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ARTICLE INFO ABSTRACT

Reliability assessment with adaptive Kriging has gained notoriety due to the Kriging capability of accurately
replacing the performance function while performing as a self-improving function for learning procedures.

Recent works on adaptive Kriging pursued to improve the efficiency of the active learning through the ap-
plication of distinct learning functions, sampling methods, or frameworks to assess the learning space. Within
this context, the present work exploits three innovative applications of density scanning to improve the effi-
ciency of the adaptive Kriging. Density scanning has significant synergies with adaptive Kriging implementation.
For most learning criteria, candidate points occur in dense clusters. This is due to the fact that the most efficient
learning strategies pursue to improve predictions near the failure region, or when the prediction uncertainty is
large.

Identifying dense clusters of points, and fomenting exploitation of these, parallelizing computations, and
limiting the generation of dense clusters in the design of experiments are examples of learning frameworks that
can be achieved with density scanning. Three reference examples are researched in the present work, a complex
function, a series system, and a relatively high dimension engineering problem. For all the cases, the application
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of density scanning is identified to improve the active learning efficiency.

1. Introduction

Uncertainty is prevalent in real engineering systems. To a large
extent every single variable in an engineering system is prone to un-
certainty. Therefore, in order to enable robust engineering designs, the
different sources of uncertainty need to be comprehensively analysed
during the life-cycle assessment of an engineering system. In this con-
text, reliability analysis, is the approach that provides the tools and
techniques to characterize the probabilistic behaviour of a structure or
system with the ultimate goal of characterizing its susceptibility to
failure.

Due to its relevance, significant efforts have been made in order to
improve the reliability analysis procedures. The growing trends in data
availability, in modeling complexity, and availability of resources for
analysis have increased the requirement for efficient reliability char-
acterization procedures. Adaptive Kriging (AK) procedures are a re-
ference example that have gained significant relevance in the context of
efficient reliability analysis.

The idea of using Kriging models for reliability analysis of complex
limit-state functions has been proven successful over the past few years.
Kriging models are exact interpolators based on the idealization of the
numerical model response as a realization of a Gaussian stochastic
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process [1]. Their capability to enclose uncertainty is of relevance for
classification problems, such as the problem of reliability. They allow a
significant reduction of the effort required for reliability analysis
without compromising its accuracy.

The objective of the present paper is then to further exploit the
application of Kriging models for reliability calculations. The analysis
presented is focused on the application of an alternative com-
plementary active learning framework that improves the reliability
calculations with Kriging models.

It is noted that the most successful Kriging metamodeling applica-
tions to reliability analysis use an active learning function that provides
unsupervised improvement in the surrogate approximation of the per-
formance function. It consists in creating a surrogate that is progres-
sively improved with heuristic enrichment of its design of experiments.
The term enrichment is commonly used to characterize the procedure of
active learning and sequential selection of new points points to improve
the metamodeling approximation. Methods that use this approach are
frequently classified as AK procedures.

The AK denomination has its roots in the work of [1], where the
authors defined an innovative procedure for reliability analysis using
Kriging models and Monte Carlo Sampling (MCS), the AKMCS. It uses
the so-called U function, which has gained notoriety in the application
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Nomenclature

B Polynomial trend function

X Sample of support points

Y Performance evaluation at support points
8eval Number of performance function evaluations
e Relative error of prediction

EGRA Efficient Global Reliability Analysis

EFF Expected Feasibility Function

IS Importance Sampling

MCS Monte Carlo Sampling

SS Subset Sampling

LIF Least Improvement Function

REIF Reliability Expected Improvement function
ISKRA  Improved sequential reliability analysis

AK Adaptive Kriging

g Performance function

Py Probability of failure

CoV Coefficient of variation

Nyies Size of Monte Carlo sample

G Metamodel of g

DoE Design of Experiments

f Metamodel polynomial approximation

D Degree of metamodel polynomial approximation
V4 Metamodel zero mean Gaussian component
d Size of dimensional space

C Covariance matrix

o? Metamodel constant process variance

U and o Metamodel mean and variance prediction

R Correlation function

?] Metamodel hyperparameter

S Search function

Xns1 Selected candidate to enrich X

E[-] Expected value

U U learning function

® and ¢ Standard cumulative and densities functions
¢ Density scanning distance measure

MinPts  Minimum number of points in a density scanned group
D and D, Threshold quantifiers of

KB Kriging believer

c Size of candidate points

x Generic variable in the space

L Subset of candidates

L. Subset of cross-candidates from L to build L,
L, Cross-classification subset

Cc Density group classification

l Number of L subsets

P, Probability of misclassification

n Expectation of error from misclassification
ds Density scanning

RD Response-distance function

H H learning function

Niger Number of iterations

of AK due to its simplicity and efficiency. Despite the initial denomi-
nation of AKMCS, to a broader extent almost every AK procedure ap-
plies an active learning procedure and MCS to evaluate the probability
of failure (Py).

It is noted that application of Kriging models in reliability analysis
dates previously to the work of [2]. In this pioneer work, limitations
and improvements for further application of these models in the context
of reliability analysis were discussed.

Later, Bichon et al. [3] introduced the approach of Efficient Global
Reliability Analysis (EGRA), built on the Efficient Global Optimization
(EGO) of Jones et al. [4], and highlighting the need for a progressive
improvement in the reliability calculations with Kriging models. The
authors propose the Expected Feasibility Function (EFF) for the active
learning procedure.

In [5] the AKMCS was combined with importance sampling (IS),
AKIS, for limit-state functions where the failure is confined to a parti-
cular region of the space, such that the most probable failure point
(MPP) can be accurately defined. Fauriat and Gayton [6] also adapted
the AKMCS, but for system reliability analysis. Huang et al. [7] applied
subset sampling (SS) with an AK, AK-SS, improving even further the
efficiency of the algorithm for very small probabilities of failure. Tong
et al. [8] applied a similar AK approach that combined IS and SS,
creating an hybrid algorithm called AK-SSIS. Significant research efforts
have been identified in the introduction of new search functions and
hybrid procedures. Lv et al. [9] uses line sampling combined with AK
and introduces the learning function H, which uses information entropy
to enrich the design of experiments used to create the metamodel. Sun
et al. [10] also proposed a new learning function, the Least Improve-
ment Function (LIF), that directly evaluates the probability of making a
wrong classification through an uncertainty function (UF), and that
considers the influence of the neighbour candidates. The LIF selects
points that are expected to diminish the UF. Zhang et al. [11] proposed
another search function, the Reliability Expected Improvement Func-
tion (REIF), that relates to the expected improvement (EI) of [4].
Gaspar et al. [12] uses a trust region for efficient single point design
reliability assessments. A convergence criterion based on the stability of

the probability of failure is also introduced in order to compromise the
cost of the computational effort and the accuracy in the AK im-
plementations. Wen et al. [13] introduced the concept of improved
sequential reliability analysis (ISKRA), which uses parallel computa-
tions and adaptive samples to improve the AK implementation. A k-
means algorithm and the Kriging believer approach of [14] are applied
to enable multiple point enrichment. Recently, Leliévre et al. [15] also
improved the AKMCS using multiple point enrichment and parallel
computations with k-means clustering. This new approach also allowed
the reduction of the number of iterations demanded for the method.
However, in both cases, this was only possible through sacrificing the
number of performance function evaluations. Teixeira et al. [16] in-
troduces the concept of biased randomisation in AK in order to weight
the learning with existing a priori knowledge. Cui and Ghosn [17]
proposed the SSKK method, which combines AK approach with k-means
clustering and SS. Recently, Dong et al. [18] further elaborated on
Kriging implementations by using it to solve the effort-demanding and
relevant problem of time-variant reliability analysis. The added com-
plexity of time-variant reliability analysis is indicative of the im-
portance of AK, and in particular, of efficient metamodeling ap-
proaches. Other examples of the application of the Kriging models for
practical structural engineering problems can be found in [19-25].

One of the initial limitations of the AK procedures was the definition
of the convergence criterion that halts the learning function. In general,
the learning criteria pursue to provide an accurate surrogate of the
performance function, or to establish a confident Py prediction. Schobi
et al. [26] highlighted the limitation of pursuing an accurate char-
acterization of the surrogate AK surface, instead of focusing on the
probability of failure. The results is that recent discussions regarding
the learning approach have then been extended also to the stopping
criteria, e.g., [19,27].

In the present paper, innovative AK frameworks are researched and
discussed. These result from the joint application of AK and density
scanning. Candidate points in AK procedures that apply MCS, and that
surrogate complex performance functions, are likely to form groups of
large density close to the failure region, or where the uncertainty in the
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metamodel prediction is large. In regions of large density the enrich-
ment is expected to contribute to the classification of close points in the
space. As a result, density scanning and identification of dense clusters
in the space of candidate points has large synergy with the AK meth-
odologies and with the requirement for having a notion of improvement
that relates to the problem of reliability. A new approach to sig-
nificantly improve the implementation of density scanning is proposed.
It successfully tackles the large computational time and power required
by it, enabling its feasibility for AK.

Density scanning is applied in two main innovative approaches, for
sequential serial and parallel enrichment. The serial approach allows
the prioritization of regions of the space of variables that are expected
to enclose more information about the reliability problem, under the
assumption that enriched points will contribute to classify their
neighbors in the Design of Experiments (DoE), and exploiting synergies
of the AK functionality (in terms of probability of failure P; approx-
imation), such as discussed in [10,27]. The parallel approximation uses
the capability of the density algorithm to define the inter-relation be-
tween points of space with limited information and in an unsupervised
way, hence mitigating the enrichment with points that have less effi-
cient heuristics in the learning context and that may enclose redundant
information; such as the prevalent k-means selection of points that are
non-optimum in the context of the heuristics studied. Improvements of
parallel and serial computing are presented, with the ultimate goal of
minimizing the number of evaluation functions demanded for efficient
reliability analysis. Density scanning is also researched to mitigate the
selection of points that are close in the space.

To achieve the proposed goal, Section 2 discusses the theoretical
background behind the reliability calculations with Kriging models,
Section 3 discusses the application of density scanning in different
frameworks for reliability analysis with AK, Section 4 presents ex-
amples of application and their discussion, which are then used to
compile in Section 5 the main conclusions of the work developed.

2. Reliability analysis with Kriging models

Reliability analysis involves a problem that classifies a performance
function g(x) in the x point as failure or non-failure accordingly to,

Ir(x)=0,g(x)20
IF(x)=1,g(x)<0

with Ir being the performance function binary evaluation of failure (Ir
(x) =1) and non-failure(Ir(x) = 0). The probability of failure associated
to g(x) may be calculated using different techniques. A convenient ap-
proach to assess Pyis the MCS, which consists in sampling x accordingly
to the probability density function (f(x)) that characterizes its occur-
rence. Estimation of the probability of failure in this case is given by the
ratio of failure of the total number of assessed x points (Npcs).

R A
P~ P = Ir (x;
! ! Nues i3 l (@]

And for MCS, the coefficient of variation (CoV) of this probability, for
Py > 0, is given by

-7

CoVp, =
"™\ NascsEr @

As the number of samples Ny¢s increases the approximation given by ll’\f

is increasingly more accurate, ﬁfNMCS_)OO — P;. It is straightforward to
understand that the larger the Nys, the larger the associated analysis
cost will be. Commonly, for complex problems where g(x) is costly to
evaluate, it is not feasible to use MCS.

The idea of using Kriging models is then to surrogate the perfor-
mance function g(x), using a metamodel G(x).
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2.1. Kriging metamodeling

A metamodel is a generic description that includes different types of
models. These can be usually described as a model of a model. The
direct benefit of their application is the possibility of limiting the
number of times the original, costly to evaluate, model needs to be
evaluated in the analysis.

The idea of using Kriging models for reliability analysis is then to
create a surrogate of the failure evaluation procedure as discussed.
Furthermore, definition of a Kriging model G(x), an approximation of g
(x), allows using the capability of the Kriging to perform as a self-im-
proving function, for which a measure of improvement can be defined.

The main basis to use a Kriging model is to approximate a true state
function g(x) that depends on x C IRY, in a d dimensional space, with an
approximate mathematical model G(x) that considers uncertainty in the
approximatio. Assuming that the true function g(x) can be defined Vx
the process of defining G(x) demands a sample of k support points or
observations to be defined and that are usually designated as DoE;
DoE = [X, Y = =g(X)] being X = [x, %, ---X;] a vector of realisations
of x and Y the respective true evaluations of g(x) at X.

Using a Kriging surrogate model, the true response function g(x) can
then be approximated as

Gx)=fBx)+Z(x) ®)]
FBx) = Bufi(6) + . 4B,f, (X) )

where f(; x) is a function determined by a regression model with p
(p € IN*) basis trend functions f,(x) and p regression coefficients f to be
defined by the known sample X; while Z(x) is a Gaussian stochastic
process with zero mean that relates to a covariance matrix

C(x;, X)) = 0?R(x;, %3 0)  with i, j=1,2,3, ..k )

the covariance matrix C relates generic X points using; 0® which is a
scale parameter called constant process variance and a correlation
function R(x; xj; 6).

For the structural analysis, C is assumed to be stationary and to take
the so-called, and widely applied in computer experiments [28], se-
parable form in Eq. (6). Other types of correlation can be applied
[29,30].

d
R(xi, % 6) = [ R(hiz 6). 6 € R

i=1 (6)

The correlation function depends then on h = [k, ---, hy], a set of

incremental values of x — x; type and @ hyperparameters.

For a given sample of support points the problem of prediction can
then be solved through a generalised least squares formulation, where
the estimators for  and o® depend on @ and are given by the following
equations.

B = (FTIC'F)'FI'cly 7

2 — 1 — To-1 —
ol = E(Y FB)'C~Y(Y — FB) 8)
F is the k x p regression matrix in which the rows are trend functions
fo(x) evaluated at the k support points. A Maximum Likelihood for-
mulation can be used to optimize the likelihood of the observations Y.
The likelihood function can then be maximized by minimizing the op-
posite natural logarithm,

6 = argmin(-logL(YIB, o2, 6)) 9
L(Y|B, &% ) is the likelihood function based on the assumption that
Y points follow a Gaussian distribution.

A prediction for the true realisation g(u) in a point u in the space is
then given based on the Kriging expected value g and variance og:

ue) = f@T B+ ¢,w)'C(Y — FB) (10)
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oz () = 0*(1 + DWW (F'CF)'D (W) — ¢, (W)'C "¢, () 1D

D(u) = F'Cle, (w) — f (w); (12)

where ¢, (u) =c,(u, x;), i =1, 2, ---,k is the correlation vector that
relates the realisation to be evaluated with the known points and f(u) is
the vector of trend functions evaluated at u. D(u) is introduced for the
sake of brevity.

If computational time is a constrain, it is not efficient to randomly
select the DoE. In fact, in order to fully exploit the Kriging model, an
heuristic measure of improvement should be established. Therefore,
when metamodeling with Kriging for reliability analysis it is common to
use a criterion to select new points in x; this criterion is frequently
denominated infill criterion and is a feature of major interest to im-
prove computational efficiency. As highlighted previously, the active
learning procedure to select new points in a set of ¢ candidate points is
commonly denominated as enrichment.

A Gaussian correlation function and a constant trend function are
applied in the further implementations.

2.2. Infill criterion

It was seen that different infill criteria have been defined since the
establishment of Kriging models in reliability analysis [1,3,9-11]. Pi-
cheny et al. [31] highlighted the importance of having a notion of
improvement when researching the noisy Kriging.

The common approach is then to define a search function S(x) that
selects the X4, to be included in the DoE from a set of ¢ candidates.

2.2.1. Expected feasibility function

In the context of defining S(x), the EGRA algorithm [3] uses the EFF,
built on contour estimation of [32]. The EFF is one of the most estab-
lished enrichment techniques in active learning methods for reliability
that use Kriging. It has been applied in different frameworks.

Its function is defined such that a certain contour a (for reliability
a = 0) is searched in the design space using the expectation E[ -] de-
fined as,

EIF@] = [ () — la = G, dG 13

with G(x) prediction being given by the Kriging gy and oGy, re-
spectively mean and standard deviation predictions, and e(x) = 20g(x)
defining the neighbourhood for the integration and search. This integral
can be expressed as

—HG(x) —€—HG(x) €—HG(x)
E[F = 20 - d - o
[F )] Mc(x)[ ( . ) ( P ) ( 6w )]
MG (x) —€—HG(x) €—HG(x)
— 05 | 2 — —
O’G()[ ¢( %G00 ) ¢( %60 ) ¢( G0 )]
o) o)
9G(x) G (x) 14)
with ®(-) and ¢(-) being respectively the standard cumulative and

densities functions. By construction it is possible to infer that the EFF
will be large when (g is close to a or oy is large.

2.2.2. U function

An alternatively widely applied efficient infill criterion for relia-
bility analysis is the U function introduced in [1]. This function, spe-
cified for reliability analysis, selects new points in the DoE using a ratio
that characterizes the probability of having misclassified the candidate
points. It is defined as

06 (x) (15)

a ratio of the mean and standard deviation. This function is directly
related to the probability of misclassifying a points in the x space,
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considering the limit-state condition is set for g(x) = 0.

The selected candidate is the point that minimizes the U function.
Strong candidates for enrichment are expected to occur in two cir-
cumstances: either pg is close to 0, or o is large. One of the no-
torious characteristics of the U function is its relative simplicity when
considering that it has proven to be highly efficient.

Other examples of S(x) can be identified in the literature, such as the
LIF [10], the REIF [11], and the entropy-based search function H [9]. In
the present work the interest is to discuss a framework that uses density
scanning for reliability calculations applied with the U function. The U
function is directly related to the probability of misclassification, and
expectation of inaccurate predictions, and hence is of interest for den-
sity scanning. Nonetheless, the density based framework presented may
be applied with any of the alternative learning functions.

3. Application of density scanning of candidates

Candidates in an AK procedure present some spatial correlation
between them. Sun et al. [10], Wen et al. [13] identified such behaviour
when tackling the problem of partitioning the space of candidate points
in clusters, and when pursuing to classify points in x that would also
enable the classification of the nearest neighbours in the space of
variables.

It is common for candidate points to happen in dense clusters of
some size. Even considering that the enrichment procedure is highly
dependent on S(x), as S(x) is frequently based on G(x), strong candi-
dates for enrichment are likely to occur close to each other. Hence, in
general, candidate points (for the enrichment functions identified) are
expected to cluster more densely near G(x) = 0 or where there is larger
uncertainty on 0gey. As a result, grouping points in the x space as
function of the point densities is highly related to functionality of the
AK problem.

The k-means clustering algorithm has been applied previously to
successfully cluster candidates in the space [13]. One of the limitations
of the k-means clustering algorithm is the requirement to define a priori
the number of clusters that are to be formed in the space, which results
in, despite significantly reducing the number of iterations of the AK
procedure, a significant increase of the number of g(x) evaluations re-
quired in the AK procedure [15].

In the present paper, application of density-based spatial scanning
and clustering, here denominated simply as density scanning (ds), is
researched. The fundamental idea behind density scanning is to merge
the ¢ candidates function of their spatial densities. Notwithstanding,
density scanning can be exploited in diverse forms.

The algorithm of [33] (dbscan) is applied for scanning, in an
adapted form for AK classification. Despite being relatively new, the
density scanning and clustering technique has captivated significant
relevance since its introduction in computational experiments. Points in
densities are characterized using a measure of distance ¢, and a
threshold for the creation of clusters (Minimum number of points in a
cluster - MinPts). Fig. 1 presents an example of the density-based
clustering procedure.

The radius given by ¢ defines the neighbourhood of a reference
point (circles). If in its radius there are more than MinPts, a point is
classified as a core point in the cluster; on the other hand, if there are
not sufficient MinPts in the neighbourhood but there are adjacent
points that are core points of a cluster, then the point is reachable by
this cluster, and is part of its density. Finally, a point is an outlier if not
reachable by the core points of any adjacent cluster. Selection of MinPts
commonly adopts a rule of thumb that is to consider the dimension of
R + 1, ord + 1. It is noted that ¢ is the parameter of most relevance for
the density algorithm, it will define the neighbourhood to merge den-
sities. [33] proposes an heuristic to define the minimum value of ¢. In
the case of the AK methodologies, it is proposed for { to be selected as
the minimum value that minimizes the number of outliers and does not
compromise the definition of separate clusters. In this way ¢ can be
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Fig. 1. Example of dbscan clustering. ¢ is the radius of the circles that char-
acterize the neighborhood of the classified points.

calculated in an adaptive scheme using,

¢=min[max(D); DgJ; D = [Diz1,-,Di=c] 16)
where D is a vector of the minimum adjacent point distance in the c
candidate points,

D= min(ve“zj:l & = X7, i=h=[Lncl, j=[1d]
a7

and D, is the estimated minimum distance between the centres of
clusters evaluated using representative samples of the most dense re-
gions during the build-up of the algorithm. One of the advantages of
using D and D, to establish { is that these measures are intrinsically
calculated in the density scanning, and as a result, no new measure of
distance needs to be built to define D. D dominates the learning pro-
cedure in almost every single search. Consideration of D, is only re-
quired for the cases where there are isolated outliers occurring in the x
space that are far from the nearest core point. If outliers are identified,
these should be enclosed in the group of the closest point in the c
candidates classification. Alternatively than classifying outliers using
the nearest reachable, outliers can be also treated as a class to be
analysed. It is noted that this may increase the number of performance
function evaluations needed in the case of reliability analysis. There-
fore, as a class, it may be of interest to consider outliers as a low-density
class, where an outlier is added to the DoE when it is a more adequate
candidate (in the light of the learning function) than candidates from
classified clusters. In the present work, indexing outliers using the
nearest reachable or core, results in accurate cluster separation for re-
liability analysis. It is emphasized that, for robust exploration, no po-
tential candidates (attending to the search function applied, and to
guarantee its adequate performance) should be left out of the learning
process. Further details on the density clustering approach are pre-
sented in the following section.

On a first instance using density scanning and clustering allows the
prioritization of areas of the DoE where misclassification is expected to
enclose significant uncertainty in the definition of Py, having significant
contribution to the convergence of it, and where the enrichment is
expected to suppress a large number of candidate points. Also, the same
technique can be used to prioritize points in the DoE enrichment, and in
particular, to avoid selection of points that are so close to each other
that have little contribution to improve G(x)’s accuracy. Section 3.3

Reliability Engineering and System Safety 199 (2020) 106908

presents the frameworks implemented to exploit the synergies between
density scanning and the active learning that uses AK.

Despite being able to efficiently manage large datasets [34], the
main disadvantage of density clustering in relation to the aforemen-
tioned k-means is its computational demand. It shares a common fea-
ture to all algorithms that depend on euclidean distances, that is, it
suffers from the curse of dimensionality. In the following section a
subset-cross classification framework is proposed in order to accelerate
density scanning and clustering in AK applications.

3.1. Cross-subset classification framework

In order to increase the efficiency of the density scanning, and
considering that a priori information exists about the general problem of
reliability analysis with AK, a subset approach to clustering is proposed.
It consists in using a subset division of the main candidates to perform
density scanning and then, cross-classification using a fictitious sample
built from the subset division. It is of interest to scan when large can-
didate samples occur.

This approach is possible for reliability classification because can-
didate points are expected to occur in large quantities close to the re-
gion of G(x) = 0 and large 0. Additionally, these regions are expected
to be the most relevant for the AK prediction accuracy.

Let L, be v subsets of the c candidates, with ¢ being the total number
of candidates. The density classification for each L, will originate [
dense clusters characterized by their C; classes, with i = 1. .I.

Then an additional subset L, can be defined by selecting L, points
from each C; class of the L, subsets. L, is additional cross-classification
sample that can be classified in j classes and used to associate the subset
classes of the selected L, points, classifying the ¢ candidates according
to a cross classification scheme with

Ci [Lci] = Cj* [Lci] (1 8)

C} being the indexed class of the L, sample. The remaining points of the
C; class are classified accordingly to the indexed C; classification of its
associated L, referenced for cross classification in L. In the occurrence
when more one class is identified in C}[L,], then Ci[L,] should be
classified according to the most prevalent (repeats more often) C; [L]
class. This may only occur if the subset samples are taken in the
boundaries of a cluster, which is highly unlikely. Also, it may occur that
a very small cluster is identified in less dense regions, however for it to
be previously associated with a class C;, it means that some bridge to
this cluster was already established previously in L, and that these
points are in fact part of a close cluster.

Fig. 2 presents the scheme of the approach to cross-classify the
entire ¢ candidates using smaller subsets, and hence, enabling classifi-
cation of large candidate samples.

In Fig. 2 it is possible to see in the left side that the algorithm is
started with a candidate population. If relatively small, clustering can
be directly applied. If large, this population is divided in v subset
samples L,. These L, samples are classified individually, originating C;
clusters for each subset. The information about C; is kept to be com-
pared in the top node that merges C; and C;*. A representative sample
(L) is then selected from each of the L, classified C;. This sample will be

Cross-candidates
|—> classification (L+)

Lo(1, i) | Ci

Classified-

Candidate Population (Xc)

Cross-classified selection

Subset
samples
L)

Fig. 2. Example of methodology used for fast-classification of densities ac-
cording to dbscan and using L, samples to build a cross classification scheme.
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used to build a cross-classification subset (L, ), which is then classified
in C} classes. By merging the information of C;, with the existing
knowledge about the classification of L, the identified C; classes are re-
classified and a single homogeneous classification is produced for X..

In order to define both L, and L, a minimum representative subset
sample needs to be selected. In Fig. 2 it can be seen that two sizes v and
L, need to be selected to divide the ¢ candidates and to subset the C;
classes.

Sheskin [35] provides a comprehensive description on how to select
a minimum representative sample size in order to subset populations of
candidates. It is noted that above a minimum sample size for the subsets
the increase in their representativeness of the population is negligible
[36]. In the present implementation, subsets are classified using a very
representative subset defined with the nearest integer to 10* resulting
from the candidate population division, and L, is defined so that its size
does not surpass an increase of 100% of this value. This allows for a fast
computation, without compromising the accuracy of the scanning.

An example of application of cross-classification is presented in
Fig. 3.

It is possible to infer that in the original candidate sample the
density clustering is correctly classified through the division of the ¢
candidates in three smaller subsets. While L; and L, are classified ac-
cording to L., the same does not occur for L3. In L3 a small cluster is
formed in the top of the green cluster with outliers on the bottom
(outliers are commonly marked as class 0, and in the case of the subset
samples are transferred to L, where they are clustered). By using subset
samples of C; the Cross L sample is built and classified. This small
cluster (left top purple cluster) is re-classified in L, as a part of the big
green cluster. The same occurs with the outliers (black circles) in Ls. It
is noted that all the points in the procedure should be classified as part
of a cluster in the cross-classification (even if not reachable by a core),
as no new classifications are performed. This classification is trans-
ferred backwards to the L, sample, such as in the case of L3. One of the
limitations of this approach that uses reachable points to classify out-
liers in L, is the possibility of indexing a point that is isolated from all
the existing clusters. However, this is of relevance for efficient ex-
ploration of the space (a potential isolated candidate may unlock new
search regions in x). Cross-clustering is of interest when X, is relatively
large (e.g. comparative results and limit of direct scanning of Fig. 4.)

Only potential candidate points should be considered in the scan-
ning procedure, i.e., points that have some likelihood of being selected.
When using the U criteria these are the points with U < 2. Performing
calculation with points which are not “true” candidates and do not
influence the choice of neighbours has no interest.

In terms of computational effort, the classification of subsets is
considerably faster and requires less computational power to be per-
formed. Fig. 4 compares both the scanning times of cross-classification
with direct scanning of ¢ candidates.

While for a low number of ¢, in the vicinity of 10* ¢, the direct
scanning is faster, with the increase of ¢ the time required for the direct
scanning increases much faster for direct classification than cross-
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Fig. 4. Example of scanning time using cross-sampling and direct scanning for
different number of candidates c in the creation of two clusters originated by
standard normal distributions with origins at (-5, -5) and (5,5). Direct scanning
for ¢ values larger or equal to 1 x 10° was not possible due to computational
memory limitations.

classification. It is interesting to note that the dimension of the space d
has limited impact in the times demanded for scanning, however, in-
creasing d increases the computational (power) demand of the analysis.
The fact that it was not possible to perform scanning by ¢ = 5 x 10* for
a Dual Xeon CPU with 64 GB of RAM is indicative of the significant
memory needs that are required for direct clustering.

Further mitigation of the time demanded for scanning can be at-
tained through optimization of the sample sizes. It is important to
highlight that c is significantly smaller than the MCS sample used for AK
learning and that the time for density scanning may be neglected in
comparison to the time that is demanded to evaluate a complex en-
gineering structure or system (e.g., with Finite-Element-Methods). The
same approach may be applied with other alternative algorithms widely
applied in AK procedures, such as the k-means, enabling the application
of larger sample sizes in the AK calculations.

3.2. Stopping criterion

The efficiency of the Kriging implementation is highly dependent on
the stopping criterion applied to evaluate if convergence was attained
in the active learning procedure.

Different learning functions use different stopping criteria, and
different criteria may are applied for the same learning function. The
EFF procedure commonly applies a minimum threshold for the im-
provement with the EFF, commonly of 0.001. The AKMCS with the U
function assumes an upper threshold in the confidence of the meta-
model classification, which is commonly given by a U of value 2. Gaspar
et al. [19] showed this criterion to be conservative for reliability

L4 Ly L3 Cross L Original sample
5 5 5 5 5
i vV " % v v ¥ v
> 0 = 0 ) > 0 > 0
g.
C)
5 5 5 -5 -5
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
X

Fig. 3. Example of using three samples to build a cross classification scheme. The different colours represent different clusters in each subset. Three samples are used,
a cross validation sample is built which is then used to classify the entire original sample (size of 30000 candidate points). Cross L refers to the L, sample.
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calculations. Leliévre et al. [15] recently proposed a less conservative U
misclassification stopping criterion that uses a joint probability of
misclassification.

Sun et al. [10] uses a criterion of expectation enclosed in the
amount of probability left to address. Jian et al. [27] further discusses
this criterion by constructing two measures to assess the accuracy of
G(x) in relation to g(x), of particular interest for reliability analysis. For
the expectation of probability enclosed in misclassification the expected
error in the G(x) prediction can be given by

ElR] = [ &(-U () ()dx 19)

with P,, being the Probability of misclassification, f(x) the joint density
function of the x, and @ refers again to the standard normal distribution
function. In this context, two type of errors may occur in the classifi-
cation, 1: Misclassified g(x) < O; or 2: Misclassified g(x) = 0. The first
corresponds to the cases where the unknown g(x) < 0 but G(x) pre-
diction is positive, and the second for the case of g(x) = 0, but G(x) is
negative. For each,

pL= jx' O(—U x)IG(x) < 0)f (x)dx 20)

Pr= [ ®(-UMIGk) 2 0)f ()dx 1)

constitute indicators of convergence of G(x) to g(x) that can be ap-
proximated for AK with MCS as

- 1 Nmcs
Py = O(-U (x)IG(x))
Nucs ; (22)

conditional on whether G(x) < 0 or G(x) = 0 respectively for 1 and 2. x;
refers to the x part of the MCS. The two measures will evaluate the
expectation of the assessed Ié\f to increase or decrease. An interval of
expectation of error can then be applied to evaluate the convergence of
the results

PL + P2
y <7
Py (23)

with 7 being an expectation of error enclosed in the remaining c can-
didates and that can be defined using, e.g. a ratio of P or using CoV’ B
and that can be established for the expected positive and negative de-
viations of 1/’} The division of 1 and 2, can be applied to identify the
expected sensitivity in the P prediction. Jian et al. [27] discusses and
provides an upper limit for the error in 15} resulting from the application
of this criterion.

It is noted that this stopping criterion has a relevant synergy with
density scanning. Dense regions of x enclose more expectation, and
enriching the DoE should weight on the direct influence of the candi-
date to the problem of reliability, more specifically, the accurate as-
sessment of P Recent works of [11,37] research on a functional ap-
proach to AK procedures by applying convergence criterion that
directly relate to the Py estimation.

Zhang et al. [38] discusses exploitation and exploration when con-
sidering n as a stopping criterion and proposes a complementary cri-
terion to evaluate exploration, and to enhance robustness of the
learning procedure. In the present example, as all the points were en-
closed in the learning process and the scanning allowed the improve-
ment of the convergence to Py. A reference n of 0.01 (using half of this
value for each P,,) as the ratio of expectation of error in Py was iden-
tified to produce robust results in this regard.

This referred synergy of density scanning with the error in Py is of
major relevance for the present application and is exploited in the
following section. Three main approaches that apply density scanning
and clustering in AK are researched.
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3.3. Density scanned active learning framework

It was previously highlighted that the combination of density
scanning with AK can generate different frameworks due to the flex-
ibility of the algorithms. It can be combined in sequential enrichment
with parallel and non-parallel selection strategies.

Three main applications of density scanning are discussed in the
present work. The dsAK, AK with a density scanning and individual
selection of points; the dsAKP, AK with density scanning and sequential
parallel enrichment; and finally, the ds®AK, that uses either of the
previous methodologies but that groups candidates with the DoE. While
the first two approaches are straightforward to understand, the last
consists in clustering candidates with points already existing in the DoE
in order to limit the enrichment with points that are within ¢ of an
already existing point in the DoE.

The approaches implemented in the present paper go as follows (S
for serial, P for parallel and ds* for the selection with DoE scanning are
used to distinguish these):

1 - Initiate the DoE and the selection space x (Latin Hypercube
Sampling (LHS), and MCS, respectively);

2 - Fit G(x);

3 - Predict Py and Py;

4 - Evaluate the stopping condition(s). If not fulfilled continue, or
else, stop the active learning;

5 - Compute the measure S(x) (in the present implementation th U-
function is applied) and select a subset of ¢ candidates;

6 - Classify the ¢ candidates in accordance to density scanning;

7 - Calculate P,,[C;] as the E[P,,,] at each dense cluster;

8 (S - dsAK) - select the most suitable candidate in accordance to S(x)
within the dense cluster that encloses the largest P,,[Ci];

9. (P - dsAKP) - select the most suitable(s) candidates in accordance to
S(x) from each of the C; clusters;

10. (ds?) - select the most suitable candidate (in application of 8S or 8P)

not clustered with the current DoE within a ¢ value;

9 - Enrich the DoE and repeat procedure, return to 2;

Step 8 distinguishes the three different frameworks. For example, if
ds®AKP is applied, then parallel computations are enabled with exclu-
sion of candidates clustered in density with the current DoE. At the first
iterations, Py is likely to be 0, no clusters are formed, and enrichment
should use S(x).

By having density clustering in active learning the enrichment is
encouraged in the dense “pools” that enclose major contribution to Py,
under the assumption that classifying a point in these “pools” of points
will contribute improve the classification of the neighbourhood. The
presented approach increases the capacity of the active learning to
converge with less iterations in complex limit-state functions, and to
limit the additional number of evaluations demanded to use parallel
computing.

4. Examples of application

Three examples that use complex g(x) functions are discussed as a
reference of implementation for the framework(s) proposed. It is noted
that for all the cases considered only “true candidates” in the light of
the stopping criterion are considered in the active learning framework
that uses density scanning. Without downsizing the sample to the so-
called “true candidates”, density clustering has no interest (enclosing all
points forms a single dense cluster). The U function is applied as S(x) for
the representative example of application of a scanning framework, and
therefore, for it, “true candidates” are the points with U < 2.

Since its introduction, the U-function has become very relevant and
widely applied in the field of AK. Nonetheless, it is important to high-
light that density scanning is expected to have synergy with other S(x)
that depend on ps(x) and 0g. In such cases, dense clusters of “true
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candidates” are expected due to similarities of pug(x) and 0gqy in
neighbour points in x, e.g., as in the case of the U-function. In order to
accelerate clustering other measures can be selected to estimate the
candidate sample, e.g., selecting percentage of more likely candidates.
Unless otherwise indicated, the AK initial Ny, cs sample size was equal to
the g.,q of the MCS evaluation.

4.1. Bivariate non-dimensional performance function

The first example analysed is a non-linear bi-variate performance
function introduced in [3], in the form applied in [11]. Both x; and x,
variables follow a standard Gaussian distribution.

glx)=q— 21—0(x12 + 40— 1)+ sin(%xl) 24)

The g(x) for this function is presented in Fig. 5, along with the
formation of clusters within three iterations of the dsAK procedure. It is
possible to infer that, due to the non-linearity of g(x), isolated “pools” of
candidates occur in the space. The scanning framework is responsible
for identifying these and selecting the ones to be exploited. If the par-
allel approach is implemented, a point from each “pool” is considered
to enrich the DoE. The scanning framework discussed is able to divide
the space such that the active learning may consider to perform parallel
computations without external inputs (such as the number of clusters),
and only if dense “pools” are formed. The partition of the space is au-
tomated in every iteration in order to reduce the number of non-op-
timum points taken at each step. It is noted that the fact that every point
is part of a cluster may be of relevance within the U function to foment
robust exploration of the space.

Benchmarked results from [11] are presented and compared with
the AKMCS approach that uses density scanning in Table 1.

It is possible to infer that application of density scanning contributes
to decrease the number of evaluations demanded for the learning ap-
proach without significant trade-off in the Py prediction accuracy. The
larger error in the Py prediction is mostly due to the stopping criterion,
which allows an earlier halt of the learning with less g, and taking
advantage of the synergy with the scanning framework that prioritizes
dense clusters, providing complementary knowledge of the AK proce-
dure and fomenting the convergence to Py.

The parallel approach allows the reduction of the average number of
iterations, from 19.4 to 10.2 when compared with the serial ds im-
plementation. One particular relevance of density scanning is related to
the capability of using parallel computing without compromising the
number of g.,q. Since all the candidates are evaluated, and cluster

iteration 3

E[Pm] (C/)

-5

iteration 7
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Table 1

Comparative results for distinct AK implementations benchmarked from [11].
&evar Tefers to the number of g(x) evaluations. The average results presented in
this example used 20 active learning implementations with initial DoE size of
10 LHS points. An 7 of 0.01 was considered in ds approach. ISKRA is the Im-
proved Sequential Kriging Reliability Approach presented in [13], with KB as
the Kriging Believer implementation.

q=20
AKMCS ISKRA ds
MCS U REIF Serial KB k-means AK AKP
Pr(107%) 1375 1.374 1.379 1.368 1.369 1.376 1.350 1.389
8eval 4x107 41.8 45.1 40.0 51.0 73.4 29.4 30.6
e, (%) - 0.06 0.28 0.52 0.46 0.08 1.9 1.1

separation is unsupervised (does not demand inputs and partition oc-
curs only when strictly necessary), the gain in computational time is
very significant regardless of the stopping criteria applied. This is the
example of the U function, which may still use the U > 2 criteria in a
dsAKP framework, with direct gain in the number of iterations re-
quired, and with limited compromise in the number of g.,,. Further
results for the AK with scanning procedure using distinct implementa-
tion strategies presented in Table 2, and provide further insight into this
capability of the dsAKP.

In Table 2 it is possible to infer that the serial approach is able to
converge faster to the reference Py, generating a smaller error for a si-
milar number of iterations, see the example of Fig. 6 where results are
presented, considering the same initial DoE, for the case of applying
scanning and selection of candidates in the “pool” with largest ex-
pectation Py,.

The improvement in convergence for similar number of iterations
occurs because large clusters of candidates are likely to be prioritized in
the search, as a result of the prioritization of regions that have larger
values of E[P,]. After 11 iterations the scanning technique with
prioritization of dense regions of candidates achieves a relative error in
P¢ similar to the error obtained with the non-scanned approach only
after 15 iterations. It is noted that if the criterion of U > 2 is considered,
both methods will approach a similar number of iterations, however,
most of the iterations of II will pursuit to classify what would be
“outliers” in the context of density scanning (i.e.,, no relevant dense
clusters are formed). It is noted, however, that a value of = 0.05,
despite providing in average and repetitively a reasonable approxima-
tion, does not provide entirely robust results in terms of exploration.
Therefore, = 0.01 provides an efficient trade-off of computational

iteration 11

x DOE  =-=--- 9(x)

—

C; candidates @ X, 1

Fig. 5. Dense “pool” formation and selection of candidates in bi-linear function example, with application of dsAK. The z axis is augmented for the sake of re-

presentation, e.g. in iteration =3 most of the E[P,,] are enclosed in major clusters.
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Table 2
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Average results for the bivariate non-dimensional performance function, based on values for 50 active learning implementations using the same initial DoE size of 10

LHS points. gq refers to the number of g(x) evaluations.

q=16

Algorithm (stop criterion) 19f (x10-%) GoV ﬁf
MCS 1.714 *
AKMCS-EFF 1.747 0.04
AKMCS-U 1.736 0.04
AKMCS-U (n < 0.05) 1.667 0.11
AKMCS-U (y < 0.01) 1.698 0.09
dsAK(U > 2) 1.717 0.05
dsAK(7 < 0.05) 1.660 0.11
dsAK( < 0.01) 1.691 0.06
ds*AK-U(y < 0.01, (=0.1) 1.750 0.04
dsAKP(U > 2) 1.736 0.04
dsAKP(y < 0.05) 1.686 0.08
dsAKP( < 0.01) 1.723 0.05
ds?AKP (4 < 0.01, ¢ = 0.1) 1.725 0.05

(%)

1.9

2.7
0.9
0.1
3.3
1.4
2.0
1.3
1.7
0.6

Niter CoV njger 8eval CoV Zeval
- - 4 x 10° -
27.27 0.05 37.27 0.04
26.36 0.08 36.36 0.06
18.1 0.14 28.1 0.14
20.04 0.12 30.04 0.12
26.22 0.12 36.22 0.09
13.76 0.16 23.76 0.09
17.36 0.11 27.36 0.07
16.73 0.06 26.73 0.04
13.68 0.15 36.84 0.06
7.4 0.16 27.87 0.08
9.0 0.13 29.3 0.08
8.87 0.13 30.87 0.09

time and average accuracy and will be applied in the remaining ex-
amples. It is also noted that  robustness for 0.05 may depend on ad-
ditional considerations, such as the MCS sample size. The criteria of
[27] or [38] may be applied to complement the search procedure in this
regard.

In the case of parallel computation of clusters, the total number of
evaluations is similar to the AK using both U and 5 criteria. Two clusters
may be formed very close to each other which may provide similar
information about the enrichment, such as in Fig. 5 - iteration 7 case.
Nonetheless, as highlighted the scanning is able to produce efficient
unsupervised partitions in the space of candidates maintaining a rea-
sonable amount of g.,q. Also, using the U > 2 criterion permits the
reduction of the number of iterations by almost 60%, using a similar
number of g.,,. The dense ‘pools” that are formed are usually left to be
addressed until the U function starts their exploitation. Therefore,
dsAKP allows to accelerate both, exploitation of these, as well as, ex-
ploration of the candidate space (more than one region is addressed in a
single step).

The ds® further improves the computations. The U function may
tend to compute close points (in particular due to pgyy) in the DoE
when enriching x. If these are very close, such as in the vicinity of { =
0.1, they may provide redundant information in relation to g(x)
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4.2. Example 2: series system

A series system is researched in the present example. This function
was previously researched for reliability calculations in e.g., [1,27,37].
In the presented example the (m, k)-dependent function applied in [11]
is researched. Its performance function is described by the following
system of equations.

() =k + 010 — %) —
© &) =k + 0100 —x)* + F 2
g(x) = min
&) =0q —x)+ %
g4(x) = (xz - xl) + % (25)
Results for the reliability calculations of density scanned AK of the
series system in comparison to benchmarked results from [37] are
presented in Table 3.

Results show that the usage of 7 and its direct relation to Primproves
the computation in relation to the upper limit of U. This is notorious in
the application of LIF and both density scanning approaches in relation
to the remaining AKMCS. The efficiency of the density scan is similar to
the FPS framework [37]. Both approaches use a measure of sensitivity
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Fig. 6. Example of convergence for the AK-MCS (I) and using density clusters to prioritize the search (II). The black trimmed vertical lines represents the stopping
condition for the n < 0.05 (thicker line) and » < 0.01. Gray line should be read on gray right axis.
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Table 3

Comparative results for distinct AK implementations benchmarked from [37]. RD refers to the introduced response-distance function from the reference work. The
sign * indicates that the AK estimation uses an initial sample of candidates of 10°, which is expected to be also adequate considering the CoV of Py. gevq refers to the
number of g(x) evaluations. In the cases where parallel computing is applied, the number of iterations is presented in brackets.The average results presented in this
example used 20 active learning implementations with initial DoE size of 10 LHS points.

k=3m=6
AKMCS FPS framework ds
MCS U EFF H LIF 8] EFF H LIF RD AK AKP AK* AKP*
Pr(1073) 4.454 4.435 4.475 4.456 4.471 4.423 4.456 4.411 4.497 4.478 4.444 4.412 4.433 4.408
Zeval 10° 106.1 114.0 97.5 64.8 64.7 64.3 69.7 56.5 56.3 55.85 75.7 (48.2) 56.77 60.85 (32.7)
e (%) - 0.43 0.47 0.05 0.38 0.70 0.05 0.97 0.97 0.54 0.2 0.94 0.47 1.2

slight increase in g, and, again, may be improved by adaptive sam-
pling procedures. Nonetheless, the scanned approach has the advantage
of being able to proceed with parallel computations in an unsupervised
implementation, which is of relevance when no knowledge exists about
the form of G(x).

The AKds efficiency is also affected by the appearance of dense
candidates in a circular formation, and the improvement from its ap-
plication is less pronounced than in the previous example. On the other
hand, application of ds® in the present case foments exploration and
improves the accuracy of the Py prediction for the same number of
enriched points, see Fig. 7. The U function is likely to sample points that
are very close to each other and that may give limited improvement of
the g(x) prediction. Fig. 7 shows that for the same number of iterations
exploration is fomented by the usage of a density penalty in the DoE
enrichment which comes at virtually no cost.

to prioritize the search (here the amount of P,;), and this may be behind
the similarity of their results.

For the AK with dsAKP* the number of iterations required to per-
form the reliability evaluation was of 32.7, while the AKP approach
demanded 48.2 iterations and more g.,4. This shows that the size of the
initial sample of MCS points may have a large influence on the scanned
searching procedure. [13] identified previously this characteristic when
discussing an adaptive approach. In the case of the smaller initial
sample of candidates there is a smaller probability of generating a
circular density of candidate points in this particular limit-state func-
tion (see function shape in Fig. 7), which significantly improves the
efficiency of the learning procedure. A sample size that results in
slightly less than 5% of CoV in P; was identified to produce efficient
learning. Nonetheless, as Py is unknown a priori in a generic im-
plementation, adaptive sample sizes may contribute to significantly

increase the efficiency of the AK learning.
Table 4 presents results for the active learning AK analysis of the
series system considering different density scanning frameworks.

It is possible to infer that, in iteration 30, case I has already iden-
tified the four branches of the function while in case II the AK is still
exploiting the remaining branches.

For the initial sample size considered, formation of dense clusters in
the present example is less prevalent after the initial enrichment. This
occurs due to the occasional creation of a single circular dense cluster
that mitigates the partition of the candidates. Only after exploitation of
this large circular cluster, separate clusters are formed again. This re-
sults in a lower improvement in the reduction of the number of itera-
tions when compared with the individual enrichment. However, this
small reduction of the number of iterations is accompanied by only a

4.3. Examples 3: cantilever tube

Finally, a relatively high dimensional problem considering the
cantilever beam introduced in [39] is researched, Fig. 8. The cantilever
beam problem has been widely studied in research literature, e.g.
[13,37].

The performance function of the cantilever tube is given by,
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Fig. 7. Example of AK selection procedure for the (I) ds?AK considering { = 0.2; and (II) AKMCS-U.
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Average results for the series system performance function, based on values for 30 active learning implementations using the same initial DoE size of 10 LHS points.

Results of dsAK consider a value of 7 = 0.01 to evaluate the convergence the learning procedure. g.,q refers to the number of g(x) evaluations.

k=4m=7
Algorithm (stop criterion) }/,\f (x10~%) CoV I/’} e (%) Niter CoV Nyger Leval CoV geyar
MCS 5.040 - - - - 2 x 10° -
AKMCS-U 5.036 0.05 0.1 55.20 0.09 65.20 0.06
AKMCS-EFF 5.042 0.04 0.1 67.7 0.08 77.7 0.07
dsAK-U 4.902 0.05 2.8 45.8 0.15 55.8 0.12
ds®AK-U(¢=0.1) 4.981 0.05 1.2 45.70 0.13 55.70 0.11
ds®AK-U(¢=0.2) 5.021 0.04 0.4 43.65 0.12 53.65 0.10
dsAKP-U 4.976 0.04 1.3 29.93 0.27 59.50 0.10
ds®AKP-U((=0.2) 5.021 0.04 0.4 32.33 0.21 62.53 0.10
2 Fz 6 F, power availability was never a limitation in any of the cases, even for a
1\ 6 high dimensional problem as the one presented. Moreover, the addi-
d tional time to perform density scanning is expected to be negligible
y when compared with the time required to obtain a solution of a com-
/_ plex engineering model, such as Finite Element Models. Moreover, in
the particular case of large number of variables, reduction of the nye,
P and g, is relevant to maintain the computational demand of the
= Kriging prediction practicable.
L, t The dsAK demanded in average one third of the computational time
& . T required for the AKMCS-U to halt the search procedure, when evaluated in
L 1 a dual Intel Xeon(R) computer. The cost of predictions of G(x) increases
! significantly with the increase of the number of support points. It is noted,
Fig. 8. Cantilever tube, adapted from [39]. that‘ir} bot.h cases t}%e cost to performing the }eaming.is assumed to be
negligible in comparison to the cost of decreasing the size of g.,q
It is of interest, to further improving computational efficiency, the
g) =8, — ol + 354 (26) cross classification procedure can be even further optimized, through

with S, being the yield strength of the material and o, the normal stress,

calculated using the following equation,
P + F;sin 6, + F,sinf Mr

=T T

(27)

that accounts for the normal stress due to axial forces (first term in the
right-hand side) and normal stress due to the applied bending moment

M, given by,
M = F,L,cos 0, + F,L,cos6, (28)

Area (A), Second moment of Area (I), and radius(r) and are obtained
from the geometric properties of the cantilever.

T T D
A==[D*- (D -2t)?, I=-—[D*-—D -2, r=—

LD =@ -2, 1= 20t -0 -2 r=7 29)
Finally, the contribution of the torsional stress z,, is given by,

TD
Ty =—, J=2I (30)

In the present example 11 random variables are considered. These are
listed in Table 5.

The results for the density scanning implementation are presented
in Table 6.

The e, is larger in average for all the AK procedures studied, which
may be related to the complexity of the example (large d). The per-
formance of the AKMCS-U is similar to the AKMCS-EFF. The dsAK with
n = 0.01 requires approximately less 40% of g, for a similar perfor-
mance. The parallel computation gain is smaller in the present example,
which indicates that there is no prevalence of formation of separate
regions of candidates. Nonetheless, the small reduction in the average
number of iterations comes at a negligible increase of g.,4. It is noted
that the application of ds®AK requires an uniform comparison of the
size for all the variables, which can be achieved by a transformation of
the input variables.

Due to the cross-clustering technique, computational time and
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the application of indexing or R-trees [40,41]. Improvements of the
scanning algorithm could remove its large dependence on the distance,
and future works should research on potential applications of alter-
natives in order to improve the implementation proposed (e.g. even
faster cluster or larger limits for direct clustering). Adaptive MCS can-
didates, such as implemented in [42], are also of interest for future
research in ds. Adaptive candidate samples may allow to reduce im-
plementation times and improve cluster identification.

Further works that use density scanning in AK should also tackle the
definition of the initial sample size. As highlighted previously, adaptive
samples are of interest. If the initial sample generated to perform the
active learning is too large, in comparison to the one required for an
accurate Py prediction, the effort required for the active learning and
density scanning may increase with no relevant benefit to the accuracy
of the P; prediction. Nonetheless, this is a feature common to most
procedures that use AK. To conclude, it is also important to emphasize
that full exploitation of the benefits of the added complexity of the
density framework may depend on the complexity of the performance
function. Metamodeling would benefit from a sense of hierarchy in
their implementation, which should be also researched in future works.

Table 5

Random variables of the Cantilever tube problem.
Variable Parameter 1 Parameter 2 Distribution
x1 [t(mm)] 5.0(w) 0.1(0) Gaussian
Xo[D(mm)] 42.0(w) 0.5(0) Gaussian
x3[L,(mm)] 119.75(lower bound) 120.25(upper bound) Uniform
X4[Ly(mm)] 59.75(lower bound) 60.25(upper bound) Uniform
xs[F1(kN)] 3.0 0.3(0) Gaussian
Xxg[Fo(kN)] 3.0(w) 0.3(0) Gaussian
x7[P(kN)] 12.0(w) 1.2(0) Gaussian
xg[T(Nm)] 90.0(w) 9.0(0) Gumbel
Xo[S,(MPa)] 220.0(w) 22.0(0) Gaussian
x10[01()] 5.0(w) 0.5(0) Gaussian
X11[62()] 10.0(w) 1.0(0) Gaussian
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Table 6

Reliability Engineering and System Safety 199 (2020) 106908

Average results for the bivariate non-dimensional performance function, based on values for 20 active learning implementations using the same initial DoE size of 12
LHS points (d + 1 points). g.,q refers to the number of g(x) evaluations. AKMCS-U and EFF use the stopping criterion of U > 2 and EFF < 0.001.

Algorithm 19f (x10~%) CoV }Qf e (%) Niger CoV Nyger Leval CoV gevar
MCS 1.421 - - - - 4 x 10° -
AKMCS-U 1.469 0.04 2.1 56.95 0.04 68.95 0.03
AKMCS-EFF 1.468 0.05 3.3 58.33 0.11 70.33 0.09
dsAK 1.488 0.05 4.6 29.43 0.17 41.43 0.12
dsAKP 1.477 0.04 3.8 25.13 0.18 43.18 0.15
ds?AK (¢ = 0.2) 1.490 0.04 4.9 31.86 0.15 43.86 0.11

5. Conclusion

The present paper researched on the application of an unsupervised
technique to partition the space of candidates in Adaptive Kriging proce-
dures. It consists in using density scanning to group dense agglomerations
of candidatesin the space. There are multiple advantages resulting from
using this type of partition. It can be used in a sequential selection of dense
regions to exploit in the active learning with advantage of, in average,
accelerating the convergence of the Kriging prediction due to prioritization
of dense regions of candidates. Moreover, it allows the parallelization of
the evaluations of the performance function in an unsupervised procedure
where the active learning is able to select the number of parallel compu-
tations function of the formation of dense “pools” of points. The advantage
of this approach, apart from its automated character, is that it comes at
little or no expense of the number of performance function evaluations,
since no more than one point is selected for enrichment in a single dense
region. Finally, density scanning is also applied to mitigate the selection of
very close points in the design of experiments.

Density scanning of the space has direct synergies with the Adaptive
Kriging procedures. A significant percentage of the learning criteria
used in these procedures are dependent on the Kriging metamodel, and
tend to create dense regions of candidates. A cross-clustering technique
is successfully applied in order to mitigate the expense of performing
density scanning, which was identified initially to be prohibitive in
terms of computational cost. It consists in using subsets of cross-clas-
sification in order to classify the set of candidates. The stopping cri-
terion that uses an expectation of failure misclassification is applied to
decide on the convergence of the algorithm. This criterion was identi-
fied to produce efficient results. Nonetheless, if a more conservative
stopping criterion, such as the one that uses the minimum probability of
misclassification is applied, density scanning is still highly valuable to
reduce the number of iterations without the expense of increasing the
performance function evaluations. This unsupervised capability of re-
ducing the number of iterations at no expense of performance function
evaluations has high interest for any adaptive Kriging implementation,
regardless of the learning function or stopping criterion.

Three examples with different characteristics were researched.
Density scanning was identified to be of particular interest for highly
non-linear performance functions where dense agglomerations of points
may be formed in different regions of the candidate space. Its appli-
cation to high-dimensional problems (in the present case with 11
variables) is feasible at limited additional cost, in particular when
compared with the cost of evaluating a Kriging metamodel with an
enriched design of experiments.

Future research on the presented framework should consider the
usage of adaptive sample sizes, which are expected to significantly
improve the efficiency of applying density scanning.
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