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a b s t r a c t

Modelling nonlinear phenomena in thin rubber shells calls for stretch-based material models, such as
the Ogden model which conveniently utilizes eigenvalues of the deformation tensor. Derivation and
implementation of such models have been already made in Finite Element Methods. This is, however,
still lacking in shell formulations based on Isogeometric Analysis, where higher-order continuity of the
spline basis is employed for improved accuracy. This paper fills this gap by presenting formulations of
stretch-based material models for isogeometric Kirchhoff–Love shells. We derive general formulations
based on explicit treatment in terms of derivatives of the strain energy density functions with respect
to principal stretches for (in)compressible material models where determination of eigenvalues as well
as the spectral basis transformations is required. Using several numerical benchmarks, we verify our
formulations on invariant-based Neo-Hookean and Mooney–Rivlin models and with a stretch-based
Ogden model. In addition, the model is applied to simulate collapsing behaviour of a truncated cone
and it is used to simulate tension wrinkling of a thin sheet.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

To model phenomena like wrinkling in membranes [1–5] or
he deformation of biological tissues [6–8], thin shell formulations
ith non-linear hyperelastic material models are typically used.
hese material models are defined using a strain energy (density)
unction, which measures the strain energy stored in the material
hen deformed [9]. Material models with strain energy density

unctions based on the invariants (i.e. invariant-based models) of
he deformation tensor, such as the Neo-Hookean or the Mooney–
ivlin formulations, have been widely used to study wrinkling or
eformation of biological tissues. However, for rubber materials
r living organs such as the liver, spine, skin, rectum, bladder
r the aorta, material models defined by the eigenvalues and
igenvectors of the deformation tensor (i.e. stretch-based models)
uch as the Ogden, Sharriff or exponential and logarithmic mod-
ls [10–12] provide better accuracy of material characteristics
ith respect to experimental tests [13–15].
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To include hyperelastic material models into shell formula-
tions, derivatives of the strain energy density function with re-
spect to the components of the deformation tensor are required
to define the stress and material tensors. For invariant-based
models, this is generally a straight-forward exercise, since the
invariants of the deformation tensor are defined in terms of the
components of the deformation tensor. However, for stretch-
based models, these derivatives result in stress and material
tensors defined in the spectral basis (i.e. in terms of the eigen-
vectors), making incorporation of these models non-trivial. The
first incorporation of stretch-based material models in the Finite
Element Method (FEM) was obtained for axisymmetric prob-
lems [16,17] and later the extension to generally shaped shells
was made [8,18,19]. In these works, either closed-form expres-
sions of the tangents of the principal stretches [17,19] were
obtained, or explicit computation of principal directions and val-
ues [16,20,21] was performed. In the former case, an unknown
stretching parameter is used, which can be eliminated for incom-
pressible models [22] and, in fact, imposes numerical difficulties
when applied to compressible shells [22,23]. In the latter case,
principal directions and values need to be solved using an eigen-
value problem and a tensor transformation is required. How-
ever, for compressible materials no additional parameters are
required.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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With the advent of isogeometric analysis (IGA) [24], new
spline-based shell formulations have been presented [25–27]. The
advantage of these formulations is that the geometry is exactly
preserved after discretization and that arbitrary continuity of
the basis functions across element boundaries provides high
convergence rates and allows for achieving necessary continuities
in variational formulations, for instance leading to rotation-free
Kirchhoff–Love shell formulations [25,28]. These formulations
have been used to advance the development of refinement splines
[29] and to optimize shell structures [30], amongst other devel-
opments. A general hyperelastic isogeometric shell formulation
has been developed for general compressible and incompressible
material models [31] and specific formulations for biological
membranes have been obtained [32]. Roohbakashan and Sauer [7]
developed formulations to eliminate numerical through-thickness
integration for hyperelastic Kirchhoff–Love shells. Isogeomet-
ric Kirchhoff–Love shell formulations are successfully used for
biomedical applications to model aortic valve closure [33] and
bioprosthetic heart valve dynamics [34,35] as well as for indus-
trial applications to perform buckling, vibration and nonlinear
deformation analyses of composite wind turbine blades [36,37].
However, all advances in [7,31–34,36] employ the derivatives of
the strain energy density function with respect to the compo-
nents of the deformation tensor, thus application of these works
is possible for invariant-based models. On the other hand, stretch-
based models such as the Ogden model require specific treatment
of the spectral deformation tensor the existing generalized for-
mulations. Contrary to the aforementioned developments in the
FEM context, stretch-based material models have not yet been
considered in isogeometric Kirchhoff–Love shell formulations.

In this paper we present mathematical formulations for the in-
corporation of stretch-based material models in the isogeometric
Kirchhoff–Love shell model for (in)compressible material models.
This enables the use of stretch-based material models such as
the Ogden model together with the efficient Kirchhoff–Love shell
formulation in isogeometric analysis, for application on wrinkling
analysis or biomechanical simulations. The formulations hold for
material models defined for 3D continua which are integrated
over the shell thickness. We employ explicit determination of
the principal directions and values applicable to compressible
and incompressible materials. The tensor transformation from the
spectral to the curvilinear basis – which is needed for compatibil-
ity with existing codes – implies additional computational costs
compared to a component-based formulation. These costs are
minimized by using minor and major symmetry of the hyperelas-
tic material tensor. Besides comparison with analytical solutions,
the model is applied to simulate structural instabilities: the col-
lapse of a truncated cone [19] and the wrinkling phenomenon in
a stretched sheet. These instabilities are captured with (extended)
arc-length methods [38,39], combined with IGA [40]. The former
simulation reveals the complex collapse behaviour of the trun-
cated cone when using the arc-length method; something that
was not reported in literature before. For the latter simulation,
this paper reports the first IGA results for this case, compared to
results from commercial FEM packages.

Following the introduction of notations, preliminary identi-
ties and the isogeometric Kirchhoff–Love shell formulation back-
grounds (Section 2), we derive the stretch-based formulations
including numerical procedures (Section 3) and discuss the isoge-
ometric Kirchhoff–Love shell implementation aspects (Section 4).
The model is benchmarked with analytical or reference solutions
and it is applied to model the collapse behaviour of a truncated
cone and the wrinkling formation in a stretched thin sheet in
Section 5. Concluding remarks follow in Section 6.
 a

2

2. The Kirchhoff–Love shell model

Using continuum mechanics and tensor calculus [41–43], the
isogeometric Kirchhoff–Love formulations [7,25,31,44] are briefly
summarized. For more details and elaborate derivations reference
is made to previous publications.

Firstly, Section 2.1 provides the notations that are used in this
paper, as well as some preliminary tensor identities. Section 2.2
introduces the coordinate system and consequently the curvilin-
ear basis that are used for the Kirchhoff–Love shell formulation. In
Section 2.3 we provide the formulations of the shell kinematics,
where the concepts of deformation and strain are defined. Lastly,
Section 2.4 provides the variational formulation of the Kirchhoff–
Love shell, without specifying the constitutive relations, since
those are covered in Section 3.

2.1. Notations and preliminary identities

For the ease of reference, the notations and preliminary iden-
tities are based on the ones used in [31]. Lower-case italic quan-
tities (a) represent scalars, lower-case bold quantities (a) denote
vectors. Upper-case italic and non-bold symbols (A) denote ma-
trices and italic and bold symbols denote second-order tensors
(A). Third-order tensors are not used in the present work, and
ourth-order tensors are represented by blackboard-bold capitals
A). The following product operators are defined: inner product
· b, cross-product a× b and tensor product a⊗ b. Furthermore,
e represent covariant basis vectors with subscripts (ai) and con-

travariant vectors with superscript (aj). Latin indices take values
{1, 2, 3} whereas Greek ones take values {1, 2}. By construction,
ai · aj = δ

j
i , with δ

j
i the Kronecker delta. Second- and fourth-

order tensors are denoted by A = Aij ai ⊗ aj = Aij ai ⊗ aj and
A = Aijkl ai ⊗ aj ⊗ ak ⊗ al = Aijkl ai ⊗ aj ⊗ ak ⊗ al, respectively,
where Aij and Aijkl denote covariant components and Aij and Aijkl

denote contravariant components.
The Einstein summation convention is adopted to represent

tensor operations and when summations are unclear, it is explic-
itly mentioned. In this notation, the trace and determinant of a
tensor are defined for tensor A = Aij ai ⊗ aj as in [31,41,42]

trA = Aijaij and det{A} =
⏐⏐Aij
⏐⏐/⏐⏐aij⏐⏐, (1)

where
⏐⏐Aij
⏐⏐ denotes the determinant of the matrix A, aij = ai · aj

and aij = ai · aj. The inverse of a tensor A is denoted by A−1 or
Ā. The derivative of the inverse and the determinant of a tensor,
with respect to one of its components become:
∂ trA
∂Aij

= aij,
∂ det{A}

∂Aij
= det{A}Āij and

∂Ā
∂Aij

= −
1
2

{
A−1
ik A−1

lj + A−1
il A−1

kj

}
.

(2)

2.2. Shell coordinate system

The Kirchhoff–Love shell element formulation is based on the
Kirchhoff Hypothesis, that is, the cross-section does not shear
and orthogonal vectors in the undeformed configuration remain
orthogonal after deformation. As a consequence, any point in the
shell can be represented by a point on the mid-surface and a
contribution in normal direction:

x = r + θ3a3, (3)

with the shell mid-surface r(θ1, θ2) and the unit normal di-
rection a3(θ3) for the deformed configuration x(θ1, θ2, θ3). For
he undeformed configuration x̊, the same relation holds with
ll quantities decorated with a ·̊. The parametrization utilizes
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urface coordinates θα and the through-thickness coordinate θ3.
erivatives with respect to these coordinates are denoted by
·),i = ∂(·)/∂θ i.

The covariant basis of the mid-surface is represented by ai

α =
∂r
∂θα

, a3 =
a1 × a2
|a1 × a2|

, (4)

nd the first fundamental form is aαβ = aα · aβ . The curvature
ensor b = bαβ aα

⊗aβ is represented by the second fundamental
orm of surfaces, which can be obtained using the Hessian of the
urface aα,β or the derivative of the normal vector a3,α

αβ = a3 · aα,β = −a3,β · aα. (5)

he derivative of the normal vector is obtained by Weingarten’s
ormula a3,α = −bβ

αaβ with bβ
α = aαγ bγ β as the mixed curvature

ensor [44]. Taking the derivative of Eq. (3), the covariant basis of
he shell coordinate system x can be formulated as follows:

α = x,α = aα + θ3a3,α, g3 = x,3 = a3. (6)

The metric coefficients are constructed by taking the inner-
product of these basis vectors, i.e.

gαβ = gα · gβ = aαβ − 2θ3bαβ +
(
θ3)2a3,α · a3,β , (7)

where in the second equality, Eq. (5) is used. Moreover, gα3 = 0
and g33 = 1 [25]. Using the definition of the covariant metric gij,
the contravariant metric g ij and basis vectors gi can be found:

gαβ
= [gαβ ]

−1, gα
= gαβgβ . (8)

The third contravariant basis vector g3 is again the normal vector
a3 since it has unit-length by construction (see Eq. (4)).

Remark 1. In the isogeometric Kirchhoff–Love shell formu-
lations [25,31], the last term in Eq. (7) is neglected because
of the thin shell assumption, meaning (θ3)2 takes small values.
However, the co- and contravariant basis vectors (gα and gα , re-
spectively) are used in the mapping of the stretch-based material
matrix onto the contravariant undeformed basis (Section 4.3).
To enable an accurate comparison of the invariant-based and
stretch-based formulation, we do not neglect the O((θ3)2) term,
contrary to previous works [7,31].

2.3. Shell kinematics

The deformed and undeformed configurations (x and x̊, re-
spectively) are related to each other by the mid-plane deforma-
tion vector u by r = r̊+u and a3 = a3(r̊+u). However, in both the
invariant-based and stretch-based forms that are described in this
paper, the deformations are defined using the undeformed and
deformed geometries. In continuum mechanics, the deformation
gradient F and the deformation tensor C are defined as [31,43]:

F =
dx
dx̊

= gi ⊗ g̊i, C = F⊤F = gi · gj g̊i
⊗ g̊j

= gij g̊i
⊗ g̊j. (9)

ote that the deformation tensor is defined in the contravariant
ndeformed basis g̊i

⊗ g̊j. For Kirchhoff–Love shells, it is known
hat gα3 = g3α = 0, hence this implies Cα3 = C3α = 0.
ince g33 = 1, which implies C33 to be unity and meaning that
he thickness remains constant under deformation. In hyperelas-
ic Kirchhoff–Love shell formulations, the contribution of C33 is
herefore incorporated by static condensation, where the correc-
ion of C33 is performed analytically for incompressible materials
nd iteratively for compressible materials. Therefore, we denote
he deformation tensor C and its inverse C̄ as denoted as:

= g g̊α
⊗ g̊β

+ C å ⊗ å , (10)
αβ 33 3 3

3

¯ = gαβ g̊α ⊗ g̊β +
1
C33

å3 ⊗ å3. (11)

From Eqs. (10) and (11), it can be observed that the thickness-
contribution (index 3) is decoupled from the in-plane contribu-
tions (Greek indices α, β). This is a consequence of the Kirchhoff
Hypothesis and therefore is only valid for Kirchhoff–Love shells.
Consequently, using the definition C̃ = gαβ g̊α

⊗ g̊β , the trace and
determinant of C can be simplified accordingly [41,42]:

tr C = tr C̃ + C33 = gαβ g̊αβ
+ C33, (12)

det{C} = det{F }
2

= J2 =

⏐⏐gαβ

⏐⏐⏐⏐g̊αβ

⏐⏐C33 = J20C33 = λ2
1λ

2
2λ

2
3, (13)

where J denotes the Jacobian determinant and J0 is its in-plane
counterpart. Furthermore, the tensor invariants of C simplify to:

I1 := tr{C} = gαβ g̊αβ
+ C33 = λ2

1 + λ2
2 + λ2

3, (14)

I2 :=
1
2

(
tr{C}

2
− tr

{
C
}2)

= C33gαβ g̊αβ
+ J20

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, (15)

3 := det{C} = λ2
1λ

2
2λ

2
3, (16)

here λi are the principal stretches of the shell and λ2
i are the

igenvalues of the deformation tensor C . The squares of the
igenvalues are the roots of the characteristic polynomial:

λ2
i )

3
− I1(λ2

i )
2
+ I2λ2

i − I3 = 0. (17)

orresponding eigenvectors are denoted by vi, which are nor-
alized to have unit-length. The eigenvalue decomposition (or

pectral decomposition) of the deformation tensor C can be written
s [41,42]:

= Cijg̊i
⊗ g̊j

= λ2
i vi ⊗ vi. (18)

here the Einstein summation convention is used. Since C33
s decoupled by construction, one can immediately see from
qs. (10) and (18) that λ3 =

√
C33 and v3 = å3.

For the sake of completeness, we recall the definition of the
Green–Lagrange strain tensor E = Eαβ g̊α

⊗ g̊β from [25,31] and
ts decomposition to membrane and bending contributions (ε and
, respectively):

Eαβ =
1
2

(
gαβ − g̊αβ

)
=

1
2

(
(aαβ − åαβ ) − 2θ3(bαβ − b̊αβ

))
= εαβ + θ3καβ .

(19)

Remark 2. Following up on Remark 1; the contribution of the
O((θ3)2) term in Eq. (7) is neglected in the strain tensor and its
derivatives. The O((θ3)2) term is only included in Eq. (7) to ensure
equivalence in comparison of the stretch- and invariant-based
formulations.

2.4. Variational formulation

The shell internal and external equilibrium equations in vari-
ational form are derived by the principle of virtual work [25,31].
The variations of internal and external work are defined as:

δW (u, δu) = δW int
− δW ext

=

∫
Ω

n : δε + m : δκ dΩ −

∫
Ω

f · δu dΩ ,
(20)

with δu being the virtual displacement, δε and δκ the virtual
strain components, Ω the mid-surface and dΩ =

√⏐⏐åαβ

⏐⏐dθ1dθ2

the differential area in the undeformed configuration, mapped to
the integration domain Ω∗

= [0, 1]2 using the undeformed mid-
plane measure. Furthermore, with slight abuse of notation, the
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ensors n = nαβ g̊α ⊗ g̊β and m = mαβ g̊α ⊗ g̊β denote the shell
normal force and bending moment tensors, respectively, with

nαβ
=

∫
[−t/2,t/2]

Sαβ dθ3 , mαβ
=

∫
[−t/2,t/2]

θ3Sαβ dθ3 . (21)

Here, Sαβ denotes the coefficients of the stress tensor following
from the constitutive relations that will be derived in Section 3
and t stands for the shell thickness. The total differentials of the
stress resultants are:

δnαβ
=

∫
[−t/2,t/2]

Cαβγ δ dθ3 δεγ δ +

∫
[−t/2,t/2]

Cαβγ δθ3 dθ3 δκγ δ,

δmαβ
=

∫
[−t/2,t/2]

Cαβγ δθ3 dθ3 δεγ δ

+

∫
[−t/2,t/2]

Cαβγ δ
(
θ3)2 dθ3 δκγ δ.

(22)

Discretizing the equations using known formulations from
previous publications [25,31,44], the solution u is represented
by a finite sum of weighted basis functions and the tensors n,
m, ε and κ are linearized around the weights using Gateaux
derivatives. The linearized tensors are denoted by (·)′ =

∂(·)
∂ur

in
the following, where ur are individual weights of the solution
vector. Note that u′ denotes the basis functions [31]. Using the
discretized system, the residual vector is defined by:

Rr = F int
r −F ext

r =

∫
Ω

n :
∂ε

∂ur
+m :

∂κ

∂ur
dΩ −

∫
Ω

f ·
∂u
∂ur

dΩ , (23)

and must be equal to the zero vector for the weights u corre-
sponding to the exact solution. To solve the residual equation
R = 0, another linearization is performed, yielding the Jacobian
matrix or tangential stiffness matrix K :

Krs = K int
rs − K ext

rs (24)

=

∫
Ω

∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+

∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us
dΩ

−

∫
Ω

∂f
∂us

·
∂u
∂ur

dΩ .

Note that the matrix contains a contribution for the external load
depending on the solution vector (f(u)). For instance, follower-
ressures are defined by f(u) = pa3(u), where n is the surface
ormal. In order to solve for nonlinear equation, Newton itera-
ions are performed for solution u and increment ∆u by solving

∆u = −R. (25)

. Stretch-based constitutive relations

Invariant-based (in)compressible material model formulations
ave been obtained for the strain energy density functions Ψ (C )
n component-form based on [31]. However, when experimen-
al material data fitting is involved a formulation in terms of
tretches (i.e. in terms of the eigenvalues of C , Ψ (λ) with λ =

λ1, λ2, λ3) might be preferred, meaning that a transformation
o spectral form is required. Therefore, this section provides the
ain contribution of this paper: the generalized formulations for

he implementation of stretch-based material models in the iso-
eometric Kirchhoff–Love shell model. Throughout this section,
eference is made to equations of [31] for comparison purposes.

The section is structured as follows: Section 3.1 provides
he basics for the derivation of the stretch-based constitutive
elations. Thereafter, Section 3.2 and Section 3.3 provide the
erivations for incompressible and compressible material models,
espectively, in the stretch-based formulations. These formula-
ions are the novelty of the present paper.
4

.1. General relations

Assuming Ψ (λ), we derive relations for the stress and material
ensor in terms of the (normalized) eigenvector bases (Eq. (18)):

=

3∑
i,j=1

S ij vi ⊗ vj, C =

3∑
i,j,k,l=1

Cijkl vi ⊗ vj ⊗ vk ⊗ vl. (26)

These equations are valid for 3D continua and hence need to
be modified to incorporate the through-thickness stress compo-
nents. Reading Eq. (10), Cαβ = gαβ but C33 ̸= g33 = 1 to avoid
iolation of the plane stress condition. To correctly incorporate
he plane-stress condition (S33 = 0), the material tensor C
is modified using static condensation, which implies that the
material tensor Ĉ corrected for plane-stress is defined by [31]:

Ĉαβγ δ
= Cαβδγ

−
Cαβ33C33δγ

C3333 . (27)

or incompressible materials, this term is derived analytically
sing the incompressibility condition (J = 1) whereas for com-

pressible materials, it is corrected iteratively.
When S and C are known, these tensors are transformed to

the bases g̊i ⊗ g̊j and g̊i ⊗ g̊j ⊗ g̊k ⊗ g̊l, respectively. This will be
discussed in Section 4.3.

The derivative of any scalar function with respect to the de-
formation tensor C can be written as a derivative with respect to
the stretch by applying the chain rule [41]:

∂(·)
∂C

=

3∑
i=1

∂(·)
∂λ2

i

∂λ2
i

∂C
=

3∑
i=1

∂(·)
∂λ2

i
vi ⊗ vi =

3∑
i=1

1
2λi

∂(·)
∂λi

vi ⊗ vi. (28)

From this, it follows that:

S ij =

⎧⎨⎩
1
λi

∂Ψ

∂λi
, i = j

0, i ̸= j
(29)

which shows that the coefficients of the stress tensor are purely
diagonal and we thus refer with S ii, i = 1, . . . , 3 to the non-zero
components of S .

Remark 3. From Eqs. (18) and (28), it follows that

∂C
∂(λ2

i )
= vi ⊗ vi =

∂λ2
i

∂C
. (30)

Due to the fact that the eigenvector basis with vi is orthogonal
and normalized (i.e. orthonormal), the product the basis vectors
vi span the identity tensor: I = vi ⊗ vi.

Furthermore, it can also be shown that for the material tensor,
he following holds [17–19,21,41]:

ijkl
=

1
λk

∂S ii

∂λk
δ
j
iδ

l
k +

S jj − S ii

λ2
j − λ2

i
(δki δ

l
j + δliδ

k
j )(1 − δ

j
i). (31)

where the indices (i, j, k, l) refer to specific components of the
fourth-order material tensor, thus no summation over the indices
is applied. The first part of Cijkl represents the normal compo-
nents (diagonal elements) and the second part denotes the shear
components (off-diagonal elements). In the formulation of the
component-based counterpart of this equation ([31, Eq. (36)])
these parts are not explicitly visible, since the spectral form by
definition uses the principal directions of the deformation tensor,
whereas shear and normal contributions are mixed in the curvi-
linear form of the material tensor. Note that for the second part
of this equation, the case λi = λj results in an undefined result.
Hence, using L’Hopital’s rule, this limit case can be identified:

lim
λ →λ

S jj − S ii
2 2 = lim

λ →λ

∂Sjj
∂λj

−
∂Sii
∂λj

=
1
(

∂S jj
−

∂S ii
)

. (32)

j i λj − λi j i 2λj 2λi ∂λj ∂λj
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ince J = λ1λ2λ3, the derivatives of J are:

∂ J
∂λi

=
J
λi

,
∂2J

∂λj∂λj
= (1 − δ

j
i)

J
λiλj

. (33)

.2. Incompressible material models

For incompressible materials, the incompressibility condition
J = 1) is enforced using a Lagrange multiplier p in the strain
nergy density function [31,41]:

(λi) = Ψel(λi) − p(J − 1). (34)

here Ψel is the original strain energy density function. Using
q. (29), the stress tensor becomes:

ii
=

1
λi

(
∂Ψel

∂λi
−

∂p
∂λi

(J − 1) − p
∂ J
∂λi

)
. (35)

here again, we do not sum over repeated indices. Compar-
ng S ii with the component-based result in [31, Eq. (41)] shows
hat all components can easily be obtained using substitution in
q. (28). To comply with the plane-stress condition (S33 = 0),
he equation to be solved for the Lagrange multiplier p using the
ncompressibility condition (J = 1) denotes:

1
λ3

(
∂Ψel

∂λ3
− p

∂ J
∂λ3

)
= 0, (36)

hich implies, using the derivative of J from Eq. (33):

p =

(
∂ J
∂λ3

)−1
∂Ψel

∂λ3
= λ3

∂Ψel

∂λ3
. (37)

t can easily be shown that Eq. (37) is similar to the expression
f p in the component-based form [31, Eq. (46)] using λ2

3 = C33.
he derivative of the stress tensor with respect to the stretch is
equired to find the material tensor, as observed in Eq. (31). From
q. (35) it follows that:

∂S ii

∂λj
=

∂

∂λj

(
1
λi

∂Ψ

∂λi

)
=

1
λi

∂2Ψ

∂λi∂λj
− δ

j
i
1
λ2
i

∂Ψ

∂λi

=
1
λi

(
∂2Ψel

∂λi∂λj
−

∂p
∂λi

∂ J
∂λj

−
∂p
∂λj

∂ J
∂λi

(38)

− p
∂2J

∂λi∂λj
− δ

j
i
1
λi

(
∂Ψel

∂λi
− p

∂ J
∂λi

) )
,

where the incompressibility condition (J = 1) is used again and
where no summation over repeated indices is applied. Note that
the Kronecker delta δ

j
i covers the case when i = j. The derivative

of p follows from Eq. (37) and reads:

∂p
∂λi

= λ3
∂2Ψel

∂λ3∂λi
+ δ3i

∂Ψel

∂λ3
. (39)

gain, this result can be compared to its component-based coun-
erpart in [31, Eq. (47)] and using Eq. (28) it can be observed that
hese equations are similar. Substituting Eqs. (33), (37) and (39)
nd J = 1 into Eqs. (35) and (38) then yields:

Sαα
=

1
λα

(
∂Ψel

∂λα

−
λ3

λα

∂Ψel

∂λ3

)
, (40)

∂Sαα

∂λβ

=
1
λα

[
∂2Ψel

∂λα∂λβ

−
1
λβ

(
λ3

∂2Ψel

∂λ3∂λα

+ δ3α
∂Ψel

∂λ3

)
−

1
λα

(
λ3

∂2Ψel

∂λ3∂λβ

+ δ3β
∂Ψel

∂λ3

)
− λ3

∂Ψel

∂λ3

(1 − δ
β
α )

λαλβ

(41)

− δβ
α

1
λ

(
∂Ψel

∂λ
−

1
λ

λ3
∂Ψel

∂λ

) ]
.

α α α 3

5

Here, we do not apply summation over repeated indices. Compar-
ison with the invariant-based formulation shows that λ−1

i in front
of the second term in Eq. (40) translates to C̄ ij in [31, Eq. (49)].
sing these identities, the material tensor can be derived from
q. (31). For the static condensation term, reference is made to
q. (27), hence the components Cαβ33, C33αβ and C3333 need to

be evaluated. From Eq. (31) it follows that:

Cαβ33
=

1
λ3

∂Sαα

∂λ3
δβ
α = −

1
λ3λ2

α

[
λ3

∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
δβ
α , (42)

C33γ δ
=

1
λγ

∂S3

∂λγ

δδ
γ = −

1
λ3λ2

γ

[
λ3

∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
δδ
γ , (43)

C3333
=

1
λ3

∂S3

∂λ3
= −

1
λ3
3

[
λ3

∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
, (44)

such that the static condensation term becomes:

Cαβ33C33γ δ

C3333 = −

1
λ23λ2αλ2γ

[
λ3

∂2Ψel
∂λ23

+ 2 ∂Ψel
∂λ3

]2
1
λ33

[
λ3

∂2Ψel
∂λ23

+ 2 ∂Ψel
∂λ3

] δβ
α δδ

γ (45)

= −
1

λ2
αλ2

γ

[
λ3

∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
δβ
α δδ

γ . (46)

Using this result, the in-plane incompressible material tensor can
be evaluated as:

Cαβγ δ
=

1
λγ

∂Sαα

∂λγ

δβ
α δδ

γ +
Sββ

− Sαα

λ2
β − λ2

α

(δγ
α δδ

β + δδ
αδ

γ

β )(1 − δβ
α )

−
1

λ2
αλ2

γ

[
λ3

∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
δβ
α δδ

γ , (47)

where the second term should be replaced by Eq. (32) if λα = λβ .

.3. Compressible material models

For compressible models, the Jacobian determinant J is not
ecessarily equal to 1. As a consequence, the deformation gra-
ient F and deformation tensor C are modified such that F
nd C are a multiplicative decomposition of a volume-changing
dilational) part depending on J and a volume preserving (distor-
ional) part depending on the modified deformation gradient and
eformation tensors, Ċ and Ḟ , respectively [45]:

˙ = J−
1
3 F , Ċ = J−

2
3 C . (48)

The modified deformation gradient and deformation tensor have
determinants which are equal to 1 (corresponding to volume
preservation), meaning:

det
{
Ḟ
}

= λ̇1λ̇2λ̇3 = 1, det
{
Ċ
}

= 1, (49)

where the modified principal stretches λ̇i are defined as:

λ̇i = J−
1
3 λi. (50)

onsequently, the invariants of the modified deformation tensor
˙ become:
˙1 = J−2/3I1, İ2 = J−4/3I2, İ3 = 1, (51)

with Ii the invariants of the deformation tensor C . With Ḟ , Ċ
and İk as defined above, the strain energy density function Ψ (C )
for a compressible material can be described in a decoupled
form, separating the response in an isochoric (or distortional)
elastic part Ψiso(λ̇) and a volumetric (or dilational) elastic part
Ψvol(J) [41,42,45]:

Ψ (λ) = Ψ (λ̇) + Ψ (J). (52)
iso vol
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he volumetric elastic part Ψvol is required to be strictly convex
nd equal to zero if and only if J = 1 and Ċ = I [41].
For compressible materials, the plane stress condition is in-

orporated by solving S33 = 0 for C33 using Newton lineariza-
ions [31,46]:

33
+

1
2
C3333∆C33 = 0, (53)

where C33 is incrementally updated by C (n+1)
33 = C (n)

33 +∆C (n)
33 with

the increment on iteration n:

∆C (n)
33 = −2

S33(n)
C3333

(n)
. (54)

In each iteration, the updated stress tensor S and material tensor
C can be computed and iterations are continued until the plane
stress condition is satisfied within a certain tolerance, i.e.

⏐⏐S33⏐⏐ <

tol. When converged, static condensation can be performed for
the material tensor using Eq. (27). Rather than using C (0)

33 = 1 [31],
C (0)
33 = J−2

0 is used for incompressible materials, although the
difference for the two approaches is negligible.

Using Eq. (50), any volumetric strain energy density function
for incompressible materials can be transformed to its compress-
ible material equivalent by substituting Eq. (50) into Eq. (52) and
by selecting a volumetric component Ψvol. Static condensation
(Eq. (27)) is performed before transforming the material tensor.

4. Implementation aspects

In this section, we recall the assembly of the nonlinear system
for isogeometric Kirchhoff–Love shells (Section 4.1) as well as the
computation of the eigenvalues and eigenvectors of the deforma-
tion tensor C (Section 4.2). Then we provide details about the
transformation of the stress and material tensors S and C from
pectral to curvilinear bases (Section 4.3).

.1. System assembly

For the implementation of Kirchhoff–Love shells recall that
he vector of internal forces and the tangential stiffness matrix
ead [25,31]:

int
r =

∫
Ω

(
n̄⊤

∂ε̄

∂ur
+ m̄⊤

∂κ̄

∂ur

)
dΩ , (55)

Krs =

∫
Ω

( (
D̄0 ∂ε̄

∂us
+ D̄1 ∂κ̄

∂us

)
∂ε̄

∂ur
+ n̄⊤

∂2ε̄

∂ur∂us
(56)

+

(
D̄1 ∂ε̄

∂us
+ D̄2 ∂κ̄

∂us

)
∂ε̄

∂ur
+ m̄⊤

∂2κ̄

∂ur∂us

)
dΩ . (57)

ere, we note that the matrices D̄k, k = 0, 1, 2, are kth thickness
oments of the material tensor represented as a 3 × 3 matrix
nd n̄ and m̄ are the zero-th and first thickness moments of the
tress tensor, see [31]. The thickness integrals are, in the present
aper and in [31], computed using numerical through-thickness
ntegration with four Gaussian points. As discussed in [7], the
atrices D̄1 can differ in the variations of the normal force tensor

¯ and the moment tensor m̄ depending the analytic projected or
irectly decoupled alternatives for thickness integration.

.2. Eigenvalue computation

The eigenvalues of tensor quantity can be computed by solving
q. (17) or, alternatively, by computing the eigenvalues of the
atrix that results from computation of C = Cij g̊i

⊗ g̊j including
he outer product. Since λ2

=
√
C is decoupled by construction,
3 33

6

it suffices to compute λ2
1 and λ2

2 by computing the eigenvectors
nd eigenvalues of the 3 × 3 matrix following from computation
f C = Cαβ g̊α ⊗ g̊β . This computation results in three eigenpairs
eigenvalues and eigenvector) of which one eigenpair contains
he zero-vector due to the decoupled construction. The other two
igenpairs (λα ∈ R, vα ∈ R3) are the in-plane principle stretches

and their directions.

4.3. Tensor transformation

Since the stretch-based stress and material tensor are derived
in spectral form (i.e. in the eigenvector space) a transformation
towards the curvilinear basis needs required in order to use these
entities in further computations. Recall that the spectral forms of
S and C are:

S =

3∑
i=1

S ii vi ⊗ vi, C =

3∑
i,j,k,l=1

Cijkl vi ⊗ vj ⊗ vk ⊗ vl. (58)

The invariant-based stress and material tensors are defined in the
curvilinear basis, as follows:

S =

3∑
i,j=1

S ij g̊i ⊗ g̊j C =

3∑
i,j,k,l=1

Cijkl g̊i ⊗ g̊j ⊗ g̊k ⊗ g̊l. (59)

Since the strain tensors (c.f. Eq. (19)) are defined in the curvilinear
basis, it is convenient to define the quantities in the variational
form (c.f. Eq. (20)) defined in the curvilinear basis. Hence, the
stretch-based stress and material tensors are transformed to the
undeformed covariant curvilinear basis by:

S̃ ij =

3∑
p,q=1

Spq(vp · g̊i)(vq · g̊j),

C̃ijkl
=

3∑
p,q,r,s=1

Cpqrs(vp · g̊i)(vq · g̊j)(vr · g̊k)(vs · g̊l),

(60)

where S̃ ij and C̃ijkl are the coefficients of the stress and material
tensors in the curvilinear basis.

Obviously, the tensor transformation only needs to be com-
puted for non-zero components of Cpqrs. For incompressible mate-
rial models, the plane-stress correction for C33 is applied
analytically, which implies that the transformations only need to
be applied for indices ranging from α, β, γ , δ = 1, 2, thus the
transformation consists of mapping 24

= 16 entries. However,
it is known that for hyperelastic materials the contravariant
components of the material tensor, Cijkl, possess minor and major
symmetry [41,42], i.e.

Cabcd
= Cbacd

= Cabdc minor symmetry, (61)

= Ccdab major symmetry, (62)

so that only six unique components exist for the 2 × 2 × 2 × 2
tensor. Furthermore, Eq. (31) implies that the non-zero compo-
nents of Cijkl are of the form Ciiii, Ciijj, Cijij and Cijji of which the
last two are equal by virtue of the minor symmetry property. This
implies that the 2×2×2×2 tensor has only four uniquely defined
components, namely C1111, C1122, C2222 and C1212.

For compressible material models, the static condensation
term is computed in the spectral basis, i.e. on the tensor C before
it is transformed to the covariant undeformed tensor basis. From
Eq. (54) we see that the iterative procedure to find C33 requires
the computation of C3333, Cαβ33 and C33αβ , where the last two
are equal by virtue of the major symmetry property. Reusing the
minor and major symmetries, the computation is reduced to four
distinct components, namely C1133, C2233, C1233 and C3333.
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Accordingly, it can be concluded that for incompressible ma-
terials four and for compressible materials eight unique compo-
nents of the spectral material tensor need to be computed, when
exploiting minor and major symmetry, as well as the nature of
Eq. (31). In summary, the transformations give rise to certain
additional costs, which can be limited, however, by exploiting
symmetry properties efficiently.

5. Numerical experiments

For benchmarking purposes, the results of four numerical ex-
periments have been used for verification and validation of the
presented formulations for incompressible and compressible ma-
terial models. For the uniaxial tension and pressurized balloon
benchmarks (Sections 5.1 and 5.2, respectively), analytical solu-
tions are available, therefore they will serve as verification of
the stretch-based material model formulations. Combining the
present method with (extended) arc-length methods, we inves-
tigate the collapsing behaviour of a truncated conical shell [19]
(Section 5.3) and we simulate wrinkling of a stretched thin sheet
(Section 5.4).

In order to verify the presented isogeometric Kirchhoff–Love
formulation for a stretch-based Ogden material with its FEM
counterpart, the conical shell collapse (Section 5.3) is incorpo-
rated. Finally, we will apply our approach to model wrinkling of a
thin sheet subject to tension. Our models have been implemented
in the open-source library G+Smo (Geometry + Simulation Mod-
ules) [47,48] and download and installation instructions to re-
produce the data presented in the following are provided in the
Supplementary Material.

In the numerical experiments, compressible and incompress-
ible formulations of the Neo-Hookean (NH), Mooney–Rivlin (MR)
and Ogden (OG) material models have been used. The Neo-
Hookean models are given by (compressible and incompressible,
respectively):

Ψ (C ) =
µ

2

(
J−

2
3 I1 − 3

)
+ Ψvol(J), (63)

Ψ (C ) =
µ

2
(I1 − 3). (64)

he Mooney–Rivlin models are given by [49,50] (compressible
nd incompressible, respectively):

(C ) =
c1
2

(
J−

2
3 I1 − 3

)
+

c2
2

(
J−

4
3 I2 − 3

)
+ Ψvol(J), (65)

(C ) =
c1
2

(I1 − 3) +
c2
2

(I2 − 3). (66)

or Ogden models, the following formulations are used (com-
ressible and incompressible, respectively):

(λ) =

N∑
p=1

µp

αp
J−

1
3
(
λ

αp
1 + λ

αp
2 + λ

αp
3 − 3

)
+ Ψvol(J), (67)

(λ) =

3∑
q=1

⎛⎝ N∑
p=1

µp

αp
(λαp

q − 1)

⎞⎠. (68)

For all models, the following volumetric part of the strain energy
density function is adopted:

Ψvol = KG(J) = Kβ−2(βlog(J) + J−β
− 1

)
. (69)

To check consistency of invariant based models (i.e. the NH and
MR models), the invariants can be replaced by Eqs. (14) to (16)
to obtain stretch-based forms, which is thus equivalent to the
component-based form from [31]. Unless stated otherwise, for
the compressible models β = −2, and for the Mooney–Rivlin
7

Fig. 1. Geometry for the uniaxial tension case. The filled geometry represents
the undeformed configuration and the dashed line indicates the undeformed
geometry. The bottom side of the undeformed sheet is fixed in y-direction and
the left side of the sheet is fixed in x-direction. The applied load is σ t where σ

is the actual Cauchy stress and t is the thickness of the sheet.

model c1/c2 = 7 [50] is used. For the Ogden model the coeffi-
cients from [51] are re-scaled to the value of µ:

µ1 =
6.300
µ0

µ, α1 = 1.3,

µ2 =
0.012
µ0

µ, α2 = 5.0,

µ3 = −
0.100
µ0

µ, α3 = −2.0,

(70)

where µ0 = 4.225.

5.1. Uniaxial tension

The first benchmark case is uniaxial tension of a material
block. A block with dimensions L×W × t = 1×1×0.001 [m3

] is
considered. The shear modulus is µ = E/(2(1+ν)) where E and ν

are the Young’s modulus and Poisson ratio, respectively, such that
µ = 1.5 · 106

[N/m2
]. The block is modelled by shell elements,

i.e. the L × W plane is considered and all edges are restrained in
vertical direction (z = 0). The left edge (x = 0) is restrained in
x direction and on the right edge (x = L) a distributed load σ t is
applied. The bottom edge (y = 0) is restrained in y direction and
the top edge (y = B) is free to move (see Fig. 1).

In Fig. 2 the results for uniaxial tension are depicted. For
both compressible and incompressible materials, the analytical
solution for the Cauchy stress are obtained from [41, ex. 1].
The numerical and analytical solutions for incompressible and
compressible materials show a perfect match for all quantities
studied (thickness decrease λ3, axial Cauchy stress σ and Ja-
cobian determinant J). Note that the Jacobian determinant for
incompressible materials is equal to 1 and hence not shown. The
residual norms of the non-linear iteration convergence for the
invariant-based and stretch-based Neo-Hookean and Mooney–
Rivlin models as well as the stretch-based Ogden model are
equal in all iterations (see Table 1), showing that the present
formulation provides exactly the same rates of convergence as
the invariant-based method. Last but not least, Newton iterations
converge with optimal speed (second-order convergence rate).

5.2. Pressurized balloon

The response of a pressurized spherical balloon is used for
benchmarking purposes as well. The analytical pressure formu-
lation is obtained from [41, Eq. (6).132]. The numerical model
results are based on follower pressures, i.e. f = p0a3 where a3
is the unit normal in the current configuration. The balloon is
modelled as a quarter of a hemi-sphere, of which the bottom
point is fixed in all directions, and on the sides a symmetry
condition is applied by clamping the sides in normal direction and
restriction deflections orthogonal to the symmetry boundary (see

Fig. 3). The geometry is modelled by 2 elements over the height
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able 1
esidual norms per iteration for the 10th load-step for uniaxial tension for
ll material models in compressible and incompressible forms. For the Neo-
ookean and Mooney–Rivlin models, the iteration residuals are provided for
he stretch-based and invariant-based approaches. For the Ogden model, only
he results for the stretch-based formulations are given, since no invariant-based
ormulation exists. For the Neo-Hookean and Mooney–Rivlin models, results are
nly observed in the last iteration, due to machine precision of the arithmetic.
he Supplementary Material provides instructions to reproduce this table.
It. Neo-Hookean Mooney–Rivlin Ogden

Stretch Invariant Stretch Invariant Stretch

Incompressible

1 2.033 · 10−4 2.033 · 10−4 4.021 · 10−3 3.999 · 10−3 4.442 · 10−2

2 1.129 · 10−6 1.129 · 10−6 2.248 · 10−5 2.253 · 10−5 1.313 · 10−6

3 3.575 · 10−11 3.575 · 10−11 7.106 · 10−10 7.229 · 10−10 4.149 · 10−11

4 2.554 · 10−16 6.929 · 10−16 5.088 · 10−16 1.776 · 10−15 1.602 · 10−16

Compressible

1 1.617 · 10−3 1.617 · 10−3 2.100 · 10−3 2.100 · 10−3 5.215 · 10−3

2 2.296 · 10−7 2.296 · 10−7 2.890 · 10−6 2.890 · 10−6 1.759 · 10−7

3 9.443 · 10−13 9.440 · 10−13 1.344 · 10−11 1.344 · 10−11 2.584 · 10−13

4 1.153 · 10−15 1.252 · 10−16 1.115 · 10−15 1.988 · 10−16 1.625 · 10−15

Fig. 2. Results for uniaxial tension for compressible (C, left column) and incom-
ressible materials (I, right column); where the first row presents the thickness
ecrease λ3 , the second row the axial Cauchy stress or true axial stress σ and

the last row the Jacobian determinant J for compressible materials; all against
the stretch λ. The material models that are used are the Neo-Hookean (NH) the
Mooney–Rivlin (MR) and the Ogden (OG) material models and comparison is
made to analytical (A) solutions from [41, ex. 1]. The Supplementary Material
provides instructions to reproduce these figures.

and 2 elements over the quarter-circumference, both of quadratic
order.

For R = 10 [m], t = 0.1 [m] and µ = 4.2255 · 105
[N/m2

], a
erfect agreement is obtained for all presented material models
n comparison to the analytical solutions Fig. 4.

In Table 2 we represent the total CPU times related to sys-
em assembly for different material models for different mesh
8

Fig. 3. Geometry of the inflated balloon with 4 quadratic elements. Symmetry
conditions are applied on the boundaries Γ1 , Γ2 and Γ4 , which means that
otations around these boundaries and displacements in-plane normal to the
oundaries are fixed. The bottom of the balloon (Γ3) is an edge with a radius
f 0.01 and is fixed in all directions.

Fig. 4. Inflation of a balloon. The vertical axis depicts the internally applied
pressure and the horizontal axis depicts the stretch λ1 = λ2 = λ. The different
ines and markers represent different material models, including Neo-Hookean
NH), Mooney–Rivlin (MR) and Ogden (OG). The radius of the sphere is R =

0 [m] and the thickness of the sphere t = 0.1 [m]. The Supplementary Material
rovides instructions to reproduce this figure.

able 2
otal CPU assembly times (seconds) for the different material models (invariant-
ased where applicable) for different mesh sizes (#El.) for the inflated balloon
enchmark. All results are obtained for the incompressible material models.
#El. Neo-Hookean Mooney–Rivlin Ogden

Invariant Stretch Invariant Stretch

1 0.18 0.13 0.18 0.13 0.41
4 0.42 0.28 0.43 0.29 1.07
16 1.42 0.93 1.45 0.94 3.95
64 6.19 4.55 6.69 4.35 18.49
256 40.67 26.77 44.10 28.60 119.65

refinement levels and quadratic order for p0 = 104. The as-
sembly times for both the invariant-based formulations and for
the stretch-based formulations are given for the Neo-Hookean
and Mooney–Rivlin material models, whereas the stretch-based
formulation is only available for the Ogden model. The total
number of nonlinear iterations is the same in all cases, and
so is the number of assembly operations. The table shows that
the stretch-based formulations are slower than the invariant-
based formulations, which is expected by the requirement for the
transformation of the basis of the deformation tensor. It can also
be seen that the Ogden model requires significantly more CPU
time than the other models, which is due to the large number of
terms in the strain energy density function.

5.3. Conical shell collapse

A collapsing conical shell (or frustrum) is presented as a bench-
mark for modelling of strong non-linearities [19]. A conical shell
with height H = 1 [m], top radius r = 1 [m], bottom radius
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Fig. 5. Geometry of the collapsing conical shell with 32 quadratic elements over
the height.

R = 2 [m] and thickness t = 0.1 [m] as depicted in Fig. 5
is considered. Since the reference solution models the frustrum
axisymmetrically, a quarter of the geometry is modelled with 32
quadratic elements over the height and one quadratic element
over the quarter-circumference to represent axial symmetry. The
corresponding material model is of the Ogden type and has the
following parameters:

µ1 = 6.300 [N/m2
], α1 = 1.3,

µ2 = 0.012 [N/m2
], α2 = 5.0,

µ3 = −0.100 [N/m2
], α3 = −2.0,

implying that µ = 4.225 [N/m2
]. Two sets of boundary condi-

tions are considered for this geometry. In both sets the bottom of
the shell (Γ2) is hinged, hence the displacements are restricted in
all directions. The top shell edge (Γ1) is either kept rigid (no x and
y displacements) or free, referred to as constant or variable radius,
respectively [19]. On the top edge, a uniform load p is applied,
providing a uniform displacement ∆. Due to symmetry, only one
quarter of the geometry is modelled, which means that symmetry
boundary conditions are applied on the x = 0 and y = 0 planes
(Γ3, Γ4, see Fig. 5); restricting in-plane deformations normal
to the boundaries and restricting rotations on the boundary by
applying clamped boundary conditions as described in [25]. The
quarter-conical shell is modelled with 32 quartic shell elements
over the width.

Loads are applied using displacement-control (DC) or arc-
length control. In the former case, displacements are applied on
the top-side of the cone and the deformation of the cone as well
as the corresponding load on the top-boundary are computed. In
the latter case, Crisfield’s spherical arc-length procedure [38] is
used with extensions for resolving complex roots [52,53]. If this
method does not converge to an equilibrium point, the step size
is bisected until a converged step is found. After this step, the step
size is reset to its original value [40].

Figs. 6 and 7 present the result of the collapsing conical
shell (constant and variable radius, respectively) of the present
study and the reference results from [19]. The results for the
displacement-controlled (DC) solution procedure shows that the
difference between the used material models are negligible, since
the actual strains are relatively small. The results also agree with
the displacement-controlled reference results of [19], and minor
differences between the results might be a result of FE shear
locking as involved for the reference results. Since more steps
have been used for the displacement-controlled calculations,
sharp corners in the curve can be observed for ∆ ∼ 1.9 for
constant radius and ∆ ∼ 1.8 for variable radius.

An arc-length based calculation was used as well. From the
results, one can observe revelation of the collapsing mechanism
of the conical shell. For both cases (constant and variable radius)
an almost anti-symmetric pattern in the load–deflection space
can be observed, which initiates and finishes at the kinks in the
curve that was found with the displacement-control procedure.
For the constant-radius shell, Fig. 6a shows two loops of large
9

Fig. 6. Result of the collapsing conical shell with constant radius; (a) load–
displacement diagram,(b) undeformed geometries matching with the points
indicated with capital letters in the diagram. The lines represent solutions ob-
tained using the Arc-Length Method (ALM) and the markers represent solutions
obtained by Displacement Control (DC). Note that the solution for the NH and
MR models are overlapping on most parts of the path. The material models
are Neo-Hookean (NH), Mooney–Rivlin (MR) and Ogden (OG). Since variation
between the material models is rather small for the DC solutions, only the results
for the OG material model are given. The reference results are obtained from
[19]. A movie of the collapse (video 1) and instructions to reproduce the data
are given as Supplementary Material.

magnitude. In Figs. 6b and 7b it can be seen that collapsing
behaviour of the conical shell consists of states in which multiple
waves in radial direction occur. For both cases, it can be seen
that after the loops with the highest force–amplitude, the shell
and its collapse-path invert and continue on the path that can be
obtained with displacement-control.

To the best of the authors’ knowledge, the collapsing of a coni-
cal shell was not investigated before. Complex load–displacement
paths from Figs. 6a and 7a show that displacement-controlled
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Fig. 7. Result of the collapsing conical shell with variable radius; (a) load–
displacement diagram, (b) undeformed geometries matching with the points
indicated with capital letters in the diagram. The lines represent solutions ob-
tained using the Arc-Length Method (ALM) and the markers represent solutions
obtained by Displacement Control (DC). The material models are Neo-Hookean
(NH), Mooney–Rivlin (MR) and Ogden (OG). Since variation between the material
models is rather small for the DC solutions, only the results for the OG material
model are given. The reference results are obtained from [19]. A movie of
the collapse (video 2) and instructions to reproduce the data are given as
Supplementary Material.

Fig. 8. Modelling geometry for the uniaxially loaded restrained sheet.

simulations in this case ignore the collapsing behaviour of the
shell with multiple limit points. The authors highly encourage
 u

10
further investigations on this benchmark for verification and val-
idation.

5.4. Wrinkling of a stretched sheet

As an application of the model, we consider the wrinkling phe-
nomenon of a stretched, thin membrane (see Fig. 11). Scaling laws
based on experiments were first published in [1,2] and analytical
formulations related to this problem were established in [54]. Nu-
merical results to this problem have been established for sheets
with different aspect ratios β and different dimensionless thick-
ess α [3–5,55–59]. In most numerical studies, Neo-Hookean or
ooney–Rivlin models were used to model the wrinkling phe-
omenon, since strains usually reach high values (typically ε ∼

0−50%). In this paper, we model tension wrinkling for the sake
f benchmarking using incompressible Neo-Hookean, Mooney–
ivlin and Ogden models and Isogeometric Kirchhoff–Love shells,
hich is a novelty to the best of the authors’ knowledge. In
he first part of this section, the model is benchmarked on a
estrained sheet without wrinkling formation and material pa-
ameter determination is performed. Thereafter, the results of
rinkling simulations are presented.

aterial test
Related to the first benchmark in the work of [7] and on the

xperiments of [3], a tensile load is applied on a strip of which the
hort edges are fixed and the long edges are free (see Fig. 8). Focus
s on the non-dimensional load versus end-point displacement in
ongitudinal (load and displacement) direction.

Firstly, for the geometric parameters, L = 9 [mm], W =

[mm] and t = 0.3 [mm] are used, leading to L/W = 3 and
/W = 0.1. The material has Poisson’s ratio ν = 0.5 and for the
H material model a Young’s modulus of E = 30[kPa] is involved

and for the MR material model one of E = 90 [kPa] leading to,
µ = 10 [kPa] and µ = 30 [kPa], respectively. For the MR model,
1/c2 = 1/2 such that c1 = 1/9 and c2 = 2/9. Scaling according
to Eq. (70) is applied for the Ogden material model and 8 × 8
quadratic elements are used. A good match with the results of
the directly decoupled method of [7] for the incompressible Neo-
Hookean and Mooney–Rivlin models can be observed in Fig. 9a.
Note that the forces in the reference paper are normalized by
E = 3c1 for both the Neo-Hookean and Mooney–Rivlin models,
whereas in the present simulations, the forces are normalized by
E = 3µ (since ν = 0.5 in the comparison with [7]).

In Fig. 10, we provide convergence plots of the present model
(NH and OG stretch-based models) with respect to the relative
error in the strains given a nondimensional load of P/EA = 0.5.
The errors are plotted with respect to the Richardson extrap-
olation from the three finest meshes, since analytical solutions
to the problem are not available. The results obtained for the
NH model obtained from the invariant-based form are exactly
the same and hence not provided here. The figures show that
the convergence of the method is around second-order, inde-
pendent of the order of the spline basis. Reference papers [7,31]
do not provide estimates of the order of convergence for the
invariant-based material models or convergence plots for similar
simulations. Hence, further comparison and investigations on the
order of convergence for such membrane-dominated responses
for shells with nonlinear material models are recommended.

Secondly, we compare our numerical model to the experi-
mental results from a similar setup as depicted in Fig. 8 [3].
The corresponding geometric parameters are L = 280 [mm],

= 140 [mm] and t = 0.14 [mm], leading to L/W = 2
nd t/W = 103. The material models are incompressible and
or the NH material model, a parameter µ = 1.91 · 105

[Pa] is
5
sed, while for the MR model the parameters c1 = 3.16 · 10 [Pa]
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Fig. 9. Uniaxial tension of a restrained sheet using incompressible material mod-
ls. The dimensionless force is obtained by normalization of the applied force
by the Young’s modulus E and the cross sectional area A. The Supplementary
aterial provides instructions to reproduce these figures.

Fig. 10. Convergence rate of the restrained sheet under uniaxial tension with
alues from [7] for different material models (a–b). The error is relative error
= |εnum − εR|/εR where εnum is the numerical value of the strain and εR is the
ichardson-extrapolated value of the strain related to the last three meshes, all
or a dimensionless force P/EA = 0.5. The orders of convergence following from
he Richardson extrapolation are provided in the captions below the subfigures.
he Supplementary Material provides instructions to reproduce the strain data.

nd c2 = 1.24 · 105
[Pa] are used. The results are depicted in

ig. 9b, from which it can be seen that there is an excellent agree-
ent between the numerical results from [3] (obtained using

he ABAQUS S4R element) and with the experimental results. In
ddition, the depicted fit for the Ogden material model was found,
sing parameters α1 = 1.1 [-], µ1 = 1.0µ0 [Pa], α2 = −7 [-],
2 = −0.003µ0 [Pa], α3 = −3 [-] and µ3 = −0.4µ0 [Pa] with
0 = 1.91 · 105 Pa.

rinkling simulations
For the wrinkling simulations, we follow the work of [3] with

he same parameters for the Mooney–Rivlin and Ogden models as
n Fig. 9b. The model setup for the wrinkling simulations is de-
icted in Fig. 11. The modelling domain is depicted in the shaded
rea and surrounded by boundaries Γk, k = 1, . . . , 4. Firstly, the
oundary Γ1 is free, meaning that no displacement constraints
re involved. Furthermore, the boundary at Γ2 is clamped (match-
ng the adjacent control points parallel to the symmetry axes)
nd displacements in y-direction and out-of-plane displacements
re restricted. The displacements in x-direction are all equal over
2. Symmetry is imposed over Γ4 by clamping the edges and by
estricting deformations orthogonal to the axes (ux = 0). Lastly,
nti-symmetry is imposed over Γ by restricting displacements in
3

11
Fig. 11. Modelling geometry for the wrinkled sheet.

vertical direction and orthogonal to the boundary (uy = 0). Simi-
ar to [3], we apply a anti-symmetry condition over Γ3 since the
ymmetric and anti-symmetric wrinkling patterns can appear at
he same critical load [5,57]. For continuation, Crisfield’s spherical
rc-length method [38] is used with an extension for approaching
ifurcation points [39], branch switching [60] and complex-root
esolving [52,53], all summarized and applied to IGA in [40].

Furthermore, for comparison, results from LS-DYNA (R11.0)
nd ANSYS (R19.1) simulations are presented for the same geom-
try and a Mooney–Rivlin model with the same parameters, how-
ver ν = 0.499 in the LS-DYNA simulations since incompressible
aterials (ν = 0.5) are not implemented. A displacement control
pproach is employed with an initial perturbation based on the
irst buckling mode corresponding to a tension load situation,
erturbed with a factor of 10−4. In LS-DYNA, the Hughes–Liu,
he Hughes–Liu selective/reduced and the fully integrated shell
lements are used, all with 4 quadrature points through-thickness
nd a shear correction factor equal to zero [61]. The results for the
NSYS SHELL181 element [62] are obtained using default options,
hich includes reduced integration and hour-glassing control.
or both the LS-DYNA and ANSYS simulations, mesh refinements
ere applied until convergence.
From Fig. 12a large difference between the different solvers

nd between the material models can be observed. Firstly, it
an be concluded that the MR results from the Isogeometric
irchhoff–Love shell correspond most with the results obtained
ith LS-DYNA. Additionally, these results show good correspon-
ence with the experimental results both in the low strain regime
until ε ∼ 0.08) as well as towards restabilization of the wrinkles
(between ε ∼ 0.2 and ε ∼ 0.3), only the maximum amplitude
is slightly underestimated and the restabilization point (i.e. the
point where the wrinkles vanish again) is predicted too early.
Secondly, it can be observed that there is a large difference
between the results from IGA or LS-DYNA and from ANSYS.
Although different shell options in the FEA libraries have been
varied (e.g. reduced/full integration, shear correction factors), the
origin of these differences is yet unknown to the authors and
requires further investigations. Lastly, significant differences be-
tween the Ogden and Mooney–Rivlin results can be observed, al-
though the similarities in the material behaviour in Fig. 9b. From
this it can be concluded that material fitting possibly needs to be
done using experimental tests of different loading configurations,
e.g. testing the bending response of the material.

6. Conclusions and recommendations

This paper provides mathematical formulations to accurately
and efficiently model thin rubbers and several biological tissues
by combining stretch-based material formulations such as the
Ogden material model and smooth spline formulations of the Iso-
geometric Kirchhoff–Love shell. The formulations apply to com-
pressible and incompressible material models and are based on
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Fig. 12. Wrinkling formation in a thin sheet subject to tension. The
Supplementary Material provides instructions to reproduce these figures.

an eigenvalue computation to obtain the principal stretches and
their direction (i.e. the spectral basis). The spectral stress and ma-
terial tensors are transformed to the curvilinear basis accordingly
with limited computational costs due to tensor symmetries.

The results from numerical experiments with Neo-Hookean
and Mooney–Rivlin material models, which can be represented
in terms of invariants as well as in terms of stretches, shows
that identical iteration residuals and correct Newton-convergence
rates have been obtained. This confirms that the stretch-based
and invariant-based shell formulations are equivalent. For these
models it is also shown that the present formulation leads to
higher CPU times due to the projection of the stress and material
tensor; therefore, the advantage of the present formulation is
mainly related to stretch-based material models (e.g. the Ogden
model) and not to models that can be expressed explicitly in
terms of the curvilinear tensor components of the deformation
tensor (e.g. the invariant-based Neo-Hookean and Mooney Rivlin
models). The analytical benchmarks have shown very good agree-
ments confirming that the formulations and implementation are
correct.

Employing (extended) arc-length methods in combination with
the present model, we investigated the collapsing behaviour of a
truncated conical shell and the wrinkling behaviour of a stretched
thin sheet. In case of the collapsing truncated conical shell, the
12
Ogden model was used in combination with either displacement
controlled or arc-length controlled loads on the top boundary. The
displacement controlled results show good agreement with ref-
erence results from literature. Using the arc-length method, the
previously unnoticed response of the cone during collapse was
obtained, while overlapping with the displacement controlled
results on the stable part of the equilibrium path.

We also used the present formulations to model the phe-
nomenon of wrinkling of a stretched thin sheet. To the best of the
authors’ knowledge, such simulations have only been published
for finite element methods and not with Ogden material models.
Hence, we fitted an Ogden material model based on previously
published experimental data and from the Mooney–Rivlin mate-
rial relation and applied isogeometric Kirchoff–Love shells on this
case.

The result of the wrinkling case, which was also modelled
using commercial finite element codes, show that large deviations
between commercial finite element codes are observed. The re-
sults of our model are in good agreement with the Hughes–Liu
shells (reduced and full integration) in LS-DYNA. Furthermore,
it was found that the Mooney–Rivlin model provides more ac-
curate results to the experimental results than the Ogden ma-
terial model, although their fits in the restrained tension test
are similar. Based on the variation between the results from the
Ogden and Mooney–Rivlin material models and the results ob-
tained from LS-DYNA and ANSYS, we conclude that the results for
this benchmark are sensitive to differences in element assump-
tions. This motivates the future use of this case as a challenging
benchmark problem.

As a topic for future research, we suggest to develop analytical
projection and direct decoupling [7] methods of the constitutive
equations in order to prevent numerical through-thickness in-
tegration (i.e. eigenvalue computations for all through-thickness
Gaussian points). These improvements could lead to a significant
reduction of computational times.
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