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Abstract

The automotive industry currently has been working on developing various levels of
autonomy to assist in different Advanced Driver Assistance Systems (ADAS) with the
ultimate aim of moving closer to the realization of an autonomous vehicle. For such
ADAS, the industry has been using multiple sensors like Cameras, Radar, LiDAR,
etc. LIDAR has been at the forefront of the research as it provides extremely rich and
precise information about the surrounding. In research, Motorized Optomechanical
LiDAR has been used for almost a decade now. However, it can not be deployed
in mass-produced vehicles because of how expensive the sensor is, thus, limiting it
to academia without practical use. Therefore, the industry has been working on a
different category of LIDAR namely Microelectromechanical Systems (MEMS) LiDAR.
Which uses solid-state technology instead of servo motors. Thus, they are compact
and much cheaper in cost, making them feasible to deploy in mass-produced vehicles.

There has been a considerable amount of research already done on Motorized Op-
tomechanical LiDAR, therefore, one must take advantage of it to learn about MEMS
LiDAR. The domain of Transfer Learning provides an opportunity to learn from the
accumulated knowledge of Motorized Optomechanical LiDAR (Source Domain) and
use it to reduce the learning time on MEMS LiDAR (Target Domain). Thus, reducing
the effort, cost, and time to research MEMS LiDAR technology.

This thesis explores the Domain Mapping strategy of transfer learning for point
clouds. A scanning pattern-based domain mapping approach has been described in
this thesis to reduce the domain gap between the source and target domain. More-
over, a point cloud densification pipeline that utilizes a depth completion network has
been described to further reduce the gap between the two domains. Since semantic
segmentation is one of the most actively researched tasks in the industry as it pro-
vides the researcher with in-depth information about the environment which could be
used in activities like lane detection, parking assist, etc, therefore, this thesis utilizes it
as the proxy for evaluating the performance of the domain mapping strategy. It com-
pares a few domain mapping strategies like cropping the Field of View, an adaptation
based on scanning pattern, and densification & adaptation to simulate the density of
points in the source domain similar to the target domain. This thesis verifies that do-
main mapping strategy is a suitable solution to learn from Motorized Optomechanical
LiDAR and use it to enhance performance on MEMS LiDAR and therefore reduce the
data required for research of MEMS.
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Introduction

Light Detection and Ranging (LIDAR) is one of the most favored sensors to be de-
ployed in the environment for ADAS to provide exhaustive information [74]. It is based
on the principle of Time of Flight (ToF) same as that of radar, however, the information
provided by LiDAR point cloud is much more dense and precise than a radar, hence, is
used for research and development of Advanced Driver Assistance Systems (ADAS).
However, one biggest problem concerning LIDAR is that it is an expensive sensor
with a high-end version going up to over 60,000 Euros. Thus, making it suitable for
research but not practical to be used for mass-produced vehicles.

The LiDARs which have been used for decades are called Motorized Optome-
chanical LIDAR (Shown in Figure 1.1). Which consists of a servo rotating an inclined
mirror that reflects the laser projected on it (Explained in detail in Section 2.1.2.1). To
deploy LIDAR in commercial vehicles which are feasible for mass production, the in-
dustry has been involved in research, creating new types of LIDAR which eliminate
the servo (most costly component) and rely on solid-state technology to reduce the
cost and also the moving components to make LiDAR more robust to vibrations and
other disturbances. The up-and-coming of these solid-state technologies is Microelec-
tromechanical Systems (MEMS) LiDAR. Which is also referred to as quasi-solid state
LiDAR (Shown in Figure 1.2). MEMS working principle has been described in detail
in Section 2.1.2.2.
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Figure 1.1: UltraPuck: Motorized Optomechanical LiDAR by Velodyne (Source: Velodyne Official
Website)

Since MEMS is relatively new and not much data is available from it yet, therefore
it makes it difficult to use with supervised machine learning algorithms. However, a
lot of data has already been collected using Motorized Optomechanical LIDAR and is
publicly available. Therefore, it only makes sense to try to learn the relevant knowl-
edge from the existing LIDAR and boost the research of MEMS. Every LIiDAR has a
specific pattern in which it samples the environment also called a scanning pattern,
which along with its geometric positioning, etc, determines the data distribution of the
samples it collects. Therefore, learning from a category of LIiDAR and testing on an-
other would be a challenging task as we need to take into account the difference in
data distribution between the two. We should keep in mind that machine learning al-
gorithms have an innate assumption associated with them that, the data distribution
of the training and test dataset are the same.

Figure 1.2: Hydra: Micro-electromechanical System LIiDAR by Luminar (Source: Luminar Official
Website)

Researchers have come up with multiple strategies to learn from a different domain
of data and use the gained knowledge to infer on a different domain. This strategy is
referred to as Transfer Learning (TL) [86]. The most commonly observed difference
between two data distributions is Frequency Feature Bias and Context Bias [86]. The



reason for the two is the difference in marginal probability distribution and conditional
probability distribution between the two domains respectively. Thus, making the do-
main gap reduction of two LiDARs a non-trivial task. This brings up the first research
question “How can the domain difference between the two categories of LiDAR be
reduced?”.

Transfer learning uses different solution strategies with the aim of adapting the
source to the target which generally takes place in a latent feature space. This projec-
tion of input space to latent space generally causes loss of information, therefore, it
is important to know if enough information is preserved after adaptation. This raises
the next research question “Does the density of information after adaptation stay the
same in the source dataset?”.

Since the scanning pattern determines the sampling done by the LIiDAR, it acts
as the prime contributor in deciding the data distribution of a LiDAR. Therefore, it is
an important aspect to study the reduction of domain difference between the LiDARs.
However, the scanning pattern is generally not made public by the manufacturers.
Therefore, we need to extract it ourselves. This poses the next research question
“‘How can the scanning pattern of a LiDAR be generated?”.

ADAS applications such as lane assist, parking assist, etc require comprehensive
information about the surrounding. Semantic segmentation has been used as one
of the most prevalent tasks in the industry as it provides very precise, detailed, and
dense information about ambiance by providing point-wise labels and therefore, is the
downstream task of this thesis. The performance of semantic segmentation on the
target dataset would act as the proxy to the performance of the domain mapping tech-
nique used. However, adapting the source dataset to the target dataset may cause
semantic information of the source to be lost, but is required for training the supervised
segmentation network. Thus, it poses the question “Is the semantic information lost
after adaptation?”, “If the semantic information after adaptation is lost, how can it be
generated without manual labeling?”.

Semantic segmentation for point clouds have been researched in-depth and there
are many established architectures which have proven to be very effective like Point-
Net [53], PointNet++ [54], SONet [41], PointSIFT [35], RandLA-Net [32], etc. Semantic
segmentation networks can be sub-categorized based on how the input is fed to the
network, namely, Point-based, Image-based, and Voxel-based. The details of these
categories have been mentioned in Section 2.4. Voxel-based categories are more
suitable for LiDAR-based transfer learning problems because they help reduce the
input size and make it definite. Voxelization helps reduce the computational power
required for segmentation and therefore is suitable for ADAS. Moreover, they are suit-
able for the LiDAR-based transfer learning problems as they reduce the complexity of
different input features, details of which have been provided in Section 2.4.3. Hence,
for our problem of transfer learning for LIiDAR, we deploy a voxel-based network.

In this thesis we perform multiple processing for mapping source to target dataset,
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ranging from cropping, adapting, densifying & adapting the source dataset. There-
fore, to compare the performance of such domain mapping strategies, we train mul-
tiple models and compare the best-performing strategy. Finally, providing a suitable
domain mapping strategy for our problem.

1.1. Thesis Organization
This thesis has been organized into five chapters, namely, “Introduction”, “Related
Work”, “Methodology”, “Experiments” and “Conclusion”.

+ “Chapter 2” introduces the reader to the associated background knowledge
and current work on the topic and the surrounding concepts to allow the reader
to better grasp the aspects of the thesis.

+ “Chapter 3” introduces the reader to the theoretical understanding of the con-
cepts which would be used for experimentation such as adaptation steps, depth
completion network, and semantic segmentation network.

» “Chapter 4” introduces the readers to multiple experiments conducted during
this thesis and their results and analysis.

» “Chapter 5” provides readers with the final outcome of the thesis while answer-
ing the research questions raised in “Introduction” and also provides points for
further research.



Related Work

This thesis revolves around transfer learning for point clouds with the downstream
task of semantic segmentation, therefore, in this chapter, we introduce the existing
fundamentals required to proceed with this thesis. We go into detail about LiDARs by
introducing the technical specifications of LIDARs. We also introduce the readers to
the categories of LiDARs available in the industry.

Further, we discuss some pertinent datasets used in point cloud research and pro-
vide their brief understanding. Since the major focus of this thesis is transfer learning,
therefore, we provide a detailed introduction to transfer learning and its categorization.
We will also introduce readers to the solution strategies currently developed for trans-
fer learning problems

Finally, we discuss semantic segmentation for point clouds and its categories per-
taining to point clouds.

2.1. Light Detection and Ranging (LiDAR)

Light detection and Ranging (LiDAR) is a Time of Flight (ToF) active remote sensing
technique which uses electromagnetic (EM) waves to detect a targeted object and de-
termine its distance from the sensor [46]. LIDAR generates high-resolution information
about the ambiance and has its uses in multiple fields ranging from archaeology, agri-
culture, astronomy, geology, robotics, military, and also in automotive. In automotive,
the sensor has been deployed in research of Advanced Driver Assistance Systems
(ADAS) [58].

2.1.1. Technical Specifications

LiDAR is a complex sensor constituting multiple aspects that affect its performance.
These performance governing aspects are generally dependent on some geometric
or architectural limitations. However, remains the same for different categories of Li-
DAR, therefore is important to know their significance for choosing a specific LIDAR
for an application.



2.1. Light Detection and Ranging (LiDAR) 6

Axial Resolution

The axial resolution of a LIDAR is a measure of its ability to accurately distinguish be-
tween two axially separate target points [58]. It depends on the bandwidth of informa-
tion that can be carried by the EM waves used in a particular LIDAR. Mathematically,
it is the standard deviation of multiple inputs from a target point at a fixed distance.

Scanning Field of View

Field of View (FoV) is the angular range till which a LIDAR can detect target points [58].
FoV is defined separately for horizontal referred to as azimuth and vertical referred to
as elevation. Together they determine the complete region in which the LiDAR can
detect target.

Transmitted Power

Transmitted power is defined as the energy in the EM waves used for scanning, the
transmitted power depends on wavelength, beam diameter, duration of exposure, and
pulse width [58]. More energy in EM waves allows them to travel farther and thus, pro-
vide a response from a target at a much larger distance from the sensor. However, it
is bottlenecked by the safety guidelines related to lasers to prevent harm to humans,
commonly referred to as Maximum Permissible Exposure (MPE) regulations.

Frame Rate
The frame rate of a LIiDAR is defined as the number of times it can scan the environ-
ment within a period [58].

Maximum Operating Range

Maximum Operating Range is the maximum distance a LiDAR can accurately identify
a target [58]. It depends on the transmitted power of EM waves and the receiver’s sen-
sitivity. However, there are constraints posed on the receiver and transmitted power
of laser which limits the operating range of LiDAR.

Scanning Pattern

The scanning pattern of a LIiDAR is the method in which it scans the environment [39].
It could be as simple as a uniform raster-based scheme or could be as complex as
a mathematical function. Scanning pattern is one of the major factor influencing the
point distribution within a frame of point cloud sampled by LiDAR. It depends on the
architectural scheme and working principle of the LIDAR. Scanning pattern of a Velo-
dyne VLP-16 can be seen in Figure. 2.1
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direction of flight

Figure 2.1: [39] Scan Pattern of single pass of velodyne VLP-16

2.1.2. LiDAR Categories

Many LiDARs have been conceptually created, however, only a few of them have been
made into prototypes and even fewer have been certified and used for mass data col-
lection. Some of the LiDARs are Motorized Optomechanical LIiDAR, Flash LiDAR,
Microelectromechanical Systems (MEMS) LiDAR, and Optical Phase Array (OPA) Li-
DAR. For every LIiDAR the working principle of ToF remains the same, however, is
very different architecturally. LiDAR’s categorization have been shown in Figure 2.2

Non-5canning

LiIDAR Flash

LiDAR MNon-Mechanical
Scanning

MEMS
Mechanical
Scanning Motorized

Optomechanical

OPA

Scanning LiDAR

Figure 2.2: Types of LiIDAR based on scanning mechanisms

Motorized Optomechanical LiDAR has been used for over a decade now and has
proven to be a solution to provide dense information about the surroundings. How-
ever, due to their financial overhead, they have not been able to be utilized in mass-
produced vehicles, therefore limiting their use in academia. MEMS are a breakthrough
for the LIDAR application in automotive because of the usage of solid-state technology
allowing to cut prices of LIDAR tremendously. The industry has also been research-
ing Flash LiDAR, whereas OPA is still in the conceptual phase. However, we limit our
research in this thesis to Motorized Optomechanical and MEMS LiDAR, which have
been explained below.

2.1.2.1. Motorized Optomechanical LiDAR
Motorized Optomechanical LIDAR comes under the umbrella of scanning LiDAR which
uses a servo-based rotating mechanism to scan the complete environment. Since
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the scanning is done while the sensor rotates along the axis of the servo therefore it
records complete 360° FoV along azimuth as shown in Figure 2.3. Initially, a nodding
mirror mechanism was used to allow the laser to be guided in an elevation direction
and therefore scan the environment like a raster, however, it was soon replaced by
multiple laser projectors and receiver units stacked vertically which can scan along
different elevation angles simultaneously.

© Laser return

Tilting
Mirror ~~"-=4 . 6

Azimuth
Rotation

-
-
_____

-

-

Receiver
Figure 2.3: [43] Working principle of Motorized Optomechanical LiDAR

These LiDARSs are bulky in packaging due to the rotating assembly and are quite ex-
pensive because of the mechanical components present. However, they focus power
at a particular point of FoV at an instant of time, thus making it safe in a human envi-
ronment. These sensors allow using high-powered lasers thus increasing the range
of LiDAR.

2.1.2.2. Microelectromechanical Systems (MEMS) LiDAR

Microelectromechanical Systems LiDAR are also referred to as quasi-solid state Li-
DAR because they have a small plate mirror that moves while the remaining system
is stationary. The diameter of the mirror ranges from 1mm to 7mm. MEMS uses a cas-
caded mirror configuration which is responsible for modulating, steering, controlling
the phase, etc of the beam. Commonly an array of light transmitters and a cascaded
1D mirror arrangement are used to sweep multiple vertical beams along the horizontal
FoV. The transmitted beams are reflected from the target and are collected using a
2D arrangement of Avalanche Photodiodes (APDs). MEMS uses the ToF principle to
calculate the range of a target. Since they are devoid of big mechanical-based rotat-
ing mechanisms, they are compact and cheaper, however, the alignment of mirrors is
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a challenging work that requires immense precision. The working of the MEMS can
be seen in Figure 2.4
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Figure 2.4: [80] Working principle of MEMS LiDAR

2.2. Datasets

Supervised deep learning algorithms need abundant ground-truth labeled data that
could be used to train the parameters of a deep neural network [23]. Semantic un-
derstanding of point clouds is sought-after research in ADAS applications because
it provides high-resolution attributes of the environment. There are plenty of such
datasets which are freely made available by the scientific community to be used for
research and development of new methodologies.

Point cloud datasets can be categorized on different aspects like Nature of Data,
Sequentiality of Data, Type of LIDAR Used, etc. The nature of data category is one
of the most prominent ways of choosing a dataset for an application and can be fur-
ther sub-categorized into RGB-D datasets, static point cloud datasets, synthetic point
cloud datasets, and sequential point cloud datasets. However, for our problem state-
ment, we need to pay more attention to the type of LiDAR used to collect the data,
mainly on Motorized Optomechanical and MEMS to select the candidate dataset for
the source (Motorized Optomechanical) and the target (MEMS).

2.2.1. Motorized Optomechanical Datasets
This section will introduce some of the datasets used in industry which were collected
using Motorized Optomechanical LiDAR.
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2.2.1.1. SemanticKITTI

SemanticKITTI [4] is a large-scale point cloud dataset that is one of the signature
datasets for semantic segmentation. It provides abundant data arranged in 22 se-
quences. The sequence range from 00 to 21, where the first 11 sequences i.e. 00 to
10 are provided with ground-truth labels to be used for training and validation while
the latter 11 sequences i.e. 11 to 21 are used for testing and hence the labels for
them are not made public. Researchers are required to submit the inference made
on the test sequences online to evaluate the performance of their model. The training
sequences contain a total of 23201 frames of point cloud while the testing sequences
contain a total of 20351 frames. SemanticKITTI provides an average of 104k points
per frame in both training and testing sequences.

SemanticKITTI provides point-wise labels for the Odometry sequences in KITTI
[25] suit. Each point of SemanticKITTI is labeled from a set of 28 distinct classes. The
28 classes have a variety of categories ranging from vehicles, pedestrians, road, build-
ings, and objects. SemanticKITTI provides a different number of annotated points per
class which can be seen in Figure 2.5. Moreover, the dataset also provides a voxel-
based ground truth labeling per frame for the task of scene completion.
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Figure 2.5: [4] Label distribution of points per class in SemanticKITTI dataset. Hatched bars under
the vehicle and Human categories represent moving classes, while the solid bars show non-moving
classes.

The dataset is collected using a 360° rotating Motorized Optomechanical Velodyne
LiDAR mounted on a vehicle. The sensor setup can be seen in Figure 2.6. The Hori-
zontal and Vertical Field of View (FOV) for the sensor are 360° and 26.9° respectively.
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Figure 2.6: [4] Sensor setup for KITTI

2.2.1.2. nuScenes

NuScenes [9] is a large-scale point cloud dataset collected partially in the United
States of America and partially in Singapore. It contains 1000 driving scenes each
lasting 20 seconds. The driving scenes cover a variety of road scenarios. The dataset
provides information on diverse weather conditions, traffic situations, and timings of
the day. It is captured using a range of sensors like Camera, LiDAR, Radar, etc to
provide multi-modal information.

NuScenes provide approximately 1.4 million camera images and 390k LiDAR point
cloud frames. The dataset provides ground truth for the point cloud as point-wise
labels as well as 3D bounding boxes. The bounding box ground-truth labels form a
set of 23 distinct classes also containing information about the visibility attribute of
each instance of the class. On the contrary, point-wise labels additionally contain 9
background classes and 23 foreground classes. However, it should be noted that only
40k point cloud frames are point-wise annotated.
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Figure 2.7: [9] Sensor setup for NuScenes
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Figure 2.9: [9] Ratio of distribution of points in NuScenes

There is no information available about LIDAR used to collect nuScenes except
that it is a 32-channel LiDAR and that the nature of point distribution shows that it is a
Motorized Optomechanical LiDAR.

There are many more datasets collected using Motorized Optomechanical LiDAR like
SemanticPOSS [51], A2D2 [26], Sydney Urban [18], etc the details for whom have
been summarized in Table 2.1. Amongst the mentioned datasets SemanticKITTI is
one of the most favored datasets in the domain of semantic segmentation in academia
because it originates from the KITTI suit which provides multi-modal ground-truth
and thus, allows the use of different data fusion strategies. Therefore, in this thesis,
SemanticKITTI will be used as the candidate for Motorized Optomechanical LiDAR
(Source Domain).
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2.2.2. Microelectromechanical Systems Datasets
This section will introduce some of the datasets used in industry which were collected
using MEMS LiDAR.

2.2.2.1. Cirrus

Figure 2.10: [75] Sensor setup for Cirrus

Cirrus [75] is a long-range LIiDAR dataset published by Volvo Cars. It provides 7 se-
quences with the first 4 in the Highway scenario and the latter 3 in the urban scenario.
It is collected using cameras and long-range LiDARs which have a 120° horizontal
FoV and provides point up to a range of 250m. It is one of the only few long-range
point cloud datasets available.

Cirrus is a bi-pattern dataset that provides every frame of point cloud with a uniform
scanning pattern and a Gaussian scanning pattern. The Gaussian lies in the elevation
direction and provides dense points in front of the vehicle, while a uniform scanning
pattern provides a balanced distribution of points throughout the FoV of LIDAR. The
Gaussian pattern is more useful in highway scenarios as the region of interest is di-
rectly in front of the vehicle and the surroundings can be ignored to an extent while
a uniform pattern comes in handy to analyze urban scenarios where the complete
FoV is the region of interest. The data collection setup consists of 2 Luminar 120°
horizontal-FoV MEMS LIDAR sensors, an RGB camera, GPS, and IMU sensors. The
placement of the sensors on the vehicle could be observed in the Figure 2.10.
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Figure 2.11: [75] Distribution of labels between the classes for Cirrus

Cirrus in 7 sequences provides 6,285 pairs of RGB image, LIiDAR point cloud both
in uniform and Gaussian configuration. It provides the ground truth of instances as
bounding boxes that form a set of 8 distinct classes. The label distribution among

these 8 classes can be seen in Figure 2.11. The sample frames of Cirrus can be seen
in Figure 2.12
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Figure 2.12: [75] An example LiDAR point clouds frame from Cirrus dataset with bounding boxes.
Distance is marked in white.

Since MEMS is an up-and-coming technology there are not many publicly available
datasets, Cirrus which was published in 2021 is one of a kind dataset available cur-
rently. Therefore, Cirrus is the selected candidate for the MEMS dataset (Target Do-
main), its features have been summarized in Table 2.1.
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[4] SemanticKITTI | [51] SemanticPOSS [26] A2D2
Organization Univ. of Bonn Peking Univ. Audi
Sensor Model Velo. HDL-64E Pandora x 5 Velo. HDL-64
Sensor Type Optomechanical Optomechanical Optomechanical
Horizontal FoV 360° 360° 360°
Vertical FoV 26.9° -16°to 7° -15° to 15°
Sensor Range 120m 200m 100m
Power Consumed 60W 30w 8W x5
Operating Voltage 12V - 32V 9V - 32V 9V - 18V
Laser Wavelength 903nm 905nm 903nm
LiDAR Channels 64 40 16
Horizontal Res. 0.08° 0.2° 0.1°-0.4°
Vertical Res. 0.4° 0.33° 2.0°
Frame Rate 10Hz 10Hz 10Hz
No. Of Scans 43552 2988 41277
No. Of Points 4549M 216M 1238M
No. Of Classes 28 14 38
RGB Images YES YES YES
Annotations point-wise point-wise point-wise
Sequential Yes Yes Yes
[9] nuScenes [75] Cirrus [18] Sydney Urban
Organization nuTonomy VolvoCars ACRF
Sensor Model Unknown Luminar Hydra 2 x Velo. VLP-16
Sensor Type Optomechanical MEMS Optomechanical
Horizontal FoV 360° 120° 360°
Vertical FoV -30° to 10° 30° 26.9°
Sensor Range 70m 250m 120m
Power Consumed - 55W -
Operating Voltage - oV - 32V -
Laser Wavelength - 1550m 903nm
LiDAR Channels 32 N/A 64
Horizontal Res. - 0.07° 0.08°
Vertical Res. - 0.03° 0.4°
Frame Rate 13Hz 10Hz 10Hz
No. Of Scans 40K 6258 631
No. Of Points 2780M - -
No. Of Classes 23 8 14
RGB Images YES YES NO
Annotations point-wise 3D Bounding Boxes point-wise
Sequential Yes Yes No

Table 2.1: Summary of Datasets
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2.3. Transfer Learning

Machine learning is a data-centric methodology that needs an enormous amount of
data, however, in many domains where data is limited due to difficulty in collecting
the data or limited by privacy laws like in the health sector, thus, limiting the research
of ML in such domains. Transfer learning (TL) has been under research to boost the
research in such domains and solve the problem of insufficient training data. Transfer
Learning allows the ML algorithms to learn from a domain where an abundant amount
of data is present, referred to as the source domain, and apply the learned knowledge
to a new domain where data is limited, referred to as the target domain. The working
principle of TL has been visualized in Figure 2.13

In traditional ML an innate assumption is made that the training and test data are in-
dependent and identically distributed (i.i.d), however, if the domain of training and test
are varied then the performance of the ML algorithm degrades tremendously. There-
fore, in our problem of training on Motorized Optomechanical LIDAR and testing on
MEMS LiDAR, we need to employ the TL methodology to reduce the domain gap
between the two.

SourcelDomain

"\

Learmning Task

Transfer
Learning

Knowledge
Learmning Task

\ I S
Target Domain

Figure 2.13: [64] Working principle of Transfer Learning

2.3.1. Terminology
In this section, we will describe some fundamental terminologies commonly referred
to in TL literature, therefore imperative to know before discussing TL further.

Input Space: Set of all possible inputs. For example: For an image (1 channel) with
a resolution of 800 x 600, each pixel’s intensity can range from 0-255, thus the input
space would be (800 x 600)%*°. However, only a very few of the instances in input
space would make sensible data representing an actual physical entity.

Feature Space (X'): Space of features used to describe the dataset.

Domain (D): A domain D is defined by two parts (Figure 2.14), a feature space X
and a marginal probability distribution P(X), where X =x; ,. . ., x, € X.
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Domain (D)

:
| Feature Space (x) | | Marginal Probability (P(X)) |
Figure 2.14: Constituents of a domain: X=x;,.. ., x, € X ; Where X is an instance and x; are the

features

Constituents of a task (7): For a given domain D, a task 7T is defined by two parts
(Figure 2.15), a label space ), and a predictive function f(-), which is learned from the
feature vector and label pairs x;, y; where x; € Xand y; € ).

! }

‘ Lable space (y) ‘ ‘ Predictive Function (f(.)) ‘

Figure 2.15: Task for a given domain D

2.3.2. Formal Definition of Transfer Learning
After having defined the terminology, we can now proceed to give a formal definition
of Transfer Learning with mathematical notations.

Transfer Learning [76]: Given a source domain Dg with a corresponding source
task 75 and a target domain D with a corresponding task 7 , transfer learning is the
process of improving the target predictive function fr(-) by using the related information
from Dg and Tg, where Dg # Dy or Tg # Tr .

2.3.3. Categorization of Transfer Learning

Researchers have categorized TL on different aspects, however, we would focus on
the most widely used categorization i.e. problem-based and solution based which can
be seen in Figure 2.16
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Figure 2.16: [86] Transfer Learning Categorization

One of the most common categorizations is based on the availability of the labels
in the source and target domains. However, in literature, we find inconsistency and
ambiguity while defining the category of TL based on the availability of labels, Cook
and Feuz [15] coined terms like informed and uninformed TL based on label avail-
ability, while in an exhaustive survey by Pan and Yang [50] they described the label
based categorization simply as transductive TL if source domain is the sole contributor
for the label information, inductive TL if the label information for the target domain in-
stance is available and finally, unsupervised TL if label information for both the source
and target domain is unavailable. This leads to ambiguity in information use, more-
over, there is also inconsistency in the use of terms like supervised, semi-supervised
and unsupervised TL based on the availability of label information like Daume [17]
and Chattopadhyay [10] mentions that if the source domain is labeled completely and
target label has limited or none labels then it is supervised and semi-supervised TL re-
spectively, while Gong [27] and Blitzed [6] mention that if the source domain is labeled
completely and target domain has limited or none labels then it is semi-supervised and
unsupervised TL respectively. Therefore, for studying transfer learning it is always ad-
visable to explicitly mention the conditions of label availability.

Another important categorization and very often seen in the literature is based
on the consistency between the source’s and target’s feature space and label space
namely Homogeneous TL and Heterogeneous TL.

Homogeneous Transfer Learning: Xs = Xr and Vg = Vr

Heterogeneous Transfer Learning: X5 # A or/and YVs # YVr

Where, X5 & X are the feature space of source and target domain respectively,
and Vs & YVr are the label space of source and target domain.

The remedy to problems posed by TL has also been categorized in the literature
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as shown in Figure 2.16. Instance-based transfer learning approaches are mainly
based on weighing the instances to cater to the probability discrepancies. Feature-
based approaches work by creating new representations from the original features
of the data; they can be further divided into two subcategories, that is, asymmetric
and symmetric feature-based transfer learning. Asymmetric approaches transform
the source features to match the target ones or the target to match the source ones.
While symmetric approaches attempt to find a common latent feature space and then
transform both the source and the target features into a new feature representation.
The parameter-based transfer learning approach works on the use and re-use of the
model’s parameters generally by sharing them for both the source and target domain.
Relational-based transfer learning approaches as the name suggests works on pre-
defined relation between the domains i.e. they follow certain rules/guidelines learned
from the source.

Transfer Learning for point clouds is especially challenging because of abundant
parameters to study like scene, sensor, sensor location, etc. Each point in the cloud
frame is a feature and since every frame has a different number of return points, we
can conclude that the feature space for point clouds are not the same (X5 # Xr) thus
making it a Heterogeneous TL problem. [56][79] [1]

Heterogeneous TL problems have been solved by the researchers using a feature-
based solution strategy, which in literature has been generally referred to as using
the “Domain Adaptation (DA)” approach. There are multiple ways of categorizing DA
methodologies for point clouds which can be seen in Figure 2.17, First, Input-based
which contains directly feeding the 3D point clouds to a network [38][53][54] and con-
verting the 3D point clouds to other representation [1] [16] [84] [77].
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Figure 2.17: Various ways of categorizing Domain Adaptation for point cloud

The second way of categorizing DA for point cloud could be Class-based i.e. based
on classes of the source and target domains, and the classes considered during the
training. The Class-based DA can be further sub-categorized into Closed Set, Partial,
Open Set, Open-Partial, and Boundless which can be seen in Figure 2.18. Most
papers in the literature focus on Closed Set DA, where all classes are present in both
the source and target domains. Partial DA is where a subset of the classes from the
source domain is present in the target domain. Open Set DA is vice versa of the Partial
DA. If both source and target set has some common and some unique classes, it is
called Open-Partial DA. Boundless DA can be considered as Open Set DA in which
all target classes are learned separately.
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Figure 2.18: [69] Domain Adaptation categorization

Lastly, DA for point cloud could also be categorized as Feature-based. There are
many Feature-based strategies followed in literature for DA, for example, Domain In-
variant Data Representation, Domain Mapping, Domain Invariant Feature Learning,
and Normalization Statistics. Among these strategies Domain Invariant Data Rep-
resentation and Domain mapping are the most popular and highly employed by re-
searchers.

Domain Invariant Data Representation [70]: It can be defined as a method of
developing a hand-crafted approach to move the different domains into a common
representation. The pipeline for it can be seen in Figure 2.19
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Figure 2.19: [70] Domain Invariant Data Representation

This approach utilizes the information from the source and target domain simul-
taneously, to come up with this common representation. However, it fails short to
perform when we have no or very less information about the target domain. For such
scenarios, the Domain Mapping approach comes in handy where very less informa-
tion from the target domain is required. The methodology used may or may not require
the label information of the target domain.

Domain Mapping [70]: In this approach the labeled source data is adapted to look
like target data, thus, creating a pseudo-labeled target data. The pipeline for it can be
seen in Figure 2.20
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Figure 2.20: [70] Domain Mapping

Since, we chose the space-setting-based categorization of TL which uses feature
space as the categorization factor to define our problem as Heterogeneous TL, there-
fore, to maintain consistency we choose feature-based solution strategy categoriza-
tion to finalize the solution strategy for our scenario. When we speak about MEMS
LiDAR, they are still under development and very few public datasets are available.
Thus, not much data has been collected, therefore, Domain Mapping is the best-suited
DA approach.

Domain Mapping has been under research for quite some time now but has been
focused on images that are done adversarially and at pixel-level in the form of image-
to-image translation with conditional GANs [59] [14]. For point clouds, not many ad-
versarial networks are present which can map the domain from source to target in 3D.
Moreover, most point cloud domain mapping is done by employing unmodified image
GANSs, and using top-view LIDAR images to translate the point cloud from one domain
to another [60] [61] [62]. The problem with such an approach is the inability to modify
the domain in the sensor perspective or the input space directly. This approach works
fine for the domain mapping for Motorized Optomechanical LiDAR where the differ-
ence in sensor perspective is just the sampling channels, however, when a domain
mapping between a Motorized optomechanical and a MEMS LiDAR has to be done,
this strategy fails as in this scenario sampling pattern in sensor perspective is very
different from each other. Therefore, a sensor perspective-based domain mapping is
required.

Some methods employed in literature which adhere to sensor view DA methodolo-
gies are catered to solve the cross-sensor adaptation problem but only through up-
sampling [71][63] or down-sampling [1] the channels in the elevation direction, since,
the sensors used in publications are all Motorized Optomechanical LiDARs, they only
differ in the number of elevation channels and not much in the sampling rate along
the azimuth. Motorized Optomechanical and MEMS LiDAR differ not only in sampling
along the elevation but may vary drastically along the azimuth. For MEMS since the
sampling rate may vary across different sections of the sensor perspective depend-
ing on the scanning pattern, therefore employing a simple CNN-based interpolating
architecture would not be sufficient, therefore, in this thesis, we aim to solve such
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adaptation problems in sensor perspective along the varying elevation and azimuth
simultaneously.

2.4. Semantic Segmentation

Semantic segmentation has been researched for more than a decade. It has been re-
searched extensively in domain of images for which there are abundant public datasets
available like PascalvVOC2012 [22], BSDS300 [48], BSDS500 [2], etc. The broad clas-
sification for semantic segmentation methods could be distinguished into Traditional
Methods and Deep Learning Methods.

Semantic segmentation traditionally was treated as a clustering problem in the
input feature space of the data. The general methodology uses predefined feature
extractors to gather relevant information in the input data, these features are finally
labeled using simple classifiers like Support Vector Machine(SVM) [30] or Random
Forest (RF) [8]. The performance of these traditional methods quickly degrades with
the increasing complexity of input data. Since point clouds pose much more complex
decision-making than images, therefore it becomes next to impossible to design such
feature extractors. The boom in deep learning provided the much-needed simplifica-
tion in semantic segmentation of point clouds and therefore, soon deep learning-based
methods were popularized.

Deep learning methods use deep neural networks with multiple hidden layers and
multi-million learnable parameters to extract relevant features from the point cloud
data. However, in most cases, it is not possible to know which feature is being ex-
tracted by the network or is more relevant for the task. Therefore, it acts as a black
box. Semantic segmentation is at the forefront of the research in point clouds be-
cause of its ability to provide exhaustive information about the environment to the user.
Researchers have categorized semantic segmentation in the domain of point cloud
broadly into three categories, namely, Point-based methods, Image-based methods,
and Voxel-based methods. These methods have been described in further detail in
the upcoming sections.

2.4.1. Point-Based Methods

Point-based methods are very versatile techniques allowing the network to take an
unstructured point cloud having different points per frame as input and output point-
wise labels for the cloud. There has been a lot of research done on this methodology,
to name a few examples PointNet [53], PointNet++ [54], PointSIFT [35], SO-Net [41],
RandLA-Net [32], etc.

PointNet is the prime example of this category. It has been structured to accept
unordered point cloud data as input and output semantic labels for each point. Its ar-
chitecture can be subdivided into three modules. The first module helps to extract the
global feature vector with the help of multi-layer perceptrons comprising max-pooling
layers. The second module merges the local and global information by feeding the
extracted global features to the network. Lastly, the third module is a joint alignment
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network which helps the architecture become invariant to basic point cloud transfor-
mations.

PointNet++ is an updated version of PointNet that aims to extract the local con-
textual features by applying PointNet recursively on a nested partitioning of the input
points. The partitioning is created as neighborhood balls in Euclidean space and is pa-
rameterized by its centroid location and scale. The methodology works by processing
the data sequentially within three abstraction layers. First, is the Sampling layer which
samples the centroid in the Euclidean space using Farthest Point Sampling (FPS) al-
gorithm. These centroid and scale describe the points in the local vicinity which are
grouped by the next layer i.e. Grouping layer. Finally, these local environments are
sent to the PointNet layer to extract the local features.

In some of the further networks, the concept remains the same as that of Point-
Net++ however, they employ different local environment generators like PointSIFT
[35]. Some network adds to the concept of PointNet++ by adopting different sampling
approach. SO-Net [41] initially models a point distribution by making a Self Organizing
Map (SOM) of input. It performs a hierarchical based feature extraction of individual
points and SOM nodes. Finally, it replaces the input points with single feature vectors.
To reduce the computation models like RandLA-Net [32] use random sampling to re-
duce the computational overhead.

Researchers also proposed convolution-based architectures similar to that used
in 2D convolutions in images to make unstructured point clouds be used in a struc-
tured fashion like PointCNN [42] which uses an X-Conv 3D convolution. A-CNN [37]
proposes angular convolution, and KP-Conv [68], ShellNet [83], Tangent Convolution
[66], PVCNN [45] are some of more examples of the convolution based architectures.

2.4.2. Image-Based Methods

Image-based methods change the representation of the 3D point cloud to an image.
The images from the point cloud are fed to a neural network like U-Net [57]. The
Image-based methods can be further sub-categorized into Multi-view Segmentation
and Range Image Segmentation.

Multi-view Segmentation takes images generated by projecting the point cloud into
the image plane from multiple perspectives. One of such networks proposed by Lawin
et al. [40] considers images generated from a virtual camera rotated along a vertical
axis fed to a fully convolutional network-based architecture to learn the information
about the point cloud. Another example could be the network suggested by Boulch
et al. [7] which divides the point cloud into a grid and generates images along each
grid using a virtual camera. In these methods, the position of the virtual camera is
particularly important for performance.

Range Image Segmentation strategies work by projecting the point cloud onto a
spherical surface giving a 2D projection. These methods are sometimes pre-trained
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on image segmentation datasets like PascalVOC2012 and are fine-tuned on the point
cloud image data. Some of the examples of this method are SqueezeSeg [77] which
is an end-to-end deep learning method that outputs point-wise labels. Researchers
further developed this method architecturally to improve performance giving Squeeze-
Seg V2 [78], and also some other architectures like RangeNet++ [49] which uses spa-
cial constants for retaining local affinities while predictions.

2.4.3. Voxel-Based Methods

Voxel-based methods have also been under research for a long time. It functions by
discretizing the space into 3D voxels allowing a fixed-size input to be fed to the seg-
mentation network. This methodology has a variety of pros like providing structure to
the unstructured point cloud, reducing the input feature space tremendously, relatively
requirement of less computational power in comparison to point-based methods, etc.
However, it also has cons like introducing discretization error, the sensitivity of voxel
size to capturing contours of geometry, etc. There are variety of Voxel-based segmen-
tation networks like SEGCloud [67], PCSCNet [52], the ones provided by Huang et al.
[34] and by Diaz-Medina et al. [19].

Point-based methodology has been under development for years and has provided
appreciable results for semantic segmentation for point clouds, however, it is not suit-
able for our case of transfer learning problem because, since the number of features
for each frame is different, thus it will cause the problem to fall under Heterogeneous
TL problem which as mentioned in Section 2.3, is a complex problem to solve. More-
over, these networks are computationally heavy and thus their use in ADAS systems
is challenging.

Image projection causes loss of 3D information due to discretization. Image-based
networks can be used for our problem but voxel-based networks are a better candi-
date for our case because they retain the 3D information similar to that of point-based
networks while making the decision.

The use Voxel-based method is highly dependent on the environment of deployment.
In our case of TL, it suits better than other methods since it provides structure to
point cloud and converts the feature space into fixed size, thus, making it into a prob-
lem of Homogeneous TL. Moreover, the discretization loss has been compensated
by deploying an MLP based parallel pipeline for refinement of semantic labels after
voxel-based predictions on the point cloud as shown in multiple architecture [52] [85]
[56]

2.5. Contribution

In this thesis, we propose a strategy for Domain Adaptation based on a sub-sampling
strategy in input feature space i.e. sensor’s perspective. The strategy uses a scanning
pattern for the target dataset’s LIDAR, therefore, we also propose a strategy to extract
a plausible scanning pattern for any LIiDAR. The proposed strategy can be utilized to
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reduce the domain gap between LIiDAR datasets collected using different categories
of LiDARs.



Methodology

In this chapter, we explain the domain mapping technique used to map the source
dataset i.e. SemanticKITTI to the target dataset i.e Cirrus, and the semantic segmen-
tation approach which was undertaken to generate point-wise labels.

First, we start with adapting the SemanticKITTI using a scanning pattern adapta-
tion methodology mentioned in Section 3.1. The adaptation technique is based on the
sampling of the point from the source dataset using the scanning pattern of the target
dataset. However, since the scanning pattern is generally a piece of confidential infor-
mation that is not made public by the manufacturers of the LIDAR. Therefore, we start
by generating a plausible scanning pattern of the target dataset using camera pinhole
modeling as shown in Section 3.1.1. Once a plausible scanning pattern is created we
use it to sample the points from the source data and thus, convert it to a pseudo target
dataset.

The sampling strategy used causes a huge data loss only leaving a fraction of the
points of the source dataset. We are using a supervised machine learning algorithm
to generate semantic labels for the point cloud, which generally are data-hungry al-
gorithms. Thus, this reduction in information is detrimental for training. Therefore,
we utilize a point cloud densification pipeline to densify the point cloud of the source
dataset and then adapt it to the target dataset using the same adaptation methodology.
The pipeline for densification has been described in Section 3.2. The densification
methodology is based on a depth completion network that inputs a sparse depth map
along with an RGB image and outputs a dense depth map. The source dataset is pro-
jected into a depth map which is sparse in nature due to the sensor’s resolution which
in our case is LIDAR. This sparse image is fed to the depth completion network which
outputs a dense depth map for the source dataset. And, finally, this dense depth map
is reprojected to the point cloud and adapted to the target dataset.

In this thesis, the downstream task is chosen as semantic segmentation as it pro-
vides very rich information about the environment by providing point-wise labels for the
point cloud. We choose a state-of-the-art voxel-based network, whose novel feature
is cylindrical voxels instead of cubical voxels to account for the increasing sparsity of

28
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the point cloud with distance. The cylindrical voxel’s size increase radially therefore,
as the sparsity of the point cloud increases with distance so does the voxel volume,
thus, creating a much more uniform distribution of points per voxel. The details of the
model are described in Section 3.3

We train four semantic segmentation models with different data pre-processing
done oninputs i.e. Domain Mapping strategy. First, Baseline SemanticKITTl is trained
on the unaltered original SemanticKITTI dataset. Second, Cropped SemantickITTI is
trained on cropped SemanticKITTIl whose field of view is made similar to that of Cirrus
(target dataset). Third, Adapted SemanticKITTI is trained on SemanticKITTI that has
been adapted to Cirrus using the scanning pattern sampling strategy. Lastly, Densi-
fied Adapted SemanticKITTl is trained on SemanticKITTI that has been first densified
using the depth completion methodology pipeline and then is also adapted to the Cir-
rus using the same scanning pattern sampling strategy.

The upcoming sections would go into detail about adaptation, densification, and
the semantic segmentation process.

3.1. Adaptation

The adaptation methodology proposed in this thesis which is shown in Figure 3.1 re-
quires knowledge of scanning pattern of the target. Thus, we first start with generation
of scanning pattern for Cirrus.

3.1.1. Scanning Pattern Extraction

Cirrus dataset has been collected using two Luminar Hydra sensors one in Uniform
configuration and the other in Gaussian configuration. Luminar Hydra is MEMS LiDAR
and there is no documentation available for its scanning pattern. Therefore, we try to
obtain the scanning pattern from the Cirrus data itself.

We assume a pinhole camera model to project a frame of point cloud in cartesian
coordinates (X,Y,Z) to an image plane (U,V) using Equation 3.1. Here the extrinsic
transformation matrix has been considered as identity. For the intrinsic matrix param-
eters, we use the camera calibration matrix provided in the documentation of the Se-
maticKITTIl. SemanticKITTI provides different calibration matrix like, PO and P1 which
denote rectified calibration (Cartesian to image) for left and right camera respectively.
We use PO matrix for transforming the point cloud to image. The projected points are
then translated from pixel coordinates to radians using the FoV information of the Cir-
rus.

(3.1)
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v = ? (3.3)
Je P Co
K=10 f, ¢ (3.4)
0 0 1
E = [R t] (3.5)

Where, K = Intrinsic Transformation matrix ; E = Extrinsic Transformation matrix ; s
= scaling factor ; u, v = Pixel coordinate ; X,Y,Z = Cartesian coordinate ; f,, f, = Focal
length in pixel units ; c,, ¢, = Projected optical centers ; p = Skewness ; R = Rotation
matrix ; t = Translation vector

3.1.2. SemanticKITTI Adaptation

In section 3.1.1 we generated an estimated scanning pattern for the Luminar Hydra;
in this section, we attempt to adapt the data of the SemanticKITTI to that of the Cir-
rus (Luminar Hydra’s scanning pattern). The reason to adapt the SemanticKITTI to
Cirrus is so that the data distribution for the SematicKITTI resembles that of the Cirrus.

Superimpese the images of

Project the scan pattern into Project the point cloud frame and SemantickITTI point cloud and Scan
Load a frame of point cloud cartesian coordinate taking the the scan pattern point cloud into an pattern point cloud. Remove the
(SemanticKITTI) and Cirrus scan radius as the distance of the image using the calibration points from the SemantickITTI point
pattern generated in previous step farthest point in the point cloud parameters provided along the cloud which do not populate the
frame KITTI dataset. same pixels in the image as that of

the scan pattern.

For pixels poopulated in scan

Save the obtained point cloud pattern image and not in For points projected into same

fame o e tered e fnoire Pt keep e pln wth et
Adapted SemantickITTI henceforth) " 5P - - 5
SemanticKITTI image by using a point to be occluded.

dialation mask of 2x2

Figure 3.1: Adaptation process pipeline

The proposed adaptation based on scanning patterns has multiple steps as shown
in the flowchart above. The adaptation takes place for every frame individually. First,
the scanning pattern is projected into cartesian space taking the distance of the far-
thest point of the frame of SemanticKITTI as the radius. Since we have the scanning
pattern in the angular coordinates, we can use the azimuth angle, elevation angle,
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and radius to generate the point cloud. The second step is to project the scanning
pattern point cloud and the frame point cloud into an image plane of the left camera
of the KITTI setup. KITTI provides the calibration matrix from Velodyne to camera co-
ordinate and camera coordinate to image coordinate. A simple matrix multiplication
using the parameters provided in the calibration file projects the Velodyne point cloud
to the camera image plane. The image plane is discretized into 1216 x 352 pixels.

There are cases when multiple points populate the same pixels when projected,
however, we choose the nearest point (depth-wise in the forward direction) assuming
the farther point gets occluded and assuming one response from one ray of a laser.
The two images i.e of scanning pattern projection and SemanticKITTI projection are
superimposed and a mask is generated from the scanning pattern projection and is
used to obtain the points from the SemanticKITTI projection i.e. the points in the pixel
are retained if the same pixel is also populated in the scanning pattern projection im-
age.

There can also be cases when the pixels are populated in the scanning pattern
projection image but are empty in the SemanticKITTI projection image. In such a
case we create a dilation mask retaining the points which populate the neighborhood
of the same pixel in the SemanticKITTI projection image. This methodology can also
be used to adapt the dataset to any scanning pattern.

3.2. Point Cloud Densification

In this thesis, we use an Image-based depth completion strategy for LIDAR point cloud
densification. Depth completion methods take sparse depth maps as inputs and pre-
dict dense depth maps as output. There are myriad applications of depth completion
in various computer vision applications, autonomous diving applications, and 3D re-
construction for map generation in robotics.

LiDAR, a ranging sensor that generates a highly dense, rich, and informative
modality knowledge of the outdoor environment falls short in providing a dense depth
image when projected into an image plane. Therefore, a deep learning-based ap-
proach has been employed by researchers to generate a dense depth image of the sur-
rounding from a sparse depth image using just sparse depth map information [72][21].
There has been involvement of data fusion strategies using multi-modal information
like RGB images to enhance the depth completion networks [33][55][44][12]. The
use of multi-modal information especially RGB images has been paving the way for
research because it allows extracting different information cues, thus, making the net-
works much more reliant and robust.

The architecture of the network used for depth completion for point cloud densifi-
cation is shown in Figure 3.2



3.2. Point Cloud Densification 32

Color-dominant Branch Legend
[ ) ’ Comv.
Color Image ‘ CD Confidence ) ReBlo
e | J DeComv:
. . L. -' ‘(\ ’4\ ’('\ @D@ Addition
Sparse Depth (5 J (4) a b ch CD- Deprh i
[

Fused Depth

CD DElJTh DD-Confidence

4) (5)

—

Sp arse Depth DD-Depth

Refined Depth

Depth-dommnant Branch

Figure 3.2: [31] Depth completion network architecture

The network shown in Figure 3.2 is structured into two components two-branch
backbone and a refinement module. The output depth from the backbone network
does not preserve the accurate depth values therefore a refinement module is used
which makes the prediction more accurate, efficient, and effective.

3.2.1. Architecture

The network consists of two branches namely the color-dominant branch and the
depth-dominant branch. Both of the branches are similar in structure following an
encoder-decoder scheme.

3.2.1.1. Backbone Network
The components of the backbone network would be explained in detail in this section.

Color-dominant (CD) Branch

The branch takes a color image and sparse depth map as input and predicts a dense
depth map as output. This branch has an encoder-decoder scheme with skip con-
nections. The encoder is structured with a convolution layer and 5 residual blocks
[29] and the decoder is structured with 5 deconvolution layers and 1 convolution layer.
The convolution layers are accompanied by a batch normalization layer and a ReLU
non-linearity function. The branch aims to extract color-dominant cues which allow the
dense depth map to remain confident along the boundaries of the objects. However,
the predictions could be sensitive to color or texture change.

Depth-dominant (DD) Branch

The architecture of this branch is the same as the CD branch but the features of the
decoder of the CD branch are concatenated with the features of the encoder of this
branch, however, the input for this branch is the sparse depth map and the dense
depth map output of the CD branch. This branch predicts the information cues for
dense depth maps which are overall reliable but lacks confidence at the boundary of
an object.
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Depth Map Fusion

The depth map predicted from the color-dominant branch is reliable at the edges of
the objects while the ones from the depth-dominant branch are reliable overall except
at edges of objects. Therefore, they both compensate for each other’s shortcomings,
thereby, creating a much more accurate depth map. The fusion of the two depth maps
is done using the confidence map of each branch’s prediction as has been mentioned
in FusionNet [73]. The mathematical formula used for fusion can be seen in Equation
3.6

eccd(uvv) . bcd(“; U) + eCdd(uvv) . -Ddd(u7 /U)
eCcd(u,v) + eCdd(u,v)

ﬁf(u,v) = (3.6)
where, (u,v) are the pixel indexes, D; is the fused depth map, D., and D, are the
depth map from color-dominant and depth-dominant branch respectively.

Geometric Convolution Layer

3D geometric clues enhance the performance of the depth completion network, there-
fore, the network introduces geometric convolutions to encode the information of the
3D geometry. The geometric layer differs from traditional convolutions by concatenat-
ing the 3D position to the traditional convolution input tensor. The visual representation
of the geometric layer can be seen in Figure 3.3.

Conv.

(a) Traditional convolutional layer

c z X=REE ovs o3 IS
w / W, W
b b | "
Conv.
e NN ”

Concatenation

(b) Geometric convolutional layer
Figure 3.3: [31] Comparison of traditional and geometric convolutional layer

The concatenated layers contains (X, Y, Z) which are the position encoding de-
fined in Equation 3.7 - Equation 3.9

Z=D (3.7)
x = = m)Z _fUO)Z (3.8)
Y — M (3.9)
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Where, D is the depth value, (u,v) is the pixel coordinates and v, vy, f, and f,
are the camera’s intrinsic parameters.

3.2.1.2. Refinement Module: Dilated and Accelerated Convolutional Spatial Prop-
agation Network (DA-CSPN++)

The prediction made by the backbone architecture does not maintain the input depth
values at corresponding valid pixels. Therefore, a refinement module CSPN++ [13]
was utilized to provide depth values at valid pixel indexes. The network utilizes a much
more efficient version of CSPN++, by performing some modifications to the traditional
CSPN++. It uses a dilation strategy to increase the propagation neighborhood and
uses a parallel approach for the propagation of values from neighborhood pixels.

Mathematically, if D° is the depth map initially at step zero also referred to as
the coarse depth map, then, the refinement done by the module outputs D! after ¢
iterations which is referred to as refined depth map as can be seen in Equation 3.10.

DY = WD)+ Y WD) (3.10)
JEN (i)

Where, D' is coarse depth map; D! is depth map at iteration ¢; i and j are the pixel
indexes; N (i) is the neighborhood of pixel i and 1V;; is the affinity between the pixels
iand j.

3.2.2. Loss Function
The network uses ¢, loss for training which has been defined mathematically in Equa-
tion 3.11.

~

L(D) = [|(D = Dg) © 1(Dyz > 0)|? (3.11)

Where, f), D, are the predicted and ground truth depth map respectively, 1 is the
indicator function, and ® point-wise product. Since the ground-truth depth map has
pixels with depth values and pixels without depth values, however, learning is done
only on the pixels with depth values other pixels are ignored.

L = L(D) + MeaLl(Deq) + Mgl (Dag) (3.12)

To supervise the CD and DD branches individually the network uses the loss func-
tion mentioned in Equation 3.12 for initial training. The \.; and \y4; are the hyperpa-
rameters that govern the learning emphasis of the CD and DD branches respectively.

3.2.3. Training

3.2.3.1. Dataset Used
The network is trained of KITTI depth completion [72] dataset provided by KITTI suit
[24]. The depth completion dataset provides RGB images and sparse depth maps
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which are created by projecting the 3D point cloud collected by Velodyne HDL-64E into
an image plane. The RGB images provided are of 1216 x 352 resolution along width and
height respectively. The analysis of sparse depth maps shows that it consists of 5%
pixels with depth information, while the ground-truth consists of 16% such pixels [72].
The sample frames for KITTI depth with their RGB image, sparse depth projection,
and ground truth can be seen in Figure 3.5.

3.2.3.2. Multi-stage Training [31]

A multi-stage approach was used to train the backbone, DA-SCPN++, and the com-
plete model in increments, the sequence of which could be seen in Figure 3.4. The
training is commenced with training the backbone network during which the learning
rate of 0.001 was used, and a weight decay of 3, : and 5 at epochs 10, 15, and 25
respectively. The backbone is trained for an in-total of 30 epochs During this training,
the loss function mentioned in Equation 3.12 is used to guide the learning of the CD
and DD branches of the backbone. The hyperparameters \.; and \;; were set to 0.2
for initial epochs.
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Figure 3.4: [31] Training architecture in multiple stages, first, only backbone is trained, second, only
refinement module is trained and lastly, complete architecture is trained together
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In the second stage of the training, the refinement module is trained, for which the
weights of the backbone are frozen and the optimization of DA-CSPN++ parameters
is done for two epochs at a learning rate of 0.001.

Lastly, the third stage of training optimizes the complete network all together. How-
ever, the initial learning rates for the backbone and refinement module is set to 0.02
and 0.002 respectively. A weight decay of 1, 1, &, %, and & was used at 10, 20, 30,
40, and 50 epoch respectively and the training was done for 75 epochs.

The hyperparameters used for all stages of training have been summarised in
Table 3.1
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Training Stage | Parameters Optimized | \.; | \;; | Batch Size | Optimizer
First Backbone Network 0.2 0.2 6 Adam
Second Refinement Module 0 0 6 Adam
Third Backbone + Refinement | 0 0 6 Adam
Training Stage | Learning Rate | Epoch Decay Factor::

Epoch Scheme

First 0.001 30 % % %)::(10,15,25)
Second 0.001 2 -
Third 0.002, 0.02 75 % % % % %)::(10,20,30,40,50)

Table 3.1: Hyperparameter summary for depth completion network

Figure 3.5: Example of KITTI depth dataset, 1) RGB Image 2) Sparse Depth map 3) Ground Truth

3.2.4. Evaluation [31]

The model’'s performance as mentioned by researchers [31] outperforms all of the ex-
isting state-of-the-art depth completion networks based on the Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) metric. The model shows an improve-
ment of 6.16mm and 8.28mm in RMSE and MAE over the GuideNet [65] which was
the best performing network on KITTI depth previously. The network’s runtime was
also expedited by using the dilated and accelerated model of CSPN++, thus, making
it outperform most state-of-the-art networks.

3.3. Semantic segmentation
This section explains the semantic segmentation procedure. It explains the datasets
used in detail, model architecture, loss functions, and label mapping strategy to map
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source labels to target labels.

3.3.1. Datasets

In our scenario, we need an abundant amount of point-wise labeled LiDAR data frames
to train the semantic segmentation network. Generation of point-wise annotations is a
time-consuming task and requires a significant amount of human effort and monetary
support. Therefore, to reduce such effort we aim to find a way to use the data which
has already been annotated and use its information to annotate the new data. Many
domain mapping strategies have been researched to reduce the distance between
the available and target dataset. In the upcoming sections, we will discuss the details
of the source dataset and the target dataset.

3.3.1.1. Cirrus: Target Dataset

Cirrus [75] is a long-range LIiDAR dataset that is chosen as the target domain for our
experiments for the downstream task of semantic segmentation. We discussed Cir-
rus in Section 2.2.2.1, Figure 3.6 shows a bird-eye view polar plot of a single frame of
cirrus dataset.

We aim to predict the point-wise labels of the dataset by learning from the source
dataset. Cirrus contains sequences that comprise almost 60% of highway scenarios
in the south of Germany. It contains seven sequences of which the first four are col-
lected on highways whereas the latter three are collected in an urban scenario. In
our experiments, we use Gaussian data frames as they provide denser distribution of
points associated with objects in front of the vehicle. We can see the frames of the
Cirrus dataset on the highway and urban scenarios in Figure 3.7. Table 3.2 describes
the classes of cirrus dataset annotations (Bounding boxes). The visualization of data
distribution of cirrus frames along the different axis can be seen in Figure 3.8.

Cirrus provides ground-truth labels as bounding boxes, therefore, we provide the
points inside the bounding boxes with the same label as that of the bounding box it
lies. After a model predicts semantic labels of points in a frame of cirrus we can only
evaluate the points inside the bounding box. Therefore, limiting the evaluation to only
a fraction of points of a frame.
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(a) Cirrus (b) SeamnticKITTI

Figure 3.6: Bird-eye view of Cirrus and SemanticKITTI dataset

(a) Highway (b) Urban

Figure 3.7: Cirrus highway and urban scenario
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Figure 3.8: Data distribution of Cirrus along different axis

Label Class Description
vehicle Consists of different types of cars on the road
large-vehicle Consists of SUVs, jeeps, trucks, buses and vehicles with
continuous body
trailer Vehicles that has separated front and back. The two parts
of the body are connected via movable joint
pedestrian People on foot
bicycle Bicycles
animal All types of animals in the scene

wheeled-pedestrian | Riders on bicycles or motorcycle

motorcycle Motorcycles and scooters
unknown Random objects of the road that can be considered as ob-
stacles

Table 3.2: Cirrus label (Bounding Boxes) details
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3.3.1.2. SemanticKITTI: Source Dataset

As we discussed in Section 2.2.1.1, SemanticKITTI [4] is a sequential LIDAR dataset
with 360° horizontal FoV. The dataset has been collected on a highway, approximately
30%, and an urban environment. The dataset consists of point-wise annotated frames
with 28 classes. Table 3.3 defines the category of labels for semanticKITTI, moreover,
other-structures, other-objects, and other-vehicle classes are the fallback classes for
their subsequent main category. Labels such as vehicular and pedestrians are further
sub-classified into moving and non-moving classes. Points that appear due to reflec-
tion and other inconsistencies are labeled as “outliers”.

The dataset contains labels for training sequences (00 to 10) which are available
under creative common license and hence can be used for our research. It also con-
tains test sequences (11 to 21) for which the labels are not publicly available but the
evaluation could be done online via benchmark setup available on CodaLab Compe-
tition'. Figure 3.9 shows a few frames from different sequences along with their color
mapping. We can see the point distribution of SemanticKITTI along the different axes
in Figure 3.10.

outlier motorcy Person Vegetati Lane-
cle on marking

Car Parking Bicycle Bus Building Sidewalk Terrain Traffic- pole
sign

Figure 3.9: Example of SemanticKITTI dataset

"https://competitions.codalab.org/competitions/20331
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Figure 3.10: Data distribution of original SemanticKITTI along different axis
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Label Class Description
road All the driveable area of a scene
sidewalk Area that is reserved for pedestrians and bicycles. Cars are not
allowed in this area
parking Road area that is explicitly reserved for parking

other-ground

Includes ground area that is not identified as either of the road,
sidewalk or parking. For example, paved path of a gas station

building

Whole building and its components

other-structure

Includes other vertical structures that include tunnel walls, bridge
posts etc

car Cars, SUVs, jeeps and continuous body shape vans
truck Trucks and vans with separated body
bicycle Bicycles without the rider
motorcycle Motorcycle, rider is not included

other-vehicle

Trailers, caravans, fallback types of vehicles or any type of vehi-
cle that is not defined in other categories

vegetation Bushes, schrubs, tree-tops or any identifiable vegetation
trunk Tree trunk
terrain Grass, soil or any other type of horizontal vegetation
person Humans that are sitting, standing or moving with their own legs
bicyclist Human driving a bicycle or standing by the bike

motorcyclist

Humans driving a motorcycle or standing near the motorcycle

fence Separators like barriers, small walls or fences
pole Traffic sign post or lamp post
traffic sign Traffic sign excluding its mounting

other-object

Advertising columns

outlier

Points caused by inaccuracies and reflections in the scan. If we
don’t know the source of the point we also label it as outlier

Table 3.3: SemanticKITTI label details [4]

3.3.2. Model Architecture
In this thesis, we use an end-to-end deep learning model to predict the semantic labels
of the input point cloud. The choice of the network selected is critical for the approach
undertaken. The various categories of the semantic segmentation network have been
described in Section 2.4. For our problem we choose a voxel-based network architec-

ture [85].
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The network architecture comprises two major components. First, 3D cylindrical
partitioning of the point cloud, and second, a 3D U-net to process the partitioned data.
The network architecture can be seen in Figure 3.11. To extract the 3D geometric
features of the object from the point cloud the network utilizes an asymmetric 3D con-
volution in the hidden layers. Instead of using conventional 3D convolution kernels,
the network uses an asymmetrical residual block (A). To retain the contextual informa-
tion of the point cloud, the network has a dimensional-decomposition based context
modeling module (DDCM) at the end of the U-net.
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Figure 3.11: [85] Semantic Segmentation network architecture

3.3.2.1. Cylindrical Voxelization

In the traditional voxelization scheme, the voxels are cube-shaped having constant
volume. Point clouds generated using LIDAR get sparser with the increase in dis-
tance due to the nature of the sampling strategy used in LiDARs. Using cubic voxels
throughout the 3D space of the point cloud results in cubic voxels closer to the origin
being highly populated with points but the ones farther away from the origin are mostly
unoccupied.

The chosen network utilizes a cylindrical voxel scheme, dividing the point cloud 3D
space into cylindrical voxels, therefore, having different volumes along the radius of
the cylinder. This voxelization is performed in the cylindrical coordinate system, since
the volume of the cylindrical voxels increases along the radius and the point distribu-
tion of the cloud gets sparser, it results in balanced point distribution per voxel.
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Figure 3.12: [85] Pipeline for 3D cylindrical voxelization

Figure 3.12 shows the pipeline for generation of cylindrical voxel scheme. First,
the point cloud is converted from cartesian coordinate system (z,y, z) to cylindrical
coordinate system (p, 6, z), where p represents the radius, ¢ represents the azimuthal
angle and z represents the height of the point. Second, the transformed data is parti-
tioned into a cylindrical grid of a fixed ratio, which is given as a hyper-parameter. As
we move radially out, the volume of the voxels increases. The partitioned data is also
assigned information extracted by feeding the point cloud to a Multi Layered Percep-
tron (MLP) based Pointnet [53]. Dimensions of the feature vector (C') extracted from
MLP are also provided as a hyper-parameter to the network. Finally, the cylindrical
grid is flattened starting from zero degrees, therefore creating a point cloud having a
cylindrical representation. The representation generated is (C'x H x W x L), where H,
W, and L represent the radius, azimuth, and height of the voxel containing the point
respectively.

3.3.2.2. Asymmetric Residual Block

The scenario presented in the dataset consists of multiple cubical objects of inter-
est, for example, trucks, cars, busses, trailers, etc. Study [20] showed that features
extracted by criss-cross weights of convolution kernels are better than traditional con-
volution kernels. An asymmetrical residual block is used to strengthen the vertical and
horizontal response of the kernel. The block is designed having a 3 x 1 x 3 convolution
kernel followed by a 1 x 3 x 3 convolution kernel and also a branch with 1 x 3 x 3 kernel
followed by a 3 x 1 x 3 kernel. Finally, the responses of both the branches are added
together. The asymmetrical block can be seen in Figure 3.13
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Figure 3.13: [85] Asymmetrical Residual Block

Asymmetrical block shown in Figure 3.13 is used for up-sampling and down-sampling
block as shown in architecture in Figure 3.11. For downsampling 3D convolution with
stride = 2 is performed on the compression side of the U-net while in the upsam-
pling, asymmetric residual block fuses the low-level feature. The skip layers from the
equal level downsampling layer are provided to upsampling block to provide spatial
information lost during downsampling. The asymmetric block also helps reduce the
computational and memory overhead compared to using a 3D kernel (3 x 3 x 3) by
reducing the parameters to be trained. It provides the same receptive field but bears
33% less computational cost.

3.3.2.3. Dimension Decomposition Context Modeling

Global contextual information plays a vital role in improving the results in the context of
semantic segmentation. Point cloud provides very dense and rich information about
its environment which has diverse information. To capture the contextual information
of the environment, research [82] showed that a high-rank tensor is required which
might be computationally expensive. Therefore, the used architecture utilizes high-
rank matrix decomposition theory [11] to reduce the high-rank matrix into three low-
rank matrices for capturing the context of height, depth, and width. The three individual
contextual information are combined to provide a global context.
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Figure 3.14: [85] Dimensional Decomposition based Context Modeling (DDCM)

The DDCM block used in the architecture can be seen in Figure 3.14. The three
kernels of dimensions 3x1x1,1x3x1and 1x 1 x 3 followed by a sigmoid which mod-
ulates the results are used to encode the information from three different dimensions.
The weights of kernels from three dimensions contain co-occurring contextual infor-
mation from three different views. Finally, all these individual dimensional information
are summed up to provide the global context.

3.3.2.4. Point-wise Label Refinement module

Voxel-based semantic segmentation architecture generally suffers from discretization
loss i.e. the predictions of the network are on the voxel and not on the points them-
selves. The prediction made on the voxel is dispersed to all the points within the voxel,
which in the case of a voxel consisting of points from multiple classes results in mis-
classification. Therefore, to solve this problem the architecture utilizes a point-wise
refinement module after the DDCM module.

This module works by projecting the voxel-wise feature extracted initially before U-
net onto the point-wise data based on the point-voxel mapping. The module provides
both of the point features (point-data and voxel-data) before and after 3D convolution
to compare them and finally combines this information to output point-wise refined
labels.

3.3.3. Loss Function

Machine learning problems are treated as optimization problems. Every optimization
problem has an objective function with an aim for it to be maximized. This maximiza-
tion problem is taken care of by changing the variable parameters and in the case
of machine learning these parameters are called weights and biases. However, we
generally convert the maximization to minimization problem by changing the objec-
tive function to a Loss function. In ML algorithms we aim to adjust the parameters to
reduce the error gradient and thereby minimize the loss function or maximize the ob-
jective function. The aim of converting the objective function to a loss function is to use
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gradient descent methodology which is predominantly used for convex optimization
problems. There are quite a few loss functions available for semantic segmentation,
however, we will focus on the ones being used in the defined architecture.

3.3.3.1. Weighted Cross Entropy Loss

Cross entropy loss measures the error between two distributions having a certain prob-
ability distribution. It is a derived and simplified form of Kullback Leibler divergence.
Which is a framework of Maximum likelihood, where the aim is to find optimum param-
eters which tend to reduce the errors between the model’s predicted probability distri-
bution and the ground truth distribution provided by the training dataset. In research
cross entropy loss has been used for multi-class classification problems, where the
output from the model is the probability of an instance belonging to one of the indepen-
dently distributed classes. In the scenario of semantic segmentation of point clouds,
cross entropy loss is applied to all points individually i.e. for each point model pre-
dicts its probability vector consisting of the probability of the point belonging to each
class. This predicted vector is compared with a ground truth vector which is one-hot
encoded to the ground truth class of the point in focus. The point-wise cross entropy
is averaged over all the points in a frame of cloud, therefore giving a metric for com-
parison. Since the point-wise loss is averaged, it implies equal learning for all points
in the training data. Therefore, if the dataset is biased which most training datasets
are generally, it would result in the model learning being biased towards the dominant
class.

To counter the problem of biased dataset, researchers came up with weighing
strategy [47]. The weighted cross entropy loss is given by:

K M
1 k
Lwer = =47 ;;wk x y& x 10g(hg(zm, k)) (3.13)
Where, M is number of training samples, K is the number of classes, w, is the
weight for class k, y* is target label for the training sample m and class k, z,, is an
instance of training sample and h, is the neural network with weights parameterized
as 6.

3.3.3.2. Lovasz-Softmax Loss

One of the most commonly used metrics for semantic segmentation is Intersection
over union (loU), also referred to as Jaccard Index. In the domain of semantic seg-
mentation, Lovasz-softmax loss allows a network to optimize mean loU directly, thus
allowing a network to perform better on the training dataset.

For a given ground truth label vector as y* and predicted label vector as y, the
Jaccard index for a class c is in the range [0,1] and is calculated by:

 Hy =cfn{y =}
“ =g uly=dl (314)

Ty, y)



3.3. Semantic segmentation 48

From Equation 3.14, the corresponding loss function can be derived as:

Az (v y) =1-=T(y",y) (3.15)

In the scenario of multi-class classification mean loU (mloU) is calculated by aver-
aging the Jaccard index of all the classes in the training dataset.

Lovasz-softmax aims to improve the mloU evaluation metric by generating convex
surrogates to sub-modular loss functions [5]. It attempts to smoothen the discrete
loss to allow the Jaccard index to be optimized in a continuous function framework.
It provides an extension that is based on sub-modular analysis which maps the mis-
prediction of the model to a set of real numbers. Considering M, as the mispredicted
points for class ¢, then the loss could be also written as:

| M|

Ay i M. € {0,1}"
a O = e o

(3.16)

Lovasz extension is a convex closure of submodular set function and is defined
as:

p
A:meR Y migi(m) (3.17)

=1

where,

gz(m) = A({ﬂ'l, ...,7TZ'}> — A({ﬂ'l, ...,771‘_1}) (318)

m is the vector of errors and = is the permutation ordering of components of m in
descending order.

Now, A is the Lovasz extension applied to A 7, which is also the resulting surro-
gate loss i.e. Lovasz hinge applied to Jaccard Loss [81]. The resulting output F is a
composition of piece-wise linear functions.

loss(F(c)) = Az (m(c)) (3.19)

Moreover, in case of multiple classes the Lovasz Softmax loss can be defined as:

toss() = 127 3 B (m(c) (3.20)

ceC
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3.3.3.3. Overall Training Loss Function

The network shown in Figure 3.11 uses a combination of two loss components namely,
point-wise loss and voxel-wise loss. The final loss is the combination of these losses.
Voxel-wise loss in itself is a combination of two losses. First, Weighted cross-entropy
loss, and second, Lovasz-softmax loss. The details of these losses have been de-
scribed in Section 3.3.3.1 and 3.3.3.2. Lovasz loss helps optimize the intersection-
over-union score directly while weighted cross-entropy loss contributes to improving
point accuracy. Point-wise loss comprises weighted cross-entropy loss.

The overall loss function is optimized using Adam [36] optimizer and output inferred
after point-wise refinement is considered.

['complete = Lvoxelfwise + ‘Cpointfwise (321)

where,

Lvomel—wise - £WCE + cLovasz

Epointfwise = ‘CWCE

3.3.4. Label Mapping

Our source and target datasets namely, SemanticKITTI| and Cirrus respectively have
different label domains. Therefore, to generate semantic labels in the label space of
Cirrus from a network trained on the label space of SemanticKITTI, we define a label
mapping from source to target domain.

SemanticKITTI contains the labels like vehicles and pedestrians which are further
sub-classified into moving and static classes, however, these sub-categorizations are
merged into a single class. And classes like other-structure, other-objects, etc were
mapped to unlabeled and are ignored while training. The intra SemanticKITTI map-
ping used can be seen in Table 3.4

The network is trained on the label space of the source (SemanticKITTI) and pro-
vides inference on the target (Cirrus) in the label space of SemanticKITTI. To evaluate
the Cirrus dataset, we need the inference in the Cirrus label space. Therefore, we use
the custom-generated label space mapping from SemanticKITTI to Cirrus to convert
the inference on Cirrus from SemanticKITTI label space to Cirrus label space. The la-
bel mapping used for cross-dataset label conversion can be seen in Figure 3.15. The
mapping was generated to keep the semantic and geometric information between the
datasets the same. Moreover, classes in SemanticKITTI which do not have a seman-
tic representation in Cirrus were ignored during evaluation.
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Original Class Value Original Semantic | Mapped Semantic
meaning of class meaning of class

0 Unlabeled Unlabeled
Ouitlier Unlabeled

10 Car Car

1" Bicycle Bicycle

13 Bus Other-vehicle

15 Motorcycle Motorcycle

16 On-rails Other-vehicle

18 Truck Truck

20 Other-vehicle Other-vehicle

30 Person Person

31 Bicyclist Bicyclist

32 Motorcyclist Motorcyclist

40 Road Road

44 Parking Parking

48 Sidewalk Sidewalk

49 Other-ground Other-ground

50 Building Building

51 Fence Fence

52 Other-structure Unlabeled

60 Lane-marking Road

70 Vegetation Vegetation

7 Trunk Trunk

72 Terrain Terrain

80 Pole Pole

81 Traffic-sign Traffic-sign

99 Other-object Unlabeled

252 Moving-car car

253 Moving-bicyclist bicyclist

254 Moving-person person

255 Moving-motorcyclist motorcyclist

256 Moving-on-rails Other-vehicle

257 Moving-bus Other-vehicle

258 Moving-truck truck

259 Moving-other Other-vehicle

Table 3.4: Intra SemanticKITTI mapping
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Figure 3.15: SemanticKITTI to Cirrus mapping



Experiments

In this chapter, we explain multiple experiments and their results using the methodolo-
gies explained in Chapter 3.

We first start by describing the Adaptation, which includes extraction of the scan-
ning pattern of Cirrus dataset. Moreover, the result of the adaptation of SemanticKITTI
and compare the data distribution of SemanticKITTI before and after adaptation.

Then, we describe different steps of SemanticKITTI densification which in turn in-
cludes multiple sub-steps such as sparse depth map generation, dense depth map
generation, etc.

Further, we explain different domain mapping strategies such as Cropping, Adapta-
tion, and Densification & Adaptation. Which are utilized for the final experimentation of
semantic segmentation where all the models trained using different domain mapping
strategies are evaluated.

4.1. Experiment 1: Adaptation

In this section, we will go through the process of adaptation of SemanticKITTI which
in turn includes the generation of the scanning pattern of the Cirrus dataset.

4.1.1. Scanning Pattern Extraction

We can observe Cirrus’s bi-pattern scanning pattern after projecting it on the image
plane in Figure 4.1 and Figure 4.2. For the Gaussian pattern, the Gaussian distribution
is observable along the elevation axis while the sampling rate is constant along the
azimuth. Whereas in the case of a uniform pattern the sampling along the elevation
and the azimuth is uniform however, the sampling frequency along the azimuth is
higher than that along the elevation axis. We limit ourselves to the analysis of the
Gaussian pattern only.

52
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Figure 4.1: Different frames from Gaussian scanning pattern of Cirrus with gaps (Red)

Generating scanning patterns by projecting the data is difficult as it has multiple
gaps which depend on the environment, occlusion, etc. Itis visible that different frame
has different gaps depending on the surrounding as can be seen in Figure 4.1. There-
fore, to get a plausible scan pattern 2 Gaussian frames that compensate for each
other’s gaps were selected and superimposed as shown in Figure 4.3. Finally, Near-
est neighbor (N=1) algorithm was used to generate the estimated scan pattern as
shown in Figure 4.4 and also to keep the points in the scanning pattern the same as
in one frame.

0.2 4

Elevation Angle (rad)

=0.2

Uniform

0.14

0.0 4

Elevation Angle (rad)

T T . T
=0.5 0.0 0.5 1.0
Azimuthal Angle (rad)

0.2 4

0.1

0.0 4

=0.2 4

Uniform

. v T v
-0.5 0.0 0.5 10
Azimuthal Angle (rad)

Figure 4.2: Different frames from uniform scanning pattern of Cirrus with gaps (Red)
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Figure 4.4: Estimated Gaussian scanning pattern

4.1.2. SemanticKITTI Adaptation

The adaption results in an extreme reduction of the point cloud from the original
dataset (Approximately 92.1% average compression). The original and the adapted
dataset can be seen in Figure 4.5
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Figure 4.5: Comparison of Original SemanticKITTI and Adapted SemanticKITTI, first column shows
frame of original SemanticKITTI while second column shows its respective adapted frame

Original | Cropped | Adapted
Average points per frame 104k 40k 8.2k
Average compression compared to original - 61.5% 92.1%
Average compression compared to cropped - - 79.5%

Table 4.1: Data compression after adaptation

To compare how the adaptation process changed the data distribution for Se-
manticKITTIl we project the point cloud in a plane along azimuth (Horizontal) and ele-
vation (vertical) direction. Since data distribution of a point cloud for a frame could be
highly dependent on the environment it is taken, therefore we project multiple frames
on a plane and normalize it to obtain a plausible distribution. The data distribution of
original SemanticKITTI and Cirrus can be seen in Figure 4.6. For SemanticKITTI the
Field of View (FoV) has been limited to 120° for a fair comparison to Cirrus as it has
an FoV of 120°. This FoV cropping results in a reduction of data available i.e. leads
to data compression of about 61.5%.
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Figure 4.6: Data distribution for Cirrus, SemanticKITTI, and adapted SemanticKITTI dataset (Pixel
color represents number of points populating per sg. radian angle along azimuth and elevation)

From Figure 4.6 we can see that the distribution of the Cirrus is Gaussian along the
elevation whereas for SemanticKITTlI it is uniform as expected. Moreover, the density
of the points in the Cirrus dataset is more than in SemanticKITTI. We can observe
qualitatively from Figure 4.6 that after adaptation the distribution of SemanticKITTlI is
close to that of Cirrus but is still much less dense. Therefore, we need to use a den-
sification scheme to bring the distribution of SemanticKITTI even closer to Cirrus.

For sanity check of distributions generated for Cirrus and SemanticKITTI, and
adapted SemanticKITTI we plot the distribution of Cirrus and SemanticKITTI and adapted

SemanticKITTI from their respective different sequences which can be seen in Figure
4.7
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Figure 4.7: Data distribution for Cirrus (First row, Sequence 1, 2 and 3), SemanticKITTI Original
(Second row, Sequence 00, 01 and 03) and Adapted SemanticKITTI Original (Third row, Sequence
00, 01 and 03)

4.2. Experiment 2: SemanticKITTI Densification

SemanticKITTI [4] which provides a point-wise label for the odometry dataset from the
raw KITTI suit [24] can be adapted to that of the scanning pattern of the Cirrus pat-
tern extracted in Section 4.1.1 however, as shown in Table 4.1 the data available for
training after adaptation is highly compressed. And, as shown in Figure 4.6 the den-
sity of the points available per square radian of azimuth and elevation angle is much
lower than that of Cirrus. Therefore, the upcoming sections explain the densification
of the SemanticKITTI point cloud to increase the density of the point and therefore, re-
duce the domain gap between the adapted SemanticKITTI and Cirrus. Thus, making
densified adapted SeamnticKITTI a true proxy for Cirrus, and thereby staying true to
the Domain Mapping solution of Transfer Learning. The upcoming sections would de-
scribe the sequence of steps used for densifying the SemanticKITTI using the depth
completion strategy described in Section 3.2. The densification steps which would be
described in upcoming sections have been summarized in Figure 4.8.

Since SemanticKITTI is a subset of the KITTI suit and its densified ground truth
sequences are available in the KITTI depth dataset, one could ask a question of using
it directly instead of densifying the SemanticKITT| dataset. However, the KITTI depth
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dataset provides the ground truth for the frames at a much lower frequency than the
dataset of SemantiKITT]I, therefore, providing the ground truth densified data for much
fewer frames. Thus, if one was to use it, the data available for training the semantic
segmentation dataset would be reduced by =~ 58%, therefore a densification strategy
is used to densify every frame of SemanticKITTI to allow the semantic segmentation
network to use a rich and abundant dataset to learn.

Figure 4.8: Summary of steps followed for SemanticKITTI densification

4.2.1. SemanticKITTI Sparse Depth Map Generation

SemanticKITTI dataset provides the dataset as point clouds in “.bin” files. To use it
for densification we first have to convert it to a depth map for it to be used by the
depth completion network. Therefore, we first use the pinhole camera methodology
to convert the SemanticKITTI point cloud to the depth image. For conversion, we use
the calibration matrix provided by the KITTI suit. The point cloud has been provided in
Velodyne coordinate frame, therefore we first convert the point cloud from Velodyne
to the left camera (KITTI setup consists of left and right camera calibration, for our
scenario we use all the calibration matrix pertaining to the left camera) 3D coordinate
frame. Then, we convert the point cloud from the camera’s 3D coordinate frame to
the camera’s image coordinate frame i.e. (u,v). The resolution of the image is kept
as 1216 x 352 because of the constraints posed by the depth completion network used
in the next step of SematicKITTI densification.
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Figure 4.9: Generating sparse depth map from point cloud using pinhole camera modeling

The method is governed by principles of pinhole camera modeling. Thus, uses
the Equation 3.1. However, in this case, the extrinsic and intrinsic matrix i.e. E and
K is provided by the KITTI suit. The calibration matrix provided by the KITTI suit has
already been rectified therefore, no further processing is required and can be used in
a plug-and-play fashion. The sparse depth generated after using the pinhole camera
model on SemanticKITTI can be seen in Figure 4.10.

Figure 4.10: Converting SemanticKITTI point cloud into depth map, first column show the
SemanticKITTI point cloud and the second column show their corresponding projected depth map




4.2. Experiment 2: SemanticKITTI Densification 61

4.2.2. SematicKITTI Dense Depth Map Generation

In Section 4.2.1, we projected the SemanticKITTI point cloud into a depth image, how-
ever, the generated depth map is sparse and if adapted to Cirrus results in a very small
amount of points to learn. Therefore, we use a depth completion network mentioned
in Section 3.2 to densify the sparse depth map to a dense depth map. Trained depth
completion architecture takes SemanticKITTI's RGB image and sparse depth map as
input and outputs a densified depth map for the input frame. The input sparse depth
map and their corresponding output dense depth map can be seen in Figure 4.12.
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Figure 4.11: Generating dense depth map from sparse depth map using the network in Figure 3.2

The depth completion network used was trained on the KITTI depth completion
dataset, however, was tested on SemanticKITTI in our scenario. A question of domain
difference while training and testing could be posed, however, SemanticKITTI is a
subset of the KITTI suit and is collected using the same sensor setup. Therefore,
the network can be used to test on SemanticKITTI as the condition of similar data
distribution between training and testing is satisfied.
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Figure 4.12: Converting SemanticKITTI sparse depth map into dense depth map using depth
completion network shown in Figure 3.2, first column show the SemanticKITTI sparse depth map and
second column show their corresponding predicted dense depth map

4.2.3. Label Generation

In the previous step, we generated a dense depth map for the SemanticKITTI frame,
however, to train a semantic segmentation network we need to convert the dense
depth map to a point cloud, and since we use a supervised learning method we would
need point-wise labels. The depth completion network outputs a depth image for which
we need to create semantic labels. One method could be using a human-based ap-
proach to label the densified point cloud. However, we use a different approach which
depends on the voxel ground truth labels of SemanticKITTI.



4.2. Experiment 2: SemanticKITTI Densification 63

SemanticKITTI Dense Depth | Point Cloud

Projection: Pinhole
Camera Model

voneidepy

Superimposing and
sampling

Dense Adapted SemanticKITTI with Labels

| SemanticKITTI Voxel Ground Truth ‘

Figure 4.13: Pipeline for generating labels for SemanticKITTIl dense depth map created

We project the dense depth image to point clouds using the inverse pinhole camera
model, however, after densifying the points in the frame lose their semantic meaning,
Therefore, we superimpose the dense point cloud onto the space with voxels having
the semantic labels from SemanticKITTI ground truth for each frame. Thus, giving the
label for points lying in a voxel, the same as that of the voxel, and removing points
that do not lie in a voxel. The superimposition of points and voxels has been shown

in Figure 4.14
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Figure 4.14: Superimposition of dense point cloud over voxels having ground truth semantic labels
(Size not to scale)
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Figure 4.15: An example of Adapted dense SemanticKITTI with their semantic labels, the first
column shows the adapted dense SemnaticKITTI, the second column shows the voxel ground truth
for the respective frame and the third column shows the semantic labels generated for the adapted

dense SemanticKITTTI frames

The adapted SemanticKITTI frames and their respective semantic labels gener-
ated are shown in Figure 4.15.

4.2.4. SemanticKITTIl and Cirrus distribution Comparison after Den-
sification

In Section 4.1 we saw that the distribution of the SemanticKITTI after adaptation is

similar to that of Cirrus as shown in Figure 4.6. However, the density of the points

available per square radian for adapted SemanticKITTIl and Cirrus was very different

with adapted SemanticKITTI being much less dense. Therefore, we adopted a point

cloud densification scheme mentioned in Section 3.2.

The data distribution of the Densified SemanticKITTI can be seen in Figure 4.17.
And again for a sanity check, we also check the data distribution of multiple sequences
of Densified Adapted SemanticKITTI which can be seen in Figure 4.16

SemanticKITTI Dense Adapted to Cirrus

SemanticKITTI Dense Adapted to Cirrus SemanticKITTI Dense Adapted to Cirrus
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Figure 4.16: Data distribution for Sequences 00, 01 and 03 of Densified Adapted SemanticKITTI
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Figure 4.17: Comparison of data distribution of Cirrus, Adapted SemanticKITTI, and Dernsified
Adapted SemanticKITTI
. . Cropped
Cirrus | SemanticKITTI ]
SemanticKITTI
Average points per frame 53k 104k 40k
Ratio of Cirrus to Dataset points/ frame | 1 0.51 1.32
Densified
Adapted
. Adapted
SemanticKITTI )
SemanticKITTI
Average points per frame 8.2k 38.1k
Ratio of Cirrus to Dataset points/ frame | 6.46 1.39

Table 4.2: Comparison of different customized dataset points to Cirrus dataset

From Table 4.2 we can observe that ratio of points of Cirrus to Densified Adapted
SemanticKITTI in a frame is the second closest to 1 with a value of 1.39 after cropped
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SemanticKITTI. However, the point distribution of Densified Adapted KITTI is close
to that of the Cirrus dataset as can be seen in Figure 4.17. We can also observe
that in comparison to Adapted SemanticKITTI the Densified Adapted SemanticKITTI
dataset provides about 29.9k extra points per frame to learn from for the semantic
segmentation model.

4.3. Experiment 3: Domain Mapping Strategies
SemanticKITTI has an abundant amount of annotated data and can be used to train
a network in supervised methodology. However, since its characteristics differ sig-
nificantly from the target dataset, therefore we need to make some adjustments to
proceed. Therefore, different domain mapping strategies have been adopted to re-
duce the domain gap.

4.3.1. Domain Mapping Strategy 1: Data Cropping

The semanticKITTI dataset was originally collected using Velodyne HDL-64E which
has a 360° Field of View along the horizontal axis (Azimuth). Whereas, Cirrus has a
120° as FoV along the azimuth. Therefore, to match the source frame ratio to that
of the target frame ratio we apply an angular filter to each frame of SemanticKITTI
filtering the points lying outside the 120° FoV along the azimuth. The filtration process
is done by converting the frame of SemanticKITTI into polar coordinates and then re-
moving the points lying outside range [—60°, 60°]. The frame before and after the filter
is applied can be seen in Figure 4.18.

After angular filter, the horizontal FoV for semanticKITTl becomes the same as
that of Cirrus. The analysis of the frame of cropped SemanticKITTI can be seen in
Figure 4.19

270" 270°

(a) Original SemanticKITTI (b) Cropped SemanticKITTI

Figure 4.18: Bird-eye view of original and cropped SemanticKITTI
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Figure 4.19: Data distribution of Cropped SemanticKITTI along different axis

4.3.2. Domain Mapping Strategy 2: Data Adaptation

SemanticKITTI which is collected using a Motorized Optomechanical LiDAR has a
uniform scanning pattern however, the scanning pattern of Cirrus is Gaussian along
elevation as shown in Figure 4.4. Therefore, we use a sampling strategy mentioned
in Section 3.1 on Original SemanticKITTI as a part of domain mapping to map Se-
manticKITTI (Source) distribution to Cirrus distribution.

The analysis of point distribution after adaptation can be seen in Figure 4.20.
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Figure 4.20: Data distribution of Adapted SemanticKITTI along different axis

4.3.3. Domain Mapping Strategy 3: Data Densification and Adapta-
tion

Finally, the domain mapping strategy used is densifying the point cloud and then adapt-

ing to the Cirrus using the same adaptation strategy mentioned previously. The ad-

vantage of using this methodology as mentioned in Section 3.2 is the availability of

more data points to learn for the semantic segmentation network.

The analysis of point distribution after adaptation can be seen in Figure 4.21.
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Figure 4.21: Data distribution of Densified Adapted SemanticKITTI along different axis

4.4. Experiment 4: Semantic Segmentation

The training of the neural network presented in Section 3.3.2 was done on a LINUX-
based server. The configurations of the system have been summarised in Table 4.3

Configurations
Operating System Ubuntu 16.04
CPU Intel 4.80GHz, 8 Cores
GPU Nvidia 1080Ti x 2
Python v3.7
PyTorch v1.7.1
CUDA Toolkit v10.2
spconv v1.2.1

Table 4.3: Configurations used for training semantic segmentation

To evaluate the effectiveness of the domain mapping we trained multiple models
namely, Baseline SemanticKITTI, Cropped SemanticKITTI, Adapted SemanticKITTI,
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and Densified Adapted SemanticKITTI. For training and validation of each of the above
models have been provided with differently pre-processed data according to varying
domain mapping strategies which have been summarized in Table 4.5.

Each of the models was trained with the same hyperparameters to perform a fair
comparison. Training of models was done on a remote in-house server comprising
NVIDIA GPUs.

4.4.1. Hyperparameters

While training the model described in Section 3.3.2, multiple hyperparameters are set
which govern the training of the model. These hyperparameters would be described
in this section below. The hyperparameters have also been summarised in Table 4.4.

Learning Rate and Batch size

Learning rate governs the improvement of the error gradient generated while using
the Gradient Descent approach [3]. Improvement while training is sensitive to learn-
ing rate, if it is too high it poses a risk of error explosion or if it is too low it might cause a
large number of iterations to learn or might cause the optimization to get stuck in local
minima. Since it is generally not possible to fit complete training data in the memory
while training thus, a mini-batch of the data is used.

In this thesis, we used a constant learning rate of 0.001 and a mini-batch size of 4
frames. Increasing the mini-batch size reduces the training time, however, it is bottle-
necked by the available GPU memory.

Grid Shape

Grid shape hyperparameter defines the size of voxel discretization of the 3D space of
the point cloud. Since the architecture uses cylindrical voxelization, the grid defines
the voxel in cylindrical coordinates. The grid shape used provides the resolution of
the voxels, which if provided too fine results in high computational cost while if it is too
coarse could lead to large discretization loss.

In this thesis, we used a cylindrical grid shape defining radius, azimuth, and height
for which 480, 120 and 32 values were used respectively. As described in Section 3.3.2
the volume of the voxels increases along the radius dimension.

Input Feature Dimension

Section 3.3.2 describes that network is provided with certain features for each point
consisting of voxel-based and point-based information. This hyperparameter decides
the input feature size.

For the given network nine features are associated with every point. The feature
vector of a point comprises Cartesian coordinates, Cylinder coordinates, and voxel-
grid index.
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Hyperparameters | Used Values
Grid Size [480, 120, 32]
Feature Dimension 9
Number of classes 19
Batch Size 4
Max epochs 40
Learning Rate 0.001
3D Conv. Stride 2
Optimizer Adam

Table 4.4: Summary of hyperparameters for semantic segmentation

Data Pre-processing
Model Name
Cropped (Field of View Reduced) | Adapted | Densified

Baseline SemanticKITTI NO NO NO
Cropped SemanticKITTI YES NO NO
Adapted SemanticKITTI YES YES NO
Densified Adapted Se- YES YES YES
manticKITTI

Table 4.5: Input data pre-processing for models

The model architecture was designed on PyTorch and uses CUDA for quick, paral-
lel, and efficient computation. Initially, it was trained on a single NVIDIA 108077 GPU
equipped with 3584 CUDA cores. It took an average of ~ 77 hours of computational
time to train a model on a single GPU. However, since multiple GPUs are available,
the computational time could be reduced further by using multiple GPUs by adopting
Distributed Data Parallel (DDP) training.

Distributed Data Parallel approach works by loading a copy of the model on differ-
ent GPUs, each GPU action is controlled by processes on the CPU. Therefore, multi-
ple processes could be parallelized with multiple CPU cores. Each of the processes
communicates with each other and performs a similar task. During the process of
training, a different mini-batch is loaded to each of the GPUs from the data. Each
GPU acts independently of the other and performs forward pass, backward pass, and
gradient calculation. The calculated gradients from different GPUs are accumulated
and averaged, this averaged gradient is then sent to all the GPUs for the learning pa-
rameters correction to keep the model weights synchronized across all GPUs. Since
the learning from multiple mini-batches is done in a single iteration thus, the training
duration is reduced tremendously.



4.4. Experiment 4: Semantic Segmentation 72

Baseline SemanticKITTI Baseline SemanticKITTI
1.30 4 —— Training Loss —— Training Lovasz Loss
1.25 A —— Validation Loss 0.70 1 —— Training Cross Entropy Loss
1.20 1 0.65 4 —— Validation Lovasz Loss
1.15 1 —— Validation Cross Entropy Loss
1.10 0.60 1
1.05
1.00 1 0.55
0.95 - 0.50 1
9 0.90 - v
S 0.85 1 S 0.454
0.80 1 0.40 1
0.75 1
0.70 4 0.35 A
0.65 -
0.60 0.30
0.55 4 0.25 1
0.50 4
0.45 4 0.20
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch
(a) Complete training and validation loss (b) Cross Entropy and Lovasz loss
Figure 4.22: Training and validation curve for Baseline SemanticKITTI
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Figure 4.23: Training and validation curve for Cropped SemanticKITTI
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Figure 4.24: Training and validation curve for Adapted SemanticKITTI
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Figure 4.25: Training and validation curve for Densified Adapted SemanticKITTI

Figure 4.22, 4.23, 4.24 and 4.25 show the training and validation curves for Base-
line SemanticKITTI, Cropped SemanticKITTI, Adapted SmanticKITTI and Densified
Adapted SemanticKITTI respectively. All the models show that they learn from their
respective input data. Baseline SemanticKITTl and Densifed SemantickKITTI show
the best convergence of training and validation curves showing the least overfitting
followed by Cropped SemanticKITTI and Adapted SemanticKITTI.

4.4.1.1. Results and Analysis

In the domain of semantic segmentation, a common metric for evaluation of results is
Intersection over Union (loU) also referred to as Jaccard index [28]. We will evaluate
the performance of our trained model using loU metric. loU measures the ratio of true
positive prediction given by the model over the population of ground-truth and predic-
tion made. The mathematical representation of the metric can be seen in Equation
4.1. loU can also be understood pictorially from Figure 4.26
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Figure 4.26: loU pictorial representation

In the scenario of multiple classes, the performance of the model is calculated by
calculating loU for all the classes individually and then averaging them giving the mean
Intersection over Union (mloU) which mathematically is represented in Equation 4.2

TP
ToU = c 4.1
U= Th TTN. 1 FN. (4.1)

C

mloU = (4.2)

g TP, + TN + F'N,

Where, TP, is correctly classified points for class ¢, T'N,. are the points predicted
other than ¢ and also belong to a class other than ¢ and F'N, are the points which
belong to class ¢ but are wrongly predicted.

Section 3.3.1.2, describes that SemanticKITTI consists of moving classes sub-
classes for vehicular classes. Since the model does not train on temporal information
of the point clouds, i.e. each point cloud prediction is independent of the previous
predictions or any other modal information like Doppler, etc. Therefore, the model is
incapable of differentiating between moving and non-moving classes which also limits
its capability to predict such information on the Cirrus dataset.

This will provide the results of the multiple trained models and will emphasize them
quantitatively and qualitatively. The quantitative section will emphasize the results of
the models on the classes present in Cirrus and the qualitative section will pay more
attention to classes which were predicted by the model but have no representation in
Cirrus, like road, vegetation, etc.
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Figure 4.27: loU comparison of trained models on SemanticKITTI validation

Quantitative

The performance of the models can be seen on the validation and the target data
separately. Therefore, we first pay attention to the performance on the validation data
by all the models which has been shown in Figure 4.27. It can be observed that all
models perform well on the classes which provide a large amount of data to learn
from such as road, car, building, etc. While the performance drops for classes like
bicycle, motorcyclist, etc which have minor representation in training data. Moreover,
The figure shows that for the majority of classes the performance (mloU) of the Base-
line, Cropped, Adapted, and Densified Adapted model decreases 0.63, 0.62, 0.53,
and 0.44 respectively. The decrease in performance is quite drastic for classes such
as bicycle, motorcycle, traffic-sign, etc while for classes such as road, car, etc it is
negligible. The performance drop could be a result of high validation loss at the con-
clusion of training which shows that the hyperparameters selected need further tuning
independently for different models. A significant performance drop can be observed in
classes with smaller data representation in the validation dataset while for the classes
with a majority representation of data the performance drop is minimalistic even with
no hyperparameter tuning.
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Figure 4.28: loU comparison of trained models on Cirrus

Now, we will analyze the performance of all the models on the target dataset i.e.
Cirrus dataset after label mapping which was discussed in Section 3.3. The perfor-
mance trend of the models have changed with Densified Adapted model showing the
best performance overall. The mloU for Baseline, Cropped, Adapted and Densified
Adapted models are 0.2027, 0.1918, 0.1734, and 0.2045 respectively. There is an
insignificant difference in the performance of the models if judged upon mloU how-
ever, the performance is extremely different ranging from =~ 89% on vehicle class to
~ 1% on trailer class. This highly skewed performance could be because of the data
representation in the target dataset which has been shown in Table 4.6. It is evident
that vehicle class forms a predominantly higher percentage of target data comprising
over 85% of the target dataset. Therefore, a misprediction on one vehicle class point
would reduce the performance on vehicle class only by a fraction while a misprediction
of a trailer class point would result in a much higher performance drop of the model
on trailer class and similarly for other classes. Therefore, the performance of models
on vehicle class provides a better comparison. It is evident that Densified Adapted
model performs better than Baseline with better mloU even with only a fraction of
training data in comparison to the Baseline, thus showing a positive transfer learning.
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Sequence | Large- | Pedestrian| Bicycle | Wheeled- | Motorcycle| Trailer | Vehicle
vehicle pedestrian

1 3229 420 - - 79 502 81553
2 3872 10602 1026 287 225 27 148785
3 6154 33 74 - - 96 106977
4 4504 - 495 - 95 102 100152
5 6031 21675 3209 189 42 - 174936
6 3522 28523 3545 192 708 57 187861
7 4265 56833 2973 775 684 - 191480
Total 31577 118086 11322 1443 1833 784 991744
% 2.73% 10.21% 0.98% 0.12% 0.16% 0.07% | 85.73%

Table 4.6: Distribution of points per class in Cirrus dataset available for evaluation

Qualitative

As discussed in Section 3.3, there are some classes in SemanticKITTI that do not have
semantic representation in Cirrus classes thus, the only option is to compare the per-
formance of models on such classes qualitatively. In this section, we will discuss the
performance of baseline, cropped, adapted, and densified adapted models on such
classes particularly road and vegetation since they are one of the major concerns for
ADAS applications. We discuss these under the highway and urban scenarios sep-
arately. The highway and urban frames from the Cirrus have been shown in Figure
4.29 and Figure 4.31 respectively.
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Figure 4.29: Highway scenario of Cirrus

The Baseline model’s prediction on the highway scenario of Cirrus (target) can be
seen in Figure 4.30. It can be observed that the model miss-classifies a major por-
tion of the road as vegetation and also has trouble in the classification of vegetation
near the end of FoV. The cropped model can predict the road class better than the
Baseline SemanticKITTI, however, it still miss-classifies vegetation along the end of
FoV as multiple other classes. Adapted SemanticKITTI model performs well on the
classification of road and vegetation class in comparison to Baseline SemanticKITTI
and Cropped SemanticKITTI in highway scenario as it correctly classifies the previ-
ously miss-classified road by Baseline as road class and also predicts vegetation with
much better accuracy than Baseline and Cropped model. Densified Adapted model
performs quite well in identifying road and vegetation along the end of FoV, it still has
some miss-classifications of vegetation as buildings but visually performs best among
other models.
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Figure 4.30: SemanticKITTI predictions on Cirrus in SemanticKITTI label space in Highway Scenario;
1) Baseline model 2) Cropped model 3) Adapted model 4) Densified Adapted model
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In urban scenario Baseline model miss-classifies road as vegetation, in-fact has
troubles even classifying vehicle as can be seen in Figure 4.32. The reason for such
performance could be because of the domain difference between the source and tar-
get data. Cropped model also makes similar miss-classification therefore, we can
not make much of an accurate statement regarding if cropping domain mapping tech-
nique helped reduce the domain gap between the source and target domain. Adapted
model performs better predictions for road, however, miss-classifies vehicle as vege-
tation still. However, qualitatively it is visible that adaptation domain mapping strategy
helped model perform better on Cirrus, thus, showing a positive transfer learning. Den-
sified Adapted model performs well to identify the road and also the vehicle. However,
still has trouble in classification of some other vehicles in the frame. However, qual-
itatively the Densified Adapted SemanticKITTI performs better than all other models
showing that this strategy of domain mapping helped the model learn from the source
dataset and generalize on target dataset.

Figure 4.31: Urban scenario of Cirrus
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Figure 4.32: SemanticKITTI predictions on Cirrus in SemanticKITTI label space in Urban Scenario; 1)
Baseline model 2) Cropped model 3) Adapted model 4) Densified Adapted model
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After evaluating the performance of all four models in previous sections, we can con-
clude that Densified Adapted SemanticKITTI performs best on Cirrus both quantita-
tively (relative performance shown in Figure 4.28) and qualitatively, showing that the
domain mapping strategy used i.e. densification and adaptation using scanning pat-
tern helped reduce the domain difference between the SemanticKITTI (Source), col-

lected using Motorized Optomechanical LiDAR and Cirrus (Target), collected using
MEMS LiDAR.



Conclusion

In this thesis, we saw how transfer learning methodology can be used to learn from a
Motorized Optomechanical LiDAR (Source Domain) and apply the learned knowledge
to infer on a Micro-electromechanical Systems LiDAR (Target Domain) and thereby
efficiently utilizing the previously accumulated information. This thesis showed that
research of MEMS can be boosted by using TL methodologies instead of treating it
as fresh research or “re-inventing the wheel”.

This thesis provided an in-depth explanation of the selection of TL approaches for
point cloud which are described in Section 2.3 and carefully selects Domain Mapping
as a potential candidate, which uses minimal information of the target dataset to map
the source to a target dataset creating its proxy.

In Chapter 3, the methodology of adaptation, point cloud densification, and seman-
tic segmentation are explained in detail. Section. 3.1 shows a scanning pattern based
pipeline to adapt the source to the target domain i.e. SemanticKITTI to Cirrus by using
an image-based sub-sampling methodology. Moreover, this section explains gener-
ating a plausible scanning pattern of a LIDAR from a dataset itself. This adaptation
strategy shows an immense reduction of information therefore, to further reduce the
gap between the source and target domain, this thesis provides a point cloud densifi-
cation strategy explained in Section 3.2.

Since the SemanticKITTI and Cirrus have different FoV along the azimuth, the
basic domain mapping strategy used for completeness is simply cropping the FoV
of the source domain. Thus, three models trained on data processed with different
domain mapping strategies namely Cropping, Adaptation, and Densification & Adap-
tation were compared to a model trained on unaltered original SemanticKITTI. These
models showed different performances on the Cirrus dataset, showing that Densifi-
cation & Adaptation domain mapping strategy performs best. It shows a 1.09% im-
provement in mloU over the Baseline even with much fewer data points to train from
and also no hyperparameter tuning. Moreover, it also outperforms the Baseline qual-
itatively by correctly predicting road, vegetation, etc where the Baseline fails. Thus,
showing a positive knowledge transfer.

83
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5.1. Reflection on Research Questions
This thesis answered the research question posed in Chapter 1.

Q. How can the domain difference between the two categories of LIDAR be re-
duced?

Answer. The domain difference between the two categories can be reduced by
using a Domain mapping methodology of Domain Adaptation solution strategy of Het-
erogeneous Transfer Learning. One such approach to bring the domains closer in
input feature space is by using a scanning pattern-based sub-sampling approach as
described in Section 3.1.

Q. Does the density of information after adaptation stay the same in the source
dataset?

Answer. The information reduction depends on the methodology used, however,
using the Domain Mapping strategy mentioned in this thesis, the information density
was reduced tremendously. Nonetheless, was compensated by using a point cloud
densification methodology.

Q. How can the scanning pattern of a LIDAR be generated?
Answer. This thesis mentions a pinhole camera modeling strategy (Section 3.1.1) to
generate a plausible scanning pattern for a LiDAR using its dataset.

Q. Is the semantic information lost after adaptation?
Answer. The methodology of point cloud densification used in this thesis causes the
loss of semantic information of the point cloud. However, this thesis overcomes this
disadvantage by using a voxel ground truth superimposition scheme (Section 4.2.3)
to generate the semantic labels without manual labeling.

5.2. Limitation

The methodology of domain mapping presented in this thesis has some limitations
which need to be taken into account to make amendments to the approach and there-
fore improve upon it.

First, the scanning pattern generated is a plausible scanning pattern and not the
actual scanning pattern, therefore using it might not simulate the true data distribution
of the target dataset.

Second, the adaptation process causes very high data compression, therefore,
choosing a source dataset with an already sparse point distribution, for example, a
dataset collected using a Velodyle VLP-16 might result in the adapted dataset being
unusable because it loses too much information. Therefore, the selection of a rich
source domain dataset is necessary.

Third, the point cloud densification pipeline described relies on the voxel ground
truth of the source dataset to generate the point-wise labels for densified and adapted
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points. Therefore, a source domain dataset with voxel ground truth labels is required
if semantic labels for densified and adapted point cloud is to be generated without
manual labeling.

Fourth, since in this thesis the selected target domain dataset (Cirrus) provided
ground truth labels as bounding boxes, the evaluation of performance was only done
on the points inside of those boxes. Since the bounding boxes were provided for only
moving objects like vehicle, pedestrian, etc thus, it limits the performance check only
on them and not on stationary objects like road, buildings, vegetation, etc.

5.3. Future Work

This thesis presents many opportunities for improvement which could be taken up for
further research.

First, the densification pipeline mentioned does not provide user control over the
intensity of densification. It may cause the source to be densified much more than
required thus, causing a further increase in the domain gap between the source and
target. Therefore, more research can be done in creating a densification scheme with
the intensity of output as a hyperparameter.

Second, the semantic segmentation acts as a proxy for evaluating the domain
mapping strategy, however, it might be the case that the adopted domain mapping
strategy only performs better for semantic segmentation and might give a different
performance for other downstream tasks. Therefore, a task-less methodology for cal-
culating the domain difference is required for accurately knowing the benefits of such
adaptation schemes.

Third, for uniformity, the hyperparameters while training different models in the
thesis were kept constant. However, hyperparameter tuning could benefit the perfor-
mance even more.

Fourth, the semantic segmentation uses a cylindrical grid that is distributed uni-
formly, however, research into adaptive grid generation strategy could be studied for
more uniform point distribution per voxel.
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