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Preface 

This paper is the second bachelor thesis of a series and continues from work by J. Holstvoogd 
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includes a replacement for the by corona cancelled field development plan (FDP) of the AES 
curriculum. The FDP-replacement focuses on the practical application of foams within reservoir 
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planning.  

Those who are particularly interested in solutions for network conductivity are referred to chapter 
4. In addition to this, an overview of the applications of foams within reservoir engineering is 
included in chapter 8. 

I would also like to thank my supervisor Prof. W. Rossen for giving me his full attention to discuss 
my work on a weekly basis and my family for the constant support in the form of espressos. 

George Hadjisotiriou 
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Summary 

Foams are used in reservoir engineering for enhanced oil recovery, CO2 sequestration and 
environmental remediation of aquifers and soils. The definition of a foam is a discontinuous 
dispersion of gas within a liquid that is separated by liquid lamellae. One of the main mechanisms 
for foam generation at steady state is considered to be Roof snap-off. Some simulations use 
mechanistic models for Roof snap-off based on observation from 2D microfluidic devices, such as 
micromodels. These micromodels are a silicon or glass wafer wherein an image of a pore space is 
etched on a one-to-one scale. It is first saturated with liquid and then simultaneously injected with 
liquid (water) and gas (nitrogen) at steady-state. The surface cross-section of the etched pore 
space is rectangular and has sharp corners. Under these conditions, the liquid lines the walls of 
the pore space and accumulates as flow conducting channels in the corners of the pore throat.  

The main problem with these experiments is in their 2D nature. Two-phase flow within a 2D 
medium requires that the fluids paths cross and compete for pore occupancy. This virtually insures 
fluctuating pore occupancy and therefore puts into question the applicability of 2D mechanistic 
models for steady state foam generation in 3D media. 

Two-phase flow in a micromodel is analyzed with a lattice percolation model in order to determine 
under what conditions steady two-phase flow in a micromodel can be achieved. The lattice is 
initially saturated with water, has a coordination number of four and a wrap-around boundary. 
The gas network is established with bond percolation and liquid is allowed to flow across the 
sample with the help of liquid bridges. These liquid bridges enable the liquid to cross gas-occupied 
pore throats without snap-off. The calculated attribute for the gas and liquid networks is 
equivalent resistance, ΔP/Q. For this a new unit for hydraulic resistivity was used and is equal to 
the fluid viscosity divided by the pore radius to the third power, ℋ = μ/R3. The gas and liquid 
networks are considered as networks of pore-scale hydraulic resistances and rules from linear 
circuits of electrical resistances are applied directly. Solutions for the equivalent resistivity of the 
gas network are calculated with the node elimination method and Kirchhoff’s solution for a 
random network of resistances. The liquid network’s conductivity is calculated as the sum of path 
resistances in parallel and is an upper bound. 

The gas and liquid conductivity of nine pre-existing 16x16 networks from Holstvoogd(2020) are 
reevaluated with the new methods and, in addition, twelve new samples of size 32x32 (four times 
larger) are evaluated. 

Functionally, the model’s behavior is as follows: gas conductivity is inversely proportional 
and liquid conductivity is proportional to the occupation thresholds. It is found that the gas 
conductivity is a function of tortuosity and number of parallel flow loops. Conductivity decreases 
with increased tortuosity and increases with number of parallel flow paths.  

The ratio of liquid and gas conductivity for the twelve 32x32 models is calculated. When 
adjusted for gas viscosities of supercritical CO2 and Nitrogen gas it is found that it is in the order 
of 10-3 to 10-4. Therefore, it has been determined that it is practically impossible to achieve steady 
two-phase flow without fluctuating pore occupancy.  
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1. Introduction 

Foams are commonly used in enhanced oil recovery (EOR) to improve poor sweep efficiency of 

the reservoir from early gas breakthrough. During breakthrough gas establishes a preferential flow 

path to the production well, thus largely bypassing portions of the reservoir and decreasing the 

efficiency of oil recovery. To prevent this, foams are introduced into the reservoir for gas mobility 

control and plugging of highly permeable thief zones. Reducing the mobility of the gas delays 

breakthrough and increases dispersion thus improving contact with the reservoir volume and 

increasing oil recovery. During plugging, thief zones which are potential zones for preferential flow 

paths are plugged in order to divert flow into other zones of the reservoir. Other applications of 

foams include CO2 sequestration and environmental remediation of aquifers and soils.  

A recent point of study is the viability of experimental observations of Roof snap-off in 2D 

mediums to reflect on foam generation within 3D media. In particular, the possibility of steady 

state two-phase flow within a 2D medium is questioned. Many mechanistic models and 

simulations for foam generation in 3D are based on conclusions made in 2D-micromodel 

experiments. Hence, it is of great importance that flow in 2D is thoroughly understood. It is known 

from percolation theory that in an isotropic media only one phase can establish a flowing network 

at any time. This virtually guarantees fluctuating pore occupancy and calls into question Roof snap-

off’s importance as a foam generation mechanism at steady-state. Yet, the possibility of steady 

two-phase flow within a 2D micromodel is entertained by the possibility of liquid bridging the gas 

along the top and bottom of the throat to eventually establish its own liquid network (Rossen, 

2003; Kovscek et al., 2007; Rossen, 2008).  

The purpose of this paper is to estimate the gas and liquid conductivity of a micromodel at steady 

flow conditions with liquid bridging. To this extent, bond percolation is used to produce random 

gas networks within a representative homogeneous 2D lattice. Liquid flow paths are then 

established within the residual water-saturated pores. Estimations for the gas and liquid 

conductivity are first made on the pore-scale before being applied to the networks themselves.  

The paper is structured as follows:  

• Chapter two introduces the percolation model. 

• Chapter three makes an estimation for the resistivity of gas within a rectangular pore throat.  

• Chapter four describes the solution methods for the equivalent conductivity of the gas 

network.  

• Chapters five makes an estimate for the liquid resistivities on a pore-scale.  

• Chapter six discusses the conductivity of the liquid network.  

• Chapter seven contains the results of the gas and liquid conductivities of the models.  

• Chapter eight discusses the application of foams within EOR, carbon capture and storage (CCS) 

and environmental remediation from an engineering perspective. 
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1.1. Mechanisms for foam generation 

Rossen (1996) defines foams as ‘a dispersion of gas in 

liquid such that the liquid phase is interconnected and 

at least some gas flow paths are blocked by lamellae’. 

Modeling foam is done as a multiphase problem with 

liquid (wetting phase) lining the walls of the pore 

volume and gas (non-wetting phase) in the middle. 

There are three main mechanisms for foam 

generation illustrated in figure 1.1. These are leave-

behind, snap-off and lamella division (Rossen, 1996; 

Almajid & Kovscek, 2019). 

During leave-behind, lamellae are created as 

gas invades the medium and displaces liquid from two 

pores next to each other. During the establishment of 

the gas path lamellae are created in between the rock 

grains parallel to the direction of gas flow.  

Snap-off for foam generation occurs in pore 

throats when water accumulates to the extent that the 

water crosses the throat and gas flow is blocked 

(Rossen, 1996; Kovscek et al. 2007). To start, gas 

enters the pore throat when the capillary pressure 

rises to the capillary entry pressure, Pce, at which point 

gas flows through the throat. After this snap-off occurs 

when the capillary pressure decreases to the snap-off capillary pressure. Subsequently, the newly 

formed liquid lens or lamella is moved by invading gas out of the throat and into the connecting 

pore body. For foam generation to occur this must happen repeatedly allowing for the formation 

of a discontinuous gas phase within the medium. The snap-off pressure of the throat depends on 

the pore geometry and is described as a fraction of the capillary entry pressure, Pce. For a square 

throat the capillary entry pressure is half the capillary entry pressure. Rossen (2003) gives and 

overview of the snap-off pressures for different pore geometries.  

Lamellae division occurs during lamellae mobilization when a lamella enters a pore body 

with several pore throats. In this case the lamella will either break or split into new lamellae that 

continue into each pore throat of the body.  

 

1.2. Micromodel observations of Roof snap-off 

Experimentally, Roof snap-off has been observed in constricted tube experiments and microfluidic 

devices. Roof snap-off refers to snap-off that depends on the ratio of the bore body to pore throat 

diameters (Rossen, 2008). In a microfluidic experiment an image of a pore space is etched into a 

 
Figure 1.1: Illustration of the three different 

foam generation mechanisms from (Almajid & 

Kovscek, 2019) 
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glass or silicon wafer to create a synthetic porous medium through which fluid is injected, this is 

the micromodel. Kovscek et al. (2007) conducted a micro visual analysis of flow in a silicon 

micromodel with simultaneous injection of water and N2(gas) and found that snap-off occurs 

repeatedly at germination sites. From their observations they state that snap-off is the “dominant 

mechanism” for foam generation within homogenous media.  

 

What follows is details of their device. The micromodels pore space has a rectangular geometry 

with sharp unrounded corners and a depth of 25μm (see figure 1.2(a)). Additionally, the pore 

throats width ranges from 12μm to 25μm. The model is initially saturated with water before the 

simultaneous injection of liquid and gas at steady flow rates through distribution channels (see 

figure 1.2(b)). Experiments are conducted at a fractional gas flow rate (gas rate/total injection rate) 

of above 0,9 (Kovscek et al., 2007). 

 

  
Figure 1.2(a): SEM image of the etched pore network. 
From the picture the square/rectangular pore geometry 
can be seen. (Kovscek et al., 2007) 

Figure 1.2(b): schematic representation of the 
micromodel. (Kovscek et al., 2007) 

     

An issue with this experiment is whether two-dimensional flow experiments like this one can 

actually reflect on steady state foam generation within a homogenous porous medium in 3D. The 

problem is that maintaining steady state in a 2D network is exceedingly difficult because the gas 

and liquid flow paths cross and compete for pore occupancy whereas this problem is not present 

in 3D pore networks. Additionally, conducting foam generation experiments in 2D also suppresses 

lamella division as the coordination number of the pores is smaller (Rossen, 2008). From these 

facts, Rossen (2008) states that “micromodels are problematic for the study of snap-off” since 

they virtually guarantee snap-off by themselves. Kovscek et al. (2007) on the other hand state that 

micromodels can represent flow in sandstone reservoir media because flow in 2D is significantly 

more restricting than in 3D. In addition to this they also states that “Pore occupancy does not 

fluctuate during steady state flow” in the micromodel.  
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The contents of this paper reflect on the possibility of two-phase flow in 2D medium. It continues 

from the work of Holstvoogd (2020) who made a 2D percolation model for flow through a 2D 

medium. The produced networks had a size of 16x16 pores and a rough estimate was made for 

their gas and liquid conductivity. Here, new networks are made with a size of 32x32 in addition to 

those of Holstvoogd (2020) and their exact gas conductivity is calculated by applying solutions for 

resistors in a random network. A new unit for resistivity is defined in eq. 1.1 as the fluid viscosity 

(μ) divided by the radius of the throat (R) to the third power. The liquid conductivity of the lattice 

is estimated by considering flow paths as a series of pore-scale resistances and adding up the 

paths.  

ℋ =
μ

R3
 (1.1) 
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2. A two-dimensional percolation model 

One way to achieve the required steady state conditions in a two-dimensional flow regime is to 

establish liquid bridges across gas-occupied pore throats that are both stable (no snap-off) and 

conduct enough gas through the throat. A lattice percolation model is utilized here to represent a 

two dimensional medium (micromodel). Disorder is introduced within the 2D lattice by bond 

percolation and the final result is a lattice with pores and throats filled either by water or gas.  

The two-dimensional lattice consists of bonds that represent pore throats and the 

intersection of the bonds are the pore bodies. Connectivity is determined by the coordination 

number of the pore bodies and in this case is equal to 4, signifying that each pore has four 

connecting pore throats. Additionally, the lattice is initially saturated with water such that pores 

unoccupied during invasion are saturated with water and are automatically part of the liquid 

network. 

In bond percolation the gas connectivity of the network is established by randomly 

assigning a probability to every bond. Bonds with a value above the percolation threshold enable 

flow and are assigned a conductivity value of 1 while bonds below the percolation threshold block 

flow and have a conductivity of 0. It is assumed that bonds with a value of 1 conduct gas while 

bonds with a conductivity of 0 simply remain filled with water (Hunt & Sahimi, 2017). Hunt & 

Sahimi (2017) give an overview of the percolation thresholds for some common 2D and 3D 

networks. The percolation threshold of an infinite lattice is the largest fraction of conducting bonds 

required to establish a sample spanning cluster (SSC). The SSC is a cluster of gas-occupied pores 

and throats that connect from one edge to the other and thus enable network wide flow. In a finite 

network the fraction of conducting bonds required to establish the SSC is referred to as the 

occupation threshold instead of the percolation threshold. The occupation thresholds value is 

random but centers around 0,5. The larger the networks the more the occupation threshold 

approaches the percolation threshold.    

An example of the lattice used in this paper is given in figure 2.1 below. From the SSC the 

gas backbone is identified as the portion of the gas network that contributes to flow across the 

lattice/medium. The lattice has a wrap-around boundary where gas flowing out of one boundary 

continues to flow on the other side of the lattice. Furthermore, there are portions of the lattice 

that do not contribute to flow across the lattice. These are the dangling ends and the isolated 

clusters. Dangling ends lead to dead ends and do not contribute to lattice connectivity. Isolated 

clusters are clusters that do not connect to the edge of the lattice and therefore cannot possibly 

contain any gas. These are deleted from the lattice upon completion of the SSC, and thus remain 

occupied by water.  
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Figure 2.1: an example of a lattice and its constitutive components. After bond  

percolation the gas network is established. Gas flows through the gas  

backbone from one edge to the other in the vertical and horizontal directions.   

 

It is important to note that the pillars are represented in figure 2.1 as rectangular but they are 

actuality assumed to be cylindrical. The cross-section of the throat however is rectangular.    



7 
 

3. Gas conductivity through one pore throat 

The gas conductivity is calculated by estimating the conductivity of the individual bonds as pore 

throats with a rectangular cross section as illustrated in figure 3.1 and then applying solutions for 

a random network of resistors to the gas backbone. Throats are assumed to have a fixed width 

(W) of two times the pillar (grains) radius (R). The resistivity, ΔP/Q, to flow in the pore throat is 

calculated in the newly defined units of ℋ = μ/R3 so that the solution can be computed for a 

specific pore throat size, radius R[𝑚], and phase viscosity μ [Pa ∙ s]. 

The individual throats or bonds of the gas backbone are 

rectangular and occupied by liquid and gas at steady state. The 

system is water-wet and the liquid remains in the corners around 

the solid pillars as channels for liquid flow, while the non-wetting 

phase, gas, occupies the middle of the throat. The liquid-gas 

interface has a circular arc in the cross-section of the throat.   

The gas conductivity is determined for a variety of pore throats 

with a fixed width, W, of 2R and different heights, b. No readily 

available flow formula exists for the gas cross-section described 

in figure 3.1. Therefore, the surface through which the gas flows 

is divided in two such that the formula for gas flow through a 

tube can be applied to flow through surface G2 and the formula 

for flow in a slit can be used for flow through surface G1.  

Qgas = QG1 + QG2 = Qslit + Qtube

=
2

3

B3W

μg

dP

L
+

πR4

8μg

dP

L
; (3.1) 

This calculation assumes that the shear stress at the boundary of G1 and G2 is zero. Furthermore, 

the liquid-gas interface is a no-slip boundary (v = 0) because the viscosity of gas relative to water 

is nearly zero. Hence, the formula for fluid flow in a tube can be used for G2.  

The formula for Qgas is converted to resistivity, Rbond, and written as a function of the pore throats 

aspect ratio b/a. Both the length (L) and the width (W = a) are assumed to be equal to the 

diameter of the pillar, 2R. A maximum bond resistance of approximately 5ℋ is found for a square 

pore and for b/a → ∞ the bond resistance approaches 0 (see figure 3.2). Additionally, it is found 

that the resistance, R∗, for a pore throat with aspect ratio b/a = 2,2 is equal to 1. 

Rbond =
dP

Qgas
(
b

a
) = 2 [

π

8
+

4

3
(
b

a
− 1)]

−1

ℋ for 
b

a
 ϵ [1,∞]; (3.2) 

 
Figure 3.1: Rectangular pore throat 

with water in the corners and gas 

in the middle. 
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Figure 3.2: Resistance for gas flow in the pore throat is inversely proportional to 
the height of the pore throat. 

The mobility of nitrogen gas (μH2O/μN2
= 50) within the pore is computed for different aspect 

ratios and pore sizes in figure 3.3. The gas-mobility, 𝜆 [𝑚3/(𝑃𝑎 ∙ 𝑠)], is multiplied by the 

pressure gradient, ∇𝑃[𝑃𝑎], to calculate the flow rate, 𝑄[𝑚3/𝑠] through a pore throat.  

λ =
R3

2μ
 [
π

8
+

4

3
(
b

a
− 1)] ; (3.3) 

 

Figure 3.3: Mobility of nitrogen gas in the pore throat 
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4. Solutions for gas network conductivity 

Solutions for the equivalent resistance of a network of resistors are used to solve for network wide 

gas conductivity. Bonds in the network are considered as pore throats or electrical resistors and 

voltage differences represent pressure differences in a fluid network.  

It is possible to solve for the equivalent conductance of the network by utilizing the 

transformations for conductances in parallel (eq. 4.1), series (eq. 4.1) and the delta-T 

transformation (eq. 4.3-5) (Frank & Lobb, 1988). By continuously applying these transformations 

to the bonds within the network, the network will eventually be reduced to a single bond with the 

equivalent resistance of the network. For bonds in parallel the conductance is equal to the sum of 

the bonds.  

Parallel: 𝐺𝑒𝑞 = ∑𝐺𝑖; (4.1) 

For bonds in series it is equal to the sum of the inverses of the individual conductance’s.    

Series: 
1

𝐺𝑒𝑞
= ∑

1

𝐺𝑖
; (4.2) 

The delta-T transformation is performed by converting the previously unsolvable T-junction to the 

more manageable delta circuit where parallel and series rules can be applied correctly (see figure 

4.1) (Frank & Lobb, 1988). 

Delta-T transformation for 𝑇 → Δ:  

𝐺𝐴 =
𝐺2𝐺3

𝐺1 + 𝐺2 + 𝐺3
; (4.3) 

𝐺𝐵 =
𝐺1𝐺3

𝐺1 + 𝐺2 + 𝐺3
; (4.4) 

𝐺𝐶 =
𝐺1𝐺2

𝐺1 + 𝐺2 + 𝐺3
; (4.5) 

From figure x it can be seen that 𝐺𝐶  and 𝐺𝐵 are now in series and their equivalent 

resistance is in parallel with 𝐺𝐴. 

 

Figure 4.1: Schematic representation of the delta-T transformation. 
Adapted from Frank & Lobb, 1988. 
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Although a solution can be obtained manually it is preferable to let a program do the work. To that 

extent two methods are implemented in MATLAB. These two solutions are Kirchhoff’s solution 

and the node elimination solution. When utilized, both correctly return the same answer. 

However, there are some differences in usability that do make a difference.  

Kirchhoff’s solution is computationally much more efficient and thus quicker but node 

elimination allows for non-uniform bond descriptions where Kirchhoff’s solution does not. A 

program that can accept non-uniform bond descriptions is better suited for modelling of 

heterogenous media. 

The solution is computed from the graph of the gas backbone. Therefore, it must first be 

separated from the SSC in Excel and then imported into MATLAB. Doing this is necessary for 

Kirchhoff’s solution but is not strictly necessary when using the node elimination method. 

However, its is recommended because it will dramatically increase the computational efficiency 

of the node elimination method.  

After separating the gas backbone, a highly adapted version of Holstvoogds (2020) script for bond 

percolation is implemented as a function to convert the array of values into an edge list. This script 

can be found in appendix B3. The edge list is a vector containing the end nodes of each edge and 

is used in MATLAB’s graph function to create a network graph (see figure 4.2). The wrap-around 

boundary is satisfied by adding an edge that connects both sides.  

  
Figure 4.2(a): Network 4 (p=0,51), Excel array of the 
entire network. The gas backbone is colored in green 
and separated from the rest.    

Figure 4.2(b): The gas backbone is plotted as a network 
graph in MATLAB. The top and bottom boundary are 
connected (black nodes) to satisfy the wrap-around 
boundary. 
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Both solution methods can measure the equivalent resistivity between any two nodes of the 

network. However, in order to calculate the equivalent conductivity across a sample with several 

external nodes, terminal nodes (X and Y) are added to the boundaries to which the external nodes 

connect. External nodes are defined here as nodes on the lattice boundaries where fluid crosses 

the boundary. In the example of figure 4.2(b) they are marked in black. The equivalent resistance 

is then calculated between these two terminal nodes, X and Y (Fogelholm, 1980). Doing this does 

however does assume that these external boundaries are at the same pressure. In a physical sense 

the terminal nodes are the distribution channels of the micromodel presented by Kovscek et al. 

(2008). This interpretation may be counterintuitive considering that a channel physically 

resembles a pore throat but with a width of 500μm its dimensions are 20 to 40 times that of the 

throats within the network.  

 
Figure 4.3: Percolation sample with terminal nodes X and Y 
(Fogelholm, 1980) 
 

One of the assumptions for the lattice model is that the radii of the pore throats are uniform and 

therefore the bond conductivity is also uniform. The network conductivity, Ceq
b/a

, for a specific pore 

throat with Cbond
b/a

 is calculated from the solution for network conductivity with Cbond
∗ = 1ℋ−1 in 

equation 4.6. 

Ceq
b/a

= Ceq
∗ × Cbond

b/a
= Ceq

∗ ×
1

Rbond
b/a

; (4.6) 

The same can be done for the equivalent resistance of the network with specific bond resistance 

𝑅𝑏𝑜𝑛𝑑
𝑏/𝑎

 in equation 4.7. 

Req
b/a

= Req
∗ × Rbond

b/a
; (4.7) 
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Furthermore, it is worth pointing out that the bond resistance is equal to the equivalent resistance 

of a fully occupied lattice. When the network is fully occupied all the pore throats of the networks 

are in series and in parallel with each other and therefore 𝑅𝑒𝑞 = 𝑅𝑏𝑜𝑛𝑑. For proof: 

32 pore throats in series per flow path: Rseries = ∑Rbond = 32Rbond 

And 32 flow paths in parallel: Req =
1

32×
1

32Rbond

= Rbond  

4.1. Kirchhoff’s solution 
To implement Kirchhoff’s solution the graph is made up of uniform bonds of 1ℋ randomly 

distributed in a square grid with nodes numbered by i = 1,2, … , N. The two-point resistance (eq. 

4.8) is the resistance between the two connected nodes k and l, Rkl. Nodes k and l are defined as 

terminal nodes of the network and are connected to an outside current source I of 1A. The current 

is injected in node k and retrieved from the ground l so eq.4.8 reduces to Vk. 

Rkl =
Vk − Vl

I
= Vk;  (4.8) 

Kirchhoff’s Current Law states that the net current at node Ii is equal to sum of currents flowing 

into node i. In equation 4.9 the current of a bond is represented as the product of bond 

conductance xij and the voltage difference (Vi − Vj). 

Ii = ∑xij(Vi − Vj); (4.9) 

Kirchhoff’s equations are written in matrix form (eq. 4.10) where V⃑⃑  is the voltage vector with the 

unknown voltages and I  is the current vector containing the external currents (Knudsen & Fazekas, 

2006). Here current is inserted into the terminal nodes because they are nodes that are connected 

to only one resistor instead of two (Rommes & Schilders, 2010). 

I = ℒG V⃑⃑ ;  (4.10) 

The conductance matrix ℒG contains the degree (number of connected edges) of each node on 

the diagonal and the incidence of each node as the row and column elements (Wu, 1982).  

ℒG =

{
 

 
−∑xij

N

j=1

, for i = j

−xij, for i ≠ j

 

In the case that the bond conductance is defined as 1ℋ−1 then the conductance matrix is the 

same as the Laplacian of the network graph and is found by subtracting the adjacency matrix from 

the degree matrix. Additionally, the conductance matrix can also be calculated from the incidence 

matrix of the graph: ℒ𝐺 = 𝐼𝐺𝐼𝐺
𝑇. Important properties of the conductance matrix are that it is 

sparse, symmetric (Redner, 2012) and that the sum of each row/column is zero (Wu, 1982).   
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The solution for the two-point resistance (eq. 4.11) is found by computing the determinant of the 

conductance matrix with rows and columns k and l removed for |ℒ𝐺\(𝑘, 𝑙|𝑘, 𝑙)| and row and 

column l removed for |ℒ𝐺\(𝑙|𝑙)| (Wu, 1982; Serra, 2005).  

Rkl =
1

xkl
=

|ℒG(k, l|k, l)|

|ℒG(l|l)|
 (4.11) 

This solution follows from Kirchhoff’s solution (eq. 4.12) for the effective conductance between 

nodes k and l (eq. XX) and the principal-minor matrix-tree theorem (Serra, 2005). In Kirchhoff’s 

solution for conductance between nodes k and l is equal to the number of spanning trees 𝑇(𝐺) of 

graph G divided by the number of spanning trees of subgraph G\k, l.  

xkl =
T(G)

T(G\k, l)
 (4.12) 

The principal-minors matrix-tree theorem states that number of spanning trees can be determined 

with these relations: |ℒ𝐺\(𝑘, 𝑙|𝑘, 𝑙)| = 𝑇(𝐺\𝑘, 𝑙) and |ℒ𝐺\(𝑙|𝑙)| = 𝑇(𝐺). 

4.2. Node elimination  
In node elimination the star-mesh transform is implemented to systematically transform the 

network into an equivalent one without changing its conductivity (Derrida et al., 1984; Fogelholm, 

1980). To do this the generalized form of the previously mentioned delta-T transformation, the 

star-mesh transformation, is utilized. With this formula nodes and their connecting edges are 

systematically removed but the conductivity remains the same since adjacent nodes are 

connected either with a new edge or one with a higher value. When node X0 and connecting edges 

x1, x2, … , xn are eliminated new edges are added between adjacent nodes k and l according to 

equation 4.13 below (Fogelholm, 1980; Knudsen & Fazekas, 2006). 

Δxkl =
xk0xl0

∑ xi0i=1
;  (4.13)  

 
Figure 4.4: State of the network before (a) and after (b) removing node 0 

(source: Knudsen & Fazekas, 2006) 
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The process for node removal is iterative and the number of nodes will grow exponentially. 

Consequently, it is computationally very intensive and especially so for networks below the 

percolation threshold (Fogelholm, 1980). Therefore, it is worth considering the order in which the 

nodes are removed. In this script nodes are eliminated according to their degree. The most 

common degree is found and nodes with that degree are then eliminated from the network so 

that with every iteration the number of connected nodes is reduced by as much as possible. 

Typically, for this lattice configuration this means that it starts with nodes of degree two and three. 

An alternative to this approach is to first calculate the consequence of removing each node and 

then eliminate the node that reduces the amount of bonds by the most.  
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5. Liquid conductivity on a pore-scale  

For liquid to flow at a steady-state through a two-

dimensional lattice it is required to cross or travel along 

the gas-occupied throat. The liquid that accumulates in 

the pores corner as channels allow the liquid to flow 

along the side of the pillar or eventually across the roof 

or floor of the throat. The pore throat is considered at 

steady state and at the verge of liquid snap-off so that 

the amount of liquid present within is generously 

estimated. Holstvoogd (2020) illustrates in figure xxx 

three movements of liquid that pose a significant 

resistance for the liquid flow paths. The first, R1, is a 

90-degree turn along the pillar. The second, R2, also 

travels along the pillar but continues straight and the 

last one the liquid bridge, Rb, crosses the pore throat.  

5.1. Resistance to liquid flow in the corners 
To estimate the resistance of the liquid movements 

Ransohoff and Radke’s (1988) solution for “laminar 

flow of a wetting liquid along the corners of a 

predominantly gas-occupied noncircular pore” is used. 

Ransohoff and Radke (1988) assume that the liquid flow 

in the pore throat is entirely contained within the 

corners as illustrated by figure 3.1 and 5.2. They 

assume that the liquid lining film on the walls of grains 

is of molecular thickness and inconducive to flow. 

Furthermore, they tabulate a dimensionless resistance 

factor β as a function of the half angle (α), degree of 

roundness (R0), wettability (ψ) and surface viscosity 

(η). The flow rate for four channels of liquid (eq. 5.1) is 

purposely estimated generously. Beta is minimized for 

a square pore (α = π/4) by assuming that the surface 

viscosity, wettability and degree of roundness (sharp 

corner) are all zero. Therefore, it is determined that the 

appropriate β for a square pore with sharp corners is 93,93.  

The liquid flow rate for the channels is given by equation 5.1 (Rossen, 2003) where R, the pillar 

radius, is the same as the primary radius of curvature a from figure 5.2. 

Figure 5.1(a): R1 liquid 

(blue) flows between 

and along pillars 

adjacent to gas in a 

90-degree turn. 

(Holstvoogd, 2020) 

 

Figure 5.1(b): R3 liquid 

(blue) flows between 

and along pillars 

adjacent to gas in a 

straight path. 

(Holstvoogd, 2020) 

 

 
Figure 5.1(c): Liquid channels of double 

channel morphology in red (Cox, 2019) 

 
Figure 5.2: Flow within the corner of the pore 
throat. Degree of roundness; 𝑅_𝑜 = (𝑎𝑤𝑜 −
𝑎𝑤)/(𝑎𝑤𝑜 − 𝑎) and a= radius of 
curvature (Ransohoff and Radke, 1988) 
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Q =
R4(4 − π)

μβ

ΔP

Δz
; (5.1) 

From equation 5.1 the flow resistance for four channels is determined with equation 5.2. as equal 

to 219ℋ. 

R =
dP

Q
=

2β

4 − π

μ

R3
= 219ℋ; (5.2) 

All the channels within the throat are in parallel with each other so for a single channel the 

resistance is calculated as 875ℋ in equation 5.3. 

Rs = 4 × 219ℋ = 875ℋ; (5.3) 

The resistance for the liquid movements (eq. 5.4 and eq 5.5) is proportional to the distance and 

inversely proportional to the number of channels. For R1 (see Fig. 5.1(a)) the length along the 

pillar is estimated as (π/4) R and there are 2 channels. The resistance R1 is equal to 171ℋ. 

R1 = 875ℋ ×
1

2
×

π
4 R

2R
= 171ℋ; (5.4) 

For R2 (Fig. 5.1(b)) the length along the pillar is estimated as (2π/3)R and there are 4 channels 

for flow. The resistance R2 is equal to 229ℋ. 

R2 = 875ℋ ×
1

4
×

2π
3 R

2R
= 229ℋ; (5.5) 

5.2. Resistance to liquid flow in the liquid bridge 
Under some circumstances, liquid flows across the gas-occupied pore along the roof and floor of 

as a liquid bridge (see Fig. 5.1(c)). The thickness of the liquid is estimated to be about 0.15R and 

the shear stress in the gas at the liquid-gas boundary is zero. In the formula for flow in a slit the 

shear stress in the middle, at x = 0, is zero. Therefore, the flow in the two liquid bridges (eq. 5.6) 

can be estimated with the slit formula with a height of 0.30R or B = (0.30/2) R. 

Q =
2

3

ΔPB3W

μwL
; (5.6) 

From equation 5.6 the resistance of the liquid bridge is computed as 444ℋ (see eq. 5.7). 

Rb(B = 0.15R) =
3μ

2(0.15)3R3
≈ 444ℋ; (5.7) 
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6. Liquid conductivity on a network scale  

The conductivity of the liquid network is estimated by manually identifying the different flow paths 

and adding up their respective conductivities.  

Elements within the paths are in series and are added up accordingly (eq. 5.8). It is important 

to note that the conductivity of the liquid occupied pore throats is not included within the path 

conductivity because their resistance is so low relative to that of R1, R2 and Rb. The resistance of 

a liquid occupied pore is calculated with the formula for a slit (eq. 5.9) and has a maximum value 

of R = 1,5ℋ with B = R (a square throat) and W = L = 2R. 

Rpath = n1R1 + n2R2 + nbRb;  (5.8) 

Q =
2

3

ΔPB3W

μL
→ R = 1,5ℋ; (5.9) 

The conductivity of the liquid networks is taken to be the sum of the path’s conductivities (eq. 

5.10). Liquid flow paths are added to the total conductivity until their value becomes so low that 

they contribute very little to the network’s conductivity or until no unique paths can be identified. 

By adding up the conductivities of the liquid paths it is assumed the solution for liquid network 

conductivity is an upper bound. 

Cnetwork = ∑Cpath;  (5.10) 
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7. Results 

The gas conductivity is determined with a pore geometry of aspect ratio b/a=2.2 (𝐶∗) and 

corresponding conductivity of 1ℋ unless mentioned otherwise. Two data sets are available. The 

first consists of nine 12x12 networks (appendix B1) from Holstvoogd (2020) and the second 

consists of twelve 32x32 networks (appendix B2). The gas conductivity is calculated for both data 

sets but the liquid conductivity is only estimated for the 32x32 data set so the ratio of the liquid 

and gas conductivities is only available for the 32x32 dataset. 

7.1. Gas network conductivity 
Vertical versus horizontal network conductivity 

Several flow paths exist in each direction therefore necessitating the need for the addition of two 

fictitious terminal nodes between which the equivalent conductivity is determined. External nodes 

of the lattice are either connected to the opposing side of the sample or to the terminal nodes 

depending on the direction in which the conductivity is determined.  

External nodes on the boundaries parallel to the flow direction are connected to the opposite side 

in accordance to the wrap-around condition and external nodes on the boundaries perpendicular 

to the flow direction are connected to the terminal nodes. The conductivity of the gas backbone 

is determined for both the vertical and horizontal directions whenever possible for nine 16x16, 

networks from Holstvoogd (2020) the results of which can be seen in figure 7.1. 

  

Figure 7.1: Gas conductivity per direction versus the 
occupation threshold; cases from appendix B1. 16x16 
Networks 

Figure 7.2: Gas conductivity versus the number of flow 
paths; cases from appendix B1. 16x16 Networks and 
appendix B2. 32x32 Networks   

The data presented in figure 7.1 indicates that the difference in vertical and horizontal conductivity 

can either be substantial or minimal. This is a consequence of the randomness of the percolation 

lattice.  
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Number of flow paths 

The gas conductivity and corresponding number of flow paths is determined for both datasets. 

The data is presented in figure 7.2 and it can be seen that the conductivity is independent of the 

number of flow paths per direction or in other words the number of external nodes connected per 

terminal. This is because at random there may be a bottleneck where all flow paths must pass 

which can drastically affect conductivity. Examples in figure 7.3(a) and 7.3(b) illustrate how a 

lattice with many flow paths will have a significantly lowered conductivity due to a constriction 

through which all fluid must flow.  

  
Figure 7.3(a): 16x16 network with occupation threshold 
p=0,50 and 6 flow paths in the horizontal direction 
constricted by a bottleneck (orange square) has a 
conductivity of CWE = 0.07436ℋ−1.  

Figure 7.3(b): 16x16 network with occupation threshold 
p=0,48 and only 1 flow path in the horizontal direction 
has a conductivity of CWE = 0.07942ℋ−1 but no 
significant bottleneck 

 

Gas backbone versus minor gas path 

The effect of excluding all or a number of parallel flow paths from the backbone is analyzed by 

considering the conductivity of the minor gas path and the “primary” gas backbone as determined 

by Holstvoogd (2020). The minor gas path is the shortest path between the terminal nodes and 

does not contain any parallel bonds whatsoever. An example can be found in figure 4.2(b) 

highlighted in neon green. The primary gas backbone is identified by Holstvoogd (2020) and 

includes a minor portion of the parallel bonds. The difference per flow direction is analyzed for 

nine 16x16, networks. 
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Figure 7.4(a): Conductivity of the gas backbone (exact), 

minor gas path and primary gas backbone in the 

horizontal direction; cases from appendix B1. 16x16 

Networks   

Figure 7.4(b): Conductivity of gas backbone (exact), 

minor gas path and primary gas backbone in the vertical 

direction; cases from appendix B1. 16x16 Networks  

The data in figures 7.4(a) and 7.4(b) shows that the network conductivity is universally 

underestimated when using the minor gas path and the primary gas backbone as a quick 

estimator. This is because parallel flow paths contribute positively to the conductivity of a network 

and are left out in these off-the-cuff estimations. The difference with the gas backbone (see Fig. 

7.5) is smaller at higher occupation thresholds and therefore the minor gas path and primary 

backbone estimations become more accurate for higher occupation thresholds. 

Comparing the difference in accuracy of the minor gas path and primary gas backbone is not 

necessarily apt since the primary gas backbone is defined arbitrarily. Determining the minor gas 

path is easy and most suited for networks with a high occupation threshold. 

  

Figure 7.5(a): Difference between the gas backbone 

and minor gas path as a percentage; cases from 

appendix B1 and B2.   

Figure 7.5(b): Difference between the gas backbone 

and primary gas backbone; cases from appendix B1. 

16x16 Networks. 
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Tortuosity and parallel flow 

The conductivity of the gas backbone is computed for twelve 32x32, networks with occupation 

thresholds ranging from 0,45 to 0,54. The results are plotted versus the pore specific bond 

resistances in figure 7.6(c) and particular attention is given to the network conductivity with pore 

aspect ratio of b/a = 2,2 in figures 7.6(a) and (b).    

  

Figure 7.6(a): Network resistivity of twelve 32x32, 

networks with a pore aspect ratio of b/a=2,2 and bond 

resistance of 1H; cases from appendix B2 

Figure 7.6(b): Network conductivity of twelve 32x32, 

networks with a pore aspect ratio of b/a=2,2 and bond 

conductivity of 1H-1; cases from appendix B2 

 

 
Figure 7.6(c): Network resistivity of twelve 32x32 networks for every 

given bond resistance; cases from appendix B2 
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Data from the 32x32 networks reaffirms the findings from the 16x16 networks that the network 

conductivity decreases with increased occupation threshold from a decrease in gas occupancy. 

Network conductivity is found to be a function of the amount of parallel flow and tortuosity.  

As mentioned previously, parallel flow contributes positively to the conductivity of the 

network. As the occupation threshold increases fewer conducting bonds are activated and fewer 

parallel paths are established ensuing in a marked decrease in conductivity. The contribution of 

parallel paths is illustrated by the difference in conductivity of the minor gas path and gas 

backbone in figure 7.5(a). Additionally, figures 7.7(a) through (d) also illustrate how reducing the 

threshold for a given network increases the amount of connections and parallel paths and 

therefore also increases the conductivity of the lattice.  

 

  
Figure 7.7(a): Network 6 (p=0,50; b/a=2), 

CWE = 0.0186ℋ−1  

Figure 7.7(b): Network 6 (p=0,52; b/a=2), the amount of 
flow paths is reduced to three and three major 
connections in the middle, second- and third quadrant 
are eliminated. Conductivity decreases to CWE =
 0,0138ℋ−1 
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Figure 7.7(c): Network 2 (p=0,50; b/a=2)  

CNS =  0,0414ℋ−1 

Figure 7.7(d): Network 2 (p=0.51; b/a=2), the amount of 

flow paths remains the same but a connecting path in 

the third quadrant is eliminated. Conductivity reduces to 

CNS =  0,0296ℋ−1 

 Secondly, the tortuosity of the flow paths is proportional to the network resistivity. The 

longer the length of the flow path the more tortuous it is and the higher the resistance will be. The 

length between the terminal nodes is determined (i.e. the minor gas path) to calculate each path’s 

tortuosity. From figure 7.8(a) below it can be seen that network resistivity is proportional to the 

tortuosity. Plotting the occupation threshold versus the tortuosity in figure 7.8(b) shows that the 

tortuosity of a network is random and independent of the occupation threshold of the networks.  

  
Figure 7.8(a): Network resistance is proportional to the 
tortuosity of the minor gas path; cases from appendix B1 
and B2. 

Figure 7.8(b): Tortuosity of the minor gas path is 
independent of the occupation threshold of the network; 
cases from appendix B1 and B2.  
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The exact extent to which tortuosity and parallel flow contribute to the total conductivity of the 

network is indeterminable due to the randomness of lattice percolation. For higher occupation 

thresholds the tortuosity has more influence and parallel flow has less. 

7.2. Liquid network conductivity 
The liquid conductivity is determined for each network in the same direction as the gas 

conductivity for the twelve 32x32, networks. Results in figure 7.9 indicate that the liquid 

conductivity is proportional to the occupation threshold.  

 

 

 

 

 

 

 

 

 

Figure 7.9: liquid conductivity of the 12 networks; cases from appendix B2. 

As the occupation threshold increases so does the liquid conductivity because gas clusters are 

allowed to span less of the lattice and more space is inevitably created for liquid flow. This is similar 

to how the liquid saturation increases/decreases if the gas saturation decreases/increases. The 

conductivity of every path is calculated as the sum of the products of resistivities and their number 

of occurrences, n (see Eq. 7.1). Paths are defined so that number of liquid bridges is minimized.  

Rpath = (n1 × 172ℋ) + (n2 × 229ℋ) + (nb × 444ℋ); (7.1) 

Figure 7.10 breaks down the distribution of the number 𝑛’s and their path conductivity. The most 

common element by far is the 90o turn (R1) so even though it has a low value it contributes the 

most to the resistance of liquid path. 
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Figure 7.10(a): Conductivity of the liquid flow paths 
versus the number of liquid bridges, Rb, elements; cases 
from appendix B2. 

Figure 7.10(b): Conductivity of the liquid flow paths 
versus the number of straight-ahead, R2, liquid 
movements; cases from appendix B2. 
 

 
Figure 7.10(c): conductivity of the liquid flow paths versus the number 

of 90-degree turns, R2, for liquid; cases from appendix B2. 
 

7.3. Ratio of liquid and gas conductivity 
The ratio of the liquid and gas conductivity for a pore throat of aspect ratio 2.2 is calculated for 

twelve 32x32 networks. The liquid conductivity is found to be about 1/100 that of the gas 

conductivity (see Fig. 7.11) and when adjusted for a viscosity difference between gas and water of 

about 10 times then the liquid conductivity is 1/1,000 to 1/10,000 that of the gas conductivity (see 

Fig. 7.12).  
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Figure 7.11: Ratio of the liquid and gas conductivity for twelve 32x32 
networks; cases from appendix B2. 

Two types of gasses are applied to the results in figure 7.11. The first is nitrogen at room 
temperature and atmospheric pressure (μ = 0.019cp) and the second is supercritical CO2 (μ =
0,068cp). Nitrogen is commonly used in microfluidic experiments on foam generation and is also 
used in Kovscek et al.’s (2007) experiment. CO2 at reservoir conditions is supercritical and occurs 
in enhanced oil recovery and CO2 storage. Nitrogen’s viscosity is about 1/55 that of water and the 
liquid conductivity for all but two values is 1/10,000 of the gas conductivity. The liquid conductivity 
for supercritical CO2 is 1/1,000 that of the gas conductivity.  

 
Figure 7.12: Ratio of the liquid and gas conductivity for 12, 32 by 32, 
networks adjusted for the viscosity of water and gas; cases from appendix 
B2.  
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8. Applications of foams in applied earth sciences  

Foam generation mechanisms and foams are used in a number of ways in reservoir engineering. 

During enhanced oil recovery foams are utilized to improve the sweep of the reservoir. Other 

applications include CO2 storage and environmental remediation where foams are utilized to 

increase capillary trapping and plug high-permeability zones to prevent the spread of 

contaminant.  

8.1. Enhanced oil recovery (EOR) 
In enhanced oil recovery (EOR) gasses such as steam or CO2 are injected into the reservoir to 

increase recovery in mature reservoirs. A problem that can occur is poor sweep efficiency and high 

gas-oil ratios resulting from the formation of preferential flow paths to the production well. This 

is referred to as gas breakthrough and results in the gas only contacting a small portion of the 

reservoir (Rossen, 1996). Breakthrough occurs from viscous fingering, gravitational segregation 

and/or thief zones (high permeability zones) (Rognmo, 2018). Foams increase sweep efficiency in 

two ways. First, by reducing the gas mobility and second by plugging a portion of the reservoir so 

that fluids are diverted to another, unswept, part of the reservoir.  

Liquid lamellae stabilize when surfactant is introduced into the reservoir, leading to greater 

foam generation and a reduction of gas mobility (Almajid & Kovscek, 2019; Rossen, 1996). Gas 

mobility, λi, is the product of permeability (k) and relative permeability (ki) divided by fluid 

viscosity, μi (eq. 8.1). When gas mobility is reduced the gas flow rate, ugas (eq. 8.2), is also reduced 

as well.  

λi =
ki(Si)k

μi
;  (8.1) 

ui = −λi∇p; (8.2) 

The effect of foam on the gas mobility is due to both an increase in the effective viscosity and a 

decrease in relative permeability which is a function of the fluid saturation, Si (Almajid & Kovscek, 

2019). 

During plugging, foam is applied to unproductive reservoir layers at the injection or 

production well in order to redirect flow patterns within the reservoir. At the injection well liquid 

flow is diverted to target layers while at the production well unwanted reservoir fluids are 

prevented from entering the production stream (Rossen, 1996). 

8.2. Subsurface CO2 storage 
Carbon capture and storage (CCS) is a promising method to reduce anthropogenic CO2 emissions 

by capturing it and storing it safely and permanently in subsurface reservoirs. These reservoirs can 

be saline aquifers, mature- or depleted hydrocarbon reservoirs. The three main trapping 

mechanisms are structural trapping, dissolution trapping and capillary (aka residual) trapping. 
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Capillary trapping is significant in water saturated media and is similar to the flow problem studied 

here because gas penetrates the medium, establishes a network and experiences repeated snap-

off. In a sense a discontinuous gas phase is generated like a foam. Therefore, attention is 

concentrated on the capillary trapping mechanism. 

During CO2 sequestration in strongly water wet reservoirs the gas is trapped within the pores of 

the network as bubbles (also known as ganglia) surrounded by liquid. This process of capillary 

trapping is considered as one of the most important trapping mechanisms for CO2 trapping in 

water-saturated reservoirs (Krevor et al., 2015; Raza et al., 2018). Capillary trapping occurs when 

gas penetrates the pores and snap-off occurs at the rear pore throat thus rendering the gas 

immobile and ensuring safe and permanent storage of the CO2. Direct pore-scale observations by 

Krevor et al. (2015) with 3D CT imaging found that trapped saturations of gas will be at least 10% 

in a water saturated medium or in other words, 30% of the pore volume. Furthermore, Iglauer et 

al. (2011) introduce an empirical relation to quantify the capillary trapping capacity. To calculate 

the capillary trapping capacity per unit of rock the product of porosity and residual gas saturation 

is taken. Their gathering of data suggests a maximum trapping capacity of 11% for a porosity of 

0,22. After CO2 injection, gas migrates through the reservoir as a mobilized foam where lamellae 

migrate through the pore space as a sort of a “bubble train”. At the front of the plume piston-like 

advance invades water-saturated pores while at the trailing edge of the plume capillary pressure 

reduces and snap-off occurs thus trapping the gas as the water is imbibed back into the pore space 

(Krevor et al., 2015; Rossen, 1996). 

8.3. Combining CCS and EOR with foams  
Carbon capture and storage has the potential to help decarbonize carbon intensive processes such 

as steel, cement and energy production. However, the low price of CO2 and the cost of capture 

and transport pose a significant financial barrier to CCS. One way to tackle this issue is to create a 

market price for CO2 but it is also possible to lower the cost of CCS by combining it with enhanced 

oil recovery (Clark & Santiso, 2018; Føyen et al., 2020; Roefs et al., 2019). Roefs et al. (2019) 

determined with an environmental economic trade-off analysis that combining EOR with CO2 

storage followed by just storage would increase overall costs of a project but decrease global 

warming potential while still remaining profitable. An important consideration for an eventual 

project is how to approach co-optimization. Co-optimization in a project development context can 

have the goal of either optimizing the net present value, production, storage or both production 

and storage (Wang et al., 2018). Here, co-optimization is considered in the sense of production-

storage optimization within the bounds of the economic reality of things.  

 

Jessen et al. (2005) found that breakthrough time and cycling are both important design 

considerations for storage and production. Although CO2 storage increases substantially after 

breakthrough, the costs associated with cycling the gas back into the reservoir make it an 
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economically unattractive solution for co-optimization (Jessen et al., 2005; Wang et al., 2018). A 

number of engineering decisions can be made that address CO2 storage optimization and also 

delay breakthrough. These are: the implementation of partial completions of the wells and the use 

of water alternating gas (WAG) injection. Breakthrough typically occurs through high permeability 

thief zones that form preferential flow paths for fluids. With a partial completion of the injection 

well direct injection into these zones is avoided and with WAG injection water is meant to occupy 

their space instead of the gas. A lower completion of the injection well increases gas dispersion 

which in turn increases storage. Another advantage of a lower completion of the production well 

is that it increases the time before breakthrough. In addition to this the lower completion of the 

production well also reduces the gas-oil ratio and therefore reduces cycling costs (Jessen et al., 

2005).   

 

Rezk et al. (2019) found from sample flooding experiments of sandstone that high injection rates 

favor oil production but decrease storage efficiency. Conjointly, the experiments determined that 

storage efficiency and oil production are drastically aided by vertical flooding due to gravity-

assisted gas drainage as opposed to horizontal flooding. These results are reflected in Ahmadi et 

al.’s (2016) reservoir simulation which also take gravitational segregation into account. They 

simulate three different CO2 injection schemes where CO2 is injected in the oil-column, in an 

underlying aquifer and in both together. All three scenarios are carried out with a fixed injection 

rate defined as the critical injection rate, which is the injection rate where the recovery factor of 

the reservoir no longer increases with an increase in injection. The results indicate that an equal 

combination of aquifer and oil-column injection has the best oil recovery factor, while aquifer 

injection has the best sequestration ratio. Theoretically, this increase in oil production is due to 

the sweeping of the capillary transition zone from gravitational segregation (Jessen et al., 2005) 

but the simulation does not take the economic drawback of gas breakthrough into account and 

thus the purported figures for sequestration ratios are a poor indicator for a real project. 

 

Of specific interest is the applicability of foams to aid CO2 storage in hydrocarbon reservoirs either 

as a tool to prevent breakthrough or by directly improving storage capacity of the reservoir.  

Indeed, there exists potential for foams to aid CO2 storage within the reservoir. The ability 

of foams to plug thief zones is known from EOR and the reduction of gas mobility aids gas 

dispersion within the reservoir volume. An added benefit of decreased mobility is that dispersion 

decreases the risk of damaging the reservoir seal from repressurization of depleted hydrocarbon 

reservoirs or saline aquifers. 

The use of surfactant to generate stronger foams increases the capacity for capillary 

trapping within water wet reservoirs. Foyen et al. (2019) conducted CO2 flooding experiments on 

sandstone cores with different surfactants and found that CO2 capacity increased by 27% with the 

application of foam. The introduction of surfactant helps increase lamellae stability and enables 
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the gas to enter smaller pore throats. Then, upon arrival within the smaller pore space gas gets 

trapped from capillary trapping.   

The economic reality of CO2 injection in EOR is that increasing the injection rate of CO2 indefinitely 

to maximize oil recovery and storage is not possible. The costs of supply, transport and cycling 

would simply decrease the profitability of the project. The ideal injection scheme for the project 

would therefore prioritize delaying breakthrough while still optimizing storage and production. To 

this extent a lower completion of the well within the oil-column or in an eventual aquifer would 

be beneficial for delaying breakthrough while also increasing storage.  

 

8.4. Modeling of heterogeneous media 
The process of capillary trapping and foam generation is considered on a microscopic, pore-scale 

level with a model tailored specifically to consider steady state flow in homogeneous media. This 

model is made from a periodic lattice (constant coordination number) and a uniform bond 

conductivity. However, porous media are inherently heterogenous so some adaptation of the 

model is required in order to take into account a heterogeneous three dimensional medium. 

Generally, to model flow in heterogenous media the distribution of pore-scale attributes needs to 

be observed for application to a network model. 

To start, the lattice is extended to the third dimension by using a 3D cubic lattice with a 

coordination number of 6. This assumes that the coordination number is uniform so alternatively 

a statistical distribution of the pore coordination numbers can be applied. However, doing this 

leads to the problem that the percolation threshold for such an irregular network is unknown 

(Hunt & Sahimi, 2017).  

The conductance values of each bond are proportional to their radius so by determining 

the size distribution of pore throats it is possible to determine the pore throat conductivities for 

each throat. To do this, first, the normalized pore size distribution is applied to the network as the 

probability (p) and thereafter the percolation threshold (pc) is subtracted from it to find the bond 

probability of each throat (Selyakov & Kadet, 1997). Furthermore, the bond probability is then 

utilized as an edge attribute to calculate the equivalent conductivity of the network graph. The 

required statistical description of the medium can be determined in a number of ways. The 

simplest of which is conventional image analysis and the more advanced is micron scale CT imaging 

(Hunt et al., 2014).  

Blunt (p. 32-56, 2017) and Hunt & Sahimi (2017) give an overview for the different 

techniques available for pore-scale representations of porous media as transport networks. In 

these techniques the pore network is constructed either from an underlying statistical description 

or directly from an image of the pore space. Methods that stand out are: Voronoi polygonization, 

medial axis skeletonization and voxelized approximation. Almajid et al. (2019) utilize a statistical 

pore network and the invasion percolation algorithm with memory to model the dependence of 
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the flowing foam fraction on the pressure gradient. In their model pore throat radii are assigned 

according to a Rayleigh distribution.  

To model foam generation with Roof snap-off it is worth considering the ratio of the pore 

throat size and pore size. The ratio directly influences the likelihood of Roof snap-off where a high 

ratio makes snap-off more likely. Commonly, the size of the pores in a network are scaled from 

the size of the pore throats (Hunt, 2014) but doing this would not allow determination of snap-off 

sites. Almajid et al. (2019) model snap-off randomly but if pore size data is available it may be used 

to determine where snap-off is likely to occur.  

 

8.5. Environmental remediation 

Foam technology is known within the oil and gas industry but can also be used for aquifer (Hirasaki 

et al., 1997) and soil remediation (Atteia et al., 2013; Portois et al., 2018; Wang & Mulligan, 2004). 

Contaminants such as dense non-aqueous phase liquids (DNAPL) are difficult to remove with 

traditional techniques because of the inherent chemical properties of DNAPL’s and poor sweep 

efficiency of traditional techniques. DNAPL’s have a low solubility, high density, high interfacial 

tension and adsorption to soil matrix (Atteia et al., 2013; Hirasaki et al., 1997; Mamun et al., 2002a; 

Portois et al., 2018; Wang & Mulligan, 2004). Heterogeneous permeability distribution of the 

reservoir and gravity segregation of injected fluids lead to poor sweep efficiency of the reservoir 

(Marmun et al., 2002a). These problems are known in EOR and foams are used in essentially the 

same way for aquifer and soil remediation purposes. Foam in environmental remediation is used 

as a blocking agent and as a tool for flushing.  

Foam is used as a blocking agent to confine a source zone of contaminant by drastically 

reducing the permeability of the surrounding area. In EOR-jargon this is called plugging of the thief 

zone. Laboratory and field experiments by Portois et al. (2018) found that foam reduces the 

relative water permeability krw by a factor of 100-1000. The determining factor for krw is the quality 

of the foam, high quality foams reduce the water saturation by the most and consequently the 

relative permeability of water is reduced accordingly (Portois,2018). 

During flushing, foam is selectively applied to high permeability layers to direct flow of 

surfactant to the higher permeability layers for flushing. In situ generation of foam within these 

regions improves the displacement process of DNAPL contaminant by reducing the gas mobility 

(Hirasaki et al., 1997; Mamun et al., 2002a). Hirasaki et al. (1997) have successfully used mobility 

control for aquifer remediation in the USA. In the field, foam was used to plug an overlying sand 

layer (thief zone) to divert surfactant solution to the contaminated zone.   

 

Another benefit of foams is that It can reduce the costs of pump-and-treat methods because less 

surfactant will be needed. Surfactants are also used in pump-and-treat operations to decrease 

interfacial tension and increase the solubility of NAPL’s (Atteia et al., 2013; Wang & Mulligan, 

2004). Additional considerations for design planning are what the foam quality, stability and 

injection pressure will be.  
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Foam quality, can be measured as the ratio of gas volume and foam volume. The greater 

the ratio the better the quality of the foam. Foams of greater quality reduce the relative 

permeability of water by the most.  

Although foams are thermodynamically unstable, they can be made to last a long time, in 

the order of months. However eventually foams will degrade due to coalescence so at this point 

they either need to be maintained or replaced (Portois et al., 2018; Wang & Mulligan, 2004).  

Soil remediation occurs at a shallow depth. Therefore, the allowed amount of injection 

pressure is limited relative to gas and oil operations. CO2 is more suitable than nitrogen gas as it 

allows lower injection pressures (Portois et al., 2018).  
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9. Conclusion and recommendations  

9.1. Conclusion 
Foams are an important tool for reservoir applications which can help oil recovery, improve carbon 

storage and expediate aquifer/soil remediation. However, observations from 2D experiments are 

used in mechanistic modeling of steady foam generation in 3D media. In this report the 

conductivity of gas and liquid in a 2D micromodel is estimated from a representative homogenous 

2D percolation model. This is done in order to determine the viability of steady state two-phase 

flow within a micromodel. Conductivity was estimated for a pore network with a rectangular 

geometry where liquid flows in the pore throat’s corners while gas occupies the center. A new unit 

for resistivity ΔP/Q is defined as ℋ[μ/R3] and conductivity is its inverse. To enable two-phase 

flow within the 2D model liquid is allowed to cross gas-occupied pore throats as liquid bridges.  

The behavior of the model is analyzed. The conductivity of the gas backbone decreases with 

increased occupation threshold. The occupation thresholds of the models are random and 

considered at the point where gas flows in the vertical and horizontal directions. The gas 

conductivity decreases while the liquid conductivity increases with an increase in occupation 

threshold. Conductivity of the gas backbone is a function of the amount of parallel flow paths and 

path tortuosity.  

From observations of the networks and by comparison of the network conductivity to the 

conductivity of the minor gas path it is determined that networks with low occupation thresholds 

have a higher gas conductivity due to an increased number of parallel flow loops. To the contrary, 

networks with high occupation threshold have fewer parallel flow paths so the liquid flow is 

facilitated better and the liquid conductivity is higher.  

The tortuosity for a given network at the occupation threshold is measured from the length 

of the minor gas path and it is found that the tortuosity of the models is independent of the 

occupation threshold. The influence that the tortuosity has on the gas conductivity increases with 

greater occupation threshold because there is less parallel flow. As a result, the estimation of gas 

conductivity with the minor gas path is better for networks with high occupation thresholds.   

  

The magnitude of the gas conductivity and liquid conductivity are reported and compared as a 

ratio. The values reported are for pore geometry of aspect ratio 2,2 and a fixed width of twice the 

pillar radius. For this pore geometry the resistivity for gas in a throat is equal to 1ℋ. The liquid 

resistivities on the pore-scale are defined generously (maximum allowed amount of liquid flow) 

for three characteristic movements: the 90-degree turn R1, straight-ahead R2 and the liquid 

bridge Rb. The resistivities for these movements are independent of the pore geometry and are 

equal to 172ℋ, 229ℋ and 444ℋ respectively.  

The results are first presented for a system where the fluid properties are undefined. The 

magnitude of the gas conductivity for both the 32x32 networks (appendix B2) and the 16x16 

networks (appendix B1) is in of the order 10-2. The liquid conductivity is only determined for the 

32x32 networks and is considerably smaller with an order of magnitude between 10-3 and 10-4. 
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Following from these results the ratio of the liquid and gas conductivity is of the order 

10-2 but when adjusting for gas viscosity of nitrogen (μ = 0.019cp) and supercritical CO2 (μ =

0,068cp) the ratio for liquid and gas conductivity is of the order 10-4 and 10-3. 

The results indicate that the liquid flow rate needed to achieve steady state (no fluctuation in pore 

occupancy) two-phase flow within a 2D micromodel is infinitesimal when compared to the gas 

flow rate. The allowed volume of liquid is so small that it is practically impossible to achieve steady 

two-phase flow without snap-off. Kovscek et al. (2008) conduct their experiment at steady state 

with a fractional gas flow (gas rate / total injection rate) above 0,9. This implies that the liquid flow 

rate for their results is about 1/10 the gas flow rate. However, results from this model indicate 

that such flow rates ensure snap-off. 

9.1. Recommendations 
The estimation of the resistances for both gas and liquid on the pore-scale assume that axial 

changes in pressure are negligible by taking dP/dz as a constant and dz equal to two times the 

radius of the pillar. Doing this, results in an estimation for flow resistivity in a throat shaped as a 

rectangular box. However, the surface geometry of the pore throat is not rectangular since the 

pillars are cylindrical.    

An alternative to the proposed pore-scale estimations is to use flow simulation software 

that estimates the shape of fluid surfaces at different capillary pressure conditions. Work like this 

is currently being carried out by S.J. Cox of Aberystwyth University with the simulation software, 

surface evolver. Besides this the next bachelor thesis, by Ewald Obens, concerning this topic will 

also estimate the pore-scale fluid rates by using the program Comsol. His estimations of fluid rate 

and pressure difference can be used to define new pore-scale resistivities, ΔP/Q, for gas and 

liquid.  

The new gas resistivity value can be multiplied times the equivalent resistivity of a network 

with bond resistivity 1H to estimate the new equivalent resistivity of the network. Similarly, the 

new liquid resistivities can be used in the same way as R1, R2 and Rb to calculate the new liquid 

network resistivity with relative ease. 

Concerning the way that gas conductivity was calculated, two things could have been done 

differently.  

First, in this paper the equivalent conductivity of the sample is calculated across the model 

by adding terminal nodes to the boundaries. However, the written scripts can calculate the 

equivalent conductivity between any two nodes and as long as the wrap-around boundaries are 

satisfied the equivalent network will be representative of the sample.   

Second, the process of network generation and gas conductivity calculation could have 

been unified within MATLAB. Algorithms exist that can identify the gas backbone and separate it 

from the rest of the network (Hunt & Sahimi, 2017). Although, separating the gas backbone is not 

strictly necessary it is recommended since otherwise the node elimination script will be 

exceedingly slow and inefficient. 
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B. Appendix 

B1. 16x16 Networks  
In the left column are the networks created by Holstvoogd (2020) and in the right column is the 

network graph of their gas backbone. The gas backbone is highlighted in dark green in the left 

and in green on the right is the minor gas path of the network.  

Network 1 (p=0,48) 

 

 
Cv = 0,0794ℋ−1 

Ch = 0,0703ℋ−1 
Network 2 (p=0,485) 

 
 
 
 

 
Cv = 0,0319ℋ−1 

Ch = 0,1004ℋ−1 
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Network 3 (p=0,49) 

 
 

 
Cv = 0,0706H−1 
Ch = 0,0810H−1 

Network 4 (p=0,495) 

 

 
  
 
 
 
 
 
 
 
 

 
Cv = 0,0555ℋ−1 
Ch = 0,1633ℋ−1 
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Network 5 (p=0,50) 

 
 

 
Cv = 0,0632ℋ−1 
Ch = 0,0744ℋ−1 

Network 6 (p=0,505) 

 

 
 
 
 
 
 
 
 
 
 
 

 
C = 0,0671ℋ−1 
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Network 7 (p=0,51) 

  
C = 0,0609ℋ−1 

Network 8 (p=0,515) 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
C = 0,0495ℋ−1 
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Network 9 (p=0,52) 

  
C = 0,0335ℋ−1 

 

B2. 32x32 Networks  
The liquid paths and their corresponding conductivity data are presented per network in the right 

column. The gas conductivity graphs are given in the left column and their minor gas paths are 

highlighted in neon green.  

Network 1(p=0,50) 

 
𝐶 =  0.0303ℋ−1 

 

 
  R1 R2 Rb C 
Res 172 229 444  
DD' 26 2 1 0,00018608 
II' 25 2 3 0,00016420 
FF' 32 4 2 0,00013684 
EE' 43 4 1 0,00011421 
CC' 38 6 1 0,00011970 
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GG' 37 5 3 0,00011311 
BB' 45 4 2 0,00010478 
AA' 46 4 2 0,00010292 
HH' 43 5 6 0,00008925 

 

Network 2 (p=0,51) 

 
𝐶 = 0.0341𝑠𝑐𝑟𝑖𝑝𝑡𝐻−1 

 
  R1 R2 Rb C 
Res 172 229 444  
AA' 42 5 2      0,00000358  
BB' 33 5 1      0,00010803  
CC' 27 9 3      0,00013765  
DD' 30 8 2      0,00012442  

 

Network 3 (p=0,51) 

 
𝐶 = 0.0375ℋ−1 
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  R1 R2 Rb C 
Res 172 229 444  
KK' 13 0 3    0,000280269  
II' 11 2 2    0,000308833  
GG' 16 2 2    0,000244021  
AA' 19 2 1    0,000239808  
JJ' 16 3 2    0,000231107  
CC' 23 7 1    0,000166583  
EE' 24 8 2    0,000146028  
II' 33 1 7    0,000110951  
DD' 35 5 2    0,000124177  
FF' 34 5 3    0,000120120  
BB' 35 5 3    0,000117689  
HH' 33 6 3    0,000119303  

 

Network 4 (p=0,51) 

 
𝐶 = 0.0372ℋ−1 

 
Res 172 229 444  
DD' 25 1 2 0,00018460 
CC' 28 4 4 0,00013319 
BB' 41 2 2 0,00011908 
AA' 40 1 4 0,00011255 
FF' 31 5 3 0,00012806 
EE' 29 6 3 0,00012997 
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GG' 30 8 1 0,00013448 
HH' 28 8 4 0,00011871 
II' 50 5 2 0,00009405 
JJ' 58 1 4 0,00008347 

 

Network 5 (p=0,52) 

 
𝐶 = 0.0307ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444  
DD' 26 2 1 0,00018608 
II' 25 2 3 0,00016420 
FF' 32 4 2 0,00013684 
EE' 43 4 1 0,00011421 
CC' 38 6 1 0,00011970 
GG' 37 5 3 0,00011311 
BB' 45 4 2 0,00010478 
AA' 46 4 2 0,00010292 
HH' 43 5 6 0,00008925 

 

Network 6 (p=0,52) 

 
𝐶 = 0.0159ℋ−1 
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 R1 R2 Rb C 
Res 172 229 444  
CC' 15 1 2 0,00027049 
EE' 19 1 1 0,00025374 
FF' 36 2 1 0,00014096 
AA' 30 3 3 0,00013930 
DD' 42 2 2 0,00011669 
HH' 39 4 1 0,00012395 
BB' 35 6 3 0,00011460 
GG' 48 4 4 0,00009134 

 

Network 7 (p=0,51) 

 
𝐶 = 0.0263ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444   
AA' 32 5 1 0,00014098 
BB' 29 2 2 0,00015788 
CC' 32 6 2 0,00012877 
DD' 44 4 2 0,00010670 
EE' 24 2 3 0,00016898 
FF' 28 4 2 0,00015106 
GG' 46 5 6 0,00008532 
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Network 8 (p=0,48) 

 
𝐶 = 0.0864ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444   
DD' 32 5 4 0,00011869 
EE' 42 6 3 0,00010070 
GG' 40 5 5 0,00009761 
HH' 38 5 6 0,00009667 
CC' 43 6 4 0,00009482 
AA' 49 5 4 0,00008811 
FF' 53 3 5 0,00008317 
BB' 42 8 5 0,00008868 

 

Network 9 (p=0,47) 

 
𝐶 = 0.0325ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444   
BB' 35 4 2 0,00012781 
AA' 32 6 2 0,00012877 
EE' 44 3 3 0,00010431 
DD' 36 7 2 0,00011517 
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CC' 37 7 2 0,00011293 
FF' 41 11 1 0,00009985 
GG' 36 8 7 0,00008983 
HH' 53 7 5 0,00007729 

 

Network 10 (p=0,45) 

 
𝐶 = 0.0562ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444   
CC' 38 5 3 0,00011095 
DD' 56 1 2 0,00009303 
FF' 35 7 4 0,00010639 
BB' 55 3 2 0,00009062 
AA' 47 5 3 0,00009469 
GG' 45 5 4 0,00009380 
HH' 50 5 3 0,00009028 
II' 51 5 4 0,00008552 
EE' 43 9 3 0,00009269 

 

Network 11 (p=0,46) 

 
𝐶 = 0.0661ℋ−1 
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  R1 R2 Rb C 
Res 172 229 444   
FF' 43 2 3 0,00010886 
GG' 40 3 4 0,00010703 
DD' 51 6 4 0,00008388 
BB' 54 8 2 0,00008328 
EE' 49 11 2 0,00008450 
CC' 56 7 6 0,00007195 
AA' 55 11 2 0,00007772 

 

Network 12 (p=0,54) 

 
𝐶 = 0.0244ℋ−1 

 
  R1 R2 Rb C 
Res 172 229 444   
AA' 7 1 1 0,00053277 
BB' 7 4 1 0,00039002 
GG' 18 1 2 0,00023736 
FF' 12 3 2 0,00027480 
EE' 21 2 2 0,00020169 
CC' 15 4 2 0,00022810 
HH' 22 4 2 0,00017895 
DD' 28 4 3 0,00014156 
II' 29 2 5 0,00013045 
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B3. MATLAB: Network graphs  
This function creates two lists containing the begin (s) and end (t) nodes of the graph from the 
array in Excel. The script is a highly adapted version of Holstvoogd’s (2020) script for percolation 
statistics.  

Function: [S,T] = Jorijn(A,L) 

A = Excel array of the gas backbone 

L = Size, in this case L is 16 or 32.  

After computing vectors s and t, they are used in the graph function of MATLAB to produce graph 
G.  

Function: G = graph(S(1:2:end),T(1:2:end),ones(size(T(1:2:end)))); 

function [S T]=jorijn(A,L) 

PS=L*(L/4);%total number of nodes 

 

No=length(nonzeros(A(A>0))); %number of pore throats in the the lattice with bond 

probility greater than 0 

Lno=No*2; 

 

S1=zeros(1,Lno); %inner nodes top to bottom 

T1=zeros(1,Lno); 

 

S2=zeros(1,Lno); %inner nodes left to right 

T2=zeros(1,Lno); 

 

S3=zeros(1,Lno); %top boundary 

T3=zeros(1,Lno); 

 

S4=zeros(1,Lno); %left boundary 

T4=zeros(1,Lno); 

 

%something to do with the pore bodies 

for i=2:2:L 

    for j=2:2:L 

        A(i,j)=(j/2)+((i-2)/2)*(L/2); 

    end 

end 

 

%inner nodes top-bot 

for k=(3:2:L-1) 

    for l=(2:2:L) 

        m1=(k+l-4)+((k-3)/2)*L; 

        m2=(k+l-3)+((k-3)/2)*L; 

        if A(k,l)>0 

            S1(1,m1)=A(k-1,l); 

            S1(1,m2)=A(k+1,l); 

            T1(1,m1)=A(k+1,l); 
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            T1(1,m2)=A(k-1,l); 

        end 

    end 

end 

S1( :, ~any(S1,1) ) = []; 

T1( :, ~any(T1,1) ) = []; 

%inner nodes left-right 

for m=(2:2:L) 

    for n=(3:2:L-1) 

        m3=(m+n-4)+((m-2)/2)*L; 

        m4=(m+n-3)+((m-2)/2)*L; 

        if A(m,n)>0 

            S2(1,m3)=A(m,n-1); 

            S2(1,m4)=A(m,n+1); 

            T2(1,m3)=A(m,n+1); 

            T2(1,m4)=A(m,n-1); 

        end 

    end 

end 

S2( :, ~any(S2,1) ) = []; 

T2( :, ~any(T2,1) ) = []; 

%Top boundary conditions 

for q=(2:2:L) 

    m5=q-1; 

    m6=q; 

    if A(1,q)>0 

        S3(1,m5)=A(2,q); 

        S3(1,m6)=A(L,q); 

        T3(1,m5)=A(L,q); 

        T3(1,m6)=A(2,q); 

    end 

end 

S3( :, ~any(S3,1) ) = []; 

T3( :, ~any(T3,1) ) = []; %Left boundary conditions 

for r=(2:2:L) 

    m7=r-1; 

    m8=r; 

    if A(r,1)>0 

        S4(1,m7)=A(r,2); 

        S4(1,m8)=A(r,L); 

        T4(1,m7)=A(r,L); 

        T4(1,m8)=A(r,2); 

    end 

end 

S4( :, ~any(S4,1) ) = []; 

T4( :, ~any(T4,1) ) = []; 

 

S=[S1,S2];%inner nodes 

T=[T1,T2]; 

SLR=[S1,S2,S3];%segments left to right 

TLR=[T1,T2,T3]; 
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STB=[S1,S2,S4];%segments top to bottom 

TTB=[T1,T2,T4]; 

 

% System Coordinates & Nodes 

 

NoNodes = 1:PS; 

[x,y] = meshgrid(0:1:((L/2)-1),0:1:((L/2)-1)); 

X=reshape(x,[],1); 

Y=reshape(y,[],1); 

nodes = [NoNodes;X' ;Y']'; 

segments = [(1:numel(S)) ; S ; T]'; 

segmentsLR = [(1:numel(SLR)) ; SLR ; TLR]'; %segments from left to right 

segmentsTB = [(1:numel(STB)) ; STB ; TTB]'; 

end 

 

B4. MATLAB: Node Elimination 
The NODE function calculates the resistivity and conductivity of the network graph, G, between 
nodes a and b.  

Function: [Res, Con] = NODE(G,X,Y,a,b,ext,order) 

INPUT: 

G = Network Graph 

X,Y = coordinate system for the nodes  

a,b = nodes (node number) between which the resistance is calculated  

ext = vector of any external nodes that you do not want eliminated. Usually contains just a 
and b    

order = vector of the node elimination order containing the degree of the to be 
eliminated nodes. 

OUTPUT: 

 Res = equivalent resistivity between nodes a and b  

 Con = equivalent conductivity between nodes a and b  

function [Res Con]=NODE(G,X,Y,a,b,ext,order) 

% G = graph 

% X,Y = coordinate system for the nodes 

% a,b = nodes (node number) between which the two-point resistance is calculated 

% ext = vector of external nodes that you do not want gone, usually ext=[a,b] 

% order = vector of degrees, dictates the order in which nodes are 

% eliminated 

 

deg=order; 
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C=G; 

figure; 

% figure of plot beore node elimination comences 

% after the first iteration you would prefer to put this off 

h = plot(C,'EdgeLabel',C.Edges.Weight,'XData',X,'YData',Y); 

P = shortestpath(C,a,b); 

highlight(h,P,'NodeColor','g','EdgeColor','g') 

 

for j=1:length(deg) 

      clear L d 

      L=laplacian(C); 

      d=find(degree(C,1:numnodes(C))==deg(j)); 

      for k=1:length(ext) 

      d=d(find(d~=ext(k))); 

      end 

    for i=1:length(d) 

        n=d(i); 

            degree(C,n); 

            N = neighbors(C,n); 

            c = findedge(C,N,ones(size(N))*n); 

            cc = C.Edges.Weight(c); 

            C = rmedge(C,N,ones(size(N))*n); 

            A=ones(numel(N))-diag(ones(1,numel(N))); 

            g=graph(A); 

            tt=g.Edges; 

            aa=table2array(tt); 

            s=aa(:,1); 

            t=aa(:,2); 

            for nn=1:length(s) 

                r = (cc(s(nn))*cc(t(nn))) / sum(cc); 

                if findedge(C,N(s(nn)),N(t(nn)))==0 

                    C=addedge(C,N(s(nn)),N(t(nn)),r); 

                else 

                    z = findedge(C,N(s(nn)),N(t(nn))); 

                    C.Edges.Weight(z)=C.Edges.Weight(z)+r; 

                end 

            end 

   end 

figure; %figure of graph after elimination 

h=plot(C,'EdgeLabel',C.Edges.Weight,'XData',X,'YData',Y); 

P = shortestpath(C,a,b); 

title(['Degree = ',num2str(deg(j))]) 

highlight(h,d,'NodeColor','r'); %highlight of eliminated nodes 

highlight(h,P,'NodeColor','g','EdgeColor','g'); %highlight of shortest path 

 

bbb=degree(C,1:numnodes(C)); 

bbb=bbb(find(bbb>1)); 

end 

C.Edges %list of edges [begin|end|value) 

L=laplacian(C); 

    diag(L) %list of all the degrees within the graph 
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    deg=mode(bbb') %most common degree 

numedges(C); %number of edges 

Con=C.Edges.Weight; 

Res=1/Con; 

end 

 

B5. MATLAB: Kirchhoff’s solution 
Function that implements Kirchhoff’s solution to find the equivalent resistance between nodes a 
and b. To use this function properly one has to run it twice. The first time is to see the graph of the 
network containing only connected nodes. This is necessary because the method does not allow 
non-zero rows or columns within the conductance matrix so unconnected nodes are removed. 
Therefore, the node numbers change because it is technically a new graph. The node numbers of 
the target nodes are read from the new graph (use the data tip tool) and inputted as a and b in 
the second run of the script.  

Function: [R,C] = Kirchhoff(G1,X,Y,ab,b) 

INPUT: 

G1 = Network Graph 

X,Y = coordinate system for the nodes  

a,b = nodes (node number) between which the resistance is calculated  

OUTPUT: 

 R = equivalent resistivity between nodes a and b  

 C = equivalent conductivity between nodes a and b  

function [R C] = Kirchhoff(G1,X,Y,ab,b) 

La=laplacian(G1); 

C=rmnode(G1,find(diag(La)==0)); 

figure; plot(C,'XData',X(find(diag(La)>0)),'YData',Y(find(diag(La)>0))); 

 

LA=laplacian(C); 

LA=full(LA); 

 

if sum(LA,1)~=0 | sum(LA,2)~=0 | isempty(find(diag(LA)==0))==0 

   sprintf('WRONG') 

end 

 

g1=LA([ab],[ab]); 

g2=LA([b],[b]); 

R = det(g1)/det(g2); 

C = 1/R; 

end 
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