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Abstract

Objective: Prediction of comatose patients’ neu-
rological outcome after cardiac arrest (CA) is essential
to prevent unnecessary continuation of treatment (with
expensive and scarce resources) and prevent emotional
burdens on families. Electroencephalography (EEG) can
aid the prediction of outcome after CA. Visual EEG
analysis is subjective, time-consuming, and might miss
important information. Existing EEG-based machine
learning models are more reliable but lack interpretation
of temporal characteristics of EEG. Long-short-term-
memory networks (LSTMs) do take advantage of such
temporal characteristics. Therefore, I hypothesized that
an LSTM would outperform time-insensitive models.
Methods: Patients’ neurological outcome at six months
after CA was classified as good (no/mild neurological
damage) or poor (severe neurological damage/vegetative
state/death). Twelve quantitative EEG features were
extracted from five-minute EEG epochs recorded 12
(n=78) or 24 (n=176) hours after CA. A time-insensitive
baseline logistic regression model (LR) and an LSTM
were developed and trained. The performance was eval-
uated using the area under the receiver operator curve
(AUC) and the sensitivity at 100% specificity (SeSp100)
for poor outcome prediction. The LSTM was compared
to the current LR and previously published models.
Results and conclusion: The LSTM predicted poor
outcome with AUC=0.90 and SeSp100=0.66, meaning
it did not significantly improve performance over LR
(AUC=0.89, SeSp100=0.67). However, the LSTM and
LR outperformed almost all previously reported mod-
els, likely due to the features’ high prognostic power.
The SeSp100 was even higher for the LSTM (0.79) and
LR (0.78) when using only epochs at 12 hours after CA,
suggesting that earlier EEG might further improve prog-
nostication.

1 Introduction

Approximately half of the patients who su↵er from a
postanoxic coma (PAC) after cardiac arrest (CA) never
recover to consciousness [1, 2, 3]. Only 10% to 30% of
the patients reach a meaningful recovery [4]. Reliable
and early identification of (un)salvageable patients is of
significant importance, as the uncertainty of outcome
causes a large emotional burden on families. Moreover,
the prediction could support decisions concerning life-

supporting treatment [5]. Premature withdrawal of this
treatment should always be prevented. However, the
continuation of care when no meaningful recovery can
be achieved should also be avoided for multiple reasons.
First of all, to spare relatives a long, emotionally burden-
some process and potentially unrealistic expectations.
Furthermore, limited resources for life-supporting treat-
ment are available, and the healthcare costs are very
high [6, 7], making an unnecessary continuation of treat-
ment undesirable.

A poor neurological outcome, defined as severe dis-
ability, vegetative state, or (brain)death, is currently
predicted with a combination of several clinical exami-
nations [5]. Although these include predictors with high
specificity, like the absence of somatosensory evoked po-
tential responses or pupil reflexes, their sensitivity is low
[8, 9]. Approximately 20% of the patients with a poor
outcome can be identified accordingly [3, 10]. Therefore,
clinical examinations are not su�cient in the prediction
of poor outcome.

Used in combination with the predictive clinical ex-
aminations, monitoring brain activity can aid in prog-
nostication [11]. Visual analysis of the electroencephalo-
gram (EEG) can reliably predict poor or good out-
comes in around 50% of the patients [12, 13, 14, 15, 16].
Specifically, EEG recordings within 24 hours after CA
showed the strongest predictive power, while not lim-
ited by post-resuscitation treatment, according to cur-
rent literature [12, 16, 17, 18, 19, 20, 21]. Specific EEG
patterns were associated with a poor outcome: an iso-
electric EEG, a low voltage (< 20 µV) EEG, and a
burst-suppression EEG, especially if the bursts are syn-
chronous or identical. Continuous EEG activity was as-
sociated with a good outcome [14, 15, 17]. However,
other EEG patterns that showed no consistent associ-
ation with either poor or good outcomes remain [11].
Appendix A provides background information about the
mechanism of EEG and the physiological EEG signals.
Appendix B describes EEG signals following CA and
resuscitation.

Unfortunately, visual analysis of the EEG has its lim-
itations. Visual analysis su↵ers from inter-observer vari-
ability and subjectivity, as the expertise of the neurolo-
gist influences the interpretation. Another limitation is
the lengthy specialised training required to educate neu-
rologists in visual EEG analysis. Moreover, studying the
EEG itself is time-consuming [22, 23, 24, 25, 26, 27]. Fi-
nally, only the discussed patterns with an established re-
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lationship with a poor or good outcome are used in prog-
nostication by visual EEG analysis. Important prognos-
tic information could be present in the remaining EEG
patterns. As visual analysis discards remaining patterns,
this information is lost[18, 20].

Automatic analysis of the signal could overcome
these drawbacks [20, 28, 29, 30]. The use of quantita-
tive EEG (qEEG) features derived from the EEG, such
as the power in the frequency bands or the signals’ en-
tropy, might o↵er several advantages. QEEG results in a
more precise classification between outcomes and better
detection of features that are not easily visible with hu-
man analysis. Moreover, it o↵ers real-time prognosis and
decreased healthcare costs [6, 19, 31, 32]. Consequently,
research on the use of qEEG features for comatose pa-
tients’ outcome prediction after CA has increased in the
last years [33]. Tjepkema-Cloostermans et al. developed
a cerebral recovery index (CRI), which integrated several
features into one index [19]. Over the years, researchers
enhanced [34], optimised [35], and revised [18] this in-
dex, including increasingly more qEEG features and ad-
vanced machine learning (ML) algorithms. The most re-
cent version o↵ers “the most sensitive, reliable predictor
of neurological outcome of comatose patients after car-
diac arrest published so far”, according to the authors
[18]. Recently, some researchers investigated artificial
neural networks (NN) for outcome prediction [6, 20, 21].
The investigators’ choice for NN was motivated by these
models’ ability to extract features from the data auto-
matically. The model itself decides on the classification
features and might discover relevant information in the
signal. Specifically, these investigators created convolu-
tional neural networks (CNNs), which have proven e↵ec-
tiveness in image analysis [6, 20, 21]. Appendix C dis-
cusses various EEG-based ML outcome prediction mod-
els, including their characteristics and performances.

A possible drawback of currently published ML out-
come prediction models is their inability to preserve the
input’s temporal characteristics. As the brain produces
non-linear and dynamic time-series data, temporal prop-
erties of the EEG signals could add intrinsic information
about the brain’s activity [36, 37, 38, 39, 40]. A re-
current neural network (RNN) is an example of an ML
model that does capture such temporal characteristics
[38, 39, 41, 42]. However, RNNs struggle with vanishing
gradients due to their design, making it di�cult for them
to learn long-term dependencies (10 timesteps or more)
[42]. The long short-term memory RNN (LSTM), a spe-
cific type of RNN, overcomes this problem and can retain
information across many timesteps [41, 42, 43]. LSTMs
performed very well in numerous EEG-based regression
or classification tasks [38, 39, 44, 45, 46]. Moreover, com-
parisons between ML models in these EEG-based tasks
showed that LSTMs outperformed more traditional ML
models, like logistic regression (LR) [46, 47], support
vector machines [39, 44, 45, 46, 47, 48, 49], or ran-
dom forest classifiers [45, 46], and also feedforward NN

[47, 50], deep belief networks [40, 48], and even CNNs
[40, 45, 46, 48]. Appendix D provides more details about
studies using EEG-based LSTM models.

The previously reported EEG-based outcome predic-
tion models used five-minute EEG recordings for predic-
tion, without accounting for the EEG signals’ changes
within these five minutes. The current study’s goal was
to investigate whether accounting for the EEG signal
changes in the five-minute recordings using an LSTM
could achieve higher prognostic performance. Therefore,
I created and compared an LSTM and a baseline time-
insensitive LR. Both models were trained and tested us-
ing the same dataset. The research question of the cur-
rent study was stated as: ‘Does an LSTM achieve bet-
ter performance in neurological outcome prediction for
patients su↵ering from a postanoxic coma after cardiac
arrest using five-minute EEG recordings than a logistic
regression model using equal recordings?’

Additionally, both models were compared to previ-
ously reported EEG-based PAC prognostication models.
As the available dataset (n=254) is relatively small for
training neural networks, I mainly aimed to investigate
the e↵ectiveness of LSTMs for EEG-based outcome pre-
diction and formulate future directions. I stated two hy-
potheses. First of all, that the LSTM would outperform
the LR model. Secondly, that the LSTM would achieve
better performance than the previously reported EEG-
based outcome predictors for patients su↵ering from a
PAC after CA.

2 Methods

2.1 Patients and treatment

The data used in this study resulted from a previ-
ous cardiac arrest (CA) outcome prediction study [51].
The data were obtained from consecutive adult comatose
CA patients admitted at the intensive care unit (ICU) of
Amsterdam University Medical Centres – location AMC.
Patients were eligible if continuous EEG recording had
started within 24 hours after CA. Exclusion criteria in-
cluded traumatic brain injury, acute stroke, progressive
neurodegenerative disease, prearrest modified Rankin
scale �4, or prearrest life expectancy 6 months based
on comorbidity. Continuous EEG recording was part of
the routine care in patients su↵ering from a postanoxic
coma (PAC) after CA. Therefore, the institutional re-
view board of the Amsterdam University Medical Cen-
tres, the Netherlands, approved the study protocol and
waived the need for written informed consent. The
treatment included targeted temperature management
for 24 hours. The patients were sedated with propofol
and rarely with additional midazolam. Physicians based
decisions about the withdrawal of life-supporting treat-
ment on the Dutch recommendations for prognostication
in PAC. Table I summarises the patient characteristics.
Appendix E describes the cause and treatment of CA.
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Table I: Patient characteristics. CA=cardiac arrest. ECG= Electrocardiography. Std=standard deviation.

Good outcome (n=76) Poor outcome (n=105)
Age mean (+/- std) 59.5 (+/- 14.8) 61.6 (+/- 15.5)
Sex Male 59 77

Female 17 28
Location of resuscitation Out-of-hospital 69 87

In-hospital 7 18
Presumed cause of CA Cardiac 59 53

Non-cardiac 5 35
Unknown 12 17

Initial ECG rhythm Asystole 4 25
Bradycardia 0 2
Pulseless electrical activity 3 18
Pulseless ventricular tachycardia 1 2
Sinusbradycardia 1 0
Unshockable 0 2
Ventricular fibrillation 66 51
Unknown 1 4
Else 0 1

Patient’s recording time Only at 12 h after CA 2 3
Only at 24 h after CA 35 68
Both 12 h and 24 h after CA 39 34

2.2 Data acquisition

Continuous EEG recording was initiated as soon as
possible after admittance to the ICU. Recording gener-
ally started within 24 hours after CA and lasted for 72
hours, or up until the moment life-supporting treatment
was withdrawn, or patients recovered to consciousness.
Recordings were made using nine electrodes, placed ac-
cording to the international 10-20 system (Fig. 1). Ad-
ditionally, a ground and reference electrode were placed
in the midline. The recorded channels included: [Fp1-
REF, Fp2-REF, T3-REF, T4-REF, C3-REF, C4-REF,
Cz-REF, O1-REF, O2-REF]. The EEG was recorded
with a sample rate of 1000 Hz. As a result, physi-
cians recorded continuous EEG of 181 comatose pa-
tients admitted to the hospital. For this study, artefact-
free five-minute EEG epochs (n=254) were available,
recorded approximately 12 hours (n 12=78) and 24
hours (n 24=176) after CA. An artefact-detection al-
gorithm, described in a previous study [19], selected
artefact-free epochs.

2.3 Outcome assessment

As the primary outcome measure, the neurologi-
cal outcome at six months after CA was used, clas-
sified by the Cerebral Performance Category (CPC).
The outcome was dichotomised as good or poor, consis-
tent with previously reported outcome prediction models
[6, 16, 18, 19, 20, 21, 29, 32, 34, 52]. Good outcomes had
a CPC score of 1 or 2, indicating no or mild neurological
damage, respectively. Poor outcomes had a CPC score
of 3, 4 or 5, meaning severe neurological damage, vegeta-
tive state, or (brain)death respectively [4, 5]. Appendix
F includes a table of CPC scores and their characteris-
tics. Furthermore, Appendix G shows EEG fragments
of patients with di↵erent outcomes.

2.4 Preprocessing

The nine-channel EEG epochs were re-referenced to
a longitudinal bipolar montage to reduce the noise in
the signal. Subsequently, a bandpass filter of 0.5-30 Hz
was applied, reducing the influence of frequencies out-
side the brain’s main power spectrum. Additionally, a
notch filter of 50 Hz was applied to remove any pow-
erline artefacts. Finally, the signals were downsampled
to 128 Hz to reduce computational time. Appendix H
states the preprocessing pipeline in detail. The raw data
were preprocessed with Brainstorm [53].

NaVLRQ

LefW RLJKW

FS1 FS2

T3 C3 C4 T4C]

O1 O2

G

Ref

Figure 1: Visualisation of electrode placement according to
the international 10–20 system with nine electrodes and an
additional reference and ground electrode in the midline.
The electrodes are visualised as circles with a letter that
identifies the lobe: Fp=prefrontal, T=temporal, C=central,
O=occipital, and a number that indicates the left side of
the head (uneven numbers), the right side of the head (even
numbers), or the midline (z). Ref=reference. G=ground.
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2.5 Feature extraction and input
selection

Extracted quantitative EEG (qEEG) features from
the EEG signal were used as input, not the EEG signal
itself. Extracting features provides the model with im-
portant hidden information within the signal and signif-
icantly reduces the dimensionality [39]. Moreover, var-
ious studies using EEG-based LSTMs showed that fea-
tures outperform the pure signal as input [38, 39, 44].
Figure 2 shows the feature extraction and input selec-
tion process.

Feature extraction

The five-minute preprocessed EEG epochs were
segmented into 30 non-overlapping 10-second time-
fragments. 19 QEEG were extracted features per chan-
nel per time-fragment. The features were averaged
across all channels and scaled between 0 and 1 with re-
spect to the features of all epochs. For the LR, features
were averaged across all time-fragments per epoch, re-
sulting in a matrix of features by epochs. The required
input shape to the LSTM was a three-dimensional ten-
sor of features by time-fragments by epochs, thereby ac-
counting for the change of the features over time within
the epoch. Appendix I detailly describes the extraction
process.

Table II summarises the 19 extracted qEEG features.
The features were categorised into the three domains
defined by Ghasemmi et al. [52]. Features in the com-
plexity domain indicated the extent to which the signal
is random or irregular. The category features were re-
lated to the EEG patterns observed in PAC patients.
The features in the connectivity domain quantified rela-
tions between the EEG channels. The 19 features were
selected based on results of other outcome prediction
studies, where they showed notable contribution to prog-
nostication at 12 or 24 hours after CA [18, 35, 52, 54]. As
EEG patterns could change between 12 and 24 hours af-
ter CA [10, 28], only features that showed similar corre-
lation with the neurological outcome at both timepoints
were included. A detailed description of all features,
including the calculations and the relation to the EEG
patterns observed in PAC or to cerebral functioning, is
discussed in Appendix J. Appendix Z.1 o↵ers the MAT-
LAB code used for feature extraction, which was based
on Ghassemi et al., 2019 [52].

Feature input selection

From the 19 extracted features, the features with low
multicollinearity were selected to use as input to the
models. This features set was termed the final feature
set (FFS). Multicollinearity was calculated with the vari-
ance inflation factor (VIF). The input to an LR model
must never contain highly correlated inputs [55]; oth-
erwise, the model will be unable to establish a correct

feature-outcome relationship, which causes bad gener-
alisation [55, 56, 57]. Generalisation is defined as a
model’s performance on unseen data [42, 58, 59]. More-
over, highly correlated inputs could also negatively im-
pact the learning process of an LSTM, even though a
neural network is capable of approximating any feature-
outcome relationships. The high correlation in the input
causes redundancies which lead to unnecessary complex-
ities. These complexities could increase the number of
local minima [60]. Table III states the FFS resulting
from feature selection. The VIF calculation and the fea-
ture input selection process are described in Appendix
K. Appendix Z.2 states the MATLAB script used for
this process.

Additional to the FFS, multiple other feature sets
were created, termed additional feature sets (AFSs) (Ap-
pendix L). These AFSs were formed using features from
Table II and the clinical features age and sex. It was
evaluated if AFSs showed better performance than the
FFS when used as input to the final models. Appendix
Z.3 and Z.4 include the MATLAB scripts used for cre-
ating the FFS and AFS for LR and the LSTM, respec-
tively.

2.6 Performance metrics

Consistent with previously reported outcome predic-
tion models, the final model performances was evaluated
using three metrics retrieved from the receiver operating
characteristic (ROC) curve: i) the area under this curve
(AUC), and the sensitivities for ii) poor and iii) good
outcome prediction at a predefined specificity threshold
[6, 18, 19, 20, 21, 29, 32, 34, 35, 52, 54]. High specificity
for poor outcome prediction is crucial to avoid with-
drawal of life-supporting treatment in patients with a
viable outcome [6, 18, 20, 52]. Therefore, the sensitiv-
ity at 100% specificity (SeSp100) for poor outcome pre-
diction was used. Falsely predicting good outcome has
a less disastrous consequence; hence the sensitivity at
95% specificity (SeSp95) was used. Appendix M states
the computation of the performance metrics.

The models were optimised specifically for the metric
SeSp100 during the hyperparameter optimisation pro-
cess because a sensitive predictor of poor outcome is
the most useful clinical application. Reliably prediction
of poor outcome could prevent unnecessary use of the
limited and expensive resources in the ICU and prevent
long-term burdens on families [6, 7]. Secondary to the
SeSp100, the AUC was considered an important metric,
as the model should accurately predict poor and good
outcomes to be clinically applicable [18]. The SeSp95
for good outcome prediction was calculated for compa-
rability to other models. Achieving a high SeSp95 was
not the focus of the current study.
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Figure 2: The feature extraction and input preparation process for the LR and LSTM models. The five-minute preprocessed
EEG epochs (box 1) were segmented into 30 non-overlapping 10-second time-fragments (box 2). 19 QEEG features were
extracted per channel from each 10-second fragment (box 3). The extracted features were averaged across all channels (box
4), resulting in a matrix per epoch of features by time-fragments (box 5). Subsequently, the process divided into two paths.
Path a, for the input to the LR model: the mean values were averaged for the five-minute epoch, resulting in 19 qEEG features
per epoch and the features of all epochs were concatenated (box 6a). Hereafter, features were scaled between 0 and 1 with
respect to the features (box 7a). The features were selected for di↵erent feature sets to be used as input through various
selection methods (box 8a).
Path b, for the input to the LSTM: the 19 qEEG features from the 30 time-fragments per epoch were used to account for
temporal information within the epoch. The features from all time-fragments of all epochs were concatenated (box 6b).
The features were scaled between 0 and 1 with respect to the features of all epochs (box 7b) and selected for di↵erent
feature sets to be used as input (box 8b). The features were reshaped into the required input shape for the LSTM (box
9b). LSTM (RNN)=long short-term memory recurrent neural network. LR=logistic regression. (q)EEG=(quantitative)
electroencephalography. VIF=variance inflation factor.

2.7 Logistic Regression

An LR model was created as baseline model for this
study. The performance of the LSTM was compared to
LR to evaluate if an LSTM model performed better than
a simpler, time-insensitive model. LR was selected for
the known ease in use, e�ciency, and robustness to noise.
LR forms a popular method for statistical modelling of
binary outcomes [75]. One can regard LR as a type of
feedforward neural network (NN)[58]. Appendix N o↵ers
background information about NNs.

Model information

In LR, the logarithm of the probability of odds,
termed the logit, is equalled to a linear regression func-
tion.

ln

✓
pi

1� pi

◆
= W ·X + b (1)

In this equation, pi denotes the predicted value, which is
the probability the output equals 1 (the probability of a
poor neurological outcome). The linear regression con-
sists of a dot product between the input (the features),
X, and the corresponding weights, W. Moreover, it in-
cludes a bias term, b. To compute the predicted value,
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Table II: Extracted qEEG features and descriptions. AR=autoregressive. Coe↵=coe�cient. (q)EEG=(quantitative) elec-
troencephalography. Ref=reference.

Domain Feature Description Ref.
Complexity 1 Shannon entropy A measure to quantify the uncertainty of a stochastic signal [61]

2 Tsallis entropy
A measure to quantify the uncertainty of a stochastic signal in a
nonextensive manner

[62]
[63]

3
4

Cepstrum
coe�cients

Both coe�cients are a measure to quantify the rate of change in
di↵erent spectrum bands

[64]
[65]

5 Hjorth mobility
The ratio of the variance of the first derivative of the signal and the signal
itself, indication a proportion of the variance of the power spectrum

[66]
[67]

6 Hjorth complexity
A measure that quantifies how much similarity the shape of the signal has
with that of a pure sine wave

7
False nearest
neighbours

A measure to quantify the degree of stochasticity in a signal by estimating
the embedding dimension, indicating its constancy and smoothness

[68]
[69]

8
9

AR coe�cient 1
AR coe�cient 2

Estimated nonseasonal autoregressive term coe�cients at t-1 (coe↵. 1) and
t-2 (coe↵. 2) given the EEG signal of a second order autoregressive model

[70]
[64]

Category 10 Normalised delta power Delta power (0.5-4 Hz) divided by the total power (0.5-30 Hz) [71]
11 Normalised theta power Theta power (4-7 Hz) divided by the total power (0.5-30 Hz) [72]
12 Normalised alpha power Alpha power (8-13 Hz) divided by the total power (0.5-30 Hz) [73]
13 Normalised beta power Beta power (14-30 Hz) divided by the total power (0.5-30 Hz)
14 Signal power The total power in the frequency range of interest (0.5-30 Hz)
15 Regularity A measure to quantify regularity in amplitude of the signal [19]
16 Epileptic spikes The number of epileptic form spikes in the EEG [52]

17
Burst suppression
ratio

The ratio of the duration of an EEG signal with an amplitude equal to
or lower than 5 microvolts to the duration of the entire signal

[18]

Connectivity 18 Delta coherence A measure to quantify the degree of similarity in the delta band [19]

19 Phase lag index
A measure to quantify phase synchronisation, indicating the level of
asymmetry between two signals

[74]

Table III: Final feature set used as input to the LR and
LSTM model. AR=autoregressive. LR=logistic regression.
LSTM=long short-term memory recurrent neural network.

Final feature set
1. Tsallis entropy
2. False nearest neighbours
3. AR coe�cient 2
4. Normalised theta power
5. Normalised alpha power
6. Normalised beta power
7. Signal power
8. Regularity
9. Number of epileptic spikes
10. Burst suppression ratio
11. Delta coherence
12. Phase lag index

the logit function needs to be solved for pi.

pi =
1

1 + e�(W ·X+b)
(2)

To obtain a predictive model, the weights and bias
terms, labelled the model parameters, need to be es-
timated [41, 58, 59, 76].

Estimation of the model parameters was done with
an iterative process, compromising several steps. In the
first iteration, random values for the model parameters
were used. Per batch of samples, the predicted outcome
was obtained through equation 2 and 3, termed the for-
ward propagation. Subsequently, the error between the
model’s predicted outcome and the true outcome, de-
noted by the loss, was computed using a loss function.

Thirdly, the backward propagation generated the gra-
dients of the loss function with respect to the model
parameters. An optimisation algorithm used the gradi-
ents to update the model parameters in the gradients’
opposite direction to minimise the next iteration loss.
Finally, the optimisation process was repeated for the
defined number of epochs [41, 42, 58, 59, 77, 78]. Ap-
pendix O states more details about LR and the estima-
tion process of the model parameters.

Hyperparameters

The LR model was built with Keras 2.3.1 upon Ten-
sorflow 2.3.0 backend in Python 3.7. Figure 3 illustrates
the model’s architecture. LR was modelled with one unit
in a fully connected layer, also termed dense layer, and a
sigmoid activation function. Dense in combination with
a sigmoid function implements the following operation
[79].

p = � (W ·X + b) (3)

The sigmoid activation function maps the linear opera-
tion within dense between 0 and 1, obtaining the prob-
ability the outcome is equal to 1 [79].

� (z) =
1

1 + e�z
(4)

Training the LR required the specification of several hy-
perparameters. The design of the LR defined the ma-
jority of hyperparameters that concerned building the
model. Several choices for hyperparameters concern-
ing compiling and fitting the model were made based
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Figure 3: Logistic regression model architecture. The input
followed a dense operation and was mapped between 0 and 1
by a sigmoid function. The output denoted the probability of
a poor neurological outcome. X=input, W=weights, b=bias,
�=sigmoid activation function, p=predicted outcome.

on references in literature or defaults of the used frame-
work, which are generally good [59]. As the performance
of an ML model is highly dependent on the learning
rate and the number of epochs with which it is trained
[77], these hyperparameters were optimised. Appendix
P detailly discusses the hyperparameters implemented
in the model. The input to the LR during optimisation
were the features in the FFS extracted from all epochs.
During optimisation, the hyperparameter configurations
were judged based on i) the performance metrics on
unseen data (the SeSp100 for poor outcome prediction
and in a lesser amount the AUC), ii) the robustness of
the models, and iii) the stability the learning process
near the end of the training. The latter quantified if,
and in what degree, underfitting or overfitting occurred.
Underfitting results from an oversimplified model that
has not (yet) learned the relationship between the fea-
tures and outcome, resulting in a high loss. An over-
fitted model adjusts the model parameters perfectly to
the data used for training. Consequently, the loss com-
puted on this dataset is minimised. However, the model
will not generalise well to data it has never seen before
[58, 59]. A reliable and robust estimation of the configu-
rations’ performances was obtained with five repetitions
of 10-fold cross-validation (CV) [58, 59]. The hyperpa-
rameter optimisation and process of 10-fold CV is de-
tailly explained in Appendix Q.

2.8 Long Short-Term Memory
Recurrent Neural Network

Recurrent neural networks (RNNs) can learn tempo-
ral dependencies from time-series data, like EEG signals.
Whereas traditional NNs only use input from the current
timestep, RNNs additionally use information from the
previous timesteps through connections between their

layers with respect to time [43, 46, 58]. LSTMs form
a particular category of the RNN, first introduced by
Hochreiter and Schmidhuber in 1997 [80], and modi-
fied to how they are known today by Gers et al. in
1999 [81]. Their advantage over standard RNNs is their
good performance in learning long-term dependencies
(10 timesteps or more), without struggling with van-
ishing gradients like standard RNNs [41, 42, 43]. Con-
sequently, an LSTM can extract information from the
EEG features’ change during the 30 time-steps to make
an outcome prediction.

Model information

LSTM networks are comprised of a special type of
cell (Fig. 4), which computes di↵erent operations than
a regular NN unit or RNN unit. An LSTM layer includes
as many cells as the number of timesteps used as input.
These cells connect to each other with respect to time.
One can view an LSTM cell as a network on its own; it
includes four NN layers composed of several units. Ap-
pendix N provides information about units in NNs. The
following equations summarise the mathematics within
a single LSTM cell.

Ct = ft ⇤ Ct�1 + it ⇤ fCt (5)

ft = � (Wf · xt + Uf · ht�1 + bf ) (6)

it = � (Wi · xt + Ui · ht�1 + bi) (7)

fCt = tanh (Wc · xt + Uc · ht�1 + bc) (8)

ht = ot ⇤ tanh (Ct) (9)

ot = � (Wo · xt + Uo · ht�1 + bo) (10)

LSTMs store information in what is termed the cell
state, Ct. The cell receives the cell state from the previ-
ous timestep and passes it on to the next one. The cell
can modify the state’s information, based on the received
input from current timestep, xt, and the output from
the previous timestep, ht�1, using structures termed
gates (5). The gates consist of a NN layer (ft, it, ot)
and an element-wise multiplication, denoted by ⇤ (the
Hadamard product). The NN layers themselves are com-
posed of several units using a sigmoid activation function
(4), which outputs a value between 0 and 1. Multipli-
cation by 0 causes complete removal of information and
multiplication by 1 results in preserving all information.
The cell can remove information from the state via the
forget gate layer, ft (6). Additionally, it can add new
information to the cell state, via the input gate layer,
it (7), and the candidate elements, fCt (8). The can-
didate elements are obtained by an NN layer that uses
the hyperbolic tangent (tanh) activation function (11),
which outputs values between -1 and 1. Thereby, the
tanh function provides the possibility to either increase
or decrease elements in the cell state.
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tanh (z) =
(ez � e

�z)

(ez + e�z)
(11)

In this way, under careful regulation, the state is up-
dated in each cell and evolves through time. Further-
more, the cell controls which parts of the cell state it
generates as output, ht (9), via the output gate layer ot
(10) [41, 43, 45, 46, 59].

Although hyperparameters, determined through op-
timisation, define the LSTM network, a general archi-
tecture can be sketched in advance. An LSTM cell can
include one or more units, which refers to the number
of units in the four NN layers within the cell. LSTM
networks can be composed of one or more LSTM cell
layers, which are the cells “unrolled” over the timesteps.
Following the last LSTM layer, it is appropriate for bi-
nary classification of a NN to include a final dense layer
composed of one unit with a sigmoid activation function
[58, 59, 77].

ŷ = � (WFC · ht + bFC) (12)

In this equation, ht denotes the output from the fi-
nal LSTM layer, and ŷ the probability of a poor neu-
rological outcome. All the W, U, and b terms de-
note the weights matrices and bias vectors, respectively,
and form the model parameters. The model parame-
ter estimation compromised of the following steps. The
output was predicted for a batch of samples through
equations in the LSTM cells and dense unit in the for-
ward propagation. One sample included one epoch with
the sequence of features of 30 time-fragments. For the
first iteration, the model parameters were randomly ini-
tialised. Subsequently, the loss of this batch was com-
puted between the model’s predicted outcome and the
true outcome for every time-fragment. The binary cross-
entropy loss function computed the loss, as it is the
most appropriate function for binary classification of

NN [58, 59, 77]. Backward propagation through time
(BPTT) computed the gradients of the model param-
eters across all timesteps. An optimisation algorithm
adjusted the model parameters using the gradients. Fi-
nally, this process was repeated per batch for the defined
number of epochs [41, 59, 77, 82, 83]. Appendix R o↵ers
a step-by-step explanation of the operations within the
LSTM cell, the learning process, and the calculations of
the BPTT.

Hyperparameters

Keras 2.3.1 upon Tensorflow 2.3.0 backend in Python
3.7. was used to build the LSTM network. LSTMs re-
quire the specification of many hyperparameters, includ-
ing ones that concern building, compiling, and train-
ing the model. In general, hyperparameters achieving
the highest performance, cannot be defined in advance
[58, 59, 77]. Moreover, as no LSTMs were used for out-
come prediction, specific hyperparameter choices could
not directly be derived from literature (i.e. no trans-
fer learning). It was technically not feasible to try all
possible hyperparameters and select the best ones. For-
tunately, several choices could be made with standard
tricks suggested in the literature [77]. Moreover, the
used framework generally provides good default options
[59] which were used if no conclusive literature about
the hyperparameter was found. Appendix S o↵ers an
in-depth description of all hyperparameters and defines
a set of most promising options.

A random search was performed to find the best
combination of hyperparameters from this promising set
[59, 77]. The search was performed for both a one-layer
and two-layer LSTM model. The input to the LSTM
during the search were the features in the FFS extracted
from all epochs. The search explored 25% of the full hy-
perparameter space defined by the promising set. In the
search, the data were split into 80% training set and 20%

neural netZork la\er Zith
sigmoid activation function

ht-1

[t

Ct-1

ht

Ct

ı ı ıtanh

ft it

Ct
a

ot

ı

element-Zise tanh
activation function

element-Zise multiplication
(Hadamard product) 

element-Zise addition  

vector transfer

concatenate vectors

LSTM Cell

tanh

*

+

**

* +

tanh

tanh neural netZork la\er Zith
tanh activation function

Figure 4: Schematic overview of an LSTM cell at one specific timestep t. C=cell state. fCt=candidate state. f=forget
gate layer. h=output. i=input gate layer. LSTM=long short-term memory recurrent neural network. o=output gate layer.
�=sigmoid activation function. tanh=hyperbolic tangent. x=input. The figure is inspired by figures from “Understanding
LSTM Networks” by Olah, C., 2015, (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Figure 5: Full flowchart of data from raw dataset to the final model performance using the final feature set features.
The 10-fold cross-validation is displayed in more detail in the rectangular box below the flowchart. CA=cardiac arrest.
CV=cross validation. LR=logistic regression. LSTM=long short-term memory recurrent neural network. qEEG=quantitative
electroencephalography.

validation set. Both sets consisted of a balanced number
of epochs with good and poor outcomes. A probabilistic
reduction was used to remove configurations that were
likely to give a validation AUC lower than 0.80 to speed
up the search. To obtain a more robust and reliable re-
sult from the hyperparameter optimisation, the random
searches were repeated ten times. Each time the data
were shu✏ed before split into training and validation
data. The results from the ten searches were merged.

The hyperparameters’ performance on the validation
set was evaluated by inspecting boxplots of all hyper-
parameter options against the SeSp100 and AUC. The
options for the hyperparameters that consistently ob-
tained a high SeSp100 for all configurations were se-
lected. Therefore, the selection was judged based on
a high median and a small distribution, the latter was
reflected in the plots by small boxes, short whiskers and
little outliers. If the hyperparameters with the highest
SeSp100 did not give a low AUC, they were used in the
final model. After that, it was manually evaluated how
layer weight regularisation enhanced performance. Fi-
nally, the best performing one-layer and two-layer con-
figurations were compared, and the most optimal model
was selected. Appendix T describes the optimisation
more detailed.

2.9 Final performance evaluations and
statistical comparisons

The LR and the LSTM were retrained with the opti-
mal hyperparameter configuration to evaluate the final
models’ performance. The performance was quantified
using the metrics in Section 2.6. The 10-fold stratified
CV process was repeated 50 times to obtain a reliable
and robust estimate of the model’s performance [84].
For both the LR and the LSTM, separate models were
trained and evaluated with features in the FFS using
i) all epochs at both timepoints, ii) epochs recorded 12
hours after CA, and iii) epochs recorded 24 hours af-
ter CA. The models were trained with all epochs at
both timepoints, as this o↵ered a larger dataset than
when using the separate recording times. As neural net-
works require a large dataset to reach optimal perfor-
mance, training with epochs at both timepoints yielded
the most reliable result. The reason for separately train-
ing the models at 12 hours and 24 hours after CA was
twofold. Firstly, misleadingly high performances on the
test set could have occurred when both recording times
were used as input. These high performances could re-
sult from similar EEG epochs from the same patient
recorded at 12 and 24 hours after CA present in both
the training and test set. Secondly, training at both
timepoints separately allowed for a fairer comparison
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to published outcome prediction models that followed
a similar approach. However, one should note that the
small number of epochs available at 24 hours and the
even smaller number at 12 hours after CA made it di�-
cult to draw reliable conclusions about the performance
at separate timepoints. Figure 5 visualises the full flow
of data from raw epoch to the final model performance
using FFS features.

Furthermore, separate models were trained and eval-
uated with features in the FFS and features in the AFSs
using epochs at both timepoints, for both the LR and
the LSTM. It was evaluated if AFSs showed better per-
formance than the FFS when used as input to the final
models.

The di↵erences between the model’s performance
metrics were compared using an unpaired two-sample
students t-test. The di↵erence was considered statisti-
cally significant if p<0.05.

3 Results

3.1 Logistic Regression

Table IV shows the optimal hyperparameter configu-
ration for LR. Appendix U detailly describes the results
of the hyperparameter optimisation. Appendix Z.6 in-
cludes the LR Python script.

Table VI compares the LR model’s performance sep-
arately trained and evaluated at both timepoints (12 and
24 hours), 12 hours, and 24 hours after cardiac arrest
(CA). The input to the models were the features from
the final feature set (FFS) (Table III). The area under
the receiver operating characteristic curves (AUCs) were
similar, being 0.89 at both timepoints, 0.90 at 12 hours,
and 0.88 at 24 hours. The sensitivity at 100% specificity
(SeSp100) for poor outcome prediction at 12 hours of
0.78 was significantly higher than that at 24 hours or
both timepoints, which was 0.67 for both models. On
the contrary, the sensitivity at 95% specificity (SeSp95)
for good outcome prediction at 12 hours of 0.30 was sig-

Table IV: Hyperparameters used for the logistic regression
model. Keras 2.3.1 upon Tensorflow 2.3.0. Sequential class ()
[79]. NAG=Nesterov accelerated gradient. SGD=stochastic
gradient descent.

Hyperparameter

Layer (units) Dense (1)
Activation function Sigmoid
Kernel initialiser Glorot uniform
Bias initialiser Zeros
Loss function Binary cross-entropy
Optimiser SGD with NAG
Learning rate 0.01
Momentum term 0.9
Number of epochs 1500
Batch size 32

nificantly lower than that at 24 hours (0.56) or both
timepoints (0.60). The model’s performance at 24 hours
was comparable to the performance at both timepoints
after CA.

The additional feature set (AFS) adding clinical fea-
tures age and sex to the FFS did not show statistically
significant di↵erences in performance metrics. Models
trained with features from the AFSs did not outper-
form the model trained on the FFS on the SeSp100 or
AUC. However, an AFS achieved higher performance on
SeSp95 for good outcome prediction, but at the cost of
a lower AUC, which was undesirable as the AUC was
considered more important. Appendix V compares the
performance of the LR models more detailly.

3.2 Long Short-Term Memory Recur-
rent Neural Network

Table V shows the optimal hyperparameter configu-
ration for the LSTM. Appendix W detailly describes the
results of the hyperparameter optimisation. Appendix
Z.7 and Z.8 include the hyperparameter search and anal-
ysis Python scripts, respectively. Appendix Z.9 includes
the final LSTM Python script.

Table VI compares the performance metrics of the
LSTMs separately trained and evaluated at both time-
points (12 and 24 hours), 12 hours, and 24 hours after
CA. The input to the models were the features from

Table V: Hyperparameters used for the LSTM model.
Keras 2.3.1 upon Tensorflow 2.3.0. Sequential class () [79].
Tanh=hyperbolic tangent.

Hyperparameter

LSTM layers 1
LSTM units 16
LSTM activation Tanh
LSTM recurrent activation Sigmoid
LSTM kernel initialiser Glorot uniform
LSTM recurrent initialiser Orthogonal
LSTM bias initialiser Zeros
LSTM kernel regulariser L1= 0.001, L2=0.001
LSTM recurrent regulariser L1= 0.001, L2=0.001
LSTM bias regulariser L1= 0.001, L2=0.001
Dropout rate 0.5
Recurrent dropout rate 0
Dense layers 1
Dense units 1
Dense activation Sigmoid
Dense kernel initialiser Glorot uniform
Dense bias initialiser Zeros
Loss function Binary cross-entropy
Optimiser Adam
Adam - Learning rate 0.001
Adam – decay rates �1 = 0.9 �2 = 0.999
Adam - Epsilon 1e-7
Number of epochs 120
Batch size 32
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Table VI: Comparison of performance metrics of the LSTM and LR models separately trained and evaluated at both 12
and 24, 12 hours, and 24 hours after cardiac arrest. Both models were trained and evaluated with features from the final
feature set. The following di↵erences were statistically significant (p<0.05): For both models, i) between the sensitivities
of the models trained at both timepoints and at 12 hours, and ii) between the sensitivities of models trained at 12 hours
and 24 hours. Furthermore, for the LSTM model, iii) between the SeSp95 of models trained at both timepoints and at 24
hours. Finally, iv) between the SeSp95 at 24 hours of the LR and the LSTM. AUC=area under the receiver operating curve.
LR=logistic regression. LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100% specificity.
SeSp95=sensitivity at 95% specificity.

AUC SeSp100 (poor outcome prediction) SeSp95 (good outcome prediction)
mean (95% CI) mean (95% CI) mean (95% CI)

LSTM – 12 h + 24 h 0.898 (0.893-0.903) 0.662 (0.648-0.676) 0.574 (0.551-0.597)
LR – 12 h + 24 h 0.893 (0.887-0.898) 0.669 (0.655-0.683) 0.599 (0.576-0.621)

LSTM – 12 h 0.901 (0.891-0.912) 0.785 (0.764-0.805) 0.303 (0.275-0.332)
LR – 12 h 0.901 (0.890-0.911) 0.783 (0.763-0.803) 0.295 (0.266-0.323)

LSTM – 24 h 0.901 (0.895-0.908) 0.681 (0.664-0.697) 0.439 (0.415-0.463)
LR – 24 h 0.883 (0.877-0.890) 0.671 (0.655-0.687) 0.557 (0.532-0.581)

the final feature set (Table III). The AUCs (0.90) were
approximately equal. The SeSp100 at 12 hours of 0.79
was significantly higher than that at 24 hours or both
timepoints, which were 0.66 and 0.68, respectively. On
the contrary, The SeSp95 at 12 hours of 0.30 was sig-
nificantly lower than that at 24 hours (0.57) or both
timepoints (0.44). The SeSp100 of the model trained
at 24 hours was comparable to both timepoints. The
SeSp95 at 24 hours was significantly lower than that at
both timepoints. Figure 6 shows the receiver operating
characteristic curve with the SeSp100 and SeSp95 of the
LSTM at both timepoints.

Using AFS that added the clinical features age and
sex to the FFS or used all 19 extracted qEEG features
(with clinical features) did not show statistically signif-
icant di↵erences in the performance metrics. Models
trained on features from the AFSs did not outperform
the model trained on the FFS regarding the SeSp100 or
AUC. Like the LR, higher performance on SeSp95 could
be achieved using AFSs but at the cost of a lower AUC,
which was undesirable as the AUC was considered more
important. Appendix X compares the performance of
the LSTMs more detailly.

4 Discussion

Using the same five-minute EEG recordings, the
LSTM model achieved similar performance compared
to the LR model in outcome prediction for patients
su↵ering from a postanoxic coma (PAC) after cardiac
arrest (CA). When statistically comparing the LSTM
and the LR performances, the only significant di↵erence
was between the sensitivity at 95% specificity (SeSp95)
for good outcome prediction at 24 hours after CA,
where the LR model (SeSp95=0.56) outperformed the
LSTM (SeSp95=0.44). Therefore, the hypothesis that
the LSTM would outperform the LR was rejected. The
high sensitivity at 100% specificity (SeSp100) for poor
outcome prediction at 12 hours after CA for both models

 

Receiver operating characteristic curve of the final LSTM 

SeSp100 poor prediction 

SeSp95 good prediction 

Mean ROC

 Chance 
+- 1 std. dev. 

Figure 6: The receiver operating characteristic (ROC)
curve of the LSTM model at both timepoints using the fea-
tures from the final feature set. The red dot denotes the
SeSp100 for poor outcome prediction, which was 0.662. The
green dot denotes the SeSp95 for good outcome prediction,
which was 0.574. LSTM=long short-term memory recur-
rent neural network. SeSp100=sensitivity at 100% speci-
ficity. SeSp95=sensitivity at 95% specificity. std. dev.=
standard deviation

was the most remarkable finding. It would be very valu-
able in clinical settings if this SeSp100 is validated with
more data. Sensitive prediction of poor outcome at 12
hours would lead to the reliable withdrawal of treatment
of many unsolvable patients in a period smaller than a
day.

The LR and LSTM achieved similar performance de-
spite the LSTM’s ability to account for the temporal
characteristics within the epoch and map more complex
feature-outcome relationships than an LR. As the sim-
ilarity between both models was the same set of quan-
titative EEG (qEEG) features used for prediction, the
following can be concluded. The predictive power of
the LSTM was the result of the carefully selected fea-
tures and most likely not from its ability to learn time-
dependencies, nor its superior feature-outcome mapping,
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as the LR did not have these abilities. Given that a
relatively simple LR model could establish the feature-
outcome relationship indicated a high degree of predic-
tive power in the 12 qEEG features. The similar re-
sults between both models emphasised the necessity of
good feature engineering, which might be more impor-
tant than the choice of the model itself. Rubin made
similar conclusions, stating that often no significant dif-
ference was found in performance between complex and
simple classifiers when meaningful features were used
[85].

A time frame of five minutes was likely too small to
have provided additional prognostic information for out-
come prediction, even though LSTMs using EEG from
small timeframes aided in prediction of other classifica-
tion or regression tasks [38, 39, 44, 45, 46, 86]. That the
LSTM could not extract prognostic information from the
temporal dynamics in the five-minute EEG, was assum-
ably due to the gradual change in a time range of hours
of EEG waves in comatose patients [10, 28]. Therefore,
using recordings over a larger time frame might have in-
creased predictive power of the model, but at the cost of
less reliable comparability to previously published out-
come prediction models.

When trained and evaluated at 12 hours after CA,
the LSTM obtained a similar area under the receiver
operating characteristic curve (AUC), a significantly in-
creased SeSp100 for poor outcome prediction, and a sig-
nificantly decreased SeSp95 for good outcome predic-
tion, compared the models trained at both timepoints
and 24 hours after CA. So, at an earlier timepoint, the
model could predict a poor outcome with higher sen-
sitivity, at the cost of predicting good outcome with
lower sensitivity. The evolution of the EEG patterns
could explain this sensitivity di↵erence between time-
points. The cortical activity of poor outcome patients
often changes to a somewhat more continuous pattern
over time. In general, continuous EEG activity is as-
sociated with a good outcome. As a result, the poor
outcome EEG patterns at later timepoints display more
resemblance with EEG patterns associated with good
outcome [10, 12, 14, 16, 18, 87]. Therefore, prognostica-
tion could be better at 12 hours than at 24 hours after
CA.

Similarly, the decreased sensitivity for good outcome
prediction at 12 hours can be explained. For some pa-
tients with a good outcome, the continuous cortical ac-
tivity has not yet remerged at the early timepoint after
CA, either due to targeted temperature management,
sedation, or the brain’s physiological recovery. Some of
the good outcome EEG patterns will have evolved to
a continuous pattern at 24 hours, increasing the sensi-
tivity at that timepoint. The di↵erence in the model’s
performance at 12 and 24 hours was not the result of a
di↵erence in treatment, as this was equal at both time-
points.

Independent of the timepoints after CA, SeSp100

for poor outcome prediction significantly outperformed
SeSp95 for good outcome prediction. As SeSp100 was
considered more important, this was a favourable result.
The di↵erence in the sensitivities was most likely the re-
sult of optimising the model for SeSp100 without consid-
ering the SeSp95. The hyperparameters, as well as the
feature sets, were selected to reach an optimal SeSp100.
The influence of the choice of qEEG features on the sen-
sitivities of the models is evident when comparing the
performance of the final feature set (FFS) with the ad-
ditional feature sets (AFSs) (Appendix X). One set of
features (AFS 5) reached a SeSp95 of 0.72 using epochs
at both timepoints, which was significantly higher than
the features in the FFS reached (SeSp95=0.57). How-
ever, as the AUC of this AFS was significantly lower, it
was deliberately not used for further analysis. It should
be noted that patients with good outcome received a
higher mean dose of the sedative propofol than poor out-
come patients. Although propofol influences the EEG,
it was unlikely that it influenced the model’s sensitivity
for good outcome prediction, as it does not negatively
a↵ect the prognostic value of the background pattern
[18, 19].

4.1 Comparison to other studies

The models developed in this study predicted poor
outcome with notably higher sensitivity compared to
the visual analysis of the EEG, which o↵ers a reliable
prediction of poor outcome in only half of the patients
[12, 14, 15, 16]. Table VII compares the LR and LSTM
to previously reported outcome prediction models. The
table only includes the most recent cerebral recovery in-
dex (CRI), the revised CRI (rCRI), as it outperformed
all previous versions [18]. The AUCs of the LR and
LSTM were equal to or higher than most other models.
Furthermore, the LR and LSTM achieved the highest
sensitivity for poor outcome prediction of all models.
Other models outperformed the LR and LSTM at spe-
cific timepoints regarding the sensitivity for good out-
come prediction. As this sensitivity was not the focus of
this study, it was not further considered it in this com-
parison. The LSTM achieved the highest performance
on all metrics 24 hours after CA compared to the current
literature. As PAC patients’ EEG recording often starts
between 12 and 24 hours after CA, more epochs are gen-
erally available at 24 hours. Therefore, the LSTM o↵ers
the most reliable outcome prediction at the most conve-
nient timepoint. However, the LR and LSTM achieved
remarkably high SeSp100 at 12 hours for poor outcome
prediction compared to the other timepoints and com-
pared to all other published models. Moreover, the ma-
jority of the other models also showed more accurate
performance at 12 hours. Therefore, it could be argued
that the standard treatment routine in the intensive care
unit (ICU) should change and EEG recording should al-
ways start 12 hours after CA.
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Table VII: Comparison of the performance of the outcome prediction models on the test sets from multiple studies. *The
model was evaluated on two di↵erent (in.=internal, ex.=external) independent test sets. AUC=area under the receiver
operating curve. CA=cardiac arrest. CI=confidence interval. CNN=convolutional neural network. LR=logistic regression.
LSTM=long short-term memory recurrent neural network. RFC=random forest classifier. Se (at Sp)=sensitivity at specificity.
Std=standard deviation.

Recording time Sample size AUC
Se (at Sp) for poor
outcome prediction

Se (at Sp) for good
outcome prediction

after CA at time mean (95% CI or std) mean (95% CI or std) mean (95% CI or std)

12 features

current LR

12 h + 24 h
12 h
24 h

254
78
178

0.89 (0.89-0.90)
0.90 (0.89-0.91)
0.88 (0.88-0.89)

0.67 (0.66-0.68) (100%)
0.78 (0.76-0.80) (100%)
0.67 (0.66-0.69) (100%)

0.60 (0.58-0.62) (95%)
0.30 (0.27-0.32) (95%)
0.56 (0.53-0.58) (95%)

12 features

current LSTM

12 h + 24 h
12 h
24 h

254
78
178

0.90 (0.89-0.90)
0.90 (0.89-0.91)
0.90 (0.90-0.91)

0.66 (0.65-0.68) (100%)
0.79 (0.76-0.81) (100%)
0.68 (0.66-0.70) (100%)

0.57 (0.55-0.60) (95%)
0.30 (0.28-0.33) (95%)
0.44 (0.42-0.46) (95%)

8 Features

Bayes classifier [32]
<24 h 94 in total 0.81 0.54 (100%)

2 Features

[29]

12 h
24 h

316
464

0.86 (0.82-0.90)
0.87 (0.83-0.91)

0.50 (0.42-0.57) (100%)
0.42 (0.35-0.48) (100%)

0.52 (0.44-0.59) (90%)
0.57 (0.48-0.67) (90%)

44 Features

RFC [18]

12 h
24 h

335
480

0.94 (0.83–0.99)
0.88 (0.78–0.93)

0.66 (0.65–0.78) (100%)
0.60 (0.51–0.75) (100%)

0.72 (0.61–0.85) (95%)
0.40 (0.30–0.51) (95%)

56 Features

LR [52]

1-12 h
13-24 h
Overall (1-72 h)

438 in total
0.71 (± 0.05)
0.70 (± 0.06)
0.83 (± 0.08)

-
-
-

⇠0.43 (95%)
⇠0.41 (95%)
0.46 (± 18) (95%)

EEG signal

CNN [21]

12 h
24 h

287
399

0.89
0.76

0.58 (100%)
⇠0.30 (100%)

0.58 (97%)
-

EEG signal

CNN* [20]

12 h in. test
24 h in. test
12 h ex. test
24 h ex. test

374
534
167
239

0.87 (0.87-0.88)
0.90 (0.90-0.91)
0.92 (0.90-0.94)
0.88 (0.86-0.90)

0.42 (0.36-0.48) (100%)
0.57 (0.54-0.60) (100%)
0.58 (0.51-0.65) (100%)
0.51 (0.49-0.53) (100%)

0.48 (0.45-0.51) (95%)
0.33 (0.30-0.36) (95%)
0.48 (0.45-0.51) (95%)
0.22 (0.20-0.25) (95%)

EEG signal

CNN [6]
20.2 (+-6.1) 267 in total 0.89 (0.78-0.96) 0.78 (89%) -

The hypothesis that the LSTM would achieve better
performance than the previously reported EEG-based
outcome predictors was accepted. However, the superior
performance of the LSTM compared to the models was
not the result of accounting for the EEG signals’ changes
within the five minutes epochs on which this hypothesis
was based, as the LR performed equal to the LSTM.

The superior performance of the models in the cur-
rent study over the Bayes classifier created by Zubler et
al. [32], was likely due to the higher predictive power
of the by me selected qEEG features and the fact that
a Bayes classifier is generally outperformed by an LR
[88, 89] and by neural networks [59].

The models developed in this study outperformed
the model of Ruijter et al. [29], assumably because they
only used two features and no machine learning (ML)
algorithm. To date, Nagaraj et al. developed the best
performing outcome prediction model (rCRI) [18]. The
rCRI was the only published model that outperformed
the LSTM on specific metrics. Specifically, the rCRI
achieved a higher AUC (0.94 vs. 0.90) and SeSp95 for
good outcome prediction (0.72 vs. 0.30), but a lower
SeSp100 for poor outcome prediction (0.66 vs. 0.79) at
12 hours after CA. At 24 hours, the LR and LSTM out-
performed the rCRI on all metrics. For all performance
metrics, the 95% confidence interval was notably larger
for the rCRI than for the LR and LSTM, indicating the
latter’s more stable behaviour. However, while compar-

ing these performances, the significantly larger sample
size used for the rCRI should be considered, making its
results more reliable. The superior SeSp100 for poor out-
come and the partially inferior SeSp95 for good outcome
of the LR and LSTM compared to the rCRI could not be
explained by the fact that the models in this study were
optimised for SeSp100 for poor outcome prediction, as
the rCRI was also optimised for this metric. The supe-
rior SeSp95 of the rCRI at 12 hours could result from
its significantly larger available dataset for training, as
ML models’ performances generally increase with more
data [59]. The rCRI might also have used more features
associated with good outcome at that timepoint. As the
rCRI used 44 qEEG features, it is assumable that some
of these aided in predicting good outcome. On the other
hand, although a selection was made by an algorithm
during training, this large number of features might have
resulted in the inferior performance on specific metrics
compared to the LR and LSTM. As these features were
not selected based on proved predictive power, as has
been done in the current study, they might not have
been ideal for PAC outcome prediction and could have
led the model in the wrong direction. Moreover, there
is a good chance that multiple features used by Nagaraj
et al. were highly correlated, causing bad generalisation
[56, 57]. No evidence was found to support that either
an LR or a random forest classifier, used for the rCRI,
would achieve the highest performance. Multiple stud-
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ies compared the two models, and the better performing
model di↵ered per study [90].

Likely for similar reasons concerning the usage of a
large number of features, the LR and LSTM outper-
formed the model developed by Ghassemi et al., which
made use of 56 features and an LR with elastic net reg-
ularisation [52].

The superior performance of the LR and LSTM over
the convolutional neural networks (CNNs) [6, 20, 21]
on most metrics could result from the fact that I used
features as input to my models as opposed to raw data.
Extracting features provides the model with important
hidden information within the signal [39]. The EEG
signal itself might contain much noise, making it harder
for the CNNs to extract the relevant information for
feature prediction.

4.2 Limitations and future directions

A limitation was the small dataset available. Result-
ingly, the performance of the LSTM in this study might
deviate from the performance obtained when using more
data. Moreover, the small dataset led to the necessity
to optimise, train and evaluate models using epochs at
both timepoints simultaneously. As the EEG patterns
change over time [10, 28], this formed a limitation. More
accurate models have been obtained if they were sep-
arately developed for either 12 or 24 hours after CA.
For example, di↵erent feature sets used for both time-
points could have increased performance, as Ghassemi et
al. showed that accounting for the change over time of
the association between qEEG features and neurological
outcome improved their outcome prediction model [52].
This study’s results and most other outcome prediction
studies showed more accurate models at 12 hours after
CA. The LR’s and LSTM’s very promising SeSp100 for
poor outcome prediction at 12 hours should encourage
future research to validate and optimise these models
with a larger dataset. For example, one could perform
the hyperparameter optimisation with only data at 12
hours or a feature set could be designed explicitly for
poor outcome prediction at that timepoint.

The comparison of other outcome prediction models
to the models developed in this study has its limitations
due to i) the significant di↵erences in the datasets, both
in terms of quantity and quality, ii) the di↵erent methods
used for validation, and iii) the di↵erent metrics used to
optimise the models. A fairer comparison could be made
by evaluating the LR’s and LSTM’s performance with
the datasets used in other studies and evaluating the
performance of the models developed in other studies
with this dataset.

Future research should investigate if LSTMs achieve
better performance if provided with the temporal evolu-
tion of the EEG over several hours or days instead of five-
minute recordings. Furthermore, research could look
into the variability of the features within the five-minute

epoch. If the variability is small, it will strengthen the
assumption that the time frame was too small to pro-
vide prognostic information and strengthen the conclu-
sion that the similar performance achieved by both mod-
els was the result of the specific set of features.

Using features as input to the LSTM model might
have limited its predictive power if additional prognostic
information was present in the EEG signal, which could
have been learned by the LSTM. Future research should
explore using the raw EEG signal as input to the LSTM.

During the feature extraction process, the features
were averaged across all channels. It was assumed that
no information was lost by averaging, as PAC a↵ects
the whole brain and not specific localised regions [52].
This assumption was adapted from previously reported
outcome prediction studies [18, 20, 52, 54]. Considering
most developed models were reliable outcome predictors,
this assumption might be valid. However, no study com-
pared the input from all channels to input averaged over
all channels. Therefore, prognostic information might
be lost in averaging over all channels, decreasing the
model’s predictive accuracy. Future research is needed
to exclude this possibility.

The limited computational resources available
formed another limitation, which mostly a↵ected the
random search space dimension. Future research should
incorporate more hyperparameters in the search space
to find the most optimal configuration. In Appendix Y
discusses recommendations for improved hyperparame-
ter optimisation in detail.

An artefact-detection algorithm automatically se-
lected the artefact-free epochs. However, the possibil-
ity that artefacts were still present in the epochs cannot
be excluded. Consequently, the features might be in-
fluenced by the remaining artefacts. Ideally, an expert
visually inspects the EEG epochs to ensure artefact free
data. The patients received targeted temperature man-
agement, and sedative medication, of which the former
barely a↵ects EEG in general [91] and the latter does not
influence the prognostic value of the background EEG
pattern [18, 19].

This study focused on outcome prediction based on
qEEG features. Integrating features from other modal-
ities might o↵er more accurate outcome prediction, but
this was outside of the scope of this study. Further re-
search could investigate if a multimodal approach im-
proves the performance of an outcome prediction model.
For example, information from the clinical examination
with high sensitivity could be incorporated, like the ab-
sence of somatosensory evoked potential responses or
pupil reflexes [8, 9]. Furthermore, Wennervirta et al.
and Stammet et al. both reported improved accuracy of
outcome prediction by combining qEEG features with
biochemical markers [30, 92].

This study used data from only one centre, which
precluded the models’ generalisability to other centres.
External validation is required to validate the LR and
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LSTM further.
As with all other outcome prediction after CA

studies, the risk of self-fulfilling prophecy exists, be-
cause treating physicians were not blinded for the EEG
[18, 19, 20, 29, 32, 34, 35, 36, 52]. However, physicians
followed the Dutch recommendations for prognostica-
tion in PAC for decisions regarding withdrawal of life-
supporting treatment, which excludes the EEG within
72 hours after CA. Moreover, this study was performed
o✏ine, so the results of the outcome prediction models
were not available to physicians. For these reasons, the
risk of self-fulfilling prophecy was minimal.

4.3 Key points

The LR and LSTM developed in this study pre-
dicted patients’ neurological outcome six months after
CA equally good while using the same set of quanti-
tative EEG features extracted from five-minute epochs
recorded at 12 or 24 hours after CA. The prognostic per-
formance of the LR did not increase using the LSTM,
which accounts for the temporal characteristics within
the epoch. Future research should investigate LSTMs
with features (or raw EEG data) over larger timeframes
for outcome prediction. Careful feature selection is more
crucial than the variation of these features within a
five-minute epoch, as emphasised by the high predic-
tive performance of the LR. The highest AUC and sen-
sitivity at 100% specificity for poor outcome prediction
were achieved at 12 hours after CA. Therefore, future
research should investigate how EEG measurements at
earlier timepoints can further improve prognostication.
Prediction of poor outcome at 12 hours after CA is clini-
cally more valuable than prediction at 24 hours: it could
lead to the earlier withdrawal of unnecessary treatment
of many unsalvageable patients. Consequently, resource
use in the ICU and the associated healthcare cost could
be decreased. Moreover, early decision making would
spare the family of the patient.
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Appendices

A. Background information about elec-
troencephalography

Mechanism of EEG

In short, EEG measures the electrical activity pro-
duced by neurons in the brain at the scalp surface with
electrodes. Due to their excitability neurons can gen-
erate extracellular currents. The activity of large pop-
ulations of neurons summed together can create elec-
tric fields that are large enough to be picked up at a
distant site from the current source, like the electrodes
placed on the scalp. These electrodes connect to a ma-
chine that displays the voltage di↵erence between two
electrodes as a signal in microvolts in time. Ohm’s law
can explain the simplified mechanism: the voltage di↵er-
ence between two electrodes is dependent on the current
through a conductor and the resistance. In the brain,
the current is created by is the summation of neuronal
activity. The layers of tissue in the head and material
between the scalp and the electrodes form the resistance
[93, 94, 95, 96]. The recorded activity is filtered, re-
sulting in the brain activity of interest, and amplified.
The activity is then per electrode visualised as a signal
in a specific channel. In a bipolar montage, the chan-
nel presents the voltage di↵erences between neighbour-
ing electrodes. The monopolar montage uses a common
reference electrode for all channels. Therefore, the sig-
nal presents the voltage di↵erence between an electrode
and the common reference electrode [97].

Brain activity

The brain activity recorded with EEG in the absence
of a stimulus is termed spontaneous brain activity. This
activity indicates that the brain generates information
independently of external factors and thus not only pro-
cesses stimuli. Therefore, it is also called self-generated,
self-organised activity, or background activity. There is
little understanding of what exactly drives the brain to
generate these activities [98].

The brain network can support activity in di↵erent
distinguishing oscillatory behaviours, determining indi-
vidual neurons’ firing patterns [98]. These behaviours
are mostly sinusoidal waves with amplitudes varying
from 20 to 100 microvolt. The waves are unique for
each individual [71, 72, 95]. With a spectral analysis,
the EEG signal is quantitatively analysed. The power
of a frequency band and its spatial distribution are pri-
marily studied. The power spectral density, or short
power, shows how much of a frequency band is present
in the EEG signal. Power is expressed in the amplitude
squared per Hertz, so often in microvolts2 per Hertz.
The brain patterns are categorised into five major fre-
quency bands [71, 72, 73, 95, 98, 99, 100].

• Delta (0-4 Hz). Delta waves form the slowest waves
with the highest amplitude. Delta appears during
deep sleep, and the activity source is thalamocor-
tical or cortical.

• Theta (4-7 Hz). Theta waves are more irregular
and occur during sleep or sometimes during deep
concentration or mediation. Theta activity is un-
common in wake adult but appears in children.
The source of the activity is cortical or hippocam-
pal.

• Alpha (8-13 Hz). The alpha waves show a regular
rhythm, with a moderate amplitude of approxi-
mately 50 microvolts. Alpha is present all wakeful
states, but its power increases during relaxation
and closure of the eyes. Hypotheses of the genesis
of alpha are discussed shortly.

• Beta (14-30 Hz). Beta waves are rhythmic and
semi-regular, with a low amplitude and dominate
during a wakeful state with intense mental activity.
The generator of the beta frequency is cortical.

• Gamma (30-80 Hz). Gamma waves are the fastest
in this empirical classification; it is associated
with parallel information processing from di↵er-
ent brain areas. The cortex generates the gamma
waves.

Aside from this empirical classification, a sixth category
of frequency bands can be distinguished: high-frequency
oscillations [101]. These subdivide into high gamma (50-
125 Hz), ripple (125-250 Hz) and fast ripple (250-500
Hz) frequency bands. High-frequency oscillations relate
to memory processing and originate from distributed ar-
eas in the cortex and limbic brain [102]. Recent stud-
ies show high-frequency oscillations as a biomarker of
epilepsy [100, 103].

B. Electroencephalography following car-
diac arrest

EEG activity after cardiac arrest

The human brain’s electrophysiology from the onset
of CA and the time immediately after that is not sys-
temically studied [104]. Consequently, little information
is available about the EEG during CA. However, var-
ious animal models studied neurophysiology after CA
with EEG recordings [28]. Borjigin et al. induced CA in
rats and recorded brain activity [104]. In the early pe-
riod after CA, four sequential states were distinguished
in all rats (Fig. A.1). The last heartbeat immediately
initiated CA state one. A distinct decrease in the EEG
amplitude and increased power in the gamma frequency
band around 130 Hz in all channels characterised this
state. The loss of oxygenated blood pulse marked the
end of this state. CA state two showed increased theta
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Figure A.1: Six EEG channels from a single rat’s brain during the four states following CA. The six brain regions included:
right frontal, left frontal, right parietal, left parietal, right occipital and left occipital areas. Time 0 seconds indicated the
start of CA, induced by an injection into the heart of potassium chloride. The immediate period after CA divided into
four di↵erent states. CAS1 (CA state 1): this state started with the last heartbeat and ended with the loss of oxygenated
blood pulse. A distinct decrease in the EEG signal amplitude and increased power in the gamma frequency band around 130
Hz in all channels characterised CAS1. CAS2 (CA state 2): showed increased theta and high-frequency gamma power and
terminated with bursts of delta waves. CAS3 (CA state 3): the amplitude of the signals dropped below ten µV. Low-frequency
synchronous gamma (35-50 Hz) waves were seen, coupled to theta waves. CAS4 (CA state 4): the signal remained below
ten µV. The frequency range consisted mostly of very high-frequency signals of 300 Hz, which continued without changing
characteristics for the rest of the recording duration. CA=cardiac arrest. EEG=electroencephalogram. Adapted from “Surge
of neurophysiological coherence and connectivity in the dying brain” by Borjigin et al., 2013, Proceedings of the National
Academy of Science, 110(35), p. 14433 © 2013 by the Author(s) [104].

and high-frequency gamma power. The state terminated
with bursts of delta waves. In the third state, the am-
plitude of the signals reduced to below ten microvolts.
Mostly power in the low-frequency gamma band (35-50
Hz) was seen. These waves appeared synchronous and
coupled to theta oscillations. In the final state, CA state
four, the signal remained below ten microvolts. The fre-
quency range consisted mostly of very high-frequency
signals of 300 Hz. The low voltage high-frequency waves
continued without changing characteristics for the rest
of the recording duration [104].

Some electrophysiologic data of humans is available
during CA. An EEG recording of a patient in two-minute
asystole during carotid endarterectomy showed suppres-
sion of activity on all channels. Electrical cerebral si-
lence reflected in the EEG within 10 seconds of asys-
tole onset. EEG activity reappeared 15-20 seconds after
the start of chest compressions. The waves were ini-
tially of high frequency and low voltage. Progressively,
the physiological EEG waves returned [105]. In another
case, where the patient su↵ered from 27-second lasting
asystole, physiological EEG activity reemerged instantly
when spontaneous circulation was returned [106]. In a
di↵erent study, EEG recordings were available during a
controlled period of CA necessary for a specific type of
heart operation. Slowing to delta frequency and attenu-
ation or complete loss of all faster activity was observed
in most patients. Changes in the EEG occurred within
a mean of 10 seconds after CA. Physiological EEG ac-
tivity reemerged as soon as cardioversion was initiated
[107]. These studies concluded that cerebral activity dis-
appeared rapidly after CA, resulting in an isoelectric
EEG within 10 seconds. Moreover, when blood circula-
tion was established, EEG activity reappeared and re-
turned to physiological waves. The abolishment of elec-
trical activity reflects the large-scale failure in cortical
synaptic transmission [108].

EEG activity after resuscitation

Jørgensen and colleagues studied the evolvement of
the continuously monitored EEG after resuscitation.
They stated the prognostic significance of the appear-
ance of particular EEG patterns within a certain pe-
riod after CA [109, 110, 111]. In 1998, Jørgensen and
Holm defined noticeable features of postanoxic cerebral
recovery during patients’ unconscious state. They cat-
egorised the features into four phases. During the first
phase, they only observed cranial nerve reflexes. The
return of cephalic reactivity characterised the second
phase. In these two phases, patients displayed elec-
trical cerebral silence, which reflected in an isoelectric
EEG. Hereafter a phase of intermittent cortical activity,
also termed burst-suppression, appeared on the EEG.
In the final phase, the burst-suppressions progressed to
continuous cortical activity. Subsequently, the patient
could regain consciousness [109]. Jørgensen and col-
leagues observed patients who had a good neurological
outcome. The EEG activity reemerged after ten minutes
to 8 hours after the first phase. In the majority of the
patients, a burst-suppression period preceded continu-
ous cortical activity. Some cases showed an immediate
appearance of continuous EEG activity. In all patients,
the EEG activity showed a progressively developing in-
crease in amplitude and frequency [110]. Furthermore,
Jørgensen and colleagues observed patients who had a
poor neurological outcome. They found that the time-
to-appearance of any initial EEG activity was signifi-
cantly longer than in the patients with a good neurolog-
ical outcome. This time-to-appearance ranged from 15
minutes to 124 hours after resuscitation. Moreover, in
the majority of the poor-outcome patients, continuous
cortical activity did not reemerge. If continuous corti-
cal activity appeared on the EEG, the preceding period
with a burst-suppression pattern was more prolonged
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than in patients with a good neurological outcome [111].
However, at the time of Jørgensen and colleagues’ re-
ports, post-resuscitation care did not include targeted
temperature management (Appendix E). As cooling the
patients reduces the brain’s oxygen demand, brain activ-
ity recorded nowadays could deviate from the patterns
described in the 1980s. However, similar to Jørgensen
and colleagues, more recent studies also emphasised the
importance of the EEG’s evolution towards continuous
activity for a good outcome. If continuous physiological
activity reappeared in the first 12 hours after resusci-
tation, the neurological outcome was most likely good.
On the other hand, if no evolvement towards continuous
activity appeared within the first 24 hours, a poor out-
come is inevitable [10, 12, 14, 16, 87]. Combining results
of di↵erent studies and using standardised terminology
[10, 25, 87, 112], Hofmeijer and van Putten distinguished
six categories of patterns in postanoxic patients [17]:

1. Iso-electric EEG

2. Low voltage EEG (< 20 µV)

3. Burst-suppression EEG and the subcategory of
burst-suppressions with identical bursts

4. Epileptiform EEG, including status epilepticus
and generalised periodic discharges

5. EEG with continuous activity less than 8 Hz (dif-
fused slow EEG)

6. EEG with continuous activity equal to or greater
than 8 Hz (“normal” EEG)

Several studies showed that EEG patterns in the cat-
egories isoelectric, low voltage, and burst suppressions
(especially identical bursts) were associated with poor
neurological outcome. Continuous EEG patterns in ei-
ther of the two categories were associated with good
neurological outcome. Other EEG patterns, like sta-
tus epilepticus or generalised periodic discharges, formed
in-between patterns due to their inconsistent associa-
tion with a specific outcome [5, 8, 10, 12, 16, 87, 113,
114, 115]. The EEG patterns are dynamic. The waves’
changes are gradual and seen in a time range of hours
[10, 28]. Figure A.2 shows EEG recordings at di↵er-
ent times after CA from two patients su↵ering from a
postanoxic coma.

C. EEG-based machine learning outcome
prediction models

Various studies used machine learning models for
outcome prediction of PAC with qEEG features as input.
First of all, a series of studies created and improved the
CRI. The CRI is a single index number that positively
correlates with the probability of a good neurological
outcome. The studies hourly extracted qEEG features
from five-minute EEG epochs, on which they hourly pre-
dicted neurological outcome. Tjepkema-Cloostermans

Figure A.2: EEG patterns from a patient with a good neurological outcome (upper panel) and poor neurological outcome
(lower panel) recorded at 7 hours, 12 hours and 24 hours after cardiac arrest. The EEG of the patient with a good neuro-
logical outcome evolved to continuous physiological EEG activity within 12 hours after CA. The EEG of the patient with a
poor neurological outcome evolved from isoelectric, to burst suppression and eventually showed a low voltage EEG pattern.
CA=cardiac arrest. EEG=electroencephalography. Adapted from ”EEG in a postanoxic coma: Prognostic and diagnostic
value” by Hofmeijer, J. and van Putten, MJAM, 2016, Clinical Neurophysiology, 127, p. 2050, © 2016 International Federation
of Clinical [17].
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et al. created the first CRI in 2013. They calculated five
qEEG features and combined them with equal weights
to form one index value [19]. The performance of the
original CRI was optimised using an increased number
of qEEG features and an LR model [34] or a random
forest classifier [35]. Most recently, Nagaraj et al. pre-
sented the revised CRI, which extracted 44 qEEG fea-
tures and used the least absolute shrinkage and selection
operator (LASSO) to select the most optimal features
as input for a random forest classifier. Additionally, the
features were extracted per 10-second fragment within
the five-minute epoch and averaged across all 30 frag-
ments. With the prediction of poor neurological out-
come, the revised CRI reached an AUC of 0.94 and 0.88
at 12 and 24 hours after CA, respectively. Moreover,
it could predict a poor neurological outcome at 100%
specificity with a sensitivity of 0.66 and 0.60 at 12 and
24 hours, respectively. To date, the revised CRI is the
best performing qEEG-based ML model for outcome
prediction in PAC [18]. Next to the CRI series, other
qEEG-based studies used di↵erent methods for outcome
prediction. One study extracted eight qEEG features
from five-minute hourly epochs for the input to a Bayes
classifier [32]. Another study fed two features to a self-
designed prediction model [29]. Lee et al. studied out-
come prediction in children. They also extracted qEEG
features hourly from five-minute epochs but took a dif-
ferent approach and averaged those over an early time
interval (0-17 hours) and a late one (> 18 hours). They
trained three di↵erent models with this data: an LR, a
support vector machine, and a random forest classifier.
The latter model and the early time interval showed the
best performance [54]. Ghassemi et al. explored the time
dependencies of qEEG features. They extracted 56 fea-
tures per five-minute epoch per hour and used an elastic
net to identify predictive features per 12-hour time inter-
val. Subsequently, they trained LRs every 12-hour time
interval using the current and preceding time intervals’
feature information. This time-sensitive model outper-
formed one that used time-independent features, indi-
cating that the prognostic importance of qEEG features
alters over time [52]. Another study compared para-
metric and nonparametric models using clinical features
combined with one qEEG feature extracted per-hourly
epoch [36]. To a lesser extent, deep neural networks
are studied in outcome prediction after CA. Two groups
fed the raw EEG data of five-minute epochs, divided
into 10-second fragments, to an CNN. The probability
of poor or good neurological outcome was based on the
mean probability of all 10-second fragments. The au-
thors trained several models, using data from 12 or 24
hours after CA [20, 21] or by combining both recording
times as input [20]. Furthermore, a study used raw data
with a mean latency of 20.3 (+- 6.1) hours after CA
for a one-dimensional CNN. The input data consisted of
five-minute epochs divided into fragments [6]. To date,
Tjepkema-Cloostermans et al. present the best perform-

ing CNN: predicting a poor outcome had an AUC of
0.87-0.92 and 0.86-0.90 at 12 and 24 hours after CA, re-
spectively. Moreover, the model predicted poor outcome
with a sensitivity at 100% specificity of 0.58 and 0.51 at
12 and 24 hours after CA, respectively [20]. Table A.I
summarises the characteristics of the mentioned studies.

D. EEG-based LSTMs

Over the last years, deep learning networks were
used for EEG classification tasks, including seizure de-
tection, sleep stage scoring, emotion recognition, and
classification of motor (imagery) tasks [50]. Various
studies showed that LSTMs outperform other models
like decision trees [39, 46], support vector machines
[39, 44, 45, 46, 47, 48, 49], logistic regressions [46, 47],
random forest classifiers [45, 46], näıve Bayes [46], feed-
forward neural networks [47, 50], deep belief networks
[40, 48], and even CNNs [40, 45, 46, 48]. The supe-
rior performance in EEG classification of LSTMs over
other models is likely due to their ability to account for
time dependencies. As EEG is time-series data, preserv-
ing temporal characteristics might significantly improve
the model’s accuracy [37, 38, 39, 40]. The majority of
the architectures consisted of one or two LSTM layers,
followed by one or two fully connected layers. Input
to the LSTM compromised mostly features extracted
from EEG signals. However, the signal itself and images
were also used [50]. Several EEG-based studies com-
pared the use of features to the raw EEG signal as input
for the LSTM layer. Usage of the signal itself consis-
tently and massively underperformed in these compar-
isons [38, 39, 44]. Table A.II summarises the character-
istics of the mentioned.
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Table A.I: Characteristics of outcome prediction models. Continued on next page.

[20] [21] [18] [35] [34] [19]

Time of

EEG

12 h
24 h

12 h
24 h

Start a.s.a.p
Hourly up
to 72 h

Start a.s.a.p
Hourly up
to 72 h

Unknown

Hourly up
to 48 h
Every 2
hours up
to 72 h

EEG

fragment

length

5 min
Artefact free
selected

5 min
Artefact free
selected

5 min
Artefact free
selected

5 min
Artefact free
selected per
hour

5 min
Artefact free
selected

5 min
Artefact free
selected

Sample

size
895 686 551 283 167 109

Input

5 min epoch
divided into
30 non-
overlapping
10 sec
fragments

5 min epoch
divided into
30 non-
overlapping
10 sec
fragments

5 min epoch
divided into
30 non-
overlapping
10 sec
fragments

5 min epoch 5 min epoch

5 min epoch
divided into
30 non-
overlapping
10 sec
fragments

Input

type
Raw data Raw data

44 qEEG
features from
each fragment
averaged
across epoch

9 qEEG
features per
epoch

10 qEEG
features per
epoch

5 qEEG
features from
each fragment
averaged
across epoch

Model

DL CNN

trained at
1. t=12 h
2. t=24 h

DL CNN

trained at
1. t=12 h
2. t=24 h

RFC
LASSO

trained at
each hour
after CA

RFC LR

Features
combined
with equal
weights

Output

Probability of
good outcome

mean of each
10 sec fragment

Good=CPC 1-2
Poor=CPC 3-5

Good / poor
outcome

Good=CPC 1-2
Poor=CPC 3-5

Probability of
good outcome

mean of each
10 sec fragment

Good=CPC 1-2
Poor=CPC 3-5

Probability of
good outcome

Good=CPC 1-2
Poor=CPC 3-5

CRI
(correlates
with
probability
of good
outcome)

Good=CPC 1-2
Poor=CPC 3-5

CRI
(correlates
with
probability
of good
outcome)

Good=CPC 1-2
Poor=CPC 3-5

Time of

outcome
6 months 6 months 6 months 6 months

Hospital
discharge

6 months

Train/Val

- 80% for
train/val with
10-fold CV
- 20% test
- extra test set

- 80% train
- 20% val

- 80% for
train/val with
10-fold CV
- 20% test

- 50% train
- 50% val

Leave one
out CV

- 50% train
- 50% val

AUC

Poor t12:
0.92

Poor t24:
0.88

Poor t12:
0.89

Poor t24:
0.76

Poor t12:
0.94

Poor t24:
0.88

t12:
0.92

t24:
0.90

overal
0.0075 higher
than tc2013

t12:
0.74

t24:
0.87

Se (at Sp)

Poor 12:
0.58 (100%)
Poor 24:
0.51 (100%)

Good 12:
0.48 (95%)
Good 24:
0.22 (95%)

Poor t12:
0.58 (100%)

Good t12:
0.58 (97%)

Poor t12:
0.66 (100%)
Poor t24:
0.60 (100%)

Good t12:
0.72 (95%)
Good t24:
0.20 (95%)

Poor t12:
0.56 (100%)
Poor t24:
0.65 (94%)

Good t12:
0.63 (94%)
Good t24:
0.58 (93%)

Unknown

Poor t12:
0.13 (100%)
Poor t24:
0.55 (100%)

Good t12:
0 (100%)
Good t24:
0.25 (100%)
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Table A.I: Comparison table with all studied recently published (< 5 years) EEG-based post anoxic coma prognostication
models and the original CRI [19] (> 5 years). CA=cardiac arrest. CNN=convolutional neural network. CRI=cerebral
recovery index. (P)CPC=(pediatric) cerebral performance category. CV=cross validation. GBTM=group-based trajec-
tory modelling. Grad-CAM=gradient-weighted class activation mapping. ICU=intensive care unit. LR=logistic regres-
sion. qEEG=quantitative electroencephalography. RFC=random forest classifier. TTM=targeted temperature management.
SVM=support vector machine.

[36] [52] [54] [6] [29] [32]

Time of

EEG

Start < 24h

Continuous
Until 48 h

Start a.s.a.p
Hourly up
to 72 h

Start a.s.a.p
Hourly up
to end

20.2 h
(+-6.1 h)

Start a.s.a.p
Hourly up
to end

During
TTM

EEG

fragment

length

> 6h

5 min
Artefact free
selected per
hour

5 min
Artefact free
selected

5 min
Artefact free
selected

5 min
Artefact free
selected

5 min
Artefact free
selected

Sample

size
1010 438 69 (children) 267 559 94

Input
Hourly
epochs

5 min hourly
epochs
divided in time
intervals every
12 h (e.g. 0-12,
13-24, 25-36)

1.Early set
(0-17h) with
5 min/hour
2. Late set
(18-end) with
5 min/hour

5 min epoch
divided into
10 sec epochs
with 75%
overlap

5 min epoch

5 min epoch
divided into
30 non-
overlapping
10 sec
fragments

Input

type

1 qEEG
feature per

hour and
clinical
features

52 qEEG
and 4 clinical
features
(each interval
also uses
previous
features)

- 8 qEEG
features from
each epoch
averaged
across interval
- 2 clinical
features

1D image
2 qEEG
features per
epoch

8 qEEG
features from
each fragment
averaged
across epoch

Model

3 classes:
1. GBTM
2. Non-para
-metric k-means
3. Bayesian
regression

LR
Elastic net

trained at each
interval

1. LR
2. SVM
3. RFC

1D CNN

Grad-CAM to
visualise
features

Prediction
model

Bayes
classifier

Output

Poor outcome

Good=CPC 1-3
Poor=CPC 2-5

Probability of
good outcome

Good=CPC 1-2
Poor=CPC 3-5

Predicting good
/ poor outcome

Good=
PCPC 1-3
Poor=
PCPC 4-6

Probability of
poor outcome

mean of each
10 sec fragment

Probability of
good outcome

Good=CPC 1-2
Poor=CPC 3-5

Good vs.
poor outcome

Time of

outcome

Hospital
discharge

6 months
Hospital
discharge

3 months 6 months 3 months

Train/Val
Leave one
out CV

- 90% train
- 10% val
10 fold CV

5-fold CV

- 80% train/val
(80% train
20% val)
- 20% test

10 fold CV

- 2/3 train/val
(leave one
out CV)
-1/3 test

AUC Unkown

Good t12:
0.71

Good t72:
0.73

RFC early:
0.88

RFC late:
0.74

0.885

t12:
0.86

t24:
0.87

Poor:
0.81

Se (at Sp)
0.38 (>99%)
(GBTM)

Good t12:
0.43 (95%)

Good t72:
0.61 (95%)

RFC early:
0.84 (75%)

RFC late:
0.76 (62%)

0.78 (89%)

Poor t12:
0.50 (100%)
Poor t24:
0.42 (100%)
Good t12:
0.52 (90%)
Good t24:
0.57 (90%)

Poor:
0.54 (100%)
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Table A.II: Characteristics of EEG-based LSTMs. Continued on next page. BCE=binary cross-entropy. BLSTM=bidirectional
long short-term memory. CCE=categorical cross-entropy. CE=cross-entropy. CNN=convolutional neural network.
CV=cross validation. EEG=electroencephalogram. Elu=exponential linear. FC=fully connected. HP=hyperparameter.
ICA=independent component analysis. LSTM=long short-term memory. MSE=mean squared error. NN=neural network
(feedforward). Norm=normalisation. Opt=optimiser. PC=principle components. Relu=rectified linear.

[37] [116] [39] [86] [45] [38]

Model LSTM LSTM

LSTM
Compared to:
Decision tree,
Ripper, SVM

LSTM
Compared to
other papers:

Cascaded
LSTM
Compared to
other papers:
(SVM, RFC,
CNN)

1. LSTM
2. BLSTM
3. Deep
BLSTM
-LSTM

Goal

Predict arousal
state:
- binary
classification
- continuous
prediction

1. classify
auditory or
visual stimuli

Binary
classification
between
preictal and
interictal
seizures

Classify high/
low states
of arousal,
valence, liking

classification of
sleep stages:
- 4 class model
- 2 class model

- Age prediction
- Gender
prediction

Input

X:
1. 4 variants
of EEG
decomposition
by SSD
2. SDD variant
+ SPoC

Y:
High and
low arousal
labels from
questionaires

X:
Components
from ICA

Y:
Stimuli time
and latency
labels

X:
1. Extracted
features from
EEG
2. Raw EEG

Y:
Preictal or
ictal label

X:
Segmented
raw EEG
from music
videos

Y:
High or low
state label

X:
4 class: 11
selected features
from feature
extraction
2 class: 27 PC
from 11 features

Y: Sleep stage

X:
1. Alpha
2. Beta
3. Gamma
4. Delta
5. Theta
6. Raw EEG

Y:Age, gender

Output
Binary:
- High arousal
- Low arousal

Binary:
- Visual
stimulus
- Auditory
stimulus

Binary:
- Preictal
- Interictal

Binary high/
low for:
- Arousal
- Valence
- Liking

4 class:
W, N1/REM,
N2, N3
2 class:
N1, REM

- Age (6 age)
- Gender (M/F)

Tuning
HP

Tuning of:
- LSTM layers
- LSTM hidden
units
- FC size
- Activation
- Adam learning
rate
- Weight
regulation

No tuning
discussed;
choices not
explained

3 architectures
evaluated,
variations in:
- LSTM layers
- Hidden units
- Dropout rates

No tuning
discussed;
choices not
explained

1000 evaluated.
No tuning
discussed;
choices not
explained.

Variations in:
- LSTM layers
- Hidden units

Various models
made, best
models are
discussed.

No tuning
discussed;
choices
not explained

Archi-
tecture
and
HPs

LSTM (10:100,
relu/elu)
Optional:
LSTM (10:100,
relu/elu)
Optional:
FC (tanh)
FC (tanh)

Loss=MSE

LSTM (100)
Dropout (0.5)
Dense (1,
sigmoid)

Loss=BCE
Opt=RMSprop
Batch size=16
Epochs=50

Best performing
LSTM:
LSTM (128)
LSTM (128)
FC (30, relu)
Dense (2,
softmax)

Loss=CE
Opt=Adam
Batch size=10

LSTM (64, relu)
Dropout (0.2)
LSTM (32,
sigmoid)
Dense (1,
sigmoid)

Opt=RMSprop
Epochs=30

Best 4 class:
LSTM (101)
FC (4)
Activation
(softmax)
Best 2 class:
LSTM (125)
LSTM (98)
FC (2)
Activation
(softmax)

Loss=CE
Opt=Adam

LSTM model:
LSTM (128)
Batch norm.
LSTM (64)
Batch norm.
FC (32)
FC (age:6
/gender:2)

Age:
loss=CCE
Gender:
loss=BCE

Train
/Val

10-fold CV
25% training set
75% testing set

10-fold CV 4-fold CV

10-fold CV:
- 80% training
- 10% val
- 10% test

10-fold CV:
- 60% training
- 30% test

- 10% val
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Table A.II: Characteristics of recently published (<3 years) EEG-based LSTMs. CSP=common special pattern. DBN=deep
belief network. FFTEM=fast Fourier transform energy map. GAFRN=Gramian angular field using residual network.
GAFTCNN=Gramian angular field using tiled convolutional neural network. K-NN=K-nearest neighbors. LR=logistic
regression. MCDBN=multi-channel deep belief network. RNN=recurrent neural network. SAE=stacked auto-encoder.
SGD=stochastic gradient descent. SPoC=Source Power Comodulation. SSD=Spatio Spectral Decomposition.

[46] [40] [44] [47] [49] [48]

Model

LSTM +
attention
Compared to:
PLV, ANN, SVM,
LR, decision tree,
RFC, näıve
bayes, CNN, LSTM

LSTM
Compared to:
CSP, MCDBN,
FFTEM,
GAFRN,
GAFTCNN

LSTM
Compared to:
SVM

LSTM
Compared to:
improved NN,
NN, LR, SVM

SAE+LSTM
Compared to:
SVM, LSTM,
ICA-LSTM

BLSTM
Compared to:
RNN-LSTM,
DBN, CNN,
K-NN, SVM

Goal

Binary
classification
of hand
movement:
- left hand
- right hand

Cross-subject
Intra-subject

Classify motor
imagery tasks:
1. Left/right hand
2. Left hand/
both feet
3. Left hand/tongue
4. Right hand/
both feet
5. Right hand/tongue
6. Both feet/tongue

Classify
seizure EEG:
- ictal
- preictal
- interictal
or
Binary
classification
between 2
classes

Compare
di↵erent
models and
parameters
in EEG
classification

Binary
classification
of EEG into
high/low
states of
arousal and
valence

Classify
confusion

Input

X:
Features from
EEG signal

Y:
Left hand or
right hand
label

X:
Channel weighted
1d-AX extracted
matrices from EEG

Y:
Movement label

X:
1. Processed
features
2. Features
3. Raw data

Y:
ictal label

X:
4 extracted
features per
channel
from 20
channels

X:
Feature
sequence

Y:
High or
low state
label

X:
Feature
vector

Y:
Confusion
label

Output

Binary:
- Left hand
movement
- Right hand
movement

Binary
task
dependent

Classification:
- Preictal
- Ictal
- Interictal

Binary high/
low for:
- Arousal
- Valence

Binary:
- Confused
- Not
confused

Tuning
HP

Tuning of:
- Recurrent depth
- Batch size
- Epochs
- LSTM
hidden units
- Dropout rates
- Weight regulation

Tuning of:
- LSTM
layers
- LSTM
hidden units

2 architectures
evaluated,
tuning of:
- LSTM layers
- Hidden units
- Learning rate

Evaluation
of di↵erent
parameters:
- Activation
functions
- Optimisers
- Loss
functions

No tuning
discussed;
choices not
explained

No tuning
discussed;
choices not
explained

Archi-
tecture
and
HPs

Cross/intra-subject:
Dropout (0/0.7)
LSTM (256)
Dropout (0.2/0.2)
LSTM (256)
Dropout (0.1/0.1)
LSTM (256)
Dropout (0.2/0.1)
Attention layer
FC (sigmoid)

Loss=BCE
Opt=Adam
Batch size=32/2
Epochs=100/10

LSTM (12)
Dropout (0.6)
Activation
(softmax)

Opt=Adam
Batch size=64

Best performing
model:
LSTM (100)
Dropout
LSTM (100)
Dropout

Opt=Adam
Batch size=150

LSTM
(2 layers)
Best HPs
are di↵erent
for each
metric

LSTM (125)
Dropout
FC (125)
Activation
(sigmoid)

Opt=Mini-
batch SGD
Loss=MSE

BLSTM (50)
Activation
(tanh)
FC layer
Activation
(sigmoid)

Batch size=20

Train
/Val

10-fold CV

Hybrid data:
5x5 fold CV
Subject specific:
1 training session
1 val session

- 80% training
- 20% test

10-fold CV 5-fold CV
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E. Cardiac arrest: cause and treatment

Cardiac arrest is defined as “the sudden cessation of
cardiac activity so that the victim becomes unrespon-
sive, with no normal breathing and no signs of circula-
tion. If corrective measures are not taken rapidly, this
condition progresses to sudden death. Cardiac arrest
should be used to signify an event as described above
that is reversed, usually by cardiopulmonary resuscita-
tion (CPR) and/or defibrillation or cardioversion, or car-
diac pacing. Sudden cardiac death should not be used
to describe events that are not fatal” [117]. An under-
lying structural cardiac impairment, most frequently is-
chemic coronary disease, often causes the CA. However,
CA also originates from non-cardiac causes. The ae-
tiology di↵ers per age and population. Generally, the
arrests are sudden and unexpected, often resulting in
a fatal outcome. Proper identification of CA is critical
before initiating treatment. After correctly diagnosing
CA, the first stage is basic life-supporting treatment,
including CPR and automated external defibrillation.
CPR should be executed until emergency responses are
present. Hereafter, advanced life-supporting procedures
are initiated, including medication. With these mea-
sures, the return of spontaneous circulation (ROSC) can
be achieved. Hereafter, post-resuscitation care is initi-
ated [118].

CA causes global ischemia in the brain. Therefore,
oxygen and glucose decrease, which causes a rapid de-
pletion of ATP. Consequently, a biochemical ischemic
cascade is initiated, causing severe cerebral damage and
neuronal death. The patient loses consciousness within
seconds. After ROSC, the primary sign of cerebral dam-
age is PAC. PAC occurs in 80% of CA victims occurring
outside of the hospital [2, 4].

For most comatose patients, post-resuscitation care
includes targeted temperature management (TTM) as
part of the standard protocol upon arrival in the emer-
gency care unit. TTM, previously known as therapeutic
hypothermia, lowers the body temperature of a patient
to a value between 33 (hypothermia) and 36 (normoth-
ermia) degrees Celsius [119, 120, 121]. TTM is neuro-
protective. As patients are likely to continue to su↵er
from cerebral ischemia for hours after CA, cooling them
reduces the brain’s oxygen demand. Consequently, the
cerebral damage decreases. TTM resulted in improved
neurological outcomes and decreased in-hospital mortal-
ity [1, 4, 7, 119].

F. Outcome assessment

Generally, physicians use the CPC to classify neuro-
logical outcome (Table A.III). The CPC is derived from
the Glasgow Outcome Scale, which classifies coma due
to traumatic head injury. The CPC values link to the
Glasgow Outcome Scale values in reversed order. A CPC
score of 1 or 2 indicates no or mild neurological damage,
respectively. A CPC score of 3, 4 or 5 means severe

neurological damage, vegetative state, or (brain)death,
respectively [4, 5]. For this study, the CPC at six months
after cardiac arrest, scored by a researcher, was used as
the primary outcome measure.

G. Examples of EEG recordings from pa-
tients with di↵erent outcomes

Figure A.3: Five-minute EEG recorded from a comatose
patient with a good neurological outcome (CPC score of 1
at 6 months after cardiac arrest). Scale between channels =
89µV. CPC=cerebral performance category.

Figure A.4: Five-minute EEG recorded from a comatose
patient with a poor neurological outcome (CPC score of 5
at 6 months after cardiac arrest). Scale between channels =
389µV. CPC=cerebral performance category.

H. Preprocessing

Preprocessing the raw EEG data compromised the
following subsequent steps (Fig. A.5). First of all, to
reduce the signal’s noise, the EEG recordings were re-
referenced to another montage. For better comparabil-
ity to other studies, re-referencing should be done simi-
larly as existing outcome prediction models [122]. From
the studies that included the re-referencing method in
their article, the majority re-referenced to a longitudi-
nal bipolar montage [18, 20, 21, 29]. One used an aver-
age montage [52]. The average re-reference requires 64
electrodes at the minimum to limit the bias of the un-
evenly distributed electrodes on the scalp [73]. As the
recordings in this study were made with nine electrodes,
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Table A.III: Cerebral Performance Categories (CPC) and Glasgow Outcome Scales (GOS). Adapted from “Prognostication
after cardiac arrest”, by Sandroni, C., D’Arrigo, S., Nolan, J., 2018, Critical Care, 22(150), p.2, © 2018 by the Author(s) [5]

CPC GOS Disability Conscious Independent Features

1 5 No, minor Yes Yes
Able to work and lead a normal life. May have mild
dysphasia, non-incapacitating hemiparesis, or minor
cranial nerve abnormalities

2 4 Moderate Yes Yes

Able to travel by public transport and work in sheltered
environment. Independent in activities of daily life.
May have hemiplegia, seizures, ataxia, dysarthria, or
memory changes

3 3 Severe Yes No
Limited cognition, dementia, locked-in, minimally
conscious. Usually in institution, but it may be looked
after at home with exceptional family e↵ort

4 2 Unconscious No No Persistent vegetative state
5 1 Dead - - Certified brain dead or dead by traditional criteria

I chose to re-reference to a longitudinal bipolar mon-
tage: [Fp1-T3, T3-O1, Fp2-T4, T4-O2, Fp1-C3, C3-O1,
Fp2-C4, C4-O2]. Subsequently, to reduce the influence
of frequencies outside the brain’s power spectrum, the
signal’s bandwidth was limited. The lowest frequency
of interest, the delta frequency, has a range of 0.5–4
Hz. The highest relevant frequency, the beta frequency,
ranges from 16–30 Hz [73, 98]. I used a bandpass fil-
ter of 0.5–30 Hz to keep the signal within a significant
range. Furthermore, a notch filter of 50 Hz removed any
powerline artefacts. Finally, to decrease computational
time, the recordings were downsampled to 128 Hz.

I. Feature extraction

Step-by-step process

The feature extraction and input preparation pro-
cess compromised several steps. The five-minute prepro-
cessed epochs were segmented into 30 non-overlapping
10-second time-fragments. Per time-fragment, I ex-
tracted 19 qEEG features from all channels. Following
feature extraction, the feature matrix in R

fxc was ob-
tained, where f denotes the number of features and c the
number of channels. In the next step, the feature matrix
was averaged across all channels, resulting in one feature
vector in R

fx1 for each time-fragment. Subsequently,
the features vectors of the 30 time-fragments in an epoch
were concatenated, resulting in one R

fxt feature matrix
per epoch, where t denotes the time-fragments. Here-
after, the process was divided into two separate paths.
One path was dedicated to the input preparation for the
LR, the other for the LSTM, as these require di↵erent
input forms. For the LR, I averaged the features across
all time-fragments per epoch. Consequently, a feature
matrix R

fxe was obtained, where e denotes the number
of epochs. This matrix included one value per feature
per epoch. For the LSTM input, the feature matrices
R

fxt of all epochs were concatenated, creating a fea-
ture matrix R

fxte where te denotes the time-fragments
of all epochs. This matrix included one value per feature

per time-fragment and contained all the epochs. Here-
after, the features were normalised. Both matrices were
scaled between 0 and 1 with respect to the features of all
epochs. With various techniques, I selected specific fea-
tures sets as input to the models. The input to the LR
was a matrix of the normalised features by epochs. The
input to the LSTM was reshaped to a three-dimensional
tensor of the normalised features by time-fragments by
epochs.

Motivation of choices

I extracted qEEG features from the EEG signal to
use as input to the LSTM instead of the raw signal,
which was used by the previously reported outcome pre-
diction neural networks [20, 21, 52]. Extracting fea-
tures provides the model with important hidden infor-
mation within the signal and reduces the dimensionality
[39]. Furthermore, not only the majority of EEG-based
LSTMs were fed with features [50], but various studies
using EEG-based LSTMs showed that features outper-
formed the pure signal as input [38, 39, 44].

To reduce noise, I extracted the features per time-
fragment for the LR and averaged them for the five-
minute epoch, instead of extracting the features per five-
minute epoch.

The reason for averaging the features across all chan-
nels was twofold. Most importantly, averaging decreased
the input dimension. Presumably, no information was
lost by averaging as postanoxic coma a↵ects the whole
brain, not specific localised regions [34]. Secondly, I in-
creased the comparability to previously reported out-
come prediction models, as these followed this approach
[18, 20, 52, 54].

Normalisation was applied, as the features were very
diverse in magnitude. Normalisation speeds up learning
and convergence. Also, it avoids creating a bias towards
any specific data class during training [44, 123]. Nor-
malising the features (rescaling between 0 and 1) had
the preference over standardising (rescaling the distri-
bution to 0 mean and a standard deviation of 1), as the
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Figure A.5: The preprocessing pipeline. Firstly, the nine-channel EEG epochs were re-referenced to a longitudinal bipolar
montage to reduce the signal’s noise. Subsequently, a bandpass filter of 0.5-30 Hz was applied, reducing the influence of
frequencies outside the brain’s main power spectrum. Additionally, a notch filter of 50 Hz was applied to remove any powerline
artefacts. Finally, the signals were downsampled to 128 Hz to reduce computational time. EEG=electroencephalography.

features did not fit a gaussian distribution. Therefore,
standardisation could result in unreliable results [123].
The features were scaled with respect to the features of
all patients’ epochs, not within a single patient’s epochs.

The 19 qEEG features were specifically selected
based on their observed prognostic significance in other
outcome prediction studies [18, 35, 52, 54]. Using fea-
tures with previously proven predictive power increased
the chance the models were fed with features that carry
significant prognostic value. Furthermore, the input di-
mension space was e�ciently used, as the other features
previously used in outcome prediction studies, not ex-
plicitly showing predictive power, were excluded.

J. Feature descriptions and calculations

A description of the extracted features from the EEG
signal is discussed per domain in this appendix. The fea-
tures were specifically selected based on their observed
prognostic significance in previous outcome prediction
studies. Tjepkema-Cloostermans et al. showed the indi-
vidual feature contributions to outcome prediction from
(amongst others) 12 and 24 hours after CA in their
study [35]. In the work of Nagaraj et al., the least ab-
solute shrinkage and selection operator (LASSO) iden-
tified a set of features with high predictive power across
all hours [18]. Ghassemi et al. showed which features
significantly correlated with outcome and features the
elastic net (LASSO) selected for prediction. They gave
this information for all time intervals, including 0 to 12
hours and 13 to 24 hours [52]. Finally, Lee et al. studied
the importance of individual features to outcome predic-
tion using Gini importance and discussed those for the
time interval 0 to 17 hours after CA [54]. I combined
the highly predictive features from these di↵erent stud-
ies to one feature set and used features from this set as
input to this study’s models. All features were calcu-
lated per 10-second fragment, except for the false near-
est neighbour feature, which I calculated for the entire
five-minute EEG fragment.

Complexity features

The brain produces highly complex and stochastic
signals, characterised by randomness and irregularity
[33]. Presumably, this complexity correlates positively
with physiological brain functionality [19]. A decrease
in complexity might indicate brain injury and impair-
ment of physiological functioning [124, 125]. The fea-
tures in this domain quantified the extent to which the
EEG signal is random or irregular.

Shannon entropy Shannon entropy is a measure
to quantify the complexity of a stochastic signal. Shan-
non and Weaver defined it with the following formula
[61].

SE = �
NX

i=1

p (xi) log2 p (xi) (A.1)

In this formula, xi is the signal’s amplitude, and p is
the probability that this amplitude is present in that
fragment of the signal. I calculated Shannon entropy
similarly to Tjepkema-Cloostermans et al.: “The prob-
ability density function p(xi) was estimated by using
the histogram method in which the amplitude range of
the signal was linearly divided into bins” (Tjepkema-
Cloostermans et al., 2013). The minimal and maximal
bins were set to �200 µV and 200 µV, respectively. The
bin width was set to 2 µV. Shannon entropy showed
prognostic importance in multiple outcome prediction
studies [18, 19, 52].

Tsallis entropy Tsallis entropy is a statistic to
quantify a stochastic signal’s complexity in a nonexten-
sive manner [63]. Opposed to Shannon entropy, Tsallis
entropy does not assume extensive or entropic additiv-
ity. This assumption might result in an overestimation
of the signal’s complexity due to the inherent properties
of the EEG [62, 63, 126, 127]. Therefore, Tsallis en-
tropy might be a more reliable indicator of the signal’s
complexity [33, 64]. Tsallis entropy is defined as

TE =
1�

PM
i=1 p

q
i

q � 1
(A.2)
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In this equation, pqi is the probability of the presence of
the amplitude, and q refers to the nonextensivity degree,
termed the entropic index. The index is typically chosen
empirically, and no method for its determination exists
[62]. The entropic index was set to 2, as Tsallis entropy
with a q of 2 had significant prognostic power in EEGs
recorded within the first 24 hours [52]. Tsallis entropy
proved to have value for prognostication in studies with
animals su↵ering from PAC. Ghassemi et al. used it for
the first time in human outcome prediction [52].

Cepstrum coe�cients Cepstrum coe�cients
provide information regarding the rate of change of the
di↵erent frequency bands in the spectrum. It is de-
fined as “the inverse of the Fourier transform of the
log-magnitude of the spectrum of the signal” [33, 65].
The cepstrum coe�cients o↵er a di↵erent way to quan-
tify the complexity of a system than entropy. Cepstrum
was used in animal studies to evaluate postanoxic brain
injury, where its prognostic value outperformed other
spectral features [64]. Moreover, it showed a significant
contribution to outcome prediction within the first 24
hours of EEG recording in humans [52]. The calculation
of the cepstrum coe�cients is as follows [64, 65]:

1. Calculate the autoregressive (AR) coe�cients and
find the denominator of the spectrum of the EEG
signal:

H
�
e
j!
�
=

1

|A (ej!)| (A.3)

2. Calculate the log-magnitude of the spectrum:

C
�
e
j!
�
= log

�
H

�
e
j!
��

(A.4)

3. Take the inverse fast Fourier transform of the log-
arithm of the spectrum.

Hjorth mobility and complexity Hjorth mobil-
ity and complexity are two categories of the Hjorth pa-
rameters. They provide information about the spectral
frequencies in the EEG signal and quantify the statis-
tical property of the EEG in the time domain [66, 67].
Hjorth mobility is defined as: “the square root of the ra-
tio of the variance of the first derivative of the signal and
that of the signal” [67]. The Hjorth complexity quan-
tifies how much similarity the signal’s shape has with
that of a pure sine wave. With increasing similarity, it
approaches a value of 1 [67].

Mobility =

s
var (y0 (t))

var (y (t))
(A.5)

Complexity =
mobility (y0 (t))

mobility (y (t))
(A.6)

Here y (t) is the signal and y
0 (t) its first derivative.

Hjorth mobility correlated with outcome in the first 24

hours after CA. The elastic net selected Hjorth complex-
ity for outcome prediction in the first 24 hours after CA
[52].

False nearest neighbour The false nearest neigh-
bour algorithm is an algorithm to determine the embed-
ding dimension [69]. It is another measure to indicate
the signal’s complexity by quantifying its constancy and
smoothness [52]. I used an improved version of the al-
gorithm by Hegger and Kantz, which can discriminate
between deterministic and stochastic processes, indicat-
ing the signal’s continuity [68]. The false nearest neigh-
bour correlated notably with the neurological outcome
and was selected by the elastic net for feature prediction
[52], indicating it carried significant predictive value.

Autoregressive model coe�cients An AR
model can represent a random process. Therefore, one
can use it to investigate the EEG signal’s temporal char-
acteristics [64]. Ghassemi et al. showed that the AR co-
e�cients in their study had significant predictive value.
Specifically, these were the non-seasonal AR term co-
e�cients at t-1 and t-2 of a second-order AR model,
estimated by maximum likelihood given the EEG signal
[52]. The AR model with order p is defined as

AR = x [k]
pX

i=1

aix [k � i] + e [k] (A.7)

Here ai is the estimated coe�cient, and e[k] the white
noise in the time-series x[k] [64, 70]. The MATLAB
Econometrics toolbox is used to calculate the AR coef-
ficients [128].

Category features

As discussed in Appendix B.2, six categories of pat-
terns can be distinguished in postanoxic patients [17]:

1. Iso-electric EEG

2. Low voltage EEG (< 20 µV)

3. Burst-suppression EEG and the subcategory of
burst-suppressions with identical bursts

4. Epileptiform EEG, including status epilepticus
and generalised periodic discharges

5. EEG with continuous activity less than 8 Hz (dif-
fused slow EEG)

6. EEG with continuous activity equal to or greater
than 8 Hz (“normal” EEG)

Frequency band powers were used as features because
specific postanoxic EEG patterns, like the continuous
EEG activity patterns, are characterised by specific fre-
quencies. I calculated the power in a frequency band
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Figure A.6: Examples of EEG waves in the frequency do-
mains that were used as features. A) delta frequency, B)
theta frequency, C) alpha frequency, D) beta frequency.
Adapted from ”Towards the bio-personalisation of music rec-
ommendation systems: a single-sensor EEG biomarker of
subjective music preference” by Adamos D, Dimitriadis S,
Laskaris N. [130]

with MATLAB’s band power function, which uses a
modified periodogram to determine the average power in
the frequency range [129]. The frequency bands’ power
was normalised to the total signal power in the range of
interest (0.5-30 Hz), as this showed discriminative power
between good and poor outcomes [18, 54].

Normalised delta power The delta band com-
promises frequencies between 0.5–4 Hz (Fig. A.6)
[71, 72, 73]. In the study of Lee et al., delta frequency
normalised to total power was one of the most impor-
tant features for prediction in the time interval of 0-17h.
A higher value was associated with good neurological
outcomes [54].

Normalised theta power The theta band com-
promises frequencies between 4–7 Hz (Fig. A.6) [71, 72,
73]. Theta power/total power belonged to the top 10
features selected by LASSO in the model of Nagaraj et
al. [18].

Normalised alpha power The alpha band com-
promises frequencies between 8–13 Hz (Fig. A.6) [71, 72,
73]. As with normalised theta power, LASSO selected
normalised alpha power for outcome prediction [18].

Normalised beta power The beta band com-
promises frequencies between 14–30 Hz (Fig. A.6)
[71, 72, 73]. Normalised beta power was important for
prediction in the study of Lee et al. [54]. Moreover,
as with the normalised theta and alpha power, beta
power was selected by LASSO the study of in Nagaraj et

al.[18], where it showed significant discriminative power
between good and poor outcome. Higher values of beta
power were associated with good outcome [18].

Signal power The signal power was defined as the
total power in the frequency range of interest (0.5-30
Hz). Signal power showed to be one of the most im-
portant features for outcome prediction in the study of
Tjepkema-Cloostermans et al. [35].

Regularity Tjepkema-Cloostermans et al. devel-
oped the regularity feature to discriminate between
postanoxic EEG patterns with burst-suppressions and
continuous activity. The latter is assumed to have a
regular and constant amplitude [19]. The measure indi-
cates the continuity of the signal. Regularity might give
important information regarding the outcome, as burst
suppressions are associated with poor outcome, whereas
continuous activity indicates good outcome. The cal-
culation of regularity included several steps. A moving
average filter with a window of 0.5 seconds was applied
to the squared EEG signal. The length of this window
was chosen to average out the separate peaks in a sin-
gle burst optimally (at least 500 milliseconds in duration
[17]), without averaging out activity between successive
suppressions and bursts [19]. The moving average fil-
ter gave a non-negative and smoothed signal. Hereafter,
the values of this smoothed version were sorted in de-
scending order. Subsequently, this signal’s normalised
standard deviation was calculated, obtaining the regu-
larity feature of the EEG signal [19, 35]. The formula
for regularity is

REG =

vuut
PN

i=1 i
2q (i)

1
3N

2
PN

i=1 q (i)
(A.8)

N is the signal’s length in samples and q the smoothed
and sorted signal [19]. The value of the regularity lies
between 0 and 1, where 1 indicates a constant ampli-
tude. The regularity will approach zero if the number of
bursts is small or their duration is short and long sup-
pressions are present. If relatively long bursts or more
bursts are present, the value increases [18, 19, 35]. Regu-
larity showed a significant prognostic value in the study
of Tjepekema-Cloostermans et al. and Ghassemi et al.
[52, 19]. Higher values of regularity correlated positively
with a good neurological outcome [52].

Number of epileptic spikes Epileptic spikes in
the EEG are high-speed, high amplitude waves of 70
milliseconds or shorter [131]. They occur during the
epileptiform EEG pattern in PAC. Ghassemi et al. found
that the number of epileptic spikes present in the EEG
had a significant positive correlation with poor outcome.
Moreover, the number of spikes was included by the elas-
tic net for outcome prediction within the first 24 hours
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[52]. Therefore, I adopted the calculation of the num-
ber of epileptic spikes from the study of Ghassemi et
al. Waves were counted as spikes when their amplitude
reached a value of three standard deviations from the
mean signal value and when their duration was equal to
or shorter than 70 milliseconds [52].

Burst suppression ratio Burst suppression ra-
tio/minute (BSR) was the most often selected feature by
LASSO in the study of Nagaraj et al., indicating high
predictive power for predicting the neurological outcome
[18]. BSR is defined as:

BSR =
duration the EEG is lower than 5 µV

total duration EEG
(A.9)

The BSR is almost equal to the feature termed “low
voltage EEG” in the work of Ghassemi et al., which di-
vides the duration the EEG is lower than 5 µV by the
total duration of the EEG. Low voltage showed a signif-
icant positive correlation with poor outcome in the first
24 hours [52]. The features BSR and low voltage EEG
are related to the postanoxic low voltage EEG pattern,
which is associated with poor neurological outcome.

Connectivity features

The brain’s neural network architecture can be seen
as a system with many communicating subsystems or
brain areas [74]. The complex interactions between these
di↵erent areas reflect healthy brain activity [132]. Fea-
tures in this domain quantified the relationships between
specific channels, which indicated the interaction be-
tween the di↵erent brain regions. The connectivity fea-
tures were extracted between two channels and subse-
quently averaged across all channels.

Delta coherence I calculated the coherence in the
delta frequency band (0.5–4 Hz) between all channel
combinations with this feature. The coherence quan-
tified the degree of similarity in the delta band. When
a higher synchronisation level occurs, the brain activity
is less random and diverse, indicating less healthy brain
functioning [19, 35, 52]. For the calculation, a Hanning
window of 4 seconds with 2 seconds overlap was used
[19]. Delta coherence was an important feature in the
studies of Tjepkema-Cloostermans et al. and Ghassemi
et al. [35, 52].

Phase lag index Ghassemi et al. found that the
phase lag index (PLI) had a significant positive corre-
lation with poor outcome during the first 24 hours and
was selected by LASSO during both the interval of 0-12
and 13-24 hours [52]. The PLI quantifies interactions
between time series. Specifically, it is defined as “a mea-
sure of the asymmetry of the distribution of phase dif-
ferences between two signals” [74]. PLI was calculated

with the following formula.

PLI = |hsign [�� (t)]i| (A.10)

�� (tk) , k = 1. . . N

Here ��(tk) is the time series of phase di↵erences, and
tk are discrete time-steps and N the number of samples.
The index ranges between 0 and 1. When asymmetry
between two signals occurs, a constant non-zero phase
di↵erence between these two signals is present, called
the lag. With stronger non-zero phase locking, the PLI
approaches 1. If the phase-locking is perfect, with ��

di↵erent from 0 mod ⇡, the index is 1. When the signals
are coupled with a �� centred around 0 mod ⇡, or the
signals are not coupled to each other, the PLI is 0 [74].

The motivation for using the PLI as feature origi-
nated from a study that found that poor outcome is as-
sociated with decreased EEG connectivity. The neural
network architecture in patients with poor outcome was
observed to be smaller and less connected. If neurons’
activity is inadequately distributed and di↵erentiated,
impaired cerebral functioning might result [132]. The
PLI indicates the degree of asymmetry, which reflects
the connectivity. A good neurological outcome is corre-
lated to a high level of connectivity, which is associated
with a low level of asymmetry, thus a small PLI.

K. Feature input selection

The final feature set used as input was created by
excluding features with high multicollinearity from the
19 extracted qEEG features.

Calculation of high multicollinearity

Multicollinearity was calculated with the variance in-
flation factor (VIF). The VIF indicates if features are
correlated and contain similar information about the
variance within the dataset. The VIF is calculated as
follows.

V IF =
1

1�R
2
i

(A.11)

R
2 is the coe�cient of determination for the regression

of one feature on the other features. The R
2 is cal-

culated for each feature i, resulting in R
2
i . The VIF

indicates how much variance of one specific feature is
inflated as a result of multicollinearity. Although mul-
ticollinearity does not influence the predictive power of
a model, identifying its presence in a dataset is essen-
tial. If multiple features are highly correlated, the model
will not be able to determine the relationship between
one of those features and the outcome. Consequently,
the statistical significance of a feature decreases. There-
fore, the influence of one specific feature on the outcome
might be incorrectly estimated. When new data is pre-
sented to the model, large errors may occur due to this
incorrect feature-outcome relationship [56, 57]. I com-
puted the VIF with the code of Vasilaky [133]. Vasilaky
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eliminated the requirement to calculate multiple regres-
sions by computing the VIF by retrieving the diagonal
elements of the inversed correlation matrix [133, 134].
The correlation coe�cients were calculated for the fea-
ture matrix with the averaged features across per epoch
(matrix R

fxe, Appendix I). A feature’s multicollinear-
ity is often labelled high when the VIF is higher than
10 [135]. Therefore, features with a VIF higher than
10 were excluded to create the final feature set used as
input. The exclusion process was as follows:

1. The VIFs of the features were calculated.

2. The feature with the highest VIF was removed.

3. Step one and two were repeated until the highest
VIF had a value below 10.

The VIFs were recalculated after each feature re-
moval as the multicollinearity changed after every fea-
ture removal.

Results of the feature input selection

Figure A.7 displays the eight rounds of high VIF fea-
ture exclusion to create the final feature set. For each
round, a subplot of the VIF scores is shown. The highest
scoring feature was removed, and the VIFs were recal-
culated until the plot showed all VIF values below 10.
Table A.IV states the final features included in the set.

Table A.IV: Final feature set used as input to the LR and
LSTM model. This was the resulting set of features after
the features with high multicollinearity were excluded from
the 19 qEEG features. AR=autoregressive. LR=logistic re-
gression. LSTM=long short-term memory recurrent neural
network.

Final feature set
1. Tsallis entropy
2. False nearest neighbours
3. AR coe�cient 2
4. Normalised theta power
5. Normalised alpha power
6. Normalised beta power
7. Signal power
8. Regularity
9. Number of epileptic spikes
10. Burst suppression ratio
11. Delta coherence
12. Phase lag index

(a) Round 1: Cepstrum coe↵. 2 had the highest VIF and was
removed.

(b) Round 2: AR coe↵. 1 had the highest VIF and was removed.

(c) Round 3: Normalised delta power had the highest VIF and
was removed.
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(d) Round 4: Shannon entropy had the highest VIF and was re-
moved.

(e) Round 5: Hjorth compl. had the highest VIF and was removed.

(f) Round 6: Cepstrum coe↵. 1 had the highest VIF and was
removed.

(g) Round 7: Hjorth mob. had the highest VIF and was removed.

(h) Round 8: all features had a VIF below 10

Figure A.7: Bar graphs of the VIFs of all qEEG features.
These graphs were used for the selection of the final
feature set used as input to the models. Each round of
feature exclusion, the VIFs were calculated and the highest
scoring feature was removed until all features had a VIF
below 10. Y-axis: VIF score. X-axis: SE=Shannon entropy,
TE=Tsallis entropy, C1=cepstrum coe�cient, C2=cepstrum
coe�cient 2, HM=Hjorth mobility, HC=Hjorth complex-
ity, FNN=false nearest neighbor, d=normalised delta
power, t=normalised theta power, a=normalised alpha
power, b=normalised beta power, SP=signal power,
R=regularity, #S=number of epileptic spikes, BSR=burst
suppression ratio, dC=delta coherence, PLI=phase
lag index. Coe↵=coe�ecient. Compl=complexity.
Mob=mobility. (q)EEG=(quantitative) electroencephalog-
raphy. VIF=variance inflation factor.
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L. Additional feature sets

I created five AFSs (Table A.V). AFS 1 included all
qEEG features with low multicollinearity, equal to the
FFS used as input (Table A.IV), and two clinical fea-
tures: age and sex. Including clinical features like these
showed slightly better performance than qEEG features
alone in the work of Ghassemi et al., 2019 [52]. By com-
paring the model performance between AFS 1 and the
FFS, I could evaluate if adding clinical features would
increase the performance of the LR or the LSTM.

AFS 2 included all 19 extracted qEEG features. By
comparing AFS 2 and the final feature set, I could eval-
uate if the LSTM model benefitted from excluding fea-
tures with high multicollinearity. AFS 3 included all 19
extracted qEEG features and the clinical features age
and sex, which again allowed for evaluating the influ-
ence of clinical features.

AFS 4 was created by excluding qEEG features that
showed little discrimination between good and poor out-
come. The averaged features across all time-fragments
per epoch were used in this analysis (matrix R

fxe, Ap-
pendix I). I analysed the features with boxplots. A fea-
ture was included in AFS 4 if it satisfied either of the
following two criteria (Fig. A.8). (1) A minimal of 25%
of the epochs’ feature values with poor neurological out-
comes did not lie in the range of values from epochs
with good neurological outcomes or vice versa. Outliers
were excluded. In other words, 25% of the data in ei-
ther of the outcomes classes was invariably associated
with that outcome class. (2) The feature’s median value
from epochs with a poor neurological outcome lied out-
side the range between the 25 and 75 percentiles of the
feature values from epochs with a good neurological out-
come, and vice versa. Table A.VI states the results of
the evaluation of both criteria for all features. Figure
A.9 shows the boxplots of all features. The MATLAB
script used to create the boxplots is placed in Appendix
Z.5.

AFS 5 was created by excluding features with high
multicollinearity from AFS 4 using the same process as
discussed in Appendix K. Figure A.10 displays the five
rounds of high VIF feature exclusion to create the final
feature set. The MATLAB script used for the process of
high VIF feature exclusion is placed in Appendix Z.2.

A

B

Figure A.8: Examples of feature boxplots that satisfy the
criteria for feature inclusion in AFS 4. The x-axes denote
good or poor neurological outcomes, the y-axes the feature
value. The rectangle is the box, where the bottom edge de-
notes the 25th percentile and the top edge the 75th per-
centile. The central mark within the box indicates the me-
dian of the data. The whiskers extend to the most extreme
data points, outliers excluded. The ’+’ symbol denotes indi-
vidual outliers. A) Example boxplot of a feature that satisfies
criterion 1: A minimal of 25% of the feature values from pa-
tients with a poor neurological outcome does not lie in the
range of values from patients with a good neurological out-
come or vice versa. B) Example boxplot of a feature that
satisfies criterion 2: The feature’s median value from pa-
tients with poor neurological outcome lies outside the range
between the 25 and 75 percentiles of the feature values from
patients with good neurological outcome and vice versa.
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Table A.V: Additional feature sets. AR=autoregressive. BSR=burst suppression ratio. Coe↵=coe�cient. FNN=false nearest
neighbour. PLI=phase lag index. qEEG=quantitative electroencephalography. VIF=variance inflation factor.

AFS 1 AFS 2 AFS 3 AFS 4 AFS 5

Description

QEEG features
with low multi-
collinearity and
clinical features

All 19 extracted
qEEG features

All 19 extracted
qEEG features
and clinical
features

QEEG features
that show high
discriminative
power

QEEG features
that show high
discriminative
power and low
multicollinearity

Included 1. Tsallis entropy 1. Shannon entropy 1. Shannon entropy 1. Shannon entropy 1. Tsallis entropy
features 2. FNN 2. Tsallis entropy 2. Tsallis entropy 2. Tsallis entropy 2. Hjorth complexity

3. AR coe�cient 3. Cepstrum coe↵. 1 3. Cepstrum coe↵. 1 3. Cepstrum coe↵. 1 3. FNN
4. normalised theta 4. Cepstrum coe↵. 2 4. Cepstrum coe↵. 2 4. Cepstrum coe↵. 2 4. normalised beta
5. normalised alpha 5. Hjorth mobility 5. Hjorth mobility 5. Hjorth mobility 5. Epileptic spikes
6. normalised beta 6. Hjorth complexity 6. Hjorth complexity 6. Hjorth complexity 6. BSR
7. Signal power 7. FNN 7. FNN 7. FNN 7. Delta coherence
8. Regularity 8. AR coe↵. 1 8. AR coe↵. 1 8. normalised beta
9. Epileptic spikes 9. AR coe↵. 2 9. AR coe↵. 2 9. Epileptic spikes
10. BSR 10. normalised delta 10. normalised delta 10. BSR
11. Delta coherence 11. normalised theta 11. normalised theta 11. Delta coherence
12. PLI 12. normalised alpha 12. normalised alpha
13. Age 13. normalised beta 13. normalised beta
14. Sex 14. Signal power 14. Signal power

15. Regularity 15. Regularity
16. Epileptic spikes 16. Epileptic spikes
17. BSR 17. BSR
18. Delta coherence 18. Delta coherence
19. PLI 19. PLI

20. Age
21. Sex

Table A.VI: Criteria evaluation for all qEEG features. If
a feature satisfied either of the two criteria (visualised in
Fig. A.8) it was included in AFS 4 (bold). AFS=additional
feature set. AR=autoregressive. BSR=burst suppres-
sion ratio. Coe↵=coe�cient. FNN=false nearest neigh-
bour. PLI=phase lag index. qEEG=quantitative electroen-
cephalography.

Feature Criterion 1 Criterion 2
Shannon entropy Yes Yes
Tsallis entropy Yes Yes
Cepstrum coe↵. 1 Yes No
Cepstrum coe↵. 2 Yes No
Hjorth mobility Yes No
Hjorth complexity No Yes
FNN Yes No
AR coe�cient 1 No No
AR coe�cient 2 No No
Normalised delta No No
Normalised theta No No
Normalised alpha No No
Normalised beta Yes No
Signal power No No
Regularity No No
Epileptic spikes Yes No
BSR Yes No
Delta coherence Yes No
PLI No No

Figure A.9: Boxplots ((a) to (s)) of the feature values (y-
axis) for a good outcome (left) and poor (right) neurologi-
cal outcome (x-axis). The blue rectangle is termed the box,
where the bottom edge denotes the 25 percentiles and the
top edge the 75 percentiles. The red central mark within the
box indicates de median of the data. The whiskers extend to
the most extreme data points, outliers excluded. The red ’+’
symbol denotes individual outliers. Boxplots are visualised
on the following pages.

(a) Shannon Entropy
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(b) Tsallis Entropy

(c) Cepstrum Coe�cient 1

(d) Cepstrum Coe�cient 2

(e) Hjorth mobility

(f) Hjorth Complexity

(g) False Nearest Neighbours
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(h) Autoregressive Coe�cient 1

(i) Autoregressive Coe�cient 2

(j) Normalised Delta Power

(k) Normalised Theta Power

(l) Normalised Alpha Power

(m) Normalised Beta Power
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(n) Signal Power

(o) Regularity

(p) Epileptic Spikes

(q) Burst Suppression Ratio

(r) Delta Coherence

(s) Phase Lag Index
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(a) Round 1: Cepstrum coe↵. 2 had the highest VIF and was
removed.

(b) Round 2: Shannon ent. had the highest VIF and was removed.

(c) Round 3: Cepstrum coe↵. 1 had the highest VIF and was
removed.

(d) Round 4: Hjorth mob. had the highest VIF and was removed.

(e) Round 5: all features had a VIF below 10.

Figure A.10: Bar graphs of the VIFs of the features
from AFS 4. These graphs are used for feature selec-
tion for AFS 5. Each round of feature exclusion, the
VIFs were calculated and the highest scoring feature was
removed until all features had a VIF below 10. Y-axis:
VIF score. X-axis: SE=Shannon entropy, TE=Tsallis en-
tropy, C1=cepstrum coe�cient, C2=cepstrum coe�cient 2,
HM=Hjorth mobility, HC=Hjorth complexity, FNN=false
nearest neighbor, b=normalised beta power, #S=number
of epileptic spikes, BSR=burst suppression ratio, dC=delta
coherence. AFS=additional feature set. Coe↵=coe�cient.
Ent= entropy. Mob=mobility. VIF=variance inflation fac-
tor.
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M. Performance metrics

In this study, a poor neurological outcome was the
positive class (1) and good neurological outcome the
negative class (0). I define specific metrics to clarify
the subsequent calculations of the performance metrics
[58, 78, 136, 137]:

• True positive (TP) = the number of epochs cor-
rectly predicted as a poor outcome

• False positive (FP) = the number of epochs incor-
rectly predicted as a poor outcome

• True negative (TN) = the number of epochs cor-
rectly predicted as a good outcome

• False negative (FN) = the number of epochs in-
correctly predicted as a good outcome

• True positive rate (TPR) or sensitivity

TPR = Sensitivity =
TP

TP + FN
(A.12)

• True negative rate (TNR) or specificity

TNR = Specificity =
TN

TN + FP
(A.13)

• False positive rate (FPR)

FPR =
FP

FP + TN
(A.14)

• False negative rate (FNR)

FNR =
FN

FN + TP
(A.15)

Area under the receiver operating characteristic
curve

The receiver operating characteristic (ROC) curve
shows the predictive ability of the model for all thresh-
olds. The curve is made by plotting the TPR against the
FPR. The area under this curve (AUC) indicates the dis-
criminative power of the model. If the AUC approaches
1, the model can perfectly discriminate between poor
and good neurological outcome. When the area is close
to 0.5, the model’s predictions are close to chance [54].
AUC is preferred over accuracy if the dataset is imbal-
anced, to avoid overfitting one specific class [138, 139].

Sensitivity at specificity

From the ROC, one can evaluate the model’s sensi-
tivity at a certain specificity threshold, as the two are
plotted against each other. In this study, the model
was evaluated on its sensitivity with 100% specificity for
predicting poor outcome and its sensitivity with 95% to
predict good outcome.

N. Background information about neural
networks

The first algorithm of neural networks was published
by Rosenblatt in 1957 and is termed Perceptron (Fig.
A.11A) [140]. The Perceptron models a human neuron.
The computations in the Perceptron algorithm are as
follows.

y = f(W ·X + b) (A.16)

f(a) = f

⇢
+1, a � 0
�1, a  0

(A.17)

To make a prediction based on the input, the neuron
calculates the weighted sum of the input, X, with their
corresponding weights, W, (and optionally a bias, b).
It activates this sum with an activation function, f().
This activation function is a step function. The output,
y, is the result predicted by Perceptron. The weights
and bias are the unknown model parameters which need
to be determined with training data that includes the
input and true output. During training, the neuron’s
predicted output is compared to the true output, and the
error is fed back. With the use of the error, the model
parameters are estimated. The Perceptron, being just
one neuron in a single layer, is considered a prototype of
neural networks. The neuron will henceforth be termed
unit, consistent with the terminology often seen in the
literature. The Perceptron unit can be combined to form
multiple units within a layer. Moreover, multiple layers
can be connected. Figure A.11B displays an example of a
feedforward neural network. The units can employ other
activation functions than a step function. With non-
linear activation functions, the networks can map non-
linear relationships between input and output. Deep
learning networks refer to neural networks with many
layers of units [41, 42, 58].

O. Logistic Regression – Model parameter
estimation and mathematical background

LR can be classified as a neural network. LR regres-
sion is similar to the Perceptron but uses a di↵erent acti-
vation function (Fig A.12). LR predicts the probability
that the response variable, in this study the neurologi-
cal outcome, is equal to 1 based on a set of explanatory
variables, in this study the features. The probability
that the outcome has a value of 1 is termed the pre-
dicted value, p. As poor outcome defined the positive
class, p equalled the probability of a poor neurological
outcome. The relation between the predicted value and
the features in LR is established in a three-step process.
First of all, the relationship between the features and
the linear predictor of the logistic model is defined as

zi = w1xi1 + w2xi2 + · · ·+ wnxin + b (A.18)

Or in vector notation
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Figure A.11: A) A perceptron. This algorithm, consisting of just one unit in one layer, is considered a neural network
prototype. B) Multiple perceptrons connected to form a feedforward neural network. In the figures, x shows the input signal,
w the weights corresponding to each input,

P
the sum of the weighted inputs, f the activation function, and y the output.

Z = W ·X + b (A.19)

Where zi denotes the linear predictor, which is the
sum of the terms in the regression, b is the bias term, and
wixi is the term that indicates the value of the input fea-
ture xi and its coe�cient wi, also the weight coe�cient.
Secondly, the relationship between the linear predictor
zi and the predicted value pi is

zi = ln

✓
pi

1� pi

◆
(A.20)
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Figure A.12: Logistic regression model architecture. The
input matrix was fed into a single unit which calculates the
weighted sum of the input and the bias. This sum was
fed into a sigmoid activation function, which mapped the
value between 0 and 1. The output of the sigmoid func-
tion denoted the probability of a poor neurological outcome.
X=input, W=weights, b=bias, �=sigmoid activation func-
tion, p=predicted outcome.

Where
⇣

pi

1�pi

⌘
is named the formula for odds and the

log function of this formula is termed the logit func-
tion. If equation (A.18) and (A.20) are combined, the
resulting relationship between the predicted value and
the features is obtained:

ln

✓
pi

1� pi

◆
= zi = w1xi1 + w2xi2 + · · ·+ wnxin + b

(A.21)
Finally, to calculate the predicted value, the logit func-
tion needs to be solved for pi [41, 58, 59, 76, 78].

pi =
e
zi

1 + ezi
=

1

1 + e�zi
(A.22)

The LR model’s parameters, the bias term and the
weight vector have to be estimated. The estimation of
the model parameter compromises six steps [41, 42, 59]:

1. Construct the model with an initial set of random
model parameters

2. Forward propagation: for a batch of samples pre-
dict the outcome based on the features

3. Compute the loss, which is the di↵erence between
the predicted outcomes made by the model and
true outcomes

4. Backward propagation: compute the gradients of
the loss with respect to the model parameters and

5. Adjust the model parameters to minimise the loss
using the gradients

6. Repeat the process from step 2, iteratively updat-
ing the model parameters
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P. Logistic regression – Hyperparameters

Table A.VII summarises all hyperparameters imple-
mented in the LR or explored in the hyperparameter
optimization. Moreover, I discuss the hyperparameters
more detailly per category:

1. Hyperparameters to build the model

2. Hyperparameters to compile the model

3. Hyperparameters to fit the model

Building hyperparameters

These hyperparameters concerned building the
model and were mostly determined by the LR model’s
design (Fig A.12). One dense layer composed of one unit
with a sigmoid activation function (Fig. A.13) was used
to model the LR, as this results in a one-dimensional
probability [58, 146]. For the first iteration in the learn-
ing process, the weights must be randomly initialised to
small values to break symmetry during learning [60, 77].
By default, Keras uses the Glorot uniform initialiser for
the kernel weights [79]. The Glorot uniform, also termed
Xavier initialisation, samples from a random uniform
distribution within the following limit.

limit =

r
6

fanin + fanout
(A.23)

Where fanin and fanout refer to the number of input
units in the layer’s weight tensor and the number of out-
going units from that layer, respectively. The limit re-
sults in a constant variance of activations and gradients
through the network [141]. As the sigmoid and tanh
activation functions require a constant variance of in-
put, the Xavier initialisation is often used in combina-
tion with these activations [147]. Therefore, I used the
default Xavier initialiser for the kernel initialiser in the
LR. As biases are usually initialised to 0 [77], and Keras’
default is the zeros class, I also initialised the biases in
my model to 0.

Compiling hyperparameters

After the network was built, it was compiled. Com-
pilation computes the matrix transformations of the de-
fined network for the use of the processor. Compilation
requires a specification of the loss function to evaluate
the network and the optimiser algorithm. Furthermore,
additional metrics to the loss can be specified, which are
calculated while the model is fitted [79].

Loss function An often-used framework for esti-
mation is the maximum likelihood estimation (MLE)[76,
149]. MLE attempts to find the optimum values for the
model parameters from the provided training data. The
training data in this study included the features and

Figure A.13: A plot of the sigmoid function. Adapted from
“Activation Functions in Neural Networks” by Sharma, S,
2017 (https://towardsdatascience.com/activation-functions-
neural-networks-1cbd9f8d91d6) [148]

outcomes. Under the MLE framework, the di↵erence
between i) the probability distribution of the outcome
predictions made by the LR based on the features in the
training set, and ii) the probability distribution of the
true outcomes in the training set, was measured using
cross-entropy. For binary classification, a binary cross-
entropy loss function is the best choice for computing the
loss [41, 59]. Binary cross-entropy is defined as follows
[146, 150].

BCE = � 1

m

mX

i=1

y log (p)+ (1� y) log (1� p) (A.24)

In this equation, m denotes the number of samples used
(also termed the batch size), p the probability that the
outcome is equal to 1 (the predicted value), and y the
true outcome. The function is designed in such a way
that false predictions are not only penalised, but the
ones that are confident in their incorrect prediction re-
sult in a more severe penalty, thus in a larger loss, than
less confident ones (Fig. A.14) [150].

Figure A.14: A plot of the binary cross-entropy
function. Adapted from “How to use binary & cat-
egorical cross-entropy with Keras?” by Chris, 2019
(https://www.machinecurve.com/index.php/2019/10/22/how-
to-use-binary-categorical-crossentropy-with-keras/) [151])
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Table A.VII: Logistic regression hyperparameters. AUC=area under the curve of the receiver operating curve. LR=logistic re-
gression. ML=machine learning. NAG=Nesterov accelerated momentum. Ref=references. SeSp100=sensitivity at 100% speci-
ficity (for poor outcome prediction). SeSp95=sensitivity at 95% specificity (for good outcome prediction). SGD=stochastic
gradient descent.

Category Hyperparameter Option(s) implemented Reason behind the implemented option(s) Ref.
Build Type and number of layers 1 dense layer Defined by design of the LR model. [58]

Number of units 1 [59]
Activation function Sigmoid [77]

Kernel initialiser
Glorot uniform
(default)

Weights are required to be randomly initialised to
small values to break symmetry during learning.
As the sigmoid activation function was used,

[60]
[77]

Bias initialiser
Zeros
(default)

the Glorot uniform initialiser was the most
appropriate for the kernel. As biases are typically
initialised to 0, this is also done in this study.

[79]
[141]

Compile Loss function Binary cross-entropy
Binary cross-entropy is the most often used and
preferred loss function for binary classification
problems.

[58]
[59]
[77]

Optimiser 1) Mini batch SGD

SGD is the most commonly used optimiser in ML.
It updates model parameters by subtracting a
fraction of the gradient from the current model
parameters.

[41]
[58]
[59]
[77]

2) Mini batch SGD
using NAG

Applying NAG to SGD could result in more
stable learning behavior and faster convergence.

[78]
[142]
[143]

Learning rate
1) Mini batch SGD

rate = 0.1

Determines the degree with which the model
parameters are updated. For SGD a learning rate
of 0.1 was used to achieve convergence in a

[41]
[142]
[143]

2) Mini batch SGD
using NAG

rate = 0.01

reasonable amount of time. NAG allows for
smaller learning rates. Therefore, a learning rate
of 0.01 was used. Larger learning rate gives the
advantage of less computational time.

Metrics AUC, SeSp100, SeSp95 See Section 2.6

Fit Number of epochs
SGD:
200 to 3000
with step size 200

Number of times the complete dataset is passed
through the model once. Too few epochs result in

[58]
[59]

SGD with NAG:
100 to 6000
with step size 500

underfitting, too many in overfitting. The search
space was decided based on several initial runs.

Batch size 32 (default)

Determines the number of samples used to
compute the gradient of the loss function and
update the model parameters accordingly. It
does not significantly influence performance.
A default of 32 is confirmed to be appropriate
and was thus used.

[77]
[144]
[145]

Optimiser and learning rate The applied op-
timisation method was the commonly used mini batch
variant of Stochastic Gradient Descent (SGD), often re-
ferred to as just SGD [41, 58, 59]. The iterative process
of SGD optimised the model parameters to minimise
loss. During backwards propagation, the gradients of
the loss function with respect to the parameters were
calculated per stochastically chosen batch with size m.

@BCE

@W
=

1

m

mX

i=1

F (p� y)T (A.25)

@BCE

@b
=

1

m

mX

i=1

(p� y) (A.26)

Subsequently, the model parameters were updated in the
opposite direction of the gradients. Therefore, the gradi-

ents were multiplied with a learning rate and subtracted
from the previous model parameter values.

W = W� / 5BCE (W ) (A.27)

b = b� / 5BCE (b) (A.28)

Where / �W and / �b are termed the update vectors
and / denotes the learning rate. The learning rate de-
termines how much the model parameters are updated
due to the loss [41]. A larger learning rate results in
big step sizes and rapidly reaches a solution. However,
it might converge to a suboptimal solution, as the step
sizes are too big to find the minimum loss. On the other
hand, a small learning rate might also result in a subop-
timal solution as it could get stuck in a local minimum.
Moreover, a small learning rate could take too long to
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converge [59, 152, 153]. To overcome these challenges,
algorithms can be added to the SGD. As small learning
rates can get stuck in local minima and are slow in their
convergence, momentum is often added to accelerate the
learning process in the appropriate direction [59, 142].
With momentum, a fraction of the update vector of the
previous adjustment step is included in the current up-
date vector [58, 142].

vt = �vt�1+ / 5BCE (W ) (A.29)

W = W � vt (A.30)

vt = �vt�1+ / 5BCE (b) (A.31)

b = b� vt (A.32)

Where � is labelled the momentum term and sets the
fraction of the previous update vector added. A momen-
tum term of 0.9 is most commonly used [152, 154]. Mo-
mentum stimulates the SGD to update for dimensions
of which the gradients point in the same direction, and
discourages updates for dimensions of which the gradi-
ents change direction. Momentum results in significantly
faster convergence and dampens oscillatory learning be-
haviour [142, 143]. Furthermore, Nesterov accelerated
gradient (NAG) or also Nesterov momentum, is similar
to momentum. NAG computes the gradient from the
point the current momentum is directed to using an ap-
proximation of the parameters’ future position. There-
fore, it anticipates the future direction of the momentum
and can adjust the inner parameters accordingly. As a
result of this anticipatory behaviour, NAG shows more
stable learning [143]. SGD updates with applied NAG
are computed as follows.

vt = �vt�1+ / 5BCE
�
W � �vt�1

�
(A.33)

W = W � vt (A.34)

vt = �vt�1+ / 5BCE
�
b� �vt�1

�
(A.35)

b = b� vt (A.36)

The hyperparameter optimisation process explored both
traditional SGD and SGD applying NAG. As Nesterov
momentum allows for smaller learning rates, I used a
learning rate of 0.01 for SGD applying NAG. For SGD
without momentum, a larger learning rate of 0.1 was
used to reach convergence in a reasonable number of
epochs.

Metrics Additional to the loss, the metrics dis-
cussed in Section 2.6 were computed during fitting the
model. These metrics included the AUC, the sensitivity
at 100% specificity of poor outcome prediction, and the
sensitivity at 95% specificity of good outcome prediction.

Fitting hyperparameters

Fitting the model refers to adjusting the model pa-
rameters to the training data. Fitting required the spec-
ification of a training dataset, which in my case included
a feature matrix of [epochs, features] and an output ma-
trix with neurological outcomes per epoch. Backpropa-
gation is applied for a specified number of epochs, which
was one of the hyperparameters. The optimiser adjusts
the model parameters per batch, which required the sec-
ond hyperparameter specification, namely the batch size
[41, 58, 59].

Number of epochs For each learning rate, I
tuned the optimal number of epochs. The number of
epochs determines how many times the model parame-
ters are adjusted based on the loss computed (not to be
confused with the five-minute EEG recording) [42, 59].
It is crucial to set an appropriate number of epochs to
train the model. If this value is set too small, the model
might underfit. On the contrary, an overfit model can
occur when trained for too many epochs [58, 59]. The
number of epochs should compromise between under-
fitting and overfitting, where the chance of either one
occurring is limited. For the learning rate of 0.01, the
options for the number of epochs ranged from 100 to
6000. A step size of 500 was used (excluding the first
increment from 100 to 500 epochs). The options for
the number of epochs for the learning rate of 0.1 ranged
from 200 to 3000 with a step size of 200. I did not exceed
6000 and 3000 epochs, as these models showed signifi-
cant overfitting, of which the identification is discussed
shortly. The step sizes were determined with trial and
error.

Batch size The batch size determines the num-
ber of samples used to compute the gradient of the loss
function and update the model parameters accordingly
[144]. When more samples are used to update the model
parameters, these are likely updated in the appropriate
direction. The appropriate updates initially cause the
model’s loss to converge with large steps. With fewer
samples, the gradient’s computation will be noisy, as
it is relatively sensitive to outliers in the batch. Con-
sequently, smaller batches cause noisy model parameter
updates. These noisy updates lead to slower convergence
but o↵er an improved generalisation, and therefore often
better performance [77, 144, 145]. Keras uses a default
batch size of 32. Bengio and Masters & Luschi agree that
32 is an appropriate batch size, which generally results
in stable training and adequate regularisation [77, 145].
Batch size does not influence the generalisation ability
very much but a↵ects training time [77]. Considering
the limited e↵ect on performance, the limited available
computational resources and the confirmed good default
value of 32, I used a batch size of 32 for my LSTM net-
work.
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Figure A.15: The process to obtain the data with which the number of epochs with a specific learning rate were judged. First,
the learning rate and the number of epochs were defined. Hereafter 10-fold stratified cross-validation was repeated five times.
From the resulting 50 models, the stability of the learning behaviour near the end of training and the mean and the standard
deviation of the performance metrics were obtained. AUC=area under the receiver operator curve. CV=cross-validation.
SeSp100=sensitivity at 100% specificity (for poor outcome prediction)

Q. Logistic regression – Hyperparameter
optimisation

Hyperparameter performance quantification

To quantify how well a hyperparameter configuration
performed the model was judged based on i) the SeSp100
for poor outcome prediction and in a lesser amount the
AUC (both on unseen data), ii) the robustness, and iii)
the stability of the learning process near the end of train-
ing (Fig. A.15).

As the metrics were evaluated on unseen data, I
studied the performance and the generalisability of the
model. A dataset can be split into a training and a test
set to evaluate the generalisability. The model parame-
ters are constructed using the training set. The perfor-
mance is evaluated using the unseen test set. Training
a model on one training set and evaluating it on one
test set is likely to give an unreliable estimate of the
model’s performance. This unreliable estimate is due to
the possibility that outliers are present in the test set,
or the test set’s performance is good by chance [58]. I
used 10-fold stratified cross-validation (CV) to obtain a
more reliable estimate of the model’s performance (Fig.
A.16A). 10-fold CV split the dataset into ten folds. Each
fold contained approximately the same number of poor
and good outcomes. The model was trained on nine folds
of the data, labelled the training set. During training,
the model parameters were adjusted with every epoch,
constructing the model. Following training, the model’s
performance was evaluated on the unseen fold that was
held out, labelled the test set. Training and evaluating
was repeated ten times until all folds were used exactly
once as a test set. Between every repetition, the model
parameters were reinitialised [58, 59, 155]. After all rep-
etitions were completed, the scores from the test sets

were averaged across the ten models. As a result, the
mean of the metrics SeSp100 and AUC were obtained.
For further increased reliability and a robust estimate of
the model’s performance, I repeated the process of 10-
fold CV five times [84]. Subsequently, these five means
were averaged, resulting in a grand mean.

To judge a model based on robustness, the standard
deviation of the performance metrics of those repetitions
was also calculated. A robust model should show little
di↵erence in performance across folds. Therefore, the
preferred standard deviation was low.

The learning process’s stability focused on the
model’s loss near the end of the number of epochs used
for training. However, the loss computed on the train-
ing data after each epoch does not give insight into the
model’s generalisation ability. Therefore, the loss was
additionally computed on unseen data after each epoch.
Each repetition, 90% of the nine folds of training data,
termed the true training data, was used for construct-
ing the model parameters. The other 10% of the nine
folds, termed the validation data, was used to evaluate
the model’s performance on data is had not seen be-
fore (Fig. A.16B). The validation set contained approxi-
mately the same proportions of poor and good outcomes.
The model’s loss on the validation data (the validation
loss) was obtained after every epoch. For all five rounds
of 10-fold CV, the model’s training loss and validation
loss were plotted against the number of epochs. These
plots were classified into five groups, based on the val-
idation loss near the end of training (Fig. A.18): 1)
clearly decreasing validation loss, 2) slightly decreasing
validation loss, 3) plateaued validation loss, 4) slightly
increasing validation loss, and 5) clearly increasing val-
idation loss. Clearly decreasing validation loss (group
1) indicated significant underfitting and was therefore
not preferred. Clearly increasing validation loss (group
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Figure A.16: A) A visualisation of 10-fold cross-validation. The dataset was split into ten folds. Nine of the ten folds were
used as training data. The hold out fold was used to evaluate the model’s performance. Training and evaluating was repeated
ten times until all folds were used as test data exactly once. B) A visualisation of the division of the nine training folds into
90% true training data and 10% validation date. The loss on the training data and validation data was computed after every
epoch. The losses on both the training data and validation data were plotted against the number of epochs trained to classify
the learning behavior.The training/validation data split was done for all 10 repetitions of the 10-fold cross validation.

Group 1: clearly decreasing validation loss. The blue line denotes
the training loss, the orange line the validation loss.

Group 2: slightly decreasing validation loss. The blue line denotes
the training loss, the orange line the validation loss.

Group 3: plateaued validation loss. The blue line denotes the
training loss, the orange line the validation loss.

Group 4: slightly increasing validation loss. The blue line denotes
the training loss, the orange line the validation loss.
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Group 5: clearly increasing validation loss. The blue line denotes
the training loss, the orange line the validation loss.

Figure A.18: Plots illustrating the five groups of learning
behaviour as categorised by their validation loss. The plots
have the number of epochs on the x-axis and loss on the y-
axis. The blue line indicates the training loss, the orange one
the validation loss.

5) indicated significant overfitting and was therefore also
not preferred. Ideally, the model had reached a constant
validation loss (group 3). As the slightly in- or decreas-
ing validation loss (group 2 and group 3, respectively)
also resulted in a relatively stable model, these groups
were also considered preferable.

Hyperparameter performance evaluation

After the 50 models per configuration were obtained
using five rounds of 10-fold CV, and the configurations’
performance was quantified, the best performing con-
figuration was chosen through four steps (Fig. A.17).
The same steps were completed for both learning rates.
First of all, I considered the stability of learning be-
haviour. As severe under- and overfitting (group 1 and
5, respectively) should be avoided, the models trained for
the number of epochs that often showed this behaviour

were excluded. Specifically, I excluded the models that
used a specific number of epochs for training from fur-
ther analysis if more than 20% of them (10 or more of
the 50) was classified in group 1 or 5. Secondly, for both
the SeSp100 and AUC, the number of epochs producing
the highest means were chosen. Thirdly, to account for
the robustness, the metrics’ means were divided by their
standard deviation. I termed the resulting score the ro-
bust performance score. For both metrics, I listed the
number of epochs with the top three highest robust per-
formance scores. The number of epochs with the highest
SeSp100 score while having a good AUC score was con-
sidered the optimal number of epochs for that learning
rate. Finally, the hyperparameters of the models scoring
the highest SeSp100 between the two learning rates were
implemented in the final LR model.

Consequently, the learning rate and the number of
epochs used for the final model gave a stable validation
loss and showed good and robust performance. As stable
learning behaviour was assured for the final model, no
validation set was needed, and the nine folds in the 10-
fold CV were used entirely for training. As a result,
the model made use of the maximum data available for
training.

R. LSTM – Model parameter estimation
and mathematical background

Figure A.19 visualises the interactions within the
LSTM cell. Xt denotes the input and ht the output
at timestep t. Figure 24 represents three equally struc-
tured LSTMs cells ’unrolled’ over di↵erent timesteps.
The information flow mathematics is discussed step-by-
step [41, 43, 59, 83].

In Figure A.20 visualises the flow of the cell state C.
The cell receives the cell state from t-1 and can adjust
this state through specific gates, including the forget,
input, and output gate. The gates work like a filtering
mechanism, regularising the flow of information. The
gates consist of i) a NN layer with a specified num-
ber of units, implementing the operation in Equation
(A.16), and applying a sigmoid activation function (Sec-
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Figure A.17: The flowchart of selecting the optimal number of epochs for a specified learning rate. First of all, the numbers of
epochs that resulted in 20% or more of the models classified in group 1 (clearly decreasing validation loss) or group 5 (clearly
increasing validation loss) were excluded from further analysis. Subsequently, per metric the numbers of epochs that produced
the highest mean were chosen. Hereafter, these means were divided by their standard deviation. The resulting score was
termed the robust performance score. Finally, the optimal number of epochs was chosen based on the top 3 highest robust
performance scores rankings.
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Figure A.19: LSTM cell at three consecutive timesteps. ht=output at time-step t. �=sigmoid function. Tanh=hyperbolic
tangent function. Xt=input at timestep t. Adapted from ”Understanding LSTM Networks” by Olah, C., 2015,
(https://colah.github.io/posts/2015-08-Understanding-LSTMs/). LSTM=long short-term memory recurrent neural network
[43]

tion 2.7, Eq. 4), and ii) an element-wise multiplication
(the Hadamard product). The NN layer with the sig-
moid function outputs a value between 0 and 1 for each
number in the cell state. Subsequently, the gate uses this
value for the multiplication. When a value of 0 is out-
putted, it completely closes that gate. As the element
in the cell state is multiplied with 0, all information is
removed. When the output is 1, the gate is fully open,
and all information of that element in the cell state is
passed through.

Figure A.20: The flow of the cell state through an
LSTM cell. Ct=cell state at time-step t. fCt=candidate
state at time-step t. ft=forget gate at timestep t.
ht=output at time-step t. it=input gate at timestep
t. ot=output gate at timestep t. �=sigmoid func-
tion. Tanh=hyperbolic tangent function. xt=input at
timestep t. Adapted from ”Understanding LSTM Networks”
by Olah, C., 2015, (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/) [43]

Figure A.21: Operation of the forget gate. Ct=cell state
at time-step t. fCt=candidate state at time-step t. ft=forget
gate at timestep t. ht=output at time-step t. it=input gate
at timestep t. ot=output gate at timestep t. �=sigmoid
function. Tanh=hyperbolic tangent function. xt=input at
timestep t. Adapted from ”Understanding LSTM Networks”
by Olah, C., 2015, (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/) [43]

ft = � (Wf · xt + Uf · ht�1,+bf ) (A.37)

First of all, the cell decides what to remove and what
to preserve from the previous cell state based on the
previous output, ht � 1, and the current input, xt, with
the forget gate layer ft (A.37) (Fig. A.21). Wf and Uf

denote the weight matrices and bf the bias of the forget
gate layer.

it = � (Wi · xt + Ui · ht�1 + bi) (A.38)

fCt = tanh (Wc · xt + Uc · ht�1 + bc) (A.39)
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Figure A.22: Operation of the input gate and the can-
didate state. Ct=cell state at time-step t. fCt=candidate
state at time-step t. ft=forget gate at timestep t.
ht=output at time-step t. it=input gate at timestep
t. ot=output gate at timestep t. �=sigmoid func-
tion. Tanh=hyperbolic tangent function. xt=input at
timestep t. Adapted from ”Understanding LSTM Networks”
by Olah, C., 2015, (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/) [43]

The input gate also uses the concatenated ht�1 and
xt to determine what information should be added to the
cell state (Fig. A.22). This process is composed of two
parts. The input gate layer, it, decides which elements
in the cell state should be updated (A.38). Meanwhile,

the candidate state, fCt, is created to decide what in-
formation should be added to the update (A.39). fCt is
generated by passing ht � 1 and xt through a NN layer
operating with Equation 16 and using a hyperbolic tan-
gent (tanh) (A.40) (Fig. A.23). Tanh is used to obtain
a value between -1 and +1, providing the possibility to
either increase or decrease elements in the cell state. Wi,
Ui, bi and Wc, Uc, bc represent the weight matrices and
the biases.

tanh (x) =
(ex � e

�x)

(ex + e�x)
(A.40)

Figure A.23: Plot of the hyperbolic tangent
function. Tanh=hyperbolic tangent. Adapted
from ”Hyperbolic Tangent” by Wikimedia, 2020,
(https://commons.wikimedia.org/wiki/File:Hyperbolic
Tangent.svg) [156]

Ct = ft ⇤ Ct�1 + it ⇤ fCt (A.41)

Figure A.24: Operation of the update of the cell
state. Ct=cell state at time-step t. fCt=candidate
state at time-step t. ft=forget gate at timestep t.
ht=output at time-step t. it=input gate at timestep
t. ot=output gate at timestep t. �=sigmoid func-
tion. Tanh=hyperbolic tangent function. xt=input at
timestep t. Adapted from ”Understanding LSTM Networks”
by Olah, C., 2015, (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/) [43]

Subsequently, the candidate state is multiplied by the
input gate and added to the previous cell state, creating
a new cell state (A.41) (Fig. A.24).

Figure A.25: Operation of the output gate. Ct=cell state
at time-step t. fCt=candidate state at time-step t. ft=forget
gate at timestep t. ht=output at time-step t. it=input gate
at timestep t. ot=output gate at timestep t. �=sigmoid
function. Tanh=hyperbolic tangent function. xt=input at
timestep t. Adapted from ”Understanding LSTM Networks”
by Olah, C., 2015, (https://colah.github.io/posts/2015-08-
Understanding-LSTMs/) [43]

ot = � (Wo · xt + Uo · ht�1 + bo) (A.42)

ht = ot ⇤ tanh (Ct) (A.43)

The new state is passed on to the next timestep.
The output generated by the cell, ht, is controlled by a
final gate: the output gate ot (A.42) (Fig. A.25). The
cell state is first mapped between -1 and 1 by a tanh
function, after which it is multiplied by the output gate
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(A.43). Wo, Uo and bo represent the weight matrices and
bias matrix of the output gate, respectively [41, 43, 59].

The output ht is passed onto the next layer, being
another LSTM layer or a dense layer for classification.
The dimension of ht is equal to the number of units in
the NN layers within the cell. Figure A.26 more detailly
visualises the operations within the layers and gates.

In this study, the dense layer was composed of one
unit using a sigmoid activation function and computed
the following operation [79].

ŷ = � (WFCht + bFC) (A.44)

Where ht denotes the LSTM layer’s output, � the sig-
moid activation function, WFC and bFC the weights and
bias of the dense unit, respectively, and ŷ the probability
of a poor neurological outcome. All model parameters
have to be estimated. The estimation of the model pa-
rameters, also the learning process, can be divided into
six steps, similar to the LR [41, 59]:

1. Construct the model with an initial set of random
model parameters

2. Forward propagation: for a batch of samples, pre-
dict the outcome based on the sequence of time-
fragments of features

3. Compute the loss, which is the di↵erence between
the predicted outcomes made by the model and
actual outcomes

4. Backpropagation through time (BPTT): unroll the
network and calculate the gradients of the loss with
respect to the model parameters across all time-
fragments

5. Adjust the model parameters to minimise the loss
using the gradients of all time-fragments

6. Repeat the process from step 2, iteratively updat-
ing the model parameters

The gradients were computed with BPTT through
the following operations [83]. The gradient of output
at time t, �, ht, was calculated using 4t and �ht. 4t

denotes the output di↵erence at time t, computed with
the loss’s derivative with respect to ht. �ht denotes the
output di↵erence computed at t+1, which will be zero
for the last time-fragment as no future time-fragments
exist.

�ht = 4t +�ht (A.45)

�Ct = �outt⇤ot⇤
�
1� tanh

2 (Ct)
�
+�Ct+1⇤ft+1 (A.46)

The gradients of the gates at time t :

�fCt = �Ct ⇤ it ⇤
⇣
1� fCt

2⌘
(A.47)

�it = �Ct ⇤ fCt ⇤ it ⇤ (1� it) (A.48)

�ft = �Ct ⇤ Ct�1 ⇤ ft ⇤ (1� ft) (A.49)

�ot = �ht ⇤ tanh (Ct) ⇤ ot ⇤ (1� ot) (A.50)

The gradients of the input of time t and the output of
time t-1 :

�xt = W
T + �gatest (A.51)

�ht�1 = U
T + �gatest (A.52)

The model parameters were updated as follows [83]. In
this study T=30 time-fragments.

�W =
TX

t=0

�gatest ⇤ xt (A.53)

�U =
T�1X

t=0

�gatest+1 ⇤ ht (A.54)

�b =
TX

t=0

�gatest+1 (A.55)

S. LSTM - Hyperparameters

I included the most promising options for hyperpa-
rameters in the search space of the random search (Table
A.VIII). These options were obtained from Keras’ de-
faults or derived from literature. The hyperparameters
and the options are detailly discussed for three separate
categories:

1. Hyperparameters to build the model

2. Hyperparameters to compile the model

3. Hyperparameters to fit the model

Building parameters

The definition of several hyperparameters is required
to build an LSTM network. Furthermore, the used
framework allows the specification of multiple optional
hyperparameters. In Keras, LSTMs are built as a se-
quence of stacked layers. EEG-based classification or
regression LSTMs generally compromised one or two
LSTM layers, followed by one dense layer [50]. One
hyperparameter must be specified, which is the num-
ber of units in the layer. Several hyperparameters have
a default option used by the framework which can be
changed, including the activation function and the ini-
tialisation of the model parameters. Furthermore, one
can use several regularisation techniques, including reg-
ularises, constraints, and dropout.
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Figure A.26: Visualisation of neural network layers in an LSTM cell. In this example the number of units is 3, resulting
in an output dimension on 3. Ct=cell state at time-step t. fCt=candidate state at time-step t. ft=forget gate at timestep t.
ht=output at time-step t. it=input gate at timestep t. ot=output gate at timestep t. �=sigmoid function. Tanh=hyperbolic
tangent function. xt=input at timestep t. LSTM=long short-term recurrent neural network.

LSTM related

The number of LSTM layers and units The
number of layers and the number of units per layer de-
termines the number of learnable model parameters and
thereby the capacity. Too much capacity results in over-
fitting and requires a lot of computational resources.
Not enough capacity leads to underfitting [59, 77, 157].

The optimal number of LSTM layers and cells varies
per data and application [44]. These hyperparameters
are generally determined empirically, as no formula ex-
ists to find the optimal values [58, 59, 158]. As for
the number of LSTM layers, most EEG-based classifi-

cation or regression LSTMs included 1 or 2 [50]. As for
the number of units, Bengio found that using an equal
number of units for all layers achieved higher or simi-
lar performance than using a di↵erent number of units
for each layer. However, this might be data-dependent
[77, 159]. Bengio reported that a first layer with more
units than the input vector often worked better than one
with units than the input vector. Moreover, he stated
that a number of units larger than the optimal number
generally does not significantly decrease the generalisa-
tion performance [77]. Heaton provided three rules of
thumb for obtaining a starting point for the number of
units. Furthermore, he suggested trying di↵erent num-
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bers around these starting points. The three rules are as
follows [157]: i) The number of units should be between
the input layer’s size and the output layer’s size. ii) The
number of units should be 2/3 the size of the sum of the
input and output layer. iii) The number of units should
not exceed the size of the two times the input layer.

These rules resulted in the following number of units
using the 12 extracted qEEG features: i) between 1 and
12 units, ii) 9 units, and iii) a maximum of 24 units.

The search space included 1 or 2 layers with an equal
number of units ranging from 2 to 24, with increments
of 2, as these options followed the recommendations of
Bengio, Craik et al. and Heaton [50, 77, 157].

Activation function of the LSTM layer(s) Ac-
tivation functions add nonlinearity to the units that per-
form a linear operation (Eq. (A.16)), giving the network
the ability to learn non-linear relationships between the
input and output [41, 58]. In the original design of the
LSTM cells [80, 81], the gate layers use a sigmoid ac-
tivation function (Section 2.7, Eq. 4) and use a hy-
perbolic tangent (Eq. 40) for the activation of the cell
state. As the gates are required to function as a filter
mechanism, multiplying values in the (candidate) state
vector with a value between 0 and 1, a sigmoid acti-
vation function is appropriate. Therefore, I used the
original design with a sigmoid as recurrent activation
in this study. Some EEG-based LSTM studies changed
the tanh function to a rectified linear (ReLu) activation
function (e.g. [37, 86]), as ReLus form the most popu-
lar activation function in NN at the moment [41]. ReLu
(Fig. A.27) returns the provided input if this is larger
than 0; otherwise, it returns 0 [58]. ReLu has the ad-
vantage of producing sparse representations, being com-
putationally cheaper than tanh functions and being able
to handle the vanishing gradient problem [160, 161]. Al-
though the ReLu seems attractive, several disadvantages
exist, especially concerning its use in this study. The
sparse representations are the result of the inactivation
of specific units whose input values are negative. This
behaviour of ”killing o↵” units in the network causes the
requirement of twice as many units as a network using
the tanh function would need [161]. An increased num-
ber of units increases the number of model parameters
to be estimated [59]. Consequently, the computational
resources needed are increased, which was not desired.
Furthermore, the advantage of ReLu being capable of
handling vanishing gradient does not have added value
with an LSTM network, as LSTMs do not su↵er from
the vanishing gradient problem [80]. Moreover, the lin-
ear design of the ReLu in the positive domain causes
unbounded behaviour of the activations. Additional reg-
ularisation techniques are required to prevent problems
resulting from unbounded behaviour, adding complexity
to the model [161]. Additionally, the mean of the ReLu
is non-zero as the activation is non-negative. A non-zero
mean causes a bias for the next layer, which could cause

a bias shift for the following units [160]. A bias shift de-
creases learning e↵ectiveness and speed [162]. For opti-
mal learning speed, inputs with a non-zero mean should
always be avoided [163]. The tanh does not induce a
bias shift, as its mean is zero-centred. In my case, the
disadvantages of using a ReLu outweigh the advantages.
Consequently, I used a tanh activation function and did
not change the original LSTM cell design.

Figure A.27: Rectified Linear (ReLu) activation func-
tion. Adapted from “ReLU : Not a Di↵erentiable
Function: Why used in Gradient Based Optimisa-
tion? and Other Generalisations of ReLU.” Sarkar
K. 2018 (https://medium.com/@kanchansarkar/relu-
not-a-di↵erentiable-function-why-used-in-gradient-based-
optimisation-7fef3a4cecec) [164] )

Weight initialisers of the LSTM layer(s) The
layer weight initialisers include the kernel initialiser,
used for the linear transformation of the inputs, the re-
current initialiser, used for the linear transformation of
the recurrent states, and the bias initialiser, used to ini-
tialise the biases. As biases are usually initialised to
0 [77], and Keras’ default is the zeros class, I also ini-
tialised my LSTM model’s biases to 0.

The (recurrent) weights must be randomly initialised
to small values and not to 0. The small random val-
ues are required to break the symmetry between the
di↵erent units in an NN layer. Otherwise, these units
will be updated the same way in every iteration, which
will result in no better performance than a linear model
[60, 77]. By default, Keras uses the Glorot uniform ini-
tialiser for the kernel weights [79]. The Glorot uniform,
also termed Xavier initialisation, samples from a random
uniform distribution within the following limit.

limit =

r
6

fanin + fanout
(A.56)

Where fanin and fanout refer to the number of input
units in the layer’s weight tensor and the number of out-
going units from that layer respectively. The limit re-
sults in a constant variance of activations and gradients
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through the network [141]. As the sigmoid and tanh
activation functions require a constant variance of in-
put, the Xavier initialisation is often used in combina-
tion with these activations [147]. Therefore, I used the
default Xavier initialiser for the kernel initialiser in the
LSTM.

The gradients of recurrent weights in an LSTM are
propagated over many timesteps, forming a deep net-
work resulting from the temporal component. The ini-
tialiser of the recurrent weights is by Keras’ default or-
thogonal. Assumably, this default was chosen because
orthogonal initialisation provides reliable propagation of
the gradients in deep non-linear networks [165]. I used
the default, as I did not find contradictory literature
about using orthogonal recurrent initialisers for LSTMs.

Dense related

Dense layer A dense layer followed the LSTM
layer(s). Dense layers are used to convert the output
from the LSTM cells to the predicted output. In gen-
eral, for binary classification of a NN, it is appropriate
to include a final dense layer composed of one unit with
a sigmoid activation [58, 59, 77]. I implemented that
structure, as it results in a one-dimensional probability,
corresponding to the required output of this study (the
probability of poor outcome).

Weight initialisers of the dense layer The layer
weight initialisers for the dense layer include the kernel
initialiser and the bias initialiser. As a result of Keras’
default, the kernel initialises using the Glorot uniform
initialiser, and the bias initialises to 0. The same ar-
guments for using these defaults stated in the LSTM
layer’s weight initialisers apply for the dense layer. Con-
sequently, the kernel was initialised using Glorot uniform
and the bias was initialised with the zeros class.

Regularisation related

There is always the danger that the model over-
fits, which significantly decreases its performance on un-
seen data. The best solution to prevent overfitting is to
train the model with more data [59, 77, 157]. However,
training with more data is impossible due to the limited
dataset available for this study. Other methods exist to
decrease overfitting and increase generalisation ability.
First of all, the model should not have the amount of
capacity to be able to overfit on the training data. As
previously stated, the number of layers and the number
of units per layer determine the capacity. An appro-
priate number of layers and units were carefully deter-
mined using automated random search to reduce overfit-
ting risk due to too much capacity. Another solution to
overfitting is reducing the model’s complexity by forc-
ing the model parameters to be small [59]. Smaller val-

ues for the model parameters, result in a more regular
distribution of model parameter values and a more sta-
ble model. Hence, methods that increase generalisation
are termed regularisation methods [60]. Various regu-
larisation methods are available. The most often and
most e↵ective regularisation technique in NN is dropout
[59, 77, 166]. Finally, a batch normalisation (BN) layer
can be included in the model’s architecture, which pro-
vides a regularisation e↵ect. However, BN mostly ad-
dresses learning speed [162].

Dropout Dropout is a regularisation technique to
reduce overfitting, first introduced by Hinton et al., and
improved by Srivastava et al. [167, 168]. With a prede-
fined probability, also termed the dropout rate, the tech-
nique randomly drops units while training. Temporar-
ily dropping specific units, helps to avoid too many co-
adaptations between them. These co-adaptations might
not generalise well to data the model has never seen
before, resulting in overfitting [167]. Although apply-
ing dropout in feedforward NNs improves performance
[58, 167], Chollet reported that applying dropout in
RNN complicates learning rather than improves gen-
eralisation [59]. Gal and Ghahramani determined the
correct application of dropout in RNN and came to the
following conclusions. First of all, the same dropout
mask should be used for the inputs of all timesteps. A
randomly applied dropout mask at each timestep would
hinder the propagation of the loss through time, thereby
disrupting learning. Secondly, next to the connections
between layer in RNN, the connection between recur-
rent units should also be regularised with dropout [169].
Therefore, a temporally constant (recurrent) dropout
mask was made available for Keras to implement LSTM
layers. The (recurrent) dropout rate is another hyperpa-
rameter to be determined. The dropout rate is typically
set between 0.2 and 0.5 [59, 170]. For all LSTM layers,
a dropout and recurrent dropout (with the same mask
for all timesteps) were included in the search with a rate
0 (meaning no dropout), 0.2 and 0.5.

Weight regularisers A regulariser aims to push
the model parameters to small values, which lead to a
less complex model and therefore less chance of over-
fitting on [59]. The regulariser picks the smallest model
parameters that predict the output, thereby suppressing
irrelevant components of the model parameters [171].
Weight regularisation applies a penalty on the model
parameters of the layer. The penalties are added to
the loss function, which is minimised in the optimisa-
tion process. Consequently, the model parameters are
also minimised [79, 77]. Three types of regularisers are
available [59, 77, 79, 166].

• L1 regularisation, of which the penalty is com-
puted by the sum of the absolute values of the
weights and/or biases. L1 forces the model param-
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eters that are not contributing to 0, encouraging a
sparse model.

• L2 regularisation, of which the penalty is com-
puted by the sum of the squared values of the
weights and/or biases. L2 penalises larger model
parameters more strongly but does not push them
to exactly 0.

• L1 L2 regularisation, which applies both L1 and
L2 penalties.

All penalties are multiplied with a regularisation fac-
tor to determine in what degree the penalty should
influence the optimisation process. The factor has a
value between 0 and 1, where higher factors cause a
larger penalty. The regularisers can be applied to the
layer’s model parameters separately, including the model
weights, the recurrent weights or the bias. Only penal-
ising the biases is discouraged, as it might be compen-
sated by the weights [77]. Furthermore, a regulariser
can be applied to the layer’s output, also termed ac-
tivation, which encourages units to be sparse and give
small outputs [79]. As I already aimed to limit overfit-
ting by carefully choosing the number of LSTM layers
and units and applying dropout and the limited com-
putational resources, regularisers were not included in
the original search. However, weight regularisation was
manually explored with the best hyperparameter config-
uration obtained from the search, to evaluate if higher
performance was achieved with L1, L2 or L1 L2 regular-
isation.

Weight constraints Weight regularisers apply
penalties that encourage small model parameters [59],
but they do not force small model parameters. Weight
constraints can be applied to the model parameters dur-
ing training to force the model parameters to be within
a specific range [79]. If a gradient update violates a con-
straint on the model parameters, the model parameters
are rescaled. Therefore, weight constraints are more ag-
gressive and do not allow model parameters to become
very large, regardless of the gradient update size [168].
Constraints can be applied on the weights and the bi-
ases. However, they are typically not applied on the bias
[172]. Four types of constraints are available in Keras
[79]:

1. Max-norm, which forces the model parameters to
be a value less than or equal to the defined limit.

2. Min-max norm, which forces the model parameters
to be between the defined lower and upper limit.

3. Non-negative norm, which forces the model pa-
rameters to be non-negative.

4. Unit-Norm, which forces the model parameters to
be of a magnitude of 1.

I did not apply weight constraints in the search for the
same reason as the weight regularisers were not applied.
I already aimed to limit overfitting by carefully choos-
ing the number of LSTM layers and units and apply-
ing dropout. Furthermore, the computational resources
available were limited.

Batch normalisation A BN layer can be built
in the architecture of the model. BN was introduced by
Io↵e and Szegedy to reduce the internal covariate shift
that complicates training deep NN, which is the shift
in the distribution of the inputs to each layer due to
the change in parameters of previous layers [162]. The
internal covariate shift causes decreased learning speed
and e↵ectiveness, as is requires low learning rates and
careful initialisation of parameters. BN normalises the
layer inputs, which removes the influence of changing pa-
rameters of one layer on the following layers. In feedfor-
ward NNs, BN proved to accelerate learning, by allowing
larger learning rates, and generalise better, by o↵ering
a form of regularisation of the model [162]. BN was
applied by Laurent and Pereyra in RNN to the hidden-
to-hidden transitions, referring to ht�1, and the input-
to-hidden transitions, referring to xt. They concluded
that the hidden-to-hidden BN did not improve the train-
ing process. Furthermore, they observed that input-
to-hidden transitions, which only influence the connec-
tions between layers and not the connections between
timesteps within the recurrent layer, did not improve
the generalisation performance [173]. Cooijmans et al.
reported that BN, after careful initialisation of the BN
parameters, of hidden-to-hidden transitions in LSTMs
does improve training speed and generalisation [174].
However, it is not possible in Keras to apply BN be-
tween recurrent LSTM cells; it can only be applied be-
tween stacked layers. As BN between stacked layers did
not improve the model’s performance [173], BN was not
included in the LSTM in this study.

Compiling hyperparameters

After the network was built, it was compiled. Com-
pilation computes the matrix transformations of the de-
fined network for the use of the processor. Compilation
requires a specification of the loss function to evaluate
the network and the optimiser algorithm. Furthermore,
additional metrics can be specified, which are calculated
while the model is fitted.

Loss function Typically, a binary cross-entropy
loss function (Eq. (A.24)) is used in NN for binary
classification [58, 59, 77]. Therefore, I used a binary
cross-entropy loss function to compute the loss in this
model.

Optimiser An optimiser algorithm uses the gradi-
ents, computed by the backpropagation through time, to
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iteratively change the model parameters to decrease the
loss [41]. Mini-batch stochastic gradient descent (SGD)
and the variant using momentum or Nesterov acceler-
ated gradient are explained in Appendix P. Until the
last few years, mini-batch SGD formed the golden stan-
dard [77]. Especially when combined with (Nesterov)
momentum, SGD is less impacted by the initially set
learning rate and can better escape from suboptimal lo-
cal minima [142, 143]. However, SGD (with (Nesterov)
momentum) applies the same learning rate to all model
parameters whilst updating. In the last decade, opti-
miser algorithms that adapt the learning rate to each
individual model parameter whilst updating were devel-
oped and gained popularity. Therefore, these algorithms
can update individual model parameters according to
their importance [168, 175, 176, 177, 178].

Adagrad was the first developed algorithm capable of
individually updating model parameters [176]. Adagrad
updates model parameters that were infrequently up-
dated with a larger amount than the model parameters
that were frequently updated during training. Adagrad
updates the model parameters by multiplying the cur-
rent gradient with a learning rate scaled by the square
root of the sum of the squared gradients from all previous
timesteps. As this scaling of the learning rate determines
the model parameters’ updates, the impact of the initial
learning rate on the learning process is significantly less
than with SGD [176]. The disadvantage of Adagrad is
the increasingly larger square root with which the learn-
ing rate is divided. The square root grows with every
iteration, as the squared gradient from the previous it-
eration is added. Consequently, the scaled learning rate
becomes increasingly smaller throughout the training.
When this update vector decreases to an infinitely small
number, the algorithm cannot learn anymore.

An extension of Adagrad was developed, namely
Adadelta, to address this problem [177]. Adadelta does
not divide the learning rate by a square root of the ac-
cumulation of the previously squared gradients, but by
the square root of the decaying average of all previously
squared gradients. The latter does not cause a continual
decay of the scaled learning rate. The square root of the
decaying average of all previously squared gradients is
equal to the root mean squared (RMS) error criterion of
the gradient. Furthermore, the learning rate is replaced
by the square root of the decaying average of all previous
squared parameter updates, eliminating the requirement
of selecting an initial learning rate [177].

The RMSprop algorithm was also developed to ad-
dress the problem of the increasingly smaller-scaled
learning rate. RMSprop is similar to Adadelta; it di-
vides the learning rate by the RMS error criterion of the
gradient [168].

The following SGD-based algorithm is basically RM-
Sprop with momentum: Adaptive Moment Estimation
(Adam) [175]. Additional to calculating the decaying
average of past squared gradients, Adam calculates the

decaying average of past gradients themself, comparable
to momentum. The decaying average of past squared
gradients and the gradients are an estimation of the
first-order moment and the second-order moment, re-
spectively. The moment’s estimates are corrected from
occurring biases with two parameters included in the up-
date rule. The authors also developed Adamax, which
is slightly di↵erent from Adam and might result in bet-
ter performance in models with embeddings [175]. The
newest development is essentially Adam with Nesterov
momentum, termed Nadam [178]. In Nadam, the bias-
corrected estimate of the first-order moment from the
previous timestep used in Adam is replaced by this es-
timate of the current timestep, providing the antici-
patory behaviour [178]. The adaptive SGD-based al-
gorithms are extensions or improvements of older ver-
sions. Nadam was developed most recently and showed
increased performance over Adam, according to the au-
thor [178]. However, Adam is still the most popular
and widely used optimiser over the past few years and
generally used as default choice [44, 146, 150, 152, 179].
Furthermore, none of the evaluated EEG-based LSTM
models used the Nadam optimiser, whereas the majority
used Adam [37, 39, 40, 44, 45, 46]. Therefore, consider-
ing the limited computational resources available in this
study, I choose to use Adam optimiser and not include
other optimisers in the search. As Adam incorporates
momentum and RMSprop, it inherits both algorithms’
benefits: the momentum gives the appropriate direc-
tion for the descent and RMSprop adapts the degree
in which the model updates its individual parameters in
that direction [175]. According to the authors, Adam
significantly outperforms the older adaptive algorithms,
is computationally e�cient, and achieves good perfor-
mance for most problems, including ones with a lot of
data or parameters, non-stationary objectives, noise and
sparse gradients. Moreover, they state that the hyper-
parameters within the optimiser often need only little
tuning [175], confirmed by the Deep Learning book by
Goodfellow et al. [60]. The Adam optimiser updates the
model parameters using the following equations.

✓t+1 = ✓t �
/p
bvt + ✏

cmt (A.57)

cmt =
�1mt�1 + (1� �1) gt

1 + �
t
1

(A.58)

bvt =
�2vt�1 + (1� �2) g2t

1 + �
t
1

(A.59)

Where t denotes the timestep, ✓ all the model param-
eters, / the learning rate, m̂, the bias-corrected first-
moment estimate, m, the first-moment estimate, which
is the decaying average of past gradients, v̂ the bias-
corrected second-moment estimate, v, decaying average
of past squared gradients, �1 and �2 the exponential
decay rates for the first and second moment estimates
respectively, and g the gradients of the loss function with

53



respect to the model parameters. The defaults suggested
by the paper are 0.001 for the learning rate, 0.9 and 0.999
for �1 and �2, respectively [175]. As Adam is robust to
these hyperparameters’ choice, it is recommended to use
default values for the decay rates. However, a better per-
forming learning rate than default might be found [60].
Therefore, I used the default values for the decay rates
and included several options for the learning rate in the
search. Bengio stressed that the learning rate should al-
ways be tuned and recommended a rate smaller than 1
and larger than 1e-6 for NNs with standardised input.
Moreover, he recommended sampling in the logarithmic
domain as values in the linear domain are likely to give
similar results [77]. I included a learning rate with the
default value and a factor 10 larger and smaller than
the default in the search space. Additionally, I included
intermediate values as the di↵erences between the learn-
ing rates are quite large. A learning rate search space
of the following values was obtained: 1e�4, 5e�4, 1e�3,
5e�3, 1e�2.

Metrics Additional to the loss, the metrics dis-
cussed in Section 2.6 were computed while fitting the
model: the AUC, the sensitivity at 100% specificity of
poor neurological outcome prediction, and the sensitiv-
ity at 95% specificity of good neurological outcome pre-
diction.

Fitting hyperparameters

Fitting the model refers to adjusting the model pa-
rameters to the training data. Fitting requires the spec-
ification of a training dataset, which in my case includes
a feature matrix of [samples, time-fragments, features],
and an output matrix with neurological outcomes per
sample. Backpropagation through time is applied for a
specified number of epochs. The number of epochs forms
one of the hyperparameters in fitting the network. The
optimiser adjusts the model parameters per batch. The
batch size is another hyperparameter [41, 58, 59].

Number of epochs The number of epochs deter-
mines how many times the model parameters are ad-
justed based on the loss computed. Too few epochs
cause underfitting, too many cause overfitting [58, 59].
The number of epochs should compromise between un-
derfitting and overfitting, where the chance of either one
occurring is limited. Several runs of 10-fold CV deter-
mined the range of options for the number of epochs.
The options ranged from 20 to 200 epochs with intervals
of 20 to precisely determine the right number between
under- and overfitting.

Batch size The batch size determines the num-
ber of samples used to compute the gradient of the loss
function and update the model parameters accordingly
[144]. When more samples are used to update the model

parameters, these are likely updated in the appropriate
direction. The appropriate updates initially cause the
model’s loss to converge with large steps. With fewer
samples, the gradient’s computation will be noisy, as
it is relatively sensitive to outliers in the batch. Con-
sequently, smaller batches cause noisy model parameter
updates. These noise updates lead to slower convergence
but o↵er an improved generalisation, and therefore of-
ten better performance [77, 144, 145]. Keras uses a de-
fault batch size of 32. Bengio and Masters and Luschi
agree that 32 is an appropriate batch size, which gen-
erally results in stable training and adequate regulari-
sation [77, 145]. Batch size does not influence the gen-
eralisation ability very much but a↵ects training time
[77]. Considering the limited e↵ect on performance, the
limited available computational resources and the con-
firmed good default value of 32, I used a batch size of 32
for my LSTM network.

T. LSTM – Hyperparameter optimisation

Talos was used to perform the random search [180].
The random searches were done separately for a model
with one-layer LSTM and two-layer LSTM, as di↵erenc-
ing between one or two layers within a search could not
be done with Talos. The method for both models was
identical and was as follows. The random method used
was ”uniform mersenne” by Talos’ default. A random
25% of the full hyperparameter space was searched. I
chose to use 25% of the configurations as this number of
permutations (approximately 1300) could be explored
within 1 or 1.5 days for the model using one LSTM
layer and two LSTM layers, respectively. Moreover, as
the random search was repeated ten times, one could
assume that most of the possible configurations would
be covered (repeatedly), eliminating the necessity for a
more extensive search space within the individual runs.
A probabilistic reduction was used to remove configu-
rations that were likely to give a validation AUC lower
than 0.80 to speed up the search. The reducer stopped
between every 20 permutations (by default) and eval-
uated the correlation between the validation AUC and
the hyperparameters of the previous 50 permutations
(by default) to remove the hyperparameters that were
likely to give a validation AUC lower than 0.80.

After completing the searches, the correlation be-
tween the hyperparameters and the validation AUC and
validation SeSp100 for poor outcome prediction of the
individual searches were compared. A robust model
should have approximately the same correlation between
the hyperparameters and metrics in every search. Sub-
sequently, the permutations of all ten searches were com-
bined. For all hyperparameters that had a notable cor-
relation with the performance metrics, boxplots of the
validation SeSp100 and validation AUC for poor out-
come prediction were created per hyperparameter op-
tion. These boxplots were judged based on the values
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Table A.8: LSTM hyperparameters. Continued next page.

Category Hyperparameter Option(s) used Reason behind the implemented option(s) Ref.

Build
LSTM:
Number of layers

1, 2

Determines the number of learnable model parameters,
defining the capacity of the network. Too few learnable
model parameters result in underfitting, too many in
overfitting. EEG-based LSTM models are typically

[44]
[58]
[59]
[77]

LSTM:
Number of units
in the layer

2, 4, 6, 8, 10,
12, 14, 16, 18,
20, 22, 24

composed of 1 or 2 layers. Using references from
literature and rules of thumb, a range of possible
number of units was defined.

[79]
[157]
[158]

LSTM:
Activation function

Tanh
(default)

Gives the NN the ability to learn non-linear relationships
between the input and output. Original design of the
LSTM cell used tanh activation and sigmoid recurrent

[41]
[58]
[79]

LSTM:
Recurrent
activation function

Sigmoid
(default)

activation. No advantage was found to change the
activation functions of the original design.

[80]
[162]
[160]
[163]
[161]

LSTM:
Kernel initialiser

Glorot
uniform
(default)

Weights are required to be randomly initialised to
small values to break symmetry during learning.
As the sigmoid activation function was used,

[60]
[79]
[134]

LSTM:
Recurrent kernel
initialiser

Orthogonal
(default)

the Glorot uniform initialiser was the most
appropriate for the kernel. The orthogonal initialiser
was the best choice for the recurrent weights, as it

[141]
[165]

LSTM:
Bias initialiser

Zeros
(default)

o↵ers reliable propagation over many time-fragments.
As biases are typically initialised to 0, this is also
done in this study.

Dense:
Number of layers

1
Dense layers are used to convert the output from the
LSTM cells to the predicted output. Typically, a final
dense layer with 1 unit using a sigmoid activation

[77]
[58]
[59]

Dense:
Number of units
in the layer

1
function is used for binary classification of a NN, as
this outputs a one-dimensional probability. This typical

Dense:
Activation function

Sigmoid
architecture was implemented, as the required output
was the probability of poor neurological outcome.

Dense:
Kernel initialiser

Glorot
uniform
(default)

Weights are required to be randomly initialised to small
values to break symmetry during learning. As the
sigmoid activation function was used, the glorot uniform

[60]
[77]
[79]

Dense:
Bias initialiser

Zeros
(default)

initialiser was the most appropriate for the kernel. As
biases are typically initialised to 0, this is also done in
this study.

[141]

Dropout 0, 0.2, 0.5
A regularisation technique that limits overfitting by
preventing too much co-adaptations between (recurrent)
units. The technique drops units from training. The

[58]
[59]
[167]

Recurrent dropout 0, 0.2, 0.5
probability a unit is dropped, is determined by the
dropout rate. Typically, the dropout rate is set in the
range between 0.2 and 0.5, if applied at all.

[168]
[169]
[170]

Batch
normalisation

Not
included

Accelerates learning and o↵ers better generalisation by
normalising the layer’s input in feedforward NN and
normalising both input and recurrent inputs in RNN.
Keras does not o↵er batch normalisation of recurrent
cells, so batch normalisation could not be applied.

[162]
[173]
[174]

Kernel regulariser Not included A regularisation technique by encouraging small model [59]
Recurrent
regulariser

parameters. As overfitting was battled with determining
the best number of layers and units, an with applying

[77]
[79]

Bias regulariser dropout, and the computational resources available were [166]
Activity regulariser limited, regularisers were not included in the search. [171]
Kernel constraint Not included A regularisation technique by forcing small model [79]
Recurrent
constraint

parameters. As overfitting was battled with determining
the best number of layers and units, and with applying

[168]
[172]

Bias constraint
dropout, and the computational resources available were
limited, constraints were not included in the search.
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Table A.VIII: LSTM hyperparameters. AUC=area under the receiver operating curve. EEG= electroencephalogram.
LSTM=long short-term memory recurrent neural network. NN=neural network. SeSp100=sensitivity at 100% specificity
(for poor outcome prediction). SeSp95=sensitivity at 95% specificity (for good outcome prediction). SGD=stochastic gradi-
ent descent.

Category Hyperparameter Option(s) used Reason behind the implemented option(s) Ref.

Compile Loss function
Binary
cross-entropy

Typically, a binary cross-entropy loss function is used
in NN for binary classification.

[58, 59]
[77]

Optimiser Adam
To date, Adam, a gradient descent based adaptive
algorithm, is the most popular and widely used
optimiser in NN.

[44, 59]
[152, 154]
[175, 179]

Learning rate
0.0001, 0.0005,
0.001, 0.005,
0.01

Determines the degree with which the model parameters
are updated. Adam’s default is 0.001, which might be
suboptimal and should therefore be tuned. As is
recommended, options were sampled in the logarithmic
domain. Intermediate values were included.

[60, 77]
[175, 179]

Metrics
AUC, SeSp100,
SeSp95

See Section 2.6

Fit Number of epochs
20, 40, 60, 80,
100, 120, 140,
160, 180, 200

Number of times the complete dataset is passed through
the model once. Too few epochs result in underfitting,
too many in overfitting. The search space was decided
based on several initial runs.

[58, 59]

Batch size 32 (default)

Determines the number of samples used to compute the
gradient of the loss function and update the model
parameters accordingly. It does not significantly
influence performance. A default of 32 is confirmed
to be appropriate and was thus used.

[77, 144]
[145]

of the SeSp100 and AUC and on their distribution. A
small distribution is preferred as it indicates stable per-
formance, reflected in the plots by small boxes, short
whiskers and little outliers. The options scoring low in
SeSp100 and AUC or resulting in a large distribution
were removed from the merged search results. Conse-
quently, all permutations with poorly performing hyper-
parameter options were eliminated. Again, with the re-
maining permutations, boxplots were created of the val-
idation SeSp100 and validation AUC for poor outcome
prediction per hyperparameter option. These boxplots
were evaluated similarly as described above. The op-
tion with the highest validation SeSp100 for poor out-
come prediction was selected, under the condition that
this option did not result in a notably reduced AUC
compared to the other options. A model using the best
performing option per hyperparameter was trained us-
ing 10-fold CV (Fig. A.16A). A 10% split for validation
data was used to check if underfitting or overfitting oc-
curred (Fig. A.16B). Furthermore, this was manually
tuned with weight regularisation to evaluate if the per-
formance could be further enhanced. The best perform-
ing models with one LSTM layer and two LSTM layers
were compared, and the best one was chosen as final
model.

U. Results Logistic Regression – Hyper-
parameter optimisation

Results for a learning rate of 0.01

Figure A.28 shows the models’ distribution over the
five learning behaviour groups per specified number of
epochs (Appendix Q, Fig. A.18). Figure A.29 visu-
alises the number of epochs that satisfied the learning
behaviour criterion. For these number of epochs, bar
plots of the mean and standard deviation of the AUC
and SeSp100 for poor outcome prediction on the test set
are shown (Fig. A.30). Table A.IX and Table A.X show
the number of epochs’ robust performance scores with
the highest mean test AUC and SeSp100, respectively.
Table A.XI shows the top three number of epochs with
which the models were trained that obtained the best
robust performance score on both metrics. Training the
model with 1500 epochs reached the highest robust per-
formance score for the AUC and SeSp100. Consequently,
the optimal number of epochs for a learning rate of 0.01
was set to 1500.
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Figure A.28: Distribution of the models over the five learning behaviour groups per specified number of epochs (learning
rate=0.01). Lr=learning rate. SGD=stochastic gradient descent.

Figure A.29: Visualisation of the number of epochs that satisfied the learning stability criterion (shown in colour) (learning
rate=0.01). Lr=learning rate. SGD=stochastic gradient descent.
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Figure A.30: Bar graphs of the mean and standard deviation of the AUC (A, B) and SeSp100 (C, D) on the test set per
number of epochs, concerning the SGD with a learning rate of 0.01. AUC= area under the receiver operating curve. FP=false
positives. Lr=learning rate. SeSp100=sensitivity at 100% specificity for poor outcome prediction. SGD=stochastic gradient
descent. STD=standard deviation.

Table A.IX: Mean, standard deviation and robust perfor-
mance scores of the number of epochs with the highest mean
test AUC (learning rate=0.01). AUC=area under the re-
ceiver operating curve. std=standard deviation.

Number of epochs 1500 2500 3000 4000

Mean 0.8946 0.8934 0.8939 0.8968
Standard deviation 0.050 0.054 0.075 0.065
Robust performance

score (= mean/std)
17.89 16.54 11.92 13.80

Table A.X: Mean, standard deviation and robust per-
formance scores of the number of epochs with the high-
est mean test SeSp100 for poor outcome prediction (learn-
ing rate=0.01). SeSp100=sensitivity at 100% specificity.
std=standard deviation.

Number of epochs 1500 2500 3500 4000

Mean 69.03 66.69 66.12 69.28
Standard deviation 11.80 15.30 16.95 16.67
Robust performance

score (= mean/std)
5.85 4.36 3.90 4.16

Table A.XI: Top three robust performance scores of the
models trained for a specific number of epochs for both met-
rics (learning rate=0.01). AUC=area under receiver operat-
ing curve. SeSp100=sensitivity at 100% specificity.

Top 3 highest robust

performance scores
AUC SeSp100

1 1500 1500
2 2500 2500
3 4000 4000

Results for a learning rate of 0.1

Figure A.31 shows the models’ distribution over the
five learning behaviour groups per specified number of
epochs. Figure A.32 visualises which number of epochs
satisfied the learning behaviour criterion. Furthermore,
bar plots of the mean and standard deviation of the
AUC and SeSp100 for poor outcome prediction on the
test set are shown (Fig. A.33). Table A.XII and Table
A.XIII show the number of epochs’ robust performance
scores with the highest mean test AUC and SeSp100,
respectively. Table A.XIV shows the top three number
of epochs with which the models were trained that ob-
tained the best robust performance score on both met-
rics. Training the model with 2200 epochs reached the
highest robust performance score for the AUC and the
SeSp100. Consequently, the optimal number of epochs
for a learning rate of 0.1 was set to 2200.

Best performing Logistic Regression model

The AUC and SeSp100 for poor outcome predic-
tion of the best performing LR models for both learn-
ing rates are stated in Table A.XV. The model with a
learning rate of 0.01, trained on 1500 epochs, achieved
significantly higher SeSp100 for poor outcome predic-
tion (p<0.05 with an unpaired two-sample t-test), while
the AUC for both models was not significantly di↵erent.
Therefore, I proceeded with the LR with a learning rate
of 0.01 and 1500 epochs.
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Figure A.31: Distribution of the models over the five learning behaviour groups per specified number of epochs (learning
rate=0.1). Lr=learning rate. SGD=stochastic gradient descent.

Figure A.32: Visualisation of the number of epochs that satisfied the learning stability criterion (shown in colour) (learning
rate=0.1). Lr=learning rate. SGD=stochastic gradient descent.
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Figure A.33: Bar graphs of the mean and standard deviation of the AUC (A, B) and SeSp100 (C, D) on the test set per
number of epochs, concerning the SGD with a learning rate of 0.1. AUC= area under the receiver operating curve. FP=false
positives. Lr=learning rate. SeSp100=sensitivity at 100% specificity for poor outcome prediction. SGD=stochastic gradient
descent. STD=standard deviation.

Table A.XII: Mean, standard deviation and robust perfor-
mance scores of the number of epochs with the highest mean
test AUC (learning rate=0.1). AUC=area under the receiver
operating curve. std=standard deviation.

Number of

epochs
400 800 1400 2000 2200

Mean 0.8910 0.8919 0.8913 0.8917 0.8958
Standard

deviation
0.080 0.057 0.061 0.063 0.057

Robust

performance

score

(=mean/std)

11.14 15.65 14.61 14.15 15.72

Table A.XIII: Mean, standard deviation and robust per-
formance scores of the number of epochs with the high-
est mean test SeSp100 for poor outcome prediction (learn-
ing rate=0.1). SeSp100=sensitivity at 100% specificity.
std=standard deviation.

Number of epochs 1200 1800 2000 2200

Mean 66.48 66.67 66.64 66.47
Standard deviation 17.00 15.65 15.67 15.12
Robust performance

score (= mean/std)
3.91 4.26 4.25 4.40

Table A.XIV: Top three robust performance scores of the
models trained for a specific number of epochs for both met-
rics (learning rate=0.1). AUC=area under receiver operating
curve. SeSp100=sensitivity at 100% specificity.

Top 3 highest robust

performance scores
AUC SeSp100

1 2200 2200
2 800 1800
3 1400 2000

Table A.XV: Best performing logistic regression models
with a learning rate of 0.01 and 0.1. AUC=area under the
receiver operating curve. SeSp100=sensitivity at 100% speci-
ficity. std=standard deviation.

Learning

rate

Number

of epochs

AUC

(mean (std))

SeSp100

(mean (std))

0.01 1500 81.26 (6.29) 69.03 (11.80)
0.1 2200 81.45 (6.65) 66.47 (15.12)

Table A.XVI: Comparison of the performance metrics on the
test sets of the LR separately trained and evaluated at both 12
and 24, 12 hours, and 24 hours after cardiac arrest. The models
were trained and evaluated with features from the final feature
set. AUC=area under the curve, SeSp100=sensitivity at 100%
specificity, SeSp95=sensitivity at 95% specificity.

AUC

Mean

(95% CI)

SeSp100

Mean

(95% CI)

SeSp95

Mean

(95% CI)

LR –

12 h + 24 h

0.893
(0.887-0.898)

0.669
(0.655-0.683)

0.599
(0.576-0.621)

LR – 12 h
0.901
(0.890-0.911)

0.783
(0.763-0.803)

0.295
(0.266-0.323)

LR – 24 h
0.883
(0.877-0.890)

0.671
(0.655-0.687)

0.557
(0.532-0.581)

Table A.XVII: Comparison of the performance on the test set
of the LR trained and evaluated with features from the FFS and
AFSs using all epochs on both timepoints. *the di↵erence of the
performance metric was statistically significant from the perfor-
mance metric obtained by using features from the final feature set.
AUC=area under the receiver operating curve. AFS=additional
feature set. FFS=final feature set. SeSp100=sensitivity at 100%
specificity. SeSp95=sensitivity at 95% specificity.

AUC

Mean

(95% CI)

SeSp100

Mean

(95% CI)

SeSp95

Mean

(95% CI)

FFS
0.893
(0.887-0.898)

0.669
(0.655-0.683)

0.599
(0.576-0.621)

AFS 1
0.893
(0.888-0.899)

0.659
(0.646-0.673)

0.585
(0.563-0.607)

AFS 5
0.862
(0.855-0.868)*

0.652
(0.636-0.668)

0.713
(0.692-0.734)*
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V. Results Logistic Regression – Final
model performances

Models trained at di↵erent timepoints

Table A.XVI compares the LR performance metrics
separately trained and evaluated at both timepoints (12
and 24 hours), 12 hours, and 24 hours after CA. The
models were trained and evaluated with features from
the final feature set (Table A.IV). The AUCs were not
significantly di↵erent from each other. The AUC at both
timepoints was 0.893, at 12 hours it was 0.901, and at 24
it was 0.883. The SeSp100 at 12 hours after CA of 0.783
was significantly higher than at 24 hours (0.671) or both
timepoints (0.669). On the contrary, the SeSp95 at 12
hours after CA of 0.295 was significantly lower than at
24 hours (0.557) or both timepoints (0.599). The perfor-
mance of the model trained at 24 hours was not signifi-
cantly di↵erent from the performance at both timepoints
after CA.

Models trained with di↵erent feature sets

Table A.XVII compares the LR’s performance met-
rics and evaluated on the FFS and the AFSs using all
epochs at both timepoints. Only AFSs that included fea-
tures with low multicollinearity were used (Table A.V).

The performance of AFS 1, which included the clini-
cal features age and sex additional to the qEEG features
in FFS, did not significantly di↵er from the FFS. There-
fore, adding clinical features to the FFS did not result in
significantly di↵erent performance. The AUC of AFS 5
(0.862) was significantly lower than the one of the FFS
(0.893), whereas the SeSp95 was significantly higher for
AFS 5 (0.713) than for the FFS (0.599). Therefore, ex-
cluding features that showed little discriminative power
between a poor and good outcome in a boxplot signif-
icantly increased the sensitivity for good outcome pre-
diction but at the cost of the AUC. As the SeSp100 and
AUC were considered more important than SeSp95, AFS
5 was not considered to outperform the FFS.

W. Results LSTM – Hyperparameter op-
timisation

Results for a one-layer LSTM

The correlation between the hyperparameters and
the validation AUC and SeSp100 of poor outcome pre-
diction of all random searches is stated in Table A.XVIII
and Table A.XIX respectively. The number of epochs,
the number of units, and the learning rate showed a
notable positive correlation with the validation AUC.
Overall, the SeSp100 showed less consistent correlation
over all searches than the AUC. However, the mean cor-
relation of the number of units and the learning rate
showed a notable positive correlation with the valida-
tion SeSp100. Boxplots of the number of units (Fig.
A.34), the number of epochs (Fig. A.35), and the learn-
ing rate (Fig. A.36) for both metrics were evaluated to
make the first selection of well-performing hyperparam-
eter options. The SeSp100 and AUC were higher for i)
the number of units equal to or higher than 10 (with the
exemption of 14 units), ii) the number of epochs equal
to or higher than 120, and iii) the learning rate equal to
or higher than 0.001. Therefore, only permutations that
used these hyperparameter options were used for further
evaluation. Boxplots of validation SeSp100 and AUC
that included only these permutations are shown for the
number of units (Fig. A.37), the number of epochs (Fig.
A.38), the learning rate (Fig. A.39), the dropout rate
(Fig. A.40), and the recurrent dropout rate (Fig. A.41).
The highest values with the smallest distribution for the
validation SeSp100 were achieved by training the model
for 120 epochs, using 16 units in the LSTM layer, a learn-
ing rate of 0.001, and applying a dropout rate of 0.5 and
no recurrent dropout. Moreover, these hyperparameters
also resulted in high values with a small distribution for
the validation AUC. Therefore, I chose these hyperpa-
rameter values for the LSTM model composed of one
LSTM layer. Subsequently, I checked if these hyper-
parameters caused overfitting, and I manually applied
weight regularisation to increase the model’s generalisa-
tion ability. Overfitting was prevented, and the highest
validation AUC and SeSp100 of poor outcome prediction
were achieved using L1 L2 regularisation of 0.001 on the
bias and the recurrent kernel and kernel weights. Plots
of the training and validation loss against the number of
epochs for the model with and without weight regulari-
sation are shown in Figure 49. Table A.XX summarises
the best hyperparameter values for a one-layer LSTM.
Table A.XXI states the performance achieved by this
model using 50 repetitions of 10-fold CV.
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Table A.XVIII: Correlation between the hyperparameters and the validation AUC of all random searches for a model with
1 LSTM layer. AUC= area under the receiver operating curve. LSTM=long short-term memory recurrent neural network.
Val=validation.

Correlation

with val. AUC

Search
1

Search
2

Search
3

Search
4

Search
5

Search
6

Search
7

Search
8

Search
9

Search
10

Mean
of all
searches

Dropout

rate
0.002 0.021 0.021 -0.011 0.004 -0.012 0.003 0.045 0.012 0.018 0.01

Number

of epochs
0.125 0.13 0.227 0.212 0.246 0.196 0.159 0.147 0.173 0.201 0.182

Number

of units
0.266 0.221 0.238 0.26 0.245 0.239 0.209 0.205 0.253 0.226 0.236

Learning

rate
0.204 0.194 0.23 0.278 0.319 0.24 0.154 0.154 0.225 0.223 0.222

Recurrent

dropout rate
0.023 0.017 -0.009 -0.002 -0.014 0.006 -0.026 0.053 -0.031 0.034 0.005

Table A.XIX: Correlation between the hyperparameters and the validation SeSp100 of poor outcome prediction of all random
searches for a model with 1 LSTM layer. LSTM=long short-term memory recurrent neural network. SeSp100 = sensitivity
at 100% specificity Val=validation.

Correlation

with

val. SeSp100

Search
1

Search
2

Search
3

Search
4

Search
5

Search
6

Search
7

Search
8

Search
9

Search
10

Mean
of all
searches

Dropout

rate
-0.033 -0.009 0.096 -0.048 0.109 0.159 0.022 0.19 0.25 0.027 0.076

Number

of epochs
0.144 0.157 0.057 0.205 0.199 -0.011 0.204 -0.201 -0.122 -0.031 0.06

Number

of units
0.224 0.263 0.07 0.323 0.23 0.014 0.259 -0.048 0.072 0.009 0.142

Learning

rate
0.124 0.212 0.126 0.407 0.38 0.038 0.206 -0.204 -0.145 0.011 0.116

Recurrent

dropout rate
0.035 0.01 -0.06 -0.014 -0.083 -0.116 0.01 -0.026 -0.019 -0.084 -0.035

A B

Figure A.34: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of units used in the LSTM network with one LSTM layer. The SeSp100 increased if the number of units was equal to or more
than 10, except for 14 units. The AUC also increased with an increasing number of units. The AUC=area under the receiver
operating curve. LSTM=long short-term memory recurrent neural network. SeSp100 = sensitivity at 100% specificity (for
poor outcome prediction).
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Figure A.35: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of epochs used to train the LSTM network with one LSTM layer. The SeSp100 increased if the number of epochs was equal to
or more than 120. The AUC also increased with an increasing number of epochs. The AUC=area under the receiver operating
curve. LSTM=long short-term memory recurrent neural network. SeSp100 = sensitivity at 100% specificity (for poor outcome
prediction).

BA

Figure A.36: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per learning
rate in the LSTM network with one LSTM layer. The SeSp100 was the highest for the learning rates of 0.001, 0.005, and
0.01. The AUC of the learning rates of 0.001, 0.005, and 0.01 gave the highest performance with the least number of outliers.
The AUC=area under the receiver operating curve. LSTM=long short-term memory recurrent neural network. SeSp100 =
sensitivity at 100% specificity (for poor outcome prediction).
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Figure A.37: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of units in the LSTM network with one LSTM layer. These boxplots only include the configurations with hyperparameters
that obtained high performance on both metrics. An LSTM layer composed of 16 units showed the highest SeSp100 most
consistently, as the box and whiskers were small. The di↵erence in AUC between the number of units was hardly notice-
able. AUC=area under the receiver operating curve. LSTM=long short-term memory recurrent neural network. SeSp100 =
sensitivity at 100% specificity (for poor outcome prediction)
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Figure A.38: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per
number of epochs used to train the LSTM network with one LSTM layer. These boxplots only include the configurations
with hyperparameters that obtained high performance on both metrics. 120 number of epochs showed the highest SeSp100
with the smallest distribution. The di↵erence in AUC between the number of epochs was hardly noticeable, only slightly
decreasing with an increased number of epochs. AUC=area under the receiver operating curve. LSTM=long short-term
memory recurrent neural network. SeSp100 = sensitivity at 100% specificity (for poor outcome prediction).
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Figure A.39: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per learning
rate in the LSTM network with one LSTM layer. These boxplots only include the configurations with hyperparameters that
obtained high performance on both metrics. The models using a learning rate of 0.001 clearly achieved a higher SeSp100 and
gave the smallest distribution. The di↵erence in AUC between the number of units was hardly noticeable, but the learning
rate of 0.01 resulted in a little more outliers. AUC=area under the receiver operating curve. LSTM=long short-term memory
recurrent neural network. SeSp100=sensitivity at 100% specificity (for poor outcome prediction).

BA

Figure A.40: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per dropout
rate in the LSTM network with one LSTM layer. These boxplots only include the configurations with hyperparameters that
obtained high performance on both metrics. The models using a dropout rate of 0.5 clearly were the most consistent in their
SeSp100. Furthermore, the median SeSp100 for the dropout rate of 0.2 and 0.5 were approximately the same and higher
than for no dropout. The di↵erence in AUC between the dropout rates was little, where no dropout performed slightly worse
than dropout. AUC=area under the receiver operating curve. LSTM=long short-term memory recurrent neural network.
SeSp100=sensitivity at 100% specificity (for poor outcome prediction).
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Figure A.41: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per recurrent
dropout rate in the LSTM network with one LSTM layer. These boxplots only include the configurations with hyperparameters
that obtained high performance on both metrics. The models using a recurrent dropout rate of 0 clearly showed consistently
high SeSp100. The di↵erence in AUC between the recurrent dropout rates was little. AUC=area under the receiver operating
curve. LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100% specificity (for poor outcome
prediction).

A B

Figure A.42: Plots of the training and validation loss against the number of epochs for a one-layer LSTM model with
no weight regularisation (A) and a one-layer LSTM model with weight regularisation (B). LSTM=long short-term memory
recurrent neural network.
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Table A.XX: Best performing hyperparameter values for a one-layer LSTM model. LSTM=long short-term memory recurrent
neural network. Reg=regularisation.

Number
of epochs

Number
of units

Learning
rate

Dropout
rate

Recurrent
dropout rate

Kernel
reg.

Recurrent
kernel reg.

Bias
reg.

Value 120 16 0.001 0.5 0
L1 L2
0.001

L1 L2
0.001

L1 L2
0.001

Table A.XXI: Performance metrics of the one-layer LSTM model using the best performing hyperparameter val-
ues. AUC=area under the curve. CI=confidence interval. LSTM=long short-term memory recurrent neural network.
SeSp100=sensitivity at 100% specificity, SeSp95=sensitivity at 95% specificity.

AUC
Mean (95% CI)

SeSp100 of poor outcome prediction
Mean (95% CI)

SeSp95 of good outcome prediction
Mean (95% CI)

0.8981 (0.8930-0.9032) 0.6621 (0.6478-0.6764) 0.5739 (0.5511-0.5967)

Results for a two-layer LSTM

The correlation between the hyperparameters and
the validation AUC and the SeSp100 of all random
searches is stated in Table A.XXII and Table A.XXIII,
respectively. The number of epochs, the number of units,
and the learning rate showed a notable positive corre-
lation with the validation AUC. Overall, the SeSp100
showed less consistent correlation over all searches than
the AUC. However, the number of epochs correlated pos-
itively with the SeSp100. Boxplots of the number of
units (Fig. A.43), the number of epochs (Fig. A.44),
and the learning rate (Fig. A.45) for both metrics were
evaluated to make the first selection of well-performing
hyperparameter options. The SeSp100 was the highest
for the number of epochs between 80 and 140, without
compromising the AUC. The number of units equal to
or higher than 16, and a learning rate of 0.005, obtained
the best scores for both metrics. Therefore, only per-
mutations that used these hyperparameter values were
used for further evaluation. Boxplots of the SeSp100 and
AUCthat included only these permutations were evalu-
ated for the number of units (Fig. A.46), the number
of epochs (Fig. A.47), the dropout rate (Fig. A.48),
and the recurrent dropout rate (Fig. A.49). I achieved
the highest values with the smallest distribution for the
SeSp100 by training the model for 80 epochs, 20 units in
the LSTM layers, a learning rate of 0.005, and applying
a dropout rate of 0.5 and no recurrent dropout. More-
over, these hyperparameters also resulted in high val-
ues with a small distribution for the AUC. Therefore, I
chose these hyperparameters values for the LSTM model
that was composed of two LSTM layers. Subsequently,
I checked if these hyperparameters caused overfitting,
and I manually applied weight regularisation to increase
the model’s generalisation ability. Overfitting was pre-
vented, and the highest validation AUC and Se100 of
poor outcome prediction were achieved using L1 L2 reg-
ularisation of 0.001 on the bias and the recurrent kernel
and kernel weights. Plots of the training and validation
loss against the number of epochs for the model with

and without weight regularisation are shown in Figure
A.50. Table A.XXIV summarises the best hyperparam-
eter values for a two-layer LSTM. Table A.XXV states
the performances achieved by this model using 50 repe-
titions of 10-fold CV.

Best performing LSTM

Table A.XXVI states the final model performances
of the one-layer and two-layer LSTMs. The di↵erences
between the performance metrics were not statistically
significant. The number of trainable model parameters
was 1873 and 5941 for the one-layer LSTM and two-
layer LSTM, respectively. The more model parameters
are included in the network, the longer the computa-
tional time. As the performance di↵erences were not
statistically significant, and the number model parame-
ters di↵ered by a factor 3, I chose the one-layer model
as final LSTM.
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Table A.XXII: Correlation between the hyperparameters and the validation AUC of all random searches for a model with
2 LSTM layers. AUC= area under the receiver operating curve. LSTM=long short-term memory recurrent neural network.
Val=validation.

Correlation

with val. AUC

Search
1

Search
2

Search
3

Search
4

Search
5

Search
6

Search
7

Search
8

Search
9

Search
10

Mean
of all
searches

Dropout

rate
0.062 0.073 0.079 0.022 0.07 0.059 0.011 0.097 0.009 -0.016 0.047

Number

of epochs
0.101 0.151 0.129 0.126 0.08 -0.075 0.069 0.187 0.263 0.079 0.111

Number

of units
0.237 0.221 0.237 0.212 0.274 0.154 0.198 0.242 0.257 0.22 0.225

Learning

rate
0.112 0.285 0.197 0.069 0.103 -0.044 0.064 0.265 0.224 0.109 0.139

Recurrent

dropout rate
0.065 0.016 0.012 -0.012 0.02 0.078 -0.021 0.012 0.03 -0.003 0.02

Table A.XXIII: Correlation between the hyperparameters and the validation SeSp100 of poor outcome prediction of all
random searches for a model with 2 LSTM layers. LSTM=long short-term memory recurrent neural network. SeSp100 =
sensitivity at 100% specificity Val=validation.

Correlation

with

val. SeSp100

Search
1

Search
2

Search
3

Search
4

Search
5

Search
6

Search
7

Search
8

Search
9

Search
10

Mean
of all
searches

Dropout

rate
0.04 0.118 0.197 0.07 0.194 -0.029 -0.078 0.295 0.202 0.073 0.108

Number

of epochs
0.214 0.12 0.015 -0.043 -0.063 -0.035 0.223 -0.182 -0.038 0.157 0.037

Number

of units
0.356 0.271 0.29 0.096 0.224 0.148 0.344 0.032 0.16 0.285 0.221

Learning

rate
0.282 0.142 0.068 -0.148 0.025 -0.141 0.321 -0.131 -0.018 0.197 0.06

Recurrent

dropout rate
-0.005 0.03 -0.022 -0.108 -0.073 0.104 0.037 -0.065 0.047 0.034 -0.002

BA

Figure A.43: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of units used in the LSTM network with two LSTM layers. The SeSp100 increased, and the distribution decreased if the
number of units was equal to or more than 16. The AUC also increased with an increasing number of units, where less than 12
units result in relatively more outliers. The AUC=area under the receiver operating curve. LSTM=long short-term memory
recurrent neural network. SeSp100=sensitivity at 100% specificity.
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Figure A.44: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of epochs used to train the LSTM network with two LSTM layers. The SeSp100 was the highest and showed the smallest
distribution if the epochs were between 80 and 140. The number of outliers for the AUC decreased with an increasing number
of epochs. The AUC=area under the receiver operating curve. SeSp100=sensitivity at 100% specificity.

BA

Figure A.45: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per learning
rate in the LSTM network with two LSTM layers. The SeSp100 was the highest for the learning rate of 0.005. The learning
rate of 0.005 also gave the least number of outliers and the highest values in the AUC. The AUC=area under the receiver
operating curve. LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100% specificity.
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Figure A.46: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of units in the LSTM network with two LSTM layers. These boxplots only include the configurations with hyperparameters
that obtained high performance on both metrics. The LSTM layers composed of 20 units showed a relatively high SeSp100
while having a small distribution. The median SeSp100 of 22 units was a little higher, but also included more models scoring
a lower SeSp100 than models composed of 20 units. The di↵erence in the median of the AUC between the number of units
was hardly noticeable. Models composed of 16, 18 and 24 units gave somewhat more consistent results for AUC. AUC=area
under the receiver operating curve. LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100%
specificity.

BA

Figure A.47: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per number
of epochs used to train the LSTM network using two LSTM layers. These boxplots only include the configurations with
hyperparameters that obtained high performance on both metrics. Training the model 80 epochs showed consistently high
values for SeSp100. The best AUC was also achieved with training for 80 epochs. AUC=area under the receiver operating
curve. LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100% specificity.
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Figure A.48: Boxplots of the validation the SeSp100 (A) and the validation AUC (B) of poor outcome prediction per dropout
rate in the LSTM network with two LSTM layers. These boxplots only include the configurations with hyperparameters that
obtained high performance on both metrics. The models using no dropout clearly scored a lower Se100. The dropout rates of
0.2 and 0.5 achieved similar SeSp100. Models using a rate of 0.2 scored a higher median SeSp100 but had a larger distribution.
Therefore, it included models that scored higher but also lower SeSp100 than modes using a rate of 0.5. A rate of 0.5 gave
more consistent results and still scored high SeSp100. The di↵erence in AUC between the dropout rates was little, where
no dropout performed slightly worse than dropout. AUC=area under the receiver operating curve. LSTM=long short-term
memory recurrent neural network. SeSp100=sensitivity at 100% specificity.

BA

Figure A.49: Boxplots of the validation the Se100 (A) and the validation AUC (B) of poor outcome prediction per recurrent
dropout rate in the LSTM network with two LSTM layers. These boxplots only include the configurations with hyperpa-
rameters that obtained high performance on both metrics. The models using a recurrent dropout rate of 0 were clearly the
most consistent and highest in their SeSp100. The di↵erence in AUC between the recurrent dropout rates was little, where
no recurrent dropout performed slightly better than a recurrent dropout. AUC=area under the receiver operating curve.
LSTM=long short-term memory recurrent neural network. SeSp100=sensitivity at 100% specificity.
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Figure A.50: Plots of the training and validation loss against the number of epochs for a two-layer LSTM model with
no weight regularisation (A) and a model with weight regularisation (B). LSTM=long short-term memory recurrent neural
network.

Table A.XXIV: Best performing hyperparameter values for a two-layer LSTM model. LSTM=long short-term memory
recurrent neural network. Reg=regularisation.

Number
of epochs

Number
of units

Learning
rate

Dropout
rate

Recurrent
dropout rate

Kernel
reg.

Recurrent
kernel reg.

Bias
reg.

Value 80 20 0.005 0.5 0
L1 L2
0.001

L1 L2
0.001

L1 L2
0.001

Table A.XXV: Performance metrics of the two-layer LSTM model using the best performing hyperparameter val-
ues. AUC=area under the curve. CI=confidence interval. LSTM=long short-term memory recurrent neural network.
SeSp100=sensitivity at 100% specificity, SeSp95=sensitivity at 95% specificity.

AUC
Mean (95% CI)

SeSp100 of poor outcome prediction
Mean (95% CI)

SeSp95 of good outcome prediction
Mean (95% CI)

0.8952 (0.8900-0.9005) 0.6570 (0.6421-0.6718) 0.5760 (0.5537-0.5984)

Table A.XXVI: Performance metrics of the one-layer and two-layer LSTMs using the best performing hyperparameters.
AUC=area under the curve, SeSp100=sensitivity at 100% specificity, SeSp95=sensitivity at 95% specificity. LSTM=long
short-term memory recurrent neural network. CI=confidence interval.

AUC
Mean (95% CI)

Se100 of poor
outcome prediction
Mean (95% CI)

Se95 of good
outcome prediction
Mean (95% CI)

One-layer LSTM 0.8981 (0.8930-0.9032) 0.6621 (0.6478-0.6764) 0.5739 (0.5511-0.5967)
Two-layer LSTM 0.8952 (0.8900-0.9005) 0.6570 (0.6421-0.6718) 0.5760 (0.5537-0.5984)
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X. Results LSTM – Final model perfor-
mances

Models trained at di↵erent timepoints

Table A.XXVII compares the performance metrics
of the LSTMs separately trained and evaluated at both
timepoints (12 and 24 hours), 12 hours, and 24 hours
after CA. The models were trained and evaluated with
features from the final feature set (Table A.IV). The
AUCs, all of which were rounded to 0.90, were not sig-
nificantly di↵erent from each other. The SeSp100 at 12
hours of 0.785 was significantly higher than that at 24
hours (0.662) or both timepoints (0.681). On the con-
trary, the SeSp95 at 12 hours of 0.303 was significantly
lower than that at 24 hours (0.574) or both timepoints
(0.439). The SeSp100 of the model trained at 24 hours
was not significantly di↵erent those at both timepoints.
The SeSp95 at 24 hours was significantly lower than that
at both timepoints.

Models trained with di↵erent feature sets

Table A.XXVIII compares the performance metrics
of the LSTMs trained and evaluated using features from
the FFS and the AFSs using all epochs at both time-
points. Adding the clinical features age and sex to
the FFS (AFS1) or using all 19 extracted qEEG fea-
tures (AFS 2) (with additional clinical features (AFS 3)
did not result in statistically significant di↵erent per-
formance for any of the metrics. Excluding features
that showed little discriminative power between poor
and good outcome (AFS 4) and additionally excluding
the features with high multicollinearity (AFS 5) signifi-
cantly increased the SeSp95 from 0.574 (FFS) to 0.702
(AFS 4) and 0.719 (AFS 5). However, these AFS showed
significantly decreased AUC of 0.867 (AFS 5) and nearly
significantly (p=0.06) decreased AUC of 0.874 (AFS 4),
compared to the FFS with an AUC of 0.898. As the
SeSp100 and the AUC were considered more important
than SeSp95, none of the AFS outperformed the FFS.

Y. Hyperparameter recommendations

I recommend exploring di↵erent optimiser algo-
rithms. Although Adam is widely used and consid-
ered a right default choice [150, 152, 154, 179], other
options might achieve better prognostic performance.
The Nadam optimiser should be investigated, as it ap-
plies NAG, which is often superior to momentum. Fur-
thermore, the author claims significant performance im-
provement of Nadam over Adam [178]. Although adap-
tive optimisers like Adam and Nadam dampen[175, 178],
they have their challenges. Adaptive optimisers could
be unsuccessful in converging to the minimum loss
[181, 182]. Moreover, adaptive optimisers show worse
generalisation than traditional SGD optimisers [183].
For these reasons, SGD should be included in the hy-

perparameter search as well. An interesting option to
explore is the recently developed optimiser AdaBound,
which is claimed to be ”as fast as Adam and as good
as SGD” [181]. Adabound incorporates the fast con-
vergence seen in adaptive optimiser like Adam and the
reliable generalisation ability seen in SGD [181]). Con-
cerning the learning rate, I advise implementing a grid
search on a logarithmic scale to determine which order
the optimiser’s learning rate should be. Subsequently, a
grid search around the best order should result in the
most optimal rate. One could also include the other
hyperparameters within the adaptive optimisers in the
search space, like the decay rates and constant numer-
ical stability. As Keras argues that the latter’s default
value might not be a good default in general [79], di↵er-
ent values for this hyperparameter could be worth ex-
ploring. On the other hand, the decay rates suggested
by the paper are good default values which are rarely
changed. Moreover, the optimisers are robust to these
hyperparameters’ choice [154, 175]. Therefore, I doubt
changing the values of the decay rates would make a
di↵erence in the performance.

As the manually tuned weight regularisation notably
increased generalisation, future research should incorpo-
rate it into the search space. Ideally, weight regularisa-
tion on the kernel weight, recurrent weight, biases and
activity are individually evaluated. Moreover, multiple
values for the regularisation factor should be explored
for L1, L2, and L1 L2 regularisation. I recommend a
full grid search to find the optimal regularisation factor
on a logarithmic scale from 0 and 0.1 [184].

Weight constraints could also be worth exploring,
where di↵erent constraints should be evaluated for the
input and recurrent connections [172]. Furthermore, I
especially recommend trying max-norm regularisation
if dropout is applied. The dropout algorithm develop-
ers reported increased performance when dropout and
max-norm regularisation were combined instead of just
dropout ([167].

Table A.XXVII: Comparison of the performance metrics
on the test sets of the LSTM separately trained and evalu-
ated at both 12 and 24, 12 hours, and 24 hours after cardiac
arrest. The models were trained and evaluated with fea-
tures from the final feature set. AUC=area under the curve,
SeSp100=sensitivity at 100% specificity, SeSp95=sensitivity
at 95% specificity.

AUC

Mean

(95% CI)

SeSp100

Mean

(95% CI)

SeSp95

Mean

(95% CI)

LSTM –

12 h + 24 h

0.898
(0.893-0.903)

0.662
(0.648-0.676)

0.574
(0.551-0.597)

LSTM –

12 h

0.901
(0.891-0.912)

0.785
(0.764-0.805)

0.303
(0.275-0.332)

LSTM –

24 h

0.901
(0.895-0.908)

0.681
(0.664-0.697)

0.439
(0.415-0.463)
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Table A.XXVIII: Comparison of the performance on the test set of the LSTMmodels trained and evaluated with features from
the final feature set and additional feature set using all epochs on both timepoints. *The di↵erence of the performance metric
was statistically significant from the performance metric obtained by using features from the final feature set. AFS=additional
feature set. AUC=area under the curve. CI=confidence interval. FFS=final feature set. SeSp100=sensitivity at 100%
specificity. SeSp95=sensitivity at 95% specificity.

AUC - Mean (95% CI) SeSp100 - Mean (95% CI) SeSp95 - Mean (95% CI)

FFS 0.898 (0.893-0.903) 0.662 (0.648-0.676) 0.574 (0.551-0.597)
AFS 1 0.889 (0.884-0.894) 0.648 (0.634-0.662) 0.604 (0.583-0.626)
AFS 2 0.897 (0.892-0.902) 0.651 (0.634-0.667) 0.577 (0.555-0.598)
AFS 3 0.887 (0.882-0.892) 0.649 (0.634-0.663) 0.617 (0.596-0.637)
AFS 4 0.874 (0.868-0.880) 0.643 (0.625-0.661) 0.702 (0.681-0.724)*
AFS 5 0.867 (0.860-0.873)* 0.655 (0.638-0.672) 0.719 (0.697-0.740)*

Some EEG-based LSTM studies obtained good per-
formance with the ReLu activation function (e.g. [37,
86]), so it is worth including this in the hyperparameter
optimisation process if computational power allows it.

The same hyperparameters values for both LSTM
layers were used to reduce the computational power: all
configurations used the same number of units and the
same (recurrent) dropout rate. As these hyperparam-
eters’ optimal values could be di↵erent for the individ-
ual layers, these hyperparameters should be tuned sep-
arately. Finally, although the batch size does not influ-
ence the generalisation ability very much, it does a↵ect
the training time [77]). Di↵erent batch sizes should be
evaluated to optimise the training time.

Z. MATLAB and Python scripts

All scripts are attached to this thesis after the refer-
ences. All scripts include:

• Z.1 Feature extraction (MATLAB)

• Z.2 High VIF feature exclusion (MATLAB)

• Z.3 Input preparation for logistic regression (MAT-
LAB)

• Z.4 Input preparation for LSTM (MATLAB)

• Z.5 Feature boxplots (MATLAB)

• Z.6 Final Logistic Regression (Python)

• Z.7 Hyperparameter search LSTM (Python)

• Z.8 Hyperparameter search analysis LSTM
(Python)

• Z.9 Final LSTM (Python)
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Jakobsen, J. Bělohlávek, C. Callaway, A. Cariou,
G. Eastwood, D. Erlinge, J. Hovdenes, M. Joanni-
dis, H. Kirkegaard, M. Kuiper, H. Levin, M. P.
Morgan, A. D. Nichol, P. Nordberg, M. Oddo,
P. Pelosi, C. Rylander, M. Saxena, C. Storm,
F. Taccone, S. Ullén, M. P. Wise, P. Young,
H. Friberg, and N. Nielsen, “Targeted hypother-
mia versus targeted normothermia after out-of-
hospital cardiac arrest (ttm2): A randomized clin-

79



ical trial—rationale and design,” American Heart
Journal, vol. 217, pp. 23–31, 11 2019.

[122] L. Leuchs, “Press release choosing your reference-
and why it matters,” Brain Products, 2019.

[123] J. Brownlee, “How to scale data for long short-
term memory networks in python.” https://

machinelearningmastery.com, Jul 2017.

[124] A. J. Seely and P. T. MacKlem, “Complex systems
and the technology of variability analysis,” Critical
Care, vol. 8, pp. R367–R384, 12 2004.

[125] S. Tong, A. Bezerianos, J. Paul, Y. Zhu, and
N. Thakor, “Nonextensive entropy measure of
eeg following brain injury from cardiac arrest,”
Physica A, vol. 305, pp. 619–628, 2002.

[126] D. Contreras, A. Destexhe, T. J. Sejnowski, and
M. Steriade, “Spatiotemporal patterns of spindle
oscillations in cortex and thalamus,” The Journal
of Neuroscience, vol. 17, pp. 1179–1196, 1997.

[127] T. M. Cover and J. A. Thomas, Elements of
Information Theory. John Wiley and Sonse In-
terscience, 1991.

[128] MathWorks, “Matlab and econometrics toolbox,”
2020a.

[129] MathWorks, “Matlab,” 2020a.

[130] D. A. Adamos, S. I. Dimitriadis, and N. A.
Laskaris, “Towards the bio-personalization of mu-
sic recommendation systems: a single-sensor eeg
biomarker of subjective music preference.”

[131] H. Jaseja, “Eeg spike versus eeg sharp wave: Dif-
ferential clinical significance in epilepsy,” Epilepsy
and Behavior, vol. 25, p. 137, 9 2012.

[132] M. Beudel, M. C. Tjepkema-Cloostermans, J. H.
Boersma, and M. J. A. M. V. Putten, “Small-
world characteristics of eeg patterns in postanoxic
encephalopathy neurocritical and neurohospitalist
care,” Frontiers in neurology, vol. 5, 2014.

[133] V. Daniel, “vif(x).” https://www.mathworks.

com/matlabcentral/fileexchange/

60551-vif-x, Dec 2016.

[134] D. A. Belsley and E. Kuh, Regression diagnostics.
Wiley, 1980.

[135] M. H. Kutner, C. J. Nachtsheim, and J. Never,
Applied linear regression models. McGraw-
Hill/Irwin, 4 ed., 2004.

[136] A. Baratloo, M. Hosseini, A. Negida, and G. E.
Ashal, “Part 1: Simple definition and calcu-
lation of accuracy, sensitivity and specificity,”
Emergency, vol. 3, pp. 48–49, 2015.

[137] Y. Zhao and Y. Cen, Data mining applications
with R. Academic Press, 2014.

[138] J. Czakon, “F1 score vs roc auc vs accuracy
vs pr auc: Which evaluation metric should
you choose?.” https://neptune.ai/blog/

f1-score-accuracy-roc-auc-pr-auc#5, Dec
2020.

[139] J. Brownlee, “Failure of classification accuracy
for imbalanced class distributions.” https://

machinelearningmastery.com, Jan 2020.

[140] F. Rosenblatt, “The perceptron: A perceiving and
recognizing automaton (project para),” 1 1957.

[141] X. Glorot and Y. Bengio, “Understanding the dif-
ficulty of training deep feedforward neural net-
works,” JMLR, vol. 9, pp. 249–256, 2010.

[142] N. Qian, “On the momentum term in gradient
descent learning algorithms,” Neural Networks,
vol. 12, pp. 145–151, 1999.

[143] I. Sutskever, J. Martens, G. Dahl, and G. Hinton,
“On the importance of initialization and momen-
tum in deep learning,” JMLR: W&CP, 2013.

[144] J. Brownlee, “How to control the stability of train-
ing neural networks with the batch size.” https:

//machinelearningmastery.com, Jan 2019.

[145] D. Masters and C. Luschi, “Revisiting small batch
training for deep neural networks,” 4 2018.

[146] D. Bakhuis, “A logistic regression from scratch.”
https://towardsdatascience.com, 2017.

[147] A. Ng, “Neural networks and deep learn-
ing.” https://www.coursera.org/learn/

neural-networks-deep-learning, 2018.

[148] S. Sharma, “Activation functions in neural net-
works.” https://towardsdatascience.com, Feb
2019.

[149] J. Brownlee, “A gentle introduction to lo-
gistic regression with maximum likelihood es-
timation.” https://machinelearningmastery.

com, Oct 2019.

[150] C. Versloot, “How to use binary & categor-
ical crossentropy with keras?.” https://www.

machinecurve.com/index.php/2019/10/22, Oct
2019.

[151] C. Versloot, “Extensions to gradient descent:
from momentum to adabound.” https://www.

machinecurve.com/index.php/2019/11/03, Nov
2019.

[152] S. Ruder, “An overview of gradient descent opti-
mization algorithms,” 9 2016.

80

https://machinelearningmastery.com
https://machinelearningmastery.com
https://www.mathworks.com/matlabcentral/fileexchange/60551-vif-x
https://www.mathworks.com/matlabcentral/fileexchange/60551-vif-x
https://www.mathworks.com/matlabcentral/fileexchange/60551-vif-x
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc%235
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc%235
https://machinelearningmastery.com
https://machinelearningmastery.com
https://machinelearningmastery.com
https://machinelearningmastery.com
https://towardsdatascience.com
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://towardsdatascience.com
https://machinelearningmastery.com
https://machinelearningmastery.com
https://www.machinecurve.com/index.php/2019/10/22
https://www.machinecurve.com/index.php/2019/10/22
https://www.machinecurve.com/index.php/2019/11/03
https://www.machinecurve.com/index.php/2019/11/03


[153] J. Brownlee, “Understand the impact of learning
rate on neural network performance,” Jan 2019.

[154] V. Bushaev, “Stochastic gradient descent with mo-
mentum.” https://towardsdatascience.com,
Dec 2017.

[155] Y. Jung, “Multiple predicting k-fold cross-
validation for model selection,” Journal of
Nonparametric Statistics, vol. 30, pp. 197–215, 1
2018.

[156] Wikimedia, “Hyperbolic tangent.” https:

//commons.wikimedia.org/wiki/File:

Hyperbolic_Tangent.svg, 2020.

[157] J. Heaton, Introduction to Neural Networks for
Java. Heaton Research, 2 ed., 2008.

[158] D. Stathakis, “How many hidden layers and
nodes?,” International Journal of Remote Sensing,
vol. 30, pp. 2133–2147, 4 2009.

[159] H. Larochelle, Y. Bengio, J. Louradour, and L. U.
Ca, “Exploring strategies for training deep neu-
ral networks pascal lamblin,” Journal of Machine
Learning Research, vol. 1, pp. 1–40, 2009.

[160] D.-A. Clevert, T. Unterthiner, and S. Hochreiter,
“Fast and accurate deep network learning by ex-
ponential linear units (elus),” 11 2016.

[161] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse
rectifier neural networks,” JMLR: W&CP, vol. 15,
pp. 315–321, 2011.

[162] S. Io↵e and C. Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift,” 2 2015.

[163] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learn-
ing,” Nature, vol. 521, pp. 436–444, 5 2015.

[164] K. Sarkar, “Relu : Not a di↵erentiable function:
Why used in gradient based optimization?.”
https://medium.com/@kanchansarkar, May
2018.

[165] A. M. Saxe, J. L. McClelland, and S. Ganguli,
“Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks,” 12 2014.

[166] J. Mueller and L. Massaron, Deep learning for
dummies. John Wiley & Sons, Inc., 2019.

[167] N. Srivastava, G. Hinton, A. Krizhevsky, and
R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[168] G. Hinton, N. Srivastava, and K. Swersky, “Neural
networks for machine learning lecture 6a overview
of mini--batch gradient descent.”

[169] Y. Gal and Z. Ghahramani, “A theoretically
grounded application of dropout in recurrent neu-
ral networks,” 12 2015.

[170] J. Brownlee, “Dropout regularization
in deep learning models with keras.”
https://machinelearningmastery.com, Jun
2016.

[171] A. Krogh and J. A. Hertz, “A simple weight decay
can improve generalization,” pp. 950–957, 1992.

[172] J. Brownlee, “A gentle introduction to
weight constraints in deep learning.”
https://machinelearningmastery.com, Nov
2018.

[173] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and
Y. Bengio, “Batch normalized recurrent neural
networks,” 10 2015.

[174] T. Cooijmans, N. Ballas, C. Laurent, Çağlar
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7DEOH�RI�IHDWXUH�PDWUL[�SHU�HSRFK

6DYH�IHDWXUH�PDWUL[�SHU�VXEMHFW

6WRUH�IHDWXUHV�DYHUDJHG�DFURVV�DOO�IUDJHPHQWV�SHU�VXEMHFW

237I21AL�3L276�%%

3ORW�D�VHOHFWHG�EEG�IUDJPHQW�(1)�RU�VSHFLILF�WLPH�SHULRG�(2)

BR[SORW�IHDWXUHV�RI�DOO�IUDJPHQWV

3ORWV�WR�FKHFN�IHDWXUH�FKDQJHV�WKURXJKRXW�DQ�HSRFK

BR[SORWV�WR�FKHFN�YDULDELOLW\�RI�IHDWXUHV�EHWZHHQ�FKDQQHOV

AXWKRU:�L.M.�YDQ�3RSSHO�12/2020

% FeaWXUe e[WUacWiRQ cRde: 
    % SSecif\ EEG UecRUiQg WiPe SRVW CA (12 RU 24) 
    % LOOP PER SUBJECT: 
    % 1. LRad SUeSURceVVed daWa fURP a VXbMecW 
    % 2. SSOiW 5 PiQXWe eSRch iQ 30 WiPe fUagPeQWV Rf 10 VecRQdV 
    % 3. E[WUacW feaWXUeV SeU chaQQeO WhaW aUe e[WUacWed fURP 5 PiQXWe eSRch 
    % 4. AYeUage feaWXUeV acURVV aOO chaQQeOV 
    %   LOOP PER FRAGMENT 
    %   1. E[WUacW feaWXUeV SeU chaQQeO WhaW aUe e[WUacWed fURP fUagPeQWV 
    %   2. AYeUage feaWXUeV fURP acURVV aOO chaQQeOV 
    %   3. SWacN feaWXUeV PaWUiceV SeU fUagPeQW 
    % 5. CUeaWe PaWUi[ ZiWh aOO feaWXUeV [ aOO fUagPeQWV 
    % 6. SaYe feaWXUe PaWUi[ Rf VXbMecW 
 
% SORWV aW Whe eQd Rf Whe VcUiSW XVed WR aQaO\]e daWa 
% VXSSRUWiQg fXQcWiRQV aUe fRXQd aW 
% hWWSV://giWhXb.cRP/deVNRRO/CRPaPURgQRVWicaQUViQgEEG/WUee/PaVWeU/SXSSRUWiQg%20FXQcWiRQV 
 
cOeaU aOO; cORVe aOO; cOc; 

)HDWXUH�H[WUDFWLRQ�DOO�VXEMHFWV

% YaUiabOeV 
FV = 128;       % VaPSOe UaWe 
chaQQeOV = 8;   % ORQgiWXdiQaO biSROaU 
feaWXUeV = 22;  % 21 feaWXUeV aQd 1 RXWcRPe 
fUagPeQWV = 30; % 30 fUagPeQWV Rf 10 Vec 
 
% chRRVe EEG WiPe 
EEGWiPe = "_24"; 
 
% ORad e[ceO ZiWh cOiQicaO chaUacWeUiVWicV 
e[ceOSac = "COiQicaO"; 
e[ceOfiOe = ".[OV["; 
e[ceO_id = VWUcaW(e[ceOSac,EEGWiPe,e[ceOfiOe); 
cOiQicaO = UeadWabOe(e[ceO_id); 
 
aOO_VXbMecWV = heighW(cOiQicaO); 



feaWXUeV_aOO_VXbMecWV = ]eURV(aOO_VXbMecWV,feaWXUeV); 
 
% ORRS WhURXgh aOO VXbMecWV iQ WiPe fUaPe 
fRU V = 1:aOO_VXbMecWV 

    VXbMecWQXPbeU = cOiQicaO.SWXd\ID(V,1); 
 
% defiQe VWUiQgV 
VXbMecW = VWUcaW(VXbMecWQXPbeU,EEGWiPe); % AMC000_WiPe 
MLfiOe = ".PaW"; 
fiOe_VXbMecW = VWUcaW(VXbMecW,MLfiOe);   % AMC000_WiPe.PaW 
ORad (fiOe_VXbMecW); 
 
% fiQd cOiQicaO feaWXUeV Rf VSecific VXbMecW 
VXbMecWURZ = fiQd(VWUcPS(cOiQicaO.SWXd\ID, VXbMecWQXPbeU)==1); 
 
% EEG eSRch 5 PiQ (8 chaQQeOV, 5PiQ [ 128H]) 
% aYg = ORaded PaWUi[ iQ ZRUNVSace 
daWaVXbMecW = aYg; 
 
dXUaWiRQ = (1:Vi]e(aYg,2)); %daWaSRiQWV iQ daWaVXbMecW 
VigQaO = 1000000*aYg';      %YROWV WR PicURYROWV 
dS10 = FV*10;               %QXPbeU Rf daWaSRiQWV iQ a 10 Vec fUagPeQW 
 
% VWUiQgV XVed WR VaYe UeVXOWiQg feaWXUe PaWUi[ 
VXbMecW_feaWXUeV = "_feaWXUeV"; 
VXbID = VWUcaW(VXbMecW,VXbMecW_feaWXUeV); %AMC000_WiPe_feaWXUeV 

6SOLW�((*�HSRFK�LQWR�IUDJPHQWV�RI�10�VHF

% VSOiW Whe QXPbeU Rf cROXPQV b\ 30 aQd UeSOicaWe 30 WiPeV 
cROdiVW = Vi]e(daWaVXbMecW, 2) / fUagPeQWV * RQeV(1, fUagPeQWV); 
 
% 30 fUagPeQWV Rf 8[1280 PaWUiceV 
VSOiWPaWV = PaW2ceOO(daWaVXbMecW, chaQQeOV, cROdiVW); 

&UHDWH�HPSW\�PDWULFHV�WR�VWRUH�IHDWXUHV

% ePSW\ feaWXUe PaWUi[ WR VWRUe aOO feaWXUeV Rf aOO chaQQeOV SeU fUagPeQW 
feaWXUeV_fUagPeQW = ]eURV(feaWXUeV,chaQQeOV); 
% ePSW\ feaWXUe PaWUi[ Rf aOO fUagPeQWV 
feaWXUeV_aOO = ]eURV(feaWXUeV, chaQQeOV, fUagPeQWV); 
 
% feaWXUeV aUe aYeUaged acURVV aOO chaQQeOV WR RbWaiQ QeZ feaWXUe PaWUi[ 
% feaWXUe PaWUi[ SeU fUagPeQW cRQWaiQV aYeUaged feaWXUe YaOXe 
 
% cUeaWe ePSW\ feaWXUe PaWUi[ Rf aOO feaWXUeV Rf aOO fUagPeQWV 
% feaWXUeV PaWUi[ cRQWaiQV aYeUaged feaWXUeV Rf aOO fUagPeQWV 
feaWXUeV_eSRch = ]eURV(feaWXUeV,fUagPeQWV); 

)($785(6�%%

%%%%%%%%%%%%%% 

)HDWXUHV�FDOFXODWHG�IRU�ZKROH�((*�HSRFK�(QRW�SHU�IUDJPHQW)

% COiQicaO feaWXUeV 
%age 
age = cOiQicaO(VXbMecWURZ,5); 
age = age^1,1`; 
 
%Ve[ 1=PaOe ; 2=fePaOe 
Ve[ = cOiQicaO(VXbMecWURZ,4); 
Ve[ = Ve[^1,1`; 
 
% CPC 
cSc = cOiQicaO(VXbMecWURZ, 3); 
cSc = cSc^1,1`; 

)HDWXUH�#7��)DOVH�1HDUHVW�1HLJKERUV

PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

 FNN_PaWUi[ = ]eURV(1,chaQQeOV); 
fRU i = 1:chaQQeOV 
    QSWV = 1280;        %10Vec * FV 
    Pa[diPV = 50; 
    Pa[_deOa\ = 256;    %2Vec * FV 
    diVWaQce_WhUeVh = 0.5; 
 
    %WW = aPi([(:,i),QSWV,Pa[_deOa\); 
    WW = aPi(VigQaO(:,i),QSWV,Pa[_deOa\); 
    [a,id[] = PiQ(WW); 
    %QQ = faOVe_QeighbRUV_Nd([(:,i), id[, Pa[diPV, QSWV, 1, 0, 0, 0); 
    QQ = faOVe_QeighbRUV_Nd(VigQaO(:,i), id[, Pa[diPV, QSWV, 1, 0, 0, 0); 
    PiQdiP = fiQd((PeaQ(QQ.]./QQ.d > diVWaQce_WhUeVh) < 0.1) == 1); 
    FNN = PiQdiP(1); 



    FNN_PaWUi[(1,i) = FNN; 
eQd 

)HDWXUHV�FDOFXODWHG�SHU�IUDJPHQW�%%

% UeSeaW Whe feaWXUe e[WUacWiRQ fRU aOO fUagPeQWV iQ Whe eSRch 
fRU f = 1:fUagPeQWV 

% e[WUacW fUagPeQW PaWUiceV 
daWa_10Vec = VSOiWPaWV(f); 
daWa_10Vec = daWa_10Vec^1,1`; 
daWa_10Vec = 1000000*daWa_10Vec;    % fURP YROWV WR PicURYROWV 
[ = daWa_10Vec.';                   % 1280 VaPSOeV [ 8 chaQQeOV iQSXW PaWUi[ 
 
% PiQiPXP aQd Pa[iPXP EEG aPSOiWXde 
PiQ_aPSO_fUag = PiQ(daWa_10Vec,[],'aOO'); %PicURYROWV 
Pa[_aPSO_fUag = Pa[(daWa_10Vec,[],'aOO'); %PicURYROWV 

)HDWXUH�#1��6KDQQRQ�(QWURS\�(FRPSOH[LW\)

A�PHDVXUH�WR�TXDQWLI\�WKH�XQFHUWDLQW\�RI�D�VWRFKDVWLF�VLJQDO�GHILQHG�E\�6KDQQRQ�DQG�:HDYHU,�1949�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

% ePSW\ PaWUi[ fRU fUagPeQW 
ShaQQRQ_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
 
    biQ_PiQ = -200; biQ_Pa[ = 200; biQWidWh = 2; 
    ShaQQRQ_eQWURS\ = CRI_ShaQQRQEQWURS\([(:,i), biQ_PiQ, biQ_Pa[, biQWidWh); 
 
    % cUeaWe PaWUi[ WR VWRUe eQWURS\ fURP eYeU\ chaQQeO 
    ShaQQRQ_PaWUi[(1,i) = ShaQQRQ_eQWURS\; 
eQd 

)HDWXUH�#2��7VDOOLV�(QWURS\�(T 2)�(FRPSOH[LW\)

A�PHDVXUH�WR�TXDQWLI\�WKH�XQFHUWDLQW\�RI�D�VWRFKDVWLF�VLJQDO�LQ�D�QRQH[WHQVLYH�PDQQHU�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

TVaOOiV_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1 : chaQQeOV 
 
    biQ_PiQ = -200; biQ_Pa[ = 200; biQWidWh = 2; T = 2; 
    [a, SURb] = CRI_ShaQQRQEQWURS\([(:,i), biQ_PiQ, biQ_Pa[, biQWidWh); 
    WVaOOiV = TVaOOiV_eQWUR(SURb',(T + 0.01)); 
    TVaOOiV_PaWUi[(1,i) = WVaOOiV; 
 
eQd 

)HDWXUH�#3�DQG�#4��&HSVWUXP�FRHIILFLHQWV�(FRPSOH[LW\)

A�PHDVXUH�WR�TXDQWLI\�WKH�UDWH�RI�FKDQJH�LQ�GLIIHUHQW�VSHFWUXP�EDQGV�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

ceS_PaWUi[ = ]eURV(2,chaQQeOV); 
 
%CeSVWUXP cRefficieQW 1 
fRU i = 1 : chaQQeOV 
    % The QXPbeU Rf cRPSRQeQWV 
    QXP_OcS = 2; 
 
    %TaNe Whe aXWRcRUUeOaWiRQ 
    hac = dVS.AXWRcRUUeOaWRU; 
    hac.Ma[iPXPLagSRXUce = 'PURSeUW\'; 
    hac.Ma[iPXPLag = QXP_OcS;           % CRPSXWe aXWRcRUUeOaWiRQ OagV beWZeeQ [0:9] 
    a = VWeS(hac, [(:,i)); 
 
    % RXQ OeYiQVRQ VROYeU WR fiQd LPC cRefficeiQWV. 
    hOeYiQVRQ = dVS.LeYiQVRQSROYeU; 
    hOeYiQVRQ.AOXWSXWPRUW = WUXe;   % OXWSXW SRO\QRPiaO cRefficieQWV 
    LPC = VWeS(hOeYiQVRQ, a);       % CRPSXWe LPC cRefficieQWV 
 
    %NRZ cRQYeUW WR ceSVWUaO cRefficeQWV. 
    hOSc2cc = dVS.LPCTRCeSVWUaO('CeSVWUXPLeQgWh',URXQd(1.5*QXP_OcS)); 
 
    CC^i` = VWeS(hOSc2cc, LPC); % CRQYeUW LPC WR CC. 
    ceS1 = CC^i`(2); 
 
    ceS_PaWUi[(1,i) = ceS1; 
eQd 
 
%CeSVWUXP cRefficieQW 2 
fRU i = 1 : chaQQeOV 
    QXP_OcS = 2; 
 
    %TaNe Whe aXWRcRUUeOaWiRQ 
    hac = dVS.AXWRcRUUeOaWRU; 
    hac.Ma[iPXPLagSRXUce = 'PURSeUW\'; 
    hac.Ma[iPXPLag = QXP_OcS;           % CRPSXWe aXWRcRUUeOaWiRQ OagV beWZeeQ [0:9] 



    a = VWeS(hac, [(:,i)); 
 
    % RXQ OeYiQVRQ VROYeU WR fiQd LPC cRefficeiQWV. 
    hOeYiQVRQ = dVS.LeYiQVRQSROYeU; 
    hOeYiQVRQ.AOXWSXWPRUW = WUXe;   % OXWSXW SRO\QRPiaO cRefficieQWV 
    LPC = VWeS(hOeYiQVRQ, a);       % CRPSXWe LPC cRefficieQWV 
 
    %NRZ cRQYeUW WR ceSVWUaO cRefficeQWV. 
    hOSc2cc = dVS.LPCTRCeSVWUaO('CeSVWUXPLeQgWh',URXQd(1.5*QXP_OcS)); 
 
    CC^i` = VWeS(hOSc2cc, LPC); % CRQYeUW LPC WR CC. 
    ceS2 = CC^i`(3); 
 
    ceS_PaWUi[(2,i) = ceS2; 
eQd 

)HDWXUH�#5�#6��+MRUWK�3DUDPHWHUV�RI�PRELOLW\�DQG�FRPSOH[LW\�(FRPSOH[LW\)

PRELOLW\�(2QG�HMRUWK�SDUDPHWHU)�=�LQGLFDWLRQ�RI�WKH�SURSRUWLRQ�RI�WKH�YDULDQFH�RI�WKH�SRZHU�VSHFWUXP�FRPSOH[LW\�(3QG�HMRUWK�SDUDPHWHU)�=�D�PHDVXUH�WKDW�TXDQWLILHV�KRZ�PXFK�VLPLODULW\�EHWZHHQ�WKH
VKDSH�RI�WKH�VLJQDO�DQG�D�SXUH�VLQH�ZDYH�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

HMRUWh_PaWUi[ = ]eURV(2,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
 
    [PRbiOiW\,cRPSOe[iW\] = HMRUWhPaUaPeWeUV([(:,i)); 
    HMRUWh_PaWUi[(1,i) = PRbiOiW\; 
    HMRUWh_PaWUi[(2,i) = cRPSOe[iW\; 
 
eQd 

)HDWXUH�#7��)DOVH�1HDUHVW�1HLJKERUV�(FRPSOH[LW\)

%�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019�FDOFXODWHG�IRU�HQWLUH�HSRFK

)HDXWXUH�#8�#9��$XWRUHJUHVVLYH�FRHIILFLHQWV�(FRPSOH[LW\)

EVWLPDWHG�FRHIILFLHQWV�DW�W1�DQG�W2�RI�D�2QG�RUGHU�A5�PRGHO�JLYHQ�WKH�EEG�VLJQDO�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019�XVH�WKH�EFRQRPHWULFV�7RROER[

aUPa_PaWUi[ = ]eURV(2,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
 
    PRd^i` = aUiPa(2,0,0); 
    aUPa_PRd^i` = eVWiPaWe(PRd^i`,[(:,i)); 
    aUPa1 = aUPa_PRd^i`.AR^1`; 
 
    PRd^i` = aUiPa(2,0,0); 
    aUPa_PRd^i` = eVWiPaWe(PRd^i`,[(:,i)); 
    aUPa2 = aUPa_PRd^i`.AR^2`; 
 
    aUPa_PaWUi[(1,i) = aUPa1; 
    aUPa_PaWUi[(2,i) = aUPa2; 
 
eQd 

)HDWXUH�#14��7RWDO�VLJQDO�SRZHU�(FDWHJRU\)

SRZeU_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    SRZeU = baQdSRZeU([(:,i),FV,[0.5,30]); 
    SRZeU_PaWUi[(1,i) = SRZeU; 
eQd 

)HDWXUH�#10�'HOWD�%DQG�SRZHU�/�WRWDO�VLJQDO�SRZHU�(FDWHJRU\)

FRPSURPLVHV�IUHTXHQFLHV�EHWZHHQ�0.5�±�4�H]�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

deOWa_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    deOWa = baQdSRZeU([(:,i),FV,[0.5,4]); 
    deOWa_PaWUi[(1,i) = deOWa; 
eQd 
 
% QRUPaOi]e WR WRWaO SRZeU 
deOWa_QRUP = deOWa_PaWUi[./SRZeU_PaWUi[; 

)HDWXUH�#11�7KHWD�%DQG�SRZHU�/�WRWDO�VLJQDO�SRZHU�(FDWHJRU\)

FRPSURPLVHV�IUHTXHQFLHV�EHWZHHQ�4�±�7�H]�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

WheWa_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    WheWa = baQdSRZeU([(:,i),FV,[4,7]); 
    WheWa_PaWUi[(1,i) = WheWa; 



eQd 
 
% QRUPaOi]e WR WRWaO SRZeU 
WheWa_QRUP = WheWa_PaWUi[./SRZeU_PaWUi[; 

)HDWXUH�#12�$OSKD�%DQG�SRZHU�/�WRWDO�VLJQDO�SRZHU�(FDWHJRU\)

FRPSURPLVHV�IUHTXHQFLHV�EHWZHHQ�8�±�13�H]�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

aOSha_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    aOSha = baQdSRZeU([(:,i),FV,[8,13]); 
    aOSha_PaWUi[(1,i) = aOSha; 
eQd 
 
% QRUPaOi]e WR WRWaO SRZeU 
aOSha_QRUP = aOSha_PaWUi[./SRZeU_PaWUi[; 

)HDWXUH�#13�%HWD�%DQG�SRZHU�/�WRWDO�VLJQDO�SRZHU�(FDWHJRU\)

FRPSURPLVHV�IUHTXHQFLHV�EHWZHHQ�14�±�30�H]�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

beWa_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    beWa = baQdSRZeU([(:,i),FV,[14,30]); 
    beWa_PaWUi[(1,i) = beWa; 
eQd 
 
% QRUPaOi]e WR WRWaO SRZeU 
beWa_QRUP = beWa_PaWUi[./SRZeU_PaWUi[; 

)HDWXUH�#15�5HJXODULW\�(FDWHJRU\)

A�PHDVXUH�WR�TXDQWLI\�UHJXODULW\�LQ�DPSOLWXGH�RI�WKH�VLJQDO�FRUPXOD�IURP�7MHSNHPDCORRVWHUPDQV�HW�DO.�2013�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

Ueg_PaWUi[ = ]eURV(1,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
    %VTXaUe Whe VigQaO 
    iQ_[ = [(:,i).^2; 
    %fiQd Whe fiOWeU OeQgWh iQ VaPSOeV (0.5 Vec) 
    QXP_ZWV = FV/2; 
 
    a = 1; 
    ZWV = RQeV(1,QXP_ZWV)/QXP_ZWV; 
    T = fiOWeU(ZWV,a,iQ_[); 
    %VRUW Whe YaOXeV Rf Whe VPRRWhed VigQaO iQ deVceQdiQg RUdeU 
    T = VRUW(T,'deVceQd'); 
    N = OeQgWh(T); 
    X = 1:N; 
 
    %cRPSXWe Whe UegXOaUiW\ 
    %YaU(T) 
    UegXOaUiW\ = VTUW(VXP(X.^2.* T')/(VXP(T)*N^2*1/3)); 
    Ueg_PaWUi[(1,i) = UegXOaUiW\; 
 
eQd 

)HDWXUH�#16��1XPEHU�RI�HSLOHSWLFIRUP�VSLNHV�(FDWHJRU\)

CRXQW�WKH�QXPEHU�RI�HSLOHSWLF�IRUP�VSLNHV�A�IHDWXUH�UHODWHG�WR�WKH�HSLOHSWLIRUP�EEG�SDWWHUQ�LQ�SRVWDQR[LF�FRPD�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

VSiNe_PaWUi[ = ]eURV(1, chaQQeOV); 
 
fRU i = 1 : chaQQeOV 
 
    VWdV_aZa\ = 3; 
    deaOWa_MXPSV = 2; 
    %UePRYe Whe PeaQ fURP Whe VigQaO aQd ORRN fRU Whe VSiNeV 
    %FiQd a VSiNeV OaVWiQg OW 70 PV = 9 VaPSOeV 
    %PaUgiQ aURXQd PiQiPaO QXPbeU Rf VaPSOeV: 9 [ 2 = 18 
    [SNV, ORcV]=fiQdSeaNV([(:,i)-PeaQ([(:,i)),'Ma[PeaNWidWh',18,'SRUWSWU', 'deVceQd'); 
 
    %PaNe VXUe WhaW iW iV PRUe WhaQ 3 VWaQdaUd deYiaWiRQV fURP Whe PediaQ 
    SN_iQde[ = ORcV(fiQd(VWdV_aZa\ * VWd([(:,i)) < SNV)); 
    NUM_SPIKE = OeQgWh(SN_iQde[); 
    VSiNe_PaWUi[(1,i) = NUM_SPIKE; 
 
eQd 

)HDWXUH�#17��%XUVW�6XSUHVVLRQ�5DWLR�(FDWHJRU\)

7KH�UDWLR�EHWZHHQ�OHQJWK�RI�WKH�IUDJPHQW�WKH�WKDW�VLJQDO�LV�EHORZ�5�PLFURYROWV�DQG�WKH�WRWDO�OHQJWK�RI�WKH�IUDJPHQW�A�IHDWXUH�UHODWHG�WR�WKH�ORZ�YROWDJH�EEG�SDWWHUQ�LQ�SRVWDQR[LF�FRPD�IRUPXOD
REWDLQHG�IURP�SDSHU�1DJDUDM�HW�DO.�2018



BSR_PaWUi[ = ]eURV (1, chaQQeOV); 
 
fRU i = 1 : chaQQeOV 
    VXSUeVViRQ_WhUeVhROd = 5; %PicURYROWV 
    EEG = abV([(:,i)); 
    VXSUeVViRQV = EEG(EEG <= VXSUeVViRQ_WhUeVhROd); 
 
    BSR = (OeQgWh(VXSUeVViRQV) / OeQgWh(EEG))*100; 
    BSR_PaWUi[(1,i) = BSR; 
 
eQd 

)HDWXUH�#18��&RKHUHQFH�LQ�WKH�GHOWD�EDQG�(FRQQHFWLYLW\)

MHDVXUH�WR�TXDQWLI\�WKH�GHJUHH�RI�VLPLODULW\�LQ�WKH�GHOWD�EDQG�SDUDPWHUV�XVHG�IURP�7MHSNHPDCORRVWHUPDQV�HW�DO.�2013�PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

% ePSW\ PaWUi[ fRU cRheUeQce Rf chaQQeOV ZiWh aOO RWheU chaQQeOV 
dcR_aOOchaQQeOV = ]eURV(chaQQeOV,chaQQeOV); 
 
fRU i = 1:chaQQeOV 
   fRU i2 = 1:chaQQeOV 
   % cRheUeQce beWZeeQ aOO chaQQeO cRPbiQaWiRQV 
 
   % e[cOXde cRheUeQce beWZeeQ VaPe chaQQeOV 
   if    i==i2 
         dcR_aOOchaQQeOV(i,i2) = NaN; 
   eOVe 
 
         RYeUOaS = 2 * FV;  %daWa SRiQWV 
         ZiQdRZ_OeQgWh = 4; %VecRQdV 
         QffW = ZiQdRZ_OeQgWh * FV; %daWa SRiQWV 
         [C[\ F] = PVcRheUe([(:,i),[(:,i2),haQQiQg(QffW),RYeUOaS,QffW,FV); 
         deOWa_cRheUeQce = PeaQ(C[\(fiQd(F >= 0.5 & F<=4))); 
 
         dcR_aOOchaQQeOV(i,i2) = deOWa_cRheUeQce; 
   eQd 
   eQd 
eQd 
 
% UePRYe NaN 
dcR_QRQaQ = ]eURV(7,chaQQeOV); 
fRU i = 1 : chaQQeOV 
    dcR = dcR_aOOchaQQeOV(:,i); 
    dcR = dcR(aiVQaQ(dcR)); 
    dcR_QRQaQ(:,i) = dcR; 
eQd 
 
% aYeUage RYeU aOO chaQQeOV 
% UeWXUQV a URZ YecWRU cRQWaiQiQg Whe PeaQ Rf each cROXPQ 
dcR_PaWUi[ = PeaQ(dcR_QRQaQ); 

)HDWXUH�#19��3KDVH�/DJ�,QGH[�(FRQQHFWLYLW\)

PRGLILHG�IURP�FRGH�GKDVVHPL�HW�DO.,�2019

SOi_aOOchaQQeOV = ]eURV(chaQQeOV, chaQQeOV); 
 
fRU i = 1 : chaQQeOV 
    fRU i2 = 1:chaQQeOV 
 
    % e[cOXde cRheUeQce beWZeeQ VaPe chaQQeOV 
    if    i==i2 
          SOi_aOOchaQQeOV(i,i2) = NaN; 
    eOVe 
 
    h[i = hiObeUW([(:,i)); 
    h[M = hiObeUW([(:,i2)); 
 
    % caOcXOaWiQg Whe INSTANTANEOUS PHASE 
    iQVW_ShaVei = aWaQ(aQgOe(h[i)); 
    iQVW_ShaVeM = aWaQ(aQgOe(h[M)); 
 
    SOi_RXW = abV(PeaQ(VigQ(iQVW_ShaVeM - iQVW_ShaVei))); 
 
    SOi_aOOchaQQeOV(i,i2) = SOi_RXW; 
    eQd 
 
    eQd 
eQd 
 
% UePRYe NaN 
SOi_QRQaQ = ]eURV(7,chaQQeOV); 
fRU i = 1 : chaQQeOV 
    SOi = SOi_aOOchaQQeOV(:,i); 
    SOi = SOi(aiVQaQ(SOi)); 
    SOi_QRQaQ(:,i) = SOi; 
eQd 
 
% aYeUage RYeU aOO chaQQeOV 
% UeWXUQV a URZ YecWRU cRQWaiQiQg Whe PeaQ Rf each cROXPQ 
SOi_PaWUi[ = PeaQ(SOi_QRQaQ); 



)HDWXUH�PDWUL[�SHU�IUDJPHQW�%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% fiOO feaWXUe PaWUi[ ZiWh feaWXUeV 
    % feaWXUe PaWUi[ cRQViVW Rf [feaWXUeV [ chaQQeOV] SeU fUagPeQW 
% caOcXOaWe Whe PeaQ Rf a feaWXUe acURVV aOO chaQQeOV 
% RbWaiQ YecWRU Rf PeaQ feaWXUeV acURVV aOO chaQQeOV SeU fUagPeQW 
 
% fiOO feaWXUe PaWUi[ ZiWh VhaQQRQ eQWURS\ 
feaWXUeV_fUagPeQW(1,:) = ShaQQRQ_PaWUi[; 
PeaQf1 = PeaQ(ShaQQRQ_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh WVaOOiV eQWURS\ 
feaWXUeV_fUagPeQW(2,:) = TVaOOiV_PaWUi[; 
PeaQf2 = PeaQ(TVaOOiV_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh ceSVWUXP cRefficieQWV 
feaWXUeV_fUagPeQW(3:4,:) = ceS_PaWUi[; 
PeaQf3 = PeaQ(ceS_PaWUi[(1,:)); 
PeaQf4 = PeaQ(ceS_PaWUi[(2,:)); 
 
% fiOO feaWXUe PaWUi[ ZiWh HMRUWh PRbiOiW\ aQd cRPSOe[iW\ 
feaWXUeV_fUagPeQW(5:6,:) = HMRUWh_PaWUi[; 
PeaQf5 = PeaQ(HMRUWh_PaWUi[(1,:)); %PRbiOiW\ 
PeaQf6 = PeaQ(HMRUWh_PaWUi[(2,:)); %cRPSOe[iW\ 
 
% fiOO feaWXUe PaWUi[ ZiWh FNN 
feaWXUeV_fUagPeQW(7,:) = FNN_PaWUi[; 
PeaQf7 = PeaQ(FNN_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh ARMA 
feaWXUeV_fUagPeQW(8:9,:) = aUPa_PaWUi[; 
PeaQf8 = PeaQ(aUPa_PaWUi[(1,:)); 
PeaQf9 = PeaQ(aUPa_PaWUi[(2,:)); 
 
% fiOO feaWXUe PaWUi[ ZiWh deOWa QRUPaOi]ed SRZeU 
feaWXUeV_fUagPeQW(10,:) = deOWa_QRUP; 
PeaQf10 = PeaQ(deOWa_QRUP); 
 
% fiOO feaWXUe PaWUi[ ZiWh WheWa QRUPaOi]ed SRZeU 
feaWXUeV_fUagPeQW(11,:) = WheWa_QRUP; 
PeaQf11 = PeaQ(WheWa_QRUP); 
 
% fiOO feaWXUe PaWUi[ ZiWh aOSha QRUPaOi]ed SRZeU 
feaWXUeV_fUagPeQW(12,:) = aOSha_QRUP; 
PeaQf12 = PeaQ(aOSha_QRUP); 
 
% fiOO feaWXUe PaWUi[ ZiWh beWa SRZeU QRUPaOi]ed SRZeU 
feaWXUeV_fUagPeQW(13,:) = beWa_QRUP; 
PeaQf13 = PeaQ(beWa_QRUP); 
 
% fiOO feaWXUe PaWUi[ ZiWh VigQaO SRZeU 
feaWXUeV_fUagPeQW(14,:) = SRZeU_PaWUi[; 
PeaQf14 = PeaQ(SRZeU_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh UegXOaUiW\ 
feaWXUeV_fUagPeQW(15,:) = Ueg_PaWUi[; 
PeaQf15 = PeaQ(Ueg_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh eSiOeSWic VSiNeV 
feaWXUeV_fUagPeQW(16,:) = VSiNe_PaWUi[; 
PeaQf16 = PeaQ(VSiNe_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh BSR 
feaWXUeV_fUagPeQW(17,:) = BSR_PaWUi[; 
PeaQf17 = PeaQ(BSR_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh deOWa cRheUeQce 
feaWXUeV_fUagPeQW(18,:) =  dcR_PaWUi[; 
PeaQf18 = PeaQ( dcR_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh ShaVe Oag iQde[ 
feaWXUeV_fUagPeQW(19,:) =  SOi_PaWUi[; 
PeaQf19 = PeaQ(SOi_PaWUi[); 
 
% fiOO feaWXUe PaWUi[ ZiWh age 
feaWXUeV_fUagPeQW(20,:) = age * RQeV(1,chaQQeOV); 
 
% fiOO feaWXUe PaWUi[ ZiWh Ve[ 
feaWXUeV_fUagPeQW(21,:) = Ve[ * RQeV(1,chaQQeOV); 
 
% fiOO feaWXUe PaWUi[ ZiWh CPC 
feaWXUeV_fUagPeQW(22,:) = cSc * RQeV(1,chaQQeOV); 
 
 
%TABLE Rf feaWXUe PaWUi[ (feaWXUeV)[(chaQQeOV) 
%URZ QaPeV 
feaWXUe = ^'ShaQQRQ EQWURS\','TVaOOiV EQWURS\','CeSWUXP 1','CeSWUXP 2',... 
           'HMRUWh MRbiOiW\','HMRUWh CRPSOe[iW\','FNN', 'AUPa1', 'AUPa2',... 
           'DeOWa','TheWa','AOSha','BeWa','SigQaO PRZeU','RegXOaUiW\',... 
           'NXPbeU ESiOeSWic SSiNeV','BXUVW SXSSUeVViRQ RaWiR',... 
           'DeOWa CRheUeQce','PhaVe Lag IQde[','Age','Se[','CPC'`; 
%cROXPQ QaPeV 
chaQQeOQXPbeU = ^'FS1T3','T3O1','FS2T4','T4O2','FS1C3','C3O1','FS2C4','C4O2'`; 
%WabOe feaWXUeV SeU chaQQeO 
feaWXUeV_chaQQeOV_10Vec = aUUa\2WabOe(feaWXUeV_fUagPeQW,'RRZNaPeV',feaWXUe,'VaUiabOeNaPeV',chaQQeOQXPbeU); 



 
 
%TABLE Rf PeaQ feaWXUe PaWUi[ 
%(PeaQ feaWXUeV acURVV aOO chaQQeOV)[(1) Rf 1 fUagPeQW 
%cROXPQ QaPe 
chaQQeOQaPe = ^'aOOchaQQeOV'`; 
%cRPSOeWe YecWRU 
PeaQfeaWXUeV = [PeaQf1; PeaQf2; PeaQf3; PeaQf4; PeaQf5; PeaQf6; PeaQf7; PeaQf8; PeaQf9; PeaQf10; PeaQf11; PeaQf12; PeaQf13; PeaQf14; PeaQf15; PeaQ
%WabOe feaWXUeV aYeUaged acURVV aOO chaQQeOV 
PeaQfeaWXUeV_10Vec = aUUa\2WabOe(PeaQfeaWXUeV,'RRZNaPeV',feaWXUe,'VaUiabOeNaPeV',chaQQeOQaPe); 
 
%3D VWUXcWXUe Rf aOO feaWXUe_fUagPeQW PaWUiceV Rf aOO fUagPeQWV 
%(feaWXUeV)[(chaQQeOV)[(fUagPeQWV) 
feaWXUeV_aOO(:,:,f) = feaWXUeV_fUagPeQW; 

*(1(5$7(�)($785(�0$75,;�3(5�(32&+�%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% VWRUe Whe PeaQ feaWXUeV acURVV aOO chaQQeOV SeU fUagPeQW iQ a PaWUi[ 
% [PeaQfeaWXUeV [ fUagPeQWV] 
% giYeV feaWXUe PaWUi[ Rf aQ eSRch 
feaWXUeV_eSRch(:,f) = PeaQfeaWXUeV; 

eQd 

7DEOH�RI�IHDWXUH�PDWUL[�SHU�HSRFK

fUagPeQWQXPbeU = ^'fUagPeQW1', 'fUagPeQW2', 'fUagPeQW3', 'fUagPeQW4', 'fUagPeQW5',... 
                  'fUagPeQW6', 'fUagPeQW7', 'fUagPeQW8', 'fUagPeQW9', 'fUagPeQW10',... 
                  'fUagPeQW11', 'fUagPeQW12', 'fUagPeQW13', 'fUagPeQW14', 'fUagPeQW15',... 
                  'fUagPeQW16', 'fUagPeQW17', 'fUagPeQW18', 'fUagPeQW19', 'fUagPeQW20',... 
                  'fUagPeQW21', 'fUagPeQW22', 'fUagPeQW23', 'fUagPeQW24', 'fUagPeQW25',... 
                  'fUagPeQW26', 'fUagPeQW27', 'fUagPeQW28', 'fUagPeQW29', 'fUagPeQW30'`; 
feaWXUeV_eSRch_WabOe = aUUa\2WabOe(feaWXUeV_eSRch, 'RRZNaPeV', feaWXUe,'VaUiabOeNaPeV',fUagPeQWQXPbeU); 

6DYH�IHDWXUH�PDWUL[�SHU�VXEMHFW

VDYH�DV�"AMC0000BWLPHBIHDWXUHV.PDW"

VaYe(VXbID, 'feaWXUeV_eSRch') 

6WRUH�IHDWXUHV�DYHUDJHG�DFURVV�DOO�IUDJHPHQWV�SHU�VXEMHFW

JLYHV�PDWUL[�RI�DYHUDJHG�IHDWXUHV�RI�HSRFK�RI�DOO�VXEMHFWV�>PHDQIHDWXUHV�DFURVV�IUDJPHQW�[�VXEMHFWV@�XVHG�IRU�IHDWXUH�VHOHFWLRQ�DQG�ORJLVWLF�UHJUHVVLRQ

feaWXUeV_aOO_VXbMecWV(V,:)= PeaQ(feaWXUeV_eSRch.'); 
VaYe('feaWXUeV_aOO_VXbMecWV') 

eQd 

EUURU XViQg UeadWabOe (OiQe 198) 
UQabOe WR fiQd RU RSeQ 'COiQicaO_24.[OV['. ChecN Whe SaWh aQd fiOeQaPe RU fiOe SeUPiVViRQV. 
 
EUURU iQ Z1_FeaWXUeE[WUacWiRQ (OiQe 40) 
cOiQicaO = UeadWabOe(e[ceO_id); 

237,21$/�3/276�%%

%%%%%%%%%%%%%%%%%%%% 

3ORW�D�VHOHFWHG�((*�IUDJPHQW�(1)�RU�VSHFLILF�WLPH�SHULRG�(2)

% PiQiPaO aQd Pa[iPaO aPSOiWXde 
PiQ_aPSO_eSRch = PiQ(VigQaO,[],'aOO'); %PicURYROWV 
Pa[_aPSO_eSRch = Pa[(VigQaO,[],'aOO'); %PicURYROWV 
 
% RSWiRQ 1: SORW EEG fUagPeQW 
%defiQe fUagPeQW 
eeg_fUagPeQW = 10; 
%defiQe WiPe WR SORW 
VWaUW_fUag = ((eeg_fUagPeQW-1)*dS10)+1; 
eQd_fUag = (eeg_fUagPeQW)*dS10; 
fUgP = VWaUW_fUag : eQd_fUag; 
 
% RSWiRQ 2: SORW VSecific WiPe SeUiRd 
%defiQe VWaUW aQd eQd WiPe 
%WVWaUW = 10;   %Vec 
%WeQd = 35;     %Vec 
 
% SORW VigQaO Rf aOO chaQQeOV 
fRU i = 1:chaQQeOV 
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   figXUe(1) 
    % RSWiRQ 1: SORW VSecific fUagPeQW 
    VXbSORW(chaQQeOV,1,i); 
    SORW(dXUaWiRQ(fUgP), VigQaO(fUgP,i), 'b'); 
 
    % RSWiRQ 1: SORW WiPe SeUiRd 
    %SORW(dXUaWiRQ(WVWaUW*FV:WeQd*FV), VigQaO(WVWaUW*FV:WeQd*FV,i), 'b'); 
 
    if abV(PiQ_aPSO_eSRch) > abV(Pa[_aPSO_eSRch) 
    \OiP ([PiQ_aPSO_eSRch abV(PiQ_aPSO_eSRch)]) 
    eOVe 
    \OiP ([-Pa[_aPSO_eSRch Pa[_aPSO_eSRch]) 
    eQd 
 
    \OabeO ('VROWage (XV)') 
    [OabeO 'WiPe * VaPSOe UaWe' 
 
eQd 

%R[SORW�IHDWXUHV�RI�DOO�IUDJPHQWV

bR[eSRch = feaWXUeV_eSRch.'; 
figXUe (2) 
WiWOe ('VaUiabiOiW\ Rf feaWXUeV beWZeeQ fUagPeQWV') 
 
VXbSORW(2,9,1) 
bR[SORW(bR[eSRch(:,1)) 
[OabeO('ShaQQRQ EQWURS\') 
 
VXbSORW(2,9,2) 
bR[SORW(bR[eSRch(:,2)) 
[OabeO('TVaOOiV EQWURS\') 
 
VXbSORW(2,9,3) 
bR[SORW(bR[eSRch(:,3)) 
[OabeO('CeSWUXP 1') 
 
VXbSORW(2,9,4) 
bR[SORW(bR[eSRch(:,4)) 
[OabeO('CeSWUXP 2') 
 
VXbSORW(2,9,5) 
bR[SORW(bR[eSRch(:,5)) 
[OabeO('HMRUWh MRbiOiW\') 
 
VXbSORW(2,9,6) 
bR[SORW(bR[eSRch(:,6)) 
[OabeO('HMRUWh CRPSOe[iW\') 
 
VXbSORW(2,9,7) 
bR[SORW(bR[eSRch(:,7)) 
[OabeO('FNN') 
 
VXbSORW(2,9,8) 
bR[SORW(bR[eSRch(:,10)) 
[OabeO('DeOWa') 
 
VXbSORW(2,9,9) 
bR[SORW(bR[eSRch(:,11)) 
[OabeO('TheWa') 
 
VXbSORW(2,9,10) 
bR[SORW(bR[eSRch(:,12)) 
[OabeO('AOSha') 
 
VXbSORW(2,9,11) 
bR[SORW(bR[eSRch(:,13)) 
[OabeO('BeWa') 
 
VXbSORW(2,9,12) 
bR[SORW(bR[eSRch(:,14)) 
[OabeO('SigQaO PRZeU') 
 
VXbSORW(2,9,13) 
bR[SORW(bR[eSRch(:,15)) 
[OabeO('RegXOaUiW\') 
 
VXbSORW(2,9,14) 
bR[SORW(bR[eSRch(:,16)) 
[OabeO('SSiNeV') 
 
VXbSORW(2,9,15) 
bR[SORW(bR[eSRch(:,17)) 
[OabeO('BSR') 
 
VXbSORW(2,9,16) 
bR[SORW(bR[eSRch(:,18)) 
[OabeO('DeOWa CRheUeQce') 
 
VXbSORW(2,9,17) 
bR[SORW(bR[eSRch(:,19)) 
[OabeO('PLI') 



3ORWV�WR�FKHFN�IHDWXUH�FKDQJHV�WKURXJKRXW�DQ�HSRFK

figXUe(3) 
WiWOe ('ChaQge Rf feaWXUeV WhURXgh eSRch') 
 
VXbSORW(2,9,1) 
SORW(bR[eSRch(:,1)) 
[OabeO('ShaQQRQ EQWURS\') 
 
VXbSORW(2,9,2) 
SORW(bR[eSRch(:,2)) 
[OabeO('TVaOOiV EQWURS\') 
 
VXbSORW(2,9,3) 
SORW(bR[eSRch(:,3)) 
[OabeO('CeSWUXP 1') 
 
VXbSORW(2,9,4) 
SORW(bR[eSRch(:,4)) 
[OabeO('CeSWUXP 2') 
 
VXbSORW(2,9,5) 
SORW(bR[eSRch(:,5)) 
[OabeO('HMRUWh MRbiOiW\') 
 
VXbSORW(2,9,6) 
SORW(bR[eSRch(:,6)) 
[OabeO('HMRUWh CRPSOe[iW\') 
 
VXbSORW(2,9,7) 
SORW(bR[eSRch(:,7)) 
[OabeO('FNN') 
 
VXbSORW(2,9,8) 
SORW(bR[eSRch(:,10)) 
[OabeO('DeOWa') 
 
VXbSORW(2,9,9) 
SORW(bR[eSRch(:,11)) 
[OabeO('TheWa') 
 
VXbSORW(2,9,10) 
SORW(bR[eSRch(:,12)) 
[OabeO('AOSha') 
 
VXbSORW(2,9,11) 
SORW(bR[eSRch(:,13)) 
[OabeO('BeWa') 
 
VXbSORW(2,9,12) 
SORW(bR[eSRch(:,14)) 
[OabeO('SigQaO PRZeU') 
 
VXbSORW(2,9,13) 
SORW(bR[eSRch(:,15)) 
[OabeO('RegXOaUiW\') 
 
VXbSORW(2,9,14) 
SORW(bR[eSRch(:,16)) 
[OabeO('SSiNeV') 
 
VXbSORW(2,9,15) 
SORW(bR[eSRch(:,17)) 
[OabeO('BSR') 
 
VXbSORW(2,9,16) 
SORW(bR[eSRch(:,18)) 
[OabeO('DeOWa CRheUeQce') 
 
VXbSORW(2,9,17) 
SORW(bR[eSRch(:,19)) 
[OabeO('PLI') 

%R[SORWV�WR�FKHFN�YDULDELOLW\�RI�IHDWXUHV�EHWZHHQ�FKDQQHOV

ZLWKLQ�D�IUDJPHQW

bR[fUagPeQW = VSecific_feaWXUe_fUagPeQW.'; 
figXUe(4) 
WiWOe('VaUiabiOiW\ Rf feaWXUeV beWZeeQ chaQQeOV'); 
 
VXbSORW(2,9,1) 
bR[SORW(bR[fUagPeQW(:,1)) 
[OabeO('ShaQQRQ EQWURS\') 
 
VXbSORW(2,9,2) 
bR[SORW(bR[fUagPeQW(:,2)) 
[OabeO('TVaOOiV EQWURS\') 
 
VXbSORW(2,9,3) 
bR[SORW(bR[fUagPeQW(:,3)) 
[OabeO('CeSWUXP 1') 
 
VXbSORW(2,9,4) 



bR[SORW(bR[fUagPeQW(:,4)) 
[OabeO('CeSWUXP 2') 
 
VXbSORW(2,9,5) 
bR[SORW(bR[fUagPeQW(:,5)) 
[OabeO('HMRUWh MRbiOiW\') 
 
VXbSORW(2,9,6) 
bR[SORW(bR[fUagPeQW(:,6)) 
[OabeO('HMRUWh CRPSOe[iW\') 
 
VXbSORW(2,9,7) 
bR[SORW(bR[fUagPeQW(:,7)) 
[OabeO('FNN') 
 
VXbSORW(2,9,8) 
bR[SORW(bR[fUagPeQW(:,10)) 
[OabeO('DeOWa') 
 
VXbSORW(2,9,9) 
bR[SORW(bR[fUagPeQW(:,11)) 
[OabeO('TheWa') 
 
VXbSORW(2,9,10) 
bR[SORW(bR[fUagPeQW(:,12)) 
[OabeO('AOSha') 
 
VXbSORW(2,9,11) 
bR[SORW(bR[fUagPeQW(:,13)) 
[OabeO('BeWa') 
 
VXbSORW(2,9,12) 
bR[SORW(bR[fUagPeQW(:,14)) 
[OabeO('SigQaO PRZeU') 
 
VXbSORW(2,9,13) 
bR[SORW(bR[fUagPeQW(:,15)) 
[OabeO('RegXOaUiW\') 
 
VXbSORW(2,9,14) 
bR[SORW(bR[fUagPeQW(:,16)) 
[OabeO('SSiNeV') 
 
VXbSORW(2,9,15) 
bR[SORW(bR[fUagPeQW(:,17)) 
[OabeO('BSR') 
 
VXbSORW(2,9,16) 
bR[SORW(bR[fUagPeQW(:,18)) 
[OabeO('DeOWa CRheUeQce') 
 
VXbSORW(2,9,17) 
bR[SORW(bR[fUagPeQW(:,19)) 
[OabeO('PLI') 

�
PXEOLVKHG�ZLWK�MA7LAB��R2020D

�



ASSHQGL[�Z.2�HLJK�VIF�IHDWXUH�H[FOXVLRQ

CRQWHQWV

3$57�1��)HDWXUH�LQSXW�VHOHFWLRQ

,QLWLDOL]DWLRQ

/RDG�'DWD

&UHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

1RUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

,QFOXGH�RQO\�T((*�IHDWXUHV

9,)�URXQG�1

5HPRYH�KLJKHVW�9,)�URXQG�1

9,)�URXQG�2

5HPRYH�KLJKHVW�9,)�URXQG�2

9,)�URXQG�3

5HPRYH�KLJKHVW�9,)�URXQG�3

9,)�URXQG�4

5HPRYH�KLJKHVW�9,)�URXQG�4

9,)�URXQG�5

5HPRYH�KLJKHVW�9,)�URXQG�5

9,)�URXQG�6

5HPRYH�KLJKHVW�9,)�URXQG�6

9,)�URXQG�7

5HPRYH�KLJKHVW�9,)�URXQG�7

9,)�URXQG�8

3$57�2��$GGLWLRQDO�IHDWXUH�VHW�5

,QLWLDOL]DWLRQ

/RDG�'DWD

FUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

QRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

LQFOXGH�RQO\�T((*�IHDWXUHV�ZLWK�KLJK�SUHGLFWLYH�YDOXH

9,)�URXQG�1

5HPRYH�KLJKHVW�9,)�URXQG�1

9,)�URXQG�2

5HPRYH�KLJKHVW�9,)�URXQG�2

9,)�URXQG�3

5HPRYH�KLJKHVW�9,)�URXQG�3

9,)�URXQG�4

5HPRYH�KLJKHVW�9,)�URXQG�4

9,)�URXQG�5

$XWKRU:�/.0.�YDQ�3RSSHO�12/2020

% VIF cRUUecWiRn cRde: XVed WR UemRYe feaWXUeV ZiWh high YaUiance inflaWiRn 
% facWRU (>10). FeaWXUeV VXbVeTXenWl\ UemRYed XnWil all VIFV < 10 
 
%VIFV aUe alVR Whe diagRnal elemenWV Rf Whe inYeUVe Rf Whe cRUUelaWiRn maWUi[ [1] 
%a cRnYenienW UeVXlW WhaW eliminaWeV Whe need WR VeW XS Whe YaUiRXV UegUeVViRnV 
%[1] BelVle\, D. A., E. KXh, and R. E. WelVch. RegUeVViRn DiagnRVWicV. HRbRken, NJ: JRhn Wile\ & SRnV, 1980. 

3A57�1��FHDWXUH�LQSXW�VHOHFWLRQ

FUHDWH�ILQDO�IHDWXUH�VHW�RI�T((*�IHDWXUHV�ZLWK�ORZ�PXOWLFROOLQHDULW\

,QLWLDOL]DWLRQ

cleaU all; clRVe all; clc 

/RDG�DDWD



ORDG�GDWD�W 12

daWa12 = lRad('FeaWXUe_SXbjecWV_12.maW'); 
daWa12 = daWa12.feaWXUeV_all_VXbjecWV_12; 
% lRad daWa W=24 
daWa24 = lRad('FeaWXUe_SXbjecWV_24.maW'); 
daWa24 = daWa24.feaWXUeV_all_VXbjecWV_24; 
 
alldaWa = [daWa12; daWa24]; %cRmbine daWa VeWV 

EUURU XVing lRad 
'FeaWXUe_SXbjecWV_12.maW' iV nRW fRXnd in Whe cXUUenW fRldeU RU Rn Whe MATLAB SaWh, bXW e[iVWV in: 
    /UVeUV/laXUaYanSRSSel/DRcXmenWen/BME/AfVWXdeUen/PAC/MaWlab 
    /UVeUV/laXUaYanSRSSel/DRcXmenWen/BME/AfVWXdeUen/PAC/MaWlab/DaWa/CRUUecWe beVWanden /FeaWXUeV_[_SXbjecW maWUi[ 12h 24h
 
Change Whe MATLAB cXUUenW fRldeU RU add iWV fRldeU WR Whe MATLAB SaWh. 
 
EUURU in Z2_E[clXdeHighVIFFeaWXUeV (line 20) 
daWa12 = lRad('FeaWXUe_SXbjecWV_12.maW'); 

CUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

0� �JRRG�RXWFRPH�(&3&�12)�1� �SRRU�RXWFRPH�(&3&�35)

alldaWa(:,22) = alldaWa(:,22)>2; 

1RUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

QRUPDOL]H�RSHUDWHV�RQ�HDFK�FROXPQ�RI�GDWD�VHSDUDWHO\�'UDQJH'�VFDOHV�EHWZHHQ�0:1

alldaWa_nRUm = nRUmali]e(alldaWa,'Uange'); 

,QFOXGH�RQO\�TEE*�IHDWXUHV

e[clXde Whe e[WUacWed clinical feaWXUeV: age(fW. 20) and Ve[(fW. 21)

e[lXdeClinicalFeaWXUeV = [20 21]; 
alldaWa_nRUm(:,e[lXdeClinicalFeaWXUeV) = []; 

9,F�URXQG�1

X = alldaWa_nRUm(:,1:19); 
R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'C2';'HM';'HC';'FNN';'A1';'A2';'d';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 1') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�1

X(:,feaWXUenXmbeU)=[]; 
% CeSVWUXm 2 

9,F�URXQG�2

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'HM';'HC';'FNN';'A1';'A2';'d';'W';... 

Laura van Poppel



            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 2') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�2

X(:,feaWXUenXmbeU)=[]; 
% ARMA 1 

9,F�URXQG�3

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'HM';'HC';'FNN';'A2';'d';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 3') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�3

X(:,feaWXUenXmbeU)=[]; 
% DelWa SRZeU 

9,F�URXQG�4

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'HM';'HC';'FNN';'A2';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 4') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�4

X(:,feaWXUenXmbeU)=[]; 
% ShannRn EnWURS\ 

9,F�URXQG�5

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'C1';'HM';'HC';'FNN';'A2';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 5') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 



5HPRYH�KLJKHVW�9,F�URXQG�5

X(:,feaWXUenXmbeU)=[]; 
% HjRUWh CRmSle[iW\ 

9,F�URXQG�6

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'C1';'HM';'FNN';'A2';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 6') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�6

X(:,feaWXUenXmbeU)=[]; 
% CeSVWUXm 1 

9,F�URXQG�7

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'HM';'FNN';'A2';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 7') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�7

X(:,feaWXUenXmbeU)=[]; 
% HjRUWh MRbiliW\ 

9,F�URXQG�8

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'FNN';'A2';'W';... 
            'a';'b';'SP';'R';'#S';'BSR';'dC';'PLI'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 8') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 
 
% all feaWXUeV haYe a VcRUe belRZ 10 
% e[clXded feaWXUeV: 
% ShannRn enWURS\ (1) 
% CeSVWUXm 1 (3) 
% CeSVWUXm 2 (4) 
% HjRUWh mRbiliW\ (5) 
% HjRUWh cRmSle[iW\ (6) 
% ARMA 1 (8) 
% NRUmali]ed delWa (10) 



3A57�2��AGGLWLRQDO�IHDWXUH�VHW�5

FUHDWH�DGGLWLRQDO�IHDWXUH�VHW�5�ZLWK�T((*�IHDWXUHV�IURP�DGGLWLRQDO�IHDWXUH�VHW�4�ZLWK�ORZ�PXOWLFROOLQHDULW\

,QLWLDOL]DWLRQ

cleaU all; clRVe all; clc 

/RDG�DDWD

ORDG�GDWD�W 12

daWa12 = lRad('FeaWXUe_SXbjecWV_12.maW'); 
daWa12 = daWa12.feaWXUeV_all_VXbjecWV_12; 
% lRad daWa W=24 
daWa24 = lRad('FeaWXUe_SXbjecWV_24.maW'); 
daWa24 = daWa24.feaWXUeV_all_VXbjecWV_24; 
 
alldaWa = [daWa12; daWa24]; %cRmbine daWa VeWV 

FUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

0� �JRRG�RXWFRPH�(&3&�12)�1� �SRRU�RXWFRPH�(&3&�35)

alldaWa(:,22) = alldaWa(:,22)>2; 

QRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

QRUPDOL]H�RSHUDWHV�RQ�HDFK�FROXPQ�RI�GDWD�VHSDUDWHO\�'UDQJH'�VFDOHV�EHWZHHQ�0:1

alldaWa_nRUm = nRUmali]e(alldaWa,'Uange'); 

LQFOXGH�RQO\�TEE*�IHDWXUHV�ZLWK�KLJK�SUHGLFWLYH�YDOXH

T((*�IHDWXUHV�H[FOXGHG�IURP�WKH�DOO�IHDWXUHV�WR�FUHDWH�DGGLWLRQDO�IHDWXUH�VHW�4:

        %8 ARMA 1 
        %9 ARMA 2 
        %10 DelWa 
        %11 TheWa 
        %12 AlSha 
        %14 Signal SRZeU 
        %15 RegXlaUiW\ 
        %19 PLI 
        %20 Age 
        %21 Se[ 
 
AFS4 = alldaWa_nRUm; 
e[clXdefeaWXUeV = [8 9 10 11 12 14 15 19 20 21]; 
AFS4(:,e[clXdefeaWXUeV) = []; 

9,F�URXQG�1

X = AFS4(:,1:11); 
R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'C2';'HM';'HC';'FNN';'b';'#S';'BSR';'dC'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 1') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�1



X(:,feaWXUenXmbeU)=[]; 
% CeSVWUXm 2 

9,F�URXQG�2

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'SE';'TE';'C1';'HM';'HC';'FNN';'b';'#S';'BSR';'dC'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 2') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�2

X(:,feaWXUenXmbeU)=[]; 
% ShannRn enWURS\ 

9,F�URXQG�3

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'C1';'HM';'HC';'FNN';'b';'#S';'BSR';'dC'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 3') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�3

X(:,feaWXUenXmbeU)=[]; 
% CeSVWUXm 1 

9,F�URXQG�4

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 
feaWXUeV = ^'TE';'HM';'HC';'FNN';'b';'#S';'BSR';'dC'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 4') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 

5HPRYH�KLJKHVW�9,F�URXQG�4

X(:,feaWXUenXmbeU)=[]; 
% HjRUWh mRbiliW\ 

9,F�URXQG�5

R0 = cRUUcRef(X);           % cRUUelaWiRn maWUi[ 
VIF=diag(inY(R0))'; 
[VcRUe,feaWXUenXmbeU] = ma[(VIF); 
 



feaWXUeV = ^'TE';'HC';'FNN';'b';'#S';'BSR';'dC'`; 
 
% SlRW VIF VcRUeV 
baU(VIF) 
WiWle('VIF Rf feaWXUeV URXnd 5') 
[label('FeaWXUeV') 
\label('VIF') 
VeW(gca,'XTick',1:lengWh(VIF),'XTickLabel',feaWXUeV) 
 
% all feaWXUeV haYe a VcRUe belRZ 10 
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ASSHQdL[�Z.3�IQSXW�SUHSaUaWLRQ�IRU�ORJLVWLc�UHJUHVVLRQ

CRQWHQWV

,QLWLDOL]H

1.�/RDG�DQG�SUHSDUH�GDWD

2.�&UHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

3.�1RUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

&UHDWH�ILQDO�IHDWXUH�VHW�())6)

&UHDWH�DGGLWLRQDO�IHDWXUH�VHWV�($)6V)

$)6�1

$)6�5

$XWKRU:�/.0.�YDQ�3RSSHO�12/2020

% code to prepare input data for Logistic Regression 

% 1) create final feature set 

% 2) create additional feature sets (AFS) 

 

% input = [features [ epochs] 

 

% CODE 

    % 1. Load features LR (aYeraged features [ epochs) 

    % 2. Change CPC to binar\ 

            % 0 = good outcome (CPC 1-2) 

            % 1 = poor outcome (CPC 3-5) 

    % 3. Normali]e feature matri[ to scale [0-1] 

 

    % 4. Create final feature set: 

    %       E[clude high VIF and clinical features: 

    %       1 3 4 5 6 8 10 20 21 

 

    % 5. Create AFS Zith features Zith loZ multicollinearit\ 

    %   AFS 1. Include clinical features (20 21) to final feature set 

    %   AFS 5. E[clude high VIF features from AFS 4 

            % AFS 4 = qEEG features that shoZ high predicitYe poZer 

IQLWLDOL]H

close all; clear all; clc 

1.�LRDG�DQG�SUHSDUH�GDWD

ORDG�GDWD�W 12

data12 = load('Feature_Subjects_12.mat'); 

data12 = data12.features_all_subjects_12; 

% load data t=24 

data24 = load('Feature_Subjects_24.mat'); 

data24 = data24.features_all_subjects_24; 

 

alldata = [data24; data24]; %combine data sets 

Error using load 

'Feature_Subjects_12.mat' is not found in the current folder or on the MATLAB path, but e[ists in: 

    /Users/lauraYanpoppel/Documenten/BME/Afstuderen/PAC/Matlab 

    /Users/lauraYanpoppel/Documenten/BME/Afstuderen/PAC/Matlab/Data/Correcte bestanden /Features_[_Subject matri[ 12h 24h

 

Change the MATLAB current folder or add its folder to the MATLAB path. 

 

Error in Z3_InputPreparationLR (line 33) 

data12 = load('Feature_Subjects_12.mat'); 

2.�CUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

0� �JRRG�RXWFRPH�(&3&�12)�1� �SRRU�RXWFRPH�(&3&�35)

Laura van Poppel



alldata(:,22) = alldata(:,22)>2; 

 

% data 12h and 24h 

data12(:,22) = data12(:,22)>2; 

data24(:,22) = data24(:,22)>2; 

3.�NRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

QRUPDOL]H�RSHUDWHV�RQ�HDFK�FROXPQ�RI�GDWD�VHSDUDWHO\�'UDQJH'�VFDOHV�EHWZHHQ�0:1

alldata_norm = normali]e(alldata,'range'); 

 

% data 12h and 24h 

data12_norm = normali]e(data12,'range'); 

data24_norm = normali]e(data24,'range'); 

CUHDWH�ILQDO�IHDWXUH�VHW�(FFS)

H[FOXGH�KLJK�9,)�IHDWXUHV�DQG�FOLQLFDO�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV

FFS = alldata_norm; 

e[ludeClinicalVIFFeatures = [1 3 4 5 6 8 10 20 21]; 

FFS(:,e[ludeClinicalVIFFeatures) = []; 

 

% data 12h and 24h 

FFS_12 = data12_norm; 

FFS_12(:,e[ludeClinicalVIFFeatures) = []; 

FFS_24 = data24_norm; 

FFS_24(:,e[ludeClinicalVIFFeatures) = []; 

CUHDWH�DGGLWLRQDO�IHDWXUH�VHWV�(AFSV)

RQO\�IHDWXUH�VHWV�ZLWK�ORZ�PXOWLFROOLQHDULW\�DUH�LQFOXGHG

AFS�1

H[FOXGH�KLJK�9,)�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV�HTXDO�WR�))6�+�FOLQLFDO�IHDWXUHV�+LJK�9,):�1�3�4�5�6�8�10

AFS1 = alldata_norm; 

e[ludeVIFFeatures = [1 3 4 5 6 8 10]; 

AFS1(:,e[ludeVIFFeatures) = []; 

AFS�5

H[FOXGH�KLJK�9,)�IHDWXUHV�IURP�$)6�4

AFS5 = alldata_norm; 

e[ludeLPVIFFeatures = [1 3 4 5 8 9 10 11 12 14 15 19 20 21]; 

AFS5(:,e[ludeLPVIFFeatures)=[]; 

�
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ASSHQGL[�=.4�IQSXW�SUHSDUDWLRQ�IRU�LSTM

CRQWHQWV

,QLWLDOL]DWLRQ

1.�/RDG�GDWD

2.�&UHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

6WRUH�GDWD

3.�1RUPDOL]H�GDWD�LQ�WKH�UDQJH�0�1

6DYH�VWDFNHG�GDWD�PDWULFHV

&UHDWH�ILQDO�IHDWXUH�VHW�())6)

&UHDWH�DGGLWLRQDO�IHDWXUH�VHWV�($)6V)

$)6�1

$)6�2

$)6�3

$)6�4

$)6�5

$XWKRU��/.0.�YDQ�3RSSHO�12/2020

% code Wo prepare inpXW daWa for LSTM 

% 1) creaWe final feaWXre VeW (FFS) 

% 2) creaWe addiWional feaWXre VeWV (AFS) 

 

% Specif\ W=12 and W=24 

% Per paWienW: 

    % 1. Load daWa 

    % 2. Change CPC Wo binar\ 

         % 0 = good oXWcome (CPC 1-2) 

         % 1 = poor oXWcome (CPC 3-5) 

    % 3. Normali]e normali]e(A,'range') Wo Vcale [0-1] 

    % ReVXlW: VXbjecW_WimeVWep [ feaWXreV 

    % RXn for W=12 and W=24 and VaYe maWriceV 

    % Combine daWa12 and daWa24 for compleWe VXbjecW maWri[ and VaYe 

 

% CODE 

    % 1. Load feaWXreV LR (aYeraged feaWXreV [ epochV) 

    % 2. Change CPC Wo binar\ 

            % 0 = good oXWcome (CPC 1-2) 

            % 1 = poor oXWcome (CPC 3-5) 

    % 3. Normali]e feaWXre maWri[ Wo Vcale [0-1] 

 

    % 4. CreaWe final feaWXre VeW: 

    %       E[clXde high VIF and clinical feaWXreV: 

    %       1 3 4 5 6 8 10 20 21 

 

    % 5. CreaWe AFS 

    %   AFS 1. InclXde clinical feaWXreV (20 21) Wo final feaWXre VeW 

    %   AFS 2. E[clXde clinical feaWXreV: 20 21 from e[WracWion maWri[ 

    %   AFS 3. SaYe maWri[ from feaWXre e[WracWion (inclXdeV all qEEG and 

    %                                               clinical feaWXreV) 

    %   AFS 4. E[clXde qEEG feaWXreV WhaW VhoZ loZ prediciWYe poZer 

    %   AFS 5. E[clXde high VIF feaWXreV from AFS 4 

IQLWLDOL]DWLRQ



clear all; cloVe all; clc; 

1.�LRDG�GDWD

% chooVe EEG Wime 

EEGWime = "_24"; 

 

% load e[cel ZiWh VXbjecW IDV 

e[celpac = "Clinical"; 

e[celfile = ".[lV["; 

e[cel_id = VWrcaW(e[celpac,EEGWime,e[celfile); 

VXbjecW_nXmber = readWable(e[cel_id); 

 

% creaWe empW\ maWri[ for all feaWXreV 

all_VXbjecWV = heighW(VXbjecW_nXmber); 

feaWXre_coXnW = 22; 

fragmenWV = 30; 

all_WimeVWepV = all_VXbjecWV*fragmenWV; 

feaWXreV_allVXbjecWV = ]eroV(all_WimeVWepV,feaWXre_coXnW); 

 

for i = 1:all_VXbjecWV 

% define VWringV 

VXbjecWID = VXbjecW_nXmber.SWXd\ID(i,1); 

VXbjecW = VWrcaW(VXbjecWID,EEGWime); % AMC000_Wime 

feaWXreV = "_feaWXreV"; 

MLfile = ".maW"; 

file_VXbjecW = VWrcaW(VXbjecW,feaWXreV,MLfile);   % AMC000_Wime_feaWXreV.maW 

 

% load daWa 

load (file_VXbjecW); 

alldaWa = feaWXreV_epoch.'; 

2.�CUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

0� �JRRG�RXWFRPH�(&3&�12)�1� �SRRU�RXWFRPH�(&3&�35)

alldaWa(:,22) = alldaWa(:,22)>2; 

6WRUH�GDWD

epochV = (1:30:(all_VXbjecWV*30)+30); 

feaWXreV_allVXbjecWV(epochV(i):(epochV(i+1)-1),:)=alldaWa; 

end 

Error XVing readWable (line 198) 

Unable Wo find or open 'Clinical_24.[lV['. Check Whe paWh and filename or file permiVVionV. 

 

Error in Z4_InpXWPreparaWionLSTM (line 52) 

VXbjecW_nXmber = readWable(e[cel_id); 

3.�NRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

Laura van Poppel



QRUPDOL]H�RSHUDWHV�RQ�HDFK�FROXPQ�RI�GDWD�VHSDUDWHO\�'UDQJH'�VFDOHV�EHWZHHQ�0�1

alldaWa_norm = feaWXreV_allVXbjecWV; 

alldaWa_norm(:,1:21) = normali]e(alldaWa_norm(:,1:21),'range'); 

6DYH�VWDFNHG�GDWD�PDWULFHV

VDYH�PDWUL[�IRU�W 12�DQG�W 24�ZLWK�DSSURSULDWH�QDPHV�DOOIHDWXUHVBGDWD12� �DOOGDWDBQRUP��DOOIHDWXUHVBGDWD24� �DOOGDWDBQRUP�
/670BDOOIHDWXUHV� �>DOOIHDWXUHVBGDWD12���DOOIHDWXUHVBGDWD24@��6DYH�/670BDOOIHDWXUHV�DQG�XVH�IRU�SUHSDUDWLRQ�RI�LQSXWV

CUHDWH�ILQDO�IHDWXUH�VHW�(FF6)

H[FOXGH�KLJK�9,)�IHDWXUHV�DQG�FOLQLFDO�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV

LSTM_FFS = LSTM_allfeaWXreV; 

e[lXdeClinicalVIFFeaWXreV = [1 3 4 5 6 8 10 20 21]; 

LSTM_FFS(:,e[lXdeClinicalVIFFeaWXreV) = []; 

 

% VeperaWe inpXW for 12 and 24 hoXrV afWer cardiac arreVW 

epoch12 = 78*30; 

 

LSTM_FFS_12h = LSTM_FFS(1:epoch12,:); 

LSTM_FFS_24h = LSTM_FFS; 

LSTM_FFS_24h(1:epoch12,:) = []; 

CUHDWH�DGGLWLRQDO�IHDWXUH�VHWV�(AF6V)

AF6�1

H[FOXGH�KLJK�9,)�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV�HTXDO�WR�))6�+�FOLQLFDO�IHDWXUHV�+LJK�9,)��1�3�4�5�6�8�10

LSTM_AFS1 = LSTM_allfeaWXreV; 

e[lXdeVIFFeaWXreV = [1 3 4 5 6 8 10]; 

LSTM_AFS1(:,e[lXdeVIFFeaWXreV) = []; 

AF6�2

H[FOXGH�FOLQLFDO�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV�LQFOXGHV�DOO�19�T((*�IHDWXUHV

LSTM_AFS2 = LSTM_allfeaWXreV; 

e[lXdeClinicalFeaWXreV = [20 21]; 

LSTM_AFS2(:,e[lXdeClinicalFeaWXreV) = []; 

AF6�3

H[FOXGH�QR�IHDWXUHV�IURP�H[WUDFWHG�IHDWXUHV�LQFOXGHV�DOO�19�T((*�IHDWXUHV�+�FOLQLFDO�IHDWXUHV

LSTM_AFS3 = LSTM_allfeaWXreV; 

AF6�4

H[FOXGH�T((*�IHDWXUHV�WKDW�VKRZ�ORZ�SUHGLFLWYH�SRZHU

LSTM_ASF4 = LSTM_allfeaWXreV; 

e[lXdeLPFeaWXreV = [8 9 10 11 12 14 15 19 20 21]; 



LSTM_ASF4(:,e[lXdeLPFeaWXreV)=[]; 

AF6�5

H[FOXGH�KLJK�9,)�IHDWXUHV�IURP�$)6�4

LSTM_AFS5 = LSTM_allfeaWXreV; 

e[lXdeLPVIFFeaWXreV = [1 3 4 5 8 9 10 11 12 14 15 19 20 21]; 

LSTM_AFS5(:,e[lXdeLPVIFFeaWXreV)=[]; 

�
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ASSHQdL[�Z.5�FHaWXUH�bR[SORWV

CRQWHQWV

,QLWLDOL]H

/RDG�DQG�SUHSDUH�GDWD

FUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

QRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

CKRRVH�IHDWXUH

6FDWWHU�SORW

BR[�SORW

AXWKRU:�/.0.�YDQ�3RSSHO�12/2020

% Code to plot of features Ys. outcome 

IQLWLDOL]H

close all 
clear all 
clc 

LRDG�DQG�SUHSDUH�GDWD

ORDG�GDWD�W=12

data12 = load('Feature_Subjects_12.mat'); 
data12 = data12.features_all_subjects_12; 
% load data t=24 
data24 = load('Feature_Subjects_24.mat'); 
data24 = data24.features_all_subjects_24; 
 
alldata = [data12; data24]; %combine data sets 

Error using load 
'Feature_Subjects_12.mat' is not found in the current folder or on the MATLAB path, but e[ists in: 
    /Users/lauraYanpoppel/Documenten/BME/Afstuderen/PAC/Matlab 
    /Users/lauraYanpoppel/Documenten/BME/Afstuderen/PAC/Matlab/Data/Correcte bestanden /Features_[_Subject matri[ 12h 24h
 
Change the MATLAB current folder or add its folder to the MATLAB path. 
 
Error in Z5_FeatureOutcomePlots (line 15) 
data12 = load('Feature_Subjects_12.mat'); 

FUHDWH�ELQDU\�FODVVLILFDWLRQ�RI�RXWFRPHV

0�=�JRRG�RXWFRPH�(C3C�12)�1�=�SRRU�RXWFRPH�(C3C�35)

alldata(:,22) = alldata(:,22)>2; 

QRUPDOL]H�GDWD�LQ�WKH�UDQJH�0:1

QRUPDOL]H�RSHUDWHV�RQ�HDFK�FROXPQ�RI�GDWD�VHSDUDWHO\�'UDQJH'�VFDOHV�EHWZHHQ�0:1

alldata_norm = normali]e(alldata,'range'); 

CKRRVH�IHDWXUH

%1 Shannon entrop\ 
%2 Tsallis entrop\ 
%3 Cepstrum 1 
%4 Cepstrum 2 
%5 Hjorth mobilit\ 
%6 Hjorth comple[it\ 
%7 FNN 
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%8 AR 1 
%9 AR 2 
%10 Delta 
%11 Theta 
%12 Alpha 
%13 Beta 
%14 Signal poZer 
%15 Regularit\ 
%16 Number of epileptic spikes 
%17 BSR 
%18 Delta coherence 
%19 PLI 
%20 Age 
%21 Se[ 
 
% manuall\ set feature name and number 
% Feature name 
ft = 'Burst Suppression Ratio'; 
% Feature number 
feature = alldata_norm(:,17); 

SFDWWHU�SORW

outcome = alldata_norm(:,22); 
%outcome = corrected_norm_data(:,14); 
 
m\Colors = ]eros(si]e(feature,1),3); 
% Set colors 
roZsToSetRed = outcome == 1;     %red is poor outcome 
roZsToSetBlue = outcome == 0;    %green is good outcome 
 
% Set colormap to red for the red roZs.[RGB] 
m\Colors(roZsToSetRed, 1) = 1; %red 
m\Colors(roZsToSetRed, 2) = 0; 
m\Colors(roZsToSetRed, 3) = 0; 
% Set colormap to blue for the blue roZs.[RGB] 
m\Colors(roZsToSetBlue, 1) = 0; 
m\Colors(roZsToSetBlue, 2) = 1; 
m\Colors(roZsToSetBlue, 3) = 0; %blue 
 
%scatterplot 
figure (1) 
scatter(outcome, feature, 80, m\Colors); 
grid on; 
title(ft) 
[label('Outcome: good (green) Ys. poor (red)') 
\label(ft) 

BR[�SORW

poor = find(outcome==1); 
good = find(outcome==0); 
ftpoor = feature(poor); 
ftgood = feature(good); 
fts = [ftgood;ftpoor]; 
 
g1 = repmat(^'Good'`,si]e(ftgood)); 
g2 = repmat(^'Poor'`,si]e(ftpoor)); 
g = [g1;g2]; 
 
%bo[plot 
figure (2) 
bo[plot (fts,g) 
title(ft) 
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Z.6 Final Logistic Regression 

1. #!/usr/bin/env python3   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on 31-12 2020  
5.   
6. @author: lauravanpoppel  
7. """   
8.    
9. import pandas as pd   
10. import numpy as np    
11. import matplotlib   
12. from matplotlib import pyplot   
13. from scipy.io import loadmat   
14. from sklearn.model_selection import train_test_split, KFold, StratifiedKFold   
15. import statsmodels.stats.api as sms   
16.    
17.    
18. from tensorflow.keras.models import Sequential    
19. from tensorflow.keras.layers import Dense, Activation    
20. from tensorflow.keras.regularizers import l1, l2, l1_l2   
21. from tensorflow.keras.optimizers import SGD   
22. from tensorflow.keras.metrics import Accuracy, AUC, Precision, SensitivityAtSpecificity, Speci

ficityAtSensitivity   
23. from keras_adabound import AdaBound   
24.    
25. # Prepare data #   
26. # choose input    
27. dataMatlab = loadmat('input4.mat');   
28. dataML = dataMatlab.get('input4');   
29.    
30. # define features and targets    
31. # change according to input used    
32. x = dataML[:,:12];   
33. y = dataML[:,12]; # 1 is poor outcome    
34.    
35. # repeat process 50 times   
36. repeats = 50   
37. test_loss_per_repeat = []   
38. test_acc_per_repeat = []   
39. test_auc_per_repeat = []   
40. test_pre_per_repeat = []   
41. test_se_per_repeat = []   
42. test_sp_per_repeat = []   
43.    
44. test_loss_repeat = []   
45. test_acc_repeat = []   
46. test_auc_repeat = []   
47. test_pre_repeat = []   
48. test_se_repeat = []   
49. test_sp_repeat = []   
50.    
51. for i in range(repeats):    
52.    
53.     # use 10-fold cross validation   
54.     num_folds = 10;   
55.     fold_no = 1   
56.        
57.     # Define the K-fold Cross Validator   
58.     skf = StratifiedKFold(n_splits=num_folds, shuffle=True)   
59.        
60.     # test metrics for CV   
61.     test_loss_per_fold = [];   
62.     test_acc_per_fold = [];   



63.     test_auc_per_fold = [];   
64.     test_pre_per_fold = [];   
65.     test_se_per_fold = [];   
66.     test_sp_per_fold = [];   
67.            
68.     # constant paramters   
69.     inputdim = int((x.shape[1:])[0])   
70.     outputdim = 1   
71.     act = 'sigmoid'   
72.     opt = SGD(learning_rate=0.01,   
73.               momentum=0.9,   
74.               nesterov=True)   
75.     loss_fun = 'binary_crossentropy'   
76.     nb_epoch = 1500   
77.     metric1 = 'accuracy'   
78.     metric2 = AUC(name='auc')   
79.     metric3 = Precision(name='precision')   
80.     metric4 = SensitivityAtSpecificity(1, name='sensitivity_at_specificity')   
81.     metric5 = SpecificityAtSensitivity(0.95, name='specificity_at_sensitivity')   
82.        
83.     for train, test in skf.split(x, y):   
84.        
85.         # build model    
86.         model = Sequential()   
87.         model.add(Dense(outputdim,   
88.                         activation=act,   
89.                         input_dim=inputdim))     
90.                      
91.         # compile model         
92.         model.compile(optimizer=opt,   
93.                       loss=loss_fun,   
94.                       metrics=[metric1, metric2, metric3, metric4, metric5]   
95.                       )   
96.            
97.          # Generate a print   
98.         print('------------------------------------------------------------------------')   
99.         print(f'Training for fold {fold_no} ...')   
100.            
101.            
102.         # fit model    
103.         history = model.fit(x[train],    
104.                             y[train],    
105.                             epochs=nb_epoch,    
106.                             verbose=0)   
107.                    
108.         # evaluate model   
109.         scores = model.evaluate(x[test], y[test], verbose=0)   
110.         # print(f'Test score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]};\   
111.         #                                         {model.metrics_names[1]} of {scores[1]*100}%

;\   
112.         #                                         {model.metrics_names[2]} of {scores[2]};\   
113.         #                                         {model.metrics_names[3]} of {scores[3]};\   
114.         #                                         {model.metrics_names[4]} of {scores[4]};')   
115.         test_loss_per_fold.append(scores[0])   
116.         test_acc_per_fold.append(scores[1]*100)   
117.         test_auc_per_fold.append(scores[2])   
118.         test_pre_per_fold.append(scores[3])   
119.         test_se_per_fold.append(scores[4])   
120.         test_sp_per_fold.append(scores[5])   
121.        
122.         # Increase fold number   
123.         fold_no = fold_no + 1   
124.            
125.        # == Provide average scores ==   
126.     print('------------------------------------------------------------------------')   
127.     print('Score per fold')   



128.     for i in range(0, len(test_acc_per_fold)):   
129.       print('------------------------------------------------------------------------')   
130.       print(f'> Fold test {i+1} - Loss: {test_loss_per_fold[i]} - Accuracy: {test_acc_per_fold

[i]}% - AUC: {test_auc_per_fold[i]} - Precision: {test_pre_per_fold[i]} - Poor Se100: {test_se
_per_fold[i]} - Good Se95: {test_sp_per_fold[i]}')   

131.     print('------------------------------------------------------------------------')   
132.     print('Average test scores for all folds:')   
133.     print(f'> Accuracy: {np.mean(test_acc_per_fold)} (+- {np.std(test_acc_per_fold)})')   
134.     print(f'> Loss: {np.mean(test_loss_per_fold)} (+- {np.std(test_loss_per_fold)})')   
135.     print(f'> AUC: {np.mean(test_auc_per_fold)} (+- {np.std(test_auc_per_fold)})')   
136.     print(f'> Precision: {np.mean(test_pre_per_fold)} (+- {np.std(test_pre_per_fold)})')   
137.     print(f'> Poor Se100: {np.mean(test_se_per_fold)} (+- {np.std(test_se_per_fold)})')   
138.     print(f'> Good Se95: {np.mean(test_sp_per_fold)} (+- {np.std(test_sp_per_fold)})')   
139.     print('------------------------------------------------------------------------')   
140.        
141.     # append metrics for all repeats    
142.     test_loss_per_repeat.append(test_loss_per_fold)   
143.     test_acc_per_repeat.append(test_acc_per_fold)   
144.     test_auc_per_repeat.append(test_auc_per_fold)   
145.     test_pre_per_repeat.append(test_pre_per_fold)    
146.     test_se_per_repeat.append(test_se_per_fold)   
147.     test_sp_per_repeat.append(test_sp_per_fold)   
148.        
149.     # calculate 95% CI    
150.     test_loss_repeat.extend(test_loss_per_fold)   
151.     ci_loss = sms.DescrStatsW(test_loss_repeat).tconfint_mean()   
152.     test_acc_repeat.extend(test_acc_per_fold)   
153.     ci_acc = sms.DescrStatsW(test_acc_repeat).tconfint_mean()   
154.     test_auc_repeat.extend(test_auc_per_fold)   
155.     ci_auc = sms.DescrStatsW(test_auc_repeat).tconfint_mean()   
156.     test_pre_repeat.extend(test_pre_per_fold)    
157.     ci_pre = sms.DescrStatsW(test_pre_repeat).tconfint_mean()   
158.     test_se_repeat.extend(test_se_per_fold)   
159.     ci_se = sms.DescrStatsW(test_se_repeat).tconfint_mean()   
160.     test_sp_repeat.extend(test_sp_per_fold)   
161.     ci_sp = sms.DescrStatsW(test_sp_repeat).tconfint_mean()   
162.    
163. print('------------------------------------------------------------------------')   
164. print('Average test scores for all repeats:')   
165. print(f'> Accuracy: {np.mean(test_acc_per_repeat)} std:(+- {np.std(test_acc_per_repeat)}) 95%C

I:{ci_acc}')   
166. print(f'> Loss: {np.mean(test_loss_per_repeat)} std:(+- {np.std(test_loss_per_repeat)}) 95%CI:

{ci_loss}')   
167. print(f'> AUC: {np.mean(test_auc_per_repeat)} std:(+- {np.std(test_auc_per_repeat)}) 95%CI:{ci

_auc}')   
168. print(f'> Precision: {np.mean(test_pre_per_repeat)} std:(+- {np.std(test_pre_per_repeat)}) 95%

CI:{ci_pre}')   
169. print(f'> Poor Se100: {np.mean(test_se_per_repeat)} std:(+- {np.std(test_se_per_repeat)}) 95%C

I:{ci_se}')   
170. print(f'> Good Se95: {np.mean(test_sp_per_repeat)} std:(+- {np.std(test_sp_per_repeat)}) 95%CI

:{ci_sp}')   
171. print('------------------------------------------------------------------------')   

 
 
 
 
 
 
 
 
 



Z.7   Hyperparameter   search   LSTM 

1. #!/usr/bin/env python3   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on 31-12 2020  
5.   
6. @author: lauravanpoppel  
7. """   
8.    
9. import tensorflow    
10. from tensorflow.keras.models import Sequential   
11. from tensorflow.keras.layers import Dense, Dropout, LSTM, Bidirectional, BatchNormalization, A

ctivation   
12. from tensorflow.keras.constraints import max_norm   
13. from tensorflow.keras.regularizers import l1, l2, l1_l2   
14. from tensorflow.keras.optimizers import Adam, Nadam, SGD, Adamax      
15. from keras_adabound import AdaBound   
16. from tensorflow.keras.metrics import Accuracy, AUC, Precision, SensitivityAtSpecificity, Speci

ficityAtSensitivity   
17. from tensorflow.keras.metrics import TruePositives, TrueNegatives, FalsePositives, FalseNegati

ves    
18.    
19.    
20. import pandas as pd   
21. import numpy as np    
22. import matplotlib.pyplot as plt   
23. import statsmodels.stats.api as sms   
24.    
25. from sklearn.model_selection import train_test_split, KFold, StratifiedKFold   
26. from sklearn.metrics import roc_curve, auc   
27. from scipy.io import loadmat   
28. import talos   
29. from talos.utils import lr_normalizer   
30.    
31. # import 2D structure    
32. dataMatlab = loadmat('LSTM_input4.mat');   
33. data = dataMatlab.get('LSTM_input4');   
34.    
35. # define features and targets    
36. features = data[:,:12];   
37. outcomes = data[:,12]; # 1 is poor outcome    
38.    
39. # reshape to input matrices and outcome vector   
40. timesteps = 30;   
41. predictors = 12;    
42. subjects = int(features.shape[0]/timesteps);   
43.    
44. x = features.reshape(subjects,timesteps,predictors);   
45. y = outcomes.reshape(subjects,timesteps);   
46. y = y[:,0];   
47.    
48.    
49. # divide data into train and validation sets   
50. x_tr,x_val,y_tr,y_val=train_test_split(x,y,test_size=0.2,stratify=y);   
51.    
52.    
53.    
54. def LSTM_model(x_tr, y_tr, x_val, y_val, params):   
55.        
56.     #####################   
57.     # Define parameters #   
58.     #####################   
59.     # first LSTM layer    
60.     input_LSTM = (x.shape[1:])   



61.    
62.     # fully connected layer    
63.     activation_function_FC = 'sigmoid'   
64.     hidden_units_FC = 1   
65.        
66.     # compile   
67.     opt = Adam(learning_rate=params['lr'])   
68.     loss_function = 'binary_crossentropy'   
69.     metric1 = 'accuracy'   
70.     metric2 = AUC(name='auc')   
71.     metric3 = SensitivityAtSpecificity(1, name='se100_poor_outcome')   
72.     metric4 = SpecificityAtSensitivity(0.95, name='se95_good_outcome')   
73.        
74.     # fit    
75.     batchsize = 32   
76.        
77.     ###############   
78.     # Build model #    
79.     ###############   
80.     model = Sequential()   
81.     model.add(LSTM(params['hidden_units_LSTM'],    
82.                    input_shape=input_LSTM,   
83.                    dropout=params['dropout'],    
84.                    recurrent_dropout=params['recurrent_dropout'],   
85.                    return_sequences=True   
86.                    ))   
87.        
88.     #For 2-layer model, uncomment followin4 lines and set return_sequences=True   
89.     model.add(LSTM(params['hidden_units_LSTM'],    
90.                dropout=params['dropout'],    
91.                recurrent_dropout=params['recurrent_dropout']   
92.                ))   
93.    
94.     model.add(Dense(hidden_units_FC,   
95.                     activation=activation_function_FC))   
96.        
97.     #################   
98.     # Compile model #   
99.     #################   
100.     model.compile(loss=loss_function,   
101.                   optimizer=opt,   
102.                   metrics=[metric1, metric2, metric3, metric4])   
103.       
104.    
105.     #############   
106.     # Fit model #   
107.     #############   
108.     history = model.fit(x_tr,   
109.                         y_tr,   
110.                         validation_data=(x_val,y_val),   
111.                         batch_size=batchsize,   
112.                         epochs=params['epochs'],   
113.                         verbose=0)   
114.        
115.    # history object and model are returned   
116.     return history, model   
117.    
118.    
119. ##############   
120. # Parameters #    
121. ##############   
122.    
123. p = {'hidden_units_LSTM':[2,4,6,8,10,12,14,16,18,20,22,24],    
124.      'dropout': [0, 0.2, 0.5],   
125.      'recurrent_dropout':[0, 0.2, 0.5],   
126.      'lr': [0.0001, 0.0005, 0.001, 0.005, 0.01],   



127.      'epochs': [20,40,60,80,100,120,140,160,180,200],   
128.      }   
129.       
130. ########   
131. # Scan #   
132. ########   
133. scan_object = talos.Scan(x=x_tr,   
134.                          y=y_tr,   
135.                          x_val=x_val,   
136.                          y_val=y_val,   
137.                          model=LSTM_model,   
138.                          params=p,   
139.                          experiment_name='Final search 2 layers',   
140.                          reduction_method='correlation',   
141.                          reduction_metric='val_auc',   
142.                          reduction_threshold = 0.8,   
143.                          fraction_limit=0.25   
144.                          )   

 
 
  



Z.8   Hyperparameter   search   analysis   LSTM 

1. #!/usr/bin/env python3   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on 31-12 2020  
5.   
6. @author: lauravanpoppel  
7. """   
8.    
9.    
10. import pandas as pd   
11. import numpy as np    
12. from numpy import mean, median   
13. import matplotlib.pyplot as plt   
14. import statsmodels.stats.api as sms   
15. import talos   
16.    
17.    
18. # Analyze result of 10 random searches                          
19. analyze1=talos.Analyze('112620222042.csv')    
20. df1 = analyze1.data   
21. analyze2=talos.Analyze('112620222045.csv')    
22. df2 = analyze2.data   
23. analyze3=talos.Analyze('112620222049.csv')    
24. df3 = analyze3.data   
25. analyze4=talos.Analyze('112620222057.csv')    
26. df4 = analyze4.data   
27. analyze5=talos.Analyze('112620222100.csv')    
28. df5 = analyze5.data   
29. analyze6=talos.Analyze('112620222104.csv')    
30. df6 = analyze6.data   
31. analyze7=talos.Analyze('112620222107.csv')    
32. df7 = analyze7.data   
33. analyze8=talos.Analyze('112620222111.csv')    
34. df8 = analyze8.data   
35. analyze9=talos.Analyze('112620222114.csv')    
36. df9 = analyze9.data   
37. analyze10=talos.Analyze('112620222118.csv')    
38. df10 = analyze10.data   
39.    
40. merge = [df1, df2, df3, df4, df5, df6, df7, df8, df9, df10]   
41. dfm = pd.concat(merge)   
42.    
43. corr1=analyze1.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
44. corr2=analyze2.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
45. corr3=analyze3.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
46. corr4=analyze4.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
47. corr5=analyze5.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
48. corr6=analyze6.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
49. corr7=analyze7.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
50. corr8=analyze8.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
51. corr9=analyze9.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_good

_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   
52. corr10=analyze10.correlate('val_auc', ['accuracy', 'loss', 'auc','se100_poor_outcome','se95_go

od_outcome','val_accuracy', 'val_loss','val_se100_poor_outcome','val_se95_good_outcome'])   



53. corrall_auc = pd.concat([corr1,corr2, corr3, corr4, corr5, corr6, corr7, corr8, corr9, corr10]
, axis=1)   

54. corrall_auc = round(corrall_auc,3)   
55. corr_mean_auc = corrall_auc.mean(1)   
56. corr_mean_auc = round(corr_mean_auc,3)   
57.    
58. corr1=analyze1.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
59. corr2=analyze2.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
60. corr3=analyze3.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
61. corr4=analyze4.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
62. corr5=analyze5.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
63. corr6=analyze6.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
64. corr7=analyze7.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
65. corr8=analyze8.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
66. corr9=analyze9.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_outc

ome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
67. corr10=analyze10.correlate('val_se100_poor_outcome', ['accuracy', 'loss', 'auc','se100_poor_ou

tcome','se95_good_outcome','val_accuracy', 'val_loss','val_auc','val_se95_good_outcome'])   
68. corrall_se100 = pd.concat([corr1,corr2, corr3, corr4, corr5, corr6, corr7, corr8, corr9, corr1

0], axis=1)   
69. corrall_se100 = round(corrall_se100,3)   
70. corr_mean_se100 = corrall_se100.mean(1)   
71. corr_mean_se100 = round(corr_mean_se100,3)   
72.    
73.    
74. ##########   
75. # Epochs # [20,40,60,80,100,120,140,160,180,200]   
76. ##########   
77. e = dfm[['val_auc','val_se100_poor_outcome','epochs']]    
78. e_names = ['20','40','60','80','100','120','140','160','180','200']   
79.    
80.    
81. e20 = e[e['epochs']==20]   
82. e20_auc = e20['val_auc']   
83. e20_auc = e20_auc.tolist()   
84. e20_se100 = e20['val_se100_poor_outcome']   
85. e20_se100 = e20_se100.tolist()   
86.    
87. e40 = e[e['epochs']==40]   
88. e40_auc = e40['val_auc']   
89. e40_auc = e40_auc.tolist()   
90. e40_se100 = e40['val_se100_poor_outcome']   
91. e40_se100 = e40_se100.tolist()   
92.    
93. e60 = e[e['epochs']==60]   
94. e60_auc = e60['val_auc']   
95. e60_auc = e60_auc.tolist()   
96. e60_se100 = e60['val_se100_poor_outcome']   
97. e60_se100 = e60_se100.tolist()   
98.    
99. e80 = e[e['epochs']==80]   
100. e80_auc = e80['val_auc']   
101. e80_auc = e80_auc.tolist()   
102. e80_se100 = e80['val_se100_poor_outcome']   
103. e80_se100 = e80_se100.tolist()   
104.    
105. e100 = e[e['epochs']==100]   
106. e100_auc = e100['val_auc']   



107. e100_auc = e100_auc.tolist()   
108. e100_se100 = e100['val_se100_poor_outcome']   
109. e100_se100 = e100_se100.tolist()   
110.    
111. e120 = e[e['epochs']==120]   
112. e120_auc = e120['val_auc']   
113. e120_auc = e120_auc.tolist()   
114. e120_se100 = e120['val_se100_poor_outcome']   
115. e120_se100 = e120_se100.tolist()   
116.    
117. e140 = e[e['epochs']==140]   
118. e140_auc = e140['val_auc']   
119. e140_auc = e140_auc.tolist()   
120. e140_se100 = e140['val_se100_poor_outcome']   
121. e140_se100 = e140_se100.tolist()   
122.    
123. e160 = e[e['epochs']==160]   
124. e160_auc = e160['val_auc']   
125. e160_auc = e160_auc.tolist()   
126. e160_se100 = e160['val_se100_poor_outcome']   
127. e160_se100 = e160_se100.tolist()   
128.    
129. e180 = e[e['epochs']==180]   
130. e180_auc = e180['val_auc']   
131. e180_auc = e180_auc.tolist()   
132. e180_se100 = e180['val_se100_poor_outcome']   
133. e180_se100 = e180_se100.tolist()   
134.    
135. e200 = e[e['epochs']==200]   
136. e200_auc = e200['val_auc']   
137. e200_auc = e200_auc.tolist()   
138. e200_se100 = e200['val_se100_poor_outcome']   
139. e200_se100 = e200_se100.tolist()   
140.    
141. ## AUC ##   
142.    
143. # Boxplot   
144. e_auc = [e20_auc, e40_auc, e60_auc, e80_auc, e100_auc,    
145.          e120_auc, e140_auc, e160_auc, e180_auc, e200_auc]   
146. fig_e_auc, ax_e_auc = plt.subplots()   
147. ax_e_auc.set_title('Boxplots of the validation AUC of the number of epochs')   
148. ax_e_auc.boxplot(e_auc)   
149. plt.xlabel('Number of epochs')   
150. plt.ylabel('Validation AUC')   
151. plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], e_names)   
152. plt.grid(color='black', linestyle='--', linewidth=0.2)   
153.    
154. # Correlation   
155. corr_e_auc = dfm[['val_auc','epochs']]    
156. corr_e_auc =  corr_e_auc.corr(method='pearson')   
157.    
158. # Mean   
159. mean_e20_auc = mean(e20_auc)   
160. mean_e40_auc = mean(e40_auc)   
161. mean_e60_auc = mean(e60_auc)   
162. mean_e80_auc = mean(e80_auc)   
163. mean_e100_auc = mean(e100_auc)   
164. mean_e120_auc = mean(e120_auc)   
165. mean_e140_auc = mean(e140_auc)   
166. mean_e160_auc = mean(e160_auc)   
167. mean_e180_auc = mean(e180_auc)   
168. mean_e200_auc = mean(e200_auc)   
169. #mean_e_auc = mean(e_auc,1)   
170. mean_e_auc = [mean_e20_auc, mean_e40_auc, mean_e60_auc, mean_e80_auc, mean_e100_auc,    
171.               mean_e120_auc, mean_e140_auc, mean_e160_auc, mean_e180_auc, mean_e200_auc]   
172. fig_emean_auc, ax_emean_auc = plt.subplots()   



173. ax_emean_auc.set_title('Mean validation AUC per the number of epochs')   
174. ax_emean_auc.plot(e_names,mean_e_auc)   
175. plt.grid(color='black', linestyle='--', linewidth=0.2)   
176.    
177. # Median    
178. med_e20_auc = median(e20_auc)   
179. med_e40_auc = median(e40_auc)   
180. med_e60_auc = median(e60_auc)   
181. med_e80_auc = median(e80_auc)   
182. med_e100_auc = median(e100_auc)   
183. med_e120_auc = median(e120_auc)   
184. med_e140_auc = median(e140_auc)   
185. med_e160_auc = median(e160_auc)   
186. med_e180_auc = median(e180_auc)   
187. med_e200_auc = median(e200_auc)   
188. #median_e_auc = np.median(e_auc,1)   
189. median_e_auc = [med_e20_auc, med_e40_auc, med_e60_auc, med_e80_auc, med_e100_auc,    
190.                 med_e120_auc, med_e140_auc, med_e160_auc, med_e180_auc, med_e200_auc]   
191. fig_emed_auc, ax_emed_auc = plt.subplots()   
192. ax_emed_auc.set_title('Median validation AUC per the number of epochs')   
193. ax_emed_auc.plot(e_names,median_e_auc)   
194. plt.grid(color='black', linestyle='--', linewidth=0.2)   
195.    
196. ## SE100 ##   
197.    
198. # Boxplot   
199. e_se100 = [e20_se100, e40_se100, e60_se100, e80_se100, e100_se100,    
200.            e120_se100, e140_se100, e160_se100, e180_se100, e200_se100]   
201. fig_e_se100, ax_e_se100 = plt.subplots()   
202. ax_e_se100.set_title('Boxplots of the validation SeSp100 of the number of epochs')   
203. ax_e_se100.boxplot(e_se100)   
204. plt.xlabel('Number of epochs')   
205. plt.ylabel('Validation SeSp100')   
206. plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], e_names)   
207. plt.grid(color='black', linestyle='--', linewidth=0.2)   
208.    
209. corr_e_se100 = dfm[['val_se100_poor_outcome','epochs']]    
210. corr_e_se100 =  corr_e_se100.corr(method='pearson')   
211.    
212. # Mean   
213. mean_e20_se100 = mean(e20_se100)   
214. mean_e40_se100 = mean(e40_se100)   
215. mean_e60_se100 = mean(e60_se100)   
216. mean_e80_se100 = mean(e80_se100)   
217. mean_e100_se100 = mean(e100_se100)   
218. mean_e120_se100 = mean(e120_se100)   
219. mean_e140_se100 = mean(e140_se100)   
220. mean_e160_se100 = mean(e160_se100)   
221. mean_e180_se100 = mean(e180_se100)   
222. mean_e200_se100 = mean(e200_se100)   
223. #mean_e_se100 = mean(e_se100,1)   
224. mean_e_se100 = [mean_e20_se100, mean_e40_se100, mean_e60_se100, mean_e80_se100, mean_e100_se10

0,    
225.                 mean_e120_se100, mean_e140_se100, mean_e160_se100, mean_e180_se100, mean_e200_

se100]   
226. fig_emean_se100, ax_emean_se100 = plt.subplots()   
227. ax_emean_se100.set_title('Mean validation Se100 of poor outcome prediction per number of epoch

s')   
228. ax_emean_se100.plot(e_names,mean_e_se100)   
229. plt.grid(color='black', linestyle='--', linewidth=0.2)   
230.    
231. # Median    
232. med_e20_se100 = median(e20_se100)   
233. med_e40_se100 = median(e40_se100)   
234. med_e60_se100 = median(e60_se100)   
235. med_e80_se100 = median(e80_se100)   



236. med_e100_se100 = median(e100_se100)   
237. med_e120_se100 = median(e120_se100)   
238. med_e140_se100 = median(e140_se100)   
239. med_e160_se100 = median(e160_se100)   
240. med_e180_se100 = median(e180_se100)   
241. med_e200_se100 = median(e200_se100)   
242. #median_e_se100 = np.median(e_se100,1)   
243. median_e_se100 = [med_e20_se100, med_e40_se100, med_e60_se100, med_e80_se100, med_e100_se100, 

   
244.                 med_e120_se100, med_e140_se100, med_e160_se100, med_e180_se100, med_e200_se100

]   
245. fig_emed_se100, ax_emed_se100 = plt.subplots()   
246. ax_emed_se100.set_title('Median validation Se100 of poor outcome prediction per number of epoc

hs')   
247. ax_emed_se100.plot(e_names,median_e_se100)   
248. plt.grid(color='black', linestyle='--', linewidth=0.2)   
249.    
250.    
251. # Mean both metrics in 1   
252. fig_e, ax_e = plt.subplots()   
253. ax_e.set_title('validation AUC and Se100 of poor outcome prediction per number of epochs')   
254. ax_e.plot(e_names,mean_e_auc,'g-',label='mean AUC', linewidth=1)   
255. ax_e.plot(e_names,mean_e_se100,'g--',label='mean Se100', linewidth=1)   
256. ax_e.plot(e_names,median_e_auc,'y-',label='median AUC', linewidth=1)   
257. ax_e.plot(e_names,median_e_se100,'y--',label='median Se100', linewidth=1)   
258. ax_e.legend(loc='center right')   
259. plt.grid(color='black', linestyle='--', linewidth=0.2)   
260.    
261.    
262.    
263. #########   
264. # Units # [2,4,6,8,10,12,14,16,18,20,22,24]   
265. #########   
266. hu = dfm[['val_auc','val_se100_poor_outcome','hidden_units_LSTM']]    
267. hu_names = ['2','4','6','8','10','12','14','16','18','20','22','24']   
268.    
269. hu1 = hu[hu['hidden_units_LSTM']==2]   
270. hu1_auc = hu1['val_auc']   
271. hu1_auc = hu1_auc.tolist()   
272. hu1_se100 = hu1['val_se100_poor_outcome']   
273. hu1_se100 = hu1_se100.tolist()   
274.    
275. hu2 = hu[hu['hidden_units_LSTM']==4]   
276. hu2_auc = hu2['val_auc']   
277. hu2_auc = hu2_auc.tolist()   
278. hu2_se100 = hu2['val_se100_poor_outcome']   
279. hu2_se100 = hu2_se100.tolist()   
280.    
281. hu3 = hu[hu['hidden_units_LSTM']==6]   
282. hu3_auc = hu3['val_auc']   
283. hu3_auc = hu3_auc.tolist()   
284. hu3_se100 = hu3['val_se100_poor_outcome']   
285. hu3_se100 = hu3_se100.tolist()   
286.    
287. hu4 = hu[hu['hidden_units_LSTM']==8]   
288. hu4_auc = hu4['val_auc']   
289. hu4_auc = hu4_auc.tolist()   
290. hu4_se100 = hu4['val_se100_poor_outcome']   
291. hu4_se100 = hu4_se100.tolist()   
292.    
293. hu5 = hu[hu['hidden_units_LSTM']==10]   
294. hu5_auc = hu5['val_auc']   
295. hu5_auc = hu5_auc.tolist()   
296. hu5_se100 = hu5['val_se100_poor_outcome']   
297. hu5_se100 = hu5_se100.tolist()   
298.    



299. hu6 = hu[hu['hidden_units_LSTM']==12]   
300. hu6_auc = hu6['val_auc']   
301. hu6_auc = hu6_auc.tolist()   
302. hu6_se100 = hu6['val_se100_poor_outcome']   
303. hu6_se100 = hu6_se100.tolist()   
304.    
305. hu7 = hu[hu['hidden_units_LSTM']==14]   
306. hu7_auc = hu7['val_auc']   
307. hu7_auc = hu7_auc.tolist()   
308. hu7_se100 = hu7['val_se100_poor_outcome']   
309. hu7_se100 = hu7_se100.tolist()   
310.    
311. hu8 = hu[hu['hidden_units_LSTM']==16]   
312. hu8_auc = hu8['val_auc']   
313. hu8_auc = hu8_auc.tolist()   
314. hu8_se100 = hu8['val_se100_poor_outcome']   
315. hu8_se100 = hu8_se100.tolist()   
316.    
317. hu9 = hu[hu['hidden_units_LSTM']==18]   
318. hu9_auc = hu9['val_auc']   
319. hu9_auc = hu9_auc.tolist()   
320. hu9_se100 = hu9['val_se100_poor_outcome']   
321. hu9_se100 = hu9_se100.tolist()   
322.    
323. hu10 = hu[hu['hidden_units_LSTM']==20]   
324. hu10_auc = hu10['val_auc']   
325. hu10_auc = hu10_auc.tolist()   
326. hu10_se100 = hu10['val_se100_poor_outcome']   
327. hu10_se100 = hu10_se100.tolist()   
328.    
329. hu11 = hu[hu['hidden_units_LSTM']==22]   
330. hu11_auc = hu11['val_auc']   
331. hu11_auc = hu11_auc.tolist()   
332. hu11_se100 = hu11['val_se100_poor_outcome']   
333. hu11_se100 = hu11_se100.tolist()   
334.    
335. hu12 = hu[hu['hidden_units_LSTM']==24]   
336. hu12_auc = hu12['val_auc']   
337. hu12_auc = hu12_auc.tolist()   
338. hu12_se100 = hu12['val_se100_poor_outcome']   
339. hu12_se100 = hu12_se100.tolist()   
340.    
341. ## AUC ##   
342.    
343. # Boxplot    
344. hu_auc = [hu1_auc, hu2_auc, hu3_auc, hu4_auc,    
345.           hu5_auc, hu6_auc, hu7_auc, hu8_auc,    
346.           hu9_auc, hu10_auc,hu11_auc, hu12_auc]   
347. fig_hu_auc, ax_hu_auc = plt.subplots()   
348. ax_hu_auc.set_title('Boxplots of the validation AUC of the number of units')   
349. ax_hu_auc.boxplot(hu_auc)   
350. plt.xlabel('Number of units')   
351. plt.ylabel('Validation AUC')   
352. plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], hu_names)   
353. plt.grid(color='black', linestyle='--', linewidth=0.2)   
354.    
355. corr_hu_auc = dfm[['val_auc','hidden_units_LSTM']]    
356. corr_hu_auc =  corr_hu_auc.corr(method='pearson')   
357.    
358. # Mean   
359. mean_hu1_auc = mean(hu1_auc)   
360. mean_hu2_auc = mean(hu2_auc)   
361. mean_hu3_auc = mean(hu3_auc)   
362. mean_hu4_auc = mean(hu4_auc)    
363. mean_hu5_auc = mean(hu5_auc)   
364. mean_hu6_auc = mean(hu6_auc)   



365. mean_hu7_auc = mean(hu7_auc)   
366. mean_hu8_auc = mean(hu8_auc)   
367. mean_hu9_auc = mean(hu9_auc)   
368. mean_hu10_auc = mean(hu10_auc)   
369. mean_hu11_auc = mean(hu11_auc)   
370. mean_hu12_auc = mean(hu12_auc)   
371. #mean_hu_auc = mean(hu_auc,1)   
372. mean_hu_auc = [mean_hu1_auc, mean_hu2_auc, mean_hu3_auc, mean_hu4_auc,    
373.                mean_hu5_auc, mean_hu6_auc, mean_hu7_auc, mean_hu8_auc,    
374.                mean_hu9_auc, mean_hu10_auc, mean_hu11_auc, mean_hu12_auc]   
375. fig_humean_auc, ax_humean_auc = plt.subplots()   
376. ax_humean_auc.set_title('Mean validation AUC per number of units')   
377. ax_humean_auc.plot(hu_names,mean_hu_auc)   
378. plt.grid(color='black', linestyle='--', linewidth=0.2)   
379.    
380. # Median    
381. med_hu1_auc = median(hu1_auc)   
382. med_hu2_auc = median(hu2_auc)   
383. med_hu3_auc = median(hu3_auc)   
384. med_hu4_auc = median(hu4_auc)    
385. med_hu5_auc = median(hu5_auc)   
386. med_hu6_auc = median(hu6_auc)   
387. med_hu7_auc = median(hu7_auc)   
388. med_hu8_auc = median(hu8_auc)   
389. med_hu9_auc = median(hu9_auc)   
390. med_hu10_auc = median(hu10_auc)   
391. med_hu11_auc = median(hu11_auc)   
392. med_hu12_auc = median(hu12_auc)   
393. #median_hu_auc = np.median(hu_auc,1)   
394. median_hu_auc = [med_hu1_auc, med_hu2_auc, med_hu3_auc, med_hu4_auc,    
395.                  med_hu5_auc, med_hu6_auc, med_hu7_auc, med_hu8_auc,    
396.                  med_hu9_auc, med_hu10_auc, med_hu11_auc, med_hu12_auc]   
397. fig_humed_auc, ax_humed_auc = plt.subplots()   
398. ax_humed_auc.set_title('Median validation AUC per number of units')   
399. ax_humed_auc.plot(hu_names,median_hu_auc)   
400. plt.grid(color='black', linestyle='--', linewidth=0.2)   
401.    
402. ## SE100 ##    
403. hu_se100 = [hu1_se100, hu2_se100, hu3_se100, hu4_se100,    
404.             hu5_se100, hu6_se100, hu7_se100, hu8_se100,    
405.             hu9_se100, hu10_se100, hu11_se100, hu12_se100]   
406. fig_hu_se100, ax_hu_se100 = plt.subplots()   
407. ax_hu_se100.set_title('Boxplots of the validation SeSp100 of the number of units')   
408. ax_hu_se100.boxplot(hu_se100)   
409. plt.xlabel('Number of units')   
410. plt.ylabel('Validation SeSp100')   
411. plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], hu_names)   
412. plt.grid(color='black', linestyle='--', linewidth=0.2)   
413.    
414. corr_hu_se100 = dfm[['val_se100_poor_outcome','hidden_units_LSTM']]    
415. corr_hu_se100 =  corr_hu_se100.corr(method='pearson')   
416.    
417. # Mean   
418. mean_hu1_se100 = mean(hu1_se100)   
419. mean_hu2_se100 = mean(hu2_se100)   
420. mean_hu3_se100 = mean(hu3_se100)   
421. mean_hu4_se100 = mean(hu4_se100)    
422. mean_hu5_se100 = mean(hu5_se100)   
423. mean_hu6_se100 = mean(hu6_se100)   
424. mean_hu7_se100 = mean(hu7_se100)   
425. mean_hu8_se100 = mean(hu8_se100)   
426. mean_hu9_se100 = mean(hu9_se100)   
427. mean_hu10_se100 = mean(hu10_se100)   
428. mean_hu11_se100 = mean(hu11_se100)   
429. mean_hu12_se100 = mean(hu12_se100)   
430. # mean_hu_se100 = mean(hu_se100,1)   



431. mean_hu_se100 = [mean_hu1_se100, mean_hu2_se100, mean_hu3_se100, mean_hu4_se100,    
432.                  mean_hu5_se100, mean_hu6_se100, mean_hu7_se100, mean_hu8_se100,    
433.                  mean_hu9_se100, mean_hu10_se100, mean_hu11_se100, mean_hu12_se100]   
434. fig_humean_se100, ax_humean_se100 = plt.subplots()   
435. ax_humean_se100.set_title('Mean validation Se100 of poor outcome prediction per number of unit

s')   
436. ax_humean_se100.plot(hu_names,mean_hu_se100)   
437. plt.grid(color='black', linestyle='--', linewidth=0.2)   
438.    
439. # Median    
440. med_hu1_se100 = median(hu1_se100)   
441. med_hu2_se100 = median(hu2_se100)   
442. med_hu3_se100 = median(hu3_se100)   
443. med_hu4_se100 = median(hu4_se100)    
444. med_hu5_se100 = median(hu5_se100)   
445. med_hu6_se100 = median(hu6_se100)   
446. med_hu7_se100 = median(hu7_se100)   
447. med_hu8_se100 = median(hu8_se100)   
448. med_hu9_se100 = median(hu9_se100)   
449. med_hu10_se100 = median(hu10_se100)   
450. med_hu11_se100 = median(hu11_se100)   
451. med_hu12_se100 = median(hu12_se100)   
452. #median_hu_se100 = np.median(hu_se100,1)   
453. median_hu_se100 = [med_hu1_se100, med_hu2_se100, med_hu3_se100, med_hu4_se100,    
454.                  med_hu5_se100, med_hu6_se100, med_hu7_se100, med_hu8_se100,    
455.                  med_hu9_se100, med_hu10_se100, med_hu11_se100, med_hu12_se100]   
456. fig_humed_se100, ax_humed_se100 = plt.subplots()   
457. ax_humed_se100.set_title('Median validation Se100 of poor outcome prediction per number of uni

ts')   
458. ax_humed_se100.plot(hu_names,median_hu_se100)   
459. plt.grid(color='black', linestyle='--', linewidth=0.2)   
460.    
461.    
462.    
463. # Mean both metrics in 1   
464. fig_hu, ax_hu = plt.subplots()   
465. ax_hu.set_title('validation AUC and Se100 of poor outcome prediction per number of units')   
466. ax_hu.plot(hu_names,mean_hu_auc,'g-',label='mean AUC', linewidth=1)   
467. ax_hu.plot(hu_names,mean_hu_se100,'g--',label='mean Se100', linewidth=1)   
468. ax_hu.plot(hu_names,median_hu_auc,'y-',label='median AUC', linewidth=1)   
469. ax_hu.plot(hu_names,median_hu_se100,'y--',label='median Se100', linewidth=1)   
470. ax_hu.legend(loc='center right')   
471. plt.grid(color='black', linestyle='--', linewidth=0.2)   
472.    
473.    
474.    
475. ######   
476. # LR # [0.0001, 0.0005, 0.001, 0.005, 0.01],   
477. ######   
478.    
479. lr = dfm[['val_auc','val_se100_poor_outcome','lr']]    
480. lr_names = ['0.0001', '0.0005', '0.001','0.005','0.01']   
481.    
482. lr1 = lr [lr['lr']==0.0001]   
483. lr1_auc = lr1['val_auc']   
484. lr1_auc = lr1_auc.tolist()   
485. lr1_se100 = lr1['val_se100_poor_outcome']   
486. lr1_se100 = lr1_se100.tolist()   
487.    
488. lr2 = lr [lr['lr']==0.0005]   
489. lr2_auc = lr2['val_auc']   
490. lr2_auc = lr2_auc.tolist()   
491. lr2_se100 = lr2['val_se100_poor_outcome']   
492. lr2_se100 = lr2_se100.tolist()   
493.    
494. lr3 = lr [lr['lr']==0.001]   



495. lr3_auc = lr3['val_auc']   
496. lr3_auc = lr3_auc.tolist()   
497. lr3_se100 = lr3['val_se100_poor_outcome']   
498. lr3_se100 = lr3_se100.tolist()   
499.    
500. lr4 = lr [lr['lr']==0.005]   
501. lr4_auc = lr4['val_auc']   
502. lr4_auc = lr4_auc.tolist()   
503. lr4_se100 = lr4['val_se100_poor_outcome']   
504. lr4_se100 = lr4_se100.tolist()   
505.    
506. lr5 = lr [lr['lr']==0.01]   
507. lr5_auc = lr5['val_auc']   
508. lr5_auc = lr5_auc.tolist()   
509. lr5_se100 = lr5['val_se100_poor_outcome']   
510. lr5_se100 = lr5_se100.tolist()   
511.    
512. ## AUC ##   
513.    
514. # Boxplot    
515. lr_auc = [lr1_auc, lr2_auc, lr3_auc, lr4_auc, lr5_auc]   
516. fig_lr_auc, ax_lr_auc = plt.subplots()   
517. ax_lr_auc.set_title('Boxplots of validation AUC of the learning rates')   
518. ax_lr_auc.boxplot(lr_auc)   
519. plt.xlabel('Learning rate')   
520. plt.ylabel('Validation AUC')   
521. plt.xticks([1, 2, 3, 4, 5], lr_names)   
522. plt.grid(color='black', linestyle='--', linewidth=0.2)   
523.    
524. corr_lr_auc = dfm[['val_auc','lr']]    
525. corr_lr_auc =  corr_lr_auc.corr(method='pearson')   
526.    
527. # Mean   
528. mean_lr1_auc = mean(lr1_auc)   
529. mean_lr2_auc = mean(lr2_auc)   
530. mean_lr3_auc = mean(lr3_auc)   
531. mean_lr4_auc = mean(lr4_auc)   
532. mean_lr5_auc = mean(lr5_auc)   
533. #mean_lr_auc = mean(lr_auc,1)   
534. mean_lr_auc = [mean_lr1_auc, mean_lr2_auc, mean_lr3_auc, mean_lr4_auc, mean_lr5_auc]   
535. fig_lrmean_auc, ax_lrmean_auc = plt.subplots()   
536. ax_lrmean_auc.set_title('Mean validation AUC per learning rate')   
537. ax_lrmean_auc.plot(lr_names,mean_lr_auc)   
538. plt.grid(color='black', linestyle='--', linewidth=0.2)   
539.    
540. # Median    
541. med_lr1_auc = median(lr1_auc)   
542. med_lr2_auc = median(lr2_auc)   
543. med_lr3_auc = median(lr3_auc)   
544. med_lr4_auc = median(lr4_auc)   
545. med_lr5_auc = median(lr5_auc)   
546. #median_lr_auc = np.median(lr_auc,1)   
547. median_lr_auc = [med_lr1_auc, med_lr2_auc, med_lr3_auc, med_lr4_auc, med_lr5_auc]   
548. fig_lrmed_auc, ax_lrmed_auc = plt.subplots()   
549. ax_lrmed_auc.set_title('Median validation AUC per learning rate')   
550. ax_lrmed_auc.plot(lr_names,median_lr_auc)   
551. plt.grid(color='black', linestyle='--', linewidth=0.2)   
552.    
553. ## SE100 ##   
554.    
555. # Boxplot   
556. lr_se100 = [lr1_se100, lr2_se100, lr3_se100, lr4_se100, lr5_se100]   
557. fig_lr_se100, ax_lr_se100 = plt.subplots()   
558. ax_lr_se100.set_title('Boxplots of the validation SeSp100 of the learning rates')   
559. ax_lr_se100.boxplot(lr_se100)   
560. plt.xlabel('Learning rate')   



561. plt.ylabel('Validation SeSp100')   
562. plt.xticks([1, 2, 3, 4, 5], lr_names)   
563. plt.grid(color='black', linestyle='--', linewidth=0.2)   
564.    
565. corr_lr_se100 = dfm[['val_se100_poor_outcome','lr']]    
566. corr_lr_se100 =  corr_lr_se100.corr(method='pearson')   
567.    
568. # Mean   
569. mean_lr1_se100 = mean(lr1_se100)   
570. mean_lr2_se100 = mean(lr2_se100)   
571. mean_lr3_se100 = mean(lr3_se100)   
572. mean_lr4_se100 = mean(lr4_se100)   
573. mean_lr5_se100 = mean(lr5_se100)   
574. # mean_lr_se100 = mean(lr_se100,1)   
575. mean_lr_se100 = [mean_lr1_se100, mean_lr2_se100, mean_lr3_se100, mean_lr4_se100, mean_lr5_se10

0]   
576. fig_lrmean_se100, ax_lrmean_se100 = plt.subplots()   
577. ax_lrmean_se100.set_title('Mean validation Se100 of poor outcome prediction per learning rate'

)   
578. ax_lrmean_se100.plot(lr_names,mean_lr_se100)   
579. plt.grid(color='black', linestyle='--', linewidth=0.2)   
580.    
581. # Median    
582. med_lr1_se100 = median(lr1_se100)   
583. med_lr2_se100 = median(lr2_se100)   
584. med_lr3_se100 = median(lr3_se100)   
585. med_lr4_se100 = median(lr4_se100)   
586. med_lr5_se100 = median(lr5_se100)   
587. #median_lr_se100 = np.median(lr_se100,1)   
588. median_lr_se100 = [med_lr1_se100, med_lr2_se100, med_lr3_se100, med_lr4_se100, med_lr5_se100] 

  
589. fig_lrmed_se100, ax_lrmed_se100 = plt.subplots()   
590. ax_lrmed_se100.set_title('Median validation Se100 of poor outcome prediction per learning rate

')   
591. ax_lrmed_se100.plot(lr_names,median_lr_se100)   
592. plt.grid(color='black', linestyle='--', linewidth=0.2)   
593.    
594.    
595. # Mean both metrics in 1   
596. fig_lr, ax_lr = plt.subplots()   
597. ax_lr.set_title('validation AUC and Se100 of poor outcome prediction per learning rate')   
598. ax_lr.plot(lr_names,mean_lr_auc,'g-',label='mean AUC', linewidth=1)   
599. ax_lr.plot(lr_names,mean_lr_se100,'g--',label='mean Se100', linewidth=1)   
600. ax_lr.plot(lr_names,median_lr_auc,'y-',label='median AUC', linewidth=1)   
601. ax_lr.plot(lr_names,median_lr_se100,'y--',label='median Se100', linewidth=1)   
602. ax_lr.legend(loc='center right')   
603. plt.grid(color='black', linestyle='--', linewidth=0.2)   
604.    
605.    
606.    
607. #######################################   
608. #######################################   
609. # eliminate bad results from boxplots #   
610. #######################################   
611. #######################################   
612.    
613.    
614. # Results 1 layer LSTM analysis:   
615. df = dfm[['val_auc','val_se100_poor_outcome','dropout1','recurrent_dropout1','hidden_units_LST

M1','epochs','lr']]   
616. df = df[(df['hidden_units_LSTM1']>=10) & (df['epochs']>=120) & (df['lr']>=0.001)]   
617.    
618. # Results 2 layer LSTM analysis:   
619. df = dfm[['val_auc','val_se100_poor_outcome','dropout','recurrent_dropout','hidden_units_LSTM'

,'epochs','lr']]   



620. df = df[ (df['hidden_units_LSTM']>=16) & (df['epochs']>=80) & (df['epochs']<=140)& (df['lr']==
0.005)]   

621.    
622. # ADJUST CODE TO 1 OR 2 LAYER ANALYSIS    
623. # below shows results for 2 layer LSTM    
624.    
625. # epochs    
626. e = df[['val_auc','val_se100_poor_outcome','epochs']]    
627. e_names = ['80','100','120','140']   
628.    
629. e80 = e[e['epochs']==80]   
630. e80_auc = e80['val_auc']   
631. e80_auc = e80_auc.tolist()   
632. e80_se100 = e80['val_se100_poor_outcome']   
633. e80_se100 = e80_se100.tolist()   
634.    
635. e100 = e[e['epochs']==100]   
636. e100_auc = e100['val_auc']   
637. e100_auc = e100_auc.tolist()   
638. e100_se100 = e100['val_se100_poor_outcome']   
639. e100_se100 = e100_se100.tolist()   
640.    
641. e120 = e[e['epochs']==120]   
642. e120_auc = e120['val_auc']   
643. e120_auc = e120_auc.tolist()   
644. e120_se100 = e120['val_se100_poor_outcome']   
645. e120_se100 = e120_se100.tolist()   
646.    
647. e140 = e[e['epochs']==140]   
648. e140_auc = e140['val_auc']   
649. e140_auc = e140_auc.tolist()   
650. e140_se100 = e140['val_se100_poor_outcome']   
651. e140_se100 = e140_se100.tolist()   
652.    
653.    
654. e_auc = [e80_auc, e100_auc, e120_auc, e140_auc]   
655. fig_e_auc, ax_e_auc = plt.subplots()   
656. ax_e_auc.set_title('Boxplots of the validation AUC of the number of epochs \n (bad performing 

hyperparameters excluded)')   
657. ax_e_auc.boxplot(e_auc)   
658. plt.xlabel('Number of epochs')   
659. plt.ylabel('Validation AUC')   
660. plt.xticks([1, 2, 3, 4], e_names)   
661. plt.grid(color='black', linestyle='--', linewidth=0.2)   
662.    
663. e_se100 = [e80_se100, e100_se100, e120_se100, e140_se100]   
664. fig_e_se100, ax_e_se100 = plt.subplots()   
665. ax_e_se100.set_title('Boxplots of the validation SeSp100 of the number of epochs \n (bad perfo

rming hyperparameters excluded)')   
666. ax_e_se100.boxplot(e_se100)   
667. plt.xlabel('Number of epochs')   
668. plt.ylabel('Validation SeSp100')   
669. plt.xticks([1, 2, 3, 4], e_names)   
670. plt.grid(color='black', linestyle='--', linewidth=0.2)   
671.    
672. # units   
673. hu = df[['val_auc','val_se100_poor_outcome','hidden_units_LSTM']]    
674. hu_names = ['16','18','20','22','24']   
675.    
676. hu8 = hu[hu['hidden_units_LSTM']==16]   
677. hu8_auc = hu8['val_auc']   
678. hu8_auc = hu8_auc.tolist()   
679. hu8_se100 = hu8['val_se100_poor_outcome']   
680. hu8_se100 = hu8_se100.tolist()   
681.    
682. hu9 = hu[hu['hidden_units_LSTM']==18]   



683. hu9_auc = hu9['val_auc']   
684. hu9_auc = hu9_auc.tolist()   
685. hu9_se100 = hu9['val_se100_poor_outcome']   
686. hu9_se100 = hu9_se100.tolist()   
687.    
688. hu10 = hu[hu['hidden_units_LSTM']==20]   
689. hu10_auc = hu10['val_auc']   
690. hu10_auc = hu10_auc.tolist()   
691. hu10_se100 = hu10['val_se100_poor_outcome']   
692. hu10_se100 = hu10_se100.tolist()   
693.    
694. hu11 = hu[hu['hidden_units_LSTM']==22]   
695. hu11_auc = hu11['val_auc']   
696. hu11_auc = hu11_auc.tolist()   
697. hu11_se100 = hu11['val_se100_poor_outcome']   
698. hu11_se100 = hu11_se100.tolist()   
699.    
700. hu12 = hu[hu['hidden_units_LSTM']==24]   
701. hu12_auc = hu12['val_auc']   
702. hu12_auc = hu12_auc.tolist()   
703. hu12_se100 = hu12['val_se100_poor_outcome']   
704. hu12_se100 = hu12_se100.tolist()   
705.    
706. hu_auc = [hu8_auc, hu9_auc, hu10_auc,hu11_auc, hu12_auc]   
707. fig_hu_auc, ax_hu_auc = plt.subplots()   
708. ax_hu_auc.set_title('Boxplots of the validation AUC of the number of units \n (bad performing 

hyperparameters excluded)')   
709. ax_hu_auc.boxplot(hu_auc)   
710. plt.xlabel('Number of units')   
711. plt.ylabel('Validation AUC')   
712. plt.xticks([1, 2, 3, 4, 5], hu_names)   
713. plt.grid(color='black', linestyle='--', linewidth=0.2)   
714.    
715. hu_se100 = [hu8_se100, hu9_se100, hu10_se100, hu11_se100, hu12_se100]   
716. fig_hu_se100, ax_hu_se100 = plt.subplots()   
717. ax_hu_se100.set_title('Boxplots of the validation SeSp100 of the number of units \n (bad perfo

rming hyperparameters excluded)')   
718. ax_hu_se100.boxplot(hu_se100)   
719. plt.xlabel('Number of units')   
720. plt.ylabel('Validation SeSp100')   
721. plt.xticks([1, 2, 3, 4, 5], hu_names)   
722. plt.grid(color='black', linestyle='--', linewidth=0.2)   
723.    
724.    
725. ## DO & RDO    
726. hu20_e80_lr2 = df[(df['hidden_units_LSTM']==20) & (df['epochs']==80) & (df['lr']==0.005)]   
727. best_1 = hu20_e80_lr2[['val_auc','val_se100_poor_outcome','dropout','recurrent_dropout']]   
728. corr_b1 = best_1.corr(method='pearson')   
729.    
730. # dropout    
731. do = df[['val_auc','val_se100_poor_outcome','dropout']]    
732. do_names = ['0','0.2','0.5']   
733.    
734. do0 = do [do['dropout']==0]   
735. do0_auc = do0['val_auc']   
736. do0_auc = do0_auc.tolist()   
737. do0_se100 = do0['val_se100_poor_outcome']   
738. do0_se100 = do0_se100.tolist()   
739.    
740. do02 = do [do['dropout']==0.2]   
741. do02_auc = do02['val_auc']   
742. do02_auc = do02_auc.tolist()   
743. do02_se100 = do02['val_se100_poor_outcome']   
744. do02_se100 = do02_se100.tolist()   
745.    
746. do05 = do [do['dropout']==0.5]   



747. do05_auc = do05['val_auc']   
748. do05_auc = do05_auc.tolist()   
749. do05_se100 = do05['val_se100_poor_outcome']   
750. do05_se100 = do05_se100.tolist()   
751.    
752. do_auc = [do0_auc, do02_auc, do05_auc]   
753. fig_do_auc, ax_do_auc = plt.subplots()   
754. ax_do_auc.set_title('Boxplots of the validation AUC of the dropout rates \n (bad performing hy

perparameters excluded)')   
755. ax_do_auc.boxplot(do_auc)   
756. plt.xlabel('Dropout rate')   
757. plt.ylabel('Validation AUC')   
758. plt.xticks([1, 2, 3], do_names)   
759. plt.grid(color='black', linestyle='--', linewidth=0.2)   
760.    
761. do_se100 = [do0_se100, do02_se100, do05_se100]   
762. fig_do_se100, ax_do_se100 = plt.subplots()   
763. ax_do_se100.set_title('Boxplots of the validation SeSp100 of the dropout rates \n (bad perform

ing hyperparameters excluded)')   
764. ax_do_se100.boxplot(do_se100)   
765. plt.xlabel('Dropout rate')   
766. plt.ylabel('Validation SeSp100')   
767. plt.xticks([1, 2, 3], do_names)   
768. plt.grid(color='black', linestyle='--', linewidth=0.2)   
769.    
770. # recurrent dropout    
771. rdo = df[['val_auc','val_se100_poor_outcome','recurrent_dropout']]    
772. rdo_names = ['0','0.2','0.5']   
773.    
774. rdo0 = rdo [rdo['recurrent_dropout']==0]   
775. rdo0_auc = rdo0['val_auc']   
776. rdo0_auc = rdo0_auc.tolist()   
777. rdo0_se100 = rdo0['val_se100_poor_outcome']   
778. rdo0_se100 = rdo0_se100.tolist()   
779.    
780. rdo02 = rdo [rdo['recurrent_dropout']==0.2]   
781. rdo02_auc = rdo02['val_auc']   
782. rdo02_auc = rdo02_auc.tolist()   
783. rdo02_se100 = rdo02['val_se100_poor_outcome']   
784. rdo02_se100 = rdo02_se100.tolist()   
785.    
786. rdo05 = rdo [rdo['recurrent_dropout']==0.5]   
787. rdo05_auc = rdo05['val_auc']   
788. rdo05_auc = rdo05_auc.tolist()   
789. rdo05_se100 = rdo05['val_se100_poor_outcome']   
790. rdo05_se100 = rdo05_se100.tolist()   
791.    
792. rdo_auc = [rdo0_auc, rdo02_auc, rdo05_auc]   
793. fig_rdo_auc, ax_rdo_auc = plt.subplots()   
794. ax_rdo_auc.set_title('Boxplots of the validation AUC of the recurrent dropout rates \n (bad pe

rforming hyperparameters excluded)')   
795. ax_rdo_auc.boxplot(rdo_auc)   
796. plt.xlabel('Recurrent dropout rate')   
797. plt.ylabel('Validation AUC')   
798. plt.xticks([1, 2, 3], rdo_names)   
799. plt.grid(color='black', linestyle='--', linewidth=0.2)   
800.    
801. rdo_se100 = [rdo0_se100, rdo02_se100, rdo05_se100]   
802. fig_rdo_se100, ax_rdo_se100 = plt.subplots()   
803. ax_rdo_se100.set_title('Boxplots of the validation SeSp100 of the recurrent dropout rates \n (

bad performing hyperparameters excluded)')   
804. ax_rdo_se100.boxplot(rdo_se100)   
805. plt.xlabel('Recurrent dropout rate')   
806. plt.ylabel('Validation SeSp100')   
807. plt.xticks([1, 2, 3], rdo_names)   
808. plt.grid(color='black', linestyle='--', linewidth=0.2)  



Z.9 Final LSTM  

1. #!/usr/bin/env python3   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on 31-12 2020  
5.   
6. @author: lauravanpoppel  
7. """   
8.    
9. import tensorflow    
10. from tensorflow.keras.models import Sequential   
11. from tensorflow.keras.layers import Dense, Dropout, LSTM, Bidirectional, BatchNormalization, A

ctivation   
12. from tensorflow.keras.optimizers import Adam   
13. from tensorflow.keras.regularizers import l1_l2   
14. from tensorflow.keras.metrics import Accuracy, AUC, Precision, SensitivityAtSpecificity, Speci

ficityAtSensitivity   
15. from tensorflow.keras.metrics import TruePositives, TrueNegatives, FalsePositives, FalseNegati

ves    
16.    
17. import pandas as pd   
18. import numpy as np    
19. import matplotlib.pyplot as plt   
20. import statsmodels.stats.api as sms   
21.    
22. from sklearn.model_selection import train_test_split, KFold, StratifiedKFold   
23. from sklearn.metrics import roc_curve, auc   
24. from scipy.io import loadmat   
25.    
26. # import 2D structure    
27. dataMatlab = loadmat('LSTM_input4.mat');   
28. data = dataMatlab.get('LSTM_input4');   
29.    
30. # define features and targets    
31. features = data[:,:12];   
32. outcomes = data[:,12]; # 1 is poor outcome    
33.    
34. # reshape to input matrices and outcome vector   
35. timesteps = 30;   
36. predictors = 12;    
37. subjects = int(features.shape[0]/timesteps);   
38.    
39. x = features.reshape(subjects,timesteps,predictors);   
40. y = outcomes.reshape(subjects,timesteps);   
41. y = y[:,0];   
42.    
43. # repeat process 50 times   
44. repeats = 50   
45. test_loss_per_repeat = []   
46. test_acc_per_repeat = []   
47. test_auc_per_repeat = []   
48. test_se100_per_repeat = []   
49. test_se95_per_repeat = []   
50.    
51.    
52. test_loss_repeat = []   
53. test_acc_repeat = []   
54. test_auc_repeat = []   
55. test_se100_repeat = []   
56. test_se95_repeat = []   
57.    
58.    
59. for i in range(repeats):    
60.    



61.     # use 10-fold cross validation   
62.     num_folds = 10;   
63.     fold_no = 1   
64.        
65.     # Define per-fold score containers    
66.     test_loss_per_fold = [];   
67.     test_acc_per_fold = [];   
68.     test_auc_per_fold = [];   
69.     test_se100_per_fold = [];   
70.     test_se95_per_fold = [];   
71.     test_fpr_per_fold = [];   
72.     test_tpr_per_fold = [];   
73.        
74.     #####################   
75.     # Define parameters #   
76.     #####################   
77.     # first LSTM layer    
78.     hidden_units_LSTM1 = 16   
79.     input_LSTM = (x.shape[1:])   
80.     drop_out1 = 0.5   
81.     r_drop_out1= 0   
82.    
83.     k_reg=l1_l2(l1=0.001, l2=0.001)   
84.     r_reg=l1_l2(l1=0.001, l2=0.001)   
85.     b_reg=l1_l2(l1=0.001, l2=0.001)   
86.        
87.     # fully connected layer    
88.     activation_function_FC = 'sigmoid'   
89.     hidden_units_FC = 1   
90.        
91.     # compile   
92.     opt = Adam(learning_rate=0.001)   
93.     loss_function = 'binary_crossentropy'   
94.     metric1 = 'accuracy'   
95.     metric2 = AUC(name='auc')   
96.     metric3 = SensitivityAtSpecificity(1, name='se100_poor_outcome')   
97.     metric4 = SpecificityAtSensitivity(0.95, name='se95_good_outcome')   
98.        
99.     # fit    
100.     epoch_number = 120   
101.     batch_size = 32   
102.        
103.     # Define the K-fold Cross Validator   
104.     skf = StratifiedKFold(n_splits=num_folds, shuffle=True)   
105.    
106.     for train, test in skf.split(x, y):   
107.                
108.            
109.         ###############   
110.         # Build model #    
111.         ###############   
112.         model = Sequential()   
113.         model.add(LSTM(hidden_units_LSTM1,    
114.                        input_shape=input_LSTM,   
115.                        kernel_regularizer=k_reg,   
116.                        recurrent_regularizer=r_reg,   
117.                        bias_regularizer=b_reg,   
118.                        dropout=drop_out1,    
119.                        recurrent_dropout=r_drop_out1,   
120.                        ))   
121.    
122.         model.add(Dense(hidden_units_FC,   
123.                         activation=activation_function_FC))   
124.            
125.         #################   
126.         # Compile model #   



127.         #################   
128.         model.compile(loss=loss_function,   
129.                       optimizer=opt,   
130.                       metrics=[metric1, metric2, metric3, metric4])   
131.            
132.         # Generate a print   
133.         print('------------------------------------------------------------------------')   
134.         print(f'Training for fold {fold_no} ...')   
135.            
136.         #############   
137.         # Fit model #   
138.         #############   
139.         history = model.fit(x[train],   
140.                             y[train],   
141.                             epochs=epoch_number,   
142.                             batch_size = batch_size,   
143.                             verbose=0)   
144.    
145.         # Generate generalization metrics   
146.         scores = model.evaluate(x[test], y[test], verbose=0)   
147.         test_loss_per_fold.append(scores[0])   
148.         test_acc_per_fold.append(scores[1]*100)   
149.         test_auc_per_fold.append(scores[2])   
150.         test_se100_per_fold.append(scores[3])   
151.         test_se95_per_fold.append(1-(scores[4]))   
152.            
153.         # Metrics for ROC    
154.         y_predict = model.predict(x[test])   
155.         fpr , tpr , thresholds = roc_curve (y[test],y_predict)   
156.    
157.            
158.         plt.plot(fpr,tpr)    
159.         plt.axis([0,1,0,1])    
160.         plt.title('ROC curve')   
161.         plt.xlabel('False Positive Rate')    
162.         plt.ylabel('True Positive Rate')    
163.                       
164.         # Increase fold number   
165.         fold_no = fold_no + 1   
166.        
167.     plt.show()    
168.            
169.     # == Provide average scores ==   
170.     print('------------------------------------------------------------------------')   
171.     print('Average test scores for all folds:')   
172.     print(f'> Loss: {np.mean(test_loss_per_fold)} (+- {np.std(test_loss_per_fold)})')   
173.     print(f'> AUC: {np.mean(test_auc_per_fold)} (+- {np.std(test_auc_per_fold)})')   
174.     print(f'> Se100 poor outcome: {np.mean(test_se100_per_fold)} (+- {np.std(test_se100_per_fo

ld)})')   
175.     print(f'> Se95 good outcome: {np.mean(test_se95_per_fold)} (+- {np.std(test_se95_per_fold)

})')   
176.     print('------------------------------------------------------------------------')   
177.    
178.            
179.     # append metrics for all repeats    
180.     test_loss_per_repeat.append(test_loss_per_fold)   
181.     test_acc_per_repeat.append(test_acc_per_fold)   
182.     test_auc_per_repeat.append(test_auc_per_fold)   
183.     test_se100_per_repeat.append(test_se100_per_fold)   
184.     test_se95_per_repeat.append(test_se95_per_fold)   
185.    
186.     # calculate 95% CI    
187.     test_loss_repeat.extend(test_loss_per_fold)   
188.     ci_loss = sms.DescrStatsW(test_loss_repeat).tconfint_mean()   
189.     test_acc_repeat.extend(test_acc_per_fold)   
190.     ci_acc = sms.DescrStatsW(test_acc_repeat).tconfint_mean()   



191.     test_auc_repeat.extend(test_auc_per_fold)   
192.     ci_auc = sms.DescrStatsW(test_auc_repeat).tconfint_mean()   
193.     test_se100_repeat.extend(test_se100_per_fold)   
194.     ci_se100 = sms.DescrStatsW(test_se100_repeat).tconfint_mean()   
195.     test_se95_repeat.extend(test_se95_per_fold)   
196.     ci_se95 = sms.DescrStatsW(test_se95_repeat).tconfint_mean()   
197.        
198.    
199.    
200. print('------------------------------------------------------------------------')   
201. print('Average test scores for all repeats:')   
202. print(f'> Loss: {np.mean(test_loss_per_repeat)} std:(+- {np.std(test_loss_per_repeat)}) 95%CI:

{ci_loss}')   
203. print(f'> AUC: {np.mean(test_auc_per_repeat)} std:(+- {np.std(test_auc_per_repeat)}) 95%CI:{ci

_auc}')   
204. print(f'> Poor Se100: {np.mean(test_se100_per_repeat)} std:(+- {np.std(test_se100_per_repeat)}

) 95%CI:{ci_se100}')   
205. print(f'> Good Se95: {np.mean(test_se95_per_repeat)} std:(+- {np.std(test_se95_per_repeat)}) 9

5%CI:{ci_se95}')   
206. print('------------------------------------------------------------------------')   

 
 
 


