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Abstract

In this thesis the hydrodynamic limit of the Freezing Model is studied. The model consists of an in-
teger line on which particles can get frozen to different degrees, analogous to jumping to another
integer line, with certain rates and can get unfrozen with certain rates per frozen layer. The main re-
sult of the thesis is a proof that the hydrodynamic limit for the Freezing model converges to a system
of PDE’s describing the particle density for each layer, either the ground layer or a frozen one.
Firstly, it is proven that the position of a random walker in the Freezing Model, appropriately scaled,
converges to a so-called Switching Brownian Motion. This together with duality is used in the rest
of the proof. Secondly, it is proven that the expectation of the empirical field densities of the layers
converges towards the solutions of the aforementioned PDE’s. Lastly, it is proven that the variance of
the empirical field density converges to 0.
Under an additional diffusive scaling of the system of PDE’s for the particle densities, a condition
for diffusive behaviour is set up involving the ratio of the freezing and unfreezing rates. It is shown
that the PDE’s collapse into the heat equation if this condition is satisfied. Finally, the case where
the condition is not satisfied is investigated. The model is then no longer memoryless like a Markov
process and shows sub-diffusive behaviour. The rescaled position of a single particle then no longer
converges to Brownian motion, but to Brownian motion on the time scale on which the particle oc-
cupies the ground layer. This time scale is tβ−1 with 1 < β < 2. This grows slower than t for large
enough t .
Additionally, simulations in Python were built to show that the model exhibits diffusive or non-
diffusive behaviour depending on the jump rates of the process.
Before everything, some mathematical preliminaries about probability theory, Markov theory, ran-
dom walks and duality are given.
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1
Introduction

The world around us is made up of an enormous amount of tiny particles moving around and inter-
acting with each other. Each macroscopic physical system, such as a glass of water, contains many.
Describing the motion of all the individual particles in such a system is impossible. To solve this
problem, the field of statistical mechanics studies macroscopic quantities of large systems of par-
ticles by applying statistical methods and probability theory on the microscopic scale, keeping in
mind its physical laws that the particles obey. Bernoulli was the one to lay down the basics of sta-
tistical physics. In 1738 he published Hydrodynamica in which he stated that gases consist of great
numbers of molecules moving in every direction, that their collisions on a surface cause pressure and
that the experience of heat is simply the kinetic energy of their motion[18].

The area of statistical physics has three founding fathers. Ludwig Boltzmann developed the inter-
pretation of entropy in terms of the number of microstates in a system. James Clerk Maxwell contin-
ued on Boltzmanns work and set up probability distributions of such states. For example, he created
the first statistical law in physics, describing the proportion of molecules having a velocity in a spe-
cific range[2]. In 1902 Gibbs published the book Elementary Principles in Statistical Mechanics[7], in
which he formalized statistical mechanics as a general approach to describe all mechanical systems
on all scale. These methods still form the foundation of statistical mechanics today.

Most ensembles of particles are analysed in their equilibrium, often an isolated system in a finite
volume. A difficult problem in statistical mechanics that remains is analysing complex systems that
are not close to their equilibrium state. There is no general theory to describe the behaviour of those
systems since they seem to be randomly evolving. A good first step to gain insight into these chaotic
arrangements of particles is to consider a simple system of particles that move on a grid following
Markovian dynamics, i.e. will move with certain probabilities. The simplest of these models is a par-
ticle performing a random walk on a one-dimensional integer line[9]. Even though this is the most
basic model, it can still imitate some real life situations, like bacteria either dying off or duplicating
themselves, analogous to respectively moving one down or moving one up on the integer line. Often
many independent, identically distributed particles are placed in the system and their collective be-
haviour is inspected.
This basic model of an integer line can be expanded to model more complex systems. For example
an exclusion aspect can be added. This means that no two particles can occupy the same site. This
model has been introduced in [16] and has been extensively studied, even with extra features such as
a two-dimensional environment[19] or a dynamic environment [14]. In this thesis a one-dimensional
integer line is used in the model where at each site the particle can get frozen to different degrees and
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must ’melt’ again before being able to move.

The models of the aforementioned systems are still discrete and on a microscopic scale. We can
utilise the models to describe particle behaviour in the continuous real world by scaling the systems
towards a macroscopic context. The scaling is in time and space. The parameters that govern the
movement of the particles are scaled accordingly to preserve the characteristic movement of the par-
ticles. An often used method for this scaling is the hydrodynamic scaling, where space is scaled by
N−1 and time is scaled by N 2. This is inspired by the fact that a random walker on Z is on average a
distance of

p
t removed from the starting position at time t , performing Brownian motion[12]. After

the scaling, (partial) differential equation(s) are constructed for the movement of small deviations
from the macroscopic equilibrium, called local equilibrium. These local equilibriums form a den-
sity profile of the particles. The (partial) differential equation(s) that describe the densities profile’s
evolution through time is called the hydrodynamic limit. This scaling technique is further explained
in [5]. For particles performing simple symmetric random walks(i.e. same probability distribution
on each site) on a discrete grid, the hydrodynamic limit will result in the heat equation. In this thesis
the hydrodynamic scaling is also used as we expect diffusive-like behaviour from the Freezing Model.

Some systems involving Markovian processes, especially those with independent particles, can
possess a duality property. This property relates the process to its dual and can greatly simplify some
calculations. Especially for symmetric situations the duality links the behaviour of many particles to
a single one. By solving the dual problem of a process, information about the original problem can
be obtained. This duality approach is widely used in situations involving stochastic processes, for
example in the interacting particle systems mentioned earlier or queuing theory.

1.1. Reading Overview
Chapter 2 introduces the mathematical preliminaries of Markov Processes and theory of interacting
particles that are necessary for this thesis. In chapter 3 we will prove the hydrodynamic limit of the
system and analyse how the parameters of the model will influence the PDE of the macroscopic
density profile. In chapter 4 the results of simulations of the Freezing Model will be displayed and
discussed. The thesis is concluded by some final remarks.

2



2
Mathematical Preliminaries

2.1. Introduction
In this chapter we will first provide the mathematical background necessary to understand this the-
sis. The central subject in this thesis is Markov processes and all the fascinating results you can
acquire using the theory surrounding them. Markov processes are sequences of random variables
that evolve on probability and measurable spaces. Therefore a lot of real analysis comes into play.
Throughout this thesis important facts about real analysis or special spaces will be explained if they
are crucial to the proof of some results. Various rigorous and abstract definitions will not be men-
tioned since they are not vital to deriving the main result of this thesis. These are beyond the scope
of this thesis and would only make the central story harder to follow. To keep the thesis clear and
concise, it will be assumed that the reader is familiar with the basics of probability theory, i.e. what
a random variable is, what a stochastic process is, how conditioning works etc. Even though Markov
processes will not be fully covered in depth here, the reader is encouraged to study the field of Markov
processes further on their own. For some basic background on Markov theory, the reader is referred
to [4]

2.2. Function Spaces
We will first look at the definitions of some spaces of functions that are relevant for this thesis. For a
set E, such as Zd or Rd ,

• B(E , ·) is the space of bounded and measurable functions on E

• C0(E , ·) is the space of continuous functions on E that converge to 0 at ±∞

• Cb(E , ·) is the space of continuous functions on E that are bounded

• C n(E , ·) is the space of continuous functions on E that are n-times differentiable

• C∞(E , ·) is the space of continuous functions on E that are infinitely differentiable

• S(Rn) is the Schwartz space or space of functions onRn which are rapidly decreasing and whose
derivatives are also rapidly decreasing. The formal definition as in [15] is

S(Rn) := {
f ∈C∞(Rn | ∀a,b ∈Nn , || f ||a,b <∞}
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whereNn ;=N×·· ·×N the n-fold Cartesian product and

|| f ||a,b := sup
x∈Rn

∣∣∣xa(Db f )(x)
∣∣∣

where we use the notation xa := xa1
1 xa2

2 · · ·xan
n and Db := ∂b1

∂x
b1
1

∂b2

∂x
b2
2

· · · ∂bn

∂xbn
n

A function in Schwartz can be considered as a function that decays faster to zero for |x| →∞
than any polynomial of x such that all its derivatives exist everywhere on Rn and also decay
faster to zero than any polynomial of x as |x|→∞.

• D(E , ·) is the Skorokhod space. It consisits of functions that are right-continuous and have a left
limit. The functions are said to be càdlàg. For example all cumulative distribution functions
are càdlàg. This space is important in the study of stochastic processes that admit jumps, just
like a lot of Markov processes.

where ’·’ is the codomain of the function.. Note that S(Rn) ⊆C0(E) ⊆B(E)

2.3. Markov Theory
The key characteristic of Markov processes is the fact that they are memory-less, meaning the evolu-
tion of the system solely depends on the current state and not on the past states. To mathematically
define this property, we first need to introduce the filtration of a probability space:

Definition 2.3.1 (Filtration) Let (Ω,F ,P ) be a probability space and (T,T ) be a continuous time
space, where T ⊆ [0,∞). Then a non-decreasing sequence (Ft )t∈T of σ-algebras of F

Fs ⊆Ft ⊆F (2.1)

where s, t ∈ T,0 ≤ s ≤ t , is called a continuous filtration. It can be seen as the events up to time t. If X t

is Ft -measurable for all t ∈ T , then the sequence {X t : t ∈ T } is said to be adapted to (Ft )t∈T

This is called a discrete filtration if T would have been discrete. In this thesis we only use a continu-
ous time space so the discrete filtration is not relevant.

We can now define the Markov property by using a filtration on time and in doing so capture the
memorylessness of a Markov process

Definition 2.3.2 (Markov property) Let (Ω,F ,P ) be a probability space with a continuous filtration
(Ft )t∈T and let (E ,E ) be a measurable space. If for a random process X t :Ω→ E with t ∈ [0,∞) that is
adapted to the filtration it holds that: ∀S ∈ E , ∀s, t ∈ T with 0 ≤ s ≤ t ,

P (X t ∈ S|Fs) = P (X t ∈ S|Xs) (2.2)

or equivalently
E
(

f (X t )|Fs
)= E(

f (X t )|Xs
)

(2.3)

for f ∈B(R), the space of bounded and measurable functions on R

Remark 2.3.1 In the context of continuous-time pure jump processes, the memoryless property is com-
ing from the fact that the process jumps at exponentially distributed times.

Definition 2.3.3 (Markov Process) Let (Ω,F ,P ) be a probability space, (E ,E ) a measurable space and
(T,T ) a continuous time space. {X t : t ≥ 0} is a Markov process on E if
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• The paths t → X t are right continuous

• The process satisfies the Markov property with respect to {Xs : 0 ≥ s ≥ t }

Using the definition of a Markov Process we can define a Markov chain that encaptures how an
entire system evolves on which a Markov process takes place

Definition 2.3.4 (Continuous time Markov Chain) Let (Ω,F,P ) be a probability space, (E ,E ) a discrete
space state and (T,T ) a continuous time space. Let {X t : t ∈ T } be a Markov process in the sense of
2.3.3. Then {X t : t ∈ T } is a continuous time markov chain and is defined by

• (i) a probability vector µ on E as an initial distribution

• (ii) a rate matrix Q on E which is a function Q : E 2 →R such that

– ∀i , j ∈ E with i ̸= j ,Qi , j ≥ 0

– ∀i ∈ E ,
∑

j∈E , j ̸=i Qi , j =−Qi ,i

The entries of the rate matrix are called transition rates and they describe the instantaneous rate at
which a continuous-time Markov chain transitions between states.
A lot of Markov processes harbour some symmetry in them. Often positions are indistinguishable
and the rate at which you move from one to the other is the same both ways. This is captured in the
reversibility definition

Definition 2.3.5 (Reversible Markov Chain)Take a Markov chain that is continuous in time and let µ
be the probability measure on X ={X t : t ∈ T } s.t. µ is invariant on X0. The Markov chain X is reversible
if

µx c(x,y) =µy c(y,x), x, y ∈ S (2.4)

In other words, the Markov chain and its reversal in time have the same transition rates. Equation
2.4 is called the detailed balance equation.

2.3.1. Transition probability matrices
Besides the rates with which the Markov chain transitions between states, we can also define a matrix
with as entries the probabilities that a chain starting at one site ends up at another on time t .

Definition 2.3.6 (Transition Probability Matrix) Let {X t : t ∈ T } be a Continuous Time Markov Chain
on E. Then the matrix Pt is called the transition probability matrix at time t and has entries

Pt (x, y) =P(X t = y |X0 = x), x, y ∈ E (2.5)

Remark 2.3.2 P0=I , the identity matrix. If Pt does not depend on time, the Markov Chain X t : t ≥ 0 is
called time homogeneous and the following is true

Ps(x, y) =P(Xs+t = y |X t = x), x, y ∈ E , s ∈ T (2.6)

With this matrix we can define the Markov operator, which tells us how a function on the state
space changes with the Markov chain

Theorem 2.3.1 (Markov Operator) Let {Pt : t ≥ 0} be a set of transition probabilities of the Markov
chain {X t : t ≥ 0} with state space E and time space T . Suppose f : E →R is non-negative or f ∈B(E).
Then ∀t ∈ T

Pt f (x) = ∑
y∈E

Pt (x, y) f (y) = E( f (X t )|X0 = x), x ∈ E (2.7)

defines a Markov operator
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Proof: Reader is referred to [4] □

Pt describes the forward evolution of a function along the Markov process {X t : t ≥ 0}. To this evo-
lution of functions corresponds an evolution of probability measures via the formula

∫
f d

(
µPt

)
:=∫

Pt f dµ. The measure µPt is then called the measure at time t when started from the measure µ at
t = 0.

2.4. Semigroups and Generators
Let {Pt : t ≥ 0} be a family of Markov operators with an invariant measure µ that satisfy the following
conditions:

• (i) For every t ≥ 0, Pt is a linear operator sending bounded measurable functions on (E ,E ) to
bounded measurable functions

• (ii)P0 = I d , the identity function(initial condition)

• (iii)Pt+s = Pt Ps for t , s ≥ 0(semigroup property)

• (iv)Pt (1) = 1(mass conservation)

• (v) If f ≥ 0, then Pt f ≥ 0(positivity preserving)

• (vi)∀ f : E → [0,∞) the function Pt f is continuous

Then {Pt : t ≥ 0} is called a Markov semigroup (see [1]).

We will now introduce another type of semigroup that tells us something about the infinitesimal
change of a function. Is is crucial for defining the model of this thesis

Definition 2.4.1 Let {St : t ∈ T } be a continuous semigroup from C (E) →C (E). The operator

L f := lim
t→0+

St f − f

t
, f ∈ D(L) :=

{
f : lim

t→0+
St f − f

t
exists

}
(2.8)

is called the infinitesimal generator of {St : t ∈ T }

Corollary 2.4.0.1 For a Markov process {X t : t ∈ T } with semigroup {St : t ∈ T } the generator L is called
the Markov generator of {X t : t ∈ T } and its relation to St given by

St = e tL (2.9)

Proof: see [1] □
Corollary 2.4.0.2 If f ∈ D(L), then

d

d t
St f = St L f (2.10)

Proof: Let f ∈ D(L) where L is the infinitesimal generator of {St : t ∈ T } in the sense of (2.8). Then

d

d t
St f = lim

h→0

St+h f −St f

h

= St lim
h→0

Sh f − f

h
= St L f

where we used the property of a semigroup, i.e. St+h = St Sh , in the second equality. □
Remark 2.4.1 If the state space E is finite, the generator is simply a matrix and e tL is defined as the
matrix exponential. In the more general case, when L is a possibly unbounded operator, the exponen-
tial is defined via the Hille-Yosida theorem, see [11] for details.
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2.4.1. Random walks and Duality
A lot of systems involve particles that move randomly throughout an environment. The stochastic
process of keeping track every step that they make and summing it up is called a random walk. The
least complex system for a random walker to move through is a one-dimensional integer line. The
walker starts at a certain position and with each step it can move 1 to the right or to the left with cer-
tain probabilities. These probabilities do not have to be equal, modelling a bias in direction. This can
be used in for example queuing theory, where the rate at which customers arrive is not necessarily
the same at which the employee can help them.

The integer line can be expanded into higher dimensions, where in each step the walker can
move from their position to neighbouring lattices. This can model particles behaviour in a variety of
physical contexts or the process of diffusion.

To analyse the behaviour of the random walker in its environment, we look at the expected value
of a test function with the walkers position as its input by simple conditioning

ERW
x

(
φ (X t )

)=∑
y

P
(
X t = y |X0 = x

)
φ(y) =∑

y
Pt (x, y)φ(y)

where {X t : t ∈ T } is a Markov process on a state space, φ ∈ S(R) is a test function and Pt are the tran-
sition probabilities.

These random walks take discrete steps but the position of particles in the real world often take
on real values. That is why it is interesting to look at a scaled up version of these discrete walks. For
example, the simple symmetric random walk, i.e. equal probabilities to move in every direction, will
scale up towards a Brownian motion. This is the motion that particles will exhibit when immersed in-
side a fluid, for example a big dust particle inside of a gas. The position of the particles will randomly
fluctuate due to the collisions with the smaller particles. This process is called a Wiener process and
is relevant in numerous contexts within physics, chemistry, etc. and is defined as followed

Definition 2.4.2 Let {X (t ) : t ≥ 0} be a stochastic process with Xi i.i.d. random variables. The process
is called a Wiener process if it satisfies the following conditions:

• (i) X0 a.e.

• (ii) X has independent increments, i.e. ∀t ≥ 0, the future increments X t+u − X t , u ≥0 are inde-
pendent of Xr , t ≥ r ≥ 0

• (iii) the increments of X are Gaussian distributed with mean 0 and variance u, i.e. X t+u − X t =
N (0,u)

• (iv) X has almost surely continuous paths, i.e. X t is almost surely continuous in t

then the process is called a Wiener process.

Proposition 2.4.1 The generator L of a real-valued Wiener process applied on a function f ∈ D(L) =
C 2(R) is given by

L f = 1

2
f ′′ (2.11)

Proof: Note that for a Wiener process St f (x) = E(
f (Wt )|W0 = x

) = E(
f (x +N (0, t ))

)
, since the incre-

ments are normally distributed. Lets Taylor expand this term around x

E
(

f (x +N (0, t ))
)= E(

f (x)+N (0, t ) f ′(x)+ 1

2
N (0, t )2 f ′′(x)+O(N (0, t )3)

)
= f (x)+ 1

2
t f ′′(x)+O(t

3
2 )
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Since E(N (0, t )) = 0 and E(N (0, t )2) = t . Then the generator becomes

L f (x) = lim
t→0+

St f (x)− f (x)

t
= lim

t→0+

f (x)+ 1
2 t f ′′(x)+O(t

3
2 )− f (x)

t
= 1

2
f ′′(x)

□

The systems that are mostly analysed contain a multitude of particles. It is often difficult to keep
track of all the particles positions at once and do calculations with them. There is one aspect of ran-
dom walks that is very useful to resolve this complication. It is called duality. It relates the expected
behaviour of a random walk to its dual process. This can be for example the chance that a random
walker will reach a certain site related to the inverse walk starting at that site. More relevant for this
thesis, duality can be used to describe a system with numerous(possibly infinitely many) indepen-
dent walkers. It describes expectations of numbers of particles at time t > 0 in term of a finite number
of particles. More precisely, the expectation of a specific polynomial of degree n in the number of par-
ticles can be described in terms of n particles. In this thesis we will use the n = 1 case to describe the
expected number of particles in terms of a single walker. We will also use the n = 2 case to prove that
the variance of the density of the system converges to 0.
The duality between two Markov processes is understood in terms of a duality function D and gives
a one-to-one relation between the problem and its dual. The duality property is defined as followed

Definition 2.4.3 (Duality property)Let S, S̃ be the state spaces of the Markov processes (ηt )t≥0 and
(ξt )t≥0 respectively. The Markov processes are dual with respect to the duality function D : SxS̃ → R

if ∀t ≥ 0,∀η ∈ S,∀ξ ∈ S̃

Eη(D(ξ,ηt )) = Eξ(D(ξt ,η)) (2.12)

holds. If S = S̃, then the Markov process is called self-dual.
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3
The Freezing Model

3.1. Introduction
The Freezing Model investigates what the behaviour of particles is in a complicated environment,
where they can get frozen for an amount of time before unfreezing and moving again. The model
consists of particles that perform random walks and an infinite ’bunkbed’ in which the particles can
’sleep’.

The main concept of the Freezing Model is that these particles can get frozen to different degrees.
After getting frozen, they have to wait an exponential amount of time before they ’melt’ and are able
to move again. The higher the degree of freezing, the longer they are frozen on average.

The aim of studying this model is to gain insight into the movement of random walkers in special
environments. The Freezing Model can imitate phenomena like a special kind of diffusion or bacteria
reproduction and genetic variability in unfavourable environments(see [13]). The model can be a
first step in investigating what happens when particles can get ’trapped’ at certain cites. This can
be expanded by an inhomogeneous trapping environment, where the trapping depth is different per
site. Such a system, for example the Bouchaud trap model[3], will exhibit sub-diffusive behaviour.
The Freezing Model can be expanded to this sort of system by letting the average degree that the
particles get frozen by vary between sites.
These kinds of systems are very complex and even though the Freezing Model is relatively simple, it
can act as a first step towards understanding the behaviour of these systems.

3.2. Definition of the Freezing Model
Consider a continuous time Markov Process which operates on a probability space (Ω, F , P). This
process, denoted by X:={(X t , it ) : t ∈ T = [0,∞)}, has a countable infinite set of copies of the one-
dimensional integer line as the state space, S=Z×N0 and has a continuous time space T.

At time t=0 a finite amount of particles are placed on the lattice. These particles are performing
identical independent random walks with the following jump rates:

• a particle at layer 0 jumps from x to x±1 at rate 1

• a particle at x jumps from layer 0 to layer i at rate γu
i

• a particle at x jumps from layer i to layer 0 at rate γd
i

9



Written down formally, the jump rates from (x,i) to (y,j) of the random walk are:

c((x,i ),(y, j )) =



1, if i=j=0 and y=x±1

γu
j , if i=0, j ̸=0 and y=x

γd
i , if i ̸=0, j=0 and y=x

0, otherwise

(3.1)

The jump rates determine the distribution of the waiting time on each site. The mean waiting time
is equal to the sum of the jump rates away from that site, i.e.

τjump ∼ exp(c(x,i )), where c(x,i ) =
∑

(y, j )̸=(x,i )
c((x,i ),(y, j ))

For the Freezing Model this becomes

τjump ∼ exp(c(x,i )), where c(x,i ) =
{

2+∑∞
n=1γ

u
n , if i=0

γd
i , otherwise

(3.2)

Using the jump rates, we can calculate the generator of the process

G f (x, i ) = ∑
(y, j )∈Z×N0

c((x,i ),(y, j ))( f (y, j )− f (x, i ))

=
 f (x +1,0)−2 f (x,0)+ f (x −1,0)+∑

i∈Nγu
i ( f (x, i )− f (x,0)), if i=0

γd
i ( f (x,0)− f (x, i )), otherwise

(3.3)

We then consider the particles moving independently according to the generator (3.3). Initially
at each (x, i ) we place η(x, i ) particles and then call the number of particles at time t ηt (x, i ) and ηt

the whole configuration of these particle numbers. ηt is a Markov process and defined as followed

ηt = (ηt (x, i ))(x,i ) ∈X (3.4)

which has a state space X =NZ×N and its generator is given by:

L =L move +L sw ti ch (3.5)

where

L move f (η) = ∑
x∈Z

(
η(x,0)

(
f (η−δ(x,0) +δ(x+1,0))− f (η)

)
+η(x,0)

(
f (η−δ(x,0) +δ(x−1,0))− f (η)

)) (3.6)

and

L swi tch f (η) = ∑
x∈Z

∑
i∈N

(
γd

i η(x, i )
(

f (η−δ(x,i ) +δ(x,0))− f (η)
)

+γu
i η(x,0)

(
f (η−δ(x,0) +δ(x,i ))− f (η)

)) (3.7)

for local functions f :Z×N0 →R

We will now introduce some notation that is used later on:

• Eη denotes the expectation starting from a fixed initial configuration of particles η

• Eµ = ∫
Eηdµ(η) denotes the expectation starting from an initial configuration η which is itself

distributed according to µ

10



3.3. Hydrodynamic Limit
The behaviour of individual particles is now defined. Each particle is moving around independently.
Therefore it is relatively easy to study the collective behaviour of all particles and see how the model
scales up to a continuous space instead of a discrete one. This invites us to study the hydrodynamic
limit of the system, which shows us the macroscopic behaviour of the system. We will first make
some assumptions about the probability measures we use in the model at t=0

Assumption 3.3.1 [Compatible initial conditions]Let ρ̃i ∈ Cb(R;R+) for i ∈ N0 be the initial density
profiles of the layers. The sequence of probability measures (µN )N∈N on X is compatible with the ini-
tial conditions if:

• (i) For all i ∈N,φ ∈C∞
c (R) and δ> 0,

lim
N→∞

µN

(∣∣∣∣〈X i ,N
0 ,φ〉−

∫
R
ρ̃i (x)φ(x)d x

∣∣∣∣> δ)
= 0 (3.8)

• (ii) There exist a constant C < ∞ such that

sup
(x,i )∈Z×N

EµN

(
η(x, i )2

α2
i

)
≤C (3.9)

Note that 〈X i ,N
0 ,φ〉 = 1

N

∑
x∈Zη0(x, i )φ( x

N ).

With these compatible conditions we can now define the hydrodynamic limit for the Freezing
Model. First the result of the hydrodynamic limit is given, then the definition and meaning of this
limit are further explained and finally the limit will be proven. In this chapter we will obtain the
following result:

Theorem 3.3.1 Let ρ̃i ∈ Cb(R;R+) for i ∈ N0 be the initial density profiles of the layers and (µN )N∈N
be a sequence of compatible initial conditions such that

∫
η(y)dµN = ρ( y

N ). Let PµN be the law of the
measure valued-process:

{X N
t : t ≥ 0}, X N

t := (X i ,N
t )i∈N0

where

X i ,N
t := 1

N

∑
x∈Z

ηt N 2 (x, i )δ
( x

N

)
is the empirical field density for a single layer. Given that the expectation of a rescaled Markov process
of a random walker in the Freezing Model converges to the expectation of Switching Brownian Motion
as in equation (3.15), in other words

ERW
( x

N ,i )

(
f

(
X t N 2

N
, i

))
→ ESBM

( x
N ,i )

(
f (Bt , it )

)
As a consequence for φ ∈ S(R) a test function, the following holds ∀T,δ> 0

lim
N→∞

PµN

(
sup

t∈[0,T ]

∣∣∣∣〈X i ,N
t ,φ〉−

∫
R
ρt (x, i )φ(x)d x

∣∣∣∣> δ
)
= 0, i ∈N0 (3.10)

or equivalently

EµN

(
Eη

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ
( x

N

)))
→

N→∞

∫
R
ρt (x, i )φ(x)d x

11



and

VarµN

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ
( x

N

))
→

N→∞
0

where ρt (x, i ) are the unique continuous and bounded solutions of the system:{
∂ρt (x,0)

∂t =∆ρt (x,0)+∑
i≥1

(
γd

i ρt (x, i )−γu
i ρt (x,0)

)
∂ρt (x,i )

∂t = γu
i ρt (x,0)−γd

i ρt (x, i )
(3.11)

with initial conditions
ρ0(x, i ) = ρ̃(x, i ), i ∈N0 (3.12)

3.3.1. Meaning of the Hydrodynamic Limit
The concept of the hydrodynamic limit is to describe(i.e. define and prove) the macroscopic be-
haviour of the densities of particles after an appropriate rescaling of time and space. In this process
it turns the discrete space system into a continuous space system.
Recall that a finite amount of particles are placed in the system at the start. Lets say without loss
of generality that H <∞ is that amount. Every particle will perform an independent random walk
through the lattice, i.e. {X t : t ≥ 0}. Then configuration can be written down as {ηt : t ≥ 0} = {X i

t : t ≥
0, i ∈ {1,2, ..., H }}, where ηt (x, i ) =∑H

k=1 I (X k
t = (x, i )) denotes the number of particles at site (x, i ) and

time t . ηt (x, i ) has the Markov property given that the random walkers do.

The first step to the hydrodynamic limit is to define a sequence of discrete spaces UN ⊆ Z, N ∈ N
with |UN | = N such that for every x ∈ R there exist a sequence { xN

N : xN ∈ UN , N ∈ N} with xN
N → x

as N →∞. This is possible due to the fact that the rationals are dense in R[10]. The second step is
observing the macroscopic point x instead of the integer microscopic points xN using a sequence of
empirical field densities for a single layer

X i ,N
t := 1

|UN |
∑
x∈Z

ηtθN (x, i )δ
( x

N

)
whereδ(x) is the Kronecker delta function and θN is the time scaling factor. Since we expect diffusion
in our model, we choose θN = N 2. A detailed explanation for this factor can be found in section A.1.
We will investigate how this empirical field density will act on a test function, φ ∈ S(R), the Schwartz
space on R. Thus the object that will be looking at for the hydrodynamic limit is,

〈X i ,N
t ,φ〉 = 1

N

∑
x∈Z

ηt N 2φ
( x

N

)
using the fact that 〈δ( x

N

)
,φ〉 =φ( x

N

)
.

We will now introduce the macroscopic density function, which is a measurable function ρt (x, i ) :
R×N→ R≥0. A sequence of probability measures (µN ) is assigned to this density profile at t=0 so
that they will be compatible in the sense of equation (3.8. The hydrodynamic limit are the PDE’s of
these ρt (x, i ) when they satisfy equation (3.10). These PDE’s will therefor describe the behaviour of
the whole system.

3.3.2. Proof of the Hydrodynamic Limit
Before we prove equation (3.10), we will first introduce a duality relation between the configuration
process and a single random walker. Due to this relation we can analyse the behaviour of the con-
figuration by analysing the expected behaviour of a single random walker within the configuration.
This technique greatly simplifies some calculations we need to do. To prove the duality property we
need the detailed balance equation of our model in a slightly different form:

12



Remark 3.3.1 The detailed balance equation (2.4) in the case of the Freezing model becomes:

µ(0)γu
i =µ(i )γd

i

or:
µ(i )

µ(0)
= γu

i

γd
i

:=αi

Another form of the detailed balance equation is:

µ(i )Pt ((x, i ), (y, j )) =µ( j )Pt ((y, j ), (x, i ))

Dividing both sides by µ(0) ̸= 0 we get:

αi Pt ((x, i ), (y, j )) =α j Pt ((y, j ), (x, i )) (3.13)

Now we can prove the duality property of the Freezing Model

Proposition 3.3.1 (Duality property For each η ∈X and (x, i ) ∈ S

Eη

(
ηt (x, i )

αi

)
= ERW

(x,i )

(
ηt (X t , it )

αi t

)
(3.14)

where αi =
γu

i

γd
i

.

Proof: Starting from the left-hand side:

Eη

(
ηt (x, i )

αi

)
= E

( ∑
(y, j )∈S

η(y, j )∑
k=1

I (X k,(y, j )
t (t ) = (x, i ))

1

αi

)

= ∑
(y, j )∈S

η(y, j )∑
k=1

Pt ((y, j ), (x, i ))
1

αi

(3.13)= ∑
(y, j )∈S

η(y, j )∑
k=1

Pt ((x, i ), (y, j ))
1

α j

= ∑
(y, j )∈S

η(y, j )Pt ((x, i ), (y, j ))
1

α j
= ERW

(x,i )

(
ηt (X t , it )

αi t

)

where we used the linearity of the expectation value and the fact that the expectation value of the
indicator function of a random walk is the transition probability from starting site to the site that the
indicator is located on, i.e. E[I (X (y, j )(t ) = (x, i ))] = Pt ((y, j ), (x, i )), in the first step. In the second step
we used the detailed balance equation. □

With this duality property now proven, we can now prove that the expectation of the empiri-
cal field density converges to an integrand with ρt (i ) that satisfies equations (3.11). After that we
will prove that the variance of the empirical field density will converge to 0. These two facts together
prove equation (3.10). To prove the convergence of the expectation, we will first prove that the expec-
tation of a random walker in the Freezing Model will converge towards the expectation of a Switching
Brownian Motion.
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Convergence of the process generator
For any N ≥ 0 the rescaled dual R.W. generator is given by

GN f (x, i ) =
N 2

(
f (x +1,0)−2 f (x,0)+ f (x −1,0)+∑

n∈N
γu

n

N 2 ( f (x,n)− f (x,0))
)

, if i=0

N 2 γ
d
i

N 2 ( f (x,0)− f (x, i )), otherwise

=
N 2

(
f (x +1,0)−2 f (x,0)+ f (x −1,0)

)+∑
n∈Nγu

n( f (x,n)− f (x,0)), if i=0

γd
i ( f (x,0)− f (x, i )), otherwise

We will show that the random walker with this generator will converge to a switching Brownian mo-
tion(SBM) (Bt , it ) ∈R×Nwith a generator given by

LSB M f (x, i ) =
{
∆ f (x,0)+∑

n∈Nγu
n( f (x,n)− f (x,0)), if i=0

γd
i ( f (x,0)− f (x, i )), otherwise

(3.15)

Proposition 3.3.2 For each T ≥ 0 and f ∈C 2
c (R)

lim
N→∞

sup
t∈[0,T ]

sup
(x,i )∈Z×N0

∣∣∣∣ERW
( x

N ,i )

[
f

(
X t N 2

N
, i

)]
−ESBM

( x
N ,i )[ f (Bt , it )]

∣∣∣∣= 0 (3.16)

Proof: Let f (·, i ) ∈C 2
c (R) s.t. sup(x,i )∈Z×N | f (x, i )| <∞. Define

fN :
Z

N
×N0 →R

fN (
x

N
, i ) := f (

x

N
, i )

Then

lim
N→∞

sup
(x,i )∈Z×N0

∣∣∣ fN (
x

N
, i )− f (

x

N
, i )

∣∣∣= 0

and since limN→∞ N 2( f (x + 1
N , i )−2 f (x, i )+ f (x − 1

N , i )) →∆ f (x, i ),

lim
N→∞

sup
(x,i )∈Z×N0

∣∣∣GN fN (
x

N
, i )−LSB M f (

x

N
, i )

∣∣∣= 0

The results follows from the fact that the expectation of the processes will converge to the same value
if the generators converge. □

Step 1: Convergence of the expectation

EµN

(
Eη

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ
( x

N

)))

= EµN

(
Eη

(
1

N

∑
x∈Z

ηt N 2 (x, i )

αi
φ

( x

N

)
αi

))

= EµN

(
1

N

∑
x∈Z

Eη

(
ηt N 2 (x, i )

αi

)
φ

( x

N

)
αi

)

= EµN

(
1

N

∑
x∈Z

ERW
(x,i )

(
η(X t N 2 , it N 2 )

αi t N 2

)
φ

( x

N

)
αi

)

14



using duality in the last step. Using the fact that EµN [η(x, i )] = ρ( x
N , i ), we get the following

= 1

N

∑
x∈Z

αiE
RW
(x,i )

(
ρ(

X t N 2

N , it N 2 )

αi t N 2

)
φ

( x

N

)
→

N→∞

∫
R
αiE

SBM
(x,i )

(
ρ(Bt , it )

αi t

)
φ(x)d x

Using equation (3.16).
We then have that

ρt (x, i ) :=αiE
FM
(x,i )

(
ρ(Bt , it )

αi t

)
satisfies equations (3.11). The derivation for these PDE’s is in section A.2.

Step 2: Control of the variance and convergence in L 2 of the density field

We will first prove duality for two particles since we will use this to proof that the variance con-
verges to zero.

Theorem 3.3.2 (Duality for two particles) Let {X t : t ≥ 0} and {Yt : t ≥ 0} be two random walkers in
the Freezing Model. Then the following dual duality holds:

Eη

(
ηt (x, i )

αi

ηt (y, j )

α j

)
= ERW’s

((x,i ),(y, j ))

(
η(X t , it )

αi t

η(Yt , jt )

α jt

)
− ∑

(x ′,i ′)

η(x ′, i ′)
α2

i ′
Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (x ′, i ′))

(3.17)

Proof: The proof follows similar steps to the proof of the single particle duality and uses the fact
that the random walkers are independent of each other. The full proof is in the Appendix, see section
(A.4). □

Secondly we will need some facts about Schwartz functions

Theorem 3.3.3 Let f , g ∈ S(R) and let H be a bounded smooth function with bounded smooth deriva-
tives. Then the following two statements hold

• (i) f + g ∈ S(R)

• (ii) f H ∈ S(R)

Proof: Lets prove statement (i) first. Let f , g ∈ S(R). Then ∀a,b ∈N
|| f ||a,b = sup

x∈R
|xa(Db f )(x)| <∞

and
||g ||a,b = sup

x∈R
|xa(Db g )(x)| <∞

where Db f is the derivative operator acting on f b times. Then the following holds

|| f + g ||a,b = sup
x∈R

|xa(Db( f + g ))(x)| ≤ sup
x∈R

|xa(Db f )(x)|+ sup
x∈R

|xa(Db g )(x)| <∞

where we used linearity of the derivative operator and the triangle inequality. This means that || f +
g ||a,b <∞ and thus f + g ∈ S(R). For the proof of statement (ii) the reader is referred to [15].

Now we can start with the proof for the variance of the empirical field density of our model. We
will first make an assumption about the configurations:

15



Assumption 3.3.2 ∫
η(x, i )η(y, j )dµN =

{
ρ( x

N , i ))ρ( y
N , j ), if (x, i) ̸=(y, j)

ρ2( x
N , i ), if (x, i)=(y, j)

where ρ2( x
N , i ) ≤ ρ2( x

N , i ) ≤Cα2
i <∞ using equation (3.9).

VarµN

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)

)
= EµN

((
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N

)2)
−EµN

((
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N

))2

We will calculate the second term first:

EµN

((
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)

))
= 1

N

∑
x∈Z

φ(
x

N
)EµN

(
ηt N 2 (x, i )

)
= 1

N

∑
x∈Z

φ(
x

N

∫ ∑
(x ′,i ′)

η(x ′, i ′)Pt N 2 ((x, i ), (x ′, i ′))
αi

αi ′
dµN

= 1

N

∑
x∈Z

φ(
x

N
)

∑
(x ′,i ′)

ρ(
x ′

N
, i ′)Pt N 2 ((x, i ), (x ′, i ′))

αi

αi ′

where we used the duality property in the second equality and EµN [η(x, i )] = ρ( x
N , i ) in the last step.

so

(
EµN

((
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)
)))2

=
(

1

N

∑
x∈Z

φ(
x

N
)

∑
(x ′,i ′)

ρ(
x ′

N
, i ′)Pt N 2 ((x, i ), (x ′, i ′))

αi

αi ′

)2

= 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)

∑
(x ′,i ′)

∑
(y ′, j ′)

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (y ′, j ′))ρ(
x ′

N
, i ′)ρ(

y ′

N
, j ′)+O(1)

where the O(1) term is related to the fact taht we will discard the x=y terms as N →∞. We may do
this because the third and fourth sum are finite since Pt (·) ≤ 1 and the densities are bounded by
assumptions. This together with the fact that 1

N

∑
x φ( x

N )2 → ∫
Rφ(x)2d x <∞ and the extra 1

N factor
will make the x=y terms vanish in the limit when N goes to infinity.
Now we will calculate the first term of the variance:

EµN

((
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N

)2)

= 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)α2

i EµN

(
ηt N 2 (x, i )

αi

ηt N 2 (y, i )

αi

)
+O(1)

where the O(1) again comes from the x=y terms that we can discard again as N →∞. We may do
this because

1

N 2

∑
x
φ(

x

N
)2α2

i EµN

(
ηt N 2 (x, i )2

α2
i

)
≤ 1

N 2

∑
x
φ(

x

n
)2α2

i C →
N→∞

0

where we used (3.9) and the fact that 1
N

∑
x Cα2

i φ( x
N )2 →

N→∞
∫
RCα2

i φ(x)2 <∞, C <∞ and αi <∞.
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Now using equation (3.17) the top equation is

= 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)
α2

i

αi ′α j ′

∑
(x ′,i ′)

∑
(y ′, j ′)

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (y ′, j ′))
∫
η(x ′, i ′)η(y ′, j ′)dµN

− 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)
α2

i

α2
i ′

∑
(x ′,i ′)

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (x ′, i ′))
∫
η(x ′, i ′)dµN

= 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)

∑
(x ′,i ′) ̸=(y ′, j ′)

α2
i

αi ′α j ′
Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (y ′, j ′))ρ(

x ′

N
, i ′)ρ(

y ′

N
, j ′)

+ 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)

∑
(x ′,i ′)

α2
i

α2
i ′

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (x ′, i ′))ρ2(
x ′

N
, i ′)

− 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)

∑
(x ′,i ′)

α2
i

α2
i ′

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (x ′, i ′))ρ(
x ′

N
, i ′)

Where we used the assumptions about the configurations on both integrals. The total variance then
becomes

VarµN

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)

)

= 1

N 2

∑
x ̸=y

φ(
x

N
)φ(

y

N
)

∑
(x ′,i ′)

α2
i

α2
i ′

Pt ((x, i ), (x ′, i ′))Pt ((y, i ), (x ′, i ′))

(
ρ2(

x ′

N
, i ′)−ρ2(

x ′

N
, i ′)−ρ(

x ′

N
, i ′)

)

Define ξt ( x ′
N , i ′) :=∑

x

∣∣φ( x
N )

∣∣Pt ((x, i ), (x ′, i ′). then the following holds

VarµN

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)

)
≤ 1

N 2

∑
(x ′,i ′)

α2
i

α2
i ′

(
ρ2(

x ′

N
, i ′)−ρ2(

x ′

N
, i ′)−ρ(

x ′

N
, i ′)

)
ξt (

x ′

N
, i )2

We know

1

N

∑
(x ′,i ′)

α2
i

α2
i ′

(
ρ2(

x ′

N
, i ′)−ρ2(

x ′

N
, i ′)−ρ(

x ′

N
, i ′)

)
ξt (

x ′

N
, i )2 →

∫
R

α2
i

α2
i ′

(
ρ2(x ′, i ′)−ρ2(x ′, i ′)−ρ(x ′, i ′)

)
ξt (x ′, i )2d x ′

ξ is a convolution of |φ| ∈ S(R) and the transition probabilities Pt . The transition probabilities are all
smaller or equal to 1 and will not make jumps in time since the system will change smoothly through
time. This means that the Pt ’s are smooth and bounded and so are their derivatives. Using Theorem
3.3.3 we can say that ξ a function in the Schwartz-Space onR. Since the configuration is bounded and
smooth everywhere, the densities are also bounded and smooth together with all their derivatives.
This means, again using Theorem 3.3.3, that the function in the integral above is in the Schwartz
Space and is integrable(again see [15]).Therefore the integral will be finite and due to the extra 1

N
factor the following holds

VarµN

(
1

N

∑
x∈Z

ηt N 2 (x, i )φ(
x

N
)

)
→

N→∞
0
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3.3.3. Diffusive Case
In this section we investigate when the Freezing Model will show diffusive behaviour. To do this we
can solve the PDE’s of the system, equations (3.11). This is done by performing a Fourier-transform
and subsequently a Laplace-transform to the equations. This method is further written out in section
A.3 and results in the following PDE for the total density:{

∂ρ(x,t )
∂t = D ∂2ρ(x,t )

∂x2

ρ(x,0) = ρ̃(x)
(3.18)

where D = 1
1+K ,K =∑∞

i=1
γu

i

γd
i

. To achieve the diffusive behaviour we must have that K <∞.

Another way to find the PDE of the density is to note that the particles can only move in the ground
layer. Therefor the Freezing Model will behave as a diffusive system consisting of random walkers,
which scale to Brownian motion but with a scaled time to match the time that the particles in the
Freezing Model spend in the ground layer. The fraction of the time the particles roam in the ground
layer is exactly the stationary probability measure in layer 0, i.e. µ(0) = limN→∞µN (0). To find this
µ(0) we will use the detailed balance equation (2.4) for the layers:

µ(i )γd
i =µ(0)γu

i

We know that the sum of all probabilities should be 1, i.e.
∑∞

i=0µ(i ) = 1. After some algebra the
following can be obtained:

µ(0) = 1

1+∑∞
i=1

γd
i
γu

i

which is exactly the diffusion constant D in (3.18) as expected.

3.3.4. Non-Diffusive Case
The diffusive character of the model only showed up if K was finite. This will not be the case if K =∞
since there is no stationary distribution then in the ground layer, i.e. µ(0) = 0. We can still use the
equations (3.11) to find the PDE for this case.

Theorem 3.3.4 Let ρ̃i ∈ Cb(R;R+) for i ∈ N0 be the initial density profiles of the layers and (µN )N∈N
be a sequence of compatible initial conditions such that

∫
η(y)dµN = ρ( y

N ). Let PµN be the law of the
measure valued-process:

{X N (t ) : t ≥ 0}, X N (t ) := (X i ,N (t ))i∈N0 (3.19)

Let g ∈C∞
c (R). Then ∀T,δ> 0,

lim
N→∞

PµN

(
sup

t∈[0,T ]

∣∣∣∣〈X 0,N
t , g 〉−

∫
R
ρt (x,0)g (x)d x

∣∣∣∣> δ
)
= 0 (3.20)

where ρt (x,0) solve the following PDE:{
∂ρ0(x,t )

∂t =∆ρ0(x, t )+D−γ
t ρ0(x, t )−Cρ0(x, t )+∑∞

i=1γ
d
i e−γ

d
i t ρ̃i (x)

ρ0(x,0) = ρ̃0(x)
(3.21)

where

D−γ
t f (t ) =

∫ t

0

( ∞∑
i=1

γd
i γ

u
i e−γ

d
i (t−s)

)
f (s)d s (3.22)

18



Proof: Equation (3.20) is proven in Theorem 3.3.1. Note from (3.11) we get for each i ≥ 1,

ρt (x, i ) = e−γ
d
i t ρ̃i (x)+

∫ t

0
γd

i γ
u
i e−γ

d
i (t−s)ρs(x,0) (3.23)

Plugging this into (3.11) we get equation (3.21). □
We can analyse the non-diffusive case further by investigating in what way the particles will

freeze, i.e. what kind of decay the fraction of time in the ground layer follows. We will first introduce
a theorem that links behaviour of the Laplace transform of a function as λ→ 0 with the behaviour of
the function as t →∞,

Theorem 3.3.5 (Karamata’s Tauberian Theorem) Let f : [0,∞) →R of bounded-variation and define

ω(λ) =
∫ ∞

0
e−λt d f (t )

If r ∈R+, then the following statements are equivalent:

• (i) ω(λ) ∼Cλ−r as λ→ 0

• (ii) f (t ) ∼ C
Γ(r+1) t r as t →∞

Proof: See [6] □

Using this theorem we will now show that the probability that the particle is in the ground layer
will decay as t →∞.

Theorem 3.3.6 Let µ(i ), i ∈N0 be the probability measure on the layers of the Freezing Model. Assume

F (t ) =∑
i ̸=0γ

u
i γ

d
i e−γ

d
i t ≈ t−β, where 1 <β< 2. If K =∑∞

i=1
γu

i

γd
i

=∞, then

µt (0) ∼C tβ−2 (3.24)

Proof: As only the layers are now important and not the position on the layers, we use the generator
for the layer jump process,

L f (i ) = I (i = 0)
∞∑

j=1
γu

j ( f ( j )− f (0))+ I (i ̸= 0)γd
i ( f (0)− f (i ))

Let’s assume we start from i=0 and call µt (i ) the probability that we are in layer i at time t. Then we
have the following equations:

µ′
t (i ) =µt (0)γu

i −µt (i )γd
i , i ̸= 0

µ′
t (0) = ∑

j ̸=0
γd

j µt ( j )−µt (0)
∑
j ̸=0

γu
j

Set M =∑
j ̸=0γ

u
j <∞, else the second PDE would not be well-defined. Note that

∫ ∞
0 F (t )d t = M . By

solving the first PDE we get

µt (i ) =µ0(i )e−γ
d
i t +

∫ t

0
γu

i e−γ
d
i (t−s)µs(0)d s

and plugging this in into the second PDE

µ′
t (0) = (F ∗µ(0))(t )−Mµt (0) (3.25)
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where ∗ denotes convolution, i.e. ( f ∗ g )(t ) = ∫ t
0 f (t − s)g (s)d s and

F (t ) = ∑
j ̸=0

γu
j γ

d
i e−γ

d
i t

Let F̂ (λ) = ∫ ∞
0 F (t )e−λt d t denote the Laplace transform of F . Then F̂ ′(λ) = −∫ ∞

0 tF (t )e−λt d t and is
equal to the following: as λ→ 0

F̂ ′(λ) =−
∫ ∞

0
tF (t )e−λt d t =C

∫ ∞

0
−e−λt d(t 2−β) ≈Cλ−(2−β)

where we used Karamata’s Tauberian Theorem in the last step. We conclude thath

F̂ (λ) ≈Cλβ−1 +C0

where C0 = M . We then use equation (3.25) to find the Laplace transform of µt (0), i.e. µ̂(λ) =∫ ∞
0 µt (0)e−λt d t ,

µ̂(λ) = 1

λ+M − F̂ (λ)
≈Cλ1−β

Then by another application of the Tauberian theorem we obtain

µt (0) ≈C tβ−2

as t →∞. □

Rescaled Brownian Motion and sub-diffusive behaviour
In the diffusive case the random walkers will perform Brownian motion in the limit as N →∞ where
the amount of time the walker performs Brownian motion is equal to the part of the time the walker
is in layer 0. This is exactly the probability that the walker is in layer 0, i.e. θ(t )

t → µ(0) where θ(t ) is
the amount of time the walker is in layer 0. So the following holds:

X FM
t = X RW

θ(t ) ≃ B(θ(t )) = B(µ(0)t ) (3.26)

and
E
(
(X FM

t )2)=µ(0)t (3.27)

In the non-diffusive case the fraction of time the particles will be in layer 0 goes to 0, i.e. θ(t )
t → 0.

We know from earlier calculations that the probability that a particle will be in layer 0 behaves like
equation (3.24). This means that:

X FM
t = X RW

θ(t ) ≃ B(µ(0)t t ) = B(tβ−1) (3.28)

and
E
(
(X FM

t )2)=µt (0)t = tβ−1 (3.29)

with 1 < β < 2. We can conclude that the variance of the position of the walker grows slower than
linearly with the time. This is a consequence from the fact that the fraction of time the walker spends
in the ground layer, in which it can move in the x-direction, decays to 0 for large t . Due to the variance
growing slower than linearly with t , the system will display sub-diffusive behaviour.
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4
Simulations

In this chapter the simulations of the Freezing Model are shown and discussed. The simulations are
built in Python. The first idea on how to program a system with particles following Markovian dy-
namics was to take small time steps and check for each particle if they would jump and if so, where
they would jump to. This asked for a lot of random numbers to be generated in each step and check-
ing if these would be higher or lower than the exponential distribution for the jump times of their
current site. Also each particles distribution would change if they switched between layers. This re-
quired a lot of bookkeeping.

To solve this problem, the jump times for each layer were calculated before hand. We know the
jump times per layer are distributed according to (3.2). We can then generate the jump times by first
uniformly generating random numbers between 0 and 1. Then we apply the inverse of the probabil-
ity distribution function of the jump times to generate said jump times[17]. This is done a number
of times for each layer and the generated jump times are stored in a library. For the bottom layer a
number of random actions are then generated according to (3.1). This is not necessary for other lay-
ers since jumping to the bottom layer is the only action they can perform. The particles are then all
placed on the origin at t = 0. Each particle will leap through time to their next jump time, randomly
chosen from the set of already generated jump times for the layer that they are in. In this way the
particles make bigger time steps, hopping through time from jump to jump, skipping the time steps
where they do nothing and greatly reducing the computation time.

In the following figures the variance of the position of the particles is plotted against the time. We
will compare this with the variance of a normal Brownian motion with diffusion constant equal to 2.
The reason for this is the fact that we set the rates of going left or right equal to 1, which makes the to-
tal rate(and thus the diffusion constant) equal to 2. Additionally, a curvefit of the function f (x) = axb

is plotted of the variance of the particles in the Freezing Model. We will check if the variance of the
particles positions follow equations (3.27 and (3.29) . We will mainly look at the power of t of the
curvefit, because this tells us if the system shows diffusive or non-diffusive behaviour.

The system is first initiated with γu
i = 1

i and γd
i = i with 1 layer and 50 layers. 2000 particles are

placed in the system and the program runs for 10 seconds. Looking at the condition for diffusion

in (3.18), we expect diffusion-like behaviour from this setup since
∑∞

i=1
γu

i

γd
i

= ∑∞
i=1

1
i 2 = π2

6 <∞. The

variance of the particles position for the model with 1 layer is plotted in Figure 4.1 against the time,
along with the variance of normal Brownian motion and the curvefit of the variance. The same is
plotted in Figure 4.2 for 50 layers.
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Figure 4.1: The variance of the position of the walkers in the Freezing Model with 1 layer plotted against the time where
γu

i = 1
i and γd

i = i . The variance of the Brownian motion and the curvefit with f (x) = axb are also plotted. The found
values for the curvefit are a=2.041 ± 0.008and b=0.996 ± 0.002

Figure 4.2: The variance of the position of the walkers in the Freezing Model with 50 layers plotted against the time where
γu

i = 1
i and γd

i = i . The variance of the Brownian motion and the curvefit with f (x) = axb are also plotted. The found
values for the curvefit are a=0.924 ± 0.005and b=0.946± 0.003

We can see that the variance of the particles position in the Freezing model with the aforemen-
tioned rates and consisting of 1 layer follows the variance of the Brownian motion closely. The curve-
fit returns a power of t of 0.996. This is close to 1, which is the power of t in the variance of Brownian
motion. This is as expected since the model with 1 layer imitates particles performing a symmetric
random walk on a one-dimensional integer line, which scales towards Brownian Motion. For 50 lay-
ers the curvefit returns a power of 0.946, which is a bit lower but still close to 1. Therefore, the model
again exhibits Brownian-like motion as expected with these jump rates.

We now switch the rates to γu
i = i and γd

i = 1
i . Again looking at (3.18), this time the diffusion

condition is not satisfied since
∑∞

i=1
γu

i

γd
i

=∑∞
i=1 i 2 =∞. The program will run for 5 and 50 layers. Even

though the sum of the ratio of the rates will be finite, we expect that as the number of layers increases,
the behaviour of the system will become more and more sub-diffusive. The program is again run for
10 seconds with 2000 particles. The variance of the particles position for the model with 5 layer is
plotted in Figure 4.3 against the time, along with the variance of normal Brownian motion and the
curvefit of the variance. The same is plotted in Figure 4.4 for 50 layers without the variance of the
Brownian motion.
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Figure 4.3: The variance of the position of the walkers in the Freezing Model with 50 layers plotted against the time where
γu

i = i and γd
i = 1

i . The variance of the Brownian motion and the curvefit with f (x) = axb are also plotted. The found
values for the curvefit are a=0.576 ± 0.004and b=0.770± 0.003

Figure 4.4: The variance of the position of the walkers in the Freezing Model with 50 layers plotted against the time where
γu

i = i and γd
i = 1

i . The variance of the Brownian motion and the curvefit with f (x) = axb are also plotted. The found
values for the curvefit are a=0.011086 ± 0.00008and b=0.378± 0.004

With only 5 layers the curvefit already returns a power of t of 0.770, which is significantly smaller
than 1. From the plot it is clear to see that the variance of the particles positions grows notably slower
than t . For the instance with 50 layers this sub-diffusive behaviour is even more prominent, with the
curvefit returning a power of 0.378 for the variance.

It is worth noting the difference between the diffusive and non-diffusive case. In the first model
with 50 layers, the variance grew with t 0.946, where as in the second model the variance grew with
t 0.378. This powers of t for both cases clearly show the difference between the diffusive and non-
diffusive behaviour, depending on the jumping rates.
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5
Concluding Remarks

The key thing to lay emphasis on is the difference in diffusive and non-diffusive behaviour of the
Freezing Model. When the sum of the ratios of rates up divided by the rates down is finite, the model
exhibits diffusive behaviour. The time the particles occupy the ground layer where they move dif-
fusively grows linearly with t . This results in Brownian motion like movement. The density of the
system then satisfies the heat equation with a diffusion constant involving the rates. When the afore-
mentioned sum is infinite, the particles occupy the ground layer an amount of time that grows less
than linear with t . For that reason they exhibit sub-diffusive behaviour. The PDE of the density now
possesses a term that takes into consideration the past behaviour of the system. This memory aspect
is worth noting, since we started off with a Markovian process, which is known for its memoryless-
ness.

It is worth mentioning that the probability measures were not defined specifically, besides the
fact that they are compatible with the initial conditions and that they are memoryless for the Markov
property. An assumption for Poisson distributions as initial distributions would have made the cal-
culations easier, but the result less general.

The Freezing Model contains a one-dimensional integer line with at each site per layer the same
rates. For future research the model can be expanded into higher dimensions, modelling particles
moving on surfaces or through volumes. Another interesting feature to add is different rates per site
and see what kind of behaviour the model will exhibit then. This could imitate certain locations be-
ing colder than other ones, which causes the particles to have a higher chance to freeze there.

The goal of the simulations done in this thesis was to show that the model would exhibit diffusion-
like behaviour or non-diffusive like behaviour depending on the rates. It was shown that for the
non-diffusive case, the variance would grow significantly slower than linearly with t . However, the
relation between the power of t with which the variance grows and the number of layers(and thus
the diffusion constant) can still be further investigated.
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A
Appendix

A.1. Scaling Parameter
The process must be invariant under the scaling. This means the differential equation of the density
must be invariant under scaling.

The equation is of the form:

∂ρ

∂t
= D

∂2ρ

∂x2 (A.1)

Now the following coordinate transformations are applied:

x ′ = ax +x0

t ′ = bt + t0
(A.2)

Plugged into (A.1) gives:

b
∂ρ

∂t ′
= a2D

∂2ρ

∂x ′2 (A.3)

Since the equation is invariant under this scaling,

∂ρ

∂t ′
= D

∂2ρ

∂x ′2 (A.4)

holds, which implies that b = a2. In other words, a scaling by a factor a in space results in a scaling
by a factor b = a2 in time. In the model from this thesis space is scaled by a factor N , which implies
that the time should be scaled by a factor N 2.

A.2. PDE Derivation
In this section we will derive the PDE’s for the densities of the Freezing Model. We start with the
generator of the model operating on a site in the configuration

L η(x, i ) = I (i = 0)

(
η(x +1, i )−2η(x, i )+η(x −1, i )+

∞∑
n=1

(
γd

nη(x,n)−γu
nη(x, i )

))
+ I (i ̸= 0)

(
γu

i η(x,0)−γd
i η(x, i )

) (A.5)
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Define the empirical density field as:

πN (η) := 1

N

∑
x∈S

ηt N 2 (x, i )δ(
x

N
, i ) (A.6)

Then:

L (N )〈πN (η),φ〉 =
1

N

∑
x∈S

N 2φ(
x

N
, i )

[
I (i = 0)

(
η(x +1, i )−2η(x,0)+η(x −1,0)+

∞∑
n=1

(
γd

n

N 2η(x,n)− γu
n

N 2η(x, i )

))

+I (i ̸= 0)

(
γu

i

N 2η(x,0)− γd
i

N 2η(x, i )

)]

= 1

N

∑
x∈S

N 2η(x, i )

[
I (i = 0)

(
φ(

x +1

N
, i )−2φ(

x

N
, i )+φ(

x −1

N
, i )+

∞∑
n=1

(
γd

n

N 2φ(
x

N
,n)− γu

n

N 2φ(
x

N
, i )

))

+I (i ̸= 0)

(
γu

i

N 2φ(
x

N
,0)− γd

i

N 2φ(
x

N
, i )

)]
= (□)

(A.7)

The offsets on the η’s were moved to φ’s and the parameters were rescaled by a factor of 1
N 2 . Note

that:

lim
h→0

φ(x +h)−2φ(x)+φ(x −h)

h2 =φ′′(x)

⇐⇒

lim
N→∞

N 2
(
φ(x + 1

N
)−2φ(x)+φ(x − 1

N
)

) (A.8)

Using then substitution h = 1
N . Then equation (A.7) becomes as N →∞:

(□) →
N→∞

1

N

∑
x∈S

η(x, i ) [ I (i = 0)φ′′(
x

N
)+

∞∑
n=1

(
γd

nφ(
x

N
,n)−γu

nφ(
x

N
, i )

)
+ I (i ̸= 0)

(
γu

i φ(
x

N
,0)−γd

i φ(
x

N
, i )

)] (A.9)

This is a simple Riemann sum and converges to the following integral:{∫ (
φ′′(x,0)+∑∞

n=1

(
γd

nφ(x,n)−γu
i φ(x,0)

))
ρ(x,0)d x , for i=0∫ (

γu
i φ(x,0)−γd

i φ(x, i )
)
ρ(x, i )d x , for i ̸= 0

(A.10)

Thus the following PDE’s are satisfied:{
∂ρt (x,0)

∂t =∆ρt (x,0)+∑
i≥1

(
γd

i ρt (x, i )−γu
i ρt (x,0)

)
∂ρt (x,i )

∂t = γu
i ρt (x,0)−γd

i ρt (x, i )
(A.11)

A.3. Solving PDE
Lets assume that all the particles start in the moving layer at t=0, i.e. ρ̃i (x) = 0 for i≥1. Then by
applying a Fourier transform in x and a Laplace transform in t to equations (3.11) we get:{

λρ̂0(k,λ)− ρ̃0(k) =−k2ρ̂0(k,λ)+∑∞
i=1

[
γd

i ρ̂i (k,λ)−γu
i ρ̂0(k,λ)

]
λρ̂i (k,λ) = γu

i ρ̂0(k,λ)−γd
i ρ̂i (k,λ)

(A.12)
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Where ρ̂i (k,λ) is the Fourier- and Laplace-transform of ρi (x, t ) and ρ̃0(k) is the Fourier-transform of
ρ̃0(x).

The second equation of (A.12) becomes:

ρ̂i (k,λ) = γu
i

λ+γd
i

ρ̂0(k,λ) (A.13)

Plugging this into the first equation of A.12 and simplifying:

ρ̂0(k,λ) = ρ̃0

λ+k2 +∑∞
i=1(γu

i − γd
i γ

u
i

λ+γd
i

)

=
(∏∞

i=1(λ+γd
i )

)
ρ̃0(∏∞

i=1(λ+γd
i )

)(
λ+k2 +∑∞

i=1γ
u
i

)−∑∞
i=1γ

d
i γ

u
i

∏∞
i=1
i ̸= j

(λ+γd
j )

(A.14)

Using equation (A.13) and adding all the layers up we get the following for the transform of the total
density:

ρ̂(k,λ) =

[(∏∞
i=1(λ+γd

i )
)+∑∞

i=1γ
u
i

(∏∞
j=1
j ̸=i

(λ+γd
i )

)]
ρ̃0(∏∞

i=1(λ+γd
i )

)(
λ+k2 +∑∞

i=1γ
u
i

)−∑∞
i=1γ

d
i γ

u
i

∏∞
i=1
i ̸= j

(λ+γd
j )

(A.15)

The diffusion, and thus the PDE of the total density ρ, is invariant under the rescaling of the space by
a factor of 1

N and the time by a factor of N 2 as N →∞. This implies that the Fourier- and Laplace-
transform should be invariant when k is rescaled by 1

N and λ is rescaled by 1
N 2 since t and λ have

inverse scalings([8]). Let ϵ= 1
N , then the following must hold:

lim
ϵ→0

ϵ2ρ̂(ϵk,ϵ2λ) = ρ̂(k,λ) (A.16)

Applying this limit to equation (A.15) we get:

lim
ϵ→0

ϵ2ρ̂(ϵk,ϵ2λ) =

(∏∞
i=1γ

d
i +∑∞

i=1γ
u
i

∏∞
j=1
j ̸=i

γd
j

)
ρ̃0(∏∞

i=1γ
d
i +∑∞

i=1γ
u
i

∏∞
j=1
j ̸=i

γd
j

)
λ+ (∏∞

i=1γ
d
i

)
k2

(A.17)

Dividing numerator and denominator by
∏∞

i=1γ
d
i we get:

ρ̂(k,λ) =

(
1+∑∞

i=1
γu

i

γd
i

)
ρ̃0(

1+∑∞
i=1

γu
i

γd
i

)
λ+k2

(A.18)

or:

ρ̂(k,λ) = ρ̂0

λ+Dk2 (A.19)

where D = 1

1+∑∞
i=1

γu
i
γd

i

.

This is exactly the Fourier- and Laplace-transform we get from the following PDE:

∂ρ

∂t
= D

∂2ρ

∂x2 (A.20)

with initial conditionρ(x,0) = ρ0. Since the Fourier-transform and the Laplace-transform are unique,

the density profile of the Freezing Model follows equation (A.20) if
∑∞

i=1
γu

i

γd
i

<∞.
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A.4. Duality for two particles
For convenience the theorem is repeated:

Let {X t : t ≥ 0} and {Yt : t ≥ 0} be two random walkers in the Freezing Model. Then the following dual
duality holds:

Eη

[
ηt (x, i )

αi

ηt (y, j )

α j

]
= ERW’s

((x,i ),(y, j ))

[
η(X t , it )

αi t

η(Yt , jt )

α jt

]
(A.21)

Proof:

Eη

[
ηt (x, i )

αi

ηt (y, j )

α j

]
= E

[( ∑
(x ′,i ′)

η(x ′,i ′)∑
k=1

I (X k,(x ′,i ′)
t = (x, i ))

1

αi

)
( ∑

(y ′, j ′) ̸=(x ′,i ′)

η(y ′, j ′)∑
n=1

I (Y n,(y ′, j ′)
t = (y, j ))

1

α j
+ ∑

n ̸=k
I (Y n,(x ′,i ′)

t = (y, j ))
1

α j

)]

= E
[ ∑

(x,i ′)

∑
(y ′, j ′) ̸=(x ′,i ′)

η(x ′,i ′)∑
k=1

η(y ′, j ′)∑
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I (X k,(x ′,i ′)
t = (x, i ))I (Y n,(y ′, j ′)

t = (y, j ))
1

αi

1

α j

+ ∑
(x,i ′)

η(x ′,i ′)∑
k=1

∑
n ̸=k

I (X k,(x ′,i ′)
t = (x, i ))I (Y n,(x ′,i ′)

t = (y, j ))
1

αi

1

α j

]

= ∑
(x ′,i ′)

∑
(y ′, j ′) ̸=(x ′,i ′)

η(x ′, i ′)η(y ′, j ′)Pt ((x ′, i ′), (x, i ))Pt ((y ′, j ′), (y, j ))
1

αi

1

α j

+ ∑
(x ′,i ′)

η(x ′, i ′)(η(x ′, i ′)−1)Pt ((x ′, i ′), (x, i ))Pt ((x ′, i ′), (y, j ))
1

αi

1

α j

= ∑
(x ′,i ′)

∑
(y ′, j ′)

η(x ′, i ′)η(y ′, j ′)Pt ((x, i ), (x ′, i ′))Pt ((y, j ), (y ′, j ′))
1

αi

1

α j ′

− ∑
(x ′,i ′)

η(x ′, i ′)Pt ((x, i ), (x ′, i ′))Pt ((y, j ), (x ′, i ′))
1

α2
i ′

= ERW’s
((x,i ),(y, j ))

[
η(X t , it )

αi t

η(Yt , jt )
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]
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(x ′,i ′)
η(x ′, i ′)Pt ((x, i ), (x ′, i ′))Pt ((y, j ), (x ′, i ′))

1
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where we used E
[

I (X (z,l )
t = (x, i ))I (Y (r,m)

t = (y, j ))
]
= P (2)

t ((z, l ), (x, i ); (r,m), (y, j )) = Pt ((x ′, i ′), (x, i ))Pt ((y ′, j ′), (y, j ))

in the third equality using the independence of the random walkers. In the fourth equality the de-
tailed balance equation was used for both random walkers.

A.5. Python Code
Listed below is the Python code used to model the Freezing model for the non-diffusive case. The
diffusive case can be obtained by switching the functions for the rates.

import random
import numpy as np
import math
import matplotlib . pyplot as p l t
import scipy . s t a t s
import time
from numba import j i t
from scipy . optimize import c u r v e _ f i t

#define jump rates and jump time d i s t r i b u t i o n s
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def g_u (n ) :
return n* * 0 . 5

def g_d (n ) :
return 1/n* * 0 . 5

def inv_exp ( l , x ) :
return −1/ l *np . log (1−x )

start_time = time . time ( )

N=5

l a y e r s = [ 0 , 4]

for m in l a y e r s :
nr_actions = 100000
x = np . array ( [ random . random ( ) for i in range ( nr_actions ) ] )
x_0 = np . array ( [ random . random ( ) for i in range ( nr_actions * 1 0 ) ] )

# Calculate jump times
jump_times = { }
jump_times [ ’ 0 ’ ] = l i s t ( inv_exp (2+sum( g_u ( j )/N**2 for j in range ( 1 , m) ) , x_0 ) )
for j in range ( 1 , m) :

jump_times [ s t r ( j ) ] = l i s t ( inv_exp ( g_d ( j ) /N* *2 , x ) )

# Calculate actions on layer 0
z = [random . uniform ( 0 , 2+sum( g_u ( j ) /N**2 for j in range ( 1 , m) ) ) for n in range ( len ( x ) * 1 0 ) ]
action_0 = [ ’ l e f t ’ i f i <=1 else ’ r ight ’ i f (1<= i and i <=2) else i −2 for i in z ]

for i in range ( len ( action_0 ) ) :
i f is instance ( action_0 [ i ] , f l o a t ) :

s=action_0 [ i ]
n=0
while s >0:

n+=1
s−=g_u (n) /N**2

action_0 [ i ] = n

print ( ’ time a f t e r calculat ing jump_times and actions : ’ , time . time () − start_time )

# I n i t i a t e p a r t i c l e s with [ x_positionm , layer , time ]
n r _ p a r t i c l e s = 1000
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end_time = 10*N**2
f i n a l _ l o c s = [ ]
for k in range ( n r _ p a r t i c l e s ) :

locs = [ [ 0 , 0 , 0 ] ]
i n t e r _ l o c = [ [ 0 , 0 , 0 ] , jump_times [ ’ 0 ’ ] . pop ( ) ]
while locs [ − 1 ] [ 2 ] < end_time :

i n t e r _ l o c [ 0 ] [ 2 ] += i n t e r _ l o c [ 1 ]
i f i n t e r _ l o c [ 0 ] [ 1 ] == 0 :

action = action_0 . pop ( )
i f action == ’ l e f t ’ :

i n t e r _ l o c [ 0 ] [ 0 ] −= 1/N
i n t e r _ l o c [ 1 ] = jump_times [ ’ 0 ’ ] . pop ( )

e l i f action == ’ right ’ :
i n t e r _ l o c [ 0 ] [ 0 ] += 1/N
i n t e r _ l o c [ 1 ] = jump_times [ ’ 0 ’ ] . pop ( )

e lse :
i n t e r _ l o c [ 0 ] [ 1 ] += action
i n t e r _ l o c [ 1 ] = jump_times [ s t r ( action ) ] . pop ( )

e lse :
i n t e r _ l o c [ 0 ] [ 1 ] = 0
i n t e r _ l o c [ 1 ] = jump_times [ ’ 0 ’ ] . pop ( )

locs . append( i n t e r _ l o c [ 0 ] . copy ( ) )
f i n a l _ l o c s . append( locs )

print ( ’ Time a f t e r calculat ing walks : ’ , time . time () − start_time )

# sort the p a r t i c l e s positions per time step
dt = 0.5
i n t e r _ t = dt
min_locs = [ [ f i n a l _ l o c s [ i ] [ 0 ] [ 0 ] ] for i in range ( len ( f i n a l _ l o c s ) ) ]

while i n t e r _ t < end_time :
i n t e r _ t += dt
next_locs = [ [ f i n a l _ l o c s [ i ] [ j ] [ 0 ] for j in range ( len ( f i n a l _ l o c s [ i ] ) ) i f f i n a l _ l o c s [ i ] [ j ] [ 2 ] > i n t e r _ t ] for i in range ( len ( min_locs ) ) ]
min_locs = [ min_locs [ i ] + [ next_locs [ i ] [ 0 ] ] for i in range ( len ( min_locs ) ) ]

# calculate variance of p a r t i c l e s
var_x = np . array ( [ np . var ( [ min_locs [ i ] [ j ] for i in range ( len ( min_locs ) ) ] ) for j in range ( len ( min_locs [ 0 ] ) ) ] )
t = np . array ( [ i * dt for i in range ( len ( var_x ) ) ] )

# plot the variance and the variance of normal Brownian motion
p l t . f i g u r e ( )
p l t . plot ( t /N* *2 , var_x , l ab e l = ’ Variance of the walker ’ , c = ’b ’ , lw = 3)
i f m==0 or m==4:

p l t . plot ( t /N* *2 , 2* t /N* *2 , l a be l = ’ Variance of Brownian motion ’ , c = ’g ’ , lw = 3)
p l t . t i t l e ( ’ Variance of the walkers in the Freezing Model through time with { } l a y e r s \n with $\gamma_{n} ^ {u} = \ f r a c { 1 } { n} $ and $\gamma_{n} ^ {d} = n$ \n along with that of normal Brownian motion and a c u r v e f i t ’ . format (m+1) , fonts iz e = ’40 ’)
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print ( ’ Time a f t e r variance : ’ , time . time () − start_time )

# calculate c u r v e _ f i t
def func ( x , a , b ) :

return a* x **b

popt , pcov = c u r v e _ f i t ( func , t /N* *2 , var_x )
t_0 = np . linspace ( 0 , max( t /N* * 2 ) , 10000)
print ( popt )

# plot c u r v e _ f i t
p l t . plot ( t_0 , func ( t_0 , * popt ) , l a be l = ’ Curvefi t with $f ( x )=a* x ^{b} $ ’ , c = ’ r ’ , lw = 3)
p l t . legend ( fonts i z e = ’30 ’)
p l t . x label ( ’ Time $t$ ’ , fonts i z e = ’50 ’)
p l t . y label ( ’ Position $x$ ’ , fo nts i z e = ’50 ’)
p l t . grid ( True )
p l t . xlim ( 0 , max( t /N* * 2 ) )
p l t . ylim ( 0 , min ( [ var_x [ −1] , func ( t_0 [ −1] , * popt ) ] ) )
p l t . tick_params ( l a b e l s i z e = ’30 ’)
p l t . show ( )
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