜑𝜑  

cos𝜑𝜑 = �1 + �
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠
�
2

�
−12

  

𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 
 𝑛𝑛�𝑠𝑠𝑠𝑠 = −

𝑏𝑏𝑝𝑝𝑠𝑠
2ℎ

,𝑛𝑛�𝜃𝜃𝜃𝜃 = −
𝑏𝑏𝑝𝑝𝑠𝑠
ℎ

  

𝑛𝑛𝑠𝑠𝑠𝑠 = −
𝑝𝑝𝑠𝑠(𝑏𝑏2 + ℎ2)

1
2

2ℎ
,𝑛𝑛𝜃𝜃𝜃𝜃 = −

𝑏𝑏2𝑝𝑝𝑠𝑠

ℎ(𝑏𝑏2 + ℎ2)
1
2

  

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑛𝑛�𝑠𝑠𝑠𝑠 = −
𝑏𝑏2𝑝𝑝
4ℎ

, 𝑛𝑛�𝜃𝜃𝜃𝜃 = −
𝑏𝑏2𝑝𝑝
4ℎ

  

𝑛𝑛𝑠𝑠𝑠𝑠 = −
𝑝𝑝(𝑏𝑏4 + 4ℎ2𝑠𝑠2)

1
2

4ℎ
,𝑛𝑛𝜃𝜃𝜃𝜃 = −

𝑏𝑏4𝑝𝑝

4ℎ(𝑏𝑏4 + 4ℎ2𝑠𝑠2)
1
2

  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑛𝑛�𝑠𝑠𝑠𝑠 = −
𝑏𝑏3𝑝𝑝
6ℎ𝑠𝑠

, 𝑛𝑛�𝜃𝜃𝜃𝜃 = 0  

𝑛𝑛𝑠𝑠𝑠𝑠 = −
𝑝𝑝(𝑏𝑏6 + 9ℎ2𝑠𝑠4)

1
2

6ℎ𝑠𝑠
,𝑛𝑛𝜃𝜃𝜃𝜃 = 0 

𝑐𝑐𝑝𝑝ℎ𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑛𝑛�𝑠𝑠𝑠𝑠 = −
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

1
2

2
,𝑛𝑛�𝜃𝜃𝜃𝜃 = −

𝑝𝑝(𝑏𝑏2 − 2𝑠𝑠2)

2(𝑏𝑏2 − 𝑠𝑠2)
1
2

  

𝑛𝑛𝑠𝑠𝑠𝑠 = −
𝑏𝑏𝑝𝑝
2

,𝑛𝑛𝜃𝜃𝜃𝜃 = −
𝑝𝑝(𝑏𝑏2 − 2𝑠𝑠2)

2𝑏𝑏
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The total load P and the total support reactions V and are in equilibrium in 
vertical direction but there is also an internal couple Mt needed for rotational 
equilibrium. For a circular slab this would result in an internal bending moment, 
but for a shell the resulting force of internal membrane forces over the internal 
arm ensures the rotational equilibrium [86]. 
 

 
This will be demonstrated using the conical shell. As a check for the derived 
stress function, for this case the classic membrane equation will be used.   

𝑉𝑉 = 𝑏𝑏𝜋𝜋
𝑏𝑏𝑝𝑝
2

=
𝑏𝑏2𝜋𝜋
𝑝𝑝

  

𝐹𝐹 =
𝑏𝑏2𝜋𝜋
𝑝𝑝

 

𝑏𝑏 =
2𝑏𝑏
𝜋𝜋
−

4𝑏𝑏
3𝜋𝜋

=
2𝑏𝑏
3𝜋𝜋

  
 

→ 𝑀𝑀𝑡𝑡 = 𝐹𝐹𝑏𝑏 =
𝑏𝑏2𝜋𝜋
𝑝𝑝

2𝑏𝑏
3𝜋𝜋

=
𝑏𝑏3𝑝𝑝

3
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑐𝑐𝑠𝑠 = (𝑏𝑏2 + ℎ2)
1
2   

𝑛𝑛𝑠𝑠𝑠𝑠 =  
𝑠𝑠(𝑏𝑏2 + ℎ2)

1
2

2ℎ
𝑝𝑝 =

𝑐𝑐𝑠𝑠
2
∙ −

𝑝𝑝𝑠𝑠
2

=
𝑐𝑐𝑠𝑠
2
𝑚𝑚𝑠𝑠 

 𝑛𝑛�𝑠𝑠𝑠𝑠 = −
𝑏𝑏𝑝𝑝𝑠𝑠
2ℎ

=
𝑏𝑏
ℎ
𝑚𝑚𝑠𝑠  

𝑒𝑒𝑠𝑠 𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐𝑦𝑦;  
𝑛𝑛𝑠𝑠𝑠𝑠
𝑚𝑚𝑠𝑠

=
𝑐𝑐𝑠𝑠
ℎ
→ 𝑛𝑛𝑠𝑠𝑠𝑠 =

𝑐𝑐𝑠𝑠
2
𝑚𝑚𝑠𝑠  

 𝑛𝑛�𝑠𝑠𝑠𝑠
𝑚𝑚𝑠𝑠

=
𝑏𝑏
ℎ
→  𝑛𝑛�𝑠𝑠𝑠𝑠 =

𝑏𝑏
ℎ
𝑚𝑚𝑠𝑠 

 

𝑛𝑛𝑠𝑠𝑠𝑠
𝑠𝑠1

+
𝑛𝑛𝜃𝜃𝜃𝜃
𝑠𝑠2

= −𝑝𝑝 cos2 𝜑𝜑  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: cos𝜑𝜑 =
𝑏𝑏
𝑐𝑐𝑠𝑠

 𝑏𝑏𝑛𝑛𝑑𝑑 𝑠𝑠1 = ∞  

𝑠𝑠
𝑧𝑧

=
ℎ
𝑏𝑏
→ 𝑧𝑧 =

𝑏𝑏𝑠𝑠
ℎ

 

 𝑠𝑠2 = (𝑠𝑠2 + 𝑧𝑧2)
1
2 = �𝑠𝑠2 + �

𝑏𝑏𝑠𝑠
ℎ
�
2
�
1
2

=
𝑠𝑠𝑐𝑐𝑠𝑠
ℎ

  

→ 𝑛𝑛𝜃𝜃𝜃𝜃 =  −𝑝𝑝 cos2 𝜑𝜑 𝑠𝑠2 = 𝑝𝑝 �
𝑏𝑏
𝑐𝑐𝑠𝑠
�
2
∙
𝑠𝑠𝑐𝑐𝑠𝑠
ℎ

= −
𝑏𝑏2𝑠𝑠𝑝𝑝
ℎ𝑐𝑐𝑠𝑠

 

 



  

181 
 

The hoop forces in the cross section have a resultant which is equal to the 
summation of the projected meridian forces in the same direction at the spring 
of the shell. Mulitplying the resulting force with the internal arm result in the 
internal couple Mt. 
  

 
When the summation is taken of the moment hill in the centre cross section we 
arrive at the same internal couple Mt. Thus there is a direct relation of the 
moment hill with the thrust surface/shape function (for membrane shells these 
are equal). 
  

𝑀𝑀 =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
   

𝑀𝑀𝑡𝑡 = �
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
 𝑑𝑑𝑥𝑥

𝑎𝑎

−𝑎𝑎
=
𝑝𝑝𝑏𝑏3

3
 

 

𝑛𝑛𝜃𝜃𝜃𝜃 = −
𝑏𝑏2𝑠𝑠

ℎ(𝑏𝑏2 + ℎ2)
1
2
𝑝𝑝;  𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎 = −

𝑏𝑏𝑠𝑠
2ℎ

𝑝𝑝 

𝑁𝑁𝜃𝜃 = 𝑛𝑛𝜃𝜃𝜃𝜃 ∙
1
2
𝑐𝑐𝑠𝑠 = −

𝑏𝑏2𝑠𝑠

ℎ(𝑏𝑏2 + ℎ2)
1
2
𝑝𝑝 ∙

1
2

(𝑏𝑏2 + ℎ2)
1
2 = −

𝑏𝑏3𝑝𝑝
2ℎ

  

𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 = � 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎

𝜋𝜋
2

−𝜋𝜋2

cos𝜃𝜃 𝑑𝑑𝑐𝑐 = � 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎

𝜋𝜋
2

−𝜋𝜋2

cos𝜃𝜃 𝑏𝑏 𝑑𝑑𝜃𝜃 =  2𝑏𝑏 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎   

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛�𝑠𝑠𝑠𝑠,𝑎𝑎 = −
𝑏𝑏2𝑝𝑝
2ℎ

→ 𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 = −
𝑏𝑏3𝑝𝑝
ℎ

= 2 𝑁𝑁𝜃𝜃  

𝑀𝑀𝑡𝑡 = 𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠 ∙
ℎ
3

=
𝑝𝑝𝑏𝑏3

3
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For the parabolic shell the projected meridian forces 𝑛𝑛�rr, this multiplied with the 
shape function of the shell we get the moment-hill.  

For the other shells 𝑛𝑛�rr is not constant, by integrating 𝑛𝑛�rr over the cross section 
we get for each shell the moment-hill. This outcome confirms the premise for 
deriving the stress functions.  
  

𝑀𝑀� =  𝑛𝑛�𝑠𝑠𝑠𝑠 ∙ 𝑧𝑧 =
𝑏𝑏2𝑝𝑝
4ℎ

 ∙
ℎ(𝑏𝑏2 − 𝑠𝑠2)

𝑏𝑏2
=  

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
4

  
 
 
 

𝑛𝑛�𝑠𝑠𝑠𝑠 ∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

= 𝑚𝑚𝑠𝑠 →  𝑛𝑛�𝑠𝑠𝑠𝑠 ∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

=
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

 → 𝑀𝑀� = �𝑛𝑛�𝑠𝑠𝑠𝑠   
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

𝑑𝑑𝑠𝑠  

𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑀𝑀� = �−
𝑏𝑏𝑝𝑝𝑠𝑠
2ℎ

ℎ
𝑏𝑏
𝑑𝑑𝑠𝑠 = �−

𝑝𝑝𝑠𝑠
2
𝑑𝑑𝑠𝑠 = −

𝑝𝑝𝑥𝑥2

4
+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑀𝑀� = 0 𝑒𝑒𝐻𝐻 𝑥𝑥 = 𝑏𝑏 → 𝐶𝐶 =
𝑝𝑝𝑏𝑏2

4
  

→ 𝑀𝑀� =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
  

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 

𝑀𝑀� =  �−
𝑏𝑏2𝑝𝑝
4ℎ

2ℎ𝑠𝑠
𝑏𝑏2

𝑑𝑑𝑠𝑠 = �−
𝑝𝑝𝑠𝑠
2
𝑑𝑑𝑠𝑠 →

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
4

  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑀𝑀� =  �−
𝑏𝑏3𝑝𝑝
6ℎ𝑠𝑠

3ℎ𝑠𝑠2

𝑏𝑏3
𝑑𝑑𝑠𝑠 = �−

𝑝𝑝𝑠𝑠
2
𝑑𝑑𝑠𝑠 →

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
4

  

𝑐𝑐𝑝𝑝ℎ𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 

𝑀𝑀� =  �−
(𝑏𝑏2 − 𝑠𝑠2)

1
2𝑝𝑝

2
𝑠𝑠

(𝑏𝑏2 − 𝑠𝑠2)
1
2
𝑑𝑑𝑠𝑠 = �−

𝑝𝑝𝑠𝑠
2
𝑑𝑑𝑠𝑠 →

𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
4
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It can be observed that there is a reciprocity between the shape function and 
the stress function of the conical and cubic shell.  
 

 
This is in line with the static-geometric analogy if thin shell structures: 

  

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

+
1
𝑠𝑠
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

− 𝑝𝑝 = 0 

 
𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

0 ∙ −
𝑏𝑏𝑝𝑝𝑠𝑠
2ℎ

+
1
𝑠𝑠
∙ −

ℎ
𝑏𝑏
∙ −

𝑏𝑏𝑝𝑝𝑠𝑠
ℎ

− 𝑝𝑝 = 0 → 𝜅𝜅𝑠𝑠𝑠𝑠 =
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

= 0 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

−
6ℎ𝑠𝑠
𝑏𝑏3

∙ −
𝑏𝑏3𝑝𝑝
6ℎ𝑠𝑠

+
1
𝑠𝑠
∙ −

3ℎ𝑠𝑠2

𝑏𝑏3
∙ 0 − 𝑝𝑝 = 0 → 𝑛𝑛�𝜃𝜃𝜃𝜃 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑠𝑠2

= 0 

 
 𝑛𝑛�𝜃𝜃𝜃𝜃  ↔  𝜅𝜅𝑠𝑠𝑠𝑠  

𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝑧𝑧 =  
ℎ(𝑏𝑏 − 𝑠𝑠)

𝑏𝑏
  

  

𝜙𝜙 =
𝑏𝑏(𝑏𝑏3 − 𝑠𝑠3)

6ℎ
𝑝𝑝 

 

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐:  

𝜙𝜙 =
𝑏𝑏3(𝑏𝑏 − 𝑠𝑠)

6ℎ
𝑝𝑝 

 

𝑧𝑧 =  
ℎ(𝑏𝑏3 − 𝑠𝑠3)

𝑏𝑏
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8 The relationship between the shape function, stress function, thrust surface 
and moment-hill 
 

8.1 Introduction 
 
In this chapter the relation between the fundamental characteristics that 
determine the relation between the geometric and mechanical properties of 
shells structures will be further explored. These are the shape function, stress 
function, thrust surface, and moment-hill. Triangular, rectangular and square 
based shells will be discussed as their behaviour is more complex than 
axisymmetric membrane shells. The internal shear and bending forces will have 
to be taken into account.  
 

8.2 “Twistless case”, moment-hill and thrust network / surface 
 
The twistless case [87] is a phenomenon of slabs in which the flow of forces is 
independently decoupled in two directions. The strips in these directions are 
subjected to curvature and bending, but not to twist or torsional moments.   
Two types can be identified, firstly continuous slabs which deformations fields 
are due to the their twisless nature translation surfaces. And secondly beam 
grids in which beams have bending stiffness K but no torsional stiffness, these 
usually do not result in a translation surface [88]. 

𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝑤𝑤�(𝐹𝐹(𝑥𝑥) + 𝐺𝐺(𝑦𝑦)) 
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The first type of twistless case results in a statically determined slab, after the 
ratio of loads β in the two directions has been chosen. The displacement field is 
a translation surface, it has curvature in the two directions but no twist. This 
can be observed in the displacement function w, the x- and y-directions are 
decoupled. 
 

For the second type the ratio of loads depends on their respective bending 
stiffnesses in the two directions. Thus this constitutes a statically indetermined 
grid. 
 
The moment-hill 𝑀𝑀�  determines the flow of the shear forces and thus of the 
load and will always be equal, due to the constant total load. As with most of 
the loads in this thesis we assume a uniformly distributed load p and a Poisson 
ratio of zero.  
 

The slopes of the moment-hill represent the shear forces in the two directions.  

𝑝𝑝 = 𝑝𝑝𝑜𝑜 , 𝜐𝜐 = 0 

𝑀𝑀𝑥𝑥 =
𝑝𝑝𝑥𝑥(𝑏𝑏2 − 𝑥𝑥2)

2
  𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑝𝑝𝑥𝑥 = 𝛽𝛽𝑝𝑝  

𝑀𝑀𝑦𝑦 =
𝑝𝑝𝑦𝑦(𝑏𝑏2 − 𝑦𝑦2)

2
 𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑝𝑝𝑦𝑦 = (1 − 𝛽𝛽)𝑝𝑝  

𝑀𝑀� = 𝑀𝑀𝑥𝑥 + 𝑀𝑀𝑦𝑦 =
𝑝𝑝
2

[𝛽𝛽(𝑏𝑏2 − 𝑥𝑥2) + (1 − 𝛽𝛽)(𝑏𝑏2 − 𝑦𝑦2)] 

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀𝑥𝑥

𝑑𝑑𝑥𝑥
= −𝛽𝛽𝑥𝑥𝑝𝑝  

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀𝑦𝑦

𝑑𝑑𝑥𝑥
= −(1 − 𝛽𝛽)𝑦𝑦𝑝𝑝  

− 𝑝𝑝 =  
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+ 
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦

=  −𝛽𝛽𝑝𝑝 − (1 − 𝛽𝛽)𝑝𝑝 

𝑒𝑒𝐻𝐻 𝑏𝑏 = 𝑏𝑏 → 𝛽𝛽 =
1
2

 𝑏𝑏𝑛𝑛𝑑𝑑 𝑀𝑀� =
𝑝𝑝(2𝑏𝑏2 − 𝑥𝑥2 − 𝑦𝑦2)

4
 

𝑚𝑚𝑥𝑥 =  −
𝑥𝑥𝑝𝑝
2

 , 𝑚𝑚𝑦𝑦 =  −
𝑦𝑦𝑝𝑝
2

 

 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
𝛽𝛽

(1 − 𝛽𝛽) ∙ 𝑝𝑝 
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The second type of twistless case, the torsion-less grid of beams, can be 
translated to a cable network with no shear panels. For both cases their 
respective stiffness ratios can be determined with the help of a two-way sine 
load.  
 

This ratio for the beam grid depends on the respective bending stiffnesses K of 
the two directions, and for the cable network the ratio is fixed by the horizontal 
thrusts H.  

𝑝𝑝 = �̌�𝑝  sin
𝜋𝜋𝑥𝑥
𝑏𝑏

 sin
𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝑒𝑒𝑤𝑤𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑠𝑠𝑒𝑒𝑑𝑑 ∶ 𝑝𝑝 = 𝐾𝐾𝑥𝑥
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+  𝐾𝐾𝑦𝑦
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4

  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝐾𝐾𝑥𝑥 =
𝐸𝐸𝐸𝐸𝑥𝑥
𝑏𝑏𝑦𝑦

,𝐾𝐾𝑦𝑦 =
𝐸𝐸𝐸𝐸𝑦𝑦
𝑏𝑏𝑥𝑥

 

𝑤𝑤 =
𝑏𝑏4𝑏𝑏4

𝜋𝜋4𝑏𝑏4𝐾𝐾𝑥𝑥 + 𝜋𝜋4𝑏𝑏4𝐾𝐾𝑦𝑦
 �̌�𝑝 ∙ sin

𝜋𝜋𝑥𝑥
𝑏𝑏

 sin
𝜋𝜋𝑦𝑦
𝑏𝑏

  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝛼𝛼 =
𝑏𝑏
𝑏𝑏
→ 𝑤𝑤 =  

𝛼𝛼4𝑏𝑏4

𝜋𝜋4(𝛼𝛼4𝐾𝐾𝑥𝑥 + 𝐾𝐾𝑦𝑦)
 �̌�𝑝 ∙ sin

𝜋𝜋𝑥𝑥
𝑏𝑏

 sin
𝜋𝜋𝑦𝑦
𝑏𝑏

 

 𝑝𝑝𝑥𝑥 =  𝐾𝐾𝑥𝑥
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

=
𝛼𝛼4𝐾𝐾𝑥𝑥

(𝛼𝛼4𝐾𝐾𝑥𝑥 + 𝐾𝐾𝑦𝑦)
𝑝𝑝  

𝑝𝑝𝑦𝑦 =  𝐾𝐾𝑦𝑦
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4

=
𝐾𝐾𝑦𝑦

(𝛼𝛼4𝐾𝐾𝑥𝑥 + 𝐾𝐾𝑦𝑦)
𝑝𝑝  

 

𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘: 𝑝𝑝 = ℎ𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+  ℎ𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

 ,𝑤𝑤𝑒𝑒𝑒𝑒ℎ: ℎ𝑥𝑥 =
𝐻𝐻𝑥𝑥
𝑏𝑏𝑦𝑦

 , ℎ𝑦𝑦 =
𝐻𝐻𝑦𝑦
𝑏𝑏𝑥𝑥

 

𝑧𝑧 =  
𝑏𝑏2𝑏𝑏2

𝜋𝜋2𝑏𝑏2ℎ𝑥𝑥 + 𝜋𝜋2𝑏𝑏2ℎ𝑦𝑦
�̌�𝑝 ∙ sin

𝜋𝜋𝑥𝑥
𝑏𝑏

 sin
𝜋𝜋𝑦𝑦
𝑏𝑏

    

𝑝𝑝𝑥𝑥 =  ℎ𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

=  
𝛼𝛼2ℎ𝑥𝑥

𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦
𝑝𝑝  

𝑝𝑝𝑦𝑦 =  ℎ𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

=  
ℎ𝑦𝑦

𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦
𝑝𝑝  

 

𝐾𝐾 =  𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝 𝑐𝑐𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝑛𝑛𝑏𝑏𝑐𝑐𝑐𝑐  
𝑏𝑏 =  𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ 𝑒𝑒𝐻𝐻 𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝  

𝛼𝛼 = 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝐻𝐻 𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚ℎ𝑒𝑒,𝛼𝛼 =
𝑏𝑏
𝑏𝑏

 

𝛽𝛽 = 𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝐻𝐻 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑𝑐𝑐 
 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑠𝑠𝑒𝑒𝑑𝑑: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
𝛽𝛽𝑝𝑝

(1 − 𝛽𝛽)𝑝𝑝
=
𝛼𝛼4𝐾𝐾𝑥𝑥
𝐾𝐾𝑦𝑦

𝑝𝑝 

𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
𝛽𝛽𝑝𝑝

(1 − 𝛽𝛽)𝑝𝑝
=
𝛼𝛼2ℎ𝑥𝑥
ℎ𝑦𝑦

𝑝𝑝  

 



  

187 
 

As the gradients of the moment-hill are the shear forces, by changing the 
curvatures of the moment-hill the ratio of the shear forces changes 
accordingly. The shape of the 𝑀𝑀�-hill depends on both ratios α and β.  
 

 
The step can be made from a twistless slab with “beams” in two directions to 
“arches” in these directions, again using the beam – cable/arch analogy. Similar 
as to the cable network. The vertical force v act as intermediate, dependant on 
the 𝑀𝑀�-hill for the load transfer, and on the shape of the shell. 

 
A shell with a translation surface as shape function, depending on its boundary 
conditions, acts like a “twistless case”. If the shell has semi-rigid edges then the 
horizontal support reactions will be zero and the loads will be transferred by 
internal shear forces to the diaphragms, the shell is then not a twistless case.  
In the situation of a twistless case the ratio of the load transfer will depend, 
apart from the boundary conditions, on the ratio of the horizontal thrusts. 
Compared with the twistless slab the ratio of horizontal thrusts is equivalent to 
the ratio of the bending stiffness.  
 
The next example concerns a shell, pin supported along all sides. Its shape 
function will be derived. 

ℎ𝑥𝑥 =
𝐻𝐻𝑥𝑥
𝑏𝑏𝑦𝑦

 ,ℎ𝑦𝑦 =
𝐻𝐻𝑦𝑦
𝑏𝑏𝑥𝑥

 

𝑝𝑝 = 𝑝𝑝𝑥𝑥 + 𝑝𝑝𝑦𝑦 =  ℎ𝑥𝑥
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

+ ℎ𝑦𝑦
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑦𝑦2

 

                         =  𝛽𝛽𝑝𝑝 + (1 − 𝛽𝛽)𝑝𝑝 

 
𝑚𝑚𝑥𝑥
ℎ𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

→  𝑚𝑚𝑥𝑥 = ℎ𝑥𝑥
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑀𝑀𝑥𝑥

𝑑𝑑𝑥𝑥
= −𝛽𝛽𝑝𝑝𝑥𝑥 

𝑚𝑚𝑦𝑦
ℎ𝑦𝑦

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

→  𝑚𝑚𝑦𝑦 = ℎ𝑦𝑦
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦���

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 
𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

=
𝑑𝑑𝑀𝑀𝑦𝑦

𝑑𝑑𝑦𝑦�
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= −(1 − 𝛽𝛽)𝑝𝑝𝑦𝑦  

 

𝑀𝑀� = 𝑀𝑀𝑥𝑥 + 𝑀𝑀𝑦𝑦 =
𝑝𝑝
2

[𝛽𝛽(𝑏𝑏2 − 𝑥𝑥2) + (1 − 𝛽𝛽)(𝛼𝛼2𝑏𝑏2 − 𝑦𝑦2)]  
𝑒𝑒𝐻𝐻 𝑥𝑥 = 𝑦𝑦 = 0:  
𝑀𝑀� =

𝑝𝑝
2

[𝛽𝛽𝑏𝑏2 + (1 − 𝛽𝛽)(𝛼𝛼2𝑏𝑏2)] 

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

 

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦
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The 𝑀𝑀�-hill has been used to derive the shape function of the shell. Due to the 
pin supports and the twistless case the horizontal thrusts are constant. The 
stress function of the shell can now be derived, the horizontal thrusts are equal 
to the projected forces. 

𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏 𝑒𝑒𝑤𝑤𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐,𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑚𝑚 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝐻𝐻 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐: 

ℎ𝑥𝑥 =
𝑀𝑀𝑥𝑥

𝑧𝑧𝑥𝑥
=  
𝛽𝛽𝑝𝑝(𝑏𝑏2 − 𝑥𝑥2)

2𝑧𝑧𝑥𝑥
 

ℎ𝑦𝑦 =
𝑀𝑀𝑦𝑦

𝑧𝑧𝑦𝑦
=  

(1 − 𝛽𝛽)𝑝𝑝 (𝑏𝑏2 − 𝑦𝑦2)
2𝑧𝑧𝑦𝑦

 

𝑀𝑀𝑥𝑥,𝑚𝑚𝑎𝑎𝑥𝑥 =  
𝛽𝛽𝑝𝑝𝑏𝑏2

2
= ℎ𝑥𝑥 ∙ ℎ𝑎𝑎 → ℎ𝑥𝑥 =

𝛽𝛽𝑝𝑝𝑏𝑏2

2ℎ𝑎𝑎
  

ℎ𝑥𝑥 =
𝛽𝛽𝑝𝑝(𝑏𝑏2 − 𝑥𝑥2)

2𝑧𝑧𝑥𝑥
=
𝛽𝛽𝑝𝑝𝑏𝑏2

2ℎ𝑎𝑎
→ 𝑧𝑧𝑥𝑥 =

ℎ𝑎𝑎(𝑏𝑏2 − 𝑥𝑥2)
𝑏𝑏2

  

𝑀𝑀𝑦𝑦,𝑚𝑚𝑎𝑎𝑥𝑥 =
(1 − 𝛽𝛽)𝑝𝑝𝑏𝑏2

2
= ℎ𝑦𝑦 ∙ ℎ𝑏𝑏 → ℎ𝑦𝑦 =

(1 − 𝛽𝛽)𝑝𝑝𝑏𝑏2

2ℎ𝑏𝑏
  

ℎ𝑦𝑦 =
(1 − 𝛽𝛽)𝑝𝑝 (𝑏𝑏2 − 𝑦𝑦2)

2𝑧𝑧𝑦𝑦
=

(1 − 𝛽𝛽)𝑝𝑝𝑏𝑏2

2ℎ𝑏𝑏
→ 𝑧𝑧𝑦𝑦 =

ℎ𝑏𝑏(𝑏𝑏2 − 𝑦𝑦2)
𝑏𝑏2

  

→ 𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑥𝑥 + 𝑧𝑧𝑦𝑦 = ℎ𝑎𝑎
(𝑏𝑏2 − 𝑥𝑥2)

𝑏𝑏2
+ ℎ𝑏𝑏

(𝑏𝑏2 − 𝑦𝑦2)
𝑏𝑏2

 

ℎ𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

,ℎ𝑦𝑦 =  
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

  

→ 𝑚𝑚𝑥𝑥 = −𝛽𝛽𝑝𝑝𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

∙ −
2ℎ𝑎𝑎𝑥𝑥
𝑏𝑏2

 →
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

=
𝛽𝛽𝑏𝑏2𝑝𝑝
2ℎ𝑎𝑎

  

𝜙𝜙𝑥𝑥 =  �
𝛽𝛽𝑏𝑏2𝑝𝑝
2ℎ𝑎𝑎

 𝑑𝑑𝑦𝑦 =  
𝛽𝛽𝑏𝑏2𝑝𝑝
4ℎ𝑎𝑎

𝑦𝑦2 + 𝐶𝐶1  

𝑒𝑒𝐻𝐻 𝑦𝑦 = 𝑏𝑏 𝑒𝑒ℎ𝑏𝑏𝑛𝑛;  𝜙𝜙𝑥𝑥 = 0 → 𝐶𝐶1 = −  
𝛽𝛽𝑏𝑏4𝑝𝑝
4ℎ𝑎𝑎

  

→ 𝑚𝑚𝑦𝑦 = −(1− 𝛽𝛽)𝑝𝑝𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

∙ −
2ℎ𝑏𝑏𝑦𝑦
𝑏𝑏2

 →
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

=
(1 − 𝛽𝛽)𝑏𝑏2𝑝𝑝

2ℎ𝑏𝑏
  

𝜙𝜙𝑦𝑦 =  �
(1 − 𝛽𝛽)𝑏𝑏2𝑝𝑝

2ℎ𝑏𝑏
 𝑑𝑑𝑥𝑥 =  

(1 − 𝛽𝛽)𝑏𝑏2𝑝𝑝
4ℎ𝑏𝑏

𝑥𝑥2 + 𝐶𝐶2  

𝑒𝑒𝐻𝐻 𝑥𝑥 = 𝑏𝑏 𝑒𝑒ℎ𝑏𝑏𝑛𝑛: 𝜙𝜙𝑦𝑦 = 0 → 𝐶𝐶2 = −  
(1 − 𝛽𝛽)𝑏𝑏4𝑝𝑝

4ℎ𝑏𝑏
  

𝜙𝜙 = −
𝑝𝑝
4
�
𝑏𝑏2𝛽𝛽
ℎ𝑎𝑎

(𝑏𝑏2 − 𝑦𝑦2) +
𝑏𝑏2(1− 𝛽𝛽)

ℎ𝑏𝑏
(𝑏𝑏2 − 𝑥𝑥2)� 
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By altering the parameters of the shape function the curvature of the shell 
changes accordingly. This has an effect on the ratio of the load transfer. 

The ratio of the load transfer depends on the shape function and the chosen 
distribution of the loads. In the next numerical example a different choice of 
value for β leads to different solutions for the same shape. This should not be 
possible, each set shape and its accompanying parameters leads to one 
solution.  

𝑝𝑝𝑥𝑥 = ℎ𝑥𝑥
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

 → 𝛽𝛽𝑝𝑝 =
𝛼𝛼2ℎ𝑥𝑥

𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦
𝑝𝑝 →  𝛽𝛽 =

𝛼𝛼2ℎ𝑥𝑥
𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦

 

𝑝𝑝𝑦𝑦 =  ℎ𝑦𝑦
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑦𝑦2

→ (1 − 𝛽𝛽)𝑝𝑝 =
ℎ𝑦𝑦

𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦
𝑝𝑝  

𝛽𝛽 =
𝛼𝛼2ℎ𝑥𝑥

𝛼𝛼2ℎ𝑥𝑥 + ℎ𝑦𝑦
 →

ℎ𝑥𝑥
ℎ𝑦𝑦

=
𝛽𝛽

𝛼𝛼2(1− 𝛽𝛽)  

 

ℎ𝑎𝑎 ≠ ℎ𝑏𝑏 ≠ 0 →  
ℎ𝑥𝑥
ℎ𝑦𝑦

=
𝛽𝛽𝑝𝑝𝑏𝑏2

2ℎ𝑎𝑎
∙

2ℎ𝑏𝑏
(1 − 𝛽𝛽)𝑝𝑝𝑏𝑏2

=  
ℎ𝑏𝑏
ℎ𝑎𝑎

𝛽𝛽
𝛼𝛼2(1− 𝛽𝛽)

 

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
ℎ𝑥𝑥
ℎ𝑦𝑦

∙
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑦𝑦2

→
𝛽𝛽𝑝𝑝

(1 − 𝛽𝛽)𝑝𝑝
=
ℎ𝑏𝑏
ℎ𝑎𝑎

 
1
𝛼𝛼2

𝛽𝛽
(1 − 𝛽𝛽)

∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

 

𝑒𝑒𝐻𝐻 ℎ = ℎ𝑥𝑥 = ℎ𝑦𝑦 𝑒𝑒ℎ𝑏𝑏𝑛𝑛:  
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
ℎ𝑥𝑥
ℎ𝑦𝑦

∙
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑦𝑦2

→
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
ℎ𝑏𝑏
ℎ𝑎𝑎

 
𝑏𝑏2

𝑏𝑏2
𝛽𝛽

(1 − 𝛽𝛽)
∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

 

𝑒𝑒𝐻𝐻 𝛼𝛼 =  
𝑏𝑏
𝑏𝑏

=
2
1

= 2 → 𝛼𝛼2 = 4  

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝐻𝐻𝑒𝑒:
ℎ𝑏𝑏
ℎ𝑎𝑎

=
5
2

 , 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑒𝑒𝑚𝑚ℎ𝑒𝑒:
ℎ𝑏𝑏
ℎ𝑎𝑎

=
2
5

  

𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏: 𝛽𝛽 =  
1
2

  

→  𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝐻𝐻𝑒𝑒: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
5
8
∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  , 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑒𝑒𝑚𝑚ℎ𝑒𝑒: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
1

10
∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  

𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑐𝑐𝑏𝑏: 𝛽𝛽 =  
1
4

  

→  𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝐻𝐻𝑒𝑒: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
5

24
∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  , 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑒𝑒𝑚𝑚ℎ𝑒𝑒: 
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=  
1

30
∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦
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This is precisely the problem of thrust networks, each load case has an infinite 
amount of solutions (statically indeterminate). But only one geometry / shape 
function will be correct. 
 
To solve the problem of multiple possible solutions, the method can be used as 
described previously in chapter 4 with the help of minimizing the 
complementary energy in the structure. For this example this will be done in an 
approximate way, as it is more important to show the principle.  
 
The result is the ratio between the load transfer and the curvatures in both 
directions. 

 
  

𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑥𝑥𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑠𝑠𝑐𝑐 𝑐𝑐𝑏𝑏𝑛𝑛𝑚𝑚ℎ𝑒𝑒 𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑏𝑏: 𝐿𝐿 = 𝑐𝑐 +
8𝐻𝐻2

3𝑐𝑐
 

𝑐𝑐𝑥𝑥 =  2𝑏𝑏 +
8ℎ𝑎𝑎2

3(2𝑏𝑏) =
6𝑏𝑏2 + 4ℎ𝑎𝑎2

3𝑏𝑏
  

𝑐𝑐𝑦𝑦 =  
6𝑏𝑏2 + 4ℎ𝑏𝑏2

3𝑏𝑏
  

𝑁𝑁𝑥𝑥2 = [(ℎ𝑥𝑥)2 + (𝑚𝑚𝑥𝑥)2] =  ��
𝛽𝛽𝑝𝑝𝑏𝑏2

2ℎ𝑎𝑎
�
2

+ (𝛽𝛽𝑝𝑝𝑥𝑥)2� =
𝛽𝛽2𝑝𝑝2(4𝑥𝑥2ℎ𝑎𝑎2 + 𝑏𝑏4)

4ℎ𝑎𝑎2
  

𝑁𝑁𝑦𝑦2 = ��ℎ𝑦𝑦�
2 + �𝑚𝑚𝑦𝑦�

2� = ��
(1− 𝛽𝛽)𝑝𝑝𝑏𝑏2

2ℎ𝑏𝑏
�
2

+ �(1 − 𝛽𝛽)𝑝𝑝𝑦𝑦�2� =
(1 − 𝛽𝛽)2𝑝𝑝2�4𝑦𝑦2ℎ𝑏𝑏2 + 𝑏𝑏4�

4ℎ𝑏𝑏2
  

𝑁𝑁𝑥𝑥,𝑑𝑑𝑚𝑚𝑚𝑚
2 =  

𝑁𝑁𝑥𝑥=02 + 𝑁𝑁𝑥𝑥=𝑎𝑎2

2
 

𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁 = 𝑐𝑐𝑥𝑥 ∙ 𝑁𝑁𝑥𝑥,𝑑𝑑𝑚𝑚𝑚𝑚
2 + 𝑐𝑐𝑦𝑦 ∙ 𝑁𝑁𝑦𝑦,𝑑𝑑𝑚𝑚𝑚𝑚

2 → 𝑏𝑏𝑒𝑒𝑛𝑛: 
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝛽𝛽
= 0  

 

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝐻𝐻𝑒𝑒:  
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝛽𝛽
=

5𝑝𝑝2(6513𝛽𝛽 − 5600)
4

= 0 

→ 𝛽𝛽 =
5600
6513

≈ 0.86 ,
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

= 1.6,
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
3500
913

∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

≈  3.83 ∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑒𝑒𝑚𝑚ℎ𝑒𝑒:  
𝜕𝜕𝐸𝐸𝑓𝑓𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖,𝑁𝑁

𝜕𝜕𝛽𝛽
=

5𝑝𝑝2(5669𝛽𝛽 − 5544)
4

= 0  

→ 𝛽𝛽 =
5544
5669

≈ 0.98 ,
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

=  10,
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦

=
2772
625

∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

≈  4.44 ∙
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

  

  
  
 
 
 
 
 
 

𝑘𝑘𝑥𝑥𝑥𝑥 =  −
2ℎ𝑎𝑎
𝑏𝑏2

,𝑘𝑘𝑦𝑦𝑦𝑦 =  −
2ℎ𝑏𝑏
𝑏𝑏2

 

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝐻𝐻𝑒𝑒:   
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

=  1.6  

𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑠𝑠𝑒𝑒𝑚𝑚ℎ𝑒𝑒:   
𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦

=  10 
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The previous examples considered a twistless case where there are no shear 
panels in the model, there are thus no internal shear forces that can contribute 
to carrying the loads. 
 
If a shape function is used which is not a translation surface, to describe the 
shell’s surface it can still be a twistless case if the twist of the surface is not able 
to carry loads. This is a hypothetical case, if the shear panels are omitted this 
will result in a thrust network. A thrust network is a discretized thrust surface 
without the shear panels and is in fact a twistless case. 

 
The internal forces can be in tension or compression, but there are no shear 
forces. The load is no longer uniform, but is discretized into forces which are 
placed in the nodes where the bars meet, similar to the thrust network. 

𝑐𝑐𝑒𝑒𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏 𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏: 𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖 =
𝑏𝑏4

2𝜋𝜋4
 sin

𝜋𝜋𝑥𝑥
𝑏𝑏

sin
𝜋𝜋𝑦𝑦
𝑏𝑏

   

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑝𝑝 =  �̌�𝑝 sin
𝜋𝜋𝑥𝑥
𝑏𝑏

sin
𝜋𝜋𝑦𝑦
𝑏𝑏

  

𝑀𝑀𝑥𝑥 = 𝑀𝑀𝑦𝑦 =
�̌�𝑝𝑏𝑏2

2𝜋𝜋2
 sin

𝜋𝜋𝑥𝑥
𝑏𝑏

sin
𝜋𝜋𝑦𝑦
𝑏𝑏

  

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀𝑥𝑥

𝑑𝑑𝑥𝑥
=
�̌�𝑝𝑏𝑏2

2𝜋𝜋2
 sin

𝜋𝜋𝑦𝑦
𝑏𝑏

cos
𝜋𝜋𝑥𝑥
𝑏𝑏

  

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀𝑦𝑦

𝑑𝑑𝑦𝑦
=
�̌�𝑝𝑏𝑏2

2𝜋𝜋2
 sin

𝜋𝜋𝑥𝑥
𝑏𝑏

cos
𝜋𝜋𝑦𝑦
𝑏𝑏

  

→ ℎ𝑥𝑥
𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=  ℎ𝑥𝑥 ∙
𝑏𝑏3 sin𝜋𝜋𝑦𝑦𝑏𝑏 cos𝜋𝜋𝑥𝑥𝑏𝑏

2𝜋𝜋3
= 𝑚𝑚𝑥𝑥 →  ℎ𝑥𝑥 =  

𝜋𝜋2�̌�𝑝
𝑏𝑏2

 

𝑒𝑒𝑠𝑠 ℎ𝑥𝑥 =  
𝑀𝑀𝑥𝑥

𝑧𝑧
=  
𝜋𝜋2�̌�𝑝
𝑏𝑏2

= 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 
 ℎ𝑦𝑦 =  ℎ𝑥𝑥 
𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛𝑥𝑥𝑥𝑥 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛𝑦𝑦𝑦𝑦  ≠ 0,𝑛𝑛𝑥𝑥𝑦𝑦 = 𝑛𝑛�𝑥𝑥𝑦𝑦 = 0 
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In a loaded twisted shear panel, due to its twist, the shear forces have a vertical 
component which is able to carry part of the load.  
 

 
A twistless case is statically determinate, once a ratio of the loads (px/py) has 
been determined [89]. To begin with there are infinite possibilities for 
determining this ratio to carry the same total load. This is similar to a thrust 
network, there are infinite solutions for a network to be able to carry the same 
load. Each solution, height and topology,  which provides equilibrium is a viable 
option.  
 
The ratio of “curvatures”, or because of the discretized nature of the network 
the angles, of a chosen network determines the ratio of the load transfer in the 
different directions.  
 
 

𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘 
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The geometry of a thrust network is thus dependent on the chosen ratio of the 
loads. By adding shear panels to a thrust network the problem becomes 
statically indeterminate, meaning the ratio of the loads can no longer be 
chosen [90, 91]. For the given shape of the network we get a single solution, 
the thrust surface. 
 
 

 
In the next section the full expression for the thrust network will be derived. 
  

𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘                                                     𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛𝑏𝑏𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑘𝑘 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐ℎ𝑏𝑏𝑏𝑏𝑠𝑠 𝑝𝑝𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑐𝑐 
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8.3 Shells on a square or rectangular base 
 
This section will discuss the relation between the four basic functions, the 
shape function, stress function, thrust surface, and moment-hill of shells on a 
square or rectangular base. Differing from axisymmetric membrane shells this 
involves some out-of-plane bending, as membrane only solutions are nearly 
impossible. More in detail on this in the last section.  

 
For square, rectangular and triangular based shells the surface of the four basic 
functions will not only be curved but also twisted. The consequence of this is 
that the internal membrane forces and their projected components, will also 
include shear. Which will contribute in the carrying of the load. In a 
discretization of these functions the shear panels will need to be added. 

𝑚𝑚𝑥𝑥 = ℎ𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ ℎ𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

=  𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

 

𝑚𝑚𝑦𝑦 = ℎ𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ ℎ𝑦𝑦𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

= 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

 

𝑝𝑝 = −�
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦 �

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ: ℎ𝑥𝑥𝑦𝑦 = ℎ𝑦𝑦𝑥𝑥  

→ ℎ𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2ℎ𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ ℎ𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

= −𝑝𝑝  

𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

= −𝑝𝑝 

𝐻𝐻𝑥𝑥 =  ℎ𝑥𝑥  𝑑𝑑𝑦𝑦  
𝐻𝐻𝑦𝑦 =  ℎ𝑦𝑦 𝑑𝑑𝑥𝑥  
𝐻𝐻𝑥𝑥𝑦𝑦 =  ℎ𝑥𝑥𝑦𝑦 𝑑𝑑𝑦𝑦  
𝐻𝐻𝑦𝑦𝑥𝑥 =  ℎ𝑦𝑦𝑥𝑥  𝑑𝑑𝑥𝑥 
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In sections 2.8 and 2.9 it was shown that the discretization used for the force-
density method and thrust networks results in a similar expression as the 
differential scheme of the cable equation with the shear part omitted. By 
adding the shear panels we get the full differential scheme of the complete 
cable equation and thrust network [92]. 
 

 
When these equations are solved, a thrust network including shear panels is 
obtained and thus the thrust surface of the load can be determined. The 
problem is statically indeterminate, and can be solved by minimizing the 
complementary energy for the system or by solving the stress function, see 
section 8.7.  
 

𝐻𝐻𝑥𝑥
𝑧𝑧𝑖𝑖𝑗𝑗 − 2𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧ℎ𝑖𝑖

(△ 𝑥𝑥)2 + 2𝐻𝐻𝑥𝑥𝑦𝑦
𝑧𝑧𝑖𝑖𝑚𝑚 − 𝑧𝑧𝑖𝑖𝑚𝑚 + 𝑧𝑧𝑖𝑖𝑛𝑛 − 𝑧𝑧𝑖𝑖𝑛𝑛

4 △ 𝑥𝑥△ 𝑦𝑦
+ 𝐻𝐻𝑦𝑦

𝑧𝑧𝑛𝑛𝑚𝑚 − 2𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑚𝑚
(△ 𝑦𝑦)2 = 𝑝𝑝 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝐹𝐹𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛 =△ 𝑥𝑥△ 𝑦𝑦 𝑝𝑝, 
𝑧𝑧𝑚𝑚𝑛𝑛 = 𝑧𝑧𝑖𝑖𝑖𝑖  
𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  

⇒ 𝐻𝐻𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2𝐻𝐻𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+𝐻𝐻𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

= − 𝑝𝑝𝑜𝑜 
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The differential scheme can also be used for a discretization of the stress 
function and the moment hill, because they are applicable to all second order 
partial differential equations.  

 
The importance of the equations being second order is that a thrust line of an 
arch and the thrust surface of a shell are material independent. For the arch 
this means the problem is mostly statically determinate, depending on the 
boundary conditions. For some shells the thrust surface is statically 
determinate, for example of axisymmetric shells, see chapter 7. The analogy 
between the 𝑀𝑀�-hill and its equivalent membrane equation will be used to solve 
the next example, shells on a square or rectangular base with hinge supports 
along all edges [93]. Its equivalent slab is equally hinge supported along all 
edges, see section 8.6. 
 

2𝜅𝜅𝑥𝑥𝑦𝑦 =  
Δ𝑧𝑧𝑖𝑖 + Δ𝑧𝑧𝑖𝑖 + Δ𝑧𝑧𝑗𝑗 + Δ𝑧𝑧𝑗𝑗

𝑥𝑥𝑦𝑦
  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: Δ𝑧𝑧𝑖𝑖 = 𝑧𝑧4 − 𝑧𝑧1,  
Δ𝑧𝑧𝑖𝑖 = 𝑧𝑧4 − 𝑧𝑧3,  
Δ𝑧𝑧𝑗𝑗 = 𝑧𝑧2 − 𝑧𝑧3, 
 Δ𝑧𝑧𝑗𝑗 = 𝑧𝑧2 − 𝑧𝑧1 

→ 𝜅𝜅𝑥𝑥𝑦𝑦 =  
−𝑧𝑧1 + 𝑧𝑧2 − 𝑧𝑧3 + 𝑧𝑧4

𝑥𝑥𝑦𝑦
 

𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏,𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛𝑥𝑥𝑥𝑥 =  𝑛𝑛𝑦𝑦𝑦𝑦 = 𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛𝑥𝑥𝑦𝑦 = 0 

→ 𝑛𝑛�
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

− 𝑝𝑝 = 0  

𝐻𝐻𝑒𝑒𝑠𝑠 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑚𝑚𝑐𝑐𝑏𝑏 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 (𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝑛𝑛𝑏𝑏𝑐𝑐𝑐𝑐):  

𝑧𝑧 = 𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =
16𝑝𝑝𝑏𝑏2

𝜋𝜋3𝑛𝑛
 �

1
𝑛𝑛

(−1)
𝑛𝑛−1
2

∞

𝑛𝑛=1,3,5…

�1 −
𝑐𝑐𝑒𝑒𝑐𝑐ℎ 𝑛𝑛𝜋𝜋𝑦𝑦2𝑏𝑏
𝑐𝑐𝑒𝑒𝑐𝑐ℎ 𝑛𝑛𝜋𝜋𝑏𝑏2𝑏𝑏

� 𝑐𝑐𝑒𝑒𝑐𝑐
𝑛𝑛𝜋𝜋𝑥𝑥
2𝑏𝑏

 

𝑚𝑚𝑛𝑛 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑛𝑛

= 𝑏𝑏𝑏𝑏𝑥𝑥 

𝑚𝑚𝑡𝑡 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑒𝑒

= 0 

𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐: 

𝑀𝑀� = −𝐷𝐷�
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2�

 

𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑐𝑐 𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏/𝑒𝑒𝑛𝑛𝐻𝐻𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏: 

𝑝𝑝 = 𝑛𝑛 �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�
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The expression for the moment hill of the twistless case adheres to the 
analogy, and is thus a correct 𝑀𝑀�-hill. This also holds for the slab with torsional 
stiffness. 

 
In this analogy, taken from slab theory, an inflated membrane is equivalent to 
the moment-hill. The analogy has been used to derive the stress functions in 
chapter 7 for the axisymmetric shells. For these shells the surface of the 
moment-hill is curved. For shells on a square or rectangular base the surface is 
curved and twisted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The trajectories of the maximum shear forces vn in slabs, which are the curves 
of steepest ascent of the M-hill, are equivalent to the trajectories of the flow of 
forces of a shell. Comparing the trajectories of a circular or square moment-hill 
it can be observed that for the latter the lines are skewed outwards like 
tendons running over an inflated balloon.  

𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 ℎ𝑒𝑒𝑐𝑐𝑐𝑐 𝑒𝑒𝑤𝑤𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏: 
𝑀𝑀� =

𝑝𝑝
2

[𝛽𝛽(𝑏𝑏2 − 𝑥𝑥2) + (1 − 𝛽𝛽)(𝑏𝑏2 − 𝑦𝑦2)] 

𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦: 
𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

≡ 𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

  

𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" = −
𝑝𝑝

2𝑛𝑛
[𝛽𝛽(𝑏𝑏2 − 𝑥𝑥2) + (1 − 𝛽𝛽)(𝑏𝑏2 − 𝑦𝑦2)] 

→ �
𝛽𝛽𝑝𝑝
𝑛𝑛

+
(1 − 𝛽𝛽)𝑝𝑝

𝑛𝑛 � =  
𝑝𝑝
𝑛𝑛

 

 
 
 

𝑚𝑚𝑛𝑛 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑛𝑛

= 𝑏𝑏𝑏𝑏𝑥𝑥  

𝑚𝑚𝑡𝑡 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑒𝑒

= 0 
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The flow of forces for shells on a square, rectangular and triangular base nearly 
always involves shear forces in the shell. The strips of the load transfer are, 
different from the twistless case, not aligned in a orthogonal grid. But the strips 
do follow the trajectories of the flow of forces. 

 
An example of a shell on a square base is the bubble shell. The shape function 
of the shell is the same of the inflated membrane. The shell is also subjected to 
a uniformly distributed load p. In order to find the stress function, the 
approximation of the shape function will be used as found in the “Theory and 
practice of membrane shells” by Pal Csonka [94].  
 

𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐, 𝑠𝑠𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑 𝑚𝑚𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐𝑒𝑒𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏  

𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝 𝑒𝑒𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑑𝑑 
 
𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒𝑝𝑝 𝑒𝑒𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑑𝑑 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒𝑤𝑤𝑒𝑒𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 

𝑚𝑚𝑛𝑛 =  �(𝑚𝑚𝑥𝑥)2 + �𝑚𝑚𝑦𝑦�
2

 

𝑛𝑛�𝑛𝑛𝑡𝑡 =  𝑛𝑛�𝑡𝑡𝑛𝑛 

𝑚𝑚𝑛𝑛 = 𝑛𝑛�𝑛𝑛𝑛𝑛
𝜕𝜕𝑧𝑧
𝜕𝜕𝑛𝑛

+ 𝑛𝑛�𝑛𝑛𝑡𝑡
𝜕𝜕𝑧𝑧
𝜕𝜕𝑒𝑒

 

𝑚𝑚𝑡𝑡 = 𝑛𝑛�𝑡𝑡𝑡𝑡
𝜕𝜕𝑧𝑧
𝜕𝜕𝑒𝑒

+ 𝑛𝑛�𝑛𝑛𝑡𝑡
𝜕𝜕𝑧𝑧
𝜕𝜕𝑛𝑛

= 0 

 

𝑀𝑀 − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 
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The example Csonka uses starts from the stress function and derives the 
accompanying shape function. Because Pucher’s equation allows for both 
functions to be interchanged (see section 8.8), the expression for the stress 
function will be used as shape function. Thus a useable stress function for this 
problem is obtained. 
 

 
 
It is impossible for this example to find a fully analytical solution for this 
example. On the basis of the shape function an analytical solution can be found 
for the edge of the stress function and for the horizontal thrust 𝑛𝑛�𝑦𝑦𝑦𝑦. Using the 
results of the numerical solution found in Csonka the shear stresses along the 
edge can be estimated. Because the shell is flat along the edge in the parallel 
direction the shear force is not able to carry any loads, this results in bending 
moments and shear forces in the edge zone. 
 
𝐻𝐻𝑒𝑒𝑠𝑠 𝑒𝑒ℎ𝑒𝑒𝑐𝑐 𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏𝑝𝑝𝑐𝑐𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐 𝑒𝑒𝐻𝐻 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑤𝑤𝑒𝑒𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑒𝑒𝑐𝑐𝑏𝑏𝑑𝑑 𝑒𝑒𝑒𝑒 
𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑧𝑧 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝜙𝜙 𝑏𝑏𝑐𝑐 𝐻𝐻𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑 𝑒𝑒𝑛𝑛 𝐶𝐶𝑐𝑐𝑒𝑒𝑛𝑛𝑘𝑘𝑏𝑏:   
 

𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖 =  −2𝐾𝐾�
(𝑏𝑏2 − 𝑥𝑥2)(𝑏𝑏2 − 𝑦𝑦2)

𝑏𝑏4 − 𝑥𝑥2𝑦𝑦2 � ,𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐾𝐾 𝑒𝑒ℎ𝑏𝑏 ℎ𝑏𝑏𝑒𝑒𝑚𝑚ℎ𝑒𝑒 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑏𝑏𝑛𝑛 𝑏𝑏𝑏𝑏 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑏𝑏𝑛𝑛. 

𝜙𝜙,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 = −
𝑝𝑝𝑏𝑏4

16𝐾𝐾
�

4
3
�
2
�√3

𝑥𝑥
𝑏𝑏

 𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛√3
𝑥𝑥
𝑏𝑏
− √3𝑏𝑏𝑠𝑠𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛√3 −

1
2
𝑐𝑐𝑛𝑛

3 �𝑥𝑥𝑏𝑏�
2

+ 1
4

+
1
2

3 − 3 �𝑥𝑥𝑏𝑏�
2

4
�  

  

𝑛𝑛�𝑦𝑦𝑦𝑦,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 =
𝜕𝜕2𝜙𝜙,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚
𝜕𝜕𝑥𝑥2

=   
𝑝𝑝𝑏𝑏4

𝐾𝐾
∙

(𝑏𝑏2 − 𝑥𝑥2)
4𝑏𝑏2(3𝑥𝑥2 + 𝑏𝑏2)

  

𝑚𝑚𝑦𝑦,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 =  𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

=  −
4
𝑏𝑏

 𝑏𝑏𝑛𝑛𝑑𝑑 
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

= 0  

→  𝑚𝑚𝑦𝑦,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 =  𝑛𝑛�𝑦𝑦𝑦𝑦 ∙  −
4
𝑏𝑏

 

 
  → 𝑒𝑒ℎ𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑏𝑏𝑝𝑝𝑏𝑏𝑛𝑛𝑐𝑐𝑦𝑦 𝑏𝑏𝑏𝑏𝑒𝑒𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 𝑚𝑚𝑦𝑦,𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙  𝑏𝑏𝑛𝑛𝑑𝑑 𝑚𝑚𝑦𝑦,𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 ℎ𝑏𝑏𝑐𝑐 𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑐𝑐𝑏𝑏𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑑𝑑 𝑏𝑏𝑦𝑦 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝐻𝐻 − 𝑝𝑝𝑐𝑐𝑏𝑏𝑛𝑛𝑏𝑏  
𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑏𝑏𝑠𝑠 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏𝑐𝑐 𝑏𝑏𝑛𝑛𝑑𝑑 𝑏𝑏𝑏𝑏𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑐𝑐 
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The 𝑀𝑀�-hill shows the flow of forces. The stresses of the bubble shell have been 
validated by FEM calculations. In the last section it will be outlined how to deal 
with the bending moments and shear forces. 
  

Figure 46 FEM calculation [image by Peter Eigenraam] 

𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 

 𝐹𝐹𝐸𝐸𝑀𝑀 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  

 𝑛𝑛�𝑥𝑥𝑦𝑦 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑑𝑑 𝑏𝑏𝑦𝑦  
𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏  
𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐  
𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 

𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒𝑧𝑧𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛,  
𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 𝑚𝑚𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐 𝑒𝑒𝑐𝑐𝑏𝑏𝑑𝑑 𝐻𝐻𝑒𝑒𝑠𝑠 𝑛𝑛�𝑥𝑥𝑦𝑦 
 

 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  
 

 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐 𝑏𝑏𝑐𝑐𝑒𝑒𝑛𝑛𝑚𝑚 𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 
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8.4 Shells on a triangular base 
 
For a shell on a triangular base it is possible to analytically derive the basic 
functions. The first example is an equilateral triangular shell with pin supports 
along its edges.  

The shape function is given and the 𝑀𝑀�-hill of the p-load will be used to derive 
the stress function.  

𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖 =
ℎ

4𝑏𝑏2
(𝑥𝑥2 + 𝑦𝑦2 − 4𝑏𝑏2) 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
ℎ𝑥𝑥

2𝑏𝑏2
 ,
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

=
ℎ𝑦𝑦

2𝑏𝑏2
  

𝑑𝑑2𝑧𝑧
𝑑𝑑𝑥𝑥2

=  
ℎ

2𝑏𝑏2
 ,
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑦𝑦2

=  
ℎ

2𝑏𝑏2
 

 

−𝑧𝑧 

𝑚𝑚𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑘𝑘𝑏𝑏 𝑝𝑝𝑒𝑒𝑛𝑛𝑛𝑛𝑏𝑏𝑑𝑑 
𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐: 
𝑛𝑛�𝑥𝑥𝑦𝑦 = 𝑛𝑛�𝑛𝑛𝑡𝑡 = 0 

𝑀𝑀�𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 = −
𝑝𝑝(𝑠𝑠2 − 𝑏𝑏2)

4
= −

𝑝𝑝(𝑥𝑥2 + 𝑦𝑦2 − 𝑏𝑏2)
4

  

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

=  −
𝑝𝑝𝑥𝑥
2

  

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦

=  −
𝑝𝑝𝑦𝑦
2

 

𝑚𝑚𝑛𝑛 =  �(𝑚𝑚𝑥𝑥)2 + �𝑚𝑚𝑦𝑦�
2 =  

𝑝𝑝
2
�𝑥𝑥2 + 𝑦𝑦2 =  

𝑝𝑝
2
𝑠𝑠 

 𝑚𝑚𝑥𝑥 = 𝑛𝑛�𝑥𝑥𝑥𝑥
𝑑𝑑𝑧𝑧
𝑑𝑑𝑧𝑧

 → 𝑛𝑛�𝑥𝑥𝑥𝑥 = −
𝑝𝑝𝑥𝑥
2

 ∙
2𝑏𝑏2

ℎ𝑥𝑥
= −

𝑝𝑝𝑏𝑏2

ℎ
  

𝑛𝑛�𝑥𝑥𝑥𝑥 = 𝑛𝑛�𝑦𝑦𝑦𝑦 = −
𝑝𝑝𝑏𝑏2

ℎ
 ,𝑛𝑛�𝑥𝑥𝑦𝑦 = 0  

�𝑚𝑚𝑛𝑛 = 𝑛𝑛�𝑛𝑛𝑛𝑛
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

 → 𝑛𝑛�𝑛𝑛𝑛𝑛 =
𝑝𝑝𝑠𝑠
2
∙

2𝑏𝑏2

ℎ𝑠𝑠
=
𝑝𝑝𝑏𝑏2

ℎ �  

𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −
𝑝𝑝𝑏𝑏2

ℎ
 → 𝜙𝜙𝑥𝑥 = −

𝑝𝑝𝑏𝑏2

2ℎ
 𝑦𝑦2 + 𝐶𝐶 

𝑛𝑛�𝑦𝑦𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

= −
𝑝𝑝𝑏𝑏2

ℎ
→ 𝜙𝜙𝑦𝑦 = −

𝑝𝑝𝑏𝑏2

2ℎ
 𝑥𝑥2 + 𝐶𝐶 

𝜙𝜙 =  𝜙𝜙𝑥𝑥 + 𝜙𝜙𝑦𝑦 = −
𝑝𝑝𝑏𝑏2

2ℎ
(𝑥𝑥2 + 𝑦𝑦2 + 𝐶𝐶)  

𝐻𝐻𝑒𝑒𝑠𝑠 𝑥𝑥 =  −2𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = 0 𝑏𝑏𝑛𝑛𝑑𝑑 𝐻𝐻𝑒𝑒𝑠𝑠 𝑥𝑥 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 =  √3𝑏𝑏:  
𝜙𝜙 = 0 → 𝐶𝐶 =  −4𝑏𝑏2 
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The solution is very similar to the twistless case shell from section 8.2. 
 

 
For the same shell the boundary conditions will be changed. The vault like pin 
supported edge will become a semi-rigid one. This means that the edge can no 
longer take up thrust perpendicular to the edge, only shear forces can be 
taken. Structurally the edge will include a diaphragm.  
The derivation below of the stress function for the semi-rigid edges is taken 
from the forementioned book by Csonka. It is based on the premise that the 
stress function is equal to zero along the edges, as a consequence of the 
boundary conditions. 
 

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

− 2
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝑝𝑝 = 0  

→
ℎ

2𝑏𝑏2 �
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2�

+ 𝑝𝑝 = 0 

𝑒𝑒𝑒𝑒 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝐻𝐻𝑦𝑦 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 → 𝜙𝜙 = 0 

(𝑥𝑥 − 𝑏𝑏) = 0, �𝑦𝑦 −
2𝑏𝑏
√3

−
𝑥𝑥
√3
� = 0, �𝑦𝑦 +

2𝑏𝑏
√3

+
𝑥𝑥
√3
� = 0  

𝜙𝜙 = 𝐾𝐾(𝑥𝑥 − 𝑏𝑏) �𝑦𝑦 −
2𝑏𝑏
√3

−
𝑥𝑥
√3
� �𝑦𝑦 +

2𝑏𝑏
√3

+
𝑥𝑥
√3
� 

 → 𝜙𝜙 = 𝐾𝐾
−3𝑏𝑏𝑥𝑥2 − 3𝑏𝑏𝑦𝑦2 − 𝑥𝑥3 + 3𝑥𝑥𝑦𝑦2 + 4𝑏𝑏3

3
  

𝑒𝑒𝑒𝑒 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝐻𝐻𝑦𝑦 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 → 𝐾𝐾 =
𝑝𝑝𝑏𝑏
2ℎ

  

𝜙𝜙 =  −
𝑝𝑝𝑏𝑏
6ℎ

(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 + 𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 4𝑏𝑏3)  

𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −  
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 − 𝑥𝑥) 

𝑛𝑛�𝑥𝑥𝑦𝑦 = −
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

= −  
𝑝𝑝𝑏𝑏
ℎ
𝑦𝑦 

𝑛𝑛�𝑦𝑦𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

=  −
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 + 𝑥𝑥) 

 

𝑐𝑐𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑 
𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐: 
𝑛𝑛�𝑥𝑥𝑥𝑥 = 𝑛𝑛�𝑛𝑛𝑛𝑛 = 0 



  

203 
 

Using the stress function, the correct function for the 𝑀𝑀�-hill can be 
constructed. The 𝑀𝑀�-hill for the semi-rigid boundary conditions will have to 
include shear forces. The surface of the altered 𝑀𝑀�-hill will be curved and 
twisted. This will be reflected in the flow of the vertical forces.  

This result also adheres to the membrane equation, as would be expected for a 
𝑀𝑀�-hill. From the expression can be seen that the new 𝑀𝑀�-hill is a tranformed 
version of the p-load 𝑀𝑀�-hill. This is the result of the boundary conditions. The 
new surface of the 𝑀𝑀�-hill is no longer a translation surface, but it now includes 
twist. Shear membrane forces can be expected in transfering the load. 

𝑚𝑚𝑥𝑥 =  𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

=  −
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 − 𝑥𝑥) ∙
ℎ𝑥𝑥

2𝑏𝑏2
−
𝑝𝑝𝑏𝑏
ℎ
𝑦𝑦 ∙

ℎ𝑦𝑦
2𝑏𝑏2

 

→  𝑚𝑚𝑥𝑥 =  −
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑥𝑥 − 𝑥𝑥2 + 𝑦𝑦2) 

𝑚𝑚𝑦𝑦 = 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

 =  −
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 + 𝑥𝑥) ∙
ℎ𝑦𝑦

2𝑏𝑏2
−
𝑝𝑝𝑏𝑏
ℎ
𝑦𝑦 ∙

ℎ𝑥𝑥
2𝑏𝑏2

  

→  𝑚𝑚𝑦𝑦 =  −
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑦𝑦 + 2𝑥𝑥𝑦𝑦)  

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

 → 𝑀𝑀�𝑥𝑥 = �−
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑥𝑥 − 𝑥𝑥2 + 𝑦𝑦2) 𝑑𝑑𝑥𝑥 = −

𝑝𝑝
12𝑏𝑏

(6𝑥𝑥𝑦𝑦2 − 2𝑥𝑥3 + 3𝑏𝑏𝑥𝑥2)  

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦

 → 𝑀𝑀�𝑦𝑦 = �−
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑦𝑦 + 2𝑥𝑥𝑦𝑦) 𝑑𝑑𝑦𝑦 = −

𝑝𝑝
12𝑏𝑏

(6𝑥𝑥𝑦𝑦2 + 3𝑏𝑏𝑦𝑦2)  

→ 𝑀𝑀� = 𝑀𝑀�𝑥𝑥 + 𝑀𝑀�𝑦𝑦 = −
𝑝𝑝

12𝑏𝑏
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 𝐶𝐶) 

𝑒𝑒𝐻𝐻 𝑥𝑥 =  −2𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = 0 𝑒𝑒ℎ𝑏𝑏𝑛𝑛 𝑀𝑀� = 0 → 𝐶𝐶 = 28𝑏𝑏3  
  

𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

≡ 𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

  

𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =
𝑝𝑝

12𝑏𝑏𝑛𝑛
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 28𝑏𝑏3) 

→ �
(−2𝑥𝑥 + 𝑏𝑏)𝑝𝑝

2𝑏𝑏𝑛𝑛
+

(2𝑥𝑥 + 𝑏𝑏)𝑝𝑝
2𝑏𝑏𝑛𝑛 � =  

𝑝𝑝
𝑛𝑛

 

 

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑀𝑀�𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 = −
𝑝𝑝(𝑥𝑥2 + 𝑦𝑦2 − 𝑏𝑏2)

4
=  −

𝑝𝑝
12𝑏𝑏

(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 3𝑏𝑏3) 

 𝑀𝑀� = −
𝑝𝑝

12𝑏𝑏
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 3𝑏𝑏3�������������

𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙
−2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 25𝑏𝑏3���������������

𝑏𝑏𝑚𝑚𝑓𝑓𝑛𝑛𝑙𝑙𝑎𝑎𝑠𝑠𝑦𝑦 
𝑓𝑓𝑚𝑚𝑛𝑛𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

)  
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8.5 Properties of trajectories 
 
It is important to note that the trajectories of the force flow / load transfer and 
the principle (projected) membrane forces are not the same.  
The first relates to the load path, thus along which lines the load is transferred 
to the supports and these lines are gradient curves of steepest decent of the 
𝑀𝑀�-hill surface.  
The second relates to the state-of-stress of the shell which is the result of its 
membrane forces (bending is not considered here, see section 8.10/11). The 
trajectories of the principle projected membrane forces (𝑛𝑛�1,2) are lines that lie 
on the stress function and have normal and geodesic curvature (section 6.5). 
The trajectories of the principle membrane forces (𝑛𝑛1,2) act in the cross section 
of the shell’s surface (shape function) and lie on it. The lines have normal and 
geodesic curvature and geodesic torsion. 
 
 
 
  

𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑝𝑝𝑐𝑐𝑏𝑏 𝑝𝑝𝑠𝑠𝑒𝑒𝑑𝑑𝑏𝑏𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏𝑐𝑐:  

𝑛𝑛�1,2 =
𝑛𝑛�𝑥𝑥𝑥𝑥 + 𝑛𝑛�𝑦𝑦𝑦𝑦

2
± ��

𝑛𝑛�𝑥𝑥𝑥𝑥 − 𝑛𝑛�𝑦𝑦𝑦𝑦
2

�
2

+ 𝑛𝑛�𝑥𝑥𝑦𝑦2  

 
 

𝐻𝐻𝑐𝑐𝑒𝑒𝑤𝑤 𝑒𝑒𝐻𝐻 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏𝑐𝑐/ 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝𝑏𝑏𝑒𝑒ℎ:  

𝑚𝑚𝑛𝑛 =
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑛𝑛

= 𝑛𝑛�𝑛𝑛𝑛𝑛
𝜕𝜕𝑧𝑧
𝜕𝜕𝑛𝑛

+ 𝑛𝑛�𝑛𝑛𝑡𝑡
𝜕𝜕𝑧𝑧
𝜕𝜕𝑒𝑒

= 𝑏𝑏𝑏𝑏𝑥𝑥 
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8.6 Boundary conditions 
 
Boundary conditions are important in determining the flow of forces [95]. A 
straight edge of a shell will not be able to carry a thrust perpendicular to the 
edge, a funicular arch is better suited [96]. This can be found by an inverted 
hanging model, either by a physical or numerical model. In the next section will 
be discussed what this means for an inflated membrane with “free edges”, 
analogous for a shell with semi-rigid supports. 

In previous sections it was shown that if the boundary condition is pinned the 
𝑀𝑀�-hill for a uniformly distributed load p is an axisymmetric parabola. This fits 
with a pinned supported circular slab. The equivalent for a square or 
rectangular slab is a twistless case. The 𝑀𝑀�-hill strips of the flow of vertical 
forces are curved but not twisted. 

𝑀𝑀�𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
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A shell with curved and pinned edges is not a very common solution, it is more 
theoretical and served its purpose in proving a principle.  
Three realistic boundary conditions of shell will be discussed with their slab 𝑀𝑀�-
hill analogy. The first is the square or rectangular based shell with straight 
edges, like the bubble shell from section 8.3. Its 𝑀𝑀�-hill analogy is the simply 
supported plate, the boundary conditions are equivalent and because the shell 
is square or rectangular the 𝑀𝑀�-hill strips of the flow vertical forces are curved 
and twisted. 

For shells with curved edges there two types, those with semi-rigid edges or 
free edges, like the triangular shell from section 8.4. 
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Semi-rigid edges take up shear stress, which implies that the surface of the 𝑀𝑀�-
hill has to be twisted as well as bent to be able to accommodate the correct 
flow of the vertical forces. 

 

For the shell with free edges the accompanying 𝑀𝑀�-hill needs to have flow 
trajectories that run parallel along the edges. The continuous slab on columns 
has such trajectories. Perpendicular to the axis of symmetry the rotations are 
zero, thus there are no shear forces along the shells edge. This also results in 
slightly turned up edges for the shell, which is positive for the load transfer.  
 

𝐵𝐵𝑥𝑥 ∙ 𝐵𝐵𝑦𝑦 = 𝐾𝐾𝑥𝑥𝑏𝑏 ∙ 𝐾𝐾𝑦𝑦𝑏𝑏 
 

𝜕𝜕𝜑𝜑𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝜅𝜅𝑥𝑥𝑦𝑦 = 𝑏𝑏𝑥𝑥𝑦𝑦 = 0 

 

Figure 47 shell surface (shape function) is taken equal to surface of M-hill, its (polyhedral) 
stress function and the horizontally projected forces and the load distribution [image 101] 
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As long as the rotations perpendicular to the edge are zero there are two types 
of 𝑀𝑀�-hill permittable, slabs with a stiffness or the twistless case. For the last 
situation the shape of the 𝑀𝑀�-hill depends on the correct ratio of the “edge 
beam” stiffness B and the field stiffness K.  

 

The “edge beam” of the 𝑀𝑀�-hill is equivalent to the edge zone of the shell, 
usually an upward edge. 
 

 

The 𝑀𝑀�-hill represents the flow of forces v of the load for the shell and depends 
on the boundary condition of the shell. The shape function of the shell, thus its 
form, and the internal stresses, governed by the stress function, depend on the 
flow of forces and the 𝑀𝑀�-hill.  

 
𝑝𝑝𝑥𝑥
𝐾𝐾𝑥𝑥

=
𝑝𝑝𝑦𝑦𝑏𝑏
𝐵𝐵𝑥𝑥

 → 𝐵𝐵𝑥𝑥 =
(1 − 𝛽𝛽)

𝛽𝛽
 𝐾𝐾𝑥𝑥𝑏𝑏  

𝑝𝑝𝑦𝑦
𝐾𝐾𝑦𝑦

=
𝑝𝑝𝑥𝑥𝑏𝑏
𝐵𝐵𝑦𝑦

 → 𝐵𝐵𝑦𝑦 =
𝛽𝛽

(1 − 𝛽𝛽) 𝐾𝐾𝑦𝑦𝑏𝑏  

𝐵𝐵𝑥𝑥 ∙ 𝐵𝐵𝑦𝑦 = 𝐾𝐾𝑥𝑥𝑏𝑏 ∙ 𝐾𝐾𝑦𝑦𝑏𝑏  

𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑚𝑚𝑥𝑥 =  𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦�����������

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 /
𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

  

𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑚𝑚𝑦𝑦 =  𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥�����������

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑚𝑚 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 /
𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

 

 𝑝𝑝 = −�
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦 �

 

 
 
 

Figure 48 shell surfaces (shape function) is taken equal to surface of M-hill and its load 
distribution [image 101] 



  

209 
 

8.7 The relationship between the four functions  

 
In previous section the close relationship between the four functions was 
shown that determine the shape of a shell in relation to its flow of forces.  

 

The example of the funicular will be further discussed. The 𝑀𝑀�-hill for a 
uniformly distributed p load is the parabola. For the equivalent loaded circular 
slab [97] the M-hill is the summation of the radial mrr and tangential mθθ 
moments. 

𝐹𝐹 = 𝜋𝜋𝑏𝑏2𝑝𝑝 
  

𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒𝑐𝑐 𝑒𝑒𝐻𝐻 𝑐𝑐𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑠𝑠 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 𝑝𝑝 
 

𝑏𝑏𝜃𝜃𝜃𝜃 = 𝑛𝑛𝜃𝜃𝜃𝜃 = 0  
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The part of the radial moment not concerned with equilibrium but which is the 
result of compatibility issues will be discarded. Because the 𝑀𝑀�-hill is the 
summation of the two moments there are equivalent radial and tangential 
membrane forces in the shell. Both moments contribute to the flow of forces. 
With the funicular shell there are no radial forces. The funicular shell can be 
considered as an axisymmetric collection of orange peel shaped beams.  
The “natural” flow of a uniformly distributed p load is the parabola, the 
funicular shell is an exception. 

 
The relations between the functions will be exemplified by the equilateral 
triangular shell with semi-rigid edges. Start with constructing the 𝑀𝑀�-hill by 
virtue of the membrane analogy for slabs with the correct boundary conditions; 
a slab on three corner supports and with free edges. From the 𝑀𝑀�-hill follows 
the flow of forces. Then the shape function of the shell will be introduced. With 
the help of the projected forces and Pucher’s equation the stress function can 
be derived and finally the internal membrane forces. In the next section the 
thrust surface will be extracted from the stress function. 

 
𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑠𝑠2

+
1
𝑠𝑠
𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠�

 

→ 𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =
𝑝𝑝

4𝑛𝑛
(𝑠𝑠2 − 𝑏𝑏2) 

𝑒𝑒𝑐𝑐𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦:−𝑝𝑝 = �
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑠𝑠2

+
1
𝑠𝑠
𝜕𝜕𝑀𝑀�
𝜕𝜕𝑠𝑠 �

  

→ 𝑀𝑀�𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 =  
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
=  𝑏𝑏𝑠𝑠𝑠𝑠 + 𝑏𝑏𝜃𝜃𝜃𝜃,𝑠𝑠𝑚𝑚𝑙𝑙 = �

3𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)
16

+���������
𝑚𝑚𝑟𝑟𝑟𝑟

𝑝𝑝(3𝑏𝑏2 − 𝑠𝑠2)
16

−
𝑝𝑝𝑏𝑏2

8�������������
𝑚𝑚𝜃𝜃𝜃𝜃,𝑟𝑟𝑟𝑟𝑟𝑟

� 

𝑝𝑝𝜋𝜋𝑠𝑠2 + 𝑚𝑚𝑠𝑠2𝜋𝜋𝑠𝑠 = 0 → 𝑚𝑚𝑠𝑠 = −
𝑝𝑝𝑠𝑠
2

 𝑒𝑒𝑠𝑠: 

𝑚𝑚𝑠𝑠 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

=  
𝑑𝑑𝑏𝑏𝑠𝑠𝑠𝑠

𝑑𝑑𝑠𝑠
+
𝑑𝑑𝑏𝑏𝜃𝜃𝜃𝜃,𝑠𝑠𝑚𝑚𝑙𝑙

𝑑𝑑𝑠𝑠
=  −

3𝑝𝑝𝑠𝑠
8

−
𝑝𝑝𝑠𝑠
8

=  −
𝑝𝑝𝑠𝑠
2

 

 𝑀𝑀𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =  
𝑝𝑝0(𝑏𝑏3 − 𝑠𝑠3)

3𝑏𝑏
,𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑝𝑝0 =  

𝐹𝐹
2𝑏𝑏𝜋𝜋

=
𝑝𝑝𝑏𝑏
2

 

→ 𝑀𝑀𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =  
𝑝𝑝(𝑏𝑏3 − 𝑠𝑠3)

6
, 𝑏𝑏𝑛𝑛𝑑𝑑 𝑏𝑏𝜃𝜃𝜃𝜃 = 0  

𝑒𝑒𝐻𝐻 𝑠𝑠 = 0 𝑒𝑒ℎ𝑏𝑏𝑛𝑛: 𝑀𝑀𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡 =  
𝑝𝑝0𝑏𝑏2

3
=
𝑝𝑝𝑏𝑏3

6
∶ "𝐻𝐻" =

𝑀𝑀
ℎ

=
𝑝𝑝𝑏𝑏3

6ℎ
 

𝑉𝑉𝑠𝑠 =  
𝑑𝑑𝑀𝑀𝑡𝑡ℎ𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡

𝑑𝑑𝑠𝑠
=  −

𝑝𝑝0𝑠𝑠2

𝑏𝑏
=  −

𝑝𝑝𝑠𝑠2

2
  

𝑉𝑉𝑠𝑠 =  𝑚𝑚𝑠𝑠 ∙ 𝑠𝑠 → 𝑚𝑚𝑠𝑠 =  −
𝑝𝑝𝑠𝑠
2
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𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏:
𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

, 𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐:  

→ 𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =
𝑝𝑝

12𝑏𝑏𝑛𝑛
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 28𝑏𝑏3) 

𝑒𝑒𝑐𝑐𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦:𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

 

 → 𝑀𝑀� = −
𝑝𝑝

12𝑏𝑏
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 28𝑏𝑏3)  

𝑚𝑚𝑥𝑥 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

= −
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑥𝑥 − 𝑥𝑥2 + 𝑦𝑦2) =  𝑛𝑛�𝑥𝑥𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

  

𝑚𝑚𝑦𝑦 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦

= −
𝑝𝑝

2𝑏𝑏
(𝑏𝑏𝑦𝑦 + 2𝑥𝑥𝑦𝑦) = 𝑛𝑛�𝑦𝑦𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

  

 

−𝑝𝑝 =  
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+  
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦

→ − 𝑝𝑝 = �𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

 

𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖 =
ℎ

4𝑏𝑏2
(𝑥𝑥2 + 𝑦𝑦2 − 4𝑏𝑏2) 

→
ℎ

2𝑏𝑏2 �
𝑛𝑛�𝑥𝑥𝑥𝑥 + 𝑛𝑛�𝑦𝑦𝑦𝑦� + 𝑝𝑝 = 0  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛�𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑥𝑥 − 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦
� ∙
𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

 𝑏𝑏𝑛𝑛𝑑𝑑  𝑛𝑛�𝑦𝑦𝑦𝑦 = �𝑚𝑚𝑦𝑦 − 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
� ∙
𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

  

→  𝑛𝑛�𝑥𝑥𝑦𝑦 = −  
𝑝𝑝𝑏𝑏𝑦𝑦
ℎ

 , 𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏 𝑛𝑛�𝑥𝑥𝑦𝑦 𝑒𝑒𝑛𝑛 𝑚𝑚𝑥𝑥 𝑏𝑏𝑛𝑛𝑑𝑑 𝑚𝑚𝑦𝑦 𝑏𝑏𝑛𝑛𝑑𝑑 𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑏𝑏 𝑛𝑛�𝑥𝑥𝑥𝑥 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛�𝑦𝑦𝑦𝑦  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑛𝑛�𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 ,𝑛𝑛�𝑦𝑦𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

 ,𝑛𝑛�𝑥𝑥𝑦𝑦 = −
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 𝑒𝑒𝑒𝑒 𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑏𝑏 𝜙𝜙  

→  𝜙𝜙 =  −
𝑝𝑝𝑏𝑏
6ℎ

(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 + 𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 4𝑏𝑏3)  
𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑠𝑠𝑏𝑏𝑛𝑛𝑐𝑐𝐻𝐻𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐:  

𝜆𝜆 =
cos𝜑𝜑
cos𝜃𝜃

= �
1 + (𝜕𝜕𝑧𝑧 𝜕𝜕𝑦𝑦⁄ )2

1 + (𝜕𝜕𝑧𝑧 𝜕𝜕𝑥𝑥⁄ )2 

𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑏𝑏𝑒𝑒𝑚𝑚𝑏𝑏 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝐻𝐻𝑒𝑒𝑏𝑏𝑐𝑐 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛   

𝑏𝑏𝑛𝑛𝑑𝑑 𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑏𝑏𝑐𝑐𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑐𝑐 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑒𝑒ℎ𝑏𝑏𝑒𝑒𝑠𝑠𝑦𝑦 [94]:

⎩
⎪
⎨

⎪
⎧ 𝑛𝑛𝑥𝑥𝑥𝑥 = 𝑛𝑛�𝑥𝑥𝑥𝑥 ∙

1
𝜆𝜆

= −
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 − 𝑥𝑥) ∙
1
𝜆𝜆

𝑛𝑛𝑦𝑦𝑦𝑦 = 𝑛𝑛�𝑦𝑦𝑦𝑦 ∙ 𝜆𝜆 = −
𝑝𝑝𝑏𝑏
ℎ

(𝑏𝑏 + 𝑥𝑥) ∙ 𝜆𝜆  

𝑛𝑛𝑥𝑥𝑦𝑦 = 𝑛𝑛�𝑥𝑥𝑦𝑦 = −
𝑝𝑝𝑏𝑏
ℎ
𝑦𝑦

 

 
  
  
  
 
 
 

⇓ 

−𝑧𝑧 
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The solution of the membrane analogy is an approximate stylized 𝑀𝑀�-hill 
surface. By inspecting the function for the edge of the membrane / 𝑀𝑀�-hill it can 
be observed the edge zone of the surface is anti-clastic, this is due to the 
boundary conditions of the free edges.  

The boundary conditions involves a diaphragm due to the displacement 
perpendicular ux to the edge being equal to zero. This results in the surface of 
the inflated membrane having an anti-clastic zone along the edge. The analogy 
with its equivalent slab is the concentrated shear force in the “hidden beam” 
along the edge. 

 
For constructing the surface of the 𝑀𝑀�-hill the force density method can be used 
[98, 99]. With this method inflated membrane surfaces can be relatively easily 
created. For more details see the thesis of Daoxuan Liang, “A Parametric 
Structural Design Tool (Grashopper Interface) for Plate Structures” [100].  
 
Usually the total set of force density equations have too many unknowns to be 
solved, but for an inflated membrane the internal stress n is constant as is the 
load p. This means that in each link of the discretized mesh the force density is 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 

𝑛𝑛 �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

= 𝑝𝑝  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =
𝑝𝑝

12𝑏𝑏𝑛𝑛
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 2𝑥𝑥3 + 6𝑥𝑥𝑦𝑦2 − 28𝑏𝑏3)  

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

=
𝑝𝑝

2𝑏𝑏𝑛𝑛
(𝑏𝑏 − 2𝑥𝑥) 

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

=
𝑝𝑝

2𝑏𝑏𝑛𝑛
(𝑏𝑏 + 2𝑥𝑥) 

𝐻𝐻𝑒𝑒𝑠𝑠 𝑥𝑥 = 𝑏𝑏 → 𝑧𝑧𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚 =  
3𝑝𝑝
4𝑛𝑛

(𝑦𝑦2 − 3𝑏𝑏2)  
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚

= −
𝑝𝑝

2𝑛𝑛
 ,          

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚

=
3𝑝𝑝
2𝑛𝑛

  

→ 𝑛𝑛 �−
𝑝𝑝

2𝑛𝑛
+

3𝑝𝑝
2𝑛𝑛
� = 𝑝𝑝 

 

𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐 𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏: 

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚

= −
𝑝𝑝

2𝑛𝑛
  

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2𝑚𝑚𝑙𝑙𝑑𝑑𝑚𝑚

=
3𝑝𝑝
2𝑛𝑛
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equal. Together with the correct boundary conditions the equations can be 
solved resulting in the 𝑀𝑀�-hill. For a 𝑀𝑀�-hill with pinned supports the boundary 
conditions are simple, along all edges z = 0. 

 

But the 𝑀𝑀�-hill for the case with free edges, like the example of the equilateral 
triangle, requires that the correct upward curved edges needs to be 
determined first and then the rest of the surface can be constructed using the 
force density method. The edges can be determined with the help of the finite 
difference method.  

Figure 50 M-hill 
and its load 
distribution 
[images 100] 

Figure 49 constructing the 
M-hill using force density 
method [image 98] 

𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

≡ 𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

   

𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏 𝑑𝑑𝑏𝑏𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑦𝑦: 𝑒𝑒 =
𝑁𝑁
𝑐𝑐

=
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎

,𝑁𝑁𝑎𝑎 𝑏𝑏𝑛𝑛𝑑𝑑 𝑐𝑐𝑎𝑎 𝑠𝑠𝑏𝑏𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏 𝑒𝑒𝑒𝑒 𝑒𝑒ℎ𝑏𝑏 ℎ𝑒𝑒𝑠𝑠𝑒𝑒𝑧𝑧𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑐𝑐 𝑝𝑝𝑠𝑠𝑒𝑒𝑑𝑑𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑁𝑁𝑎𝑎 = 𝑛𝑛 ∙ 𝑏𝑏𝑎𝑎 → 𝑒𝑒 =
𝑛𝑛𝑏𝑏𝑎𝑎
𝑐𝑐𝑎𝑎

 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛 = 1,𝑝𝑝 = 1  

𝐹𝐹𝑜𝑜 = 𝑝𝑝 ∙ 𝑐𝑐𝑎𝑎 𝑏𝑏𝑎𝑎 

𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏: ��∆𝑧𝑧 ∙
𝑁𝑁𝑎𝑎
𝑐𝑐𝑎𝑎
� − 𝐹𝐹𝑜𝑜,𝑡𝑡𝑚𝑚𝑡𝑡 = 0  

𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐: → 𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 
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8.8 The reciprocity of the shape- and stress function  
 
As can be observed from Pucher’s equation the shape function and the stress 
function can be switched given an initial 𝑀𝑀�-hill as long as the result of their 
multiplication remains equal as they are reciprocal. 
Once again the 𝑀𝑀�-hill analogy is used to derive the stress function in 
conjunction with a shape function, but with different boundary conditions. In 
this case fully pinned and able to take up thrust as well as shear forces. 
 

𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏:
𝑝𝑝
𝑛𝑛 

= �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

 

 𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐:  

(𝑥𝑥 − 𝑏𝑏) = 0, �𝑦𝑦 −
2𝑏𝑏
√3

−
𝑥𝑥
√3
� = 0, �𝑦𝑦 +

2𝑏𝑏
√3

+
𝑥𝑥
√3
� = 0  

𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" = 𝐾𝐾(𝑥𝑥 − 𝑏𝑏) �𝑦𝑦 −
2𝑏𝑏
√3

−
𝑥𝑥
√3
� �𝑦𝑦 +

2𝑏𝑏
√3

+
𝑥𝑥
√3
� 

 → 𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" = 𝐾𝐾
−3𝑏𝑏𝑥𝑥2 − 3𝑏𝑏𝑦𝑦2 − 𝑥𝑥3 + 3𝑥𝑥𝑦𝑦2 + 4𝑏𝑏3

3
  

𝑒𝑒𝑒𝑒 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝐻𝐻𝑦𝑦 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 → 𝐾𝐾 = −
𝑝𝑝

4𝑏𝑏𝑛𝑛
  

𝑧𝑧"𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖" =  
𝑝𝑝

12𝑏𝑏𝑛𝑛
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 + 𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 4𝑏𝑏3)  

𝑒𝑒𝑐𝑐𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑛𝑛𝑏𝑏𝑐𝑐𝑒𝑒𝑚𝑚𝑦𝑦: 𝑝𝑝 = −�
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑀𝑀�
𝜕𝜕𝑦𝑦2 �

 

 → 𝑀𝑀� = −
𝑝𝑝

12𝑏𝑏
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 + 𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 4𝑏𝑏3) 

 

𝑀𝑀� = −
𝑝𝑝

12𝑏𝑏
(3𝑏𝑏𝑥𝑥2 + 3𝑏𝑏𝑦𝑦2 − 3𝑏𝑏3�������������

𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙
+𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2 − 𝑏𝑏3�����������

𝑏𝑏𝑚𝑚𝑓𝑓𝑛𝑛𝑙𝑙𝑎𝑎𝑠𝑠𝑦𝑦 
𝑓𝑓𝑚𝑚𝑛𝑛𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛

) 

 

𝑚𝑚𝑥𝑥 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

= −
𝑝𝑝

4𝑏𝑏
(𝑥𝑥2 + 2𝑏𝑏𝑥𝑥 − 𝑦𝑦2) =  𝑛𝑛�𝑥𝑥𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

  

𝑚𝑚𝑦𝑦 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦

= −
𝑝𝑝

4𝑏𝑏
(2𝑏𝑏𝑦𝑦 − 2𝑥𝑥𝑦𝑦) = 𝑛𝑛�𝑦𝑦𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

  

 

−𝑝𝑝 =  
𝜕𝜕𝑚𝑚𝑥𝑥
𝜕𝜕𝑥𝑥

+  
𝜕𝜕𝑚𝑚𝑦𝑦
𝜕𝜕𝑦𝑦

→ − 𝑝𝑝 = �𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

+ 2𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2�

 

𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖,1 =
ℎ

4𝑏𝑏2
(𝑥𝑥2 + 𝑦𝑦2 − 4𝑏𝑏2) 

→
ℎ

2𝑏𝑏2 �
𝑛𝑛�𝑥𝑥𝑥𝑥 + 𝑛𝑛�𝑦𝑦𝑦𝑦� + 𝑝𝑝 = 0  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑛𝑛�𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑥𝑥 − 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦
� ∙
𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

 𝑏𝑏𝑛𝑛𝑑𝑑  𝑛𝑛�𝑦𝑦𝑦𝑦 = �𝑚𝑚𝑦𝑦 − 𝑛𝑛�𝑥𝑥𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
� ∙
𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

  

→  𝑛𝑛�𝑥𝑥𝑦𝑦 =  
𝑝𝑝𝑏𝑏𝑦𝑦
2ℎ

 , 𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏 𝑛𝑛�𝑥𝑥𝑦𝑦 𝑒𝑒𝑛𝑛 𝑚𝑚𝑥𝑥 𝑏𝑏𝑛𝑛𝑑𝑑 𝑚𝑚𝑦𝑦 𝑏𝑏𝑛𝑛𝑑𝑑 𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑏𝑏 𝑛𝑛�𝑥𝑥𝑥𝑥 𝑏𝑏𝑛𝑛𝑑𝑑 𝑛𝑛�𝑦𝑦𝑦𝑦  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑛𝑛�𝑥𝑥𝑥𝑥 = −
𝑝𝑝𝑏𝑏
2ℎ

(𝑥𝑥 + 2𝑏𝑏),𝑛𝑛�𝑦𝑦𝑦𝑦 =
𝑝𝑝𝑏𝑏
2ℎ

 (𝑥𝑥 − 2𝑏𝑏),𝑏𝑏𝑛𝑛𝑑𝑑 𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑏𝑏 𝜙𝜙  
 

→  𝜙𝜙1 =  −
𝑝𝑝𝑏𝑏
12ℎ

(6𝑏𝑏𝑥𝑥2 + 6𝑏𝑏𝑦𝑦2 − 𝑥𝑥3 + 3𝑥𝑥𝑦𝑦2 − 𝐶𝐶)  
𝑒𝑒𝐻𝐻 𝑥𝑥 =  −2𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = 0 𝑒𝑒ℎ𝑏𝑏𝑛𝑛 𝜙𝜙 = 0 → 𝐶𝐶 = 32𝑏𝑏3 
  

𝑝𝑝𝑒𝑒𝑛𝑛𝑛𝑛𝑏𝑏𝑑𝑑 
𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐: 
𝑛𝑛�𝑥𝑥𝑥𝑥 ≠ 0 
𝑛𝑛�𝑥𝑥𝑦𝑦 ≠ 0 

−𝑧𝑧 
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The 𝑀𝑀�-hill belongs to the case of a simply supported slab, and thus the shell 
has pinned edges. After switching the shape function for the stress function the 
boundary conditions change accordingly, and thus the 𝑀𝑀�-hill.  
 

The result is a vault like pinned shell, with no allowable shear forces along the 
edges.  

 
Both solutions satisfy Pucher’s equation and carry the same load. But by 
switching the functions the load distribution changes due to the different 
boundary conditions. 
  

𝑒𝑒ℎ𝑏𝑏 𝑑𝑑𝑏𝑏𝑠𝑠𝑒𝑒𝑚𝑚𝑏𝑏𝑑𝑑 𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 𝑐𝑐𝑏𝑏𝑒𝑒𝑒𝑒𝑐𝑐𝐻𝐻𝑦𝑦 𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑠𝑠′𝑐𝑐 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛:  
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

− 2
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝑝𝑝 = 0  

 
𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑏𝑏𝑠𝑠𝑏𝑏 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑏𝑏𝑛𝑛𝑑𝑑 𝑐𝑐𝑏𝑏𝑛𝑛 𝑏𝑏𝑏𝑏 𝑐𝑐𝑤𝑤𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑏𝑏𝑑𝑑:   
𝜙𝜙2 = −

𝑝𝑝𝑏𝑏
4ℎ

(𝑥𝑥2 + 𝑦𝑦2 − 4𝑏𝑏2) 

𝑧𝑧𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑖𝑖,2 =  
ℎ

12𝑏𝑏2
(6𝑏𝑏𝑥𝑥2 + 6𝑏𝑏𝑦𝑦2 − 𝑥𝑥3 + 3𝑥𝑥𝑦𝑦2 − 32𝑏𝑏3)  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ:𝑛𝑛�𝑥𝑥𝑥𝑥 = −
𝑝𝑝𝑏𝑏
2ℎ

,𝑛𝑛�𝑦𝑦𝑦𝑦 = −
𝑝𝑝𝑏𝑏
2ℎ

 ,𝑛𝑛�𝑥𝑥𝑦𝑦 = 0 

𝑚𝑚𝑥𝑥 =  𝑛𝑛�𝑥𝑥𝑥𝑥
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

=  −
𝑝𝑝

8𝑏𝑏
(−𝑥𝑥2 + 4𝑏𝑏𝑥𝑥 + 𝑦𝑦2) 

𝑚𝑚𝑦𝑦 = 𝑛𝑛�𝑦𝑦𝑦𝑦
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

 =  −
𝑝𝑝

8𝑏𝑏
(4𝑏𝑏𝑦𝑦 + 2𝑥𝑥𝑦𝑦)  

𝑚𝑚𝑥𝑥 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑥𝑥

 → 𝑀𝑀�𝑥𝑥 =
𝑝𝑝

24𝑏𝑏
(−6𝑏𝑏𝑥𝑥2 − 3𝑥𝑥𝑦𝑦2 + 𝑥𝑥3)  

𝑚𝑚𝑦𝑦 =
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑦𝑦

 → 𝑀𝑀�𝑦𝑦 =
𝑝𝑝

24𝑏𝑏
(−3𝑥𝑥𝑦𝑦2 − 6𝑏𝑏𝑦𝑦2)  

→ 𝑀𝑀� = 𝑀𝑀�𝑥𝑥 + 𝑀𝑀�𝑦𝑦 = −
𝑝𝑝

24𝑏𝑏
(6𝑏𝑏𝑥𝑥2 + 6𝑏𝑏𝑦𝑦2 − 𝑥𝑥3 + 3𝑥𝑥𝑦𝑦2 − 𝐶𝐶) 

𝑒𝑒𝐻𝐻 𝑥𝑥 =  −2𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝑦𝑦 = 0 𝑒𝑒ℎ𝑏𝑏𝑛𝑛 𝑀𝑀 = 0 → 𝐶𝐶 = 32𝑏𝑏3 
 
 𝑒𝑒ℎ𝑏𝑏 𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑏𝑏𝑝𝑝𝑐𝑐𝑒𝑒𝑏𝑏𝑐𝑐 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 
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8.9 From stress function to thrust surface  
 
In the thesis of Pim Buskermolen, “Shell Structures, On the relationship 
between moment hills, stress functions and thrust surfaces in the design of 
shell structures” [101] the parametric relation between the stress function and 
the thrust surface can be found. This was done using a parametric tool based 
on the reciprocal figure (Maxwell, 1864) [102] of the polyhedron Airy stress 
function.  
 
But first the other method will be discussed via the force density method and 
the primal grid.  

When Pucher’s equation is discretized it results in the force density equations, 
apart from representing its middle term regarding the membrane shear force. 
This omission is solved by adding shear panels or diagonals to the network.  
A thrust network, in this case with shear panels, or its equivalent diagonals so 
that the network is form stable, is used. The network can be solved by 
minimizing its overall total complementary energy (section 4.5) or by solving its 
stress function using the method from section 8.11. A horizontal projection of 
the thrust network can be made, the primal grid.  

Figure 51 form stable thrust network and its primal grid: the horizontal projection  
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When the problem has been solved by the complementary energy method the 
entire geometry of the thrust network is fixed, including the he heights of the 
nodes of the thrust network.  
Alternatively when the stress function has been solved (via the method of 
section 8.11), the projected forces are known, which lie in the same plane as 
the primal grid. 
 

 
From the primal grid the connectivity, projected length and the position of the 
nodes and bars can be extracted. These can be used together with the force 
density formulas (section 2.9) to determine the heights of the nodes of the 
thrust network. 

Figure 53 reciprocal diagrams: primal grid and force polygon of horizontal projected forces 
[images 103] 

Figure 52 (polyhedral) stress function and its horizontal projected forces [images 101] 
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Normally the force density formulas cannot be solved as there are too many 
unknowns. But because the projected forces can be taken from the discretized 
stress function. The force density of a bar in the network is equal to the force 
density of the projected bar. There is now enough information to be able to 
solve the equations. Including the boundary conditions, as there are now as 
many unknowns as equations. All the z-coordinates of the network can be 
solved [103]. 

The second method, as described in Buskermolen, uses a reciprocal figure of 
the stress function for the thrust surface. See image 54: (≡) For this purpose 
the 𝑀𝑀�-hill and the shape function of the shell are taken to be equal. (1) The 𝑀𝑀�-
hills have been produced by the method as described in section 8.7. (2) From 
the 𝑀𝑀�-hill via the method described in section 8.11 the stress function has been 
determined.  

Figure 54 relation of the three surfaces [image 101],  
whereby for this example the M-hill and the shape function are equal 
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(3) The discretized stress function is the polyhedral stress function for which 
there is a reciprocal figure [104], the thrust surface. 

 
The flow chart and the complete procedure is discussed in the thesis of Pim 
Buskermolen. Here is a result of an example. 
 

Figure 55 creating reciprocal figures [images 101] 

Figure 56 reciprocal figures: (polyhedral) stress function and the thrust surface [images 101] 
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The 𝑀𝑀�-hill, the stress function and the thrust surface of the semi-rigid case. 

It is observed that the thrust surface has a different foot print than that of the 
𝑀𝑀�-hill. The shown thrust surface only contains the compression membrane 
forces, but for the semi-rigid case with straight edges there are also membrane 
forces in tension in the edge zone. This result is to be expected, as was 
explained at the beginning of section 8.6. 
 
The shape function (in this case the 𝑀𝑀�-hill) on a rectangular base with semi-
rigid edges has infinity high (shear) stresses in the corners due to the p-load. 
The membrane state of stress for this case has a stress function which 
reciprocal diagram results in a non-continuous surface along the edges. It has a 
turned-up “truss-like” edge, with alternating trajectories of tension and 
compression.  

Figure 57 shell, its (polyhedral) stress 
function and thrust surface [images 101] 
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This membrane state of stress is an idealisation and in fact the p-load in the 
corners is predominantly carried by moments and shear forces (pb-load) and 
less by membrane forces (ps-load), see section 8.11. 

 
As with the thrust line of an arch, the height of the thrust surface of a shell can 
be scaled with the intensity of the load. 

 
 
  

Figure 59 scaling the thrust 
surface [image 101] 

𝑝𝑝 = 𝑝𝑝𝑠𝑠 + 𝑝𝑝𝑏𝑏 
 

Figure 58 load carried by membrane forces and bending moments [image left 108, right 107] 
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Alternative to the polyhedral stress function, the continuous stress function can 
be used as described by Maxwell [105] to find the reciprocal diagram, in this 
case again the thrust surface (ζ).  

 
For uniformly distributed p load the thrust surface (ζ) will be derived by taking 
the reciprocal diagram of the stress function of its 𝑀𝑀�-hill, which is again taken 
equal to the shape function. 

Maxwell’s method for mapping reciprocal diagrams will be used for the 
procedure. 

𝑀𝑀�𝑎𝑎−𝑖𝑖𝑚𝑚𝑎𝑎𝑙𝑙 =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
  

𝑚𝑚 =  
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

=  −
𝑝𝑝𝑠𝑠
2

 

 

Figure 59 mapping of reciprocal diagrams [image 74] 

𝑒𝑒𝑏𝑏𝑘𝑘𝑏𝑏 𝐻𝐻𝑒𝑒𝑠𝑠 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑝𝑝𝑏𝑏 𝐻𝐻𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 ℎ𝑒𝑒𝑐𝑐𝑐𝑐: 𝑧𝑧𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

4
  

1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙
𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

=
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑠𝑠

 →
1
𝑠𝑠
𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

∙ −
𝑝𝑝𝑠𝑠
2

=
𝑝𝑝𝑠𝑠
2
→ 𝜙𝜙 = �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 = �−𝑠𝑠𝑑𝑑𝑠𝑠 = −
𝑠𝑠2

2
+ 𝐶𝐶  

𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝑠𝑠 = 𝑏𝑏 𝑏𝑏𝑛𝑛𝑑𝑑 𝜙𝜙 = 0 → 𝐶𝐶 =
𝑏𝑏2

2
  

𝜙𝜙𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
(𝑏𝑏2 − 𝑠𝑠2)

2
  

𝑀𝑀𝑏𝑏𝑥𝑥𝑤𝑤𝑏𝑏𝑐𝑐𝑐𝑐:  𝐹𝐹∗ =
𝜕𝜕𝐹𝐹∗

𝜕𝜕𝜉𝜉
𝜕𝜕𝐹𝐹
𝜕𝜕𝑠𝑠

− 𝐹𝐹 

 𝑤𝑤𝑒𝑒𝑒𝑒ℎ: 𝐹𝐹 = 𝜙𝜙𝑀𝑀�−ℎ𝑖𝑖𝑖𝑖𝑖𝑖  → 

𝐹𝐹∗ = �
𝜕𝜕𝐹𝐹∗

𝜕𝜕𝜉𝜉
∙ −𝑠𝑠� −

(𝑏𝑏2 − 𝑠𝑠2)
2

  

𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒𝑏𝑏𝑘𝑘𝑏𝑏 𝜉𝜉 = 𝑠𝑠 𝐻𝐻𝑒𝑒𝑠𝑠 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏𝑛𝑛𝑒𝑒 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏  

→  𝐹𝐹∗ = 𝜁𝜁 =
(𝜉𝜉2 − 3𝑏𝑏2)

6
  

𝑒𝑒𝑠𝑠 𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑𝑒𝑒𝑛𝑛𝑚𝑚 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝐻𝐻𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠 𝜍𝜍: 
(𝜉𝜉2 − 𝜍𝜍𝑏𝑏2)

6
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The derived formula results in a scalable thrust surface. 

 

The thrust surface of the p-load is parabolic, which means that it has meridian 
as well as hoop forces in the thrust surface. Just as with the arch, the projected 
meridian forces 𝑛𝑛�rr are constant. 
 
The thrust surface of the p-load which has no hoop forces is cubic (section 7.3) 
and is not the reciprocal diagram of the stress function of the 𝑀𝑀�-hill. For the 
cubic thrust surface the horizontal thrust 𝑁𝑁�𝑠𝑠 is constant and the projected 
meridian forces 𝑛𝑛�rr are not, see also section 7.6. 

The reason for this is that the cubic thrust surface has no two dimensional state 
of stress, like the parabolic thrust surface does have. 
In fact the cubic thrust surface is a one dimensional corbel-like arch ("false 
arch") turned into a surface of revolution. When the stress function of the cubic 
funicular arch, of section 7.2, is derived we can compare it with the parabolic 
funicular arch, see section 6.2. 

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏: 
→ 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏 𝑒𝑒𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝐻𝐻  
𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛  
𝑛𝑛�𝑠𝑠𝑠𝑠 = 𝑛𝑛�𝜃𝜃𝜃𝜃 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
  
𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏: 
→ 𝑒𝑒ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏 𝑒𝑒𝑐𝑐 𝑛𝑛𝑒𝑒𝑒𝑒 𝑒𝑒ℎ𝑏𝑏 𝑠𝑠𝑏𝑏𝑐𝑐𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑏𝑏𝑐𝑐 𝑑𝑑𝑒𝑒𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏𝑏𝑏 𝑒𝑒𝐻𝐻  
𝑀𝑀� − ℎ𝑒𝑒𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 
𝑁𝑁�𝑠𝑠 = "𝐻𝐻" =  𝑛𝑛�𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒  
𝑛𝑛�𝑠𝑠𝑠𝑠 ≠ 𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒 
 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= 𝑒𝑒 =
2𝑒𝑒0𝑥𝑥
𝑏𝑏

 

𝑧𝑧𝑎𝑎𝑠𝑠𝑓𝑓ℎ(𝑥𝑥) =
ℎ(𝑏𝑏3 − 𝑥𝑥3)

𝑏𝑏3
⇒
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2

= −
6ℎ𝑥𝑥
𝑏𝑏3

  

𝜙𝜙 = �
2𝑒𝑒0𝑥𝑥
𝑏𝑏

−6ℎ𝑥𝑥𝑏𝑏3
𝑑𝑑𝑦𝑦 ⇒ 𝜙𝜙 = −

𝑒𝑒0𝑏𝑏2

6ℎ
𝑦𝑦2 + ⋯ 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= −
𝑒𝑒0𝑏𝑏2

3ℎ
= 𝐻𝐻  
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Both their stress function is parabolic in one direction, which means that for 
each case the horizontal thrust H is constant. If the comparison is extended to 
their respective domes (section 7.6), it can be observed that the two stress 
functions are no longer congruent. The horizontal thrust “H” of the cubic dome 
remains constant 

. 
 
 
 
  

𝑐𝑐𝑒𝑒𝑏𝑏𝑒𝑒𝑐𝑐: 𝑥𝑥3 
 

𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 𝜙𝜙 = −
𝑒𝑒0𝑏𝑏2

6ℎ
𝑦𝑦2  

 

𝑑𝑑𝑒𝑒𝑏𝑏𝑏𝑏: 𝜙𝜙 =
𝑏𝑏3𝑝𝑝(𝑏𝑏 − 𝑠𝑠)

6ℎ
 

 

𝑝𝑝𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐: 𝑥𝑥2 
 

𝑏𝑏𝑠𝑠𝑐𝑐ℎ: 𝜙𝜙 = −
𝑒𝑒𝑏𝑏2

4ℎ
𝑦𝑦2,𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝐻𝐻∗ = ℎ  

 

𝑑𝑑𝑒𝑒𝑏𝑏𝑏𝑏: 𝜙𝜙 =
𝑏𝑏2𝑝𝑝(𝑏𝑏2 − 𝑠𝑠2)

8ℎ
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8.10 Discussion; bending moments in shells structures  
 
Not for all shapes or boundary conditions for shell design is there a membrane 
only solution. Some out-of-plan bending is inevitable, this should be minimized 
as much as possible. In addition to the four basic functions the displacement 
field, and thus moments and shear forces, play a role when bending is needed 
to complement the membrane forces in carrying the load, as is explained in 
section 8.11. 

One of the Heinz Isler models scanned and analysed by Peter Eigenraam and 
Andrew Borgart is the shell design for a series of sports halls built by Isler [106]. 
For the purpose of analysing its behaviour the author devised a simple method 
to assess the structural performance of the shell, see section 5.7.  

Figure 60 analysing shell Heinz Isler [images 106] 
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The assessment takes into account the ratio of stresses as a result of internal 
membrane forces σn and of bending moments σm, and distinguishes parts of 
the shell being in compression or a combination of tension and compression. 
The shell can be assessed as being in a state of a pure membrane, a slab loaded 
out-of-plane or as something in between, more a curved slab. The assessment 
is also correlated to the eccentricity of the thrust line with regard to the shells 
axis. 
 
As can be observed for the Isler shell the curved upward edge zones, needed to 
limit the deflection as a result of asymmetric loads, have considerable amount 
of out-of-plane bending. The synclastic curved part of the shell is nearly a 
perfect membrane shell in compression. This is a nice example of the necessity 
to have some degree of bending in a shell.  
 
The demonstrated methods in this thesis can be further developed and 
integrated and used for designing and analysing shell structures. The advantage 
of a software tool or tools would be its ability to explore the shell’s structural 

Figure 61 FEM calculations shell Heinz Isler [images 106] 
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behaviour in a visual manner in a design process. FEM calculation would then 
only be needed at the very end of the design stage to verify the results.  
 
By optimizing the flow of forces and thus the load distribution a complex 
geometry shape was found with a minimum of bending moments and most of 
the loads are carried by membrane forces. The flow of forces is shown a 
particle “rain shower” which represents the load path, in fact the shape 
function of this shell was very close to the 𝑀𝑀�-hill for this case.  

 
During the form finding process the flow of forces was the driving principle and 
in each iteration of the process it could be observed after each slight 
modification of the form that the amount of bending moment in the shell 
decreased. 

 
In most cases shell structures have a certain degree of bending moments, in 
the next section it will be explained how these can be determined by solving 
the static-geometric relations for thin shells, see the next section. 

Figure 62 “rain shower” , load distribution of shell [images 52] 

Figure 63 FEM calculation shell, top view [images 52] 
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8.11 Numerical procedure for solving the static-geometric relations for thin 
shells 
 
As concluded in section 8.3 square shells will always have some bending 
moments and shear forces to help carry the loads, this holds in general for 
most shells. In other words the thrust surface is no longer material 
independent, and the flow of forces resulting from the 𝑀𝑀�-hill can no longer be 
exclusively resolved into membrane forces. 

 
In this case the full set of shell equations, the static-geometric relations, can be 
used [107]. The first equation relates to equilibrium, part slab action pb and 
part membrane action ps. The second equation concerns the compatibility 
expressed in the change of Gaussian curvature g, again one part relating to slab 
action gb one to membrane action gs.  
 

 
These equations can be solved numerically, for further detailed information see 
the master thesis of Kris Riemens, “A Parametric Structural Design Tool for Shell 
Structures” [108].  
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The numerical example shown here is the analysis of an actual shell designed 
by Heinz Isler, the Hallenbad in Brugg from 1981. 

 

The geometry used for the numeric analysis comes from 3D scans of the real 
scale models of Heinz Isler, done by Peter Eigenraam together with Andrew 
Borgart in 2011 [109].  
 

 

For simplicity the shell has been analysed with a uniformly distributed load and 
with semi-rigid edges.  
 

𝑐𝑐𝑏𝑏𝑏𝑏𝑒𝑒 𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑 𝑏𝑏𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐 

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

=
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

= 0 

 
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

=  
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= 0 

 

Figure 64 Hallenbad by Heinz Isler [image Peter Eigenraam] 

Figure 65 scanning of models by Heinz Isler [images 106] 
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The procedure revolves around determining the change of Gaussian curvature 
for each mesh point of the discretized shell surface. Once this is done the stress 
function and the displacement field can be determined. The total load p can  be 
split into the part that will be carried by membrane forces ps and the other part 
by bending moments and shear forces pb  [110].  
 
The global procedure with its different steps is represented below. For the total 
procedure see the aforementioned thesis of Kris Riemens. A global overview is 
provided here below, as well as the main results for this example. 
 

 
After the problem has been solved the internal forces of the shell can be 
calculated. The result of the stress function and the displacement field is shown 
in the next image.  

𝑚𝑚𝑠𝑠 = 𝑚𝑚𝑏𝑏 = 𝑚𝑚 
 

→ 𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒 𝑏𝑏 𝑏𝑏𝑏𝑏𝑐𝑐ℎ  
→ 𝑐𝑐𝑝𝑝𝑏𝑏𝑐𝑐𝑒𝑒𝐻𝐻𝑦𝑦 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑𝑐𝑐 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑏𝑏𝑐𝑐ℎ  
→ 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐 𝑒𝑒𝐻𝐻 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑠𝑠𝐻𝐻𝑏𝑏𝑐𝑐𝑏𝑏  
→ 𝑐𝑐𝑏𝑏𝑒𝑒 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 
→ 𝑏𝑏𝑥𝑥𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 (𝜙𝜙)𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑑𝑑𝑒𝑒𝑐𝑐𝑝𝑝𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑒𝑒 (𝑤𝑤) 𝑒𝑒𝑛𝑛 (𝑚𝑚)  
→ 𝑏𝑏𝑥𝑥𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏 𝑒𝑒𝐻𝐻 𝐺𝐺𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒𝑠𝑠𝑏𝑏 (𝑚𝑚) 𝑒𝑒𝑛𝑛 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑏𝑏𝑑𝑑 (𝑝𝑝) 𝑏𝑏𝑛𝑛𝑑𝑑 𝑏𝑏𝑑𝑑𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑏𝑏𝑠𝑠𝑦𝑦 𝑐𝑐𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 
→ 𝑐𝑐𝑒𝑒𝑐𝑐𝑚𝑚𝑏𝑏 𝑏𝑏𝑒𝑒𝑒𝑒𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 𝑒𝑒𝑒𝑒 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑏𝑏𝑒𝑒𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐ℎ𝑏𝑏𝑛𝑛𝑚𝑚𝑏𝑏 𝑒𝑒𝐻𝐻 𝐺𝐺𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑏𝑏𝑛𝑛 𝑐𝑐𝑒𝑒𝑠𝑠𝑚𝑚𝑏𝑏𝑒𝑒𝑏𝑏 𝑒𝑒𝑛𝑛 𝑏𝑏𝑏𝑏𝑐𝑐ℎ 𝑏𝑏𝑏𝑏𝑐𝑐ℎ 𝑝𝑝𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒  
→ 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 (𝜙𝜙)𝑏𝑏𝑛𝑛𝑑𝑑 (𝑤𝑤) 
→ 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 (𝑝𝑝𝑠𝑠)𝑏𝑏𝑛𝑛𝑑𝑑 (𝑝𝑝𝑏𝑏)  
→ 𝑑𝑑𝑏𝑏𝑒𝑒𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 𝑒𝑒ℎ𝑏𝑏 𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑠𝑠𝑒𝑒 𝑠𝑠𝑏𝑏𝑏𝑏𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐 𝑏𝑏𝑛𝑛𝑑𝑑 𝑒𝑒ℎ𝑏𝑏 𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏𝑐𝑐 𝐻𝐻𝑒𝑒𝑠𝑠𝑐𝑐𝑏𝑏𝑐𝑐 
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Figure 66 flow chart procedure [image 108] 
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Using a fine enough mesh the results are very accurate compared to a FEM 
analysis of the shell. This analysis has been performed by Pim Buskermolen. 
The calculcated displacement of the axis of symmetry of the shell is shown in 
the graph below. 
  

Figure 67 load carried by axial forces or bending moments [images left 108 and right 110] 

Figure 68 accuracy method [image 108] 
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9 Conclusions and recommendations 
 

9.1 Conclusions 
 
Different analytical procedures and methods to analyse arches and shells have 
been described in this thesis. The method set out in chapter 4 is an 
approximation. The method set out in chapter 8 provides a more insightful set 
of relations, the slab – shell analogy. 
 
The thesis comprises of three parts, the first part (sections 2 to 4) focusses on 
2D and 3D graphic statics, the reciprocal relationship between cables/arches 
and trusses and (in)determinate graphic statics. 
 

- The relationship between form and force and the equations of 
equilibrium, force density method, thrust network analysis and the cable 
equation are essentially the same in which the force density is the scaling 
factor between the form diagram and the force polygon, this can be 
explained and visualized by graphic statics (sections 2.6 – 2.9) 

- The mutual relationship of trusses and cables/arches can be described by 
reciprocal structures, this holds for their force polygons, form diagrams 
and state of rigidity (chapter 3) 

- Trusses and cables/arches have a dual relation. For statically 
indeterminant trusses the sum of the squared bar axial forces weighted 
by their length has to be minimal, and for cable structures to find their 
equilibrium geometry the sum of the squared tie lengths weighted by 
their force densities also  has to be minimal (section 3.7) 

- Three dimensional graphic statics, such as thrust networks, which are 
mostly statically indeterminate, can be solved by minimizing the 
complementary energy. This makes it possible to find the geometry 
which is in equilibrium which would be the result of a FEM calculation 
out of the infinite number of possible solutions (sections 3.8, 4.5 & 4.6) 
 

The second part (sections 5 and 6) deals with statically indeterminate arches 
and their stress functions. 
 

- Maxwell’s load path theorem is also applicable to indeterminate arches 
(section 5.4) 

- As with the thrust network the correct thrust line for a sta�cally 
inderteminate arch can be determined by minimizing the 
complementary energy of the system  
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- For arches Pucher’s equation, which is normally used to determine axial 
forces in arches and shells, can be extended to incorporate the 
eccentricity of the thrust line if it deviates from the arches shape 
function to determine the amount of bending in the arch (section 6.3) 

- It is possible to apply the principles of Mohr’s first and second moment-
area theorem’s to the static-geometric analogy, thus for deflections and 
the stress function (section 6.4) 

- The stress function can be visually represented by graphic statics, just 
like for cables and arches using a form diagram and stress polygon 
(section 6.7) 

 
The third part (sections 7 and 8) deals with the relationship between the four 
fundamental properties of arches and shell structures, namely the shape 
function, stress function, thrust surface and moment-hill. 
 

- The 𝑀𝑀�-hill and its load distribution can be used to derive the stress 
function and thus the internal membrane forces of (axisymmetric) shells, 
the last in range off results of classic shell theory (chapter 7) 

- The  𝑀𝑀�-hill is an equilibrium surface with the lowest energy considering 
its load and boundary conditions 

- The established beam – arch analogy also holds for shells and their 
equivalent slabs and is in fact the one dimensional version of the slab – 
shell analogy (chapter 8) 

- The moment-hill of its equivalent slab is responsible for the load 
distribution in shell structures (chapter 7 and 8) 

- For each set of boundary conditions for a shell there is an equivalent slab 
with dual boundary conditions (section 8.6) 

- The shape function, stress function, moment-hill and thrust surface of 
arch and shell structures are directly related by means of interconnected 
functions (sections 8.7 and 8.9) 

- The shape function and the stress function are reciprocal, with the 𝑀𝑀�-hill 
acting as an intermediate and determined by the boundary conditions 
(section 8.8) 

- The out-of-plane moments in shell structures can be determined with 
the static-geometric relations for thin shells by solving the change of 
Gaussian curvature g (section 8.11) 
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9.2 Recommendations and outlook 
 
For this thesis some simplifications needed to be made in order to establish the 
relations without unnecessary complication. A Poisson’s ratio of zero has been 
assumed throughout the thesis and only a uniformly distributed load has been 
considered. In future research this could be extended. 
 
This could be the basis of a potential parametric design tool, which integrates 
the theory developed in this thesis used in the thesis and would making it 
accessible and user friendly.  
The procedure would contain the following steps: 
 

- use the force density method including the correct loads and boundary 
conditions (see section 8.6) to create the 𝑀𝑀�-hill (see section 8.7), this 
components can also later be used to show the principle shear forces 
(“rain flow”) in the shell if it contains bending 

- use the flow of forces / load distribution of the 𝑀𝑀�-hill as the basis for 
deriving the shape and stress function (section 1.3, 8.7 and 8.8) 

- once a shape function has been chosen, analytically or with the help of 
3D modelling software, generate the stress function numerically using 
the slab - shell analogy (section 8.3 and 8.7) 

- check if it is a membrane only solution (section 8.11) 
- derive the membrane forces by using the transformation equations 

(section 8.7) 
- if the solution requires additional bending moments, derive them 

(section 8.11) 
- if required to find another result, alter the shape- or stress function and 

repeat the process 
 
Recommendations for further research and work that would considerably add  
to the applicability of the tool to be developed: 
 

- incorporate the self-weight of the shell into the methods, minimizing the 
eco impact 

- extend the different types of boundary conditions available for the 
method of section 8.11 

- further research on generating the thrust surface and its relation with 
the 𝑀𝑀�-hill and the stress function 
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Poisson’s ratio can be easily incorporated whilst creating a 𝑀𝑀�-hill. Although it 
does change the gradients in the x- and y-directions and thus the load 
distribution, for the present research goal it was acceptable to neglect it. 
 

 
The proposed method to add self-weight to the procedure is to generate the 
M-hill of a flat slab with the correct boundary conditions with horizontally 
projected load pw of a hanging model. The load pw is the projection of the load 
along the arc surface of the hanging model, similar to that of the catenary. In 
this way the self-weight of the shell can be approximated and be incorporated 
into the method in a relatively simple way.  
 

 
The new possibilities offered by CAM or the advent of 3D printing could be 
both utilized in the making process for double curved shell. It is worthwhile to 
investigate if the making process can be part of the parametric design tool. 
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When taken into account the relationship between the four fundamental 
functions which govern the structural behaviour of shell structures, their design 
process can be steered. A shell can be achieved with elegance and efficiency, as 
has been demonstrated by Candela, Torroja, Nervi and Isler.  
 

 
Manufacture and loading test of reinforced gypsum shells generated from 
hanging models – a workshop at Delft University of Technology [111].   
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