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Tensor Convolution-Based Aggregated Flexibility
Estimation in Active Distribution Systems

Demetris Chrysostomou , Graduate Student Member, IEEE, José Luis Rueda Torres , Senior Member, IEEE,
and Jochen Lorenz Cremer , Member, IEEE

Abstract—Power system operators require advanced applica-
tions in the control centers to tackle increasingly variable power
transfers effectively. One urgently needed application concerns
estimating the feasible available aggregated flexibility from a
power system network, which can be effectively deployed to
mitigate issues in interconnected networks. This paper proposes
the TensorConvolution+ algorithm to address the above applica-
tion. Unlike related literature approaches, TensorConvolution+
estimates the density of feasible flexibility combinations to reach
a new operating point within the p-q flexibility area. This density
can improve the decision-making of system operators for efficient
and safe flexibility deployment. The proposed algorithm applies
to radial and meshed networks, is adaptable to new operational
conditions, and can consider scenarios with disconnected flexibil-
ity areas. Using convolutions and tensors, the algorithm efficiently
aggregates the combinations of flexibility providers’ adjustable
power output that can occur for each flexibility area set point.
Simulations on the meshed Oberrhein and radial CIGRE test
networks illustrate the effectiveness of TensorConvolution+ for
flexibility estimation with high numerical confidence and a minor
computing effort. Additional simulations highlight how system
operators can interpret the estimated density of feasible flexibility
combinations for decision-making purposes, the algorithm’s
capability to estimate disconnected flexibility areas, and adapt to
new operating conditions.

Index Terms—Convolution, distribution networks, flexibility
aggregation, TSO-DSO coordination, tensors.

NOMENCLATURE

Abbreviation

DFC Density of feasible combinations.
DN Distribution network.
DSO Distribution system operator.
FA Flexibility area.
FSP Flexibility service provider.
OB0 Oberrhein network of substation 0.
OB1 Oberrhein network of substation 1.
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OC Operating condition of the DN.
OP Operating point as p, q of the PCC.
OPF Optimal power flow.
PCC Point of common coupling.
PF Power flow.
TSO Transmission system operator.

Parameters

δp Resolution of FA in active power [MW].
δq Resolution of FA in reactive power [MVAR].
cv Voltage sensitivity threshold [p.u.].
lv Loading sensitivity threshold [%].
lmax Maximum loading network constraint [%].
vmax Maximum voltage network constraint [p.u.].
vmin Minimum voltage network constraint [p.u.].

Operations

∗ Convolution.
◦ Hadamard product.
∗̂ Tensor convolution.
|= Variable independence.
× Set cartesian product.

Indices and Sets

o Index for origin, the PCC.
�S Infinite set of flexibility shifts.
�So

Set of flexibility shifts at the PCC from all FSP
combinations.

�̄S
i Set of flexibility shifts offered by FSP i.

�S
i Set of flexibility shifts offered by FSP i as observed

at the PCC.
�S
K Set of flexibility shifts at the PCC achievable by

combinations from the FSP sequence K.
�FSo

Set of feasible flexibility shifts at the PCC from all
FSP combinations.

�C Set of all flexibility shift combinations at the PCC.
�C

so Set of flexibility shift combinations at the PCC
achieving so.

�C
γ Set of flexibility shift combinations at the PCC

causing impact at network component γ .
�C

γ,so Set of flexibility shift combinations at the PCC
achieving so and causing impact at network compo-
nent γ .

�C
K Set of flexibility shift combinations at the PCC from

the FSP sequence K.
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�FC
so Set of feasible flexibility shift combinations at the

PCC achieving so.
�FSP Set of FSPs.
�FSP

γ Set of FSPs whose flexibility impacts γ .
�FSP′

γ Set of FSPs whose flexibility does not impact γ .
�B′

Set of network buses that cannot reach their con-
straints from the offered FSP shifts.

�B Set of network buses.
�L′

Set of network lines and transformers that cannot
reach their constraints from the offered FSP shifts.

�L Set of network lines and transformers.

Variables and Functions

αf Percentage of pixels correctly assigned as feasible
over the total number of feasible pixels [%].

αr Percentage of pixels correctly assigned as reachable
over the total number of reachable pixels [%].

�lz,s Loading impact on z, from the flexibility shift s
[p.u.].

�p Shift in active power [MW].
�q Shift in reactive power [MVAR].
�vb,s Voltage impact on b, from the flexibility shift s

[p.u.].
γ A network bus, line or transformer.
�b Tensor of all voltage shifts from flexibility combi-

nations from FSPs in �FSP
b .

K Sequence of k FSPs.
�i,b(·) Function of voltage impacts caused on b by FSP i.
�j,z(·) Function of loading impacts caused on z by FSP j.
π A combination of FSP shifts as a tuple.

(·) Function describing a sequence of tensor convolu-

tions.
θ Weight for the OPF-based algorithm [−].
F̃K(·) Function describing the convolution of a sequence

of indicator functions.
ϒγ Matrix with population of combinations feasible for

γ from all FSPs.
b Binary tensor classifying feasible combinations

for b.
z Binary tensor classifying feasible combinations

for z.
Aγ Matrix with population of combinations feasible for

γ from impactful FSPs.
Acf Average αf over different FA estimations [%].
Acr Average αr over different FA estimations [%].
b A bus.
C(·) Function describing summation of all dimensions

of a tensor except the first 2.
Fi(·) Indicator function of FSP i.
H(·) Function returning a set of individual FSP shifts

participating in the combination π .
i, j, r An FSP.
jd FSP offering discrete setpoints.
lz,0 Loading of z under the initial OC [%].
lz,π Loading of z if π is applied [%].
mK(so) Number of shift combinations of FSP sequence K

reaching so [−].

p Active power [MW].
q Reactive power [MVAR].
s Shift in active and reactive power.
Ti,b Tensor of impact of i on b.
vb,0 Voltage of b under the initial OC [p.u.].
vb,π Voltage of b if π is applied [p.u.].
z A line or transformer.

I. INTRODUCTION

THE COORDINATION between transmission system
operators (TSOs) and distribution system operators

(DSOs) faces challenges in data exchange [1] as the flexibility
services from providers connected to the distribution networks
(DNs) become important for services such as balancing and
congestion management. TSOs need to anticipate the available
DN flexibility, to effectively use this flexibility in their oper-
ation. DSOs must ensure that said flexibility services respect
the DN operational constraints and use these services in
distribution-level markets [2]. Between existing approaches for
TSO-DSO coordination, the DSO-managed approach requires
exchanging non-sensitive information from the DSOs to the
TSOs. This information is flexibility areas (FAs); areas in
the active and reactive power plane designating the extreme
values of flexibility that the DN can “offer” to the transmission
network at their point of common coupling (PCC) [3]. The
DSO-managed coordination process involves two tasks for
DSOs. In the first task, the DSO obtains offers from flexibility
service providers (FSPs), estimates the theoretically feasible
FA as in [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], and informs the TSO of that FA. The TSO can request an
operating point (OP) within the FA from the DSO. The DSO
performs the second task, optimizing the individual FSP shifts
achieving the TSO request while respecting the DN constraints
and minimizing the costs as in [15], [16].

In existing FA estimation algorithms, the area surrounded
by the FA curve’s extreme values is mainly assumed as
equally reachable and feasible. However, a different set of
flexibility combinations can reach each FA OP, and the
algorithms cannot guarantee the FSP availability and actual
desired response [16], [17]. Therefore, each FA OP should
not be viewed as equal, but represent the density of feasible
flexibility combinations through which the OP can be reached.
This additional information on FA OP can influence the
TSO to select OP based on expected delivery, reliability, and
effectiveness. Currently, to the best of the authors’ knowledge,
no algorithm provides information on the density of feasible
flexibility combinations (DFC). Hence, TSOs may be unable to
select safe and efficient shifts for FA OPs. This paper focuses
on FA estimation, considering all combinations and providing
the DFC for each FA OP efficiently.

Early distribution network FA estimation studies [7], [12]
effectively proposed power flow (PF)-based algorithms. These
algorithms provide simple and coherent methods for FA
estimation but have limitations in exploring the flexibil-
ity area space [12] and high computational time [7].
Optimal power flow (OPF)-based approaches are faster
and apply multi-objective optimization such as ε-constraint



CHRYSOSTOMOU et al.: TENSOR CONVOLUTION-BASED AGGREGATED FLEXIBILITY ESTIMATION 89

method [4], [17], weighted sum method [5], [10], and radial
reconstruction-based method [3], [6]. OPF-based approaches
provide straightforward and efficient algorithms to identify
the FA limits, improving the potential of system operators to
include flexibility in their decision-making. However, OPF-
based approximations may have limited validity in meshed
networks, as highlighted by [10], [13], [14]. The vast majority
of studies use radial networks [3], [4], [5], [6], [7], [8], [9],
[12], [13], [14], [17].

The authors of [11] introduced an efficient chance-
constrained FA on meshed networks, showcasing the benefits
of power flow routers for FAs. The results of [11] showed
relatively slower performance than the other OPF-based algo-
rithms. A limitation of OPF-based algorithms, as identified
by [5], [13], is the incapability to deal with FAs that are
disconnected, which might be the case for FSPs with limited
offered flexibility setpoints. This paper’s proposed algorithm
performs in radial and meshed network topologies and can
estimate disconnected FAs.

The objective of existing FA estimation approaches is to
identify the limits of the aggregated DN flexibility [3], [4], [5],
[6], [7], [8], [9], [10], [11], [14]. Evaluating each possible FSP
shift combination through existing approaches is intractable,
as they are tailored to the above objective. The authors
of [17] considered the reliability of each FSP in the algorithm
as the confidence in delivering the offered flexibility. The
approach of [17] does not evaluate all possible flexibility
shift combinations to reach an OP between any set of FSPs.
Nevertheless, the results of [17] showcased great insights
on the inner area of FAs, but the task was computationally
expensive with an average time of 970s. This paper’s proposed
FA estimation approach considers all possible flexibility shift
combinations and reports the DFC to reach each FA OP.

Existing FA estimation approaches mainly require the OC of
the DN as input data to perform OPF and PF simulations as [4],
[5], [6], [9], [10], [12], [14]. However, DNs have typically
limited real-time observability with measurement units on
limited network components [18], [19], [20], [21]. To deal with
uncertainties from renewable sources, [11] applied a chance-
constrained method, and [3] applied robust optimization.
Reference [7] included the probability distributions of forecast
errors to determine the probability of feasibility. The proposed
algorithm can use the FA estimated under expected DN OC
(bus voltages, power injections, and line loading), to adapt
and approximate the FA in correlated real-time OC with
observability limited to a subset of network components.

Deep learning-based algorithms have been recently explored
for the FA estimation problem [22], and in tasks related to
FA estimation such as OPF [23], [24] and PF [25], [26]. Deep
learning models can improve efficiency in performing these
tasks. However, some limitations concerning low generaliza-
tion to unseen network topologies and requiring large training
datasets can challenge the application of deep learning in
algorithms for FA estimation. The proposed algorithm does not
employ deep learning models and does not require training.

The proposed TensorConvolution+ algorithm deals with
issues on the exploration of inner FA, evaluates all FSP
combinations and informs on the DFC to reach each FA OP.

Fig. 1. DSO-managed approach for TSO-DSO Coordination. Steps order
( ).

Existing alternative algorithms explore the extreme limits that
flexibility combinations can achieve. Evaluating all combina-
tions informs the system operators on which PCC operating
points have more feasible flexibility options. A higher DFC
can correspond to safety regarding network constraints, less
dependency on specific FSPs, and more options to optimize
costs in algorithms such as [15], [16]. Alternative approaches
cannot tractably evaluate all possible discrete combinations,
whereas TensorConvolution+ is time efficient. In addition,
TensorConvolution+ handles the limitation of existing FA
estimation algorithms in dealing with disconnected FAs and
discrete FSPs. This paper’s contributions are:

• Developing the first method to evaluate all possi-
ble discrete combinations of flexibility, improving the
information encompassed in FAs.

• Introducing the application of convolutions in flexibility
estimation, and analyzing useful properties of convolution
to simplify the FA problem’s complexity.

• Introducing the application of tensors in flexibility esti-
mation, to store and evaluate the feasibility of flexibility
combinations.

Case studies on the 70-bus and 109-bus meshed medium
voltage Oberrhein networks and the 15-bus CIGRE medium
voltage radial network with photovoltaic and wind plant
modules show the algorithm’s capability to work for diverse
network topologies, the need for DFC in FAs, the above
contributions and the algorithm’s adaptability to partially
observable OCs.

The following sections are (Section II) flexibility estimation
algorithm; introducing the problem formulation and objectives,
(Section III) tensor convolutions; the application of tensors
and convolutions in the algorithm, (Section IV) case stud-
ies; on the need for DFC and algorithm contributions, and
(Section V) conclusion.

II. FLEXIBILITY ESTIMATION ALGORITHM

In DSO-managed coordination, as illustrated in Fig. 1 the
first DSO task concerns the FA estimation. This task informs
the TSO about the available shifts so = [�po,�qo]T from
the initial PCC OP [po, qo]T , considering the DN network
constraints. The FA estimation impacts the TSO selection of
an aggregated shift, and subsequently the DSO second task of
FSP shift optimization. Therefore, the FA estimation problem
requires (i) exploring possible FSP shift combinations and
(ii) evaluating whether each combination results in a feasible
OC for the network constraints.
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The requirement (i) on FA estimation approaches determines
which area can be reached using FSP shifts. The set of FSPs
is �FSP. The generic infinite set of shifts is �S = {s|s =
[�p,�q]T ∈ R2}. Each FSP i ∈ �FSP offers a set of shifts as
�̄S

i ⊂ �s. The function σ : �S → �S maps each shift of FSP
i from its bus to the PCC. Thus, the set of shifts from each
FSP, as observed at the PCC is �S

i = {s|s = σ(s̄),∀s̄ ∈ �̄S
i } ⊂

�S. The set of all shift combinations at the PCC between all
FSPs is:

�C = �S
1 × �S

2 × · · · �S|�FSP|,∈ R2
∣
∣�FSP

∣
∣

, (1)
∣
∣
∣�

C
∣
∣
∣ = �i∈FSP

∣
∣
∣�

S
i

∣
∣
∣, (2)

where × is a set cartesian product and | · | is a set cardinality.
Each combination π ∈ �C corresponds to one tuple of
FSP-shifts, and π → {s1, s2, . . . , s|�FSP|} := H(π). Thus,
function H(π) represents obtaining a set of individual FSP
shifts participating in the combination π .

The issue fulfilling requirement (i) is that the number
of flexibility combinations grows exponentially as FSPs and
their offered shifts increase. Due to this issue, state-of-the-art
approaches do not explore all possible FSP shift combinations.
The proposed approach estimates all possible combinations,
i.e., all π ∈ �C.

The requirement (ii) on FA estimation approaches deter-
mines whether each discrete FSP shift combination considers
the network constraints. Let the reachable shifts at the PCC
so expanded by the index π for each π ∈ �C as:

so
π =

∑

s∈H(π)

s, (3)

as each combination π leads to one so. Using (3), the set of
reachable shifts at the PCC from all possible combinations is:

�So =
{

so
π ,∀π ∈ �C

}

⊂ �S. (4)

As shown in Fig. 2, multiple combinations π can reach the
same PCC OP shift so, i.e., ∃so

π = so
π̂

s.t. π, π̂ ∈ �C.
Therefore, the authors expand �C by the index so, indicating
the set of combinations leading to each so as:

�C
so =

{

π |so
π = so∀π ∈ �C

}

⊂ �C. (5)

The cardinality |�C
so | represents the number of possible

combinations reaching so. For example in Fig. 2, for so =
[3, 3]T , the |�C

so | = 2 (from π1, π2). However, out of the
2 combinations, only one leads to a feasible voltage (π2).
Therefore, an FA estimation approach should account for
the network constraints. Feasible shift combinations require
network constraints to be fulfilled at the resulting shifted
OCs. Every shift combination π when applied, can impact the
voltage magnitude vb,π of every network bus b ∈ �B, and the
loading lz,π of every line or transformer z ∈ �L. The set of
feasible combinations reaching each so is:

�FC
so = {

π |(vmin ≤ vb,π ≤ vmax∀b ∈ �B,

|lz,π | ≤ lmax∀z ∈ �L)

,∀π ∈ �C
so

}

⊂ �C
so . (6)

vmax, vmin are the maximum and minimum allowed voltage
for network buses, lmax is the maximum allowed loading for

Fig. 2. Example for 2 shift combinations (π1 as ,π2 as ) from the
initial OP ( ) to reach po + �po = 3MW, qo + �qo = 3MVAR, but only π2
feasible for bus b due to the maximum voltage constraint ( ).

Fig. 3. Overview of the proposed flexibility estimation algorithm.

network lines and transformers. The set of all shifts at the PCC
that are feasible is �FSo = {so|1 ≤ |�FC

so |∀so ∈ �So} ⊂ �So
.

For each so its DFC = |�FC
so |/maxŝo∈�So |�FC

ŝo |, the normalized
cardinality of |�FC

so |.
The issue of fulfilling requirement (ii) is that evaluating the

impact of all combinations π on all network components is
computationally expensive. Hence, evaluating the impact of
all possible combinations is intractable in existing approaches.
State-of-the-art approaches simplify the issue to identify all so

for which at least 1 feasible shift combination exists, i.e., �FSo
.

The proposed approach evaluates all possible combinations
and estimates |�FC

so | of all so ∈ �FSo
.

The proposed algorithm is TensorConvolution+ with input
as the network topology, the initial OCs, and the FSPs. When
adapting FAs for new OCs, the needed input is a subset of the
network components’ new voltage and loading magnitudes.
Hyperparameters include the resolution δp, δq of �S, i.e.,
increments in �S elements, and the sensitivity thresholds
cv, cl. Fig. 3 shows the algorithm’s steps. TensorConvolution+
initially runs PF simulations to generate samples for require-
ments (i) and (ii). The algorithm decomposes the flexibility
constrained by each network component (e.g., bus, line), and
uses tensors and convolutions to efficiently process the samples
for requirement (ii). Then, TensorConvolution+ returns the FA
constrained by all network components. If all combinations
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Fig. 4. FA from the proposed algorithm with the DFC of feasible FA points
( ) and not feasible FSP shift combinations ( ) from the initial OP ( ).

fulfill the network constraints, i.e., �FC
so = �C

so∀so ∈ �So
, then

convolutions are applied to deal with requirement (i). Fig. 4
shows the output FA of the proposed algorithm. Each blue-
colored pixel has a value of 1 and represents a reachable but
not feasible OP for the network constraints. Each pixel with
values between (1, 2] represents a reachable and feasible OP
and its DFC, i.e., larger values have more feasible options than
lower values. The area covered by all colored pixels represents
the reachable set �So

from FSP offers, related to requirement
(i). The feasible area represents �FSo

and DFC, related to
requirements (i), (ii).

A. Reducing Required Power Flow Simulations

Computing all inputs to (6) requires estimating vb,π , lz,π as:

vb,π = vb,0 +
∑

s∈H(π)

�vb,s ∀b ∈ �B,∀π ∈ �C
so , (7)

lz,π = lz,0 +
∑

s∈H(π)

�lz,s ∀z ∈ �L,∀π ∈ �C
so , (8)

where vb,0, lz,0 are the OC’s values for b ∈ �B and z ∈ �L.
Variables �vb,s,�lz,s are the shift s impacts on b, z, estimated
using PF simulations. The number of PF simulations needed to
explore all possible FSP shift combinations is (2). To simplify
this combination complexity, the authors apply:

Assumption 1: The impact of each FSP’s output shift on
a network component is not affected by other FSPs’ output
shifts, i.e., �vb,s̃ |= �vb,ŝ∀s̃ ∈ �S

ĩ
,∀ŝ ∈ �S

î
,∀ĩ �= î ∈ �FSP,

�lz,s̃ |= �lz,ŝ∀s̃ ∈ �S
ĩ
,∀ŝ ∈ �S

î
,∀ĩ �= î ∈ �FSP.

When adopting assumption 1, the proposed algorithm
requires one PF simulation for each possible FSP shift.
Hence, the required PF simulations are decreased from (2) to
∑

i∈�FSP |�S
i |.

B. Analyzing FSP Sensitivities of Network Components

This section analyzes the sensitivities of network compo-
nents to FSP shifts through the impacts �vb,s,�lz,s. This
analysis further reduces the complexity O((|�B|+|�L|)·|�C

so |)
in estimating (7) and (8). The analysis starts with:

• Observation (a): each network component’s voltage or
loading is not sensitive to all FSPs.

• Observation (b): not all network components can reach
their voltage or loading limitations due to the FSP shifts.

Exploiting (a), the FSP sensitivity sets for each b ∈ �B and
z ∈ �L are:

�FSP
b =

{

i|cv ≤ max
s∈�S

i

(|�vb,s|
)

, i ∈ �FSP

}

, (9)

�FSP
z =

{

i|cl ≤ max
s∈�S

i

(|�lz,s|
)

, i ∈ �FSP

}

, (10)

where cv, cl, are sensitivity thresholds. The FSPs that do not
impact the constraints of a network component are �FSP′

γ =
{i|i ∈ �FSP \ �FSP

γ }∀γ ∈ �B ∪ �L. For example, in a network
with 2 feeders connected to the PCC, the components on the
first feeder can be insensitive to shifts from FSPs connected
to the second feeder. The sets in (9)-(10) replace �C with �C

γ ,
the set of combinations for which γ ∈ �B ∪�L is sensitive to
its constraints. This analysis reduces the constraint-evaluated
combinations from |�C

so | to |�C
γ,so |∀γ ∈ �B ∪ �L; the set of

sensitive combinations per component as:

�C
γ,so =

⎧

⎨

⎩
π |

∑

s∈H(π)

s = so∀π ∈ �C
γ

⎫

⎬

⎭
⊂ �C

γ . (11)

In DN OCs with higher margin from the network constraints,
|�C

γ,so | << |�C
so |.

Exploiting (b) the sets of non-sensitive components are the
ones whose voltage or loading cannot reach the constraints
when accumulating the highest impact from the FSPs, as:

�B′ =

⎧

⎪⎨

⎪⎩

b|
⎛

⎜
⎝vb,0 +

∑

i∈�FSP
b

max
s∈�S

i

(�vb,s) ≤ vmax

⎞

⎟
⎠

∧
⎛

⎜
⎝vmin ≤ vb,0 +

∑

i∈�FSP
b

min
s∈�S

i

(�vb,s)

⎞

⎟
⎠,∀b ∈ �B

⎫

⎪⎬

⎪⎭

,

(12)

�L′ =
⎧

⎨

⎩
z|

⎛

⎝lz,0 +
∑

i∈�FSP
z

max
s∈�S

i

(�lz,s) ≤ lmax

⎞

⎠,

∧
⎛

⎝lmin ≤ lz,0 +
∑

i∈�FSP
z

min
s∈�S

i

(�lb,s)

⎞

⎠,∀z ∈ �L

⎫

⎬

⎭
.

(13)

The analysis of observations (a) and (b), reduces the
combinations evaluated in (7)–(8) by replacing �C

so with �C
γ,so ,

�B with �B \�B′
and �L with �L \�L′

. Thus, the complexity
becomes O((|�B \ �B′ | + |�L \ �L′ |) · |�C

γ,so |).

III. TENSOR CONVOLUTIONS

A. Convolutions for Flexibility Shift Aggregation

This section introduces convolutions, to aggregate shifts
without considering network constraints. Convolutions can
efficiently combine the flexibility sets, and accumulate the
number of combinations leading to each so, i.e., |�C

so |.
Relating, the Minkowski sum can be applied to efficiently
combine flexibility sets without considering network con-
straints [27], e.g., combining feasible flexibility sets from
multiple feeders connected to the PCC. However, the
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Fig. 5. FAs for Minkowski sum and Convolution of F(·) for î, ĩ ∈ �FSP.
The FAs include squares of feasible shifts( ), and initial operating points ( ).

Fig. 6. Convolution of Fî(·), Fĩ(·) for î, ĩ ∈ �FSP at �po = 2, �qo = 0.

Minkowski sum does not consider how many combinations
from the input sets lead to each so. In Fig. 5(b), the Minkowski
sum, and in Fig. 5(c), the two-dimensional (2D) discrete
convolution of two flexibility sets. In Fig. 5(c), each resulting
point includes the number of combinations reaching it.

The proposed algorithm aggregates shifts without consider-
ing constraints in two cases. First, when �B′ = �B,�L′ =
�L, thus �C

so = �FC
so . Second, for each component γ ∈ �B

∪�L where 1 ≤ |�C
γ | < |�C|, the algorithm explores all �C

combinations; the cartesian product between �C
γ and all FSPs

in �FSP′
γ , i.e., �C = �S

1 × · · · × �S
|�FSP′

γ | × �C
γ .

Let any 2 FSPs (î, ĩ) offering shifts �S
î
, and �S

ĩ
respectively,

as in Fig. 5(a). The 2D discrete convolution for each shift
so = [�po,�qo]T is defined as:

(

Fî ∗ Fĩ

)(

�po,�qo) =
∞
∑

�p=−∞

∞
∑

�q=−∞

(

Fĩ(�p,�q)

·Fî

(

�po − �p,�qo − �q
))

, (14)

where (· ∗ ·)(x, y) is a convolution of two functions for the
input x, y, and Fi∀i ∈ �FSP is an indicator function as:

Fi(s) =
{

1, if s ∈ �S
i ,

0, otherwise.
(15)

Fig. 6 visualizes the convolution process for a single
�po,�qo. The circled overlapping pixels in Fig. 6(c) represent
all possible combinations reaching po +�po, qo +�qo. Useful
properties from the convolution [28] are applied as:

1) Associativity and commutativity: The order of FSPs î, ĩ
(or more) does not affect the convolution output.

2) Impulse response: The convolution of an FA with a delta
function results in the FA shifted by the delta offset.

The Appendix A proves a third property stating: The discrete
convolution of shifts between k FSPs considers all possible
discrete combinations between these k FSPs for so. The

Fig. 7. Convolution of F(·) for i, j ∈ �FSP for an so. Out of all reachable
shifts ( ), 2 combinations are possible for the alignment ( ).

resulting value for each so is the sum of all combinations from
the k FSPs that can reach it.

The proposed approach describes the combined FA function
for a sequence K of convolutions for k FSPs as:

F̃K
(

so) =
{

mK(so), if so ∈ �S
K,

0, otherwise,
(16)

where:

�C
K = �S

1 × �S
2 × · · · × �S

k, (17)

�S
K =

{

sK|sK =
∑

s∈π

s,∀π ∈ �C
K

}

⊂ �So
. (18)

mK(so) ∈ N is the number of shift combinations of FSP
sequence K = 1, 2, . . . , k reaching so. For the remainder
of the paper, Fî ∗ Fĩ corresponds to applying (14) for all
[�po,�qo]T ∈ �S

K, where K = î, ĩ. This operation is efficient
and widely available within computer vision and machine
learning software libraries.

B. Tensors Combining Flexibility Impacts

This section describes the algorithm to estimate the FA of
each constraint-sensitive network component, i.e., b ∈ �B \
�B′

, z ∈ �L \ �L′
. The proposed algorithm uses tensors

to efficiently explore, represent, and process the information
obtained through PF simulations.

Intuitively, as shown in Fig. 6, during a 2D discrete con-
volution, every FSP combination reaching so is accumulated.
However, applying (7)-(8) before the accumulation is needed
to check whether each combination is feasible or not for the
network constraints. Hence, the authors propose avoiding the
summation step of convolution and storing the alignment of
each step in new dimensions. For example, using convolution,
the 2 combinations of Fig. 7(a) result in an entry value of
2 for the matrix in Fig. 7(b). Through the proposed tensor-
convolution as in Fig. 7(c), the entry for �po = 0,�qo = 2
is a matrix of the element-wise multiplication between the
Fj, and the shifted-flipped Fi. The resulting tensors store the
information of which combinations π are available through
this alteration.

After this tensor-convolution process, the combination of 2
FSPs results in a 4 dimensional tensor, and each additional
FSP adds 2 dimensions. The function for this process is 
,
and the tensor convolution operation is ∗̂.


(F1, F2, . . . , Fk) = F1∗̂F2, . . . ∗̂Fk,∈ R2k. (19)
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As shown in Section II-B observations, the impactful FSPs
for each component’s constraints and the sensitive network
components are limited, mitigating dimensionality issues.
Nevertheless, if a limited RAM requires reduced tensor dimen-
sionality, the algorithm can aggregate pairs of FSPs into one
only for the component causing the issue. The algorithm
determines which pair is closer through the electrical distance
shown in [29]; the impedance of the lines between each FSP
pair.

1) Obtaining Combination Impacts: For each restrictive
network component b ∈ �B \ �B′

, z ∈ �L \ �L′
, for each of

their impcatful FSPs i ∈ �FSP
b , j ∈ �FSP

z , the impact functions
�i,b(s),�j,z(s) are:

�i,b(s) =
{

�vb,s, if s ∈ �S
i ,

0, otherwise,
(20)

�j,z(s) =
{

�lz,s, if s ∈ �S
j ,

0, otherwise.
(21)

Estimating (7)-(8) is needed to check if the resulting vb,π

are feasible for the network constraints. Thus, the algorithm
needs to sum the associated �v caused by every FSP within
π for every π effective on b. The authors propose iteratively
taking i ∈ �FSP

b and applying:

Ti,b = 
(F0, . . . , Fi−1)∗̂�i,b∗̂

(

Fi+1, . . . , F|�FSP
b |

)

, ∈ R2
∣
∣�FSP

b

∣
∣

.

(22)

The above result, Ti,b, is the tensor of voltage impacts from
i, on b, whose entries represent each π . Ti,b does not include
the voltage shifts caused by other FSPs. After obtaining
Ti,b∀i ∈ �FSP

b , the proposed algorithm performs element-wise
tensor addition as:

�b = �i∈�FSP
b

Ti,b,∈ R2
∣
∣�FSP

b

∣
∣

. (23)

This addition aggregates the contribution to the voltage shift
from all impactful FSPs for component b for each combina-
tion π , i.e., each �b entry value is equal to

∑

s∈H(π) �vb,s

for a unique π ∈ �C
b,so . The boolean tensor Tbool

b =
F0∗̂, . . . ∗̂F|�FSP

b | shows which combinations π belong to �C
b ,

i.e., Tbool
b entries are 1 where a combination exists and 0 where

not. The proposed algorithm applies the following to classify
each combination as feasible or not:

b = �v(�b + vb,0 · 1�b

) ◦ Tbool
b ,∈ R2|�FSP

b |, (24)

�v(vb) =
{

1, if vmin ≤ vb ≤ vmax,

0, otherwise.
(25)

where 1�b is a tensor of ones, with the shape of �b. The
operation ◦ is the tensor Hadamard product. The addition
�b + vb,0 · 1�b estimates the resulting voltages at component
b for every possible combination of flexibility shifts. The
filter �v returns 1 for all combinations within the network
constraints. The Hadamard product sets 0 for all combinations
not offered by the FSPs. The corresponding variables for
loading components are �z, Tbool

z ,�l(lz), and z.

Fig. 8. Element-wise minimum of FAs.

2) Tensor to Flexibility Mapping: The b, z have dimen-
sionalities of 2 · |�FSP

b |, 2 · |�FSP
z | respectively. The first 2

dimensions correspond to the PCC so; as in Fig. 7(c). The
rest constitute the constraint-validated combinations reaching
each PCC so. Therefore, summating all tensor entries except
the first 2 dimensions returns the flexibility area constrained
by the component b or z. Intuitively, this operation restores
the accumulation step of convolution. Using the Einstein
summation convention allows easy and efficient summing
operations over multiple dimensions of tensors in Python [30].
The function C : ξ → 2 represents the summation of all
tensor’s  entries from any ξ dimensions to the first 2
dimensions:

Aγ = C
(

γ

)

,∈ R2, (26)

where γ ∈ �B ∪�L is any network component. Each Aγ entry
corresponds to a different so. Each entry value of Aγ is the
number of combinations in �C

γ , feasible for γ for an so.
3) Adding FSPs Insensitive for Components: Aγ excludes

contributions from FSPs causing negligible voltage or loading
impacts on γ ∈ �B ∪ �L. The proposed algorithm performs
2D convolution between Aγ and the F of all elements in
�FSP′

γ = {j′0, j′1, . . . , } to consider the feasibility of all possible
combinations in �C for component γ , as:

ϒγ = Aγ ∗ Fj′0 ∗ Fj′1 , . . . ,∈ R2. (27)

Let μ, τ be the row and column indices of ϒγ ∀γ ∈ �B∪�L.
The bijective function λ maps each so to a unique μ, τ , i.e.,
λ:so → (μ, τ). Each entry value of ϒγ is the number of
combinations in �C feasible for γ for a unique so.

C. Combining Sensitive Network Components’ FAs

To combine the FA of all components into one, the authors
apply:

Assumption 2: |�FC
so | ≈ minγ∈�B∪�L(ϒγλ(so)

).
Using assumption 2 allows estimating the FA of each

component before approximating the final FA at the PCC as
their element-wise minimum. For instance, Fig. 8 illustrates a
scenario with 3 network components, one non-restrictive and
two restrictive due to different constraints.

D. Dirac Functions for Non-Linear FSP

The proposed algorithm can deal with disconnected areas
and non-linear FSPs, exploring the impulse response property
introduced in Section III-A. Non-linear FSPs can cause discon-
nected areas as in [5], [13]. Non-linear FSPs could be on-load
tap changers [5], [13] or generators/loads offering specific
shift set points rather than a range of shifts [31]. Depending
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Fig. 9. Convolution of a discrete variable’s Fjd (·) with the feasible
combinations from other FSPs. The convolution result of (c) is the same as
displacing (a) by the (b) shifts as in (d).

on the network component sensitivity or insensitivity to the
non-linear FSPs, the algorithm performs different estimations
to combine the non-linear FSP flexibility with the FA from
the rest of the FSPs.

If the component γ ∈ �B ∪ �L is insensitive to the
non-linear FSP jd ∈ �FSP′

γ , the proposed algorithm initially
performs (27), excluding jd to get ϒ̂γ , as in Fig. 9(a). To
add the flexibility from non-linear FSPs one could convolve
ϒ̂γ with the indicator function of jd, i.e., Fjd of Fig. 9(b),
as in Fig. 9(c). Alternatively, exploiting the Dirac function
property of convolutions, the algorithm displaces ϒ̂γ by each
shift �p,�q from jd and sums these displaced results, as in
Fig. 9(d). The summation results to ϒγ .

If jd, is sensitive for b ∈ �B, the algorithm ignores the jd
impact on b until after (23). Then, for each jd shift s ∈ �S

jd
whose impact is �vb,s, the matrix Ad

b,s is:

Ad
b,s = C

(

�v(�b + (vb,0 + �vb,s) · 1�b

) ◦ Tbool
b

)

. (28)

The (28) encompasses adding the impacts of all linear FSP
shifts to the impact of a non-linear FSP value, filtering the
results based on the network constraints as in (24), (25),
and summing feasible combinations for each s as in (26).
Thus, each Ad

b,s measures all feasible combinations between
the linear FSPs and a non-linear FSP value s. Subsequently,
the proposed algorithm sums Ad

b,s∀s ∈ �S
jd

displaced by the
s offsets. The summation result describes Aγ , used in (27).
The (28) also holds for z ∈ �L, but with loading variables
instead.

E. Adaptability to Partially Observable Operating Conditions

Let FSPs that offer the same flexibility shifts for related
OCs. In that case, the proposed algorithm assumes the shift
impacts �vb,s∀s ∈ �S

i ∀i ∈ �FSP,∀b ∈ �B, �lz,s∀s ∈
�S

i ∀i ∈ �FSP,∀z ∈ �L to be similar. Therefore, the tensors
�b, �z, Tbool

b , Tbool
z are also similar for these related OCs. The

proposed algorithm can store the tensors �b, �z, Tbool
b , Tbool

z ,
and adapt the flexibility in subsequent FA estimations by
applying �v,�l on the stored tensors and the new OCs
lz,0∀z ∈ �L \ �L′

, vb,0∀b ∈ �B \ �B′
. The proposed algorithm

Fig. 10. Test network lines ( ), buses ( ), high to medium voltage
transformer stations ( ), transformers ( ), external grid ( ).

applies tensor train decomposition to reduce the space needed
to save multiple high-dimensional tensors; a method that
allows efficient representation of high-dimensional tensors
with a small number of parameters without losing significant
information [32]. For example, let an FA be estimated for
expected (e.g., day ahead) OCs. Let real-time measurement
units be placed on the DN components that are sensitive
to constraints and flexibility shifts, i.e., �B \ �B′

,�L \ �L′
.

TensorConvolution+ stores the tensors of the expected OCs
FA and uses the real-time measurements from the sensitive
components to approximate the partially observable OCs FA.

IV. CASE STUDIES

Fig. 10 illustrates the test networks; the meshed medium
voltage Oberrhein network’s substations 0 (OB0) (70 buses)
and 1 (OB1) (109 buses), and the radial CIGRE medium
voltage network (15 buses). The authors modified OB0 and
OB1 to get meshed networks and provide more challenging
scenarios for the algorithm. These modifications led to initial
OCs with a minimum voltage in OB0 of 0.95p.u. and OB1
of 0.958p.u.. These modifications increased the sensitivity of
network components to FSPs. The algorithm’s inputs were the
network and the locations of load and generator FSPs. The
algorithm’s parameters were the δp, δq, cl, cv, lmax, vmax, vmin.
In all case studies the loading constraint was lmax = 100%
and the threshold parameters were cv = 0.001p.u., cl = 1%
for the CIGRE network, cv = 0.0001p.u., cl = 1% for OB0,
and cv = 0.005p.u., cl = 1% for OB1. The other inputs and
parameters are referenced below and vary between the case
studies. In all case studies, the FSPs were assumed to offer
flexibility covering any p, q setpoint with apparent power less
than their initial apparent power except in case study C where
one FSP was non-linear and case study B.3.

Study A considered 3 FSPs in the CIGRE network, offering
their full flexibility. The 3 FSPs were loads 3, 11 and generator
8. The FSP costs were 40 AC/MW, 50 AC/MW, and 60 AC/MW.
The exhaustive baseline approach performed PF simulations
for all possible shift combinations between the FSPs for each
δp = 0.25MW, δq = 0.25MVAR increment. The voltage
constraints were vmin = 0.95p.u., vmax = 1.05p.u. The



CHRYSOSTOMOU et al.: TENSOR CONVOLUTION-BASED AGGREGATED FLEXIBILITY ESTIMATION 95

simulations recorded the cost and feasibility for the network
constraints per combination. Study B.1 considered 2 FSPs
in radial OB0, load 57, and generator 29 to compare the
TensorColvolution+ performance to the exhaustive PF base-
line with a δp = 0.025MW, δq = 0.025MVAR increment. The
voltage constraints were vmin = 0.95p.u., vmax = 1.05p.u..
Missing values were linearly imputed. Study B.2 considered
360 estimations of FAs for 2–15 FSPs on the OB0, and
OB1. Each estimated FA had a random set of FSPs between
the network loads and generators. For the cases with |�FSP|
≥ 10, the random FSPs were sampled from 2 sets relating
to different network regions. The 240 estimations had narrow
voltage constraints with cmin = 0.95p.u., cmax = 1.05p.u.,
and 120 estimations wide voltage constraints with cmin =
0.9p.u., cmax = 1.1p.u.. In narrow voltage constraints estima-
tions, around 400 pixels (as in Fig. 14), and in wide voltage
constraints around 670 pixels were explored. The number of
pixels determined the values of δp, δq from the total capacity
of flexibility offers per scenario. For each estimated FA, 1000
samples of flexibility shifts were generated with a Monte Carlo
baseline. Each feasible sample generated from the baseline was
assigned to a pixel on the proposed algorithm’s estimated FA.
If the pixel was estimated feasible by the TensorConvolution+,
then the estimation was correct. The percentage between the
correctly assigned feasible pixels over the total number of
feasible pixels explored is af . The percentage between the
explored and not explored pixels is ar. The 1000-sample sets
were sampled from 2 conventional (uniform, Kumaraswamy)
and 1 harder distributions, amounting to 3000 samples. The
CIGRE network shows the effects of radial topologies and
higher resolutions with 11 FSPs, loads 9, 14, 16, 17, and
generators 0, 1, 2, 3, 4, 5, 6 and narrow voltage constraints.
The output for the CIGRE network was around 10000 pixels
with δp = 0.01MW, δq = 0.02MVAR. Study B.3 com-
pares 3 FAs estimated using an OPF-based algorithm and
TensorConvolution+. The FAs included 5 and 6 FSPs on
the CIGRE network. Study C considered 7 FSPs offering
any setpoint in their flexibility range, loads 12, 14, 16 and
generators 0, 1, 2, 3, 8. The wind plant FSP (generator 8) only
offered full curtailment (2 setpoints) to produce a disconnected
area. The voltage constraints were set at 0.94–1.06p.u., a
challenging case where not-feasible shifts exist, but both
areas in the disconnected FA include feasible shifts. Study
D considered 9 FSPs, loads 3, 5, 6, 9, 17, and generators
4, 5, 6, 8 in the CIGRE network. These FSPs varied in offered
capacity, S from 0.03MVA to 1.5MVA. The step-size of δp =
0.1MW, δq = 0.2MVAR led to approximately 1500 pixels
while neglecting 3 FSPs of 0.03, 0.03, and 0.04MVA. The
voltage constraints were vmin = 0.95p.u., vmax = 1.05p.u..
Study E scenarios considered visually different FAs for the
same FSPs between initial and altered OCs. The FSPs in the
CIGRE network case were loads 3, 5, 6, 9, 17 and generator
8, with δp = 0.2MW, δq = 0.2MVAR. For the altered OCs,
the power factor of loads 0, 7, 8, 12 and 15 was reversed for
the CIGRE network. In OB0, shifts were randomly sampled
for all non-FSP generators and loads using normal distribution
centered at the expected OC’s values, with a standard deviation
of 0.2. The FSPs in the OB0 case were loads 18, 22 and

Fig. 11. Selecting safe and cheap shifts with the unnormalized DFC (uDFC)
in (a). Additional information on shift minimum costs (Min. Cost) in (b).
Possible shifts include α ( ); very cheap, but not safe, β ( ); cheap and safe,
and ζ : ( ) expensive and not safe.

TABLE I
COMPARING SHIFTS α, β, ζ WITH UNNORMALIZED DFC (UDFC),

NUMBER OF NOT-FEASIBLE COMBINATIONS (NFC), FEASIBLE

COMBINATIONS PERCENTAGE (FCP), AND MINIMUM COST(MIN.COST)

generators 26, 50, with δp = 0.068MW, δq = 0.068MVAR.
The voltage constraints were vmin = 0.95p.u., vmax = 1.05p.u.

The algorithm’s output is an FA Pandas data frame. The
times referenced correspond to estimating the data frame.
Simulations were performed on an Intel Core i7-1185G7
CPU with 16 GB RAM and an NVIDIA A100 GPU with
40GB VRAM. The GPU is available in Google Colab [33].
The algorithm’s implementation in Python also included
the PandaPower, SciPy, PyTorch, scikit-learn, and Numpy
libraries.

A. DFC Improving TSOs Flexibility Shift Selection

This case study exemplifies the improvement in flexibility
shift selection using DFC. Fig. 11 illustrates the simulation
results on the CIGRE network, and Table I summarizes the
results for shifts α, β, ζ . Fig. 12 illustrates the PF results for
the cheapest flexibility shift combinations reaching α, β, ζ .
The α shift’s results are unsafe as multiple buses have
approximately 0.95pu voltage magnitude, and only 1.1%
of the available combinations for α are feasible. The few
combinations available for ζ make this shift’s combinations
expensive, and less reliable (dependent on specific FSPs).
The 193 feasible combinations for β make this selection less
dependent on specific combinations. In addition, β has safer
results for the network constraints than α and costs cheaper
than ζ . Thus, using DFC, the TSOs can select safe and cost-
efficient shifts.

B. Analysing TensorConvolution+ Performance

This case study visually and quantitatively evaluates the
TensorConvolution+ performance in terms of FA DFC, range,
and computational speed.

1) Performance Analysis for DFC: Fig. 13 illustrates the
resulting FA of the proposed approach and the ground truth,
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Fig. 12. PF results for cheapest flexibility combinations for shifts α, β, ζ ,
where network voltage constraints are 0.95 − 1.05p.u.

Fig. 13. The FA for TensorConvolution+ in (a) and PF-based approach in
(b). The FAs include the DFC ( ) for feasible shifts from the initial OP ( )
and not-feasible shifts ( ).

TABLE II
EVALUATION OF ALGORITHM FOR OB0, OB1 NETWORKS (NET.),

WITH NARROW AND WIDE VOLTAGE CONSTRAINTS (VC)

an exhaustive PF-based approach on the radial version of
OB0. The root mean squared error between all pairs of pixels
between Fig. 13(a) and Fig. 13(b) is 0.13, validating the
observable high similarity between the two FAs.

To analyze the computational times using the CPU, the
exhaustive PF-based approach needed 3 hours, 39 minutes, and
5 s for 480702 PF simulations. Increasing the number of FSPs
increases the number of PF simulations needed largely. For
this case study, when adding 1 more FSP, the number of PF
simulations needed for the exhaustive PF-based approach is
1300032. This number highlights the challenge the proposed
approach addresses. The proposed algorithm needed 42.8s, a
speed-up of over 300 times.

2) Performance Analysis for Flexibility Range: Table II
summarizes the average evaluation metrics of the scenarios
on meshed OB0 and OB1 for narrow and wide voltage con-
straints. The metrics Acf and Acr are the mean af and ar over
the estimated FAs. These results show a great performance
of TensorConvolution+ for the FA range. Fig. 14 illustrates
an example alignment of each distribution’s samples with the
algorithm’s FA estimation, as used to estimate af and ar

for each of the 360 FAs. Multiple cases required more than
the available RAM in the narrow voltage constraints OB0
estimations for 6, 7 FSPs. In those cases, TensorConvolution+

aggregated at least one pair of FSPs to one FSP for at least
one network component to reduce the tensor dimensions.

Fig. 15 shows the computational time to estimate the FA
for different FSP numbers. The authors multiplied the number
of PF simulations needed for the exhaustive algorithm with
the time the GPU spent for 1 PF simulation (0.038s for OB0
and 0.039s for OB1) to estimate the average time the baseline
would need to estimate the 360 FAs. The exhaustive PF-based
algorithm would be intractable for the majority of the FAs. The
average time needed for the TensorConvolution estimations of
Fig. 15 varied between 6–36s and the average time over the
360 estimations was 11s. For a high resolution of 10000 pixels
and 11 FSPs in the CIGRE network, the proposed algorithm
needed 50s to estimate the FA. The maximum number of
FSPs impacting a component for the CIGRE network’s FA
was 4 due to the radial network structure. All estimations were
performed on the GPU.

3) Comparison With OPF-Based Method: An OPF-
based algorithm was employed to compare with the
TensorConvolution+ estimations. The OPF-based algorithm
employed weighted-sum multi-objective optimization with
objectives max(θ�po + (1 − θ)�qo), max(−θ�po + (1 −
θ)�qo), max(θ�po − (1 − θ)�qo), and max(−θ�po − (1 −
θ)�qo). For each objective, θ varied between 0–1 with step
size as a hyper-parameter. Due to convergence issues, the
transforming loading limitations were ignored in the OPF
algorithm. The FSP flexibility in this section was considered
square where the active and absolute reactive power were
between 0 and the nominal power of the FSP.

TensorConvolution+ and the OPF-based algorithm were
compared in three cases on the CIGRE network. The cases
varied in resolutions and network sensitivity to constraints.
First, a case with FSPs the loads 14, 16 and generators 2, 4, 6.
The first case resolution was δp = 0.01MW, δq = 0.02MVAR
(≈ 690 pixels) and a θ with 0.1 increments for the OPF-
based algorithm (44 OPFs). The second case included FSPs
the loads 14, 16 and generators 2, 4, 5, 6. The resolution for
the second case was δp = 0.02MW, δq = 0.04MVAR (≈ 300
pixels), and a θ of 0.2 increments (24 OPFs). The third case
included FSPs the loads 3, 5, 6, 17, and the generator 8. The
third case resolution was δp = 0.15MW, δq = 0.3MVAR (≈
1050 pixels), and a θ with 0.1 increments (44 OPFs). The
results of Fig. 16 illustrate the FAs obtained for the three cases.
The two algorithms agree on the shape of the FAs. However,
the TensorConvolution+ algorithm also explores the inner area
feasibility and estimates the DFC. Regarding computational
burden, using the GPU for cases 1, 2, 3, TensorConvolution+
required 9s, 5.4s, 23.3s, and the OPF-based algorithm required
37.6s, 21s, 36.3s respectively.

C. Estimating Disconnected Flexibility Areas

This case study showcases the proposed algorithm’s capa-
bility to estimate disconnected FAs and to deal with non-linear
FSPs. Fig. 17(a) illustrates the proposed algorithm’s result
compared to the result from 10000 samples of Fig. 17(b)
using the Monte-Carlo-based algorithm with “Hard” distribu-
tion. The PF-based algorithm was not capable of effectively
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Fig. 14. Monte Carlo-based results from different distributions aligned with the TensorConvolution+ output. Feasible TensorConvolution+ output pixels
( ). Not feasible TensorConvolution+ output pixels ( ). Feasible Monte Carlo samples ( ). Not feasible Monte Carlo samples ( ).

Fig. 15. Computational time of TensorConvolution+ ( ) and estimated
computational time for exhaustive PF-based approach ( ) per FSP amount.

Fig. 16. Comparing FAs from TensorConvolution+ and OPF based
algorithm.

exploring the disconnected areas, as the exact limits of feasible
areas are unclear. The proposed algorithm was capable of
estimating the FA, the range, and DFC in 8.5s using the CPU
or 7.4s using the GPU.

D. Including Flexibility From Small FSPs

This study shows the proposed algorithm’s capability to
include contributions from small FSPs. The increments δp, δq
between FSP shifts determine the FA resolution. In cases
with large differences in the flexibility between the larger and

Fig. 17. Disconnected FA Predicted by TensorConvolution+ and the Monte-
Carlo-Based algorithms.

Fig. 18. FA with DFC for feasible combinations ( ), density of uncertain
combinations (DUC) for feasibility ( ), and not feasible FSP shift combina-
tions ( ) from initial OP ( ).

smaller FSPs, reducing the resolution is impractical. Thus,
the algorithm initially neglects all FSPs offering flexibility
lower than δp, δq and estimates the FA from the rest. Then,
using bi-linear spline interpolation increases the resolution of
the estimated FA to add the smaller FSPs. The algorithm
convolutes the enhanced FA with the previously neglected
FSPs’ shifts. The additional area obtained in the last result
constitutes the uncertain FA (not tested for the network
constraints). In this study’s results, after neglecting 3 small
FSPs, the algorithm increased the pixels of the evaluated area
5 times and aggregated the previously neglected FSPs. Fig. 18
visualizes the resulting FA. The uncertain FA addition process
caused 11.09s delays using the GPU, with the rest of the FA
estimation process needing 53.2s.

E. Adapting FAs for Partially Observable OCs

This case study showcases the algorithm’s capability
to adapt FAs for altered partially known OCs. For the
CIGRE network, the algorithm used the tensors computed for
Fig. 19(a), and the partial initial OCs of Fig. 19(c) to estimate
the FA in Fig. 19(e). The OC change from Fig. 19(a) to
Fig. 19(c) increased the CIGRE network’s buses’ sensitivity to
the over-voltage constraints. For OB0, the algorithm used the
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Fig. 19. Adaptability of FAs from initial OCs to altered OCs.

tensors computed for Fig. 19(b), and the partial initial OCs of
Fig. 19(d) to estimate the FA in Fig. 19(f). The OC change
from Fig. 19(b) to Fig. 19(d) reduced the OB0 component
sensitivities to FSP shifts. The adapted areas of Fig. 19(e)
and Fig. 19(f) approximate the ground truths of Fig. 19(c)
and Fig. 19(d). However, the adapted FAs required the initial
OCs from limited components; 13 components in the CIGRE
network, and 11 in OB0.

Using the GPU, estimating Fig. 19(a) and Fig. 19(b) and
storing the tensors required 286s and 636s. The ground
truths of Fig. 19(c) and Fig. 19(d) required 13.2s and 17.6s
respectively. The adapted areas of Fig. 19(e) and Fig. 19(f)
required 6.8s and 8.3s, respectively. Adapting FAs using
the computed values for prior FAs is a capability absent
in existing algorithms. The required computing time for
TensorConvolution+ can be reduced to approximately half
through this capability.

F. Discussion

The proposed algorithm can evaluate the feasibility for
the network constraints for all combinations between the
FSP shifts. The studies show that this evaluation can benefit
system operators in selecting shifts. Shifts with higher DFC
offer more feasible flexibility options for system operators.
Bigger DFC relates with a higher margin from the network
constraints (Fig. 12) and lower costs (Table I). The results
show that TensorConvolution+ is the most computationally
efficient algorithm for FA estimation with DFC among the
algorithms studied. Simulations between the exhaustive PF-
based alternative showed that the proposed algorithm could
improve the computational speed over 300 times for 2 FSPs.

The speed improvement increases with FSPs (Fig. 15) as the
required PFs for the exhaustive approach are (2). Most existing
algorithms do not evaluate all flexibility combinations but
focus on estimating the FA range. The proposed algorithm
has high confidence in estimating the FA range, with an
average Acf = 99%. Identifying which FA regions are feasible
and which are not is important for system operators to
adopt FAs. Existing algorithms can have issues estimating
disconnected FAs, causing estimation delays or incorrectly
assuming in-between regions as feasible [5]. The proposed
algorithm makes use of the impulse response property of
convolution (Section III-A) to estimate disconnected areas
with low computational burden. The results show that the
algorithm can estimate disconnected FAs in 7.4s with distinct
feasible regions (Fig. 17). The results demonstrated that the
proposed algorithm perform for meshed and radial network
topologies, which was a challenge for existing algorithms.

The parameters δp, δq, and cv, cl influence the proposed
algorithm’s performance. Lowering δp, δq, increases the FA
resolution and computational burden. For a total offered
flexibility Ptot, recommended δp = 0.05 · Ptot, δq = 0.1 ·
Qtot result to approximately 400-pixel FA. Lowering cv, cl

increases the complexity of (7)-(8). Recommended values of
0.001 ≥ cv ≥ 0.0001, 1 ≥ cl ≥ 0.1 are based on the initial
OC minimum margins from the constraints. The proposed
algorithm’s main limitation is the memory usage to store all
flexibility combinations in tensors. As FSPs and constraint-
sensitive DN components increase, this limitation becomes
more notable. Aggregating FSPs for the components requiring
unavailable memory can reduce this limitation. Alternatively,
using memory-efficient software can mitigate the limitation.
Another limitation concerns the need for complete network
observability for (non-adapted) FA estimation.

V. CONCLUSION

This paper develops an approach to estimate the flexibil-
ity of distribution systems for TSO-DSO coordination. This
approach has a near-term practical value for power system
operators. This paper introduces applying tensors and convo-
lutions for the flexibility estimation task, utilizing their useful
properties. The proposed density of feasible combinations
(DFC) improves deciding on operating points that guarantee
higher flexibility. The proposed algorithm makes computing
and identifying these operating points tractable. The tractabil-
ity is realized by minimizing the required PF simulations,
applying convolutions, and using tensors. Convolutions aggre-
gate flexibility from FSPs, including DFC. Tensors store the
impacts of FSP shift combinations to determine the combi-
nation feasibility. Moreover, the algorithm applies the Dirac
function to represent discrete FSPs. This application allows
estimating disconnected FAs with low computational burden.

Case studies on 15−, 70−, and 109−bus systems show
the proposed algorithm’s performance on meshed and radial
networks for connected and disconnected FAs. The results
show high numerical confidence in the FA range and DFC.
The algorithm estimated the FA around 300 times faster than
the alternative approach. The algorithm’s average duration of
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11s renders the approach promising for further development
toward near-real-time TSO-DSO coordination.

Future work can investigate dealing with limited observabil-
ity in distribution systems. The investigation will explore deep
learning-based approaches or techniques from system identi-
fication that may advance this flexibility estimation approach.
Subsequent work will pursue further improvement of the
proposed approach’s memory efficiency. Future research will
also explore algorithms that can adapt to changing network
topologies. Changing network topologies alters the impacts of
FSPs on network components. Thus, approximating the impact
alterations should allow adapting FAs for changing topologies.

APPENDIX A
PROOF: EXPLORING ALL FEASIBLE COMBINATIONS

The authors use a proof through induction to show that the
convolution between any k FSPs will result in the total number
of shift combinations between these k FSPs leading to the
point �po,�qo. Let’s assume 2 FSPs, î and ĩ. Due to (15),
the inner part of (14) can be described as:

Fĩ(�p,�q) Fî

(

�po − �p,�qo − �q
)

=
{

1, if
[

�po − �p,�qo − �q
]T ∈ �S

î
,
[

�p,�q
]T

,∈ �S
ĩ
,

0, otherwise.

(29)

Therefore, each counted point is from shifts existing in the
FSP î and ĩ capabilities. From (29), all points of �p,�q
that are counted, result in �pî + �pĩ = �po, �qî +
�qĩ = �qo. Thus, counted shifts only lead to �po,�qo. As
the summations in convolution are

∑∞
�p=−∞

∑∞
�q=−∞, all

possible combinations of �p,�q are explored. Hence, the
convolution counts all available shifts from î, ĩ ∈ �FSP, that
lead to the OP po + �po, qo + �qo. Thus, the result of (29)
for all so, for K = î, ĩ can be expressed through:

F̃K
(

so) =
{

mK(so), if so ∈ �S
K,

0, otherwise,
(30)

�S
K =

{

sK|sK =
∑

s∈π

s,∀π ∈ �S
î
× �S

ĩ

}

. (31)

mK(so) ∈ N is the number of combinations of K for so.
Extending to more FSPs, let the convolution of K =

1, . . . , k FSPs be described by an extended version of (30),
the relationship (16). Then, the convolution of F̃K and Fk+1
is:
(

F̃K ∗ Fk+1
)(

�po,�qo)

=
∞
∑

�p=−∞

∞
∑

�q=−∞
Fk+1(�p,�q)FK

(

�po − �p,�qo − �q
)

.

(32)

The inner part of (32), expressed through (30) and (15) is:

Fk+1(�p,�q) FK
(

�po − �p,�qo − �q
)

=

⎧

⎪⎨

⎪⎩

mK
([

�p,�q
]T

)

, if
[

�po − �p,�qo − �q
]T

∈ �S
k+1,

[

�p,�q
]T ∈ �S

K,

0, otherwise.

(33)

Each non-zero point is obtained from combinations within
the FSP capabilities. From

∑∞
�p=−∞

∑∞
�q=−∞, all possible

combinations from the FSPs are explored. Therefore, if any
combination reaching �po,�qo exists, it will be counted.
Furthermore, the summation of combinations from a subset
of the FSPs (mK([�p,�q]T)), will ensure that if �p,�q can
be used to reach so = [�po,�qo]T , then the total number of
feasible combinations is accounted. Therefore, the convolution
result of K + 1 = 1, . . . , k + 1 FSPs is described by:

F̃K+1
(

so) =
{

mK+1(so), if so ∈ �S
K+1,

0, otherwise,
(34)

�C
K+1 = �S

1 × �S
2 × · · · × �S

k+1,

�S
K+1 =

{

sK+1|sK+1 =
∑

s∈π

s,∀π ∈ �C
K+1

}

⊂ �So
. (35)

The above result is similar to (30), (16). Therefore, the
convolution between any number of FSPs will result in all the
possible shift combinations for each reachable shift.
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