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Abstract

The classical process capability indices are still the most prominently used by practitioners for asym-
metrical tolerances even while not accurately reflecting on process capability. It appears that an adequate
measure of capability for asymmetrical tolerances is yet to be discovered. This report formulates a list of
five desirable PCI properties and explores some proposed indices developed for asymmetrical tolerances by
comparing them to the properties. As none of the discussed indices satisfy all properties, four new proposals
are made that improve upon existing indices. The new indices are related to process yield and centering,
and compared to the existing indices. Further research is required to determine whether the new proposals
are to be used in practice, but for now they serve as a source of inspiration in the development of PCIs for
asymmetric tolerances.
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1 Introduction

Process capability indices (PCIs) are a measure of the ability of a production process to produce products that
meet the quality requirements of a customer. The requirements of the customer are in the form of a lower
and upper bound together with a target value on a characteristic of the product. The characteristic of the
produced products are measured and as processes naturally make errors from the desired value it is common
for the measurement data to be normally distributed. Throughout this project we therefore do analysis on
a normal process distribution. PCIs provide a way to relate the manufacturers process distribution to the
customers specifications. PCIs relate the process with the specifications by providing a single-valued measure
of process yield and targeting, and sometimes more criteria. In other words, a single score for capability. This
is convenient in practice as practitioners don’t have to worry about concepts like yield and squared error, which
can be complicated for some. Furthermore, it makes communications between manufacturers and customers
easier if they can agree upon a single reliable measure of process capability.

A process is said to have symmetric tolerance if the target value coincides with the midpoint of the specification
limits. Most of the research work has focused on the development of PCIs for symmetric tolerance. As of today,
there are 4 basic indices that provide a good reflection of the process capability for symmetric tolerance. They
will be referred to as the classical PCIs. However, in practice it is common that the target value is not the
midpoint of the specification limits. Or equivalently, that the specification limits are not on equal distance from
the target value. In that case, we are said to be dealing with asymmetric tolerance. The classical PCIs no
longer provide a good measure of process capability for asymmetric tolerances. For this reason, there is a need
for PCIs that can measure process capability in the case of asymmetric tolerances.

There have been PCIs proposals that were developed to deal with asymmetric tolerance, however they still show
shortcomings and it seems that an adequate PCI for asymmetric tolerances is yet to be discovered. Therefore,
the aim of this project is to propose new ideas that improve upon existing PCIs. I have formulated a list of five
important properties: (i) the PCI must be maximized at the target value, (ii) the PCI must take the direction
of shift from the target value into account, (iii) the PCI must have a lower value on the further limit, (iv) the
PCI must have non-negative values and (v) the PCI is a generalization of the classical PCIs. Together, the
properties ensure that a PCI delivers index values that are consistent with process capability when considering
asymmetric tolerance. I will explore some existing PCIs by comparing them to the properties. In order to
contribute to development of PCIs for asymmetric tolerances, I will propose four ideas for a new PCI.

The remainder of this report is organized as follows. In section 2, we will take a look at the classical PCIs and
how they reflect on yield and expected loss in the case of symmetric tolerances. In section 3, we will show what
problems can occur when the classical PCIs are used in the case of asymmetric tolerances. Section 4 is devoted to
the list of 5 properties that are desirable to have for a PCI dealing with asymmetric tolerance. Section 5 explores
some existing PCIs that are developed to reflect on process capability in the case of asymmetric tolerances and
compares them with the desirable properties from section 4. In section 6, some new PCI proposals are given
that improve upon existing PCIs by satisfying more properties. Lastly, the report is brought to an end with a
conclusion and discussion in section 7 and 8 respectively.

4



2 The classical process capability indices

2.1 Introduction
The capability of a process can be determined with respect to different criteria. Common criteria are yield
and targeting. If it is of importance to the customer that the products are within the specification limits, he
prioritizes maximizing the yield. If he wants to distinguish between values within the specification limits where
it is important that the products are close to the target value, then he prioritizes maximizing targeting.

In this section, we will take a look at the most commonly used process capability indices. This includes Cp, Cpk,
Cpm and Cpmk. We will also see how they are related to process yield and targeting in the case of symmetric
tolerances. The relations will be stated directly and the derivations can be found in Wu et al. (2009). Before
we state the relations, we will first define process yield and targeting.

2.1.1 Process yield

Process yield has been for some times the most common and standard criterion used in the manufacturing
industries for judging process performance (Wu et al. (2009)). The process yield is the percentage of the process
distribution that is within the specification limits. Formally defined as

Yield =

∫ USL

LSL

1 dF (x) = F (USL)− F (LSL)

where F (x) is the process cumulative distribution function. Because we are assuming a normal process distri-
bution, X ∼ N(µ, σ2), we can simplify the yield to

Yield = P (X < USL)− P (X < LSL)

= Φ

(
USL− µ

σ

)
− Φ

(
LSL− µ

σ

)
= Φ

(
USL− µ

σ

)
− 1 + Φ

(
µ− LSL

σ

)
(1)

where Φ is the cumulative distribution function of the standard normal distribution N(0, 1).

2.1.2 Process targeting

The main disadvantage of yield is that it does not distinguish between values within the specification limits;
they are all considered equally good. When we experience loss whenever values deviate from the target, we
might also want to judge a process based on the distance of the values from the target. This criteria is called
process targeting or process centering. The most common way measure process centering, is by looking at the
expected squared loss, which can be defined by

E
[
w(X − T )2

]
= w

∫ ∞
−∞

(x− T )2 dF (x) = w
(
σ2 + (µ− T )2

)
where w is a positive constant which can be set to scale the penalty.

A disadvantage of expected loss is the difficulty of setting a standard, as values reach from zero to infinity.
In order to solve the problem of unbounded loss, Johnson (1992) defined the worth of the product W (X) =
WT − w(X − T )2 where WT is the worth of the product when X is exactly on target. He then proposed, for
symmetric tolerance, the expected relative loss, defined by

Le =
E[(X − T )2]

D2

(
A0

WT

)
(2)

where A0 is the loss at either specification limit and D is the distance from T to the specification limits. Note
that this definition doesn’t hold for asymmetric tolerance, as in that case loss is not equal on the specification
limits. The expected relative loss provides a unitless measure of process targeting.
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2.2 Cp

The first PCI is the precision index Cp, defined by

Cp =
USL− LSL

6σ
(3)

We will refer to USL−LSL as the width of the tolerance interval. Note that Cp is simply the ratio between the
width of the tolerance interval and the process variability. Cp reflects on the percentage of tolerance interval
used by the process, which can be computed by (1/Cp)× 100%. A higher Cp value means less of the tolerance
interval is utilized and we say that the process is more precise. In practise, a value of 1 is the bare minimum
and often a value of 1.33, 1.66 or even 2 is required. The process spread of the normal distribution relative to
the specification interval is illustrated in figure 1.

Figure 1: Process spread with specification interval. Note that this process is centered. From Wu et al. (2009).

2.2.1 Cp and process yield

Cp alone gives no indication of process yield, as it does not take the location of the distribution into consideration.
However, if we assume the process to be centered (µ = M), then Cp is actually directly related to the process
yield. In that case, we can rewrite (1) into

Yield = 2Φ

(
USL− µ

σ

)
− 1

= 2Φ

(
USL− LSL

2σ

)
− 1

= 2Φ (3Cp)− 1

For example, for a Cp value of 1 we have a process yield of 99.73%, or equivalently 0.27% non-conforming units,
which is 2700 ppm (parts per million). At Cp of 1.33, we get 66 ppm non-conforming. At 1.66, 0.54 ppm. And
with a Cp value of 2, we expect only 2 parts per billion to be non-conforming.

2.2.2 Cp and expected loss

Cp provides no information on process location and therefore cannot be related to loss.

2.3 Cpk

Cp does not take the location of the process into account, this can easily be seen by the fact that µ is not
considered in the definition. The second index Cpk takes both the magnitude of the process variance and the
process departure from the midpoint M into consideration. It is defined by
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Cpk = min

{
USL− µ

3σ
,
µ− LSL

3σ

}
=
D − |µ−M |

3σ
(4)

where D = (USL − LSL)/2 is half the width of the tolerance interval. Cpk considers the ratio between the
distance from the mean to the closest specification limit and the process variability. Figure 1 might help to
visualize the behavior of Cpk. If Cpk < 0, then the process mean lies outside of the specification limits. If
0 < Cpk < 1, then the process mean is too close to at least one specification limit. If Cpk ≥ 1, then the process
distribution is well within the specification limits and we have a process yield of at least 99.73%. Again, a value
of 1 is the minimum in practise, but a higher value can be required. For fixed σ, Cpk is maximized by µ = M .

2.3.1 Cpk and process yield

As Cpk takes the distance from µ to the specification limits into consideration, we can say something about
process yield. Actually, we can construct an interval for the process yield. Recall our formulation of yield (1) as

Yield = Φ

(
USL− µ

σ

)
− 1 + Φ

(
µ− LSL

σ

)
Now by the definition of Cpk and the fact that Φ is an increasing function, we find Yield ≥ 2Φ (3Cpk)− 1. This
can also be understood by seeing that Cpk gives an indication of the yield on the "bad" side of the process
(the side which is closer to a specification limit). The yield on the other side is at least as good, therefore we
arrive at a lower bound for the yield. We can derive an upper bound by seeing that for fixed Cpk, the yield is
maximized if the process is completely within the specification limit on the "good" side. The yield would then
be Φ (3Cpk). Note that the normal distribution is infinite, so we could never reach this upper bound. Now the
relation between yield and Cpk can be summarized in the following inequality

2Φ (3Cpk)− 1 ≤ Yield < Φ (3Cpk) (5)

2.3.2 Cpk and expected loss

The expected relative squared loss based on Cpk can be expressed as

LCpk
=

A0

WT
(1− Ca)2 +

1

9

A0C
2
a

WTC2
pk

(6)

where Ca = 1 − |µ−M |D is a measure for centering. Wu et al. (2009) states that LCpk
is minimized for Ca =

9C2
pk

(1+9Cpk)2 . And LCpk
increases if Ca decreases below this value. Note that we need Ca to express the expected

relative loss, which is due to the fact that Cpk provides little information on the location of µ. This is shows
that Cpk is not an adequate measure for loss.

2.4 Cpm

Cp and Cpk are yield based indices. They provide a good indication of capability when yield is the primary
criteria. However, they do not take the target value into consideration. The next index, Cpm is developed to
reflect on the degree of process targeting and is motivated by the idea of squared error loss. It is defined by

Cpm =
USL− LSL

6τ
=
D

3τ
(7)

where τ =
√
σ2 + (µ− T )2 is a measure of the average deviation from the target value. It combines the

variation relative to the process mean (σ2) and deviation of the process mean from the target (µ − T )2. Note
that τ2 = E[(X−T )2]. So τ2 equals the expected loss as defined in section 2.1.2. For fixed σ, Cpm is maximized
by µ = T .
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2.4.1 Cpm and process yield

The relation between the process yield and Cpm is a bit harder to derive than for Cp and Cpk. Wu et al. (2009)
found that for T = M (symmetric tolerance) and 1− 1/(3Cpm) ≤ Ca ≤ 1 :

Yield = Φ

(
2− Ca

1
(3Cpm)2 − (1− Ca)2

)
+ Φ

(
Ca

1
(3Cpm)2 − (1− Ca)2

)
− 1 (8)

where Ca = 1− |µ−M |d is measure of the distance from the mean to the midpoint M. Even though this relation
is a bit cumbersome, it does prove that the process yield is explicitly related to Cpm and Ca for symmetric
tolerances.

It must be emphasized that this one-to-one relation only holds when T = M . This can be seen by the fact that
process yield is maximized by µ = M and Cpm by µ = T . Thus when T = M , both are increasing when µ
moves closer to M and both are maximized by µ = M , and therefore a one-to-one relation can be established.

2.4.2 Cpm and expected loss

The expected relative loss based on Cpm can be expressed as

LCpm
=

1

9

A0

WTC2
pm

(9)

Wu et al. (2009) states that Cpm has the property of being the so-called a larger-the-better index; larger Cpm
means less expected relative loss. Note that LCpm

is independent of Ca, as oppose to LCpk
. This shows that

Cpm is directly related to loss.

2.5 Cpmk

The last index, proposed by Choi and Owen (1990), is constructed by combining the yield-based index Cpk and
the loss-based index Cpm. It is defined by

Cpmk = min

{
USL− µ

3τ
,
µ− LSL

3τ

}
=
D − |µ−M |

3τ
(10)

When the process mean µ deviates from the target value, the reduction of the value of Cpmk is larger than for
the other indices. It can also be interesting to note that a requirement "Cpk ≥ C" may not meet the requirement
"Cpm ≥ C" and vice versa. However, Cpmk ≥ C implies both Cpk ≥ C and Cpm ≥ C, as Cpmk ≤ Cpk and
Cpmk ≤ Cpm. In general, for fixed µ, Cpmk is maximized for µ somewhere between M and T . In the case of
symmetric tolerance, Cpmk is maximized by µ = M .

2.5.1 Cpmk and process yield

In the case that T = M (symmetric tolerance), using the relation found in section 2.4.1 and the relation
Cpmk = Cpm · Ca, we can derive

Yield = Φ

 2− Ca(
Ca

3Cpmk

)
− (1− Ca)2

+ Φ

 Ca(
Ca

3Cpmk

)
− (1− Ca)2

− 1 (11)

Thus we see that the process yield is explicitly related to Cpmk and Ca. It must again be emphasized that this
only holds for symmetric tolerances with the same reasoning as in section 2.4.1.
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2.5.2 Cpmk and expected loss

The expected relative loss based on our last index Cpmk can be expressed as

LCpmk
=

1

9

A0C
2
a

WTC2
pmk

(12)

Wu et al. (2009) states that for given Cpmk, LCpmk
increases as Ca increases and reaches it’s maximum at

Ca = 1.0. Wu concluded that Cpmk provided the best protection in terms of loss and is therefore preferred over
Cpk and Cpm when measuring squared process loss.

2.6 Classical PCI superstructure
In this section, the focus has been on the differences between the classical PCIs. However, their similarities are
easy to see and worth mentioning. First of all, one can notice that each index has a numerator that reflects
on the process location and a denominator that reflects on the process variation. Secondly, Cp and Cpm only
differ by the fact that σ is replaced by τ , and the same holds for Cpk and Cpmk. Notice that τ2 is equal to the
variation plus a term that accounts for the deviation from the target. So Cpm and Cpmk extend Cp and Cpk
respectively by accounting for process targeting.

We will finish this section by stating the superstructure containing all 4 basic indices, presented by Vännman
(1997) as

Cp(u, v) =
D − u|µ−M |

3
√
σ2 + v(µ− T )2

(13)

where u, v ≥ 0. It is easy to see that Cp(0, 0) = Cp, Cp(1, 0) = Cpk, Cp(0, 1) = Cpm and Cp(1, 1) = Cpmk.

The u, v parameters give rise to an infinite amount of indices, but we can disregard many possible values.
Vännman (1997) noted that not much is gained by using non-integer values for u and v. In order to avoid
negative index values, we take u ∈ {0, 1}. For v we can take any non-negative integer depending on how
strongly centering is valued. Thus besides values u, v ∈ {0, 1}, it is only worth to consider larger values for v if
centering is of higher priority.

The values 0 and 1 for u and v are considered standard values as they give back the classical PCIs. In the
upcoming sections similar superstructures will be introduced for which the focus will be on u, v values {0, 1}.
Also, the same naming convention will be used. Meaning that m in the subscript is equivalent to taking u = 0
and v = 1 for example. These notations are used interchangeably.
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3 Classical PCIs when considering asymmetric tolerance

3.1 Introduction
In practice, the cases of asymmetrical tolerance are not uncommon. In general, asymmetric tolerances reflect
the customers view that deviations from the target are more tolerable in one direction than the other. It can also
happen that a customer initially had symmetric specifications, but is willing to expand one of the specification
limits if it occurs that the limit cannot be hold. An example of this is given in Boyles (1994). Another way of
arriving at asymmetric limits is after transforming non-normal process data. The previously symmetric limits
then also need to be transformed, after which they most likely become asymmetric.

In practice it is often seen that the classical PCIs are used even for asymmetric tolerances. In this section we
take a look at how the classical PCIs can misrepresent the process capability when asymmetric tolerance are
considered.

3.2 Cp with asymmetric tolerance
The simple index Cp is nothing more than a precision index. It does not take the target value T into account,
in fact it says nothing about the location of the process distribution. If this is kept in mind, then Cp can still
be used in the case asymmetric tolerance to get an indication of the precision of the process.

3.3 Cpk with asymmetric tolerance
Cpk is a yield-based index and only provides a lower bound for the process yield. Even though it takes the
midpoint M into account, it fails to account for process centering, even for symmetric tolerances, as not much
can be said about the location of the mean µ. This is best illustrated with an exaggerated example; figure 2
shows three processes with widely varying process means that all have Cpk = 1. This already shows that not
much can be said about the location of the process mean. However, for symmetric tolerance we can consider
process A and B equally capable, so there is no problem in having the same index value. But when the target
is not specified at M, but for example T = 2.5 like in figure 2, then we clearly consider process B less capable
than process A and the processes having the same index value is problematic.

Figure 2: Process A and B have µ equal to 2.5 and 8.5 respectively, and both have σ = 0.5. Process C has
µ = 5.5 and σ = 1.5. All three processes have Cpk = 1.

Furthermore, the process yield and also Cpk, for fixed σ, are maximized by µ = M , as noted in section 2.3. This
is also illustrated in figure 3 where also see the symmetry of Cpk around M. While for asymmetric tolerance the
customer has set the target value T 6= M and we would like to maximize for µ = T . In the case of asymmetric
tolerances, maximizing yield and maximizing targeting around T are conflicting criteria. As Cpk only considers
yield, it is not the best reflection of capability as specified by the customer.
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Figure 3: The value of Cpk for different µ ranging within the limits. σ is fixed and equal to 1.5.

3.4 Cpm with asymmetric tolerance
We’ve seen that Cp and Cpk don’t take the target value into account. Cpm was developed to also reflect on
process targeting by using the idea of squared error loss. Cpm has the property that it is maximized for µ = T ,
which is desirable in the case of asymmetric tolerances. However, a shortcoming of Cpm is the fact that it does
not account for the direction of the deviation from the target. This is due to the fact that the squared loss
is symmetric around the target T. While for asymmetric tolerance it is clearly less desirable for the mean to
deviate in the direction of the closer specification limit, as in that case yield decreases more rapidly. An example
by Boyles (1994) is illustrated in figure 4. Processes A and B both have a Cpm index of 1.2, but the yield of
process B is lower than that of process A.

Figure 4: Processes A and B both have Cpm = 1.2. Process C has Cpm = 1, but expected percentage non-
conforming of 6.7%.

Another problem is that for an on-target process, so where µ = T , Cpm actually reduces to Cp. In section
2.2.1, it is already noticed that Cp can only evaluate the yield for centered processes. But for asymmetric
tolerance, an on-target process is clearly not centered and thus nothing can be said about yield. This is also
illustrated in figure 4 by process C, which has a Cpm value of 1, but expected percentage non-conforming of
6.7%. (Conventionally, an index value of 1 is associated with at most 0.27% non-conforming.)

Even though Cpm accounts for targeting, it considers losses on either side of T equally, creating a symmetric
index around T. The value of Cpm for different µ is illustrated in figure 5 which shows the symmetry of Cpm
around T.
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Figure 5: The value of Cpm for different µ ranging within the limits. σ is fixed and equal to 3.

3.5 Cpmk with asymmetric tolerance
The main problem is that Cpmk is maximized for µ somewhere between M and T (for fixed σ), as noted in
section 2.5. This is also illustrated in figure 6. When considering asymmetric tolerance, the customer clearly
values targeting and we would therefore like a PCI to be maximized by µ = T .

In figure 6 we also see that Cpmk decreases more steeply towards the closer limit than to the further limit, which
is desirable for asymmetric tolerances. However, when the process mean is exactly on either specification limit,
then in both cases Cpmk = 0. We want a process on the further limit to have a lower index value than a process
on the closer limit, because even though yield is equal, the process mean on the further limit is a lot further
from the target value. This problem can also be seen from figure 6, where we see the value go to 0 for both
limits.

Figure 6: The value of Cpmk for different µ ranging within the limits. σ is fixed and equal to 3.

Other problems for the last index Cpmk in the case of asymmetric tolerance are less significant than the other
PCIs and a bit harder to find. It cannot overstate the process yield due to the inequality Cpmk ≤ Cpk found
in section 2.5. Process C from figure 4, which has a bad yield, has Cpmk < 1. Furthermore, it gives process B
a lower index value than process A. However, this is due to the numerator of Cpmk and one could argue that
this accounts for process yield. The component accounting for targeting, τ , is equal for process A and B. For
asymmetric tolerance, we would like to distinguish between the directions of deviations from the target.
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4 Desirable properties of a PCI when considering asymmetric toler-
ance

In this section, a list of desirable properties of a PCI when considering asymmetric tolerance is formulated.
Some of which are found shortcomings in the previous section and others were found later when researching
other PCIs. The list is (roughly) in order of importance.

(i) The PCI is maximized at µ = T .

(ii) The PCI accounts for the direction of the deviation from the target: the index value must decrease more
steeply when µ shifts from T towards the closer specification limit.

(iii) The PCI value must be lower on the further specification limit than on the closer specification limit.

(iv) The PCI value is always greater or equal to 0 within the specification limits.

(v) The PCI is a generalization of the classical PCIs. Meaning that when tolerances are symmetric, the PCI
reduces to a classical PCI.

Properties (i) - (iii) make sure a PCI gives values that are consistent with capability. The target value is by
definition the most optimal value, therefore we clearly want the index value to be maximized for T . If the
process mean is to shift from the target value, then a shift towards the closer limit will result in a higher loss
of yield than when it would shift towards the further limit. In other words, the capability decreases more
quickly. For this reason, a PCI value must decrease more quickly when the process mean shifts towards the
closer specification limit. If the process mean were to actually reach a specification limit, then process yield
is 50% for both limits. However, the process mean is further from the target value on the further limit and
thus less capable. Therefore, in order to keep the index value consistent, it must have a lower value on the
further specification limit. We can see that properties (i)-(iii) together make sure that a PCI gives values that
are consistent with process capability.

Property (iv) makes a PCI interpretable. PCIs are designed such that a process can be considered capable if
the index value is at least 1. It is important to also agree upon when a process is incapable. The classical PCIs
give a value of 0 when the process mean is on one of the specification limits, which is a good indication of the
worst case scenario. If we would allow for negative values, then we lose this indication and it becomes difficult
to interpret how incapable a process is. Besides the fact that negative values are impractical, they are also
unconventional. An index value can be seen as a grade or rating, and it is unusual to give something a negative
grade. Thus property (iv) makes a PCI interpretable and usable in practice.

The last property does not make the index better at indicating capability, but it is an important property if we
want a PCI to be widely applicable. With property (v), a PCI can be used for both types of tolerances and is
more likely to be used in practice.
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5 Existing PCIs for asymmetric tolerances

In this section, we will look at the different approaches to deal with asymmetric tolerance and PCIs designed to
reflect process capability for asymmetric tolerance. The indices are introduced and compared to the desirable
properties from section 4. The indices are in chronological order by the date of the paper they are proposed in.

5.1 C∗p

Some of the first approaches to dealing with asymmetric tolerance, were adjusting the asymmetric specification
limits to symmetric ones and then use the classical PCIs on the new specification limits. We can denote the
specification limits for asymmetric tolerance by (T −Dl, T +Du), where Dl = T − LSL and Du = USL− T .

One way to adjust the specification limits, proposed by Kane (1986), is by replacing (T − Dl, T + Du) by
(T − d∗, T + d∗), where d∗ = min{Dl, Du}. We can rewrite the superstructure 13 from section 2.6 as

C∗p (u, v) =
d∗ − u|µ−M |

3
√
σ2 + v(µ− T )2

(14)

from which we can extract a new class of indices C∗p , C∗pk, C
∗
pm and C∗pmk in the same way as 2.6. With

this approach, we can understate the process capability, as we are restricting to a proper subset of the actual
specification limits. In figure 7 we can see the problem of understating process capability; process A (with
µ = 2 and σ = 0.8) is off target, but has a good yield and a Cpk value of 1.25. However, when adjusting the
specification limits, process A has a C∗pk value of 0.42.

(a) Process A with LSL = -2, USL = 5 and T = 0.5. (b) Process A with adjusted specification limits using d∗.
USL is 3 in this case.

Figure 7: Illustrative example of C∗p .

5.2 C ′p

The second way to adjust the specification limits, proposed by Kane (1986), is by replacing (T −Dl, T + Du)
by (T − d′, T + d′), where d′ = (Dl +Du)/2. In this case, we can rewrite the superstructure 13 as

C ′p(u, v) =
d′ − u|µ−M |

3
√
σ2 + v(µ− T )2

(15)

from which we can extract a new class of indices C ′p, C ′pk, C
′
pm and C ′pmk in the same way as 2.6. With this

approach, we can either understate or overstate the process capability, depending on the location of µ relative
to T. Figure 8 shows the problem of understating process yield with C ′p; process A has a Cpk value of 1.25 and
a C ′pk value of 0.625 Figure 9 shows the problem of overstating process yield with C ′p; process A has a Cpk value
of 0.708 and a C ′pk value of 1.33.
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(a) Process A with LSL = -2, USL = 5 and T = 0,5. (b) Process A with adjusted specification limits using d′.

Figure 8: Illustrative example of understating process capability using C ′p.

(a) Process A with LSL = -2, USL = 5 and T = 0. (b) Process A with adjusted specification limits using d′.

Figure 9: Illustrative example of overstating process capability using C ′p.

We see that the main problem for with C∗p and C ′p is the fact that these indices fail to reflect on yield, which
is understandable from the fact that we adjust the specification limits. Another problem is that deviations of
µ from T are evaluated without considering direction. This is because C∗p and C ′p are classical indices on the
new specification limits and we’ve seen in the previous section that the classical PCIs do not take direction into
account.

There is one advantage of using C∗p and C ′p. Namely, they are maximized for µ = T , or equivalently µ = M , as
T = M .

5.3 Spmk

Boyles (1994) introduced a smooth function

S(x, y) =
Φ−1

(
Φ(x)+Φ(y)

2

)
3

(16)

and proposed a smooth generalization of Cpmk defined by

Spmk = S

(
USL− µ

τ
,
µ− LSL

τ

)
(17)

where τ =
√
σ2 + (µ− T )2. This index is proposed as an index for asymmetrical tolerances, because at this

time Cpmk was considered a PCI for asymmetrical tolerances. Boyles states that Cpmk should be viewed as an
approximation to Spmk. In order to illustrate the value of Spmk for different µ, an example process is used to
plot some values in figure 10.
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Figure 10: Spmk values for different µ with σ = 0.8.

Properties of Spmk:

• Spmk is maximized for µ somewhere between T and M, thus property (i) does not hold.

• From figure 10, we see that Spmk decreases more steeply when µ shifts towards the closer limit, thus
property (ii) holds.

• In general if µ on one of the specification limits then either x or y is 0 and the other is 2d
τ . τ will be larger

when µ is on the further limit. Thus we see that property (iii) holds in general. Also, in figure 10 we have
Spmk = 0.22 on LSL and 0.18 on USL.

• Boyles states that Spmk ≥ Cpmk. We have that Cpmk ≥ 0, as D ≥ |µ −M |. So we have that Spmk ≥ 0
and we conclude that property (iv) holds.

• Spmk generalizes Cpmk in being a smooth version, however it does not reduce to Cpmk for symmetrical
tolerances. Thus property (v) does not hold.

As concluded in section 3, Cpmk has shortcomings when considering asymmetric tolerance. Spmk is nothing
more than a smooth generalization of Cpmk. We actually see the same shortcomings, the most clear of which is
the fact that Spmk is not maximized by µ = T , which we can also see in figure 10. Spmk is therefore not a good
representation of process capability when considering asymmetric tolerance.

5.4 C?
pm

We can define relative squared loss by

Symmetric loss =
(X − T )2

D2
(18)

and when taking the expectation, we get expected relative loss defined as σ2+(µ−T )2

D2 , which is a special case of
the expected relative loss defined in section 2.1.2. Note that this is exactly what we find in the definition of
Cpm. Recall that Cpm = D

3
√
σ2+(µ−T )2

. If we denote the expected relative loss by λ′, then Cpm = 1
3
√
λ′
.

A problem with this definition of relative loss is that it does not take the direction of the deviation of µ from T
into account. This is also a shortcoming of Cpm mentioned in section 3. This problem can be solved by using
a piecewise loss function

Asymmetric loss =


Al(X−T )2

D2
l

if X ≤ T
Au(X−T )2

D2
u

if X > T
(19)
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where Al and Au represent monetary losses when X is at the respective specification limit. Notice that we are
just taking relative loss on each side of T separately. Now by taking the expectation of this new loss function,
Boyles (1994) derives a new form of expected relative loss, denoted by λ, as

λ = σ2

(
Alh(ζ)

D2
l

+
Auh(−ζ)

D2
u

)
(20)

with

h(ζ) = (1 + ζ2)Φ(ζ) + ζφ(ζ) (21)

h(−ζ) = (1 + ζ2)(1− Φ(ζ))− ζφ(ζ) (22)

where ζ = T−µ
σ . By taking Al = Au = 1, we define

C?pm =
1

3
√
λ

(23)

The definition of λ seems complicated, but it is only the result of the piecewise loss function. It is easy to
see that in the case of symmetric tolerances, the asymmetric loss function (19) reduces to the symmetric loss
function (18). Which results in λ′ = λ and in turn C?pm reduces to Cpm. So we see that C?pm is a generalization
of Cpm.

Figure 11 illustrates the values of C?pm for different values of µ of a process with σ = 0.8. First of all, it noticeable
that the values are relatively high with respect to the other indices we’ve discussed; between T and M we see
that the index value is above 1, while for the other indices the values was always below 1. Secondly, it is clear
to see that C?pm is not maximized for µ = T . This is different from Cpm, which actually was maximized at T.
This is due to the use of asymmetric loss, where loss "costs" more on the side of the closer specification limit.

Figure 11: C?pm values for different µ.

Properties of C?pm:

• From figure 11 it clear to see that C?pm is not maximized for µ = T . Thus property (i) does not hold.

• By using an asymmetric loss function, C?pm takes direction of process shift into account. In figure 11 we
also see that C?pm decreases more steeply towards the closer limit. Thus property (ii) holds.

• In the example from figure 11 we have C?pm = 0.31 for µ on LSL and C?pm = 0.33 for µ on USL. Thus
property (iii) does not hold.

• As the expected loss λ is always greater or equal to 0, we have that C?pm ≥ 0. Thus property (iv) holds.
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• As mentioned in this section, C?pm reduces to Cpm for symmetrical tolerances, so property (v) holds.

5.5 C+
pm

Boyles (1994) stated that C?pm lacks calibration with process yield. He derives a new index of the same form as
C?pm, where he takes Al = Au = A such that the index is equal to Cpk when µ = T . He finds

A(r) =
2

1 + min(r2, r−2)

where r = Dl/Du. Substituting this A into λ in equation (20), we get a new index denoted by C+
pm. Note that

A ≥ 1, with equality when r = 1, which is only the case for symmetric tolerance. We see that in the case of
symmetric tolerance C+

pm = C?pm = Cpm.

Figure 12 illustrates the values of C+
pm for different values of µ of a process with σ = 0.8. It looks exactly the

same as figure 11, but only the index values are scaled down. This is due to the relation C+
pm =

C?
pm√
A(r)

. We

see that C+
pm shares the properties of C?pm, except the scale of the values. Boyles concludes that C+

pm provides
better protection with respect to process yield than C?pm.

Figure 12: C?pm values for different µ.

Properties of C+
pm:

• From figure 12 it clear to see that C+
pm is not maximized for µ = T . Thus property (i) does not hold.

• By using an asymmetric loss function, C+
pm takes direction of process shift into account. In figure 12 we

also see that C+
pm decreases more steeply towards the closer limit. Thus property (ii) holds.

• In the example from figure 11 we have C?pm = 0.24 for µ on LSL and C?pm = 0.25 for µ on USL. Thus
property (iii) does not hold.

• As the expected loss λ with the new A(r) is still always greater or equal to 0, we have that C?pm ≥ 0.
Thus property (iv) holds.

• As mentioned in this section, C?pm = C+
pm = Cpm for symmetrical tolerances, so property (v) holds.

5.6 Cpa(1, 1)

Vännman (1997) proposed a superstructure for asymmetrical tolerance defined by

Cpa(u, v) =
d− |µ−M | − u|µ− T |

3
√
σ2 + v(µ− T )2

(24)
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When using standard values u, v ∈ {0, 1}, we get the following indices

Cpa(0, 0) =
d− |µ−M |

3σ
= Cpk

Cpa(1, 0) =
d− |µ−M | − |µ− T |

3
√
σ2

Cpa(0, 1) =
d− |µ−M |

3
√
σ2 + (µ− T )2

= Cpmk

Cpa(1, 1) =
d− |µ−M | − |µ− T |

3
√
σ2 + (µ− T )2

Note that this structure is similar to the superstructure of the classical PCIs (section 2.6). We can even see that
for u, v = 0 we have Cpa(0, 0) = Cpk. Also, for u = 0 we have Cpa(0, 1) = Cpmk. Both of which we concluded
not to be suitable for asymmetric tolerance. Moreover, if we want Cpa to be maximized at µ = T , we need
|µ− T | to weigh more than |µ−M |, from which we conclude that we can only consider values of u ≥ 1 in the
case of asymmetric tolerances. This is illustrated in figure 13a and 13b. The variable v accounts for targeting,
so in the case of asymmetric tolerances it would be reasonable to take v > 0. When v = 0 we also see that Cpa
is not maximized for only µ = T , which is illustrated in figure 13c. What value you use for v depends on how
much you value targeting. Using v = 1, which is a reasonable standard value, figure 13d illustrates the value of
Cpa.

(a) Value of Cpa(1.2, 0) for different µ. (b) Value of Cpa(0.8, 0) for different µ.

(c) Value of Cpa(1, 0) for different µ. (d) Value of Cpa(1, 1) for different µ.

Figure 13: Example process with σ = 0.8 and µ ranging between the specification limits.

In order to see what properties hold for Cpa, we consider Cpa(1, 1), as u, v = 1 can be considered standard
values and are the only suitable values we’ve discussed when considering asymmetric tolerance. We concluded
that Cpa is maximized by µ = T for u ≥ 1, so property (i) holds. From figure 13d we can see that Cpa decreases
more steeply when µ shifts towards the closer limit, so property (ii) holds. Cpa(1, 1) = −0.31 for µ = LSL and
Cpa(1, 1) = −0.33 for µ = USL thus property (iii) holds. This is for T = −1, but when taking T anywhere
between LSL and USL the property still holds. Property (iv) does not hold, as we can clearly see values below 0
in figure 13d. When tolerances are symmetric we can write Cpa(u, v) = d−u′|µ−M |

3
√
σ2+v(µ−M)2

, where u′ = 1 + u. This

is the classical superstructure for symmetrical tolerances, but with a modified u. This makes the index react
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stronger to decrease in yield and therefore the properties discussed in section 2 do not hold anymore. Thus
property (v) does not hold.

5.7 C ′′pk, C
′′
pm and C ′′pmk

Chen and Pearn (2001) introduced a new superstructure

C ′′p (u, v) =
d∗ − uF ∗

3
√
σ2 + vF 2

(25)

where

F = max

{
d(µ− T )

Du
,
d(T − µ)

Dl

}
F ∗ = max

{
d∗(µ− T )

Du
,
d∗(T − µ)

Dl

}
Recall that d∗ = min{Dl, Du}. This superstructure yields a class of indices C ′′p , C ′′pk, C

′′
pm and C ′′pmk. C

′′
pk was

first proposed by Pearn and Chen (1998) as a generalization of Cpk. Notice that this new superstructure is C∗p
with |µ−M | replaced by F ∗ and µ− T replaced by F . This term accounts for taking direction of µ shift into
account. It takes the distance of the shift relative to the distance to the limit, therefore shifts towards the closer
limit weighs more than in the direction of the further limit.

The value of three indices are illustrated in figure 14 for different µ. C ′′p is left out, as it is equal to C∗p from
section 5.1. Note that this is not a process distribution, but a plot of index values for a range of values for µ
given fixed σ.

(a) Value of C′′pk(= C′′p (1, 0)) for different µ.
(b) Value of C′′pm(= C′′p (0, 1)) for different µ.

(c) Value of C′′pmk(= C′′p (1, 1)) for different µ.

Figure 14: Example process with σ = 0.8 and µ ranging between the specification limits.

Properties of C ′′pk, C
′′
pm and C ′′pmk indices (C ′′p is not considered as it is equal to C∗p from section 5.1):

• Note that F, F ∗ ≥ 0, then the indices are maximized when F and F ∗ are minimized. Thus these indices
obtain the maximum value at µ = T and property (i) holds.
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• C ′′p decreases more steeply when µ shifts towards a closer specification limit from T, which is caused by
the terms F and F ∗ as they take deviations from T relative to the distance from T to the specification
limit. This is also illustrated in figure 14. Thus property (ii) holds.

• If two processes with µA > T and µB < T satisfy (µA − T )/Du = (T − µB)/Dl, then the processes have
the same index value. So if µA = USL and µB = LSL, then the index value is equal and thus property
(iii) does not hold.

• If the process mean is on one the specification limits, then F ∗ = d∗ and C ′′pk = C ′′pmk = 0, and the value
is greater than 0 within the limits. Also, Cpm ≥ 0, as it only consists of positive terms. These relations
are also illustrated in figure 14. Thus property (iv) holds.

• When tolerances are symmetric (T = M), then C ′′p (u, v) = Cp(u, v), the classical PCI superstructure from
section 2.6. As in that case d∗ = d = Du = Dl and max{µ −M,M − µ} = |µ −M |. Thus property (v)
holds.

5.8 C∗∗p

Grau (2005) comes up with two superstructures. The first of which is exactly C∗p . The second one, denoted by
C∗∗p is quite similar and defined by

C∗∗p (u, v) =
d− uF

3
√
σ2 + vF 2

(26)

where

F = max

{
d(µ− T )

Du
,
d(T − µ)

Dl

}
From the definition it is clear that C∗∗p has the same structure as C ′′p , the only difference being that d is not
replaced by d∗ in the numerator. Using d∗ puts a restriction on the allowed variation to better be able to
guarantee yield. In that sense, C∗∗p is less strict and will produce higher index values. This is exactly what we
see when we compare figure 15c, which shows values of C∗∗p for different µ, with figure 14c. They have exactly
the same structure but the index value scale is larger for C∗∗p .

(a) Value of C∗∗pk(= C∗∗p (1, 0)) for different µ. (b) Value of C∗∗pm(= C∗∗p (0, 1)) for different µ.

(c) Value of C∗∗pmk(= C∗∗p (1, 1)) for different µ.

Figure 15: Example process with σ = 0.8 and µ ranging between the specification limits.
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From the definition, we can see that C∗∗p is maximized for µ = T , as F = 0 in that case. This can also be seen
in figure 15. Thus property (i) holds. F accounts for direction of process shift as it takes the distance from
T relative to the side of the shift. This is also visible in figure 15. Thus property (ii) holds. If µ is on either
specification limit, then F = d and C∗∗p = 0. Thus C∗∗p ≥ 0 for µ within the specification limits and property
(iv) holds. However, as C∗∗p = 0 on both specification limits, property (iii) does not hold. When tolerances are
symmetric C∗∗p (u, v) = Cp(u, v), so property (v) holds.

5.9 C ′′a

Wu et al. (2010) proposed a generalization of Ca = 1 − |µ−M |D , an accuracy index for symmetrical tolerances.
Ca is shortly mentioned in section 2.3.2, but not discussed in detail. The generalization C ′′a is defined by Wu as

Ca = 1− F ∗

d∗
(27)

where

F ∗ = max

{
d∗(µ− T )

Du
,
d∗(T − µ)

Dl

}

A rather overcomplicated definition as d∗ can be cancelled out. It is easy to see that what we have left is 1
substracted by the devation of µ from T relative to the distance of T to the specification limit. Thus C ′′a is a
linear function going from 1 on T to 0 on the specification limit. The value of C ′′a for different µ is illustrated
in figure 16. Note that we see the exact same structure as for C ′′pk in figure 14a, only now the maximal value is
1. This can be seen by the fact that we can rewrite C ′′pk = d∗

3σC
∗∗
a . In that sense, C ′′a does not provide a new

way of calculating process capability.

Figure 16: C ′′a values for different µ.

C ′′a is clearly maximized for µ = T , so property (i) holds. From figure 16, we see that property (ii) holds.
Property (iii) does not hold, as C ′′a is 0 on both specification limits. As C ′′a ≥ 0, property (iv) holds. C ′′a reduces
to Ca for symmetric tolerances and therefore property (v) holds, even though Ca is not mentioned as a classical
PCI in section 2.

5.10 C ′′′pk, C
′′′
pm and C ′′′pmk

Ganji and Gildeh (2016) noted a problem for C ′′p (u, v): if two processes A and B with the same variation σ
where µA = USL and µB = LSL, then they both have C ′′pk = C ′′pmk = 0 independent of the location of the
target T. This can be seen by the fact that F ∗ = d∗ when µ is on one of the specification limits, which results
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in C ′′p (u, v) = 0 when u > 0. It is also illustrated with an example in figure 14a and 14c where we see that the
C ′′p value is 0 on the limits. This is undesirable, because in the case of asymmetric tolerance we would like the
process further from the target to have a lower index value.

Ganji solved this problem by proposing a new capability index C ′′′p (u, v), which improves C ′′p (u, v) by replacing
F ∗ with A∗ and F with A. It is defined as

C ′′′p (u, v) =
d∗ − uA∗

3
√
σ2 + vA2

(28)

where

A∗ =

{
(µ−T )2

Du
if µ > T

(T−µ)2

Dl
if µ ≤ T

A =

{
d(µ−T )
Du

if µ > T
d(T−µ)
Dl

if µ ≤ T

from which we can extract a new class of indices C ′′′p , C ′′′pk, C
′′′
pm and C ′′′pmk. The value of three indices are

illustrated in figure 17 for different µ. C ′′′p is left out, as it is equal to C∗p from section 5.1. We can see that the
index value can be negative and is lower on the further specification limit.

(a) Value of C′′′pk(= C′′′p (1, 0)) for different µ. (b) Value of C′′′pm(= C′′′p (0, 1)) for different µ.

(c) Value of C′′′pmk(= C′′′p (1, 1)) for different µ.

Figure 17: Example process with σ = 0.8 and µ ranging between the specification limits.

Properties of C ′′′pk, C
′′′
pm and C ′′′pmk:

• These indices obtain the maximum value at µ = T , which is illustrated in figure 17. Thus property (i)
holds.

• C ′′′p decreases more steeply when µ shifts towards a closer specification limit from T, which is caused by
the terms A and A∗, as they take deviation from T relative to the distance from T to the specification
limit. Thus property (ii) holds.
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• If the process mean is on the specification limits closest to T, then C ′′pk = 0 and C ′′pmk = 0. If µ is on the
further specification limit, then C ′′′pk, C

′′′
pmk ≤ 0. This is because A∗ = Du when µ = USL and A∗ = Dl

when µ = LSL. Recall that d∗ = min{Du, Dl}, then we see that the numerator is 0 for the closer limit
and has a negative value for the further limit. Thus property (iii) holds for C ′′′pk and C ′′′pmk. However, for
C ′′′pm we have u = 0, so A∗ is not considered. We have that A = d2 when µ is on either limit, thus C ′′′pm
has the same value when µ is on either limit. Thus property (iii) does not hold for C ′′′pm.

• For the previous property we’ve seen that C ′′′pk and C ′′′pmk can get negative values, which is also illustrated
in figure 17a and 17c. Thus property (iv) does not hold for C ′′′pk and C ′′′pmk. For C

′′′
pm we have u = 0, so it

cannot take negative values. Thus property (iv) holds for C ′′′pm.

• When tolerances are symmetric (T = M), then A and A∗ do not reduce to |µ−M |, so we do not get back
the classical PCI superstructure from section 2.6. Thus property (v) does not hold.

C ′′′p (u, v) has another good property which is not included in section 4. Namely if the process mean coincides
the target value and C ′′′p (u, v) = 1 for all values of u and v, then we have at most 2700 ppm nonconforming.
Equivalently, the yield is at least 99.73%. Furthermore, for C ′′′p (u, v) = 1.33, this is only 66 ppm. And for
C ′′′p (u, v) = 1.5, this is 7 ppm. This is good property as these are the same bounds on yield as Cpk and are
considered standard values.

Ganji succeeded in getting the index value lower on the further specification limit. However, this resulted in
negative index values, as the index value is 0 on the closer limit. We see that the value can actually get high
negative values, as seen for C ′′′pk in figure 17c. The first problem is that this gives no standard for bad process
capability, as it can go to minus infinity. Secondly, negative index values are difficult to interpret practice, as
mentioned in section 4.

5.11 Yp

The indices we’ve seen so far require an estimation of µ and σ in order to calculate the index. Estimation error
can lead to a wrong indication of process capability. Wanga Ching-Hsin (2020) proposed a new PCI which which
can be calculated directly from the process data and measures the capacity of processes for both symmetric and
asymmetric tolerance. It is defined as

Yp =

∫ USL

LSL

(1− δ) dF (x) (29)

where

δ =

{
X−T
Du

X ≥ T
T−X
Dl

X < T
(30)

In order to illustrate the distribution of Yp for different µ, I took a sample of size 1000 for each µ and calculated
Yp, with given σ = 0.8. This would be a simple estimation of Yp. Wang, Chen (2020) used a bootstrapping
method to obtain a more precise estimate. However, for the sake of illustrating the index, this simple estimation
will suffice. The plot of Yp can be found in figure 18.
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Figure 18: Yp values for different µ.

Properties of Yp:

• From figure 18 it is clear to see that Yp is not maximized by µ = T . Thus property (i) does not hold.

• By taking relative loss, Yp does account for direction of µ shift and we see in figure 18 that the value
decreases more quickly towards the closer limit, so property (ii) holds.

• As loss is higher when process data is on the further limit, Yp takes a lower value on the further limit.
This is also illustrated in figure 18. Thus property (iii) holds.

• δ ≤ 1 for µ within the specification limits, therefore Yp will always take non-negative values and thus
property (iv) holds.

• Yp can be used for both symmetric and asymmetric tolerances, but it is not a generalization of the classical
PCIs. So property (v) does not hold.

First of all, Yp is not a generalization of the classical PCIs. Secondly, we see that it is not maximized for
µ = T . However, two good properties are Yp being always greater or equal to 0 and the value on the closer limit
being lower. Furthermore, the main advantage of Yp is the fact that it can be used regardless of the process
distribution.
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5.12 Summary of PCIs for asymmetrical tolerance
We summarize this section by giving a table that shows the PCIs for asymmetrical tolerances and their desirable
properties from section 4. C∗p from section 5.1 and C ′p from section 5.2 are left out as they are approaches to
asymmetrical tolerances rather than new indices. As we can see, none of the existing PCIs satisfy all the
desirable properties.

PCI (i) (ii) (iii) (iv) (v)

Spmk x x x
C?pm x x x
C+
pm x x x

Cpa(1, 1) x x x
C ′′pk x x x x
C ′′pm x x x x
C ′′pmk x x x x
C∗∗a x x x x
C ′′a x x x x
C ′′′pk x x x
C ′′′pm x x x x
C ′′′pmk x x x
Yp x x x

Table 1: Overview of the existing PCIs and the properties from section 4 they satisfy.
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6 New PCI proposals

As we have seen in the previous section, none of the discussed PCIs satisfy all of our desirable properties. In
this section some new ideas are proposed that improve on the PCIs from the previous section by satisfying more
desirable properties.

6.1 Proposal 1: satisfying property (iii) for C ′′p (u, v)

C ′′p (u, v) already has 4 out of our 5 desirable properties. It does not have property (iii) because for two processes
A and B with µA = USL and µB = LSL, the index values are both 0.

Before we look at the cause of this, we note that it is convenient to define the relative departure of the process
mean by

β =

{
µ−T
Du

if µ > T
T−µ
Dl

if µ ≤ T
(31)

which is 0 when µ = T and goes linearly to 1 when µ moves to either limit and thus more quickly towards
the closer limit. This is illustrated in figure 19 by plotting 1 − β, as 1 − β is more in line with index value
plots because we want the relative departure β to be small. The term β is found in many PCIs for asymmetric
tolerances. Namely, F = d ·β in C ′′p (u, v) and C∗∗a (section 5.7 and 5.8). F ∗ = d∗ ·β in C ′′p (u, v) and C ′′a (section
5.7 and 5.9). A∗ = |µ− T | · β in C ′′′p (u, v) (section 5.10).

Figure 19: Value of 1− β for different µ.

Using β, we can rewrite C ′′p (u, v) as

C ′′p (u, v) =
d∗(1− uβ)

3
√
σ2 + vd2β2

(32)

From equation (32) we see that C ′′pk and C ′′pmk (which have u = 1) have the 1 − β term in the numerator.
1 − β = 0 when the process mean is on either specification limit. This is the cause of C ′′pk and C ′′pmk having
equal values, namely 0, on the specification limits and thus not satisfying property (iii).

We can adjust C ′′p (u, v) by taking F+ instead of F ∗. The new index, denoted by Cp1, is defined as

Cp1(u, v) =
d∗ − uF+

3
√
σ2 + vF 2

(33)

where

F = max

{
d(µ− T )

Du
,
d(T − µ)

Dl

}
F+ = max

{
d∗(µ− T )

d+
,
d∗(T − µ)

d+

}
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with

d+ = max{Du, Dl}

We have that the numerator is still zero on further limit, but is equal to d∗(1 − d∗

d+ ) on the closer limit. The
idea is that when the target value is close to the midpoint, then the ratio between the specification widths ( d

∗

d+ )
is close to one and the index value will be close to zero. But when the target value is close to a specification
limit, then the ratio will be smaller and thus the index value larger. In this way, the index value on the closer
limit depends on the location of the target relative to the specification limits.

Figure 20 shows plots of the new indices for standard u, v values. One problem is that F+ is symmetric around T .
Therefore when v = 0, we have a symmetric index around T which does not satisfy property (ii). The symmetry
is clear in figure 20a. For this reason, we should only consider v > 0. We also note that Cp1(0, 1) = C ′′pm, shown
in figure 20b. More generally, Cp1(0, v) = C ′′p (0, v) for all v because the new term F+ is not considered when
u = 0. Thus only values u, v > 0 are of interested to us.

(a) Value of Cp1(1, 0) for different µ. (b) Value of Cp1(0, 1) for different µ.

(c) Value of Cp1(1, 1) for different µ.

Figure 20: Plots of proposal 1

In order to look at the properties of new index we take u, v = 1, which can be considered standard values.
Cp1(1, 1) is plotted in figure (20c).

• Note that F, F+ ≥ 0 and that they are 0 when µ = T , then it is clear that Cp1(1, 1) is maximized by
µ = T . Thus property (i) holds.

• As noted earlier, the term F+ is symmetric around T . However, F increases more quickly when µ moves
to the closer limit. Thus with v = 1 > 0 the index decreases more steeply towards the closer limit and
property (ii) holds.

• On the further limit F+ = d∗ such that the index value Cp1(1, 1) = 0. On the closer limit F+ = d∗
2

d+ ≤ d
∗

such that the index value Cp1(1, 1) ≥ 0, with equality in the case of symmetric tolerances. Thus for
asymmetric tolerances the index value on the further limit is lower than on the closer limit, and we see
that property (iii) holds.

• From the above we also conclude that property (iv) holds.
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• In section 5.7, we concluded that C ′′p (u, v) reduces to Cp(u, v) (the classical PCI superstructure). In
this new PCI, we’ve only substituted d+ for Du and Dl in F ∗ and d+ also reduces to d for symmetrical
tolerances. Thus Cp1(u, v) also reduces to the classical PCI superstructure and property (v) holds.

As we can see, all our desirable properties hold for Cp1(1, 1). More generally, all properties hold for any u ∈ (0, 1]
and v ∈ (0,∞).

6.1.1 Relation to process centering

Given a value c for the process capability index C ′′p (u, v), we can derive upper bounds for the relative departures
λ = µ−T

Du
and λ′ = T−µ

Dl
by

λ5 =
d∗

3c
√
vd+ ud∗

such that λ, λ′ ≤ λ5 and

T − λ5Dl < µ < T + λ5Du

Details of the derivation can be found in the appendix. Given a value c for the new index Cp1(u, v), we derive
new upper bounds given by

λ1 =
d∗

3c
√
vd+ ud∗Du

d+

λ′1 =
d∗

3c
√
vd+ ud∗Dl

d+

such that λ ≤ λ1, λ′ ≤ λ′1 and

T − λ′1Dl < µ < T + λ1Du

Details of the derivation can be found in the appendix. Note that Du

d+ ≤ 1 and Dl

d+ ≤ 1, such that λ1, λ
′
1 ≥ λ5.

Thus the upper bounds of the relative departure for the new PCI are higher then for C ′′p . The upper and lower
bounds are plotted in figure 21.

Figure 21: Upper and lower bound of µ for given index values of C ′′p and Cp1 ranging from 0 to 2, with
(LSL, T, USL) = (−3,−1, 4).
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6.1.2 Relation to process yield

Given a value c for the index C ′′p (u, v), we can derive an upper bound on the percentage of non-conforming
products (NC) and Yield = 1−NC. In the case that Du < Dl, so T is closer to USL, we have

NC ≤ 2

(
1− Φ

(
3cDu(1− λ5)

d∗

))
and in the case that Dl < Du, so T is closer to LSL, then

NC ≤ 2

(
1− Φ

(
3cDl(1− λ5)

d∗

))
of which the derivations can be found in the appendix. In a similar way we can find these bounds when it is
given that Cp1(u, v) = c. In the case that Du < Dl, we have

NC ≤ 2

(
1− Φ

(
3cDu(1− λ1)

d∗

))
and in the case that Dl < Du, we have

NC ≤ 2

(
1− Φ

(
3cDl(1− λ′1)

d∗

))
Recall that λ1, λ

′
1 ≥ λ5. This means that the upper bounds on NC for our new index are higher than for

C ′′p (u, v). The upper bounds are plotted in figure 22.

Figure 22: Upper bound of NC for given index values of C ′′p and Cp1 ranging from 0 to 2, with (LSL, T, USL) =
(−3,−1, 4).

6.2 Proposal 2: satisfying property (iv) for C ′′′pk and C ′′′pmk

For C ′′′pk and C ′′′pmk we concluded that they lack properties (iv) and (v). By the increasing complexity of the
indices, property (v) becomes harder to satisfy. In order to improve C ′′′pk and C ′′′pmk we will satisfy property (iv).

In order to see how we can improve C ′′′p (u, v) we look at the definition (section 5.10) and we can see that
A∗ = Du for µ = USL and A∗ = Dl for µ = LSL. As d∗ = min{Du, Dl}, we will get negative values in
the numerator when the process mean is close to the further specification limit which results in negative index
values. The index value will go to 0 when the process mean moves towards the closer limit. In this way, property
(iii) is satisfied at the cost of property (iv).
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Using the same idea as proposal 1, we scale A∗ by multiplying with d∗/d+. In this way, we will have that the
numerator is zero on the further limit and equal to d∗

d+ on the closer limit, such that the index value will always
be greater or equal to 0.

Without further ado, we define Cp2(u, v) as

Cp2(u, v) =
d∗ − uA+

3
√
σ2 + vF 2

(34)

where

A+ =

{
d∗

d+
(µ−T )2

Du
if µ > T

d∗

d+
(T−µ)2

Dl
if µ ≤ T

F =

{
d(µ−T )
Du

if µ > T
d(T−µ)
Dl

if µ ≤ T

with

d+ = max{Du, Dl}

(a) Value of Cp2(1, 0) for different µ. (b) Value of = Cp2(1, 1) for different µ.

Figure 23: Plots of proposal 2

Note that Cp2(0, v) = C ′′′p (0, v) as we’ve only adjusted the term in the numerator. To illustrate the behavior of
the new index, figure 23 shows the values of Cp2(1, 0) and Cp2(1, 1). In order to look at the properties of the
new index, we consider Cp2(1, 0) and Cp2(1, 1).

• A+ is still 0 for µ = T and therefore both Cp2(1, 0) and Cp2(1, 1) are maximized for µ = T , such that
property (i) holds.

• If we recall that property (ii) holds for C ′′′p (u, v) and note that A+ is A∗ scaled, then it is true that (ii)
also holds for Cp2(1, 0) and Cp2(1, 1).

• From the definition, we can see that A+ = d∗ for µ on the further limit and A+ = d∗

d+ · d
∗ for µ on the

closer limit. In this way, we will have an index value of 0 when the process mean is on the further limit
and a strictly positive value on the closer limit (as d∗

d+ < 1 for asymmetric tolerances). Thus the index
value is lower on the further limit and property (iii) holds.

• From the previous point we can conclude that Cp1(u, v) ≥ 0 within the limits, thus property (iv) holds.

• As mentioned earlier, it is hard to satisfy property (v) due to the increasing complexity of this index.
The quadratic term in A+ makes it such that Cp2(1, 0) and Cp2(1, 1) do not reduce to classical PCIs for
symmetrical tolerances.

31



6.2.1 Relation to process centering

For a given value c for C ′′′p (u, v), Ganji and Gildeh (2016) derived upper bounds for λ and λ′ given by

λ6 =

√
9vc2d2 + 4uDud∗ − 3

√
vdc

2uDu

λ′6 =

√
9vc2d2 + 4uDld∗ − 3

√
vdc

2uDl

where λ6 is an upper bound for λ and λ′6 is an upper bound for λ′. From which it follows that

T − λ′6Dl < µ < T + λ6Du

Given a value c for the new index Cp2(u, v), we derive new upper bounds given by

λ2 =

√
9vd2c2 + 4ud∗ d

∗

d+Du − 3
√
vdc

2u d
∗

d+Du

λ′2 =

√
9vd2c2 + 4ud∗ d

∗

d+Dl − 3
√
vdc

2u d
∗

d+Dl

such that λ ≤ λ2, λ′ ≤ λ′2 and

T − λ′2Dl < µ < T + λ2Du

Details can be found in the appendix. Note that d∗

d+ ≤ 1, such that λ2 ≥ λ6 and λ′2 ≥ λ′6. Thus the bounds for
the new PCI are actually more loose. The upper and lower bounds are plotted in figure 24.

Figure 24: Upper and lower bound of µ for given index values of C ′′p and Cp2 ranging from 0 to 2, with
(LSL, T, USL) = (−3,−1, 4).

6.2.2 Relation to process yield

Instead of calculating the process yield, we can calculate the percentage of non-conforming products (NC), where
we have that yield = 1−NC. Ganji and Gildeh (2016) derived lower bounds for NC given that C ′′′p (u, v) = c.
In the case that Du < Dl, so T is closer to USL, we have
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NC ≤ 2

(
1− Φ

(
3cDu(1− λ6)

d∗

))
and in the case that Dl < Du, so T is closer to LSL, then

NC ≤ 2

(
1− Φ

(
3cDl(1− λ′6)

d∗

))
of which the derivations can be found in their appendix. In a similar way we can find these bounds when it is
given that Cpn3(u, v) = c. In the case that Du < Dl, we have

NC ≤ 2

(
1− Φ

(
3cDu(1− λ2)

d∗

))
and in the case that Dl < Du, we have

NC ≤ 2

(
1− Φ

(
3cDl(1− λ′2)

d∗

))
Recall that λ2, λ

′
2 ≥ λ5. This means that the upper bounds on NC for our new index are higher and therefore

less precise than for C ′′′p (u, v). The upper bounds are plotted in figure 25.

Figure 25: Upper bound of NC for given index values of C ′′′p and Cp2 ranging from 0 to 2, with (LSL, T, USL) =
(−3,−1, 4).

6.3 Proposal 3: satisfying property (iv) for C ′′′p (u, v)

Another way to satisfy property (iv) for C ′′′p (u, v) is by taking A′ for A∗. We define A′ as

A′ =


d∗(µ−T )2

D2
u

if µ > T
d∗(T−µ)2

D2
l

if µ ≤ T
(35)

This is a similar term as F ∗ from C ′′p (u, v). Recall that F ∗ = d∗ · β. Now note that A′ = d∗ · β2. We can define
the new index Cp3(u, v) by

Cpn3(u, v) =
d∗ − uA′

3
√
σ2 + vF 2

(
=
d∗(1− uβ2)

3
√
σ2 + vF 2

)
(36)

Figure 26 shows plots of the new index for µ ranging within the specification limits.
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(a) Value of Cp3(1, 0) for different µ. (b) Value of Cp3(1, 1) for different µ.

Figure 26: Plots of proposal 3

Note that Cpn3(0, 1) = C ′′p (u, v) as u = 0 such that it doesn’t take the new term into account. We will look
which properties hold for Cp3(1, 0) and Cp3(1, 1).

• A′ and F are both 0 for µ = T , such that both Cp3(1, 0) and Cp3(1, 1) are maximized for µ = T , thus
satisfying property (i).

• The term A′ increases more quickly towards the closer limit, as in that case we’re dividing by the shorter
distance. Also, F increases more quickly for the same reason. Property (ii) holds for both Cp3(1, 0) and
Cp3(1, 1).

• As noted before, β ranges from 0 to 1 and thus also β2. This way, we avoid negative index values. However,
A′ = d∗ for µ on either specification limit, causing the index value to be 0 on both limits. This holds for
Cp3(1, 0) and Cp3(1, 1), thus they both do not satisfy property.

• From the previous point it can be concluded that the index value is minimized by 0 such that property
(iv) holds for both.

• A′ reduces to (µ−M)2

D for symmetric tolerances, which is unequal to the term |µ −M | we have for the
classical PCIs. Thus Cp3 does not satisfy property (v).

We can see that we succeeded at satisfying property (iv) at the cost of property (iii).

6.3.1 Relation to process centering

Given a value c for our new process capability index Cpn3(u, v), we can derive upper bounds for λ and λ′ by

λ3 =

√
9vc2d2 + 4ud∗2 − 3

√
vdc

2ud∗

such that

T − λ3Dl < µ < T + λ3Du

If we compare λ6 and λ′6 to λ3, then we see that Du and Dl are replaced by d∗ = min{Du, Dl} ≤ Du, Dl in the
numerator and the denominator. However in the numerator d∗ is inside the square root. Therefore we actually
have that λ3 ≥ λ6, λ

′
6. Thus the bounds on µ by C ′′′p (u, v) are actually tighter than the bounds by the new

index. The upper and lower bounds are plotted in figure 27.
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Figure 27: Upper and lower bound of µ for given index values of C ′′′p and Cp3 ranging from 0 to 2, with
(LSL, T, USL) = (−3,−1, 4).

6.3.2 Relation to process yield

Let it be given that Cpn3(u, v) = c. In the case that Du < Dl, we have

NC ≤ 2

(
1− Φ

(
3cDu(1− λ3)

d∗

))
and in the case that Dl < Du, we have

NC ≤ 2

(
1− Φ

(
3cDl(1− λ3)

d∗

))
Recall that λ3 ≥ λ6, λ

′
6. This actually means that our upper bounds for our new index are higher and therefore

less precise than for C ′′′p (u, v). The upper bounds are plotted in figure 28 using an example set of specifications.
We can see that the upper bounds are equal in this case. This is because we have Dl < Du and λ′2 = λ3.

Figure 28: Upper bound of NC for given index values of C ′′′p and Cp3 ranging from 0 to 2, with (LSL,T,USL)
= (-3,-1,4).

6.4 Proposal 4: satisfying property (iii) for C ′′p (u, v)

Instead of only getting a positive index value on the closer limit, as we did for Cp1(u, v) to satisfy property (iii),
we can also make sure we never get a 0 index value. We can do this by slightly expanding the specification
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limits. We will extend the limits by γ defined as

γ = |M − T | (37)

and now the idea is to define C ′′p (u, v) using the new limits LSL′ = LSL − γ and USL′ = USL + γ. C ′′p (u, v)
will be 0 on the new limits, but will have a strictly positive value on the real limits LSL and USL. We obtain
a new index Cp4(u, v) defined by

Cp4(u, v) =
d′′ − uF ′′

3
√
σ2 + vF ′2

(38)

where

F ′ = max

{
d′(µ− T )

D′u
,
d′(T − µ)

D′l

}
F ′′ = max

{
d′′(µ− T )

D′u
,
d′′(T − µ)

D′l

}

with D′u = Du + γ and D′l = Dl + γ. And d′ = d + γ and d′′ = d∗ + γ. So the index has the same properties
as C ′′p (u, v) but is now 0 on LSL′ and USL′. We chose γ this way, as it reduced to 0 for symmetric tolerance.
This way, property (v) still holds. The values of the new index are plotted in figures 29 and 30.

(a) Value of Cp4(1, 0). (b) Value of Cp4(0, 1).

(c) Value of Cp4(1, 1).

Figure 29: Plots of proposal 4 for various µ and fixed σ = 0.8
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(a) Value of Cp4(1, 0). (b) Value of Cp4(0, 1).

(c) Value of Cp4(1, 1).

Figure 30: Plots of proposal 4 for various µ and fixed σ = 0.8: expanded view

We can show that the new index Cp4(u, v) still satisfies the desirable properties from C ′′p (u, v). First note
that the new index is just C ′′p (u, v) on extended limits, from which it easily follows that properties (i), (ii)
and (iv) still hold. It was also noted that γ = 0 for symmetrical tolerances, which means that in that case
Cp4(u, v) = C ′′p (u, v). Now because property (v) holds for C ′′p (u, v), it also holds for Cp4(u, v).

We wanted to satisfy property (iii) and we can show that it holds. Recall the property of C ′′p (u, v) that two
processes with µA > T and µB < T satisfy (µA − T )/D′u = (T − µB)/D′l, then the processes have the same
index value. For the new index if µA = USL and µB = LSL, then (µA − T )/D′u 6= (T − µB)/D′l. Now the
process on the closer specification limit is also relatively closer to T. As the index value increases towards T, we
have that the index value of the process on the closer limit is higher than on the further limit. Thus satisfying
property (iii).

As a final note, we have that all properties hold for any u ∈ (0, 1] and v ∈ [0,∞).

6.4.1 Relation to process centering

Given a value c for our new index Cpn4(u, v), we can derive upper bounds for λ and λ′ by

λ4 =
d∗ + γ

3c
√
vd+ ud∗ + (3c

√
v + u)γ

such that

T − λ4Dl < µ < T + λ4Du

We actually have that λ4 ≥ λ5. Thus the bounds for our new index Cp4(u, v) are higher than the bounds of
C ′′p (u, v). The upper and lower bounds are plotted in figure 31.
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Figure 31: Upper and lower bound of µ for given index values of C ′′p and Cp4 ranging from 0 to 2, with
(LSL, T, USL) = (−3,−1, 4).

6.4.2 Relation to process yield

Let it be given that Cp4(u, v) = c. In the case that Du < Dl, we have

NC ≤ 2

(
1− Φ

(
3cDu(1− λ4)

d∗

))
and in the case that Dl < Du, we have

NC ≤ 2

(
1− Φ

(
3cDl(1− λ4)

d∗

))
Details can be found in the appendix. Recall that λ4 ≥ λ5. This means that our upper bounds for our new
index are higher than for C ′′p (u, v). The upper bounds are plotted in figure 32.

Figure 32: Upper bound of NC for given index values of C ′′p and Cp4 ranging from 0 to 2, with (LSL, T, USL) =
(−3,−1, 4).

6.5 Estimation
In order to calculate the value of the PCIs, µ and σ are required. However, in practice we are dealing with
measurement data and the exact µ and σ are unknown in general and therefore we can never calculate the exact
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PCI value. In order to get an estimate of the index value, we replace the true mean and variance by the sample
mean x̄ and sample variance s2 respectively.

Based on a sample of n measurements x1, x2, ...xn from a process X, we have

X̄ =
1

n

n∑
i=1

xi

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Now taking µ̂ = X̄ and σ̂2 = S2 we can estimate our first index Cp1(u, v) by

Ĉp1(u, v) =
d∗ − uF̂+

3
√
σ̂2 + vF̂ 2

(39)

where

F̂ = max

{
d(µ̂− T )

Du
,
d(T − µ̂)

Dl

}
F̂+ = max

{
d∗(µ̂− T )

d+
,
d∗(T − µ̂)

d+

}

We can obtain estimates for our other indices in the same way.

On the assumption that X has a N(µ, σ) distribution, then X̄ has a N
(
µ, σ

2

n

)
distribution and S2 has a σ2

n−1χ
2

distribution, and X̄ and S2 are mutually independent (Kotz and Johnson (2002)). It is possible to derive a
confidence interval for our estimator, but the statistical distribution of Ĉp1(u, v) will be complicated. Due to
the complexity, deriving the confidence intervals has not done, as this is not of great interest for this report.
However, an example can be found in Zhang et al. (1990) where they developed a confidence interval for the
classical PCI Cpk.

6.6 Summary of new PCIs
We summarize this section with a table showing the new PCIs and the properties they satisfy.

PCI (i) (ii) (iii) (iv) (v)

Cp1(1, 1) x x x x x
Cp2(1, 0) x x x x
Cp2(1, 1) x x x x
Cp3(1, 0) x x x
Cp3(1, 1) x x x
Cp4(u, v) x x x x x

Table 2: Overview of the new PCIs and the properties from section 4 they satisfy.

6.7 Comparison
In order to compare the values of our new proposed PCIs with the existing PCIs C ′′p and C ′′′p , we use the same
setting as is in their respected papers; Chen and Pearn (2001) and Ganji and Gildeh (2016). This setting is
often found in papers on process capability indices for asymmetric tolerance. The oldest paper found with this
setting is Boyles (1994). It is however unclear what the specifications are based on, but are most likely chosen
manually for illustrating purpose.
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Table 3: Values of C ′′p and new proposals Cp1 and Cp4 for various µ and fixed σ = 8/3.

Table 3 shows values for the existing index C ′′p (u, v) with standard u, v values together with new proposals
Cp1(1, 1) and Cp4(u, v) with standard u, v values, which are supposed to improve upon C ′′p . Recall that C ′′p (u, v)
did not satisfy property (iii), which is also clearly visible in this example as the values on the limits are equal for
all three instances. We can also see that this is different for Cp1(1, 1) and Cp4(u, v), as they have a lower index
value on the further limit than on the closer limit. Lastly, we can see that Cp4(u, v) does not have index values
of 0 on the boundaries, as intended. However, another effect of the expanded limits for Cp4(u, v) is also clearly
visible, namely we see significantly higher index values. Most notably is Cp4(1, 0) = 1 on the upper specification
limit. This is clearly an overestimation of process capability as the process yield is only 50% on the limit.
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Table 4: Values of C ′′′p and new proposals Cp2 and Cp3 for various µ and fixed σ = 8/3.

Table 4 shows values for the existing index C ′′′p (u, v) together with new proposals Cp2(u, v) and Cp3(u, v) for
u = 1 and v ∈ {0, 1}, as for u = 0 we have C ′′′p (0, v) = Cp2(0, v) = Cp3(0, v). Recall that C ′′′p (1, 0) and C ′′′p (1, 1)
did not satisfy (iv), which is clearly visible in this table especially for C ′′′p (1, 0) having negative values up to −2.
Cp2(u, v) and Cp3(u, v) were designed to satisfy this property and in this example we can see that the values are
greater or equal to 0. Notable however are the values of Cp2 on the upper specification limit. An index value of
≥ 0.6 on a specification limit might be a case of overstating process capability. Furthermore, this example also
illustrates Cp3 having 0 values on both limits and therefore no longer satisfying (iii).
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7 Conclusion

The purpose of this report was to explore existing PCIs developed to handle asymmetric tolerances and propose
new ideas that improve upon the existing PCIs. In order to evaluate the existing PCIs, a list of five desirable
properties was formulated: (i) the PCI must be maximized at the target value, (ii) the PCI must take the
direction of shift from the target value into account, (iii) the PCI must have a lower value on the further limit,
(iv) the PCI must have non-negative values and (v) the PCI is a generalization of the classical PCIs. None of
the existing PCIs that were discussed satisfied all five properties.

Four proposals for new a PCI were made that are based on existing PCIs and adjusted to satisfy more of the
properties. Two proposals, Cp2 and Cp3, improve upon C ′′′p by satisfying an additional property, but not all
five. The other two proposals, Cp1 and Cp4 improve upon C ′′p and satisfy all five properties. Therefore, Cp1 and
Cp4 are the most promising proposals.

The relationship of the new proposals with process yield and centering has also been investigated. Based on a
given index value, upper bounds for process yield and centering were derived. However, these upper bounds were
larger than for the existing PCIs C ′′p and C ′′′p , meaning that the existing PCIs actually have a closer relationship
with yield and centering. Thus, even though the new proposals satisfy more of the properties, they give less
information about process capability.

In order to compare the new proposals with the existing PCIs C ′′p and C ′′′p , a commonly seen asymmetrical
specification setting was used and the index values were evaluated for various process means and a fixed standard
deviation. The example showed that the values for Cp4 were significantly higher than for the other indices and
it was concluded that Cp4 overstated process capability. Also, Cp2 overstated process capability on the closer
specification limit. Cp1 and Cp3 showed no direct problems.

Out of the four proposals, only Cp1 should be considered as it is superior to the other proposals. However, it
is arguable if Cp1 is an improvement on the existing PCI C ′′p due to the higher upper bounds on process yield
and centering. Cp1, as well as the other proposals, are not advised to be used in practice as they require further
investigation and validation. However, the proposals, and the list of desirable properties, can be considered as
an inspiration in the development of PCIs for asymmetrical tolerances.
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8 Discussion

The greatest difficulty has been to satisfy property (iii), together with property (iv). It makes perfect sense for
the index value to be zero on the further specification limit, as this is the worst case scenario (within the limits),
but the challenge is to come up with a way to value processes located on the closer specification limit. The
index value of proposals 1 and 2 on the closer specification limit is dependent on the ratio between the lengths
of the two specification widths Du and Dl. In this way, if the target value is relatively close to the midpoint,
then the index value on the closer limit will be close to zero. But if the target value is relatively close to one of
the specification limits, then we will see higher index values at the closer limit. I think that this is an intuitive
approach to valuing processes located on the closer limit, but it requires further research to investigate if this
does not overstate process capability.

One might have noticed that even though proposal 3 was constructed as an improvement on C ′′′p , in definition
and behavior it looks more like C ′′p . However, Cp3 does not satisfy property (v), but C ′′p does. In that sense,
I think that C ′′p is superior to Cp3. I believe that proposal 3 has also been considered by authors of C ′′p and
C ′′′p and was not proposed for this reason. As there is no advantage of using Cp3 instead of C ′′p , I don’t believe
proposal 3 should be investigated further.

Proposal also 4 requires some evaluation. The idea was to step away from the usual 0 values on the specification
limits. While this was achieved, we saw that the index values were significantly higher than for the existing
indices. This makes sense as we expanded the specification limits without correcting it in any way, therefore
simply overstating process capability. Cp4 can therefore be improved by finding a suitable correction such that
it no longer overstates capability. Even though my proposal is not a viable PCI, I think the idea of having
positive values on both specification limits deserves further research.

My proposals, like many other existing PCIs, are presented by a superstructure that is dependent of parameters
u and v. In this project, I have only focused on u, v ∈ {0, 1}. The literature also seems to pay little attention to
different u, v values. While it’s not bad practice to use the standard values, I believe the u, v have the potential
to be chosen in such a way that the PCI more accurately reflects the customers view on process yield and
centering. I think that guidelines for picking u and v based on customer criteria are useful for practitioners and
a good angle to further research existing PCIs.

All the upper bounds on non-conforming products and centering for the new proposals are higher than for the
PCIs they are improving on. What it means that the bounds are higher, is that given a certain index value, the
guarantee on yield and/or centering is lower. Or in other words, it guarantees less capability. For some time
I thought this was not much of a problem as my main focus was to construct a consistent PCI by satisfying
all, or most, of the desirable properties. However, a general difficulty with PCIs is trying to reflect on multiple
criteria in one value. For this reason it is important that they have a close relation with the criteria, meaning
the upper bounds should be low. Therefore, if at all possible, the proposals can be improved by redefining them
in a way such that their upper bounds for yield and centering are lower.

This report, as well as many papers on PCIs, focuses on the theory and statistical properties behind the true
PCI value. I say true PCI value, as in practice you are working with an estimate. I have only shortly introduced
how to estimate the new PCIs, but there is a lot more to be said about the distribution of the estimate and
what effect this has on practical use. Further research is definitely necessary in order for my proposals, and
even some of the newer PCIs that were discussed, to have any practical use. In order to get an idea on how to
use a PCI correctly; Cheng (1994) developed a procedure for determining whether a process is actually capable
given an estimated value of Cp and Cpm.
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A Upper bounds for process centering

The most common way to measure process centering in the case of asymmetric tolerance is by taking the
departure ratio λ = µ−T

Du
when µ > T and λ′ = T−µ

Dl
when µ ≤ T . Given a PCI value c, we can derive upper

bounds λi and λ′i for the departure ratio’s λ and λ′ respectively. Then

µ− T
Du

≤ λi =⇒ µ ≤ T + λiDu

T − µ
Dl

≤ λ′i =⇒ µ ≥ T − λ′iDl

from which we obtain an interval for µ as

T − λ′iDl ≤ µ ≤ T + λiDu (40)

Note that smaller λi, λ′i imply a tighter interval for µ.

A.1 C ′′p (u, v)

Let C ′′p (u, v) = c be given, then

c =
d∗ − uF ∗

3
√
σ2 + vF 2

≤ d∗ − uF ∗

3
√
vF

if µ > T , then

c ≤ d∗ − ud∗λ
3
√
vdλ

3c
√
vdλ ≤ d∗ − ud∗λ

λ ≤ d∗

3c
√
vd+ ud∗

= λ5

if µ ≤ T , then in the same way

λ′ ≤ d∗

3c
√
vd+ ud∗

= λ′5

Note that λ5 = λ′5.

A.2 Cp1(u, v)

Let Cp1(u, v) = c be given, then

c =
d∗ − uF+

3
√
σ2 + vF 2

≤ d∗ − uF+

3
√
vF

If µ > T , then

c ≤
d∗ − u d

∗

d+Duλ

3
√
vdλ

λ ≤ d∗

3c
√
vd+ u d

∗

d+Du

= λ1

If µ ≤ T , then in the same way

λ′ ≤ d∗

3c
√
vd+ u d

∗

d+Dl

= λ′1
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A.3 Cp2(u, v)

Let Cp2(u, v) = c be given, then

c =
d∗ − uA+

3
√
σ2 + vF 2

≤ d∗ − uA+

3
√
vF

If µ > T , then

c ≤
d∗ − u d

∗

d+Duλ
2

3
√
vdλ

u
d∗

d+
Duλ

2 + 3c
√
vdλ− d∗ ≤ 0

now λ is between the roots of the above equation. The larger root is therefore the upperbound for λ such that

λ ≤
−3
√
vdc+

√
9vd2c2 + 4ud∗ d

∗

d+Du

2u d
∗

d+Du

= λ2

If µ ≤ T , then in the same way

λ′ ≤
−3
√
vdc+

√
9vd2c2 + 4ud∗ d

∗

d+Dl

2u d
∗

d+Dl

= λ′2

A.4 Cp3(u, v)

Let Cp3(u, v) = c be given, then

c =
d∗ − uA′

3
√
σ2 + vF 2

≤ d∗ − uA′

3
√
vF

If µ > T , then

c ≤ d∗ − ud∗λ2

3
√
vdλ

ud∗λ2 + 3c
√
vdλ− d∗ ≤ 0

now λ is between the roots of the above equation. The larger root is therefore the upperbound for λ such that

λ ≤ −3
√
vdc+

√
9vd2c2 + 4ud∗2

2ud∗
= λ3

If µ ≤ T , then in the same way

λ′ ≤ −3
√
vdc+

√
9vd2c2 + 4ud∗2

2ud∗
= λ′3

A.5 Cp4(u, v)

Let Cp4(u, v) = c be given, then

c =
d′′ − uF ′′

3
√
σ2 + vF ′2

≤ d′′ − uF ′′

3
√
vF ′
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if µ > T , then

c ≤ d′′ − ud′′λ
3
√
vd′λ

3c
√
vd′λ ≤ d′′ − ud′′λ

λ ≤ d′′

3c
√
vd′ + ud′′

=
d∗ + γ

3c
√
vd+ ud∗ + (3c

√
v + u)γ

= λ4

if µ ≤ T , then in the same way

λ′ ≤ d∗ + γ

3c
√
vd+ ud∗ + (3c

√
v + u)γ

= λ′4

Note that λ4 = λ′4.
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B Upper bounds for non conforming products

The number of non-conforming products (NC) is given by

NC = P (X < LSL) + P (X > USL)

If the target is closer to the upper limit, Du < Dl, then, given a distance k between the mean and the target
value (|µ− T | = k), we have more non-conforming products when µ > T . Thus

NC ≤ 2P (X > USL) = 2(1− P (X < USL))

= 2

(
1− Φ

(
USL− µ

σ

))
= 2

(
1− Φ

(
(1− λ)Du

σ

))
Where the last equality follows from the fact that µ = T + λDu =⇒ USL− µ = (1− λ)Du.

If the target is closer to the lower limit, Dl < Du, then, given a distance k between the mean and the target
value (|µ− T | = k), we have more non-conforming products when µ ≤ T . Thus

NC ≤ 2P (X < LSL) = 2P (X < LSL)

= 2Φ

(
LSL− µ

σ

)
= 2

(
1− Φ

(
µ− LSL

σ

))
= 2

(
1− Φ

(
(1 + λ′)Du

σ

))
Where the last equality follows from the fact that µ = T − λ′Dl =⇒ µ− LSL = (1 + λ′)Dl.

We want an upper bound for NC. Now NC is maximized when λ and σ is maximized. For λ we can use the
obtained upper bounds from the previous section. An upper bound for σ can be found given an index value.

B.1 C ′′p (u, v)

Let C ′′p (u, v) = c be given, then

c =
d∗ − uF ∗

3
√
σ2 + vF 2

=⇒

σ2 =

(
d∗ − uF ∗

3c

)2

− vF 2 =⇒

σ2 ≤
(
d∗

3c

)2

=⇒

σ ≤ d∗

3c

Now for Du < Dl we have that

NC ≤ 2

(
1− Φ

(
3c

(1− λ5)Du

d∗

))
and for Dl < Du we have

NC ≤ 2

(
1− Φ

(
3c

(1 + λ5)Dl

d∗

))
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B.2 Cp4(u, v)

Let Cp4(u, v) = c be given, then

c =
d′′ − uF ′′

3
√
σ2 + vF ′2

=⇒

σ2 =

(
d∗ − uF ∗

3c

)2

− vF 2 =⇒

σ2 ≤
(
d′′

3c

)2

=⇒

σ ≤ d′′

3c
=
d∗ + γ

3c

Now for Du < Dl we have that

NC ≤ 2

(
1− Φ

(
3c

(1− λ4)Du

d∗ + γ

))
and for Dl < Du we have

NC ≤ 2

(
1− Φ

(
3c

(1 + λ′4)Dl

d∗ + γ

))
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