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Abstract
The conventional portfolio design approach assumes Gaussian return distributions, but
this is not accurate in practice. Asymmetric and heavy-tailed return distributions necessi-
tate consideration of higher-order moments such as skewness and kurtosis, in addition to
mean and variance. This study proposes a multi-objective approach using a mean-variance-
skewness-kurtosis model to construct a diversified portfolio. A parametrized polynomial
goal programming (PGP) method is used to optimize the portfolio by maximizing returns
and skewness while minimizing variance and kurtosis. Empirical data from the S&P ESG
index family is used, and PGP generates multiple portfolios reflecting investors’ preferences
for the four moments. To compare between the obtained portfolios, we represent the empiri-
cal cumulative distribution of the portfolio returns for all studied values of weights and show
how this can be used to assist the inverstor in selecting the best set of weights.
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1 Introduction

The early works of Harry Markowitz’s groundbreaking article in 1952 laid the principles of
the mean-variance approach under the fundamental assumption of Gaussian distributed asset
returns. However, implementation of the mean-variance based portfolios has rapidly shown
their limitations, and were as a result generally discarded in practice. The reason lies in that
they are designed for Gaussian distributed asset returns, an assumption that is not satisfied
by real asset returns, which contains outliers and thus are better modeled by asymmetric
and heavy-tailed distributions [for more information, see (Dcock et al., 2015; Resnick, 2007;
Harvey & Siddique, 2000; Jobst & Zenios, 2001; Ang et al., 2006)].
To compensate for the shortcomings of the mean-variance approach, several works proposed
techniques that consider the higher-order moments of the portfolio returns. In this line, the
authors (Keung et al., 2006; Jean-Luc&Marwa, 2010) advocate the use of themean-variance-
skewness-kurtosis (MVSK) approach, where the skewness and kurtosis standing for the third
and fourth central moments of portfolio returns describe asymmetry and heavy-tailedness of
the portfolio returns. This technique, consisting of maximizing the mean and skewness while
reducing the variance and kurtosis (Boudt et al., 2015; Kshatriya & Prasanna, 2018; Dinh
& Niu, 2011) allows for generating positively skewed portfolios presenting smaller tails.
The robustness of MVSK based portfolios towards heavy tailed distributed asset returns
has motivated Boudt and Cornilly (2020) to propose portfolio titlting technique which aims
to move an original portfolio to a MVSK efficient portfolio. They show that the benefits
of tilting come at the cost of deviating from the initial optimality criterion. For the sake of
illustration, they apply the tilting technique to equally-weighted, equal-risk-contribution, and
maximum-diversification portfolios in a UCITS-compliant asset allocation setting.
Despite its numerous benefits, the design of MVSK portfolios is challenging. As a matter
of fact, when including higher-order moments, the objective functions become non-convex,
which makes the problems in general NP-hard (Murty & Kabadi, 1985). In addition, the
computational complexity in calculating the gradients of high-order moments significantly
increases as more portfolios are considered. To handle this issue, several metaheuristic opti-
mization approaches, such as differential evolution (Maringer & Parpas, 2009) and genetic
algorithms (Kshatriya & Prasanna, 2018), have been traditionally proposed. Recently, Zhou
and Palomar (2021) propose a very efficient and convergence-provable algorithm framework
based on the sequential convex approximation (SCA) method to solve high-order portfolios.
They also propose a numerical experiment to show the algorithm framework’s efficiency.

In this paper, we reexamine the multi-objective portfolio selection model, where investors
aim to identify portfolios with optimal trade-offs between maximizing return and skewness,
and minimizing variance and kurtosis. We focus on Polynomial Goal Programming (PGP),
which uses a set of four parameters to adjust the contribution of the fourth moments in the
objective function and seeks portfolios that achieve a specific trade-off. The main challenge
lies in determining the appropriate parameters for the Polynomial Goal Programming (PGP)
model. This is a complex issue because it is difficult to convert the higher-order moments
into a meaningful metric that aligns with the investor’s strategy.
To address this issue, we introduce a practical tool based on the visualization of empirical
distribution functions for the asset returns of all generated portfolios. This allows investors to
efficiently evaluate their portfolio performance and identify the most suitable parameters for
their investment strategy. Our goal is to bridge the gap between the theoretical foundations
of portfolio optimization and the practical requirements of investors in the Environmental,
Social, and Governance (ESG) space.
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Using empirical data sets from the S&P ESG index family, we demonstrate the benefits of
our approach, which summarizes portfolio performance in a single scalar value. This value,
while dependent on all high-order moments, is more relevant and can easily guide investors
in selecting the best parameters for their strategy.
This paper is organized as follows: We first propose the problem formulation for portfolio
optimization using polynomial goal programming in Section 2. In Section 3, we present our
empirical analysis. Finally, the conclusion of this paper is summarized in Section 4.

2 The portfolio optimization within the high-order moments

In this section,wediscuss the polynomial goal programming (PGP) approach for resolving the
portfolio selection problem in themean-variance-skewness-kurtosis framework. Thismethod
consists of changing the PGP’s mean-variance-skewness-kurtosis dimension of portfolio
selection to measure the deviation of returns from normality. So, we look at the issue of an
investor choosing the best portfolio from a set of N risky assets in the presence of skewness
and kurtosis in the return distribution. This problem involves balancing two conflicting goals:
maximizing the expected return and the skewness while simultaneously minimizing the
variance and the kurtosis. Formally, we consider a portfolio return computed from the returns
of N assets R = (R1, . . . , RN )T and the asset weights w = (w1, . . . , wN )T where wi is the
weight invested in the i th asset with

∑N
i=1 wi = wT1 = 1, where 1 is the vector of all ones.

The expected return of this portfolio is ψ1(w) = E[wT R] = wTμ, where μ is the mean
vector of the asset’s returns μ = E[R].

Given that the qth central moment of the portfolio retun is E[wT R̃]q with R̃ = R − μ,
the second, third and fourth moments of the returns are given by:

ψ2(w) = E[(wT R̃)2] (2.1)

= E[wT R̃ R̃
T

w] (2.2)

= wT�w (2.3)

ψ3(w) = E[(wT R̃)3] (2.4)

= E[wT R̃ R̃
T

w R̃
T

w] (2.5)

= wT�(w ⊗ w) (2.6)

ψ4(w) = E[(wT R̃)4] (2.7)

= E[wT R̃ R̃
T

w R̃
T

w R̃
T

w] (2.8)

= wT�(w ⊗ w∗ ⊗ w) (2.9)

where ⊗ denotes the Kronecker product, and � ∈ R
NxN2

the co-skewness and � ∈ R
NxN3

the co-kurtosis matrices are given, respectively, by:

� = E[R̃(R̃
T ⊗ R̃

T
)], (2.10)

� = E[R̃(R̃
T ⊗ R̃

T ⊗ R̃
T
)] (2.11)

In practice, these moments are estimated from computing for the logarithmic return ri , their
associated empirical means, variance, skewness and kurtosis denoted by μ̂i , σ̂i , ŝi and k̂i ,
respectively aswell as the cross-product statistics of the joint distribution of risky asset returns
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Ri and R j , namely, the variance-covariance σ̂i j , the skewness-coskewness referred to as by
sii j and si j j , and kurtosis-cokurtosis denoted by kiii j , ki j j j , and kii j j . More specifically, these
sample estimates are given by:

σ̂i j = 1

T

N∑

i=1

N∑

j=1

(R̃i R̃ j ) (2.12)

ŝi i j = 1

T

N∑

i=1

N∑

j=1

(R̃2
i R̃ j ) (2.13)

ŝi j j = 1

T

N∑

i=1

N∑

j=1

(R̃i R̃
2
j ) (2.14)

k̂i i i j = 1

T

N∑

i=1

N∑

j=1

(R̃3
i R̃ j ) (2.15)

k̂i j j j = 1

T

N∑

i=1

N∑

j=1

(R̃i R̃
3
j ) (2.16)

k̂i i j j = 1

T

N∑

i=1

N∑

j=1

(R̃2
i R̃

2
j ) (2.17)

With these quantities at hand, the estimates for the second, third and fourth moments can
be expressed as"

ψ̂2(w) =
N∑

i=1

w2
i σ̂

2
i +

N∑

i=1

N∑

j=1, j<i

wiw j σ̂i j (2.18)

ψ̂3(w) =
N∑

i=1

w3
i ŝ

3
i + 3

N∑

i=1

(

N∑

j=1, j �=i

w2
i w j ŝi i j +

N∑

j=1, j �=i

wiw
2
i ŝi j j ) (2.19)

ψ̂4(w) =
N∑

i=1

w4
i k

4
i + 4

N∑

i=1

(

N∑

j=1, j �=i

w3
i w j k̂i i i j +

N∑

j=1, j �=i

wiw
3
j k̂i j j j ) (2.20)

+ 6
N∑

i=1

N∑

j=1, j �=i

w2
i w

2
j k̂i i j j (2.21)

The polynomial goal programming involves a multi-objective optimization technique in
which the goal is tomaximize the expected and skewness of portfolio returnwhileminimizing
variance and kurtosis. The optimal portfolio in the multiobjective optimization process can
be represented by:

max
w

ψ1(w)

max
w

ψ3(w)

min
w

ψ2(w) (2.22)

min
w

ψ4(w)
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s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N

This model can be solved by a single utility function with the aforementioned objectives.
By adding skewness and kurtosis to the Markowitz portfolio, it becomes the mean-variance-
skewness-kurtosis (MVSK) portfolio as follows:

min
w

f (w) = −λ1ψ1(w) + λ2ψ2(w) − ˘3 3(w) + ˘4 4(w)

s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N

(2.23)

where the parameters λ1, λ2, λ3 and λ4 are positive and are used to combine the fourmoments
of the portfolio return. Solving Problem (2.23) leads to determining the MVSK efficient
frontier, for which any moment could not get improved without making the other moments
worse. In practice, investors may be interested in changing their current portfolio denoted by
w0 to make it similar to the ones lying in the MVSK efficient portfolio. This can be done by
tilting their portfolios in a way that raises their first and third central moments and lowers
their second and fourth central moments (Zhou & Palomar, 2021).

To solve the optimization problem in (2.22),we invoked thePGP technique,which involves
two main steps. The first step aims to find the optimal costs of all problems by solving each
problem equation (2.22) one at a time:

max
w

ψ∗
1 = wTμ

s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N (2.24)

min
w

ψ∗
2 = wT�w

s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N (2.25)

max
w

ψ∗
3 = wT�(w ⊗ w)

s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N (2.26)

min
w

ψ∗
4 = wT�(w ⊗ w ⊗ w)

s.t. wT1 = 1

wi ≥ 0, i = 1, . . . , N (2.27)

Solving the problems (2.24)-(2.27) can be then performed by using linear and nonlinear
programming techniques. However, this step is challenging, not only because of the non-
convexity of functions ψ3(w) and ψ4(w) but also because � has a dimension of NxN 3

which requires a memory complexity of order O(N 4) and a computational complexity for
each single evaluation of the fourth moment of orderO(N 4). In that case, neither the general
gradient descent method nor the backtracking line search can be used to solve the high-order
portfolio problem.

This is the reason why we did not used traditional convex optimization techniques, more
suitable to convex problems or general gradient approach because of the high cost of gradient
calculation. Instead, we invoked the Successive Convex Approximation (SCA) algorithm,
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Fig. 1 Different levels of λ’s preferences

which was proposed by Rui Zhou and Daniel Palomar in 2020. Having solved the problems
(2.24)-(2.27), in the second step, we feed their optimal costs into the PGP model, which
consists of minimizing the following Minkowski distance (Keung et al., 2006)

Z =
(

m∑

k=1

∣
∣
∣
∣
ψk(wk)

ψ�

∣
∣
∣
∣

p
)1/p

where the kth central moment is normalized by ψk . We include four parameters, λ1,λ2, λ3,
and λ4, to reflect the various investors’ preferences for the mean, variance, skewness, and
kurtosis of the portfolio return. Given that the λi parameters indicate the investor’s subjective
level of preferences, the higher the λi , the more important the corresponding moment of
portfolio return is to the investor. By introducing the auxiliary variables dk, k = 1, . . . , 4 the
PGP model can be rewritten as:

min
w,d

Z(d) =
(∣

∣
∣
∣
d1
ψ∗
1

∣
∣
∣
∣

)λ1

+
(∣

∣
∣
∣
d2
ψ∗
2

∣
∣
∣
∣

)λ2

+
(∣

∣
∣
∣
d3
ψ∗
3

∣
∣
∣
∣

)λ3

+
(∣

∣
∣
∣
d4
ψ∗
4

∣
∣
∣
∣

)λ4

s.t. ψ1(w) + d1 =  ∗1
ψ2(w) − d2 =  ∗2
ψ3(w) + d3 =  ∗3
ψ4(w) − d4 =  ∗4
wT1 = 1

d1, d2, d3, d4 ≥ 0, wi ≥ 0, i = 1, . . . , N

(2.28)

where the variables d1, d2, d3 and d4 are used to minimize the deviations from the desired
values. Solutions to problem (2.28) for various combinations of λi in Fig. 1 form the set of
efficient portfolios. By varying these values, we can get can get the outcomes of different
combinations of portfolio items, similarly to MV and MVSK.

For any possible choice of λ = (λ1, λ2, λ3, λ4), the resulting portfolio achieves an average
portfolio return that is always less than ψ∗

1 . However, these values of λ can be useful in
practice, as theymay lead to lower risks and, as a result, a higher probability for the portfolio to
achieve greater returns than the average portfolio returnψ∗

1 obtained from λ = (1, 0, 0, 0). In
other words, they may result in better trade-offs between the maximization of this probability
and theminimization of risk. However, it remains unclear how the objective function in (2.24)
could help achieve this goal for some values of λ. Clearly, a "good" value of λ should lead to
a portfolio that protects the investor from experiencing losses while achieving better returns
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Table 1 Descriptive statistics and normality test results for international dataset

Variable Mean (%) StDev Skew Kur JB test p-value

SP500.ESG 0.2738 0.0205 −0.7074 6.2417 896.00 0.0000

Europe.ESG 0.1466 0.0246 −1.2238 10.6614 2617.49 0.0000

Japan.ESG 0.1481 0.0236 −0.1577 8.2267 1482.63 0.0000

Canada.ESG 0.1246 0.0235 −1.3988 8.9752 1933.33 0.0000

Korea.ESG 0.1588 0.0329 0.04827 9.0827 1804.78 0.0000

Asia.ESG 0.1394 0.0218 −0.3436 8.3120 1521.65 0.0000

Emerging.ESG 0.0687 0.0241 −0.5248 2.9368 212.76 0.0000

The mean, stabdard deviation (StDev), skewness (Skew), and kurtosis (Kur) values of the returns are shown
as descriptive statistics; JB is the value of the Jarque-Bera test for normalcy. The chi-square distribution of the
JB test statistic has two degrees of freedom. At the 5% level of significance, the critical value for the JB test
is 5.99

than ψ∗
1 with a higher probability than with the portfolio obtained for λ = (1, 0, 0, 0). As

will be seen next, such a behavior can be obtained for some values of λi . Indeed, the values of
λi affect how the portfolio’s return is spread out, with some of them resulting in the desired
distribution.

Our focus in this research is on the empirical distribution of portfolio returns for different
λi values. The distribution function is instrumental in determining the probability that the
portfolio is above or below a threshold multiplied by ψ∗

1 .

3 Empiriacl analysis

3.1 Data description

The sample data for this study consists of the S&P ESG Index Family, which offers investors
exposure to companies based on their ESG profiles through country-specific and regional
indexes. This index family relies on S&P DJI ESG Scores, derived from the annual S&P
Global Corporate Sustainability Assessment (CSA). The scores encompass a total company-
level ESG score for a fiscal year, composed of individual scores for environmental (E), social
(S), and economic and governance (G) components, as well as 21 industry-specific criterion
scores that serve as average ESG signals. Our choice of using the S&P ESG index family is
driven by the growing significance of Environmental, Social, and Governance (ESG) factors
in investment decisions. The S&PESG index family is a widely recognized and popular set of
indices that incorporate ESG criteria, making it a pertinent and valuable source for analyzing
portfolio performance within the context of our study.

The index family includes a selection of the following broad equity indices S&P 500
ESG, Europe ESG, Japan ESG, Canada ESG, Korea.ESG, Asia.ESG, and Emerging.ESG.
The data used in this study represent weekly samples and are taken from the following web
site: spglobal.com/esg/p performance/indices/esg-index-family. The entire data set covers
the period from 30 Mars, 2002 to 26 April, 2022, with a total of 3675 observations. We
use the weekly returns of these indices, which are defined for each index (i) as follows:
Ri,t = pi,t/pi,t−1 − 1 where pi,t is the price of the stock index traded at time t .

The statistics in Table 1 provide some information on the characteristics of the return data.
According to the first column, all indexes have a positive mean return. S&P 500.ESG has
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Table 2 The desired optimal
levels of four portfolio return
moments

ψ1(w) 10−2 ψ2(w) (10−3) ψ3(w) (10−6) ψ4(w) (10−6)

0.2665 0.4238 - 6.5781 1.6736

0.2161 0.3692 - 4.6399 1.3129

0.1553 0.7502 4.2266 7.2071

0.1899 0.3694 - 4.3988 1.1552

ψ∗
1 (w) 10−2 ψ∗

2 (w) (10−3) ψ∗
3 (w) (10−6) ψ∗

4 (w) (10−6)

0.2665 0.3692 4.2266 1.1552

The bolded values indicate the four optimal portfolio return moments

the greatest average rate of return, (0.27%), followed by Korea.ESG (0.15%), Japan.ESG
(0.148%), and Europe.ESG (0.146%). Table 1 also shows the skewness and kurtosis values
for each of the index returns. As can be seen, the skewness is negative except for Korea.ESG
while the kurtosis is high. The Jarque-Bera test rejects the null hypothesis of normality at the
5% significance level for the majority of the return distributions of empirical datasets, which
clearly shows that none of the returns can be reasonably assumed to be normal. It is thus of
interest to include the higher-order moments in the design and analysis of portfolios. For this
purpose, we invoke the Polynomial Goal Programming (PGP). which allows us to account
for the skewness and kurtosis when designing the portfolio.

3.2 Results of the empirical study

In this section, we present the results of the optimization problems presented in the previous
section. As previously suggested, we begin by determining the best value for each of the four
portfolio return moments (ψ∗

1 , ψ∗
2 , ψ∗

3 , andψ∗
4 ) as expressed in the equations system (2.24)

through (2.27). We get the following set of results:
In accordance with Table 2, Fig. 2 shows that the optimal portfolio chosen maximizing the

first moment of portfolio returns, which is generally chosen by most investors, corresponds
to investing approximately 90% in SP500.ESG asset and a maximum of 10% in other assets.
Such a result can already be anticipated from Table 1, which shows that the SP500.ESG asset
achieves the highest average rate of return. Overall, the optimal portfolio in terms of first
moment maximization has the following characteristics: a mean return of 0.26%, a variance
of 0.04%, a kurtosis of −2.99 and a skewness of −0.72. As for the portfolio minimizing the
second moment, it is obtained with about 56% in SP500.ESG asset, 20% in Asia.ESG asset,
11% in Japan asset, and no more than 10% in other assets.

Now, focusing on the portfolio that maximizes the third moment, Fig. 2 shows that, in
accordance with Table 1, it is obtained by investing 67% in Korea.ESG asset and 33% in
Europe.ESG asset, which together represent the highest skewness. Similarly, according to
Table 1, the SP500.ESG, Emerging.ESG and Japan.ESG assets have the lowest kurtosis,
which explains why most investors only invest in them when they look to minimize the
fourth moment of the portfolio return.

As an additional experiment, we search to maximize (resp. minimize) the 3rd moment
(resp. the 4th moment), assuming that the other moments are fixed. This amounts to maxi-
mizing the skewness (or minimizing the kurtosis) for a given variance and return, which are
chosen in the Markowitz (1952) efficient frontier. We then display the skewness shape (resp.
kurtosis shape) for all efficient portfolios in Fig. 3 (resp. Fig. 4). As can be seen, all these
skewnesses are negative because they are caused by positive coskewness. Moreover, we can
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Fig. 2 Asset allocation for different portfolio moments

Fig. 3 Shape of the
mean-variance-skewness efficient
frontier

see from Fig. 4 that due to negative cokurtosis, diversification is likely to promote kurtosis
minimization.

With the four subproblems ((2.24)–(2.27)) being solved,we are now ready to study thePGP
approach and solve the PGPmodel in (2.28). Prior research into the PGP approach examined
how investors’ preferences influenced portfolio selection for restricted λ = (λ1, λ2, λ3, λ4)

combinations. Particularly, the studied investors’ preferences were for the following values
of lambda: (3, 1, 1, 0), (3, 1, 2, 1), (3, 1, 3, 1), (1, 3, 1, 1), (1, 1, 1, 3), (1, 3, 1, 3), (1, 2,
3, 2), (3, 1, 2, 3), (2, 3, 3, 1), (1, 1, 1, 1), and (1, 1, 0, 0), which allow investors to place
more or less importance onto each of the fourth first moments. For instance, the (1, 1, 1, 1)
preference structure considers that the mean, variance, skewness, and kurtosis of the excess
return are all important to investors. On the other hand, the results based on the preference
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Fig. 4 Shape of the
mean-variance-kurtosis efficient
frontier

Fig. 5 The shape of the MVSK efficient frontier from PGP

structures of (1, 3, 1, 1), (1, 1, 1, 3), and (1, 3, 1, 1) place more emphasis on risk control,
while those based on (3, 1, 1, 0), (3, 1, 2, 1), and (3, 1, 3, 1) imply that investors are willing to
pursuemore excess returns regardless of risk level. However, the investors who select lambda
among the following sets (1, 2, 3, 2), (3, 1, 2, 3), and (2, 3, 3, 1) aim to account for multiple
objectives. The benchmark case, which represents the Markowitz mean-variance portfolio,
is represented by the (1, 1, 0, 0).

123



Annals of Operations Research

Table 3 Asset allocations and
moment statistics for optimal
portfolios with a high return
compared to Markowitz

Portfolio A B C D

λ1 1 1 2 1

λ2 3 3 3 1

λ3 0 0 1 0

λ4 0 2 3 0

SP500.ESG 0.922 0.864 0.936 0.8500

Europe.ESG 0.000 0.000 0.000 0.000

Japan.ESG 0.130 0.063 0.147 0.149

Canada.ESG 0.000 0.000 0.000 0.000

Korea.ESG 0.000 0.001 0.000 0.000

Asia.ESG 0.000 0.001 0.000 0.000

Emerging.ESG 0.000 0.002 0.000 0.000

Mean (%) 0.264 0.256 0.266 0.2549

Var (10−4) 3.998 3.877 4.030 3.847

Skew −0.687 −0.670 −0.691 −0.661

Kur 9.104 9.124 9.030 9.133

In our study, in order to further investigate the effect of investors’ preferences on portfolio
selection, different levels of preference have been investigated by allowing each value of
lambda to take values in the set 0, 1, 2, 3. This gives in total 144 possible values of λ’s pref-
erences illustrated in Fig. 1. Based on the results for all these values of investor’s preferences,
we build the efficient frontier for MVSK. Figure5 provides a three-dimensional representa-
tion of the efficient frontier for MVSK. The x-axis represents the expected return, the y-axis
represents the volatility (i.e., standard deviation), and the z-axis represents the skewness. The
kurtosis is shown as a color map, with yellow indicating high kurtosis and blue indicating low
kurtosis. By constructing the efficient frontier for MVSK, investors can identify the optimal
portfolios that balance risk and return based on their preferences for skewness and kurtosis.
As the figure shows, higher expected returns are generally associated with higher volatility,
which is consistent with the standard mean-variance analysis. However, the efficient frontier
for MVSK reveals that portfolios can have different skewness and kurtosis levels while still
experiencing the same expected return and volatility. This means that investors can optimize
their portfolios not only for risk and return but also for skewness and kurtosis based on
their preferences. Furthermore, the efficient frontier for MVSK shows that the PGP of some
portfolios dominates that of others. This dominance is due to the tradeoff between the four
moments of the distribution, which causes at least one of the statistics for the other three
moments to worsen. For example, a portfolio with high expected returns and low volatility
may have a negative skewness or high kurtosis. To avoid such extreme outcomes, investors
can use the efficient frontier for MVSK to identify the optimal portfolios that meet their
preferences for skewness and kurtosis while maximizing their risk-adjusted returns.

Table 3 presents some portfolios that have a higher average return compared toMarkowitz.
It clearly shows that investor preferences affect the four portfolio moments. In general,
the more importance investors attach to a certain moment, i.e., the higher the preference
parameter, the more favorable this moment statistic is in the optimal portfolio. For instance,
the lowest kurtosis is achieved in Portfolio C. But, interestingly, this behavior is not observed
for skewness. In fact, the highest skewness is achieved in portfolio D, where the investor
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Fig. 6 ECCDF of the portfolio’s returns from different λi values

preference is (1, 1, 0, 0), which clearly illustrates that this rule could not be taken for granted.
For this reason,we shift our interest in the next step of our research to the empirical distribution
of portfolio returns obtained for all studied values of lambda.

Figure6 shows theEmpiricalComplementaryCumulativeDistributionFunctions (ECCDF)
graphs of several portfolio returns normalized by ψ�

1 obtained by selecting λ =
(λ1, λ2, λ3, λ4) from a set of 144 possible values. For a given value of λ, the correspond-
ing curve represents the probability that the corresponding portfolio return divided by ψ�

1 is
greater than a threshold shown on the abscissa axis in Fig. 6. The red (resp. green) curve in
this figure depicts the highest (resp. lowest) probability for any given threshold value from
the available set of ECCDF graphs. These curves can alternatively assist in indicating the
greater (resp. lesser) value of the threshold for a given probability value.

The represented curves may be used to guide the investor in choosing the suitable value
of λ. For instance, fixing a target probability of 18% in the ECCDF, the investor will select
point B2 (6.8, 0.18) rather than point B2 (6, 0.18) because it leads to achieving with a
nearly one-fourth chance a return higher than 6.8 rather than 6. In other words, given that
ψ∗
1 = 0.266510−2, the investor will take a higher risk by selecting Lambda =(2, 1, 2, 0),

hoping to earn up to 0.018122 (= 6.8 ∗ 0.266510−2) per week. The same reasoning holds
for the point A1 and A2, for which we can easily see that the investor is better off moving
towards point A1.

4 Conclusion

This study examines the Polynomial Goal Programming (PGP) approach, which seeks to
create a class of portfolios that optimize a parameterized function based on the first four
moments of their achieved returns. The PGP parameters reflect an investor’s preferences
concerning expected return, variance, skewness, and kurtosis of the portfolio returns. Our
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primary research question explores how these parameters enable investors to accomplish
multiple, conflicting objectives, such as maximizing expected return and skewness while
minimizing variance and kurtosis. Intriguingly, we demonstrate that, in some instances,
considering combinations of investor preferences may result in higher returns for certain
realizations compared to solely maximizing the expected return, although the average return
remains lower in this case. To assist investors in identifying the most suitable set of param-
eters, we introduce a practical tool based on the representation of the empirical distribution
function of portfolio returns. We demonstrate that this tool enables investors to easily select
the optimal parameters that maximize the probability of their portfolio return (normalized
by the average return obtained through expected return maximization) exceeding a specific
threshold. This innovative approach not only aids investors in achieving their desired invest-
ment outcomes but also contributes significantly to the risk management field by offering a
practical method for balancing various risk factors and performance objectives in portfolio
optimization.
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