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Data-driven approximate dynamic programming: A linear programming
approach

Tobias Sutter, Angeliki Kamoutsi, Peyman Mohajerin Esfahani, and John Lygeros

Abstract— This article presents an approximation scheme
for the infinite-dimensional linear programming formulation of
discrete-time Markov control processes via a finite-dimensional
convex program, when the dynamics are unknown and learned
from data. We derive a probabilistic explicit error bound
between the data-driven finite convex program and the orig-
inal infinite linear program. We further discuss the sample
complexity of the error bound which translates to the number
of samples required for an a priori approximation accuracy.
Our analysis sheds light on the impact of the choice of basis
functions for approximating the true value function. Finally,
the relevance of the method is illustrated on a truncated LQG
problem.

I. INTRODUCTION

We are concerned with discrete-time Markov control pro-
cesses (MCPs) with Borel (general uncountable) state and
action spaces and the long run expected average cost opti-
mality criterion. These stochastic optimal control problems
are key tools of mathematical modelling and appear in many
fields such as engineering and operations research. A unified
theoretical framework, consisting mainly of dynamic pro-
gramming techniques, has been developed over the years to
solve them [1], [2], [3]. However, oftentimes it is impossible
to obtain a solution in closed form, which motivates the
task of finding tractable approximations. Such approximation
schemes are the core of a methodology known as approx-
imate dynamic programming, which has been extensively
studied in the literature from different perspectives [4], [5],
[6], [7]; see [8] for a comprehensive survey on this field.

In addition, in many realistic applications the underlying
dynamics are unknown and the decision maker needs to
learn the optimal policy by trial-and-error, through interac-
tion with the environment. In such a setting of unknown
dynamics, the problem is particularly difficult and a prevalent
approach in the existing literature consists of dynamic-
programming-based reinforcement learning methods, also
known as neuro-dynamic programming [9], [10], [4]. The
two most common types of such reinforcement learning
algorithms are Q-learning and actor-critic algorithms. Q-
learning algorithms [11] are simulation-based schemes de-
rived from value iteration, while actor-critic methods [12] are
simulation-based, two-time scale variants of policy iteration.
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Q-learning comes with asymptotic convergence guarantees
but it is mostly considered in the case that state and action
spaces are both discrete. On the other hand, while actor-critic
algorithms can tackle continuous action and state spaces,
since they are gradient-based, one can prove convergence
only to a local optimum.

In this work, we present a data-driven algorithm that is
based on the linear programming (LP) approach to MCPs.
The LP approach to finite state/finite action MCPs has
been studied in the pioneering work [13]. Later extensions
of the approach to discrete-time MCPs with uncountable
state and action spaces for several cost criteria, have been
investigated, e.g., [1], [14], [15], [16]. In particular, MCPs
can be recast as abstract “static” optimization problems
over a closed convex set of measures as infinite-dimensional
linear programs. This reformulation allows the use of tools
from the well-established field of convex programming to
tackle them. Furthermore, the LP approach to MCPs is
particularly appealing from the perspective of dealing with
unconventional problems involving additional constrains or
secondary costs, where traditional dynamic programming
techniques are not applicable [17], [18], [19].

This article presents an approximation scheme for the
infinite-dimensional LP formulation of MCPs via a finite-
dimensional convex program and can be seen as an extension
of [7], to the case where the transition kernel is unknown but
information on it is obtained by simulation. More specifi-
cally, in response to the current state and action, data about
the next state is received. We derive a probabilistic explicit
error bound between the data-driven finite convex program
and the original infinite LP (Theorem 2) and discuss the
sample complexity of the error bound, i.e., how many data
are required for a certain approximation accuracy. Moreover,
our analysis provides insight on what is a good choice
of basis functions that are used to approximate the value
function.

Notation. For p ∈ [1,∞], we denote by ‖ · ‖p the
p-norm in Rn. Let (X, ρ) be a metric space. Given
a function u : X → R, its sup-norm is given by
‖u‖∞ := supx∈X |u(x)|, and its Lipschitz norm by ‖u‖L :=

max{‖u‖∞, supx6=x′
|u(x)−u(x′)|
ρ(x,x′) }. The space of real-valued

Lipschitz functions on a set X is denoted by L(X). Let
B(X) be the Borel σ-algebra on X . Measurability is always
understood in the sense of Borel measurability. Products of
metric spaces are assumed to be endowed with the product
topology and the corresponding product σ-algebra. Given



a compact subset A ⊂ X , we consider the projection
multimapping ΠA(x) := arg minx′∈A ρ(x, x′).

The outline of this paper is as follows. Section II states the
problem under consideration, namely the constrained average
cost MCP and introduces the infinite-dimensional linear
program characterizing it. In Section III, we consider the case
of unknown dynamics and we present the approximation of
the infinite LP via a finite data-driven convex program. In
Section IV, we prove the main theoretical result of the paper,
i.e., a probabilistic error bound and its sample complexity
between the finite convex program and the original infinite
LP. To illustrate the proposed methodology, in Section V, the
theoretical results are applied to a truncated LQG problem.
We conclude in Section VI with a summary of our work and
comment on possible subjects of further research.

II. INFINITE LP CHARACTERIZATION

We briefly recall some standard definitions and refer inter-
ested readers to [1], [17], [20] for further details. Consider
a Markov control model

(
X,A, {A(x) : x ∈ X}, Q, c

)
,

where X (resp. A) is a Borel space (i.e., a Borel subset
of a complete and separable metric space) called the state
space (resp. action space). For each x ∈ X the measurable
set A(x) ⊆ A denotes the set of feasible actions when the
system is in state x ∈ X and has the property that the set of
feasible state-action pairs K := {(x, a) : x ∈ X, a ∈ A(x)}
is a measurable subset in X × A. The transition law is a
stochastic kernel Q on X given K. A stochastic kernel acts
on bounded measurable functions u : X → R from the left
as

Qu(x, a) :=

∫
X

u(y)Q( dy|x, a), ∀(x, a) ∈ K,

and on probability measures µ on K from the right as

µQ(B) :=

∫
K

Q(B|x, a)µ
(

d(x, a)
)
, ∀B ∈ B(X).

Finally c : K → R+ denotes a measurable function called
the one-stage cost function. The admissible history spaces
are defined recursively as H0 := X and Ht := Ht−1 × K
for t ∈ N and the canonical sample space is defined as
Ω := (X×A)∞. All random variables will be defined on the
measurable space (Ω,B) where B denotes the corresponding
product σ-algebra. A generic element ω ∈ Ω is of the form
ω = (x0, a0, x1, a1, . . .), where xi ∈ X are the states and
ai ∈ A the action variables. An admissible policy is a
sequence π = (πt)t∈N0

of stochastic kernels πt on A given
ht ∈ Ht, satisfying the constraints πt(A(xt)|ht) = 1. The
set of admissible policies will be denoted by Π. Given a
probability measure ν ∈ P(X) and a policy π ∈ Π, by
the Ionescu Tulcea theorem [21, p. 140-141] there exists a
unique probability measure Pπν on (Ω,B) such that for all
measurable sets B ⊂ X , C ⊂ A, ht ∈ Ht, and t ∈ N0

Pπν
(
x0 ∈ B

)
= ν(B)

Pπν
(
at ∈ C|ht

)
= πt(C|ht)

Pπν
(
xt+1 ∈ B|ht, at

)
= Q(B|xt, at).

The expectation operator with respect to Pπν is denoted by
Eπν . The stochastic process

(
Ω,B,Pπν , (xt)t∈N0

)
is called

a discrete-time MCP. In this article we consider optimal
control problems where the aim is to minimize the long run
average cost (AC) over the set of admissible policies and
initial state measures. We define the optimal value of our
AC optimal control problem by

JAC := inf
(π,ν)∈Π×P(X)

lim sup
T→∞

1

T
Eπν

(
T−1∑
t=0

c(xt, at)

)
. (1)

We emphasize, however, that the results presented also apply
to other performance objectives, including problems with
discounted payoff.

We impose the following assumptions on the control
model which hold throughout the article.

Assumption 1 (Control model):
(i) the set of feasible state-action pairs is the unit hypercube

K := [0, 1]dim(X×A);

(ii) the transition law Q is Lipschitz continuous, i.e., there
exists LQ > 0 such that for all k, k′ ∈ K and all
continuous functions u : X → R

|Qu(k)−Qu(k′)| ≤ LQ‖u‖∞‖k − k′‖∞;

(iii) the cost function c is non-negative and Lipschitz con-
tinuous on K with respect to the ∞-norm.

Consider the (infinite) linear program

J :=


sup
ρ,u

ρ

s. t. ρ+ T u(x, a) ≤ c(x, a), ∀(x, a) ∈ K
ρ ∈ R, u ∈ L(X),

(2)

where T : L(X)→ L(X ×A), defined by

T u(x, a) :=u(x)−
∫
X

u(y)Q( dy|x, a)

=u(x)− EQ(·|x,a)
[
u(y)

] (3)

denotes a linear, weakly continuous operator [14]. The linear
programming formulation (2) is an alternative characteriza-
tion of the problem (1) in the sense of the following theorem.

Theorem 1 ([22, Proposition 2.4]): Under Assumption 1,
the LP (2) is solvable (i.e., the supremum in (2) is attained)
and JAC = J .

We denote the optimizer of problem (2) by u?. The focus
of our study is on providing an approximation for the
linear program (2) via a finite dimensional convex program.
Moreover, we treat the setting where the transition kernel Q
is unknown but information on it is obtained by simulation.
In response to the current state and action the next state is
received.



III. FINITE APPROXIMATION

Let {(xj , aj)}j≤N be i.i.d. samples generated with respect
to some probability measure P1 supported on K. We propose
the following finite-dimensional convex program as an ap-
proximation to the infinite LP (2) and hence to the optimal
control problem (1)

Jmn,N =



sup
(ρ,α)∈Rn+1

ρ

s. t. ρ+
n∑
i=1

αiTmui(xj , aj)

≤ c(xj , aj), ∀j ∈ {1, · · · , N}
‖α‖2 ≤ θ,

(4)

where {ui}ni=1 ⊂ L(X) is a family of linearly independent
elements, called the basis functions and θ > 0 is a regular-
ization parameter. Moreover, we use the following notation

Tmu(x, a) := u(x)− 1

m

m∑
i=1

u(yi), yi
i.i.d.∼ Q(·|x, a).

Note that the program (4) does not require knowledge of the
transition kernel Q, but instead, it uses simulations to learn
Q via the samples yi in the operator Tm. In the following,
we quantify the approximation error of (4) with respect to
(2). To this end, another assumption is needed.

Assumption 2 (Approximation method): The basis func-
tions satisfy ‖ui‖L ≤ 1, for all i = 1, . . . , n.

We set Un := {
∑n
i=1 αiui : ‖α‖2 ≤ θ} and

N(n, ε, β) := min
{
N ∈ N :

n−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
.

The following theorem is the main theoretical result of this
article.

Theorem 2: Given Assumptions 1 and 2, let ε, β ∈
(0, 1) and consider the finite convex program (4) where
the number of sampled constraints satisfies N ≥ N(n +
1, ( εzn2 )dim(K), β2 ), where zn :=

(
θ
√
n(max{LQ, 1} + 1) +

‖c‖L
)−1

and m ≥ 8Cnθ2 log(4nN/β)
ε2 . Then, with probability

1− β∣∣J − Jmn,N ∣∣ ≤ (1 + max{LQ, 1}
)∥∥u? −ΠUn(u?)

∥∥
L

+ ε.

The proof is given in Section IV. Note that that Jmn,N is
a real valued random variable on the space (K × Xm)N .
Strictly speaking, the error bound of Theorem 2 has to be
interpreted with respect to PN2 , where P2 is a probability
measure on K×Xm defined by P2[ d(x, a, y1, . . . , ym)] :=
Qm( dy|x, a)P1[ d(x, a)] and PN2 stands for the N-fold prod-
uct probability measure. For simplicity we slightly abuse
the notation and use P instead of PN2 , and will be doing
so hereinafter.

Remark 1 (Projection residual): The residual error
∥∥u?−

ΠUn(u?)
∥∥
L

can be approximated by leveraging results from
the literature on universal function approximation. Prior
information about the value function u? may offer ex-
plicit quantitative bounds. For instance, for MCPs satisfying

Assumption 1, we know that u? is Lipschitz continuous.
For appropriate choice of basis functions, we can therefore
ensure a convergence rate of n−1/ dim(X), see for instance
[23] for polynomials and [24] for the Fourier basis functions.

Remark 2 (Curse of dimensionality): As explained in
[25, Remark 3.9] and [7, Remark 4.5], the number N of
sampled constraints grows linearly in n and logarithmically
in 1/β. It, however, has an exponential growth as εdim(X×A).
To mitigate this inherent computational complexity, one
may resort to a more elegant sampling approach so that the
required number of samples N has a sublinear rate in the
second argument, see for instance [26].

To select θ, one may minimize the complexity of the
a priori bound in Theorem 2, which is reflected through
the required number of samples (with respect to the state-
action space and the state space). At the same time, the
impact of the bound θ through the projection residual (cf.
Remark 1) should also be taken into account. The first
factor is monotonically growing with respect to θ, i.e., the
smaller the parameter θ, the lower the number of the required
samples. The second factor, i.e., the projection residual, is
monotonically decreasing with respect to θ. Therefore, an
acceptable choice of θ is an upper bound for the projection
error of the optimal solution onto the span{u1, . . . , un}
uniformly in n ∈ N, i.e.,

θ ≥sup

{
‖α?‖2 : Πspan{u1,...,un}(u

?) =

n∑
i=1

α?i ui, n ∈ N
}
,

where the projection is with respect to the Lipschitz norm.
In case that the basis functions are L2-orthonormal

‖α?‖2 ≤ ‖u?‖L ≤ max{LQ, 1}‖c‖∞, (5)

where LQ is the Lipschitz constant in Assumption 1(ii). We
note that the first inequality in (5) follows since X is a
unit hypercube, and the second inequality follows from [22,
Lemma 2.3], see also [22, Section 5] for further detailed
analysis.

IV. PROOF OR THEOREM 2

Some preliminaries are needed in order to prove Theo-
rem 2. Consider the finite convex program

Jn,N :=



sup
(ρ,α)∈Rn+1

ρ

s. t. ρ+
n∑
i=1

αiT ui(xj , aj)

≤ c(xj , aj),∀j ∈ {1, · · · , N}
‖α‖2 ≤ θ.

(6)

Lemma 1: Given Assumption 2, for any ε > 0

P
[ ∣∣Jmn,N − Jn,N ∣∣ ≤ ε] ≥ 1− 2nN exp

(
−ε2m

2nθ2

)
.

Proof: As the first step, we invoke the Hoeffding
inequality [27] together with the subadditivity of probability



measures1 which states that for any ε > 0

P
[
∀i = 1, . . . , n, j = 1, . . . , N, |T ui(xj , aj)− Tmui(xj , aj)|

≤ ε
]
≥ 1− 2nN exp

(
−ε2m

2

)
.

Hence, for all ε > 0

P
[
∀j = 1, . . . , N sup

‖α‖2≤θ

∣∣∣∣∣
n∑
i=1

αiT ui(xj , aj)

−

∣∣∣∣∣
n∑
i=1

αiTmui(xj , aj)

∣∣∣∣∣ ≤ ε]
≥ P

[
∀i = 1, . . . , n, j = 1, . . . , N ‖α‖1 |T ui(xj , aj)

−Tmui(xj , aj)| ≤ ε
]
≥ 1− 2nN exp

(
−ε2m

2nθ2

)
,

where we have used Assumption 2 leading to
‖
∑n
i=1 αiui‖L ≤ ‖α‖1 ≤

√
nθ. Therefore, with confidence

1− 2N exp
(
−ε2m
2nθ2

)
we have

Jmn,N =



sup
(ρ,α)∈Rn+1

ρ

s. t. ρ+
n∑
i=1

αi
(
T ui(xj , aj)

+Tmui(xj , aj)− T ui(xj , aj)
)

≤ c(xj , aj), ∀j ∈ {1, · · · , N}
‖α‖2 ≤ θ.

≥



sup
(ρ,α)∈Rn+1

ρ− ε

s. t. ρ+
n∑
i=1

αiT ui(xj , aj)

≤ c(xj , aj), ∀j ∈ {1, · · · , N}
‖α‖2 ≤ θ.

= Jn,N − ε
and similarly one can show Jmn,N ≤ Jn,N + ε, which
completes the proof.

Proof of Theorem 2: The proof consists of combining
three results. First, recall that [7, Corollary 3.9] for the given
setting of Theorem 2

0 ≤ J − Jn ≤
(
1 + max{LQ, 1}

)∥∥u? −ΠUn(u?)
∥∥
L
, (7)

where

Jn :=



sup
(ρ,α)∈Rn+1

ρ

s. t. ρ+
n∑
i=1

αiT ui(x, a)

≤ c(x, a), ∀(x, a) ∈ X ×A
‖α‖2 ≤ θ.

Next, [7, Corollary 3.9] states that for N ≥ N(n +
1, (εzn)dim(K), β), where zn :=

(
θ
√
n(max{LQ, 1} + 1) +

‖c‖L
)−1

PN
[
|Jn − Jn,N | ≤ ε

]
≥ β, (8)

where Jn,N is defined in (6). Finally, a simple union bound
of (7), (8) and Lemma 1 concludes the proof. �

1i.e., P(A ∩B) ≥ P(A) + P(B)− 1.

V. NUMERICAL EXAMPLE

Consider the linear system

xt+1 = ϑxt + ρat + ξt, t ∈ N,

with quadratic stage cost c(x, a) = qx2 + ra2, where q ≥
0 and r > 0 are given constants. We assume that X =
A = [−L,L] and the parameters ϑ, ρ ∈ R are known. The
disturbances {ξt}t∈N are i.i.d. random variables generated
by a truncated normal distribution with known parameters µ
and σ, independent of the initial state x0. Thus, the process
ξt has a distribution density

f(x, µ, σ, L) =

{ 1
σφ( x−µσ )

Φ(L−µσ )−Φ(−L−µσ )
, x ∈ [−L,L]

0 o.w.,

where φ is the probability density function of the standard
normal distribution, and Φ is its cumulative distribution
function. The transition kernel Q has a density function
q(y|x, a), i.e., Q(B|x, a) =

∫
B
q(y|x, a) dy for all B ∈

B(X), that is given by

q(y|x, a) = f(y − ϑx− ρa, µ, σ, L).

In the special case that L = +∞ the above problem
represents the classical LQG problem, whose solution can
be obtained via the algebraic Riccati equation [28, p. 372].
By a simple change of coordinates it can be seen that the
presented system fulfills Assumptions 1 and 2. Moreover, the
following lemma provides the technical parameters required
for the proposed error bounds.

Lemma 2 (Truncated LQG properties): The error bounds
provided by Theorem 2 hold with the norms ‖c‖∞ = L2(q+
r), ‖c‖L = 4L2

√
q2 + r2, and the Lipschitz constant of the

kernel is

LQ =
2Lmax{ϑ, ρ}

σ2
√

2π
(

Φ
(
L−µ
σ

)
− Φ

(
−L−µ
σ

)) .
Proof: In regard to Assumption 1(i), we consider the

change of coordinates x̄t := xt
2L + 1

2 and āt := at
2L + 1

2 . In
the new coordinates, the constants of Lemma 2 follow from
a standard computation.

a) Simulation details: For the simulation results we
choose the numerical values ϑ = 0.8, ρ = 0.5, σ = 1,
µ = 0, q = 1, r = 0.5, and L = 10. Throughout this
section we used the Fourier basis u2k−1(s) = L

kπ cos
(
kπs
L

)
and u2k(s) = L

kπ sin
(
kπs
L

)
and the uniform distribution on

K = X × A = [−L,L]2 to draw the random samples
{xj , aj}Nj=1 in program (4).

b) Simulation results: The simulation results are shown
in Figure 1. Figure 1(a) suggests three interesting features
concerning n, the number of basis functions: The higher the
number of basis functions,

(i) the smaller the approximation error (i.e., asymptotic
distance for N →∞ to the red dotted line),
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(c) varying kernel-learning samples m, where N = 103

Fig. 1. The objective performance Jm
n,N is computed according to (4). The

colored tubes represent the results between [10%, 90%] quantiles (shaded
areas) as well as the means (solid lines) across 200 independent experiments
of the objective performance Jm

n,N . The red dotted line denoted by JAC is
the optimal solution approximated by n = 103, m = 106 and N = 106.

(ii) the lower the variance of approximation with respect to
the sampling distribution for each N , and

(iii) the slower the convergence behavior with respect to the
sample size N .

The feature (iii), namely that a high number of basis func-
tions requires a large number of sampled constraints N to
produce reasonable approximation errors can also be seen
in Figure 1(b). Moreover, the higher the number of sampled
constraints N the lower the variance of the approximation.
Figure 1(b) suggests that there a sweet spot, namely given
a certain number n of basis functions, there is a minimum
number of sampled constraints N required for an acceptable
approximation accuracy. Finally, Figure 1(c) indicates that
the more basis functions n, the less samples from the kernel
m are required for Jmn,N to be close to the optimal value.

VI. CONCLUSION

In this paper we presented an approximation scheme for
the infinite-dimensional LP formulation of of discrete-time
Markov control processes via a finite-dimensional convex
program, in the case the dynamics of the system are unknown
and learned from data. We derived a probabilistic explicit
error bound between the data-driven finite convex program
and the original infinite LP, that is equivalent to the optimal
control problem.

For future work, there are several interesting directions.
First, even though we discuss the sample complexity of the
error bound in this paper, i.e., how many constraint-samples
are required for an a priori approximation accuracy, we do
not provide any insight in what would be a good distribution
to draw these samples from. One would intuitively expect
that certain regions of the state-action space are more ”infor-
mative” than others. Another open question is, given such an
approximating scheme, how to synthesize ε-approximating
policies, i.e., policies whose corresponding cost is ε away
from the optimal value.
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