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Higher Order Patterns for Rewrite Rules

Jaro Reinders
Delft University of Technology

Delft, Netherlands
J.S.reinders@tudel�.nl

Abstract

GHC’s rewrite rules enable programmers to write local pro-
gram transformation rules for their own functions. The most
notable use case are fusion optimizations, which merge mul-
tiple traversals of a data structure into one and avoids allo-
cation of intermediate structures. However, GHC’s rewrite
rules were too limited to express a rewrite rule that is neces-
sary for proper fusion of the concatMap function in a variant
of fusion called stream fusion.
We introduce higher order patterns as a simple exten-

sion of GHC’s rewrite rules. Higher order patterns substan-
tially broaden the expressiveness of rewrite rules that involve
local variables. In particular, they enable the rewriting of
concatMap such that it can be properly optimized. We im-
plement a stream fusion framework to replace the existing
fusion framework in GHC and evaluate it on GHC’s bench-
mark suite. Our stream fusion framework with higher order
patterns shows an average speedup of 7% compared to our
stream fusion framework without it. However, our stream
fusion framework is not yet able to match the performance
of GHC’s existing fusion framework.

Additionally, we show that our higher order patterns can
be used to simplify GHC’s existing mechanism for rolling
back failed attempts at fusion and, at the same time, solve a
problem that prevented proper optimization in one example
program. However, evaluating it on GHC’s benchmark suite
shows a small regression in performance overall.

CCS Concepts: • Software and its engineering→ Com-

pilers; Functional languages; • General and reference→

Performance; • Theory of computation→ Rewrite systems;
Equational logic and rewriting.

Keywords: Rewrite Rules, Program Transformation, Opti-
mization, GHC, Haskell, Higher Order Matching, Fusion
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1 Introduction

Optimizing compilers are not perfect. In particular, many
compilers struggle with optimizations across user-de�ned
functions, especially those that are recursive.

Performance-minded programmers are therefore encour-
aged to write complicated special-purpose functions using
primitive constructs manually instead of composing them
out of many simple general-purpose functions. For exam-
ple, a function that sums the �rst n square numbers may be
written as one special-purpose function:

sumFirstNSquares n = go 0 1 where

go s i | i > n = s

| otherwise = go (s + (i * i)) (i + 1)

Or it can be written as the combination of sum, map, and
enumFromTo functions:

sumFirstNSquares' n =

sum (map (\x -> x * x) (enumFromTo 1 n))

The Glasgow Haskell Compiler (GHC) [4] aims to allow
programmers to write code that is both readable and e�-
cient by optimizing functions such as sumFirstNSquares'
to be as e�cient as the special-purpose sumFirstNSquares
function. To achieve this, GHC uses an optimization called
shortcut fusion, and in particular the fold/build �avor [5].1

The main insight that underlies this optimization is that
we can write many functions that work on lists as a combi-
nation of foldr and build. The build function is designed
to be an inverse to foldr such that applying a foldr to a
build lets us cancel out both and thus save a traversal and
avoid allocating an intermediate data structure.

The knowledge that foldr and build can be cancelled out
is not built-in to GHC. Instead, it is accomplished through a
generic mechanism that allows programmers to write their
own local program transformations called rewrite rules [14].
Since the introduction of fold/build fusion, a new �a-

vor of short-cut fusion, called stream fusion [1], has gained
traction in the literature. Stream fusion is based on unfolds
rather than folds, which gives it the ability to fuse functions
with multiple lists as input, such as zip.

1We refer to GHC in a broad sense, including its implementation of the

standard library “base”.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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However, stream fusion has not replaced fold/build fu-
sion in GHC. One particularly important drawback — and
perhaps the reason that fold/build fusion is still in use —
is that it is not easy to fuse concatMap using stream fusion.

In its most general form, it is impossible to fuse concatMap.
However, it is commonly used in a form that is similar to a
nested loop, which could be fused e�ciently, but detecting
this special form has proven di�cult. Using a rewrite rule to
fuse concatMap seems like an obvious solution. However, it
turns out GHC’s rule matcher was not su�ciently powerful
to express the required rewrite rule.

In this paper, we introduce higher order patterns to GHC’s
rewrite rule matcher which makes it possible for it to handle
more complicated rewrite rules, such as the rewrite rule that
is required to properly fuse concatMap.
Concretely, we make the following contributions:

• We explain higher order patterns in the context of
GHC’s rewrite rule matcher and describe how they
can be implemented in GHC (Section 3).
• We use higher order patterns to implement the con-
catMap rewrite rule for stream fusion. We implement
a stream fusion system using this rewrite rule in GHC
and evaluate it on GHC’s ‘no�b’ benchmark suite [12]
(Section 4).
• We use higher order patterns to simplify rewrite rules
for rolling back unfruitful fold/build fusion.We show
that this enables better optimizations for some pro-
grams. We implement these changes in GHC and eval-
uate them on GHC’s no�b benchmark suite (Section 5).

The idea of higher order patterns is not new (Section 6),
but they had not been implemented in GHC’s rule matcher.
We show that higher order patterns are useful and that they
can be implemented as a simple incremental enhancement
of GHC’s rule matcher.

2 Rewrite Rules for Short-Cut Fusion

Let us start by reviewing rewrite rules as introduced by Gill
et al. and their application to short-cut fusion. We motivate
them in Section 2.1, explain how they are used by GHC in
Section 2.3, and in Section 2.4 we put particular emphasis on
local variables, which play a central role in Section 3.

2.1 Motivation

Before diving into the details of rewrite rules, let us consider
the context in which they are used.
Haskell [6] has relatively few built-in data structures (es-

sentially only numbers and arrays). One of the principles
of Haskell’s design is that programmers should be able to
de�ne as much as possible by themselves. There is, of course,
a standard library, that includes lists, but Haskell compilers

generally do not need to have much special knowledge about
these standard data structures.2

In particular, GHC’s optimizer treats lists as it does any
other algebraic data type. So, if we want to have additional
optimization rules for lists, then it should be possible to use
the same optimization mechanism for other user-de�ned al-
gebraic data types. Rewrite rules are such a general optimiza-
tion mechanism that works for any user-de�ned function,
not just those functions that work on lists.

Furthermore, another design principle of GHC’s optimizer
is to prefer small local optimizations to complex global opti-
mizations. These small local optimizations are much easier
to understand, and their interplay can often achieve the same
results as large complex optimizations. A drawback of this
approach is that it cannot give strong guarantees: an op-
timization can get stuck halfway. However, large complex
optimizations often have very speci�c conditions on when
they apply.

For example, a precursor to short-cut fusion was Wadler’s
deforestation technique [16]. Deforestation was able to give
strong guarantees, but only applied to programs of a very
speci�c form, called tree-less form.
In the end, the combination of user-de�nable and sim-

ple local optimizations has prevailed in the form of rewrite
rules in GHC. Rewrite rules power GHC’s state of the art list
fusion optimization and are also applicable in many other
applications. For example, GHC itself uses rewrite rules inter-
nally to specialize polymorphic functions to particular types,
replacing a general implementation with a type-speci�c op-
timization.

2.2 Anatomy of a Rewrite Rule

Rewrite rules are local program transformation rules that
can be de�ned by programmers themselves, but what do
they actually look like?
Let us start by considering a simple rewrite rule, which

rewrites a polymorphic function into an equivalent func-
tion that is specialized to a particular type. For example, the
fromIntegral function converts an integral numeric type
to any compatible numeric type. If we know that this func-
tion is used to convert an Int to a Float we can rewrite it
to a specialized function instead. We can capture that in the
following rewrite rule:3

"fromIntegral/int2Float" fromIntegral = int2Float

This rewrite rule consists of three parts: it starts with the
name inside quotation marks, then the core of the rule is an
equation with a left hand side and a right hand side. The left

2Lists do have special syntax, but you could completely replace them with

your own user-de�ned list type if you do not mind slightly more verbose

syntax.
3The actual rewrite rules in GHC are more complicated to avoid having to

de�ne rewrite rules for every pair of types.
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f ← g x ← y

f x ← g y
App

x ← y[v := u]

(\u -> x) ← (\v -> y)
Lam

v ← v
Var

v templ �vs(x) = ∅

v ← x
Templ-Var

v unfolds to y x ← y

x ← v
Var-Unfold

�vs(y) = ∅ x ← z

x ← let v = y in z
Let-Float

Figure 1. Basic matching rules used by GHC.

hand side is called the template and the right hand side is
simply abbreviated to RHS.
Note that while the RHS may be an arbitrary Haskell

expression, the template must be a top level function that
may be applied to several arguments. In Section 2.3, we
explain the reason for this limitation.

Youmight notice that in this case the template is fromInte-
gral without any special type annotation to make sure that
it is really used to convert an Int to a Float. Type signatures
are allowed, but they are not necessary because GHC does
perform its normal type inference, and it makes sure that
the type of the template matches the type of the RHS.

Rewrite rules can get more complicated. In particular, we
might want to leave holes in the template that match any
Haskell expression (of a suitable type). For example, the
well-known fusion property of the map function states that
sequentially mapping two functions over a list is the same as
mapping the composition of those functions. In such a rule
we want to be able to match any function and any input list.
We can do that as follows:

"map fusion" forall f g xs.

map f (map g xs) = map (f . g) xs

This rewrite rule has one additional component: the forall
followed by a sequence of variable names. These variables
are called the template variables. Template variables match
any Haskell expression that occurs in their place.

There are some further details, but those are not relevant
for this paper.

2.3 Matching Rewrite Rules

The primary use of rewrite rules is to �nd expressions in our
programs which match the template and replace them by
the RHS in the hope of optimizing our programs. To make
it possible to �nd candidates e�ciently, the template of a
rewrite rule must always be a top level function which may
be applied to one or more arguments. Given this constraint,
�nding match candidates is just a matter of �nding occur-
rences of that top level function in the program.

Rewrite rules are written in Haskell proper, but matching
happens at a point in the compilation pipeline where the
program has been desugared into a small intermediate rep-
resentation called Core. Rewrite rules are desugared as well,
so, the matcher only has to cover a few cases, of which we
have shown the six most important in Figure 1.
These matching rules prescribe how we can construct a

valid match. The judgment G ← ~ states that the template G
matches the expression ~. The meta-variables G , ~, I, 5 , and
6 stand for expressions (including templates) and D and E

stand for variables.
The �rst three rules are straightforward syntactic match-

ing rules for the _-calculus. In the Lam rule, we use the
notation [E := D] to mean the capture-avoiding substitution
of all occurrences of the variable E by D. We omitted the
syntactic matching rule for case expressions, because it is
straightforward and too verbose to include here.

With only structural matching rules, we would be limited
to �nding exact matches of expression in our program. Often,
we are instead interested in �nding an expression where
only parts match exactly and other parts can be arbitrary
expressions. In such cases, we can use template variables,
which match any expression.

The Templ-Var rule states that a variable E can match any
expression G as long as E is a template variable (E templ) and
G contains no free occurrences of variables that are local to
the rewrite rule itself (�vs(G) = ∅). Such free local variables

can occur if we have moved under a binder while matching,
such as with the Lam rule.
When we �nd a valid derivation tree, and thus a match,

we can read o� the substitution of the template variables
by looking at the all the uses of the Templ-Var rule. One
detail we have omitted from the matching rules in Figure 1 is
that GHC’s rule matcher supports non-linear patterns which
havemore than one occurrence of the same template variable
in the template. In such cases, we have to additionally check
that all these occurrences are actually matched to the equal
expressions.
The Var-Unfold rule gives us the ability to look past a

variable in the target into its de�nition. When possible, GHC
keeps track of the de�nition of each variable in its so-called
“unfolding”. So, if we encounter a variable in the target and
the template is not that same variable or a template variable,

16
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map← map
Var

f← (* 2)
Templ-Var

map f← map (* 2)
App

map← map
Var

g← (+ 1)
Templ-Var

map g← map (+ 1)
App

xs← ys
Templ-Var

map g xs← map (+ 1) ys
App

map f (map g xs)← map (* 2) (map (+ 1) ys)
App

Figure 2. An example matching derivation tree.

then we can still continue matching using the unfolding of
that target variable.
The Let-Float rule states we may discard let bindings

as long as the right hand side of the binding does not contain
free local variables. When applying the rewrite to a match
that uses the Let-Float rule, we should add the discarded
let back around the whole result. Note that the Let-Float
rule does not a�ect the unfoldings
Both Var-Unfold and Let-Float should only be taken

as a last resort. In particular, they might be applicable at the
same time as the Var or Templ-Var rule, but they would
unnecessarily modify the program in those cases.

For the sake of simplicity we omit four more rules which
are present in GHC’s rule matcher: ticks, types, coercions,
and casts.
We can use the matching rules to build derivation trees.

For example, given that 5 , 6, and GB are template variables,
we might want to show that the following judgment is valid:

map f (map g xs)← map (* 2) (map (+ 1) ys)

In Figure 2, we show that this is indeed a valid match, as
witnessed by its derivation tree.

From the occurrences of the Templ-Var rule in this deriva-
tion tree, we can read o� assignment of the template vari-
ables. In this way, we can see that the match succeeds with
the substitution:

[5 := (* 2), 6 := (+ 1), GB := ys]

We can apply this substitution to the RHS of the rewrite rule,
which yields:

map ((* 2) . (+ 1)) ys

2.4 Local Variables

Templates may contain _-abstractions and case expressions,
and thus introduce variables that are local to the template.
The naive matching algorithm described in the previous
section cannot express many interesting rewrite rules that
involve local variables.

For example, consider this rewrite rule, which fuses unzip
with a particular use of map.

"unzip/map1" forall xs.

unzip (map (\x -> (x, x)) xs) = (xs,xs)

This rule is limited to cases where the function we map is
exactly \x -> (x, x), which duplicates each element and

produces a tuple. If the function we map produces a tuple
that contains something other than exactly (x, x), this
rewrite rule will not match. This raises the question: can we
write a more general rewrite rule that matches regardless of
the contents of the tuple?
There are two ways in which we could try to write that

generalized rule:

1. We can add extra template variables and use those as
elements of the tuple in the template:

"unzip/map2" forall a b xs.

unzip (map (\x -> (a, b)) xs)

= (map (\x -> a) xs, map (\x -> b) xs)

However, the rule matcher will not match template
variables to expressions that contain local variables,
such as x in this case. Otherwise, we run the danger
of moving variables out of their scope.

2. Alternatively, we could write a rule with two functions
as template variables, which we then apply to x as
follows:

"unzip/map3" forall f g xs.

unzip (map (\x -> (f x, g x)) xs)

= (map f xs, map g xs)

However, the rule matcher is more syntactic than we
might hope in this case. It will only match literal func-
tion applications for the applications f x and g x in
the template. In particular, it will no longer match with
the original \x -> (x, x) we started with.

Neither of these approaches properly generalizes our orig-
inal rule. In the next section, we introduce a simple extension
to the rewrite rule matcher that enables us to write a rule
that does properly generalize our original rule.

3 Higher Order Patterns

In this section, we address the shortcoming of rewrite rules
that we have identi�ed in Section 2.4. We introduce a new ex-
tension of rewrite rule matching that supports more rewrite
rules, such as those required for stream fusion of concatMap
which we will discuss in Section 4. Higher order patterns
are not new (Section 6), but their application to program
transformations for optimization in industrial compilers is
new.

17
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3.1 Revisiting unzip/map

In Section 2.4, we presented a rewrite rule for fusing unzip
and a particular form of map and we discussed two potential
generalizations that both fell short of actually generalizing
the original rule. We now present a solution to that problem.
Firstly, we choose to build on unzip/map3, which uses

template variables that represent functions that are applied
to the local variables. This approach lets us avoid having to
deal with scope issues.
Recall that we want to show that our generalized un-

zip/map rule matches at least the same expressions as the
simple unzip/map rule. Formally, we would like the follow-
ing judgment to be valid:

unzip (map (\x -> (f x, g x)) xs)

← unzip (map (\x -> (x, x)) xs)

To see what goes wrong, we apply matching rules until we
get stuck, thus constructing the partial derivation tree of
Figure 3.
We are stuck at the judgments f x ← x and g x ←

x. No rule applies to these judgments, but there is a simple
substitution of the template variables 5 and 6 that makes
both sides semantically equivalent — namely, we can make
them both identity functions:

[f := (\y -> y), g := (\z -> z)]

If we apply this substitution, we get (\y -> y) x ← x and
(\z -> z) x ← x. In a single V-reduction step, we reach a
valid judgment: x ← x. So, to support a rule that is a proper
generalization of unzip/map, the rule matcher could assign
the identity function to both the f and g template variables.

However, just recognizing this special case and using the
identity function still does not allow the rule to match a tuple
with any contents. Consider, for example, the target:

unzip (map (\x -> (x + 1, x * x)))

If we try to match the unzip/map3 rule, we encounter the
judgments f x ← x + 1 and g x ← x * x. Remember
that in�x function application is syntactic sugar. In this case,
it desugars to: f x ← (+) x 1 and g x ← (*) x x, which
makes it more clear which rules might be applicable.

The f x ← (+) x 1 judgment is stuck, but again, we can
substitute in a function for f such that a single V-reduction
step yields a valid judgment. In this case, that would be the
function (\y -> (+) y 1).

The g x ← (*) x x judgment is more interesting because
the App rule does apply, which would yield two new proof
obligations: g ← (+) x and x ← x. The latter is obviously
valid by the Var rule, but the former is problematic because
the target contains the local variable x so the Templ-Var
rule does not apply. So, we should not use the App rule in
this case. Instead, we can again use a function, namely (\y

-> (*) y y), which makes the judgment valid after one
V-reduction step.

Now, we are starting to see a common pattern.

3.2 Generalizing

In the previous section, we have seen several examples of
stuck matching judgments that can be made unstuck by
instantiating a template variable with a _-abstraction and
considering matching up to one V-reduction step. This puts
us in the domain of higher order matching, which we discuss
more in Section 3.3, but let us �rst continue describing our
new matching rule, which we call the higher order pattern
rule.
To match a higher order pattern, we look for a template

variable applied to a local variable. We can assign a function
to that template variable to make the match work. In fact,
further experimentation would show that this works for
template variables applied to any number of distinct local
variables. Figure 4 shows the formal higher order pattern
rule.

v1 . . . v= local v1 . . . v= distinct
f templ �vs(x) ⊆ {v1, . . . , v=}

f v1 . . . v= ← x
HOP

Figure 4. The rule for matching higher order patterns.

The HOP rule is an extension of the Templ-Var rule. In-
stead of just a template variable, the HOP rule allows you
to use an application of a template variable to one or more
distinct local variables as the template. The local variables
you give as arguments to the template variable specify the
set of allowed local variables in the target expression.
Similar to the Templ-Var rule, the HOP rule should also

be used to read o� the substitution necessary to perform
the �nal rewrite. In the case of the HOP rule, this is not
completely straightforward.
When we see a match like the following:

f v1 . . . v= ← x

Then the template variable f should be assigned the expres-
sion formed by _-abstraction over all the local variables with
the target x as the body:

[f := \v1 . . . v= -> x]

Note that a _-abstraction is added when rewriting a higher
order pattern, which may impact performance, but we ex-
pect this to be insigni�cant compared to the potential per-
formance gains of more expressive rewrite rules.

3.3 Uniqueness of Matching

A well known problem of higher order matching is the exis-
tence of multiple solutions. For example, the template f x,
where both f and x are template variables, can yield multiple
valid substitutions when matched against a target such as 0

18
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unzip← unzip
Var

map← map
Var

(,)← (,)
Var

f x ← x

(,) (f x)← (,) x
App

g x ← x

(f x, g x)← (x, x)
App

(\x -> (f x, g x))← (\y -> (y, y))
Lam

map (\x -> (f x, g x))← map (\y -> (y, y))
App

xs← ys
Templ-Var

map (\x -> (f x, g x)) xs← map (\y -> (y, y)) ys
App

unzip (map (\x -> (f x, g x)) xs)← unzip (map (\y -> (y, y)) ys)
App

Figure 3. An incomplete matching derivation tree for the unzip/map rewrite rule. Note that tuple syntax, e.g. (f x, g x), is
sugar for application of the tuple constructor to two arguments, in this case: (,) (f x) (g x).

(the 0 literal). We could make f the identity function and x

the value 0:

[f := (\y -> y), x := 0]

Or we could make f the constant function that returns the
value 0 (the value of x does not matter):

[f := (\_ -> 0)]

Having two equally valid matches is a problem, because,
in the end, we need to choose one and we have no way of
knowing what the user intended. Luckily, Miller [8, 9] has
shown that higher order patterns, with the restriction that a
template variable must be applied to distinct local variables,
always produce at most a single match. Millers research was
in the context of uni�cation, which is a slightly di�erent
problem, but Nipkow has shown that the same holds for
higher order patterns in rewrite systems [10, 11].

3.4 Backward Compatibility

The GHC compiler is widely used, so any changes that break
compatibility with older versions incur a large cost to the
community. We argue that our new higher order pattern
rule is partially backward compatible, in the sense that all
old rewrite rules that used to match continue to match with
exactly the same result.4

Using the HOP rewrite rule as presented in Figure 4, this
is not necessarily the case. There are situations in which the
HOP rule and the App rule both apply. In such cases, we
cannot simply say to prefer the App rule over the HOP rule
because there are situations where the App rule applies but
ultimately leads to a matching failure. We have seen such an
example with the judgment g x ← (*) x x in Section 3.1.
So, to avoid changing the result of existing matches, we have
to add an extra condition to the HOP rule:

x = g y =⇒ y ≠ v= ∨ v= ∈ �vs(g)

This condition captures the fact that the App rule only ap-
plies when the target is the application of a function to an

4Unless it now overlaps with a new match which uses the HOP rule, al-

though we do not expect that to occur in practice.

argument, and then it can still fail in two ways: either argu-
ments do not match, or the functions do not match. Since
the argument in the template is the local variable v= , it is
easy to check for inequality. Furthermore, we know that the
function in the template must itself be either a higher order
pattern or a bare template variable. If we would choose the
App rule then the only thing that changes is that the set of
allowed free local variables shrinks. So it will only fail if
the variable v= is a free local variable of the function in the
target.
In this way, we ensure that the HOP rule only applies

when the App rule would lead to a matching failure.
Note, however, that our addition of the higher order pat-

tern rule can cause existing rules to match more often. We
could prevent this by adding special syntax to mark these
higher order patterns, thus ensuring that old rules will be
completely una�ected. However, this would complicate the
implementation in GHC as it would require changing the
rewrite rule parser and we deemed it unlikely that existing
rewrite rules depend critically on avoiding a match in cases
where the higher order pattern rule applies.

4 Case Study: Stream Fusion

The need for a more powerful rule matcher was �rst ob-
served by Coutts et al. [1]. They found that the concatMap
function is not fusible in general using stream fusion. Instead,
a rewrite rule could be used to recognize cases where it can
be fused and rewrite them to enable this fusion. However,
the rule matcher was not powerful enough to write that rule.
In this section, we give a brief introduction to stream

fusion in Section 4.1 and the problem of fusing concatMap

in Section 4.2. Furthermore, we describe how we modi�ed
GHC to replace fold/build fusion with stream fusion in
Section 4.3 and evaluate these changes on the standard nofib
benchmark suite in Section 4.4.

4.1 A Crash Course on Stream Fusion

Stream fusion [1] is a form of short-cut fusion similar to
fold/build fusion, but, whereas fold/build fusion is based

19



Higher Order Pa�erns for Rewrite Rules Haskell ’24, September 6–7, 2024, Milan, Italy

on fusion of consumers, stream fusion is based on fusion of
producers. Like fold/build fusion, stream fusion is gener-
ally applicable to inductive data types, but for the sake of
simplicity we will consider only list fusion.

A stream is a pair of a state and a step function which can
produce a new element, update the state, or signify the end
of the stream:

data Stream a = ∃ s. Stream (s -> Step a s) s

data Step a s = Done | Yield a s | Skip s

It is straightforward to implement conversion functions to
and from lists, but we omit their implementation for the sake
of brevity:

stream :: [a] -> Stream a

unstream :: Stream a -> [a]

Using these conversion functions, we can de�ne functions
that operate on lists in terms of functions that operate on
streams.

mapS :: (a -> b) -> Stream a -> Stream b

map :: (a -> b) -> [a] -> [b]

map f = unstream . mapS f . stream

If we compose two such functions and inline their de�nitions,
we see that there is an intermediate step where the stream
is converted to a list and immediately back to a stream:

unstream . mapS f . stream . unstream

. mapS g . stream

We can avoid these redundant conversions with a simple
rewrite rule:

"stream/unstream" stream . unstream = id

Applying this rule yields a pipeline that streams the input
list, applies a sequence of stream transformations, and �nally
unstreams back into a list.

unstream . mapS f . mapS g . stream

At a glance, this might not seem inherently more e�cient
than the composition of two map functions that we started
with. The di�erence is that the only recursive function in
this pipeline is unstream, so GHC can inline all the other
functions and apply further optimizations to optimize this
whole pipeline to a single e�cient loop. A detailed account
of these further optimizations can be found in Section 7 of
[1].

4.2 Fusing concatMap

So far, we have only considered fusion of a simple linear
pipeline of list functions. The same approach extends to
functions that join together multiple streams, such as (++)
(append) and zip. However, there are also functions like
concatMap that have a nested structure.
The concatMap function takes as input a list and a func-

tion that maps each element of that list to a new list. To

avoid confusion, we will call the former list the outer list and
the lists produced by the function inner lists. The result of
concatMap is the concatenation of all the inner lists.

We can use the same approach of implementing the func-
tion on lists in terms of the function on streams and adding
stream and unstream in the appropriate places:

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap f xs =

unstream . concatMapS (stream . f) . stream

If used properly, all the stream and unstream functions will
be removed by the stream/unstream rewrite rule. How-
ever, a problem hides in the implementation of concatMapS
(see Appendix B). Given a function that produces the inner
streams from elements of the outer stream, it needs to pro-
duce the concatenation of all the inner streams. To achieve
that, the whole inner stream, including its step function,
needs to be part of the state of the output stream of con-
catMapS.

In this way, the step function of the inner stream is obfus-
cated to the compiler, which makes it hard for the compiler
to perform the optimizations that stream fusion requires.
There are optimization techniques such as Call Pattern

Specialization [13] and the Static Argument Transforma-
tion [15, Section 7.1], but these are both complicated and not
universally applicable. This observation resonates with the
drawbacks of complicated global optimizations for fusion,
which we discussed in Section 2.1.

Instead, we should try to �nd a simple local transformation
to perform this optimization, and that is exactly what we
can use higher order patterns for. The problem is that the
step function of the inner stream can change completely
depending on the value of the elements of the outer stream.
However, in practice, it seems common that the step function
of the inner stream does not depend on the value of the
elements of the outer stream. We can express that pattern as
the following rewrite rule:

"concatMapS" forall next f.

concatMapS (\x -> Stream (next x) (f x)) =

concatMapS' next f

This rewrite rule was proposed by Coutts et al. [1], but it
contains two higher order patterns that GHC’s rules did not
support at the time, so they could not use it.
The concatMapS' function used in this rule is very simi-

lar to the concatMapS function, except that it uses the same
inner step function throughout the whole stream. The im-
plementation of concatMapS' can be found in Appendix B.

4.3 Implementation

With the rewrite rule for concatMap in hand, we can start
implementing stream fusion in GHC. Unfortunately, GHC is
currently geared toward fold/build fusion, which shows
up in several places. Ideally, we would perform an extensive
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refactoring, however due to time constraints, we decided to
focus on the most important parts.
Most of the basic list functions are located in the ghc-

internal package in themodule GHC.Internal.Data.List.
There are some fundamental list functions, and in particular
foldr and build, in the module GHC.Internal.Data.Base.
Finally, the enumeration function for integers lives in the
module GHC.Internal.Data.Enum. We have disabled the
old fold/build fusion mechanism and associated rewrite
rules, and we have placed stream-based alternatives where
possible.

During early tests, we found that the rewrite rule for con-
catMapS could get inhibited by let or single-branch case

expressions. The Let rule can sometimes �oat out let bind-
ings when they are encountered during matching, but that
is not possible when local variables are captured by the let
binding. This con�rms earlier �ndings by Farmer et al. [3]
(Section 5) and we followed their advice of instead �oating
such bindings further inwards if �oating out is not possible.
This might duplicate work, but the performance gain of the
rewrite rule seems to usually be worth it. They even pro-
pose a technique to deal with case expressions with multiple
branches, but their utility is still an open question, so we did
not try to implement that.

One �nal challenge was GHC’s desugaring of list compre-
hensions, which is currently only e�cient under fold/build
fusion because it uses build and foldr directly. We have
modi�ed this desugaring to use concatMap instead, which
will require more optimization steps, but it should produce
the same optimized code under both fold/build fusion and
stream fusion with our new higher order rewrite rule.

4.4 Evaluation

We have evaluated our implementation of stream fusion
in GHC on the “Enum” and “Nested” example programs
from [3] and the three_partition example from [14], and
con�rmed successful fusion by manually inspecting the Core
output produced by our modi�ed GHC.
Furthermore, we have evaluated our implementation of

stream fusion with higher order patterns on GHC’s stan-
dard “no�b” benchmark suite [12]. We have compared the
results to two di�erent baselines: the existing fold/build

fusion system in GHC, and our new stream fusion framework
without our higher order pattern rule.

4.4.1 Compared to fold/build. Our �rst comparison is
to the existing fold/build system. The elapsed time in-
creased on average by 7.99% (geometric mean) with a mini-
mum of -53.0% (so a decrease in elapsed time) for the spec-
tral/knights benchmark and a maximum of 282% for the
imaginary/gen_regexps benchmark. The full elapsed time
di�erences are shown in Figure 5. We have labeled the x-
axis using numbers to save space, and refer the reader to
Appendix A for the full names of all the no�b benchmarks.

Note that the imaginary/gen_regexps (282%) and imagi-

nary/paraffins (277%) benchmarks are o� the charts.
The allocations also increased on average by 30.4% (geo-

metric mean), with a minimum of -28.7% (a decrease in alloca-
tions) for the spectral/fft2 benchmark and a maximum of
127000% for the imaginary/x2n1 benchmark. The full allo-
cation di�erences are shown in Figure 6. Several benchmarks
are o� the charts, so we itemize them here:

• imaginary/x2n1 (127000%)
• imaginary/queens (1600%),
• imaginary/wheel-sieve1 (1400%)
• spectral/puzzle (825%)
• imaginary/gen_regexps (605%)
• imaginary/paraffins (447%)
• spectral/cryptarithm2 (359%)

These results show that stream fusion can cause a signi�-
cant speedup for some benchmarks, but most benchmarks
regress in performance.

4.4.2 Comparing the E�ect of Our Higher Order Pat-

terns. To measure the e�ect of our concatMapS rewrite rule
that uses higher order patterns, we have also compared
it to our stream fusion framework without the HOP rule.
The elapsed time decreased on average by 7.63% (geomet-
ric mean), where the largest decrease was 61.0% for the
real/pic benchmark, but the elapsed time did increase for
some benchmarks up to 17.6% for the real/parser bench-
mark. The full elapsed time di�erences are shown in Figure 7.
The allocations also decreased on average by 13.3% (geo-

metric mean), where the largest decrease was 71.7% for the
imaginary/rfib benchmark, but for some benchmarks the
allocations increased up to 49.1% for the spectral/puzzle
benchmark. The full allocation di�erences are shown in Fig-
ure 8.

4.4.3 Threats to Validity. Replacing fold/build fusion
with stream fusion turned out to be more of a challenge
than we had hoped. Just implementing the rewrite rule for
concatMap using higher order patterns was not su�cient to
get proper fusion. During early experiments, we solved some
issues which we described in Section 4.3. In this section, we
list several more issues that we have not yet managed to
solve.

Due to time constraints, we have not been able to perform
an in depth analysis of the benchmark results.

We have only modi�ed the three most primitive list mod-
ules and not derived functions elsewhere.
Furthermore, it has become common practice to write

foldr in-line in functions and expect it to fuse, but under
stream fusion, this is no longer a good practice. Any foldr

in the standard library or in the benchmarks themselves may
cause unnecessary performance regressions. Furthermore,
stream fusion might open up new opportunities for fusion
which we have not been able to take advantage of.
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Figure 5. Percentage di�erence of elapsed time between the existing fold/build and our new stream fusion implementation.
Lower is better. The X-axis is numbered, corresponding names can be found in Appendix A.
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Figure 6. Percentage di�erence of allocations between the existing fold/build and our new stream fusion implementation.
Lower is better. The X-axis is numbered, corresponding names can be found in Appendix A.
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Figure 7. Percentage di�erence of elapsed time after enabling the concatMap rewrite rule. Lower is better. The X-axis is
numbered, corresponding names can be found in Appendix A.
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Figure 8. Percentage di�erence of allocations after enabling the concatMap rewrite rule. Lower is better. The X-axis is
numbered, corresponding names can be found in Appendix A.

To get a fair comparison, we would have to inspect and
potentially modify every function that processes lists. We did
not have time to do this and thus leave it to future work 7.1.

Our new desugaring of list comprehensions uses concatMap
so this will obviously not fuse under stream fusion without
our new rewrite rule. We could instead try to desuger list
comprehensions directly in terms of unfoldr when possible.
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That would improve performance, but it would make the
desugaring more complicated, and it would be limited to list
comprehensions.

5 Case Study: Avoiding Rollback Markers

While our original motivation for introducing higher order
patterns was to enable optimizing concatMap under stream
fusion as discussed in Section 4, we have found another
useful application of higher order patterns in rolling back
fusion if it is unsuccessful. In this section, we explain how
GHC currently rolls back failed fusion and how we can now
use higher order patterns instead. In Section 5.1, we show a
concrete example where our higher order pattern approach
is better than GHC’s current approach in Section 5.2, and
we evaluate our approach on the no�b benchmark suite in
Section 5.3.

5.1 Rolling Back Failed Fusion

If we write a program using map (\x -> x + 1) ys and it
is not fully fused away, we might end up with an expression
like this:5

foldr (\x xs -> (x + 1) : xs) [] ys

This program is already reasonably e�cient, but the _-abstraction
does add some overhead, and it is simply larger than the orig-
inal map. We have two options to optimize this further:

1. Inline foldr and simplify further, which yields:

let go [] = []

go (x:xs) = (x + 1) : go xs

in go ys

This removes the overhead of the _-abstraction but it
does make the code larger.

2. Rewrite this back to use map (\x -> x + 1) ys.
This retains the _-abstraction overhead but shrinks
the code size to a minimum.

Today, GHC chooses the second option and rolls back the
failed attempt at fusion to reduce the amount of code it
generates.

However, we encounter a roadblock when we try to write
a rewrite rule to handle this rollback. We can write a naive
rule that matches our example exactly:

foldr (\x xs -> (x + 1) : xs) [] = map (+ 1)

Of course, this only covers the very speci�c case of adding
one to each element. Even the tiniest deviation from this
template, e.g. 1 + x, will make the rule no longer match.
This is the same problem as we encountered in Section 2.4.

Instead, GHC uses rollback markers, which are functions
whose only purpose is to be detected by a rewrite rule in the
future. If that does not happen, they are inlined away. The
de�nition of map in terms of a rollback marker is as follows:

5This could be directly due to de�ning map in terms of foldr or indirectly

due to a rewrite rule that rewrites uses of map to foldr. GHC uses the latter

approach.

map f xs = build (\c n -> foldr (mapFB f c) n xs)

If fusion does not work out, i.e. build is inlined and foldr
remains in the resulting code, an occurrence of map will be
as follows:

foldr (mapFB f (:)) []

This pattern can be detected by a simple rewrite rule that
does not involve local variables:

forall f. foldr (mapFB f (:)) [] = map f

This is how GHC’s rollback mechanism currently works.
With higher order patterns, we can now avoid rollback

markers and write a more direct rule:

forall f. foldr (\x xs -> f x : xs) [] = map f

5.2 Rollback Markers Can Hinder Optimization

An example where rollback markers hinder optimization
is the unlines function, which takes a list of strings and
concatenates it to one long string with newline characters
between each of the original strings. The unlines function
can be implemented as follows:

unlines xs = concat (map (++ "\n") xs)

However, if run without further optimizations, this will tra-
verse each of the input strings twice: once to append the
newline at the end and once to concatenate all the strings.

We would like this implementation of unlines to be opti-
mized to be as e�cient as a handwritten loop, which could
look as follows:

unlines [] = ""

unlines (x:xs) = x ++ '\n' : unlines xs

Unfortunately, GHC does not manage to reach that point. At
some point during the optimization, it will get stuck when
the expression is as follows:

foldr (mapFB (++ "\n") (++)) [] xs

Here, the mapFB rollback marker keeps the two invocations
of (++) separate, which prevents their fusion. From this
point the compiler will inline mapFB, but it is too late for
further fusion to happen.
If we use the higher order pattern rule for rolling back

failed fusion, we will instead reach the following expression:

foldr (\y ys -> (y ++ "\n") ++ ys) [] xs

Which now can be easily fused into the more e�cient form,
which can be optimized further to the e�cient handwritten
loop that we wanted to reach:

foldr (\y ys -> y ++ ('\n' : ys)) [] xs

5.3 Evaluation

We have replaced the rollback markers for map and all vari-
ants of zip (including zipWith up to zipWith7) and con-
�rmed the e�ectiveness of these modi�cations on the un-
lines example by inspecting the resulting Core.
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Figure 9. Percentage di�erence of elapsed time after changing rollback rules to use higher order patterns. Lower is better. The
X-axis is numbered, corresponding names can be found in Appendix A.
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Figure 10. Percentage di�erence of allocations after changing rollback rules to use higher order patterns. Lower is better. The
X-axis is numbered, corresponding names can be found in Appendix A.

Furthermore, we have evaluated our modi�cations on
GHC’s no�b benchmark suite [12]. The elapsed time in-
creased on average by 0.43% (geometric mean), with a mini-
mumof -15.9% (a decrease in elapsed time) for the real/linear
benchmark and a maximum of 28.3% for the benchmark:
spectral/cryptarithm2. The full elapsed time di�erences
are shown in Figure 9. We have labeled the x-axis using num-
bers to save space and refer the reader to Appendix A for
the full names of all the no�b benchmarks.
The allocations also increased on average by 1.73% (geo-

metric mean), with a minimum of -35.1% (a decrease in al-
locations) for the real/linear benchmark and a maximum
of 179% for the shootout/k-nucleotide benchmark. The
full allocation di�erences are shown in Figure 10. Note that
the shootout/k-nucleotide benchmark is o� the charts in
that �gure.
This goes against our expectations because we know of

a concrete case where the allocations and running time de-
creases, namely the unlines example. Further analysis of
these results is necessary to explain why the results turned
out this way.

6 Related Work

Fusion as an optimization in functional programming has a
long history. Wadler [16] posed the problem of the needless
allocation of intermediate data structures in compositional
programs and proposed a custom optimization to eliminate
it. Wadler’s optimization did not become popular because it
was complicated and restricted to certain forms of programs.

Gill et al. [5] showed that a similar optimization, short-cut
fusion, could be implemented using simple local program
transformations, which apply fusion on a best e�ort basis
without restricting the language that can be used to write
programs. Later, Simon Peyton Jones et al. [14] incorporated
a rewrite rule system into GHC, which allows programmers
to de�ne program transformations such as those required for
short-cut fusion themselves. Finally, our work was directly
inspired by the alternative stream-based short-cut fusion
approach of Coutts et al. [1], which showed several potential
advantages over Gill et al.’s fold/build fusion approach.
In particular, it promises better fusion of the zip family of
functions.
More recently, Kiselyov et al. [7] showed an approach to

stream fusion using meta-programming techniques, which
does give guarantees about fusion and supports a much
larger language than Wadler’s original deforestation ap-
proach. However, their approach does not automatically
speed up any programs that work on lists. Instead, program-
mers need to explicitly use their streaming library. Further-
more, meta-programming often has syntactic overhead and
can degrade compiler diagnostics.
More closely related to this paper is the work of Farmer

et al. [3], who have also tackled the problem of concatMap
stream fusion. They used their own external rewrite engine,
including a specialized program transformation to convert
suitable uses of concatMap to concatMapS'.
Miller �rst discovered higher order patterns in the con-

text of uni�cation in logic programming languages [8, 9].
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Nipkow has applied Miller’s higher order patterns to rewrite
systems [10, 11] (and Nipkow came upwith the name “higher
order pattern” to the best of our knowledge). Our higher or-
der patterns were independently developed by us, but they
are essentially an application of the ideas of Miller and Nip-
kow to GHC’s rewrite rule engine.
A seminal work on the topic of higher order matching is

by de Moor and Sittampalam [2]. They develop a matching
algorithm that can �nd higher order matches in general.
They note higher order patterns as a special case, but leave
investigation of howwell their algorithm performs on higher
order patterns as future work. As discussed in Section 3.3, in
general higher order rules can yield multiple valid matches,
which is not practical for rewrite rules in GHC.

7 Conclusion

In this paper, we extended GHC’s rewrite rule matcher with
higher order patterns. Our higher order patterns lift a re-
striction on GHC’s rewrite rule matcher, which prevents it
from matching template variables to expressions with local
variables.

We used higher order patterns in a rewrite rule to opti-
mize concatMap under stream fusion. We developed a ba-
sic stream fusion framework for lists and replaced GHC’s
current fold/build fusion with our stream fusion frame-
work. Our results show that the concatMap rewrite rule,
powered by higher order patterns, signi�cantly improves
the performance of stream fusion and, in some cases, stream
fusion performs better than GHC’s existing fold/build fu-
sion framework. Unfortunately, our framework does not
outperform the current fold/build fusion system overall.
We showed that higher order patterns can replace the

rollbackmarkers for the map and zipWith functions.We have
implemented this in GHC and evaluated it on the standard
no�b benchmark suite. Our results show improvements in
some cases, but this too shows a performance regression
overall, albeit less pronounced.
Nevertheless, we expect both applications of our higher

order rewrite rules to have room for improvement.

7.1 Future Work

While we have shown that our concatMap rewrite rule with
higher order patterns was able to signi�cantly improve the
performance of concatMap in our stream fusion framework,
our implementation of stream fusion was still signi�cantly
slower than the existing fold/build fusion framework. We
believe there are still many opportunities for improving other
aspects of our implementation that are not directly related to
the higher order patterns in rewrite rules. Further research
is needed before we can draw conclusions about the relative
performance of these approaches to fusion.

A form of stream fusion is already being used in practice
in the vector library, however its benchmark suite does not

concatMapS :: (a -> Stream b)

-> Stream a -> Stream b

concatMapS f (Stream next0 s0)

= Stream next (s0, Nothing) where

next (s, Nothing) = case next0 s of

Done -> Done

Skip s' -> Skip (s', Nothing)

Yield x s' -> Skip (s', Just (f x))

next (s, Just (Stream g t)) = case g t of

Done -> Skip (s, Nothing)

Skip t' -> Skip (s, Just (Stream g t'))

Yield x t'

-> Yield x (s, Just (Stream g t'))

concatMapS' :: (a -> s -> Step s b) -> (a -> s)

-> Stream a -> Stream b

concatMapS' next1 f (Stream next0 s0)

= Stream next (s0, Nothing) where

next (s, Nothing) = case next0 s of

Done -> Done

Skip s' -> Skip (s', Nothing)

Yield x s' -> Skip (s', Just (x, (f x)))

next (s, Just (a, t)) = case next1 a t of

Done -> Skip (s, Nothing)

Skip t' -> Skip (s, Just (a, t'))

Yield x t' -> Yield x (s, Just (a, t'))

Figure 11. Implementation of concatMapS and con-

catMapS'.

contain programs that use concatMap, so we have not been
able to meaningfully assess our higher order patterns on
their library. Future research could create such a benchmark,
perhaps adapting programs from no�b, and measure the
performance of our higher order pattern rule for concatMap.
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A Benchmark Names

Table 1 shows the names of all no�b benchmarks.

B concatMapS and concatMapS'

Figure 11 shows concatMapS and concatMap'.
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Table 1. Names of all no�b benchmarks at the time of writing.

1 imaginary/bernouilli 25 real/e�/S 49 real/symalg 73 spectral/dom-lt 97 spectral/knights

2 imaginary/digits-of-e1 26 real/e�/VS 50 real/veritas 74 spectral/eliza 98 spectral/lambda

3 imaginary/digits-of-e2 27 real/e�/VSD 51 shootout/binary-trees 75 spectral/exact-reals 99 spectral/last-piece

4 imaginary/exp3_8 28 real/e�/VSM 52 shootout/fannkuch-redux 76 spectral/expert 100 spectral/lcss

5 imaginary/gen_regexps 29 real/fem 53 shootout/fasta 77 spectral/�t2 101 spectral/life

6 imaginary/integrate 30 real/�uid 54 shootout/k-nucleotide 78 spectral/�bheaps 102 spectral/mandel

7 imaginary/kahan 31 real/fulsom 55 shootout/n-body 79 spectral/�sh 103 spectral/mandel2

8 imaginary/para�ns 32 real/gamteb 56 shootout/pidigits 80 spectral/gcd 104 spectral/mate

9 imaginary/primes 33 real/gg 57 shootout/reverse-compl. 81 spectral/hartel/comp_lab_zift 105 spectral/minimax

10 imaginary/queens 34 real/grep 58 shootout/spectral-norm 82 spectral/hartel/event 106 spectral/multiplier

11 imaginary/r�b 35 real/hidden 59 spectral/ansi 83 spectral/hartel/�t 107 spectral/para

12 imaginary/tak 36 real/hpg 60 spectral/atom 84 spectral/hartel/gen�t 108 spectral/power

13 imaginary/wheel-sieve1 37 real/infer 61 spectral/awards 85 spectral/hartel/ida 109 spectral/pretty

14 imaginary/wheel-sieve2 38 real/lift 62 spectral/banner 86 spectral/hartel/listcompr 110 spectral/primetest

15 imaginary/x2n1 39 real/linear 63 spectral/boyer 87 spectral/hartel/listcopy 111 spectral/puzzle

16 real/anna 40 real/maillist 64 spectral/boyer2 88 spectral/hartel/nucleic2 112 spectral/rewrite

17 real/ben-raytrace 41 real/mkhprog 65 spectral/calendar 89 spectral/hartel/parstof 113 spectral/scc

18 real/bspt 42 real/parser 66 spectral/cichelli 90 spectral/hartel/sched 114 spectral/simple

19 real/cacheprof 43 real/pic 67 spectral/circsim 91 spectral/hartel/solid 115 spectral/sorting

20 real/compress 44 real/prolog 68 spectral/clausify 92 spectral/hartel/transform 116 spectral/sphere

21 real/compress2 45 real/reptile 69 spectral/constraints 93 spectral/hartel/typecheck 117 spectral/treejoin

22 real/e�/CS 46 real/rsa 70 spectral/cryptarithm1 94 spectral/hartel/wang

23 real/e�/CSD 47 real/scs 71 spectral/cryptarithm2 95 spectral/hartel/wave4main

24 real/e�/FS 48 real/smallpt 72 spectral/cse 96 spectral/integer
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