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a b s t r a c t 

Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive 

photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of 

interstellar grains. The micro-physics of the formation process has been investigated intensively in the 

last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives 

of the probable revolution brought by the future satellite JWST, this article has been written to present 

what we think we know about the H 2 formation in a variety of interstellar environments. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Molecular hydrogen is, by a few orders of magnitude, the most

bundant molecule in the Universe. The first detection of this

olecule in the interstellar medium (ISM) was obtained via a

ocket flight in 1970 ( Carruthers, 1970 ), three decades after the

rst interstellar detection of CH, CH 

+ and CN (see Snow and

cCall, 2006 , and references therein). Since H 2 is a symmet-

ic and homonuclear diatomic molecule, electric dipole driven
∗ Corresponding author. 

E-mail address: valentine.wakelam@u-bordeaux.fr (V. Wakelam). v
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o-vibrational transitions are forbidden and only weak electric-

uadrupole transitions are allowed, making its detection extremely

ifficult in emission 

1 , unless the emission is from energized en-

ironments such as those with, for example, high temperature or

igh luminosity. 

In diffuse molecular clouds, which are regions characterized

y molecular fractions f H 2 = 2 n H 2 /n H > 0 . 1 ( n H 2 being the num-

er density of H 2 molecules and n H the total proton number den-

ity), the first molecule to form is H ( Snow and McCall, 2006 ). In
2 

1 H 2 is however easily detected in absorption in the far-UV electronic bands, pro- 

ided a far-UV spectrum of a background target is available. 

nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.molap.2017.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molap
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molap.2017.11.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:valentine.wakelam@u-bordeaux.fr
https://doi.org/10.1016/j.molap.2017.11.001
http://creativecommons.org/licenses/by/4.0/


2 V. Wakelam et al. / Molecular Astrophysics 9 (2017) 1–36 

Fig. 1. Rotational diagram of H 2 in the NGC7023 NW PDR, comparing the observa- 

tions ( Fuente et al., 1999 ) with PDR models (with the Meudon PDR Code, Le Petit 

et al., 2006 ). Ortho and para transitions are distinguished to highlight the non-LTE 

ortho-para ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. First H 2 excitation diagram published for three stars observed with Coper- 

nicus ( Spitzer and Cochran, 1973 ). This diagram illustrates the fact that two dis- 

tinct temperatures are needed to fit all J levels, except for low H 2 column densities 

(N(H 2 ) < 10 15 cm 

−2 ). 
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Photo-Dissociation Regions (PDRs), which are predominantly neu-

tral regions bathed in far ultraviolet light, the emission of H 2 is a

tracer of the physical conditions of the cloud e.g. ( Hollenbach and

Tielens, 1999 ). In such environments H 2 can be dissociated by ul-

traviolet radiation, and therefore an efficient route for molecular

formation must be present ( Jura, 1974, 1975 ). Furthermore, molec-

ular hydrogen, either in its neutral or ionized form, controls much

of the chemistry in the ISM. In dense clouds where UV penetration

is greatly reduced, most of the hydrogen is in molecular form, and

most of the Universe’s molecular hydrogen resides in these dense

clouds. 

It has been recognized for a long time that under ISM con-

ditions H 2 cannot be formed efficiently enough in the gas-

phase to explain its abundance. Indeed, even in the40 ′ s van de

Hulst (1949) had proposed his dirty ice model of dust, where

molecules form by combination of atoms on the surface. The link

between the presence of H 2 and dust was noted a long time ago

( Hollenbach et al., 1971 ). Indeed, it is now well established that H 2 

formation occurs via catalytic reactions on surfaces of interstellar

dust grains. 

The aim of this paper is to provide the current status of the un-

derstanding of the formation of H 2 on interstellar dust grains and

identify the important questions that still remain to be answered

in this field. This account is motivated by the new observational

possibilities that the James Webb Space Telescope (JWST) should

provide. In addition, over the last ten years great progress in the

modeling of astrophysical media, as well as in the understanding

of the associated molecular physics, has been made. Sometimes

this progress is directly linked to specific experiments (e.g. Pir-

ronello et al., 1997b ; 1997a; Creighan et al., 2006 ; Watanabe et al.,

2010) or calculations and simulations (e.g. Katz et al., 1999; Cup-

pen et al., 2010; Cazaux et al., 2011 ); at other times progress

results from an intrinsic change in the treatment of one spe-

cific aspect of the formation process, such as stochastic effects

(Green et al., 2001 ; Biham et al., 2001, e.g.) . Given the nature of

this progress, earlier works in the literature and values used in

models can rapidly become outdated, leading to potentially signif-

icant differences in the predictions of models if the most up-to-

date values are not used. Given this issue, this paper presents, in a

unified account, the current viewpoint regarding the formation of

molecular hydrogen on interstellar dust grains from the perspec-

tive of observers, modelers and chemical physicists. To this end,

a group of specialists from these three disciplines gathered for 3
ays in Arcachon (France) in June 2016. This paper is the result of

his meeting and aims to present the “state of the art” in charac-

erizing and understanding interstellar H 2 formation. 

The paper is organized as follows: Section 2 gives an overview

f the properties of H 2 and the challenges involved in observing

 2 in space. Section 2 also presents a summary of theoretical and

aboratory work aimed at understanding the processes involved in

 2 formation on dust grain analogs (silicates, carbonaceous ma-

erials and ices): sticking, diffusion, reaction, desorption and en-

rgy the partitioning of the nascent H 2 as it leaves the surface.

everal astrophysical models used to study the chemistry of H 2 

n various environments are also briefly described in this section.

n Section 3 , we provide a list of values for the physico-chemical

uantities necessary to describe the sticking, diffusion and reactiv-

ty of H 2 that can be used in astrochemical models. Section 4 gives

n in-depth view of the formation of H 2 in different interstellar en-

ironments. A summary and a set of conclusions is then provided

t the end of the paper. 

. State of the art 

.1. Methods and tools to observe H 2 in the universe 

.1.1. Properties of the H 2 molecule 

Containing two identical hydrogen atoms linked by a cova-

ent bond, the hydrogen molecule is homonuclear and thus highly

ymmetric. Due to this symmetry, the molecule has no perma-

ent dipole moment and so all the observed ro-vibrational transi-

ions are forbidden electric quadrupole transitions ( �J = ±2 ) with

ow values of the spontaneous emission coefficient ( A ). Since H 
2 
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l  

Fig. 3. Electronic potentials of H 2 as a function of the separation between both 

atoms. The subscripts g and u stand for gerade (even) and ungerade (odd) sym- 

metries. Vibrational and rotational levels are indicated schematically for the lowest 

electronic level. Energy levels are indicated with respect to the ground state ( v = 0 ). 

Levels with vibrational excitation v > 14, in the continuum region, lead to the dis- 

sociation of the molecule. Adapted from Le Petit (2002) . 
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2 An analytical approximation is given by Z(T ) = 0 . 0247 T / (1 − exp (−60 0 0 /T ) , 

where T is in K ( Herbst et al., 1996 ). 
s the lightest possible molecule it has a low moment of inertia,

nd hence a large rotational constant ( B/k B = 85 . 25 K), leading to

idely spaced energy levels even when the rotational quantum

umber J is small. In addition, there are no radiative transitions

etween ortho-H 2 (spins of H nuclei parallel, odd J ) and para-H 2 

spins antiparallel, even J ), so the ortho and para molecules con-

titute 2 almost independent states of H 2 . The first accessible ro-

ational transition is therefore J = 2 → 0 , which has an associated

nergy of �E / k B ∼ 510 K. Even so, the lowest excited rotational lev-

ls of molecular hydrogen are not easily populated, making H 2 

ne of the most difficult molecules to detect in space via emis-

ion. In absorption, the situation is different since Lyman ( B 1 �1 
u )

nd Werner ( C 1 �u ) electronic bands in the far-UV (from 912 Å to

155 ̊A) provide a very sensitive tool to detect even very diffuse H 2 ,

own to column densities as low as a few 10 12 cm 

−2 – provided

 space-born far-UV spectroscopic facility, as well as a UV-bright

ackground source, are available. 

.1.2. Excitation mechanisms 

H 2 may be excited via several mechanisms as described below.

he relative population of the H 2 levels depends on the exciting

ources and the physical conditions of the gas. 

- Inelastic collisions: If the gas density and temperature are high

enough, inelastic collisions with H 

0 , He, H 2 and e − can be the

dominant excitation mechanism, at least for the lower rota-

tional energy levels (e.g. Le Bourlot et al., 1999 ). 

- Radiative pumping: In the presence of far-ultraviolet radiation

(FUV, λ> 912 Å), the molecule is radiatively pumped into its

electronically excited states. As it decays back into the elec-

tronic ground state, it populates the high vibrational levels, and

the subsequent cascade to v = 0 gives rise to a characteristic

distribution of level populations and fluorescent emission in the

visible and infrared (IR) regions of the spectrum (e.g. Black and

van Dishoeck, 1987; Sternberg, 1989 ). This excitation mecha-

nism is observed in PDRs where it is the dominant pathway

for excitation of ro-vibrational and high rotational levels. UV

pumping could also contribute significantly to the excitation of

the pure rotational 0-0 S(2)-S(5) lines, since their upper states

( v = 0, J = 4-7) are relatively high in energy and their critical den-

sities are high even at moderate temperatures ( n crit ≥ 10 4 cm 

−3 

for T ≤ 500 K). 

- By formation: The internal energy of the nascent H 2 can also

specifically affect the level populations. However, of all the UV

photons absorbed by H 2 only 10 to 15% lead to dissociation.

Then, for an equilibrium between photo-dissociation and for-

mation, the ratio of the rates of formation pumping and fluo-

rescent pumping of the high-excitation levels in the electronic

ground state is ∼ 15/85. Fluorescent pumping should therefore

dominate over formation pumping by a factor five. Thus, un-

less the level distribution of newly formed H 2 is strongly con-

centrated toward a small number of high energy levels, the H 2 

formation excitation will not specifically affect the H 2 spectrum

(see e.g. Black and van Dishoeck 1987; Le Bourlot et al. 1995 for

models and e.g. Burton et al. 2002 for possible observational

signatures). 

- X-ray photons and cosmic rays: In X-ray emitting environments

(such as active galactic nuclei or young stellar objects), X-rays

which are capable of penetrating deeply into zones opaque to

UV photons, can influence the excitation of H 2 (e.g. Maloney

et al., 1996; Tiné et al., 1997 ). H 2 excitation may also occur

by collisions with secondary electrons generated by cosmic ray

ionization. 

.1.3. H 2 excitation diagrams: What information can we get? 

H 2 excitation diagrams are commonly used to show the popu-

ation distribution of the molecules across the available levels. As-
uming the mid-IR lines are optically thin, the column density of

he upper level of each pure rotational transition is measured from

he spectral line flux F ν of a given transition according to N u =
 πF ν/ (hνA �) , where h is Planck’s constant, ν is the frequency of

he transition, A is the Einstein coefficient for the transition, and �

s the solid angle of the observed region. In Local Thermodynamic

quilibrium (LTE), the upper level column density is related to both

he excitation temperature T , and the total column density N tot via,

 u /g u = N tot exp (−E u /k B T ) /Z(T ) , where E u is the energy of the up-

er level of the transition, k B is the Boltzmann constant and Z ( T )

s the partition function 

2 , and g u = (2 S + 1)(2 J + 1) is the degener-

cy of the upper level of the transition. In this last expression S is

he spin quantum number for a given J transition. The spin value is

 = 0 for even J (para-H 2 ), and S = 1 for odd J (ortho-H 2 ). The H 2 

xcitation diagram is usually presented as a plot of log e ( N u / g u ) ver-

us E u / k (see Fig. 1 ). For a single excitation temperature the slope

f a line fit to these points would be proportional to T −1 . 

Two approaches to fit the H 2 excitation data referred to above

ill now be discussed. The first is a traditional method of fitting

ingle or multiple temperature components to the excitation dia-

rams. This method was first used for the local diffuse ISM de-

ected in absorption in Copernicus spectra of a few bright stars

 Spitzer and Cochran, 1973 ) (see Fig. 2 ) and has been generalized

o many Copernicus ( Savage et al., 1977 ) and FUSE ( Rachford et al.,

0 09, 20 02 ) lines of sight. For translucent lines of sight generally

tudied in absorption, the excitation diagrams yield mean gas tem-

eratures around 55–80 K from the first excitation levels J = 0 to

 = 2 , and excitation temperatures above 180 K from the higher J

evels. This method is commonly used to study H 2 studies in other

alaxies. It is generally assumed that, for the lower pure rotational

 2 transitions, the ortho and para-H 2 species should be in colli-

ional equilibrium. As shown by Roussel et al. (2007) for H 2 den-

ities � 10 3 cm 

−3 , most of the lower rotational transitions should

e thermalized, and temperatures derived from fits to the ortho-

nd para-H 2 transitions should yield consistent temperatures. Af-

er normalizing by the ortho-para ratio (OPR), significant devia-
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tions from LTE would appear as an offset between the odd- and

even- J H 2 transitions when plotted on an excitation diagram. 

A second method of fitting the excitation data is an extension of

the first method, by assuming that the molecular gas temperatures

can be modeled as a single power-law distribution, again assuming

that the gas is in thermal equilibrium ( Appleton et al., 2017; Togi

and Smith, 2016 ). 

A non-LTE ortho-para ratio appears in excitation diagrams as

a systematic offset between the data for ortho and para levels

(see Fig. 1 ). Such non-thermalized OPRs (for the rotational lev-

els) are commonly observed in PDRs ( Fleming et al., 2010; Fuente

et al., 1999; Habart et al., 2011; Habart et al., 2003; Moutou et al.,

1999 ), and can either indicate that other conversion mechanisms

dominate over reactive collisions (e.g. dust surface conversion, Le

Bourlot, 20 0 0; Bron et al., 2016 ), or that H 2 doesn’t have time

to thermalize because of fast advection through the dissociation

front. Non-LTE OPRs are also commonly seen in the excitation di-

agrams associated with ro-vibrational transitions, but these ratios

are not indicative of the actual OPR of the gas because of prefer-

ential pumping effects affecting the populations of the vibrational

states ( Sternberg and Neufeld, 1999 ). 

2.1.4. H 2 transitions and specific diagnostic power 

The radiative and collision properties of the H 2 molecule make

it a diagnostic probe of unique capability in a variety of environ-

ments (See Sect. 4 for a discussion of these environments). 

- A unique probe of gas excitation: Many competing mechanisms

can contribute to the excitation of molecular hydrogen. Since

we understand reasonably well the radiative and collisional

properties of this molecule we can construct realistic models

of the response of H 2 to its surrounding to probe the dom-

inant heating processes taking place in a given environment

(e.g., photon heating, shocks, dissipation of turbulence, X-rays). 

- A thermometer and mass scale of the warm gas: The lowest

rotational transitions of H 2 , generally promoted by collisions,

provide a wonderful thermometer for the bulk of the gas above

∼ 80 K. The rotational excitation of H 2 becomes important only

for temperatures T � 80 K because the J = 2 state lies 510 K

above the J = 0 state ( J = 3 lies 845 K above J = 1 ). Due to the

low A values of the associated optical transitions, any optical

depth effects are usually unimportant for these spectroscopic

lines. H 2 lines are optically thin up to column densities as high

as 10 23 cm 

−2 . Furthermore, H 2 is the principal constituent of

the molecular gas. Thus, these spectral lines provide accurate

probes of the mass of the cool/warm ( T � 80 K) gas. 

- A unique probe of the warmest photo-dissociation layers sub-

ject to photo-evaporation: Self-shielding of H 2 against photo-

dissociation is efficient from low H 2 column densities. H 2 can

then be present when other molecules, such as CO, would al-

ready be photo-dissociated. Thus H 2 can probe, in a unique

way, the outer warmest photo-dissociation layers of clouds or

proto-planetary disks which are subject to photo-evaporation. 

Three types of spectroscopic transitions can be observed for H 2 

(shown in Fig. 3, see also Field et al., 1966 ): the electronic bands

in the UV (shown in Fig. 4 ) , the ro-vibrational transitions in the

near-IR (shown in Fig. 5 ), and the pure rotational transitions in the

mid-IR (shown in Figs. 5 and 6 ). Electronic transitions of H 2 , in the

UV, can be used as probes of two gas regimes: (i) in absorption

to probe cold gas ( T ∼ 50-100 K, such as in the diffuse ISM); (ii)

in emission to probe highly excited gas ( T ∼ few 10 0 0 K such as

in outflows or inner disks). UV absorption measurements of vibra-

tionally excited interstellar H 2 can also be used as probes of highly

excited gas. H 2 electronic transitions in absorption occur between

the ground vibrational level of the ground electronic state ( X 

1 �+ 
g )

and the vibrational levels of the first ( B 

1 �+ ) or the second (C 

1 �u )
u 
xcited electronic states. In the X 

1 �+ 
g state the v = 1 vibration

evel is ≈ 60 0 0 K above the ground state, so that ro-vibrational

xcitation (such as that associated with the 2.12 μm line) requires

inetic temperatures T > 10 0 0 K or FUV pumping excitation. The

ain utility of these near-IR H 2 lines lies in their applicability for

robing very small quantities of hot gas. H 2 pure-rotational emis-

ion in the mid-IR traces the bulk of the warm gas, generally at

emperatures from 100 K up to 10 0 0 K. 

.1.5. Observational challenges: How and where can we observe the 

 2 molecule in space? 

As noted above, the electronic transitions of H 2 occur at ultra-

iolet wavelengths, a region of the spectrum to which the Earth’s

tmosphere is opaque; hence, observations in this spectral region

an only be made from space. The first detection of H 2 beyond

he Solar System was made by Carruthers (1970) via UV absorption

pectroscopy employing a rocket-borne spectrometer. This discov-

ry was followed by UV observations with the Copernicus space

ission that confirmed the presence of the hydrogen molecule in

iffuse interstellar clouds (for a first review on this subject see

pitzer and Jenkins, 1975 , and references therein). The H 2 absorp-

ion lines from the diffuse ISM, i.e. those arising from the low-lying

otational levels of the lowest vibrational level of the ground elec-

ronic state (as mentioned in Section 2.1.2 ), can only be observed

n the far UV, below 1130 Å, accessible to Copernicus, ORPHEUS

nd FUSE (see Fig. 4 ), as well as HST/COS after 2010 (but only at

ow resolution with R ≈ 20 0 0). Only the excited vibrational lev-

ls have lines above 1150 Å, accessible to IUE, and GHRS and STIS

n board HST, but they are detected only in a few ISM lines of

ight of very high excitation (see Meyer et al., 2001 , for an ab-

orption spectrum of vibrationally excited H 2 toward HD 37903,

he star responsible for the illumination of NGC 2023). In emission

hose lines appear only in circumstellar regions like the cited case

f the accretion disk observed with HST by France et al. (2010) , or

n many T Tauri stars observed with IUE, HST or FUSE. 

Ro-vibrational and rotational transitions of H 2 are faint because

f their quadrupolar origin, as noted above. Moreover, these lines

ie, most of the time, on top of a very bright continuum due to the

mission of interstellar dust (e.g., see Fig 5 ); hence, observations

t high spectral resolution are needed to disentangle these weak

olecular lines. Ground based high-resolution spectrographs (e.g.,

LT, Gemini, Subaru) are commonly used to probe the near-IR H 2 

o-vibrational lines. For the case of rotational lines which occur in

he mid-IR, the Earth’s atmosphere is again, at best, only partially

ransparent. The mid-IR window with high sky background is a

ery challenging region of the spectrum in which to perform high

ensitivity observations from the ground. Thus, H 2 mid-IR emis-

ion studies from the ground (e.g., VISIR, TEXES) are, to date, lim-

ted to relatively bright sources (with fluxes typically larger than

 Jy). Space-based platforms are needed to observe fainter infrared

ources in the mid-IR, but here spectral and spatial resolution are

imited (e.g. ISO, Spitzer). 

Finally, most of the interstellar H 2 can lie hidden in cool,

hielded regions (e.g. Combes and Pineau des Forêts, 20 0 0 ) where

he molecular excitation could be too low for to H 2 to be seen via

mission lines, and the local extinction is too high to allow the de-

ection of lines resulting from UV pumping. In these regions, a way

o estimate indirectly the molecular fraction has been proposed by

i and Goldsmith (2003) by measuring the residual atomic hydro-

en fraction via HI Narrow Self-Absorption (HINSA) observations. 

In the near future, mid-IR instrumentation such as the high-

esolution mid-IR spectrograph EXES in the airborne observatory

OFIA, and the mid-IR spectrograph MIRI in the James Webb Space

elescope will greatly increase the critical observational sensitivity,

patial and spectral resolution, and will provide stringent tests of

ur current understanding of H in space. 
2 
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Fig. 4. Full FUSE spectrum of ESO 141-G55, which illustrates diffuse Galactic H 2 detected in absorption in the spectrum of a Seyfert galaxy. N(H 2 ) = 1 . 9 10 19 cm 

−2 ; N(HI) = 

3 . 5 10 20 cm 

−2 . This spectrum has a resolution of R ≈ 12,0 0 0 and S/N ≈ 15 per smoothed (30 km s −1 ) bin (1040 - 1050 Å) and S/N ≈ 25 at 1070 Å. Lower (red) and upper 

(blue) ticks mark the detected Lyman and Werner lines of H 2 , respectively. Bright terrestrial airglow lines superimposed on the interstellar HI lyman absorption lines have 

been truncated. From Shull et al. (20 0 0) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Left pannel : Part of the near-IR spectra from the north western filament of the reflection nebula NGC 7023, which illustrates H 2 rovibrationnally excited detected in 

emission in PDRs. This spectrum obtained with the Immersion GRating INfrared Spectrograph (IGRINS), has a resolution of R � 45,0 0 0. The spectra show here are into the 

wavelength ranges 1.610-1.722 μm. The intensity has been normalized by the peak of the 1-0 S(1) line. The dash-red lines display OH airglow emission lines, observed at 

”off” position120 ′′ to the north from the target. Within the1 ′′ × 15” slit and the total wavelength coverage 1.45-2.45 μm, 68 H 2 emission lines from rovibrationnally excited 

H 2 have been detected. From Le et al. (2017) . Right pannel: Spitzer mid-IR spectra toward the reflection nebula NGC 2023, which illustrates H 2 rotationally excited detected 

in emission in PDRs. Full spectral coverage from the four Spitzer/IRS modules (SL2, SL1, SH, and LH with a resolution of R ∼ 60-120 and 600), as obtained by averaging 

15 pixels that sample the Southern Ridge emission of the nebula. H 2 pure rotational and atomic fine structure emission lines are identified over strong PAH features and 

dust continuum. From Sheffer et al. (2011) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

w  

g

G  

s  

s  

v  

e  

s  

w  

i  

s

i  

s  

t  

t  

t  
In the following section we give a few examples of multi-

avelength observations of H 2 transitions in Galactic and extra-

alactic environments. 

alactic environments. H 2 lines have been detected from Galactic

ources as diverse as photo-dissociation regions (PDRs), shocks as-

ociated with outflows or supernovae remnants, circumstellar en-

elopes and proto-planetary disks (PPDs) around young stars, plan-

tary nebulae (PNe), diffuse ISM, and the galactic center. UV ab-
orption lines measured with FUSE, a very sensitive experiment

hich detected H 2 down to N (H 2 ) < 10 14 cm 

−2 , show that H 2 is

n fact ubiquitous in our Galaxy (e.g. Shull et al., 20 0 0 ). UV ab-

orption lines enable us to measure the column densities of H 2 

n the rotational J levels of the ground vibrational and electronic

tates in diffuse and translucent lines of sight, with visual extinc-

ions ( A V ) up to about 3 to 5, and to measure the molecular frac-

ions f H 2 . In the diffuse ISM, with visual extinctions A V ≤ 1 mag,

he molecular fractions range from 10 −6 at low HI column den-
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Fig. 6. Two examples of extragalactic mid-infrared spectra (taken with the 

Spitzer IRS) showing prominent rotational lines of H 2 . Top panel: spectrum from 

Armus et al. (2006) of NGC 6240, a nearby ( z = 0 . 0245 ) merging galaxy that has a 

powerful starburst, a buried (pair of) AGN, and a superwind. Prominent emission 

lines and absorption bands (horizontal bars) are marked. Bottom: spectrum from 

Guillard et al. (2010) of the Stephan’s Quintet intragroup medium, taken in between 

two colliding galaxies. The shocked medium is rich in H 2 but with very weak star 

formation and UV radiation field. Note the strength of the H 2 lines (marked in red) 

compared to the dust continuum, as opposed to the star-forming galaxy NGC 6240 

shown above. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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sity up to ∼ 40% ( Gillmon et al., 2006; Savage et al., 1977; Spitzer

and Jenkins, 1975 ). In translucent sight lines (which are lines of

sight with greater extinction A V = 1 − 5 mag ), the molecular frac-

tion can be as high as 70% ( Rachford et al., 2009, 2002 ), but is

never too close to 1. UV absorption lines also enable us to esti-

mate the H 2 formation rate in the diffuse ISM (e.g. Jura, 1975; Gry

et al., 2002 ), as well as characterize the gas temperature and ex-

citation (e.g. Spitzer and Cochran, 1973; Gry et al., 2002; Nehmé

et al., 2008; Bron et al., 2016 ). H 2 absorption lines have also been

detected towards circumstellar envelopes of young stellar objects,

YSOs, (e.g. Martin-Zaidi et al., 2008 ). The main limitations here are

the restricted number of sources against which H 2 can be detected

in absorption (which is limited to interstellar gas with A V ≤ 5 and

intercepting the line of sight toward a bright UV source, thus it

prohibits the observation of dense molecular clouds). In practice,

UV absorption observations only allow the study of the molecular

gas in the Solar Neighborhood or in cirrus and molecular clouds

at high Galactic latitude ( Gillmon and Shull, 2006; Gillmon et al.,

2006 ), in intermediate-velocity clouds in the Galactic halo, in the

Magellanic Clouds ( Tumlinson et al., 2002 ), in a few external galax-

ies, and in objects with a specific geometry. On the other hand,

as mentioned above, far-UV H 2 emission lines have unveiled the

presence of hot gas in the disks of many T-Tauri stars. In cases

where mid-IR CO spectra, or traditional accretion diagnostics, sug-

gest that the inner gas disk has dissipated, far-UV H 2 observations

offer unambiguous evidence for the presence of a molecular disk

(e.g. France et al., 2012 ). 

Infrared emission of H 2 was first observed via the 2 μm ro-

vibrational lines (most notably the 1-0 S(1) line at 2.12 μm) to-

wards Galactic shocks, PDRs, and PNe (e.g., Gatley et al., 1986;

Pak et al., 1996; Burton et al., 1990; Lemaire et al., 1999; Walm-

sley et al., 20 0 0; Cox et al., 20 02 ). Luhman et al. (1997) provided

the first combined IR/UV picture of an H 2 fluorescence cascade

in a single object (a PDR). Deep near-infrared spectra of bright

PDRs, taken with high resolution, enable us to detect many emis-

sion lines from ro-vibrationally excited molecular hydrogen that
rise from transitions out of many upper ro-vibrational levels of

he electronic ground state (e.g., Kaplan et al., 2017; Le et al., 2017 ,

ee Fig. 5). Since atmospheric transmission in the K band is rel-

tively good, H 2 lines in the near-IR have been searched for in

elatively faint objects using large telescopes (such as disks, e.g.

armona et al., 2011 ). 

ISO and Spitzer provided a fundamental step forward, in that

hey enabled us to exploit the potential of the H 2 pure rotational

ines in the mid-infrared, probing the bulk of the warm gas. This

ave access to the H 2 rotational diagram in various sources (PDRs,

hocks, YSOs, PNe, SNR, low UV excited clouds, diffuse ISM), as

ell as its spatial variation in some extended sources (e.g. Neufeld

t al., 1998; Draine and Bertoldi, 1999; Cesarsky et al., 1999;

osenthal et al., 20 0 0; van den Ancker et al., 20 0 0; Lefloch et al.,

003; Neufeld et al., 2009; Maret et al., 2009; Goldsmith et al.,

010; Fleming et al., 2010; Habart et al., 2005b, 2011; Hewitt et al.,

009; Rho et al., 2017; Sheffer et al., 2011; Mata et al., 2016 ). H 2 

ata have allowed us to better characterize the shocks (e.g., mea-

ure the temperature history, and age) associated with outflows

rom young stars or supernova remnants and the different possi-

le H 2 excitation mechanisms at different evolutionary stages of

oung stellar objects and planetary nebulae (e.g., Neufeld et al.,

998; Pineau Des Forêts and Flower, 1999; Cesarsky et al., 1999;

an den Ancker et al., 20 0 0; Lefloch et al., 2003 ). This work also

howed that H 2 is a major contributor to the cooling of astrophys-

cal media where physical conditions lie in between those of hot

olecular gas and cold molecular gas. It has proved possible to es-

imate the gas temperatures and densities of the transitional lay-

rs of the ISM which separate ionized and neutral molecular gas.

owever, by comparing the observations with the PDR model pre-

ictions, the model can account well for the H 2 rotational line

ntensities and excitation temperature in strongly irradiated PDRs

e.g. Sheffer et al., 2011 , see Fig. 5), but underestimates the H 2 ex-

itation temperature and intensity of the excited rotational lines

n low/moderate UV irradiated regions (e.g. Goldsmith et al., 2010;

abart et al., 2011 ). This underlines that our understanding of the

arm H 2 gas is incomplete and could suggest additional excitation

f H 2 or gas, or out-of-equilibrium processes. 

xtra-galactic environments. Observations of molecular hydrogen

mission from external galaxies started with the detection of

ear-IR emission coming from hot molecular gas found in photo-

issociation regions or shocks, especially in the central regions

osting AGN or major starbursts (e.g. Wright et al., 1993; Mouri,

994; Goldader et al., 1997 ). Because they are difficult to observe

rom the ground, the observations of the pure rotational lines of

 2 from external galaxies started with the Infrared Space Obser-

atory (ISO), and continued with the Spitzer infrared (IR) satellite

e.g. Valentijn and van der Werf, 1999; Lutz et al., 2003; Verma

t al., 2005 ). In star forming galaxies, rotational H 2 line emission

s thought to come from PDRs ( Higdon et al., 2006; Rigopoulou

t al., 2002; Roussel et al., 2007 ). A tight correlation between the

 2 and IR luminosity is inferred for star-forming galaxies and the

 2 to polycyclic aromatic hydrocarbon (PAH) luminosity ratio in

his kind of galaxies is within the range of values that are ex-

ected from PDR emission, suggesting that UV photons are the

ain H 2 excitation source. The Active Galactic Nuclei galaxies ex-

ibit a stronger H 2 to PAH ratio than dwarf and star-forming galax-

es ( Roussel et al., 2007 ), suggesting that the radiation from the

GN is not sufficient to drive H 2 emission. 

More recently Spitzer IRS observations have shown that our

ensus of the warm H 2 gas in galaxies may be severely incomplete,

evealing a new class of galaxies (including elliptical galaxies, AGN,

alaxy groups, and galaxy clusters) with strongly enhanced H 2 ro-

ational emission lines, while classical star formation indicators

far-infrared continuum emission, ionized gas lines, polycyclic aro-
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atic hydrocarbons, PAHs) are strongly suppressed ( Appleton et al.,

006; Cluver et al., 2010; Guillard et al., 2015a, 2009, 2012b; Ogle

t al., 2007, 2010, 2012; Peterson et al., 2012 ). Among the sample

f H 2 -luminous objects, the Stephan’s Quintet is certainly the ob-

ect where the astrophysical context is clear enough to identify the

ominant source of energy that powers the H 2 emission and to

ssociate it with the mechanical energy released in a galactic col-

ision ( Appleton et al., 2013, 2017; Guillard et al., 2009, 2012a ). In

hese sources, the luminosity of the H 2 lines cannot be accounted

or by UV or X-ray excitation, and their properties suggest that the

issipation of turbulence is the main heating mechanism for the

arm H 2 gas. The strong H 2 line emission is a dominant gas cool-

ng channel and traces the turbulent cascade of energy associated

ith the formation of multiphase gas. The dynamical interaction

etween gas phases drives a cycle where H 2 gas is formed out of

hocked atomic gas ( Guillard et al., 2009 ). In the M82 starburst

alaxy, the galactic wind is observed to be loaded with H 2 gas with

ust entrained ( Beirão et al., 2015 ). Because the timescale to accel-

rate molecular material from the galactic disk to tens of kpc in

he wind is longer than the dynamical timescale of the outflow,

nd because the H 2 excitation is consistent with models of slow

hocks, it has been argued that the H 2 gas in the outflow is formed

y post-shock cooling during the interaction of the wind with the

as in the galactic halo. 

.1.6. Observational constraints on the H 2 formation rate 

The determination of the formation rate and abundance of H 2 

or a given region of the ISM is crucial, as it controls most of the

ubsequent development of the chemical complexity, as well as a

ubstantial part of physics of the region, and can allow us to dis-

riminate between the H 2 formation mechanisms that may be op-

rating. Early studies ( Gould and Salpeter, 1963; Hollenbach and

alpeter, 1971; Jura, 1975 ) provided the first estimates of H 2 forma-

ion rates in the diffuse ISM, concluding that grain surface chem-

stry is an unavoidable route for efficient molecular hydrogen for-

ation. 

The observationally determined H 2 formation rate coefficient in

he diffuse ISM, R H 2 ∼ 3 − 4 × 10 −17 cm 

3 s −1 ( Gry et al., 2002 ), ap-

ears to be rather invariant. Nevertheless, Habart et al. (2004) es-

imate considerably higher H 2 formation rates at high gas temper-

tures in PDRs. Using as a diagnostic the ratio of the rotational

o ro-vibrational lines of H 2 , as observed and as predicted by PDR

odels, they determined H 2 formation rates similar or higher (fac-

or of 5 for moderately excited PDRs) than that measured in dif-

use clouds. H 2 appears to form efficiently in PDRs with gas and

rains at high temperatures ( T gas ∼ 300 K and T ∼ 30 K for a grain

t thermal equilibrium with the radiation field). However, it must

e underlined that these results are based on the assumptions that

DRs are static, in equilibrium, while propagation of the ioniza-

ion and photo-dissociation fronts will bring fresh H 2 into the zone

mitting line radiation. These rate values are thus upper limits. Fi-

ally, as we mention later, no observational signatures of the ex-

itation state or ortho-to-para ratio of the newly-formed (nascent)

 2 have been obtained yet. This last point remains observationally

hallenging. 

.2. Experiments and quantum calculations 

The formation of molecular hydrogen in interstellar space oc-

urs primarily on the surface of dust grains. In diffuse clouds,

rains are bare and are usually classified as silicates or carbona-

eous materials. In the silicate class we have olivines ((Mg x , Fe 1 −x ) 2 
iO 4 ) and pyroxines (Mg x , Fe 1 −x SiO 3 ). Observational evidence

hows that these particles are sub-micron in size and are largely

n an amorphous form ( Draine, 2003; Jones et al., 2013 ). In the

arbonaceous class we have sp 

3 (nanodiamonds), sp 

2 (graphite,
AHs) and mixed sp 

3 -sp 

2 (amorphous carbon) carbon bonded ma-

erials. Again, observational evidence shows that these species are

ano to sub-micron in size and largely amorphous ( Jones et al.,

013 ). Further information about dust grains and their labora-

ory analogs can be found in Draine (2011) , Henning (2010a, b) ,

ones et al. (2013) , Krügel (2007) . 

Following the first experiments studying H 2 formation on a

olycrystalline olivine sample ( Pirronello et al., 1997a, b ), labora-

ory investigations focused on the various processes involved in H 2 

ormation on surfaces, in order to find rate limiting process(es) for

he specifically chosen conditions (kinetic energy, material, mor-

hology, temperature, etc.). In the next subsection, we list the pro-

esses relevant to the formation of molecular hydrogen on dust

rains and mention the most common experimental and theo-

etical techniques that have been used to study such processes.

here is a vast literature on these processes, but most of it is

or well-characterized systems; that is, for processes occurring on

lean and well-characterized surfaces, usually single crystal sur-

aces ( Kolasinski, 2008 ). 

The application of results from the surface science literature

o astrophysics environment should be performed very carefully,

ince the chemical and morphological compositions of actual ISM

ust grains are largely unknown, and the processes described be-

ow (sticking, binding, diffusion, etc.) depend on many parame-

ers, such as the kinetic energy of the incoming atom and the

hemical and morphological composition of the surface. For a

ecent detailed review of experimental and theoretical work on

he formation of H 2 on dust grains, relevant to the ISM, see

idali (2013) . For descriptions of apparatus and measuring meth-

ds, see Fraser et al. (2002) , Fraser and van Dishoeck (2004) ,

emaire et al. (2010) , Perry et al. (2002) , Vidali et al. (2005) ,

atanabe and Kouchi (2008) as well as the reviews by Hama and

atanabe (2013) , Vidali (2013) . 

.2.1. Relevant processes: Sticking, binding, diffusion, reaction, and 

esorption 

The formation of molecular hydrogen on a solid surface in-

olves a few key physical processes: trapping, binding, diffusion,

eaction and desorption. It helps to make the distinction between

eak, long-range interactions with the surface, and strong, local-

zed interactions. In the former, called physisorption, the parti-

le approaching from the gas phase interacts with the surface via

ong-range van der Waals forces ( Bruch et al., 2007a ). This binding

nergy is of the order of tens of meV ( Vidali et al., 1991 ). Exper-

ments studying H atoms interacting with silicate, water ice and

raphite surfaces at low kinetic energy and low sample tempera-

ures suggest that physisorption is the class of interaction that is

ertinent in these cases, as discussed below. 

For the case of a strong interaction between the adsorbate

nd the surface, chemisorption, a strong bond ( ∼ eV) is formed

etween the incoming atom and the surface ( Kolasinski, 2008 ).

his class of interaction is important, for example, in experiments

nvolving energetic H atoms interacting with the basal plane of

raphite ( Hornekær et al., 2006a, 2006b; Zecho et al., 2002b ) or

f thermal H atoms encountering PAHs ( Cazaux et al., 2016; Men-

ella et al., 2012; Rauls and Hornekær, 2008; Snow et al., 1998;

hrower et al., 2012 ). 

In the trapping of an atom on a surface, the atom from the

as phase has to lose enough of its kinetic energy to remain con-

ned to the surface. Trapping and sticking are often used inter-

hangeably, but here we will define trapping as the temporary

esidence of the atom on the surface; that is, the atom is not

ecessarily fully energetically accommodated. We contrast “trap-

ing” with “sticking” where the particle is fully accommodated (i.e. 

hermalized) on the surface. The residence time on the surface is

hen determined by the strength of the bond to the surface and
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the surface temperature. Sticking has been measured for hydrogen

molecules on a variety of surfaces and at different incident kinetic

energies ( Chaabouni et al., 2012; Matar et al., 2010 ). Due to tech-

nical difficulties, there are only few experimental measurements

of atomic hydrogen sticking on analogs of interstellar dust grains

( Pirronello et al., 20 0 0 ). Computationally, the sticking process has

been investigated for H/H 2 on graphite ( Cazaux et al., 2011; Ker-

win and Jackson, 2008; Lepetit and Jackson, 2011b; Lepetit et al.,

2011a; Morisset et al., 2010; Sha et al., 2005 ) and on water ice

( Al-Halabi et al., 2002; Al-Halabi and van Dishoeck, 2007; Buch,

1989; Buch and Czerminski, 1991; Hollenbach and Salpeter, 1970;

Masuda and Takahashi, 1997; Masuda et al., 1998; Veeraghattam

et al., 2014 ) using methods ranging from molecular dynamics sim-

ulations to fully quantum mechanical calculations. 

The binding and diffusion of atoms on surfaces are particu-

larly important processes in the formation of molecular hydrogen

on dust grains. Binding regulates the time a hydrogen atom or

molecule resides on a grain via the relationship 

τ = τ0 exp 

E b 
k B T dust 

, 

where τ 0 is related to the fundamental vibrational frequency ν0 

of an atom in a potential energy well describing the motion per-

pendicular to the surface, E b is the binding energy of the atom on

the surface, k B the Boltzmann constant and T dust the temperature

of the surface. 

For a crystalline surface of a given material, only a handful

of binding sites need to be considered. For example, in the case

of physisorption of H on the basal plane of graphite, the deep-

est binding energy site is at the center of the graphitic hexagon

( Petucci et al., 2013 ), while in the case of H chemisorption on

graphite, the preferred binding site is on top of a carbon atom

( Jeloaica and Sidis, 1999 ). However, actual dust grains are amor-

phous, and therefore a range of binding sites, with potentially dif-

ferent binding energies, need to be considered. 

For long-distance diffusion, the atoms suffer a larger risk of

being trapped at deep potential sites, hence long-distance diffu-

sion tends to be limited by higher activation barriers than short-

distance diffusion (see Section 2.2.4 ). Except for cases where ad-

sorption is activated, the desorption energy of a particle from the

surface is the same as the binding energy. 

Using the technique of temperature programmed desorption

(TPD) in which the temperature of the surface is increased rapidly

and the desorbing particles collected, the distribution of desorp-

tion energies, and therefore of binding energy sites, has been ob-

tained for many atom/molecule - surface systems ( Amiaud et al.,

2006; Amiaud et al., 2015; He et al., 2011 ). Fig. 8 shows the des-

orption of D 2 that has been deposited on an amorphous silicate

surface. The peaks are rather wide, indicating that D 2 is desorb-

ing from sites with a wide distribution of binding energies. For a

comparison with desorption from a single silicate crystal, see ( He

et al., 2011; Vidali and Li, 2010 ). Because of technical limitations

in detecting atomic hydrogen, the distribution of the energy sites

available on analogs of dust grain surfaces is known primarily for

molecular hydrogen and its isotopologues, rather than for atomic

hydrogen. In the TPD experiments, information of atomic diffusion

is derived from H 2 formation (recombination) rates coupled with

H-atom diffusion. Therefore, the obtained activation energy should

depend on the initial coverage of H atoms. That is, experiments at

high coverage, where only short-distance diffusion is required for

recombination, tend to yield lower activation energies for diffusion

(see Section 2.2.4 ). 

Given the low surface temperature of dust grains (10-20 K) in

some ISM environments where molecules are formed, the motion

of an atom that has landed on a grain surface may be restricted.

The rate of hydrogen atoms landing on a sub-micron interstel-
ar dust grain is very low. For a sub-micron-sized grain of cross-

ectional area σ ∼ 10 −10 cm 

2 , the number of hydrogen atoms land-

ng on the grain per second is given by ˙ N = 

1 
4 n H × v × σ, where

 H is the H number density in the gas and v its speed. For n = 10 4

toms/cm 

3 and v = 5 × 10 4 cm s −1 , ˙ N = 10 −2 per second. 

For a successful H+H → H 2 reaction, either the surface needs

o be saturated with H atoms, or an H atom has to sample a large

art of the grain before encountering another H atom. Thus, ex-

erimental and theoretical works have aimed at characterizing H

tom diffusion on morphologically complex surfaces and at finding

he conditions required to obtain a high coverage of H atoms on

he surface. 

For an H atom on a surface, diffusion can proceed via tunneling

r thermal hopping. The surface temperature strongly regulates the

hermally activated hopping rate, as in the Arrhenius expression 

= ν exp 

[ −E d 
k B T dust 

] 
, 

here E d is the energy barrier for diffusion and ν = ν0 exp 

(
�S 
k B T 

)
,

ith �S being the change in entropy between the saddle point and

he adsorption site ( Tsong, 2005 ). In practice, the approximation

∼ν0 (the characteristic vibrational frequency of the particle in

he potential well for motion leading to the saddle point) is made.

Tunneling, the rate of which has a very weak dependence on

he temperature of the surface, should dominate the diffusion rate

t sufficiently low temperatures. However, the tunneling rate de-

ends strongly on the width and height of the energy barrier, as

n 

 d = ν0 exp 

−2 a ( 2 m H E d ) 
1 
2 

h̄ 

, 

ssuming a rectangular potential, where a and E d are the width

nd height of the barrier, and m H is the mass of the hydrogen

tom. In an amorphous solid, there can be a wide distribution of

oth barrier widths and heights, leading to long residence times

f the H atoms in the deep wells of the binding energy landscape.

his situation is not unlike the trapping of electrons in amorphous

ilicon. 

The diffusion of a single atom, by random hopping or tunnel-

ng, across the surface is called single particle (or tracer) diffu-

ion, as to distinguish it from the concentration driven diffusion

 Tsong, 2005 ) . The direct measurement of tracer diffusion is ob-

ained using visual methods such as field ion microscopy and scan-

ing tunneling microscopy, or with quasi-elastic particle scatter-

ng ( Miret-Artés and Pollak, 2005 ). Due to technical restrictions,

nd because these techniques are applied to conductive surfaces

typically metals and graphite), they find few applications in prob-

ng astrochemically relevant surfaces. Indirect methods, such as the

nes used in experiments to study HD and H 2 formation (see next

ection for details), can provide estimates of the average mobility

f H atoms in astrochemically relevant situations. 

The activation energy for diffusion is empirically related to the

inding energy. From experiments probing atoms weakly adsorbed

n well-ordered surfaces, we find E d ∼αE b and α= 0.3, where E d 
nd E b are the energy barrier for thermally activated diffusion and

he binding energy, respectively ( Bruch et al., 2007b ). Analysis of

xperiments studying H atoms on dust grain analogs give a wider

ange of values of α, from α ∼ 0.3 up to α ∼ 0.8 ( Katz et al., 1999;

erets et al., 20 07, 20 05 ), depending largely on the morphology of

he surface. For the case of H atoms strongly localized on the sur-

ace, as in the case of H chemisorbed on graphite or PAHs, the cal-

ulated thermal activation energy to migrate out of the adsorption

ite can be comparable to the energy for desorption. 

Experiments have shown that on the surfaces of a wide

ariety of solids the formation of H 2 occurs via three main

echanisms: Langmuir-Hinshelwood, Eley-Rideal, and “hot atom”
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 Kolasinski, 2008 ). In the Langmuir-Hinshelwood mechanism,

toms from the gas phase first become accommodated on the sur-

ace and then, via diffusion, they encounter each other and react.

he resulting molecule might or might not leave the surface, de-

ending on how the energy gained in the reaction is partitioned. 

In the Eley-Rideal reaction, an incoming atom interacts directly

ith a partner on the surface; the incident atom is not accommo-

ated on the surface. The resulting molecule is likely to leave the

urface retaining much of the energy gained in the reaction. Here,

he cross-section for the reaction is of the order of atomic dimen-

ions. The “hot atom” mechanism is similar to the Eley-Rideal one,

ut here the atom first lands on the surface, without becoming

ully accommodated, and proceeds to sample the surface at supra-

hermal energy until it finds and reacts with a partner species. 

Examples of detections of Eley-Rideal or abstraction reactions

elevant to ISM environments are found in works involving experi-

ents of H atoms interacting with PAHs, hydrogenated amorphous

arbon and graphite ( Cazaux et al., 2016; Hornekær et al., 2006a,

0 06b; Mennella, 20 08; Mennella et al., 2012; Snow et al., 1998;

hrower et al., 2012; Zecho et al., 2002b ). The various processes

nvolved in the formation of H 2 are summarized in Fig. 7 . 

Theoretical calculations, confirmed by experimental results

tudying H 2 formation on graphite ( Islam et al., 2010, 2007; La-

imer et al., 2008 ), show that ro-vibrational excitation of H 2 leav-

ng the surface upon formation is concentrated around high values

f the vibrational quantum number (3–4) and low values of the

otational quantum number. There have been a few attempts to

etect a signature of such H 2 formation, via observations of transi-

ions of H 2 in appropriate regions of the ISM, but with no success

o date ( Thi et al., 2009; Tiné et al., 2003 ). The ortho (odd rota-

ional quantum number J ) to para (even J ) ratio of H 2 can yield in-

ormation concerning the thermal history of the associated cloud,

s well as concerning the conditions associated with H 2 forma-

ion on the grains of the cloud ( Le Bourlot, 20 0 0; Wilgenbus et al.,

0 0 0 ), although presence of other H 2 molecules co-adsorbed on

he grain can hinder the release of excited molecules ( Congiu et al.,

009 ). 

In the laboratory, measurements of the ro-vibrational state of

ascent (freshly-formed) molecules on surfaces have been used

o determine whether the ortho to para ratio of such newly-

ynthesized molecules would be different from the statistical ratio

 Hama and Watanabe, 2013 ); for temperatures greater that about

00 K, the statistical ratio is 3. Measurements show that for H 2 

ormed on surfaces of amorphous solid water at low temperature

he nascent molecules possess the appropriate statistical value of

he OPR ( Gavilan et al., 2012; Watanabe et al., 2010 ). 

Experimental and theoretical results of H 2 formation need to

e appropriately adapted to the conditions present in the relevant

nvironments of the ISM; this adaption can be performed by us-

ng robust experimental data in computer simulations of processes

ccurring in ISM environments. Specifically, experiments are per-

ormed at much higher H atom fluxes than are present in the ISM,

nd probe chiefly the kinematics of the reactions. Hence, simu-

ations need to translate this laboratory information to reveal its

mpact under the conditions pertaining in the ISM: such as low

uxes of H atoms impinging on grains and steady-state conditions.

or example, Katz et al. (1999) used rate equations to fit exper-

mental data (temperature programmed desorption traces) of H 2 

ormation on polycrystalline and amorphous silicates and on amor-

hous carbon. They then used the results to predict the formation

f H 2 under the conditions of the ISM. Cazaux et al. (2005) con-

idered both physisorption and chemisorption interactions in their

ate equations and fitted the same data as in ( Katz et al., 1999 )

ut with more parameters. They found that only a physisorption

nteraction between H atoms and the surface was necessary to ex-

lain the data. Cuppen and Herbst (2005) instead used continuous-
ime, random-walk Monte Carlo code to study the effect of surface

oughness on the formation of molecular hydrogen using a model

quare lattice. These investigators found that roughness increased

he grain temperature range over which H 2 formation is efficient.

tochastic effects, arising from the fact that the actual size distribu-

ion of dust grains in the ISM is skewed to small grains, have also

een taken into accounts in models by Biham and Lipshtat (2002) ,

ron et al. (2014) , Cazaux and Spaans (2009) , Cuppen et al. (2006) ,

e Bourlot et al. (2012) . 

.2.2. Silicate surfaces 

The ubiquitous observation of molecular hydrogen in widely

arying interstellar environments poses significant challenges in

xplaining its formation. In diffuse clouds, dust grains are largely

are and the formation of H 2 occurs on silicates and amor-

hous/graphitic carbon (graphite, amorphous carbon, and PAHs).

he first experiments studying H 2 formation on dust grain analogs

nvolved a polycrystalline silicate ( Pirronello et al., 1997b ). In these

xperiments, the aim was to measure the efficiency of H 2 forma-

ion under conditions which simulated the ISM. 

Quantifying the formation of H 2 is particularly challenging. For

xample, in a typical experiment, molecular hydrogen is dissoci-

ted and the resulting atoms directed onto a sample surface, see

ig. 9 . Although it is possible to dissociate up to nearly 90% of

he H 2 molecules in such an H atom source, the remaining un-

issociated species will contaminate the sample, making it im-

ossible to determine if molecules on the surface came from the

ource or are the product of atomic recombination on the surface.

his limitation was lifted in the work of Pirronello et al. (1997b ) by

sing two beamlines directed at the sample, one dosing H atoms

nd the other dosing for D atoms. In this situation, under the asso-

iated experimental conditions, the formation of HD can only occur

n the surface of the sample. Another technical limitation of this

lass of experiments is associated with contamination. Even in a

tate-of-the-art ultra-high vacuum apparatus (base pressure 10 −10 

orr), the adsorption of background gas (mostly hydrogen) on the

urface of the sample limits the sensitivity and duration of exper-

ments studying H 2 formation. Using highly collimated beams, as

hown in Fig. 9 , allows experimental operating pressures approach-

ng 10 −10 Torr. 

Another technical limitation associated with laboratory experi-

ents is the fact that fluxes of H atoms employed are, for prac-

ical reasons, orders of magnitude higher than in the ISM. This

ismatch of fluxes cannot be solved directly. However, with care-

ul experimental design and the use of simulations to reproduce

he conditions in the ISM, as performed by Katz et al. (1999) and

iham and Lipshtat (2002) , the efficiency of H 2 formation in

he ISM can be obtained from experimental kinetic data. Fur-

her work by the Biham’s group studied the effect of particle

ize ( Lipshtat and Biham, 2005 ) and porosity ( Perets and Bi-

am, 2006 ) on H 2 formation in interstellar environments. Diffu-

ion of H atoms was included in the simulations of the formation

inetics ( Katz et al., 1999 ), revealing that the ratio of the energy

arrier for H atom diffusion to the binding energy is considerably

igher than the typically assumed value ( ∼ 0.3) for physisorbed

toms on single crystal surfaces ( Bruch et al., 2007b ). Because the

 atom binding energy could not be well constrained, only an up-

er limit of 0.7 could be obtained for this ratio in the fitting of

atz et al. (1999) . The reason for this unusually high diffusion bar-

ier is likely to be the complex morphology of polycrystalline and

morphous silicates. 

Subsequent experiments showed that the efficiency of atomic

ecombination to form H 2 is dependent on the morphology of

he surface, the efficiency being larger on amorphous silicates

han on crystalline or polycrystalline silicates. The simulations by

atz et al. (1999) of H formation on polycrystalline silicate and
2 
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Fig. 7. Schematic illustrating key surface processes involved in the formation of H 2 . 
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on amorphous carbon, and by Perets et al. (2007) on amorphous

silicate, showed that, under the conditions present in diffuse inter-

stellar clouds, the efficiency of atomic recombination to form H 2 is

high over only a narrow range of temperatures. In the experiments

modeled by Katz et al. (1999) and by Perets et al. (2007) , most of

the molecules that were formed remained on the surface and only

a small minority left the surface following their formation. Both

the molecules coming off the surface upon formation, and the ones

that remained on it, were detected using a quadrupole mass spec-

trometer whose sensitivity is inversely proportional to the speed

of the particles. 

In an experiment studying H 2 formation, in which it was

possible to detect molecules leaving the surface in superther-

mal ro-vibrational states, Lemaire et al. (2010) found that some

nascent molecules were formed on, and ejected from, the sur-

face at a temperature as high as 70K. Although the kinetic
nergy of H 2 was not measured, experimental conditions and

nalogy with the experiments studying H 2 or HD formation on

raphite, by Baouche et al. (2006) , Islam et al. (2010) , 2007 );

atimer et al. (2008) , suggest that the kinetic energy was of the

rder of an eV. Thus, it is possible that earlier experiments under-

stimated the proportion of nascent molecules immediately leav-

ng the surface following their formation. 

The influence of the morphology of the silicate surface on

he kinetics of molecular hydrogen formation was studied by

e et al. (2011) . This work determined the distribution of the bind-

ng energy of the species on the surface using TPD. Specifically, the

hape of TPD traces, which record the desorption rate (the differ-

ntial of the desorption yield), as a function of temperature, can be

tted using a distribution of binding energies. 

As mentioned before, it is difficult to detect atomic hydrogen

n TPD experiments, especially when the surface coverage is less
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Fig. 8. TPD traces of D 2 after irradiation of an amorphous silicate sample at 12 K 

for different lengths of time (2, 4, 8, 16 and 32 min). Inset: normalized traces; for 

clarity, the trace of 2 min irradiation (black line) is not shown for T > 32 K. From 

Vidali and Li (2010) - GV. 

Fig. 9. Apparatus at Syracuse University used to study H 2 formation on silicate sur- 

faces. Two independent beam lines converge on a sample mounted on a rotatable 

flange. A quadrupole mass spectrometer mounted on a rotatable platform can quan- 

tify and identify both the products from the surface and the species in the incident 

beams. 
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han one layer. However, experiments studying D 2 show a dramatic

ifference between TPD spectra from a single crystal of forsterite

Mg 2 SiO 4 ) and from an amorphous silicate. The derived binding

nergy distribution for the amorphous sample is much wider, and

entered at a much higher desorption energy, than the one for

he single crystal. Experiments studying H+D → HD formation are

onsistent with the D 2 experiments: they show that HD formation

n a silicate crystal occurs at lower temperatures than on amor-

hous silicate, suggesting that thermally activated diffusion plays

n important role in the reaction ( He et al., 2011 ). 

Compared with the significant number of theoretical investiga-

ions of the interaction of H atoms with carbonaceous surfaces,

here are few reports of theoretical investigations of H atoms in-

eracting with silicate surfaces. Such calculations have been per-

ormed involving the stable (010) surface of Mg 2 SiO 4 as well as

he (001) and (110) surfaces which have higher surface energies.

oumans et al. (2009) used an embedded cluster approach where

art of the surface was described by DFT and part by analytic po-

entials, while Garcia-Gil et al. (2013) , Navarro-Ruiz et al. (2014) ,

nd Navarro-Ruiz et al. (2015) employed Density Functional The-

ry. H 2 is formed more readily on the (010) surface due to the fact

hat on the other surfaces H atoms are more strongly adsorbed
nd the barriers to diffusion are thus higher. Mg atoms are the

ost favorable sites for physisorption, while chemisorption is on

he oxygen site. However, the physisorption energy of H on crys-

alline silicates, and the energy barriers to diffusion, are calculated

o be considerably higher than the values given by experiments on

morphous silicates. Goumans et al. (2009) invoked hydroxilation

f the surfaces used in experiments to reconcile the discrepancy

etween these theoretical and experimental values, while Navarro-

uiz et al. (2014) pointed out the challenge for computational stud-

es in correctly taking into account the large dispersion energies in

eak interactions and open shell systems when using DFT. The cal-

ulations show that H 2 formation via the Langmuir-Hinshelwood

echanism is favored on the (010) surface ( Navarro-Ruiz et al.,

015, 2014 ). 

.2.3. Carbonaceous surfaces 

 2 formation on graphite. The interaction of atomic hydrogen with

raphite surfaces, and the pathways to molecular hydrogen forma-

ion on these surfaces, have been studied in considerable detail

oth theoretically and experimentally. Hydrogen atoms can both

hysisorb and chemisorb on graphite: 

Physisorbed H atoms are weakly bound in a shallow potential

ell with a depth of 43.3 ± 0.5 meV resulting in a ground state

inding energy of 31.6 +- 0.2 meV, as determined by scattering ex-

eriments ( Ghio et al., 1980 ). The sticking coefficient has been es-

imated theoretically to be 5–10% for H atoms with translational

nergies ranging from 0 to 50 meV ( Lepetit et al., 2011a; Medina

nd Jackson, 2008 ). 

Once in the physisorbed state, the H atom is highly mobile

n the surface with a diffusion barrier predicted by theory to be

nly 4 meV ( Bonfanti et al., 2007 ). This high mobility allows H

toms to scan a large area of the surface and recombine with any

ther H atoms they encounter; atoms which could be physisorbed,

hemisorbed or incident from the gas phase. This reactivity can oc-

ur both at low temperatures, where the atom’s high surface mo-

ility is assisted by tunneling, and at higher temperatures, where

he high thermally induced mobility may allow a significant sur-

ace area of a grain to be explored by the atom, even if the atom’s

ifetime in the physisorbed state is extremely short ( Creighan et al.,

006; Cuppen and Hornekær, 2008 ). 

Chemisorption of H atoms on the graphite surface is more com-

lex than physisorption. A single H atom can chemisorb above a

arbon atom in the graphite surface with a binding energy of 0.7-

.0 eV ( Casolo et al., 2009b; Hornekær et al., 2006b; Ivanovskaya

t al., 2010; Sha et al., 2002 ). However, this binding requires the

ssociated carbon atom to pucker up, out of the surface, by 0.1 Å.

hus, the chemisorption is associated with a large energy barrier of

.15-0.2 eV ( Hornekær et al., 2006b; Jeloaica and Sidis, 1999 ). As a

onsequence of this barrier, the sticking probability for H atoms

nto the chemisorbed state is highly energy dependent and has

ainly been estimated theoretically ( Bonfanti et al., 2015; Karlicky

t al., 2014; Kerwin and Jackson, 2008; Kerwin et al., 2006; Moris-

et and Allouche, 2008; Morisset et al., 2010; Sha et al., 2005 ). 

The diffusion of isolated chemisorbed H atoms on graphite is

ighly disfavored with calculated barriers of 0.8-1.1 eV ( Ferro et al.,

0 03; Hornekær et al., 20 06a ). The chemisorption of one H atom

ramatically changes the reactivity of carbon atoms on specific

eighboring graphitic sites, yielding a reduction, or even disap-

earance, of the barriers for chemisorption of a second incoming H

tom nearby ( Hornekær et al., 2006a; Rougeau et al., 2006 ). As a

onsequence, sticking probabilities of H atoms on sites in the vicin-

ty of previously chemisorbed H atoms are increased. Thus, hydro-

en atoms predominantly adsorb into dimer or cluster structures

n the graphite surface ( Ferro et al., 2003; Hornekær et al., 2006a,

006b ). Diffusion barriers of H atoms within such clusters are re-

uced and values of 0.2-0.4 eV for diffusion into more energetically
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favorable adsorption structures have been found ( Hornekær et al.,

2006b ). 

Molecular hydrogen formation via reactions between

chemisorbed H atoms has a high activation barrier of ∼ 1.4

eV ( Hornekær et al., 2006b; Zecho et al., 2002a ). In contrast,

Eley-Rideal reactions between impinging gas-phase H atoms

and chemisorbed H atoms have been shown to be barrier-

less for the case of abstraction from specific dimer structures

( Bachellerie et al., 2007 ), and, in recent calculations, also for

abstraction of hydrogen monomers ( Bonfanti et al., 2011 ). Exper-

imental measurements involving 20 0 0 K H atoms impinging on

a hydrogenated graphite surface, held at 300 K, show Eley-Rideal

(including hot atom) cross-sections of 17 Å 

2 at low H coverage

decreasing to 4 Å 

2 at high coverage ( Zecho et al., 2002b ). However,

at low collision energies, theory predicts that quantum reflec-

tion effects will limit the Eley-Rideal abstraction cross section

( Casolo et al., 2009 ). 

A few measurements regarding the energy partitioning in

molecular hydrogen formation on graphite have been reported. The

ro-vibrational distribution has been measured for molecular hy-

drogen formed via reactions involving physisorbed H atoms on

a graphite substrate held at 15–50 K. The measurements show

high vibrational excitation energies with the vibrational distribu-

tion peaking at v = 4 ( Latimer et al., 2008 ), while only minimal ro-

tational excitation, corresponding to an excitation temperature of

300 K, was observed ( Creighan et al., 2006; Latimer et al., 2008 ).

Theoretical calculations predict significantly higher vibrational ex-

citation ( Morisset et al., 2005 ). 

The kinetic energy for hydrogen molecules formed from re-

actions between chemisorbed H atoms on graphite has been

measured experimentally and yielded an average of 1.4 eV

( Baouche et al., 2006 ). No measurements exist of the energy parti-

tioning for molecular hydrogen formed by Eley-Rideal abstraction

reactions with chemisorbed species. However, using relaxed sur-

face, theory predicts that the majority of the released energy goes

into vibrational excitation ( Bachellerie et al., 2009; Martinazzo and

Tantardini, 2006a, 2006b; Morisset et al., 2003, 2004; Sizun et al.,

2010 ) . In these calculations geometrical constraints limit informa-

tion on the partitioning into rotational excitation. However, ap-

proximating the surface as rigid, theoretical results ( Farebrother

et al., 20 0 0; Meijer et al., 20 01 ) reveal H 2 forms with low vibra-

tional excitation and high rotational excitation. 

H 2 formation on amorphous carbon surfaces. Molecular hydrogen

formation was studied experimentally on low temperature (5–

20 K) compact amorphous carbon surfaces upon irradiation with

200 K H and D atoms. Formation efficiencies above 50% were ob-

served at 5 K, followed by a rapid fall off in efficiency with in-

creasing surface temperature to below 10% at 18 K ( Pirronello et al.,

1999 ). This fall off in efficiency was ascribed to the short lifetime

of weakly bound physisorbed H/D atoms at increased tempera-

tures, and may also indicate a reduced mobility of the adsorbed

atoms, compared with the case of graphite. The height of the dif-

fusion barrier in this situation is expected to be very strongly de-

pendent on the exact nature of the carbonaceous surface. 

Molecular hydrogen formation on hydrogenated porous, defec-

tive, aliphatic carbon surfaces has also been studied experimen-

tally. H atoms chemisorb strongly to carbon defects with low acti-

vation barriers, an experimentally determined activation barrier of

70 K has been reported ( Mennella et al., 2006 ), and typical bind-

ing energies in the range of 3 − 6 eV. Hence, molecular hydrogen

formation from two H atoms chemisorbed on such defective car-

bon surfaces is generally not energetically favorable. However, once

the high energy binding sites have been saturated with H atoms,

less tightly bound H species may then adsorb and be available

for reaction. Furthermore, molecular hydrogen formation involving
hemisorbed H atoms on these surfaces can still proceed via Eley-

ideal or hot atom abstraction reactions. The cross-section for such

eactions has been determined for a hydrogenated porous, defec-

ive, aliphatic carbon surface over a substrate temperature range

3 − 300 K and for H atom temperatures ranging from 80 to 300 K.

he results show that the reaction is barrierless at low surface

emperatures, while a small activation barrier of 130 K was found

t surface temperatures above ∼ 100 K ( Mennella, 2008 ). An ab-

traction cross-section of 0.03 Å 

2 , roughly 1/100 of the value found

n graphite, was reported for 300 K H atoms impinging on a 300 K

ample ( Mennella, 2008 ). The energy partitioning in molecular hy-

rogen formation on these surfaces is determined by the exoer-

icity of the reaction, as a C-H bond has to be broken, and by

he finding that the majority of the synthesized molecules are re-

ained in the porous structure following their formation. As a re-

ult, molecular hydrogen formed on these surfaces is expected to

esorb with low ro-vibrational excitation and low kinetic energy,

hat is with a temperature, effectively, that of the surface. 

An alternative molecular hydrogen formation pathway on hy-

rogenated amorphous carbon is via irradiation with VUV photons.

xperimental investigations show that irradiation of hydrogenated

morphous carbon with 6.8–10.5 eV photons leads to breaking of

ne C-H bond for every 70 incident photons. The majority of the

 atoms released by this process ( ∼ 95%) were observed to react

o form molecular hydrogen ( Alata et al., 2014 ). The H 2 molecule

ynthesized in this manner was observed to be retained in the sur-

ace structure. These dynamics again indicate that when these H 2 

olecules eventually desorb, they will do so with a ro-vibrational

istribution and kinetic energies determined by thermal equilib-

ium with the substrate. 

 2 formation on PAHs. The ability of PAH molecules to catalyze

olecular hydrogen formation has been investigated by several

uthors ( Cazaux et al., 2016; Mennella et al., 2012; Rauls and

ornekær, 2008; Snow et al., 1998; Thrower et al., 2012 ). Simple

bstraction of H atoms from the PAH, by incident H atoms to gen-

rate H 2 , is not energetically favorable on un-functionalized PAH

olecules, due to the high C-H bond energies of ∼ 4.8 eV. How-

ver, such reactions can be activated by the initial addition of ex-

ess H atoms to the PAH molecule, which then becomes super-

ydrogenated. Both experimental and theoretical calculations have

emonstrated that this superhydrogenation via hydrogen atom ad-

ition is possible ( Cazaux et al., 2016; Mennella et al., 2012; Rauls

nd Hornekær, 2008; Thrower et al., 2012 ). Addition barriers for

AHs vary, depending on charge state and degree of superhydro-

enation ( Cazaux et al., 2016; Rauls and Hornekær, 2008 ). 

On the cation of coronene (a prototypical PAH), the first H ad-

ition to a C atom on the periphery of the molecule, an “edge”

arbon, has a very small barrier (10 meV); while a second H

tom addition has been calculated to have a barrier of 30 meV

 Cazaux et al., 2016 ). Subsequent H addition reactions have bar-

iers which alternate in magnitude. Some of the barriers are much

igher (of the order of 0.1 eV), leading to the predominance of

oronene cations with a magic number of H atoms attached (+5,

11 and + 17 extra hydrogens). The barriers for H addition to a

oronene cation with an even number of extra H atoms is large,

hile hydrogenation of a coronene cations with an odd number of

xtra H atoms is small, and this alternation occurs until full hydro-

enation is reached. 

On neutral coronene, a barrier of 60 meV for the addition of

he first H atom to an edge site has been calculated. Subsequent

 addition reactions have lower barriers or are even barrierless

 Rauls and Hornekær, 2008 ). Comparable experiments on coronene

how that the first H atom addition, for atoms with energies of

40 0–20 0 0 K, has a cross-section of 0.7 ± 0.4 Å 

2 ( Thrower et al.,

012 ). Experiments on both cationic and neutral PAHs demonstrate
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hat, for H atom beams with energies ranging from 300 K - 20 0 0 K,

igh degrees of superhydrogenation (in many cases complete su-

erhydrogenation) with one excess H atom per C atom, are attain-

ble ( Skov et al., 2014 ). 

For the neutral coronene molecule, hydrogen addition mea-

urements can be simulated using addition cross-sections ranging

rom 0.55-2.0 Å 

2 ( Cazaux et al., 2016; Skov et al., 2014; Thrower

t al., 2012 ). However, once the molecule is super-hydrogenated,

bstraction reactions to form H 2 compete with H atom addition

 Rauls and Hornekær, 2008 ); such abstraction reactions are of-

en barrierless. These abstraction reactions have been directly ob-

erved, via H-D exchange, using the coronene molecule ( Mennella

t al., 2012; Thrower et al., 2012 ). For incident H atoms at 300 K,

n abstraction cross-section of 0.06 Å 

2 per excess H atom was

easured ( Mennella et al., 2012 ). For more energetic H atoms

20 0 0 K) a lower cross-section of 0.01 Å 

2 per excess H atom was

bserved to yield better agreement between simulations and mea-

urements ( Skov et al., 2014 ). 

.2.4. Water ice surfaces 

In cold molecular clouds where the visual extinction is larger

han 3, cosmic dust grains are covered by water ice. The abun-

ance of the H 2 molecule in molecular clouds is determined by

he balance between destruction in the gas phase and formation

f H 2 on the icy dust surfaces. In this section, we briefly overview

he experimental work studying the physico-chemical processes in-

olving hydrogen, which lead to H 2 formation on these icy mantles

overing the dust grains. As discussed above, H 2 formation gener-

lly occurs via a sequence of elementary processes: sticking, sur-

ace diffusion, and recombination reactions. Each process has been

argeted by various classes of experiments which will be described

n the following subsections. 

Upon H 2 formation, dissipation of the heat of reaction must

ccur. Following the recombination event, the excess energy of

bout 4.5 eV has to be partitioned between the kinetic and in-

ernal energy of the nascent H 2 and the grain. The kinetic energy

f the molecule is redistributed by collisions and remains within

he cloud, while internal excitation followed by deexcitation gen-

rates IR photons that may escape from the cloud. Special atten-

ion should be paid to the OPR of the nascent H 2 molecules. The

nergy difference of ∼ 14.7 meV (corresponding to 170 K) between

he ground states of the two nuclear spin isomers (ortho and para

tates) is large enough to affect the gas phase chemistry of H 2 in

olecular clouds at around 10 K. Furthermore, since the conver-

ion between the nuclear spin states is forbidden in the gas phase,

rtho-para interconversion on the ice surface plays a crucial role in

etermining the OPR of H 2 . 

nterstellar Ices. Astronomical observations show that the 3 μm-

ands seen in the infrared absorption spectra of dust are well ex-

lained by the existence of water ice as a mantle in polycrystalline

nd/or amorphous forms ( Smith et al., 1988; Whittet, 1993 ). Amor-

hous ice (hereafter, Amorphous Solid Water: ASW) dominates at

ow temperatures over the polycrystalline (PCI) phase. Therefore,

xperimental studies began by preparing and characterizing ASW

s an analogue of interstellar ice mantles. The quantity of ice ob-

erved in such mantles cannot be due to simple freezing out (ac-

retion) of H 2 O molecules synthesized in the gas phase; thus, re-

ctions on the grain surface between hydrogen and oxygen are re-

uired. Nevertheless, it is generally believed that ASW produced

xperimentally by the deposition of water vapor onto cold sub-

trates reproduces interstellar ice-mantles fairly well. However, it

hould be noted that the porosity of ASW strongly depends on

he substrate temperature and the deposition method of H 2 O va-

or ( Stevenson et al., 1999 ). Furthermore, it is known that addi-

ional processing due to D-atom exposure on pre-deposited ASW
 Accolla et al., 2011 ) and also synthesis of ASW through D + O 2 

eaction on cold surfaces ( Oba et al., 2009 ) result in formation of

ompact (less-porous) amorphous ice. For the experiments relevant

o H 2 formation on icy dust grains, the ASW samples were typi-

ally prepared at around 10 K by introducing H 2 O vapor into vac-

um chambers, sometimes through a capillary plate. 

The chemical and physical properties of ASW are an important

esearch target not only for astronomers but also for physicists and

hemists (for a review, see Watanabe and Kouchi, 2008 ). Briefly,

he main remarkable features of ASW produced at ∼ 10 K are: the

orous structure with its large surface area and, because of its ir-

egular morphology, the wide variety of different adsorption sites

or hydrogen atoms and molecules. The surface area of ASW was

ound to be 10 times larger than that of polycrystalline ice when

SW was deposited with the amount of 10 17 molecules cm 

−2 at

0 K ( Hidaka et al., 2008 ). These features significantly influence

he associated physico-chemical processes of hydrogen atoms and

olecules, such as adsorption, desorption and diffusion, when they

nteract with the ice surface. 

ticking and adsorption energy. H 2 formation by H-H recombina-

ion first requires adsorption of H atoms onto the icy mantle of

 dust grain. Therefore, the sticking coefficients and adsorption

nergies of H atoms on these surfaces are key parameters. Be-

ause of significant experimental difficulties in quantifying these

rocesses, these quantities have often been obtained theoretically.

n such calculations, both semi-classical and quantum approaches

ave been employed ( Al-Halabi and van Dishoeck, 2007; Buch and

zerminski, 1991; Buch and Zhang, 1991; Hollenbach and Salpeter,

970, 1971; Masuda et al., 1998; Takahashi et al., 1999b ). Here ad-

orption energies of H atoms on crystalline water ice and ASW

ere determined to be in the range of 30 0–60 0 K. Al-Halabi and

an Dishoeck (2007) showed that the adsorption energy for H

toms on ASW is higher than that for crystalline ice by approxi-

ately 200 K. 

Molecular Dynamics calculations (MD) showed that the stick-

ng coefficients of H atoms on ASW are near unity at around 10 K,

hen the kinetic energy of the impinging atoms is less than about

00 K. In the MD calculations ( Al-Halabi et al., 2004; Al-Halabi

nd van Dishoeck, 2007; Buch and Zhang, 1991 ), adsorption is de-

ned as trajectories having stabilized at a total H-atom energy of

100 K for duration of < 10-15 ps, where the total energy con-

ists of the adsorption and kinetic energies of H atom. The stick-

ng coefficient was found to decrease steeply with the increasing

ncident energy of atoms. However, it should be noted that MD

alculations can only follow a very short time period of the H-

tom dynamics. Thus, the calculated sticking coefficients may dif-

er from those derived under realistic conditions in experiments

nd astrophysical environments ( Al-Halabi et al., 2004 ). Buch and

hang (1991) evaluated the temperature dependence of the stick-

ng coefficient. A very good match between the experimental val-

es of the sticking coefficient for molecular hydrogen and the

heoretical value has been found ( Matar et al., 2010 ). The stick-

ng coefficients for H atoms calculated to date are summarized in

eeraghattam et al. (2014) . However, direct measurements of the

ticking coefficients and adsorption energies of H atoms are not

asy to perform and thus have not yet been made. 

iffusion. In molecular interstellar clouds, the accretion of an H

tom onto a dust grain occurs about once a day and the cover-

ge of H atoms on the dust grains is considered to be very low.

n this situation, the LH mechanism should dominate the recom-

ination process. Since the recombination itself is a radical-radical

arrier-less reaction, the surface diffusion of H atoms across the

ust surface is the rate-limiting process for H formation. 
2 
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The diffusion rate, via thermal hopping over the appropriate en-

ergy barriers, can be simply derived from the Arrhenius equation.

For example, assuming activation energies of 200 and 500 K with

a frequency factor of 10 12 s −1 , the hopping rates become 10 3 and

10 −10 s −1 , respectively, at a surface temperature of 10 K. However,

since in reality the surfaces of ASW and even those of PCI con-

sist of a variety of adsorption sites accessed by different diffusion

barriers, it is not easy to predict the actual diffusion rate. Further-

more, diffusion by tunneling should also be considered at low sur-

face temperatures. 

The tunneling-diffusion rate is much more sensitive to the

shape, especially width, of barriers than thermally activated hop-

ping. Although a rectangular potential is often used for estimat-

ing a tunneling rate, this is a very simplified model. The tunnel-

ing diffusion of H atoms on ice was first studied theoretically by

Smoluchowski (1983) . He evaluated tunneling diffusion for a non-

periodic amorphous structure and indicated that the diffusion on

ASW is significantly slower than on PCI, leading to a correspond-

ing recombination rate at least three orders of magnitude lower on

ASW. 

In recent years, assuming a thermal hopping mechanism, ac-

tivation energies for H atom surface diffusion have been derived

from TPD experiments. Analyzing the TPD spectra obtained ex-

perimentally after H or D atoms have been deposited on ASW,

Perets et al. (2005) reported the activation energy to be in a range

of 41–55 meV. Similarly, applying a simple rate equation model to

the results of TPD experiments, Matar et al. (2008) determined the

activation energy of D atom diffusion to be about 22 meV. This

discrepancy in the results between the two groups could partly

originate from different surface coverages of atoms, which require

different diffusion lengths to be covered for recombination. Since

the energy depths of adsorption sites have a distribution, long-

distance diffusion tends to be limited by higher activation barriers

than short-distance diffusion. Also, for an irregular surface struc-

ture, like that of ASW, TPD experiments, and their analysis by rate

equation models with multiple parameters, result in some ambigu-

ity in determining the value of the diffusion barrier. 

Recently, using a combination of laser-induced photo-

desorption and resonance enhanced multi-photon ionization

(REMPI) methods, Watanabe and coworkers clarified how the

diffusion mechanisms, either tunneling or thermal hopping, de-

pend on the diffusion distance on ices ( Kuwahata et al., 2015 ),

and measured the activation barriers for thermal hopping of H

and D atoms on ASW ( Hama et al., 2012; Watanabe et al., 2010 ).

Watanabe and coworkers demonstrated that the ASW surface

contains various sites that can be categorized into at least three

groups: very shallow-, middle-, and deep-potential sites, with

associated diffusion activation energies of < 18, 22 (23 meV for D

atoms), and > 30 meV, respectively. These values of barriers cover

those obtained by TPD experiments, and have been confirmed by

recent quantum calculations ( Senevirathne et al., 2017 ). 

H 2 formation on ices. 

Formation by recombination. H 2 formation by atomic recombi-

nation has most commonly been investigated in TPD experiments

where the yields of H 2 , HD, and D 2 were detected as a result of

the recombination of H and/or D atoms which were deposited on

ASW ( Amiaud et al., 2007; Hornekær et al., 2003; Manicò et al.,

2001; Perets et al., 2005; Roser et al., 2002 ). In these experiments,

recombination efficiencies, as a function of the surface tempera-

ture, were determined together with several parameters charac-

terizing elementary processes such as diffusion. These results are

well-summarized elsewhere ( Vidali, 2013 ). Another class of exper-

iment was performed by monitoring the yield of H 2 or HD species,

formed by recombination, which were then photodesorbed from
he ASW surface; no formal heating of the surface was performed

 Hornekær et al., 2003; Watanabe et al., 2010 ). 

As noted above, the formation of H 2 by atomic recombina-

ion releases an excess energy of about 4.5 eV. The partitioning

f this energy resulting from H 2 formation is an important issue

n astronomy. This importance arises because ro-vibrational emis-

ion observed from H 2 may partly be due to excitation by the

nergy released by recombination ( Takahashi and Uehara, 2001 ,

nd references therein). The number of studies probing the energy

artitioning upon H atom recombination on ASW is limited. MD

alculations showed that H 2 synthesized from H atoms on ASW

an be vibrationally excited in v = 7-8 ( Takahashi et al., 1999a ).

oser et al. (2003) demonstrated experimentally that the kinetic

nergy of the desorbing H 2 molecules, formed by recombination

n ASW, is almost equivalent to the surface temperature. Consid-

ring the vibrational energy of the nascent H 2 , no highly excited

pecies have been detected following atomic recombination on ice

 Hama et al., 2012; Hornekær et al., 2003 ). This lack of vibrational

xcitation may well be because most of the freshly synthesized H 2 

olecules are re-trapped within the ASW layer and thermalized

here ( Watanabe et al., 2010 ). 

Formation by energetic processes. Energetic agents (ions, elec-

rons and photons) irradiating ices and ice mixtures can dissociate

olecules. The fragments of such dissociative processes can recom-

ine to generate new molecules. 

- Ion bombardment: Brown et al. (1982) performed the first

quantitative measurements of H 2 and O 2 formation following

ion irradiation by sending 1.5 MeV He + onto layers of ASW a

few hundred Angstrom thick, with the surface held at 10 K.

The radicals generated, that are mobile in the energized re-

gion around the ion track, recombine in a variety of differ-

ent ways and diffuse out of the ice layer during the irradia-

tion. When investigating effects induced by energetic agents,

it is mandatory to use dose rates in the range in which the

effects (molecule formation, sputtering and so on) are propor-

tional to fluxes. Only under such conditions single particle ef-

fects, not cumulative ones, are measured. Under these condi-

tions experimental results may be applied to interstellar envi-

ronments, where particle fluxes are orders of magnitude lower

than those used in the laboratory. With this ”caveat”, the yields

(i.e. the average number of molecules released by the ice per

each impinging ion) were measured as function of the ice tem-

perature (see Fig. 7 of Brown et al., 1982 ). Values measured

in the laboratory, for a narrow range of energies of the im-

pinging ions, may be extrapolated to all other energies encoun-

tered in space by taking into account that the formation and

release of product species scale with the stopping power d E /d x

(the energy lost per unit path length in the solid) of swift ions.

The yield then reaches its maximum for kinetic energies of the

fast ions around roughly 100 keV per nucleon, in the case of

light ions ( Brown et al., 1982 ). Pirronello and Averna (1988) and

Averna and Pirronello (1991) used these laboratory results in a

Monte Carlo simulation to asses the importance of the produc-

tion of H 2 by cosmic ray bombardment of icy grain mantles in-

side, and at the edge of, dense clouds. Their evaluation should

be revised due to the fact that the ionization rates involving

cosmic rays in dense clouds have been increased by about an

order of magnitude since their papers where published (see e.g.

Caselli et al., 1998b ). 

- UV Irradiation: Westley et al. (1995a ); 1995b ) observed the

H 2 yields desorbed from 50 to 100 K ice during irradiation

with Ly- α photons. Kouchi and Kuroda (1991) measured the

thermal desorption spectra of H 2 molecules from UV-irradiated

pure water ice. These were both rather qualitative investiga-

tions. Later, UV irradiation of water ice ( Watanabe et al., 20 0 0 )
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showed that the fraction of D 2 molecules formed in D 2 O ice, at

12 K, after a dose of 10 18 cm 

−2 UV photons ( λ∼ 126, 172 nm)

was around 2% of the number of irradiated D 2 O molecules.

Most of the D 2 molecules produced, in contrast to the case of

ion irradiation, remained trapped in the ice layer. The estimated

cross section for this molecular synthesis was about 2 . 4 × 10 −18 

cm 

2 , a value that may render such a process non-negligible un-

der the UV conditions pertaining in certain molecular clouds.

Yabushita et al. (2008) detected the formation and release of

H 2 molecules in highly excited states (v = 0-5; J = 0-17) follow-

ing UV (157 nm) irradiation of ASW at 100 K. Using the REMPI

technique, they were able to recognize two distinct formation

mechanisms of H 2 : a hot H atom abstracts an H atom from an

H 2 O molecule, yielding cold H 2 molecules, and recombination

of two H atoms that yields ro-vibrationally hot H 2 . 

- Electron Irradiation: In H 2 formation induced by electron irra-

diation of water ice it is important to understand the process of

secondary electron generation by ion bombardment of ice. The

process of direct injection of free electron from the gas phase is

not very relevant to interstellar environments. Kimmel and Or-

lando (1996) and Kimmel et al. (1994) studied the production

of molecular H(D) 2 by irradiating ASW with low energy (5–

100 eV) electrons. The D 2 yield increased monotonically with

the temperature of the substrate in the range 88 - 145 K, dou-

bling at the highest temperatures. The D 2 molecules showed

very little translational energy (20 - 50 meV) but were vibra-

tionally ( v = 0 - 4) and rotationally ( J = 0 - 12) excited. The au-

thors suggested that the dominant mechanisms for production

of D 2 at 100 eV incident electron energy are dissociative recom-

bination of holes (D 2 O 

+ or D 3 O 

+ ) with quasi-free or trapped

electrons and dissociation of excitons at the vacuum-surface in-

terface. 

rtho to para conversion of H 2 on ice. The ortho-to-para ratio (OPR)

f H 2 released into the gas phase affects the chemical evolution of

 cloud, including deuterium fractionation, ( Bron et al., 2016; Ma-

umdar et al., 2017; Pagani et al., 2011 ). As noted above this affect

f the OPR arises because the energy difference between the ortho

nd para rotational ground states is ∼ 14.7 meV; this energy cor-

esponds to a temperature of 170 K, which is significantly higher

han the local temperature of molecular clouds. 

The radiative transformation between ortho and para states is

orbidden in the gas phase. Therefore, it is highly desirable to un-

erstand how the OPR behaves when the molecules are adsorbed

n icy dust grains. Watanabe et al. (2010) demonstrated experi-

entally that the OPR of nascent H 2 formed on ASW, at a surface

emperature of around 10 K, is at the statistical value of 3, but di-

inishes rather quickly when H 2 is adsorbed on ice at 10 K. Sim-

larly, Gavilan et al. (2012) reported that the OPR of D 2 formed on

SW showed a statistical OPR. 

In recent years, using the REMPI method, ortho-to-para con-

ersion rates have been measured on ASW. Sugimoto and Fuku-

ani (2011) determined a conversion rate of ∼ 2 . 7 × 10 −3 s −1 for H 2 

nd found that the conversion rate for D 2 is much slower than that

or H 2 ; a fact later confirmed by another group ( Hama et al., 2012 ).

hehrouri et al. (2011) reported that trace amounts of O 2 on ASW

ccelerates the nuclear spin conversion for D 2 . The conversion

echanism on ASW was first proposed by Sugimoto and Fuku-

ani (2011) . However, the role of surface temperature is not consid-

red in their model. Very recently, the conversion rate for H 2 was

ound to increase steeply, from ∼ 2 . 4 × 10 −4 to ∼ 1 . 5 × 10 −3 s −1 ,

ver the temperature range of 9.2 - 16 K ( Ueta et al., 2016 ). This

emperature dependence of the conversion rate can be explained

y an energy dissipation process via phonons. 
.3. Astrophysical models 

In the domain of astrophysics, numerical models are of tremen-

ous importance. Astrophysical objects are complex systems cou-

ling a wide range of physical and chemical processes and of spa-

ial and temporal scales where physical conditions (density, UV

ux, etc) vary by orders of magnitude. In contrast, laboratory ex-

eriments isolate one or a few processes, which they study over a

imited range of physical conditions. Numerical models then con-

titute the indispensable link between our experimental and theo-

etical knowledge of the elemental processes and astronomical ob-

ervations, transforming experimental results into observable pre-

ictions, and tracing back unexpected observations to specific pro-

esses that need to be investigated in the laboratory. 

Due to computational limitations, models cannot treat all as-

ects at the most detailed level. Astrophysical models differ in

he way they focus on some parts of the physics and chemistry,

hich they treat in great detail because they are the most rele-

ant in a given astrophysical environment, while neglecting, or ap-

roximating more crudely, other aspects that are less relevant. We

rst present here the main approaches to modeling the H 2 forma-

ion rate itsef, before discussing the broad families of astrophysical

odels where these approaches are used, defined in term of the

reas of physics and chemistry where they place their focus. 

.3.1. Calculating H 2 formation efficiency in models 

In order to calculate the H 2 formation rate in models based on

aboratory experiments and/or astrophysical observations, different

ethods (corresponding to different levels of approximation) have

een used. 

Until relatively recently, most types of models used an approach

ased entirely on observational measurements of the H 2 formation

ate in diffuse molecular clouds ( Gry et al., 2002; Jura, 1974 ). This

pproach simply parameterizes the formation rate as the product

f the atomic hydrogen abundance n (H), the total gas density n H 
as a tracer of the dust abundance), and an efficiency parameter

 f , determined to be roughly 3 × 10 −17 cm 

3 s −1 . Additional depen-

encies, like metallicity and gas temperature, were often included,

ometimes also taking the experimentally measured sticking effi-

iency into account. 

The simplest approach based only on laboratory data is known

s the rate equation approach , treating the surface abundances

here of H and H 2 ) as continuous variables obeying differen-

ial equations (similar to gas phase chemistry), using the exper-

mentally constrained rates for each process (desorption, migra-

ion, etc). One such widely used rate equation model of H 2 for-

ation is Cazaux and Tielens (20 02) , 20 04 ). Despite its advan-

ages of simplicity and low computational cost, several approxi-

ations in this approach can be problematic in some regimes so

hat other numerical techniques have been developed ( Herbst and

hematovich, 2003 ). The first main problem is the fact that sur-

ace populations on dust grains can be of the order of unity, which

ake their discrete nature crucial (e.g. Langmuir-Hinshelwood for-

ation goes from impossible to possible when going from a sin-

le adsorbed atom on a grain to two). In addition, this approach

isses any spatial effects on the surface (preferential chemisorp-

ion on neighboring sites to a chemisorbed atom, different adsorp-

ion sites have different binding energies on amorphous surfaces,

tc). The methodology also assumes a fixed dust temperature while

he temperature of small grains fluctuates due to stochastic heat-

ng by UV photons. 

The discrete nature of surface population results in random

uctuations (due to, for example, the stochastic nature of atom ad-

orption and desorption events). This can be accounted for by de-

cribing the surface populations. in statistical terms, by a probabil-

ty distribution function obeying a master equation (again based on
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the experimentally constrained rate for the elemental processes)

and solved to compute the average formation efficiency ( Biham

et al., 2001; Green et al., 2001 ). This approach is thus commonly

called the master equation approach . Analytical solutions are some-

times possible ( Biham and Lipshtat, 2002 ), otherwise, numerical

solution of the master equation incurs a significantly higher nu-

merical cost than rate equation approaches. Approximations allow-

ing faster solution have been proposed, such as the moment equa-

tion approach ( Le Petit et al., 2009; Lipshtat and Biham, 2003 ). A

careful comparison of the master equation methodology to various

approximations of this approach, and to the simpler rate equation

formalism, was presented in Rae et al. (2003) . The master equa-

tion approach has also been extended to simultaneously account

for dust temperature fluctuations of small grains ( Bron et al., 2014 ).

Finally, Monte Carlo simulations can, in principle, take any level

of detail into account, by simulating realizations of the random

evolution of the system (again using experimentally constrained

rates), over which averages and other statistics can be computed

( Charnley, 2001 ). This approach is, however, very costly in term of

computational time, and is thus rarely used inside complete as-

trophysical models. It has been used to study spatial effects ne-

glected by other approaches, such as variations of binding energies

across the surface ( Chang et al., 2005; Cuppen and Herbst, 2005 ),

or the effect of dust temperature fluctuations ( Cuppen et al., 2006 ).

Vasyunin et al. (2009) and Chang and Herbst (2014) have pre-

sented a new generation of Monte Carlo models computing both

the gas-phase and surface chemistries for large networks (simi-

lar to the ones used by rate equation models). These models are

called unified Monte Carlo models. Chang and Herbst (2014) how-

ever use a microscopic approach for the surface chemistry and a

macroscopic one for the gas whereas Chang and Herbst (2014) use

a macroscopic approach for both these environments. 

We also note that modifications to the simple rate equation ap-

proach have been proposed to approximate effects such as dis-

crete population fluctuations ( Cuppen and Garrod, 2011; Garrod,

2008 ), diffusion on a spherical rather than plane surface ( Lohmar

and Krug, 2006; Lohmar et al., 2009 ), or surface inhomogeneity

( Chang et al., 2006 ). 

2.3.2. Hydrodynamical and MHD simulations 

Hydrodynamical and Magneto-Hydro-Dynamical(MHD) simula-

tions aiming at reproducing astrophysical systems, such as galaxy

formation and star formation within molecular clouds, solve the

equations for the hydrodynamics (or the magnetohydrodynamics,

when fluids are magnetized) in order to describe the evolution in

time of the system. However, the coupling of detailed chemistry

to these high-resolution, multi-dimensional time-dependent simu-

lations is still challenging. 

While most hydrodynamical and MHD simulations only treat

gas dynamics (possibly including thermal balance and gravity), it

is only in recent years that computational capabilities have allowed

us to include the formation of molecular hydrogen. However, since

in astrophysical simulations the scales at which the H 2 molecules

form are never resolved, the formation and destruction processes

are included as sub-grid models, described by reaction rates de-

rived from observational constraints ( Gry et al., 2002; Jura, 1974 ). 

Approximate, less computationally demanding, approaches to

compute H 2 abundances are usually stationary ( Krumholz et al.,

2009; Kuhlen et al., 2012; Robertson and Kravtsov, 2008 ). In con-

trast, a time-dependent and self consistent description of the

chemical evolution of the system requires much greater compu-

tational resources ( Bekki, 2013; Dobbs et al., 2008; Glover and

Abel, 2008; Glover et al., 2010; Glover and Mac Low, 2007a, 2007b;

Gnedin et al., 2009; Henderson and Bekki, 2016; Hocuk et al., 2016;

Koyama and Inutsuka, 2002; Mac Low and Glover, 2012; Micic
t al., 2013, 2012; Pelupessy et al., 2006; Smith et al., 2014; Val-

ivia et al., 2016; Walch et al., 2015 ). 

The treatments used can involve different degrees of detail in

epresenting the chemical networks. Approaches range from fol-

owing the evolution of the H 2 abundance only ( Valdivia et al.,

016 ), or that of a few more species in reduced networks ( Glover

t al., 2010; Lim et al., 2001, 1999 ), to much more complex chem-

cal networks containing hundreds of chemical species and thou-

ands of coupled chemical reactions ( Grassi et al., 2013; Ziegler,

016 ). The elemental processes of H 2 formation (diffusion, desorp-

ion,) are usually not treated in these models, and simplified for-

ulae are used, based observational determinations of H 2 forma-

ion efficiency ( Gry et al., 2002; Jura, 1974 ) and scaled by the stick-

ng coefficient of hydrogen atoms and the total dust cross-section

er hydrogen nucleon ( Bekki, 2013 ). 

The dominant destruction of H 2 by photo-dissociation brings

 complication, as it requires some calculation of radiative trans-

er. Dust extinction and self-shielding by H 2 (in the approxima-

ion of Draine and Bertoldi 1996 ) are usually taken into account,

nd are crucial in order to obtain the right photo-dissociation rates

 Hartwig et al., 2015 ). Since the computational cost of calculat-

ng column densities is high ( Clark et al., 2012; Valdivia and Hen-

ebelle, 2014 ), simulations use simplified treatments, such as ray-

racing schemes ( Inoue and Inutsuka, 2012 ), logarithmic approx-

mations ( Clark et al., 2012; Valdivia and Hennebelle, 2014 ), and

ven constant shielding parameters to avoid modeling radiative

ransfer in the Lyman and Werner bands. 

Hydrodynamical and MHD simulations have shown that the for-

ation of H 2 begins in the initial phases of the molecular cloud

ormation ( Clark et al., 2012; Glover and Abel, 2008 ), and that

ompressive motions within the gas (either driven by the galaxy

ynamics or the turbulence) accelerate the formation of molecu-

ar hydrogen on galactic scales ( Dobbs et al., 2006 ), as well as on

he scale of interstellar clouds ( Glover and Mac Low, 2007a, 2007b;

icic et al., 2012; Valdivia et al., 2016 ). Clark et al. (2012) and

mith et al. (2014) have shown that the formation of CO, which

s the main tracer of molecular gas, is significantly delayed with

espect to the formation of H 2 . Theoretical ( Smith et al., 2014;

olfire et al., 2010 ) and observational studies ( Grenier et al., 2005;

anger et al., 2014; Paradis et al., 2012 ) point out that there is a

ignificant amount of H 2 (between 30 and 70 percent) which is

ot traced by CO. 

Simulations have shown that the multiphase nature of molecu-

ar clouds (where a cold and dense phase coexists with a diffuse

nd warm one), and their turbulent motions, have a significant

ffect on the abundance of H 2 . Turbulent motions mix the cold

nd warm phases, while the multiphase structure allows the sur-

ival of molecules in shielded pockets of warm gas ( Valdivia et al.,

016 ). The presence of a hot phase provides a confining pressure

hat increases the abundance of H 2 in cold gas clumps ( Dobbs and

onnell, 2007 ). Such a conclusion is consistent with the results

f Henderson and Bekki (2016) , who find that in disk galaxies a

trong ram pressure enhances the formation of H 2 . 

Since molecular hydrogen also contributes to the cooling of the

as, it is perhaps expected that abundances of H 2 should affect

he star formation rate and the spatial distribution of star form-

ng regions ( Christensen et al., 2012 ). However, the recent works

f Glover and Clark (2014) and Richings and Schaye (2016) have

hown that H 2 has little influence on the star formation process.

n the other hand, the abundance of H 2 is important for molecu-

ar outflows ( Richings and Schaye, 2016 ), and it plays an important

ole on the warm chemistry of the ISM ( Valdivia et al., 2017a ). 

.3.3. Kinetic models for complex chemistry 

Astrochemical models aiming at studying the molecular com-

lexity in dense and shielded interstellar regions (cold cores for
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nstance) focus on a detailed description of the complex chemical

etwork at play, and on the time-dependent aspect of this chem-

stry (as some chemical timescales become comparable to the dy-

amical lifetime of these clouds). Such models thus solve kinetic

ifferential equations in which each individual chemical and phys-

cal process is assigned a rate ( Wakelam et al., 2013 ). 

The first kinetic models ( Graedel et al., 1982; Leung et al.,

984; Prasad and Huntress, 1980 ) were based solely on gas-phase

hemistry (bimolecular reactions, interactions with UV photons or

osmic-ray particles). In these models, the H 2 formation rate was

omputed from the collision rate of H atoms with dust grains

 Hollenbach and Salpeter, 1971; Hollenbach et al., 1971 ). In the90 ′ s
 Hasegawa and Herbst, 1993a, 1993b; Hasegawa et al., 1992 ), mod-

ls including gas-grain interactions and grain surface chemistry be-

an to be developed. Models of the surface processes were based

n the Langmuir-Hinshelwood mechanism. The H accretion rate

epends on the grain’s geometrical cross section, the concentra-

ion of grains, the gas-phase thermal velocity of the H atoms and

 sticking probability. The model then computes the time taken for

 hydrogen atom to explore the entire grain via diffusion ( t diff =
N s 

ν0 exp (−E diffus / (k B T dust )) 
with N s the total number of surface sites on a

rain). The rate of H 2 formation is 2 t −1 
diff , H 

N 

2 
H 

n d with N H the number

f H atoms on the grains and n d the number density of grains (see

asegawa et al., 1992 ). This approximation assumes that there are

t least two hydrogen atoms on the grain at each time and there-

ore overestimates the H 2 production at the accretion limit (at low

ensity) ( Caselli et al., 1998a ). 

In these models, the precise nature of the grain surface is usu-

lly ignored and it is assumed that the grains are covered by water

ce; hence, only the H 2 binding energy on H 2 O is used. The pa-

ameters required are associated with the sticking, diffusion and

esorption processes in the physisorption regime. Due to their

onnection with deuteration, ortho-to-para conversion on grains

ay also be an important phenomenon to model ( Majumdar et al.,

017; Pagani et al., 1992 ). H 2 formation on these icy surfaces may

nduce some secondary effects due to the significant amount of en-

rgy released in the formation of the H-H bond. Some experimen-

al observations, such as the reduction of the porosity of the ice

 Accolla et al., 2011 ) associated with H 2 formation, are not included

n models. Conversely, some proposed phenomena, which have

ot been observed experimentally ( Amiaud et al., 2007; Minissale

t al., 2016 ), such as molecular desorption induced by H 2 formation

 Takahashi and Williams, 20 0 0 ) or the H rejection mechanism, are

ometimes included in models ( Le Petit et al., 2009 ). 

.3.4. PDR Models 

PDR models focus on the interaction of UV radiation with

olecular clouds. They involve simultaneous computation of radia-

ive transfer and the chemical and thermal state of the gas, with

 detailed treatment of the micro-physics of both gas and grains.

urrent major examples include the Meudon PDR code ( Le Bour-

ot et al., 2012; Le Petit et al., 2006 ), the KOSMA- τ code ( Röllig

t al., 2013; Störzer et al., 1996 ), CLOUDY ( Ferland et al., 2013 ), and

he PDR codes of Kaufman et al. (2006) , 1999 ) or of Meijerink and

paans (2005) . Most of these codes are one dimensional and sta-

ionary, although some higher dimensional and/or time-dependent

odes have been developed recently (e.g., Bisbas et al., 2012; Mo-

oyama et al., 2015; Hosokawa and Inutsuka, 2006 ), often at the

ost of a simplified micro-physics and chemistry. 

In PDR models H 2 formation was initially described empirically

y a constant formation efficiency (e.g. using Jura 1974 ), but some

odes have progressively included a more detailed calculation over

 full distribution of grain sizes (e.g., Le Bourlot et al., 2012; Röllig

t al., 2013 ), using a rate equation treatment of the adsorption, mi-

ration, reaction and evaporation of physisorbed and chemisorbed
ydrogen atoms. Grains are heated by the UV photons and H 2 for-

ation thus occurs on bare silicate and carbonaceous surfaces (in

he warm surface layer of the region, where UV photons are not

et absorbed). On these warm bare grains, physisorbed atoms can

vaporate quickly and chemisorption can play an important role in

llowing an efficient H 2 formation (e.g. Le Bourlot et al. 2012 ) as

bserved in PDRs (e.g. Habart et al. 2004 ). 

Very small grains and PAHs represent the majority of the dust

urfaces on which H 2 formation can occur. H 2 formation on PAHs

ould be an important contribution to the total formation rate

 Boschman et al., 2015 ). In addition, small grains undergo large

emperature fluctuations on short time scales, as their low heat

apacities make their temperatures sensitive to single UV photon

bsorption events. These fluctuations can significantly increase the

fficiency of physisorption-based, Langmuir-Hinshelwood, H 2 for-

ation in the UV-rich environments of PDRs, as was shown by

ron et al. (2014) by coupling a master equation approach to the

eudon PDR Code. In addition, the sticking coefficients at the

arm gas temperatures of PDRs (several 100 K) are also impor-

ant parameters ( Cazaux et al., 2011 ). Finally, the role of surface

rocesses in H 2 ro-vibrational excitation (in the gas) has also been

nvestigated. Ortho-para conversion on the surface was shown to

ave an important impact on the gas-phase OPR of H 2 in PDRs

 Bron et al., 2016; Le Bourlot, 20 0 0 ). The impact of the internal en-

rgy content of the H 2 molecule following its formation has been

ess explored in models, in part due to the fact that there is little

ssociated observational data to reproduce. 

.3.5. Shock models 

Ubiquitous in the Universe, shocks are produced by violent

ressure disturbances such as star-driven (or AGN-driven) jets and

inds, supernovae explosions, and collisions between molecular

louds or, at larger scales, collisions between galaxies and between

ccretion filaments and halos of galaxies. 

Due to the coupling between the chemistry and the dynam-

cs in shocked regions, the formation of H 2 , and emission from

 2 , are among the most difficult astrophysical processes to model

see reviews addressing the physics and chemistry of interstellar

hocks by Draine, 1980; McKee and Hollenbach, 1980; Chernoff,

987; Hollenbach and McKee, 1989; Draine and McKee, 1993; Har-

igan, 2003 ). Since H 2 is one of the main coolants in shocks, its

nergetics have always been considered in molecular shock mod-

ls ( Flower et al., 2003; Flower and Pineau des Forêts, 2010; Flower

t al., 1985; Guillard et al., 2009 ). Magneto-hydrodynamic (MHD)

hock models have been updated with a benchmark of experi-

ental results associated with H 2 formation on carbonaceous ma-

erial – see e.g. models by Flower and Pineau des Forêts (2015) ,

uillet et al. (2009) with data from Cuppen and Hornekær (2008) ,

uppen et al. (2010) . In this context, the role of chemisorption

nd the transfer from chemisorbed states to physisorbed states

 Cazaux and Tielens, 2004 ) is a key point, which allows models

o bridge the low and the high temperature regimes in these en-

ironments. Due to their intrinsic high temperature gradients, re-

roducing shocked regions without taking into account both the

hemisorption and physisorption of hydrogen, and their interplay,

eems to be an oversimplification. 

In the presence of a magnetic field, ubiquitous in the ISM, the

hock wave satisfies not only the equations representing the fluid

ynamics, but also Maxwell’s equations. The magnetic field ( B )

oes not interact the same way with charged and neutral particles,

hich can result in a decoupling of the charged (ions and elec-

rons) and neutral fluids. Depending on the intensity of B and the

onization fraction of the gas, we distinguish between two types of

HD shocks, C - and J -types: 
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Fig. 10. Fractional abundance profiles in a J -shock computed with the ( Flower and 

Pineau des Forêts, 2015 ) MHD shock code. The shock velocity is 25 km s −1 and the 

pre-shock gas density n H = 10 4 cm 

−3 . The pre-shock magnetic field is B 0 = 0 μG. 

Abundances are relative to H ( n ( X )/ n H ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparison of the H 2 excitation diagrams of C - and J -type shock waves 

from the MHD code of Flower and Pineau des Forêts (2010) . For both types of mod- 

els, the shock velocity is 20 km s 
−1 

and the pre-shock density is n H = 2 × 10 4 cm 

−3 . 

For the C - (resp. J ) type model, the initial transverse magnetic field intensity is 

B = 140 μG (resp. B = 14 μG). 
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J -shocks: if B is weak or absent, or if the ionization fraction

of the gas is high, the collisional coupling between charged

and neutral particles is strong. These particles behave like

a single fluid , coupled to the magnetic field. The properties

of these shocks are similar to that of the hydrodynamical

shocks. Across the shock front, the variables (pressure, den-

sity, velocity, etc.) change abruptly (hence J for Jump . The

transition region, which has a scale of the order of the mean

free path, is treated as a discontinuity. The pre-shock and

post-shock values of the gas density, pressure and tempera-

ture are related by the Rankine-Hugoniot jump conditions. 

C -shocks: if the magnetic field is present and the ionization

fraction low (typically x e = 10 −7 − 10 −8 in dense n H = 10 3 −
10 4 cm 

−3 molecular clouds), the neutral and charged flu-

ids are decoupled from each other. These shocks are named

multi-fluids or C−shocks ( C for Continuous ), because in this

case the discontinuity is smoothed and the gas parameters

vary continuously across the shock front. 

In the shock wave, H 2 is collisionally excited (or destroyed) and

chemically destroyed, but reforms on grain surfaces in the post-

shock gas. In state-of-the art MHD shock codes (e.g. Flower and

Pineau des Forêts, 2015 ), the rate of H 2 formation is simply

parametrized as a function of the gas hydrogen density n H , the

grain density n gr and grain size r gr , and a coefficient that incor-

porates the probability that an H atom sticks to a grain, 1 / (1 +
T eff /T cr ) 

0 . 5 , with T eff being the effective grain temperature ( Le Bour-

lot et al., 2002 ) and T cr ≈ 30 − 100 K a critical grain temperature

below which the sticking probability tends to 1. In the shock codes,

the H 2 formation rate [cm 

−3 s −1 ] is thus often written as 

n H n gr π r 2 gr 

(
8 πT eff 

πm H (1 + T eff /T cr ) 

)0 . 5 

. 

Fig. 10 illustrates the impact of a dissociative J -shock wave

in a molecular cloud. The passage of a shock wave impacts the

physical and chemical quantities upon which the H 2 formation

rate depends: the hydrogen density and grain properties (see
ection 4.5.3 for a discussion about the effect of shocks on grains).

apid dissociation occurs, followed by H 2 re-formation in the post-

hock gas because a significant number of grains survive the pas-

age of the shock. Fig. 11 illustrates the impact of the nature of the

hock (i.e. B field and ionization fraction) on the H 2 excitation. For

igh energy levels, the diagram is flatter for J -shocks than for C -

hocks because the maximum temperature reached in the shock is

igher. 

MHD shock codes have been used to fit the observed H 2 di-

grams, which provide clues on the dominant excitation mecha-

ism, and physical conditions (pre-shock densities, shock veloci-

ies, magnetic field intensity), both in Galactic (e.g. Gusdorf et al.,

012 ) and extragalactic environments ( Appleton et al., 2017; Guil-

ard et al., 2009, 2012b; Lesaffre et al., 2013 ). 

. Recommended parameters 

The aim of this section is to provide a table of reviewed physi-

al parameters as inputs for models. In the previous parts, we have

evealed the heterogeneity of results associated with interstellar

 2 formation and the large variety of systems involved with this

rocess. Even though a physical parameter can be precisely defined

nd evaluated, it is often not directly usable in models in such a

undamental form. For example, experiments and calculations have

hown that for a correct description of H atom diffusion, a single

eight (and width) of a diffusion barrier is not sufficient; a distri-

ution of barrier heights is a more realistic approach. However, in

strochemical models the use of such distributions is not imple-

ented and therefore one has to choose a reasonable parameter

hat approximates the real complexity. We are well aware of the

mperfections of this approach to parametrization, but at present

t is the only approach that is viable. Therefore, each value in the

able of physical parameters is the best approximation in the view

f the authors. The parameters we present in the table are those

ommonly used in existing models. 

We propose 8 prototypical classes of surface, each class, of

ourse, often representative of a large variety of substrates: (1)

morphous and (2) crystalline silicates, (3) amorphous carbon (in-

luding a very large variety of compounds, from HAC to onion
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ings), (4) graphite, (5) PAHs and (6) PAH cations, and two mor-

hologies of ice, one geometrically flat such as (7) polycrystalline

ce, and one with a high degree of molecular disorder, such as (8)

orous amorphous ice (ASW) grown at low ( < 30 K) temperature. 

.1. Sticking coefficients 

For physisorption, the sticking coefficient is predominantly a

unction of the thermal energy of the incident atoms. Of course,

n principle, the surface temperature is also a parameter. However,

here is a distinct lack of measurements of sticking as a function of

elevant surface temperatures, and we have to neglect this param-

ter. This simplification is supported by the fact that physisorption

lays a major role in environments where the surface temperature

f grains is low and will not strongly affect sticking. We use the

arametrization of Matar et al. (2010) , of the sticking probability

s a function of T gas = T which depends on 3 parameters ( S 0 , T 0 ,

) such that 

 phys (T ) = S 0 
1 + T /T 0 

(1 + T /T 0 ) β

here β is a geometrical factor which is equal to 2.5 for the case

f isotropic deposition, which occurs in the ISM. Thus, this leaves

he parameters S 0 and T 0 . When no information exists we use

nity for S 0 as it is usually close to one. T 0 is the only scaling pa-

ameter of the sticking coefficient for physisorption. 

For sticking involving chemisorption we use the formalism of

ha et al. (2005) referred to in Cuppen et al. (2010) for the sticking

robability. This probability also depends on the surface tempera-

ure T s of the grain; 

 chem 

(T , T s ) = 

exp (−E chem 

/T ) 

(1 + 5 × 10 

−2 
√ 

T + T s + 1 × 10 

−14 T 4 

Therefore S chem 

is only governed by one physical parameter

 chem 

which is the entrance barrier to the chemisorption sites.

owever, in case of large barriers, this expression cannot be used

ecause H atoms can tunnel through the barrier and transmission

oefficients across this barrier should be accounted for, especially

t low H atom energies ( Cazaux et al., 2011 ). In this latter study,

 mixed classical-quantum dynamics calculation showed that by

onsidering phonons, the resulting sticking probabilities are differ-

nt than the transmission probabilities of the chemisorption bar-

ier, which are typically used to model sticking probabilities. How-

ver, the resulting H 2 formation rate is only slightly influenced by

he effect of phonons at low temperatures. 

.2. Energy barriers 

In the table of parameters below, we let E diffus correspond to

he height of the diffusion barrier between two physisorption sites.

 lower value means faster diffusion. E binding is the energy required

or an H atom to desorb from a physisorption site. E diffPh-Chem 

, is

he height of the diffusion barrier for going from a physisorption

ite to a chemisorption site. For the specific case of aromatic car-

on rings, the barrier to chemisorption is dependent on whether

ne or more H atoms are already chemisorbed. In this case we in-

icate the values for the first and second hydrogen atom adsorp-

ion reaction. For graphite and neutral PAHs adsorption events be-

ond the first H atom often have a significantly lower or even a

anishing barrier. 

We have not listed the diffusion barrier between two

hemisorption sites because under astrophysical conditions this

low diffusion rarely contributes efficiently to H 2 formation.

owever calculated values are available for some situations

 Ferro et al. (2003) ; Hornekær et al. (2006b )). 
E ReacCh-Ch is the barrier to the reaction of two adjacent

hemisorbed H atoms. E Bind-Ch is the binding energy of an isolated

 atom on the listed surface. 

σ ER is the cross-section in Å 

2 pr. chemisorbed H atom for H 2 

roduction via Eley-Rideal abstraction reactions with gas phase H

toms 

.3. Table of recommended values 

In Table 1 we typeset values which come directly from a value

lready described above, or in a paper cited earlier, in regular ro-

an font. Sometimes a range of existing values is indicated. For

ome other cases, the adopted value is an educated choice and

e indicate such values in italic. When several determinations of

 given parameter exist, we use bold-face in order to indicate that

hese values have been confirmed by different methods (experi-

ents or calculations). 

The lines of the table are labeled by a letter, and rows by a

umber: number 1 for the amorphous silicate, number 2 for crys-

alline silicate, number 3 for amorphous carbon, number 4 for

raphite, number 5 for PAH, number 6 for PAH cation, number 7

or crystalline ice and number 8 for porous amorphous solid wa-

er. 

Letter A refers to the sticking to physisorption sites. 

A1 : From reference Chaabouni et al. (2012) . 

A2 : No data, we propose the values of A1. 

A3 : No clear data, however due to the possibly high porosity

nd roughness, and better mass matching of aliphatic groups, the

ticking should be higher than on other substrates. The adopted

alues corresponds to a sticking of 50% at 300 K. 

A4 : Best fit from Lepetit and Jackson (2011b ). We point out

hat values for silicates and graphite surfaces seem to be very simi-

ar despite the fact that the adopted methods are independent (ex-

eriments vs calculations). 

A5, A6: No data. We propose the values of A4. 

A7 : From reference Matar et al. (2010) , although the measure-

ents were performed on compact ASW. This choice was made

ecause compact ASW has the same flat topology as the crystalline

ce and differs from the crystalline structure at meso-scale (tens of

olecules). Therefore, the sticking properties of this type of ice are

loser to crystalline ice than the very disordered amorphous solid

ater ice. 

A8 : We take the values of A7. They are lower limits because

t is known that the sticking of light species is enhanced by the

orous structures of ice (e.g. Hornekaer et al. (2005) ). We do not

dopt different and higher values because the degree of porosity

aries too much. 

Letter B refers to the energy of diffusion E diffus . between two

hysisorption sites 

B1 : From reference Perets et al. (2007) 

B2 : From reference He et al. (2011) . Note that in the case of

olycrystalline silicates there are deeper adsorption sites and that

he value of the diffusion barrier has been estimated to be 24 meV

 Katz et al., 1999 ). Furthermore, Navarro-Ruiz et al. (2014) have

omputed a value of 60 meV using a molecular cluster represen-

ative of crystalline forsterite. We keep the low value of barriers

rom the reference He et al. (2011) because it compares different

orphologies of silicates. The set of adopted binding and diffusion

arriers may be less than perfect, but it is at least self-consistent. 

B3 : From reference Katz et al. (1999) . We point out that this

alue is the highest value for the diffusion barrier of all surfaces.

e propose only this one existing value although amorphous car-

on can adopt a large variety of morphologies wiht potentially dif-

erent physical properties. 

B4 : From calculations of Bonfanti et al. (2007) 

B5, B6 : No data. We propose using the value of B4 
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B7: Diffusion on crystalline ice is known to be faster than the

apabilities of experimental measurements at 8–15 K ( Hama et al.,

012 ) which implies that the diffusion barrier is less than 18 meV.

e choose a conservative values of 16 meV, although calculations

ropose even lower values ( Senevirathne et al., 2017 ). 

B8 : There is different experimental and theoretical work rel-

tively convergent to establish a distribution of diffusion barriers

see previous section). The value 22 meV that we finally adopt is

n effective value which is a consensus between the authors. How-

ver, note the reference ( Perets et al., 2005 ) which gives a higher

alue (55 meV), the signature of a very deep physisorption site. 

Letter C refers to the binding energy E binding of the H atom ph-

sisorbed on the surface. 

C1 : From reference Perets et al. (2007) 

C2: From reference He et al. (2011) . See comment in B2 

C3: From reference Katz et al. (1999) . See comment in B3. 

C4: From Ghio et al. (1980) and Bonfanti et al. (2007) 

C5,C6: No data. We propose using the value of C4 

C7 and C8: Consensus values adopted from the work in four

ifferent groups. 

Letter D refers to the sticking to chemisorption sites. 

D1 : From reference Navarro-Ruiz et al. (2015) . 

D2 : From reference Navarro-Ruiz et al. (2014) . The presence of

n adsorbed H on the surface changes the barriers significantly:

he reaction between a chemisorbed atom and a physisorbed atom

an have a barrier as low as 74 meV. 

D3: From reference Mennella et al. (2006) . 

D4, D5, D6: From references Cazaux et al. (2016) ;

ornekær et al. (2006b ); Rauls and Hornekær (2008) . 

Letter E refers to diffusion barrier of H atom going from the

hysisorption site to a chemisorption site E di f pH −Chem 

E1: From reference Navarro-Ruiz et al. (2015) . 

E2: From reference Navarro-Ruiz et al. (2014) . See comment in

2. 

E3: Large spread in values expected. We propose using the

alue from D3. 

E4, E5, E6: These values are obtained from the corresponding D

alues by adding the binding energy of the physisorption state. 

Letter F refers to the barrier to the reaction of two adjacent

hemisorbed H atoms E ReacC h −C h . 

F1: From reference Navarro-Ruiz et al. (2015) . 

F2: From reference Navarro-Ruiz et al. (2014) . See comment in

2. 

F3: Large spread in values expected depending on e.g. aliphatic

s. aromatic nature of the amorphous film. We suggest using the

alue of F4 as a lower limit, since aliphatic structures are ex-

ected to offer even higher energy binding sites for H atoms with

ssociated higher recombination barriers. The main reactivity for

hemisorbed H atoms is expected to be via Eley-Rideal or hot-atom

eactions or via reactions with physisorbed H atoms. 

F4: From reference Hornekær et al. (2006b ) 

Letter G refers to the binding energy of an isolated H atom in

hemisorption site E Bind−Ch . 

G1: From reference Navarro-Ruiz et al. (2015) . 

G2: From reference Navarro-Ruiz et al. (2014) . See comment in

2. 

G3: Large spread in values expected depending on e.g. aliphatic

s. aromatic nature of the amorphous film. For predominantly aro-

atic films we suggest using the value of G4 as a lower limit,

hile a value of 4 eV is suggested for mainly aliphatic structures

ollowing reference Mennella (2008) . It is to note that any model

sing these combined values should also be coherent with the

alue of the cross section experimentally measured. 

G4 : From references Hornekær et al. (2006a );

ehtinen et al. (2004) 
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3 The composition of dust grains of Jones et al. (2013) and Köhler et al. (2014b ), 

for sizes up to 20 nm diameter, consists purely of aromatic-rich H-poor amorphous 

carbon (a-C), whereas bigger grains have a core/mantle structure, where the core 

consists either of amorphous silicate (forsterite and enstatite-normative composi- 

tions, Mg-rich) or aliphatic-rich H-rich amorphous carbon, a-C:H. For both core 

types, the mantle consists of aromatic-rich H-poor amorphous carbon. 
G5: Listed value is for the most stable adsorption site of

auls and Hornekær (2008) : the energies of the different adsorp-

ion sites are 700, 700, 1450 meV for central, edge and outer-edge

ites, respectively. 

G6: Listed value if for the most stable absorption site of

azaux et al. (2011) : the energies of the different adsorption sites

re 1900, 2140, 2810 meV for central, edge and outer-edge sites,

espectively. 

Letter H refers to the cross-section σ ER in Å 

2 pr. chemisorbed H

tom for H 2 production via Eley-Rideal abstraction reactions with

as phase H atoms 

H3: From reference Mennella (2008) . 

H4: From reference Zecho et al. (2002b ). 

H5: From reference Mennella et al. (2012) . 

H6: No data. We propose using the value of H5. 

The Letters I to M refer to the dynamics and other processes

bout the H 2 formation on the listed surface. The blank spaces in

his part of the table remind us that there are some important

ssues related to the formation of H 2 , like the internal energy of

he molecule released, and the capability of the surface to induce

uclear spin conversion, which are still unknown for many of our

rototypical surfaces. 

Letter I and J refer to the nascent Ortho-Para Ratio (OPR) and

o the Nuclear Spin Conversion (NSC), respectively. 

I8: from references Gavilan et al. (2012) ; Watanabe et al. (2010)

J4: from Palmer and Willis (1987) 

J8: from Ueta et al. (2016) 

Letter K refers to the repartition of the internal energy of the

 2 molecule formed. 

K1: from reference Lemaire et al. (2010) 

K3: from reference Mennella (2008) 

K4: Experiments from Creighan et al. (2006) ;

slam et al. (2007) ; Latimer et al. (2008) . Many different cal-

ulations (e.g. Morisset et al. (2005) ) 

K7: from reference Congiu et al. (2009) when some H 2 is cov-

ring the surface, unless probably medium v . 

K8: from reference Congiu et al. (2009) 

Letter L refers to the informations about kinetic energy of the

 2 molecule formed. 

L3:Expected from porous nature of the grains. 

L4: from reference Baouche et al. (2006) 

L8: Expected from the porous nature of the ice 

Letter M refers to the informations about the energetic forma-

ion, such as UV, electrons or ions bombardments, that would lead

o H 2 formation and release in the gas phase. 

M3: from reference Alata et al. (2014) 

M6: calculations Allain et al. (1996) ; Le Page et al. (2001) 

M8: Many references with ions, UV and electrons (see text

bove on water ice section) 

. H 2 formation in different astrophysical environments 

The interstellar medium involves a wide range of physical (tem-

erature and density) and irradiation (UV, X-ray and cosmic-ray

articles) conditions. In this section of the paper, we focus on

ome specific regions of the ISM were H 2 is formed, observed or

as a particular role in the chemistry of more complex species.

pecifically, we discuss: diffuse clouds, dense photo-dissociation

egions (PDRs, for which we distinguish high illumination PDRs,

bbreviated HI, and low illumination PDRs, abbreviated LI), cold

hielded regions, hot shielded regions and molecular shocks inside

he Galaxy and in other galaxies. Table 2 summarizes some key

hysical parameters of these sources. The first column gives the

V illumination measured by the G 0 parameter, which measures

he local energy density in far UV photons (between 912 Å and

400 Å), normalized to the energy density of the average interstel-
ar UV field u Habing = 5 . 3 × 10 −14 erg · cm 

−3 ( Habing, 1968 ): 

 0 = 

∫ 2400 A 

912 A u λ(λ) dλ

u Habing 

. 

he second column gives the proton density n H of the medium (in

m 

−3 ). The third and fourth columns list the gas and dust tem-

eratures. The fifth column gives the fraction of hydrogen in the

olecular form f H 2 (when this parameter is unity, all the hydro-

en is molecular). The sixth column is the observed H 2 ortho-

ara ratio (OPR). Finally, the last column gives the H 2 formation

fficiency R H 2 derived from observations (in cm 

3 s −1 ). In the fol-

owing, we present these environments and discuss the relevant

hysical-chemical processes involved in the formation and destruc-

ion of H 2 in each of these regions of the ISM. 

.1. Diffuse and translucent interstellar medium 

Diffuse clouds represent the regime in the ISM where moder-

te density clouds are exposed to the background UV field of the

alaxy (the interstellar radiation field), and consequently where

early all molecules are rapidly destroyed by photo-dissociation. In

iffuse clouds, molecular hydrogen has been observed through its

UV absorption lines ( Savage et al. 1977 with Copernicus, Gry et al.

002; Rachford et al. 2002, 2001; Shull et al. 2000; Snow et al.

0 0 0 with FUSE). In such clouds, from 10 −6 to about half of the

otal number of hydrogen nuclei are bound in hydrogen molecules

e.g., Spitzer et al., 1974; Shull and Beckwith, 1982 ). From their H 2 

ontent, these clouds can be categorized as 

• (1) Diffuse atomic clouds. Here the molecular fraction f H 2 =
2 nH 2 

2 nH 2 + nH ≤ 0.1. The density ranges from 10 to 100 cm 

−3 and

the gas and dust temperatures are around 30–100 K and 15–

20 K respectively ( Snow and McCall, 2006 , for a review). 

• (2) Diffuse molecular clouds. Here the molecular fraction f H 2 
≥ 0.1, but carbon is still mostly ionized f C + = 

nC + 
nC + + nC + nCO 

≥ 0.5.

They exist from an extinction of ∼ 0.2, and have densities

ranging from 100 to 500 cm 

−3 and gas and dust temperatures

around 30–100 K and 15–20 K respectively. 

• (3) Translucent clouds. With sufficient protection from interstel-

lar radiation (from extinctions of 1–2) carbon begins its transi-

tion from an ionized atomic state into a neutral atomic (C) or

molecular (CO) form. Clouds in this transition phase have been

defined as “translucent” ( van Dishoeck and Black, 1989 ). Here,

until Av ∼ 2, hydrogen is mostly molecular with densities from

50 0 to 50 0 0 cm 

−3 . The gas and dust temperatures are about

15–40 K ( van Dishoeck and Black, 1989 ) and 13–19 K ( Forbrich

et al., 2014; Launhardt et al., 2013; Nielbock et al., 2012; Roy

et al., 2014 ) respectively. 

.1.1. Dust properties in the diffuse and translucent ISM 

The dust properties in the diffuse ISM have been the sub-

ect of numerous studies; including, for example, the Draine and

i 2007 and Compiègne et al. 2011 models. More recently, the-

retical modeling based on laboratory experiments (THEMIS 3 ,

ones et al. 2013 ) was applied with great success in the analy-

is and interpretation of Planck, Herschel and Spitzer observations,

ven in the most diffuse regions. Ysard et al. (2015) are able, with
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Table 2 

Physical parameters of each type of astrophysical source. 

Source G 0 (Habing unit) n H (cm 

−3 ) Gas T (K) Dust T (K) f H 2 H 2 o/p R H 2 ( ×10 −17 ) 

Dense PDR (HI) a few 10 3 - 10 4 ( a ) 10 4 - 10 6 ( a, b, c ) 10 - 30 0 0 ( a ) 25 - 70 ( g ) 0 - 1 1 - 3 ( k, l ) (3 - 15) ( r ) 

Dense PDR (LI) a few 10 - 100 ( a ) 10 3 - 10 5 ( d, e ) 10 - 400 ( d ) 13 - 30 ( g ) 0 - 1 1 - 3 ( m, l, e ) (10 - 30) ( r ) 

Diffuse clouds 1 1–100 50 - 130 20 ( h ) 10 −4 − 0 . 8 ( j ) 0.4 - 0.9 ( n, o ) (3 - 5) ( s, n, o ) 

Cold Cores 1 10 4 - 10 5 ( f ) 10 ( f ) 6 - 15 ( i ) 1 0 - 0.1 ( p, q ) ? 

Hot Cores ( t ) 1 > 10 6 100 - 300 100 - 300 ? ? ? 

Shocks (Galactic) 1 - 10 ( u ) 10 3 − 10 4 ( v ) 10 - 10 4 ? 0.2 - 1 0.5 - 3 ( w ) ? 

Shocks (extra-Galactic) 0 - 100 ( x ) 10 - 10 5 10 - 10 5 ? 10 −5 - 1 ( y ) 1 - 3 ( z ) ? 

References: (a) Hollenbach and Tielens (1999) , (b) Parmar et al. (1991) , (c) Köhler et al. (2014a ), (d) Habart et al. (2005a ), (e) Habart et al. (2011) , 

(f) Bergin and Tafalla (2007) , (g) Arab et al. (2012) , (h) Planck Collaboration et al. (2014) , (i) Hocuk et al. (2016) , (j) Snow et al. (2008) , 

(k) Fuente et al. (1999) , (l) Fleming et al. (2010) , (m) Habart et al. (2003) , (n) Gry et al. (2002) , (o) Lacour et al. (2005) , (p) Troscompt et al. (2009) , (q) Pagani et al. (2009) , 

(r) Habart et al. (2004) , (s) Jura (1974) , (t) Herbst and van Dishoeck (2009) , (u) Lesaffre et al. (2013) , (v), Gusdorf et al. (2015) , (w) Nisini et al. (2010) , (x) 

Guillard et al. (2009) ; 2012b ) and Uzgil et al. (2016) , (y) Flower et al. (2003) , (z) Harrison et al. (1998) . 
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t  

i  
small variations in the dust properties, to explain most of the vari-

ations in the dust emission observed by Planck-HFI in the diffuse

ISM. 

The dust size distribution in the diffuse ISM, derived by

Ysard et al. (2015) , can be described as in the following. Small

grains ( ≤ 20 nm) follow a power-law size distribution 

4 with α= -

5, with a minimum size of a min = 40 Å. Large grains follow a log-

normal size distribution with a peak at a size of 0.15 μm. Using this

dust size distribution and the radiation field and the gas density

distribution found in the diffuse ISM, the (mass-weighted) mean

temperature of dust grains derived as being ∼ 19 K for small and

big carbon grains, and ∼ 16 K for big silicate grains. The maxi-

mum temperature has been derived as being ∼ 160 K for small

carbon grains, ∼ 50 K for big carbon grains, and ∼ 16 K for big

silicate grains. The temperature of big dust grains has also been

estimated observationally from modified blackbody fits as T ∼ 20 K

(e.g., Planck collaboration XI, 2014), but this value results from a

mix of dust at different temperatures along the line of sight. 

4.1.2. Main chemical processes for the formation of h 2 depending on 

the environment 

Diffuse clouds with low radiation field. In diffuse clouds, H 2 forms

with a rate of 1 − 3 × 10 −17 n H n (H) cm 

−3 s −1 where n H is the to-

tal proton density and n (H) is the density of H-atoms ( Gry et al.,

2002; Hollenbach et al., 1971; Jura, 1974 ). At grain temperatures

typical of diffuse cloud conditions ( Gry et al., 2002; Hocuk et al.,

2016; Mathis et al., 1983 ), which is 15–20 K, physisorbed H atoms

can still remain attached to dust grains and H 2 can form effi-

ciently through the reaction of 2 physisorbed H atoms (Langmuir-

Hinshelwood mechanism). This formation process is very effi-

cient and depends on the binding energies of the physisorbed H

atoms, which have been derived experimentally and are reported

in Table 1 . Rate equations and Monte Carlo simulations for the

formation of H 2 on such surfaces, where both physisorption and

chemisorption are considered ( Cazaux and Spaans, 2009; Cazaux

and Tielens, 2002, 2004 ), or where the roughness of the surface is

taken into account ( Chang et al., 2006; Cuppen and Herbst, 2005 ),

show that H 2 formation efficiency involving physisorbed H atoms

can reach 100% for a surface temperature of 20 K. Therefore, in

diffuse environments with low radiation field (i.e. with dust tem-

peratures lower than 20 K), the formation of H 2 is mainly due to

the involvement of physisorbed H atoms on dust grains. In Fig. 12 ,

the main mechanisms responsible for the formation of H 2 in dif-

fuse, translucent and molecular clouds are presented. For a diffuse

cloud with low G 0 , the main process is the encounter of two H

physisorbed H atoms: the Langmuir-Hinshelwood mechanism. This

mechanism dominates for low dust temperatures ( T ≤ 20 K). 
dust 

4 The built-in size distributions dn / da (the number of grains of radius be- 

tween a and a + da ) are either power-law ( dn / da ∝ a α ) or log-normal ( d n/d log(a ) ∝ 

exp (−(log(a/a 0 ) /σ ) 2 ) with a 0 the centroid and σ the width). 

(  

p  

a  

t  
iffuse clouds with high radiation field. In environments where the

adiation field is significant, but not strong enough to dissociate

AHs, which corresponds to n H / G 0 ≥ 3 10 −2 ( Le Page et al., 2009 ),

here G 0 is the radiation field in Draine’s units, PAHs could also

lay a role in the formation of H 2 . Under such conditions, PAH

ations can contribute to the formation of H 2 with rates compa-

able with the typical rate in the ISM. However, in regions typical

f the diffuse ISM, the radiation field is less important, n H /G 0 ∼
 − 10 2 , and the formation of H 2 on PAHs is less efficient ( Le Page

t al., 2009 ). In these conditions, H 2 forms predominantly on dust

rains ( Boschman et al., 2015 ) through the Eley-Rideal mechanism

nvolving chemisorbed H atoms. The possible mechanisms for the

ormation of H 2 in diffuse clouds with high G 0 , shown in Fig. 12 ,

re either through abstraction of H 2 from PAHs, or through Eley

ideal mechanism on dust grains involving chemisorbed H atoms,

r by photolysis of hydrogenated amorphous carbons ( Alata et al.,

014 ). 

ranslucent gas. In translucent clouds, the temperature of dust

rains becomes lower than in diffuse clouds (15-18 K) and, above

isual extinctions of around 3, ices start to cover the dust sur-

aces. The interactions of H atoms with ices are different than

hose with bare surfaces because (1) H atoms cannot chemisorb

n ices and (2) H can only physisorb on icy surfaces with bind-

ng energies comparable, or slightly lower, than the binding ener-

ies on bare surfaces. These points imply that H 2 formation on icy

ust can only involve physisorbed H atoms, and therefore that H 2 

n translucent clouds is formed predominantly via the Langmuir-

inshelwood mechanism. However, the efficiency of the H 2 forma-

ion on icy dust strongly depends on the porosity of the ices. If

he ices are crystalline, the efficiency of forming H 2 can be 100%

p to surface temperatures of ∼ 12 K. Above this surface tempera-

ure, the efficiency will drop exponentially, which implies that H 2 

ormation will be very inefficient at higher temperatures. If the

ces are porous, the efficiency is 100% until the surface tempera-

ure reaches ∼ 19 K. In this case, the formation of H 2 is efficient

or the range of temperatures encountered in translucent clouds.

ig. 12 summarizes the conditions met in translucent clouds as

ell as the main process for the formation of H 2 , which is via

he Langmuir-Hinshelwood mechanism involving two physisorbed

 atoms. 

.2. Dense PDRs 

Photo-dissociation regions (PDRs) are regions of neu-

ral interstellar clouds in which the heating and chem-

stry are dominated by the impact of stellar UV photons

 Hollenbach and Tielens, 1997, 1999 ). This definition encom-

asses both diffuse neutral clouds (cf. previous subsection) in the

mbient galactic UV field, and dense molecular clouds exposed to

he radiation of nearby young massive stars. This second kind of



V. Wakelam et al. / Molecular Astrophysics 9 (2017) 1–36 23 

Fig. 12. Sketch of the main H 2 formation processes in diffuse to dense interstellar medium. 
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tion in PDRs. 
nvironment, commonly called dense PDRs, is the focus of this

ection. 

.2.1. Physical conditions in PDRs 

The physics and chemistry of PDRs is controlled by the lo-

al gas density n and the intensity G 0 of the UV radiation field.

n dense PDRs, the gas densities can range from 10 3 cm 

−3 to

0 7 cm 

−3 , with UV intensities G 0 from a few units to the order

f 10 6 ( Hollenbach and Tielens, 1999 ). The UV field intensities im-

inging on dense PDRs seem to be correlated to the gas density

f the dense structures ( Young Owl et al., 2002 ), and directly pro-

ortional to their thermal pressure ( Chevance, 2016 ), Joblin et al. ,

inting at the role of radiative feedback from the stars in the for-

ation of these dense structures in star forming regions. 

The typical physical conditions in dense PDRs are given in

able 2 . As the large ranges of UV fields and gas densities result in

arge variations of the gas conditions and dust properties (which

an affect the possible H 2 formation mechanisms at work) we

eparate low-illumination PDRs ( G 0 < 10 0 0) from high illumination

DRs ( G 0 > 10 0 0). Typical examples of low illumination PDRs are

he Horsehead ( Habart et al., 2005a ), and the ρ Oph. ( Habart et al.,

003 ) PDRs. Famous high illumination PDRs include NGC7023 NW

 Köhler et al., 2014a ), Joblin et al. , and the Orion Bar ( Parmar et al.,

991 , Joblin et al. ). 

The UV field is progressively extinguished by dust, and by the

olecules it dissociates, as it penetrates into the cloud. As a re-

ult, the physical conditions vary with the optical depth A V into the

loud. As H 2 dissociation occurs through line absorption, H 2 self-

hielding is important and results in a sharp transition from atomic

o molecular hydrogen (see Sternberg et al. 2014 and Bialy and

ternberg 2016 for an analytical theory of the H/H 2 transition), the

epth of this transition being highly dependent on the ratio of the

as density to UV intensity (the optical depth of the transition goes

rom a few 10 −4 to ∼ 1). The resulting PDR structure is layered,

ith a hot atomic layer before the H/H 2 transition, a warm molec-

lar layer between the H/H 2 transition and the C 

+ /C/CO transition,

nd colder molecular gas deeper inside the cloud. This structure

s represented in Fig. 13 , with a more precise description of the

hysical conditions in the different layers of the PDR. 
.2.2. Dust evolutionary processes in PDRs 

Due to the strong UV fields and gas density variations associ-

ted with PDRs, the nature of the dust in these regions evolves

rom the edge of the PDR to its center, as well as varying from

ne PDR to another (e.g., Rapacioli et al., 2005, 2006; Berné et al.,

007; Pilleri et al., 2012; Arab et al., 2012; Arab, 2012; Köhler et al.,

014a; Pilleri et al., 2015 ). 

Studies involving the whole dust emission spectrum, from the

nfrared to the (sub-)mm, indicate significant variations of the dust

roperties compared with that in the diffuse ISM (e.g., Arab et al.,

012; Arab, 2012 ). In particular, a decrease in the abundance of

mall polyaromatic rich carbon grains (denoted as PAHs) by at

east a factor of 2 is very likely. This reduction could result from

hoto-destruction due to the strong UV radiative energy input.

oreover, Pilleri et al. (2012) found that the fraction of carbon

ocked in very small grains, relative to the total carbon in the IR

and carriers (i.e., very small grains and PAHs), decreased with

ncreasing UV radiation field, which was interpreted as evidence

or photo-destruction of very small grains. In PDRs, such as NGC

023, Pilleri et al. (2015) also provide evidence for a change in the

liphatic to aromatic composition, most likely due to the strong UV

adiative energy input. This deduction could suggest that photo-

rocessing of very small grains produces PAHs. 

Deeper inside the PDRs, with a decreased UV field and an in-

reased gas density, small grains must coagulate onto the sur-

ace of big grains. Compared with the diffuse ISM, an increase

n the emissivity of the big grains indicates coagulation (e.g.,

öhler et al., 2011; Arab, 2012 ). Indirect determinations of the

ust extinction properties in some PDRs have also been reported

e.g. determination of R V = 5 . 62 in the NGC7023 NW PDR by

itt et al. 2006 ), hinting at increased grain sizes compared to

he diffuse ISM. However, we must emphasize that dust prop-

rties pertinent to the diffuse ISM (such as the Draine and Li

007 and Compiègne et al. 2011 models) remain used in most PDR 

odels. 

Models indicate that the grains remain bare until a visual ex-

inction of � 3 ( Esplugues et al., 2016; Hollenbach et al., 2009 ), so

hat bare surfaces are most relevant for understanding H 2 forma-
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Fig. 13. Schematic illustrating the main H 2 formation processes in PDRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

c

4

P

 

H  

r  

l  

r  

r  

p  

b  

L  

a  

b  

t  

t

 

l  

e  

l  

t  

t  

P  

e  

p  

i  

2  

F

c  

g  
4.2.3. Dust temperatures in PDRs and size distribution 

Dust grains in the PDR are heated by the UV field and their

temperature decreases from the edge to the inner part of the

cloud. The grain temperature remains significantly lower than the

gas temperature in most PDRs. For large grains, temperatures de-

rived from modified blackbody fits and radiative transfer model are

given in Table 2 . 

In high illumination PDRs (such as the Orion Bar, Arab et al.,

2012 ), dust temperatures are found to decrease from 70 K to 35 K,

with values of 50 − 60 K in the H/H 2 transition region (where H 2 

emission lines peak). Similar gradients but with overall lower tem-

peratures (due to lower UV fields) are found in NGC7023 NW

( 50 − 25 K with 30 K at the H/H 2 transition, Köhler et al. 2014a ),

and in the Horsehead PDR ( 30 − 13 K , 20 − 30 K at the H/H 2 tran-

sition). 

The dust size distributions in the ISM (including diffuse and

dense PDRs) result in most of the available dust surface being as-

sociated with small grains. The small grains are thus potentially

the most important contributors to H 2 formation, in particular in

warm regions. The temperature of small grains has a more com-

plex behavior than that of larger grains. Due to the presence of

UV photons, the temperature of small dust grains fluctuates con-

stantly (spikes of a few 100 K for a grain of dimension a few nm

absorbing a 912 Å photon). This effect was first investigated in or-

der to understand the IR emission of PAHs and very small grains

( Desert et al., 1986; Draine and Li, 2001 ), which is dominated by

these high temperature spikes. These temperature fluctuations can

also significantly affect the efficiency of the different H 2 formation

mechanisms in PDRs, as small grains spend a large fraction of their

time at low temperatures ( 10 − 20 K ) between UV photon absorp-

tions, even at the warm edge of PDRs. Here then, surface processes

can proceed between temperature spikes, significantly increasing

the efficiency of the Langmuir-Hinshelwood mechanism for H for-
2 H
ation ( Bron et al., 2014; Cuppen et al., 2006 ), or of ortho-para

onversion of H 2 on grain surfaces ( Bron et al., 2016 ). 

.2.4. Discussion of the relevant or possible formation mechanisms in 

DRs 

In PDRs, the Langmuir-Hinshelwood formation mechanism for

 2 , where two H atoms physisorbed on a grain surface meet and

eact, does not appear to be effective on big grains at thermal equi-

ibrium; here, the low physisorption energies lead to very short

esidence times at the dominant temperatures of the dust in these

egions. In order to allow formation of H 2 at higher surface tem-

eratures, mechanisms that involve chemisorbed H atoms have

een proposed by several authors (e.g., Cazaux and Tielens, 2004;

e Bourlot et al., 2012 ). This alternative formation process is usu-

lly modeled using the Eley-Rideal (ER) mechanism. Here, H atoms

onded chemically to the surface (chemisorbed), are stationary on

he surface until an H atom from the gas-phase interacts with

hem to form an H 2 molecule. 

The ER mechanism, which requires high gas temperatures to al-

ow H atoms to enter the chemisorbed state, is predicted to be

fficient only in high illumination PDRs ( G 0 > 10 3 , e.g. Le Bour-

ot et al., 2012 ). Boschman et al. (2015) model the influence of

his ER route to H 2 formation from PAHs, on total H 2 forma-

ion rates in PDR. They find that the photodesorption of H 2 from

AHs can reproduce the high H 2 formation rates derived in mod-

rately/highly excited PDRs ( Habart et al., 2004 ). Nevertheless, the

resence of the thermal barrier to chemisorption, observed exper-

mentally (when hydrogenating coronene cations, Boschman et al.,

012 ), limits this process to high gas temperatures ( > 200 K).

or PDRs with low/intermediate excitation ( G 0 < 200 and n H > 10 3 

m 

−3 ), Bron et al. (2014) show that the LH mechanism on small

rains with fluctuating temperatures could be an efficient route to

 formation. 
2 
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Other processes involving chemisorbed H atoms, such as the

hoton-processing of grains, are also of great interest in PDRs. As

hown experimentally by Alata et al. (2014) , UV photon-irradiation

f a-C:H leads to very efficient production of H 2 molecules with

ates similar to the ones derived in moderately/highly excited

DRs. In line with the interstellar evolution of carbonaceous dust,

 2 formation may occur via such UV photon-driven C-H and C-C

ond dissociations in a-C:H (nano-)grains and the associated de-

omposition of those grains observed in PDRs. This process could

lso liberate (the precursors to) species such as C 2 H, C 3 H 2 , C 3 H 

+ ,
 4 H, which have been observed in PDRs ( Cuadrado et al., 2015;

uzmán et al., 2015; Pety et al., 2012, 2005 ), Pilleri et al. . Jones and

abart (2015) theoretically investigate this UV-induced H 2 forma-

ion pathway, adopting the dust composition and size distribu-

ion from the Jones et al. (2013) dust model, which is specifi-

ally tuned to the evolution of the optical and thermal proper-

ies of a-C:H grains in the ISM. They conclude that such a pro-

ess would be sustainable as long as the radiation field is intense

nough to photo-dissociate C-H bonds but not intense enough to

reak the C-C bonds in the aliphatic bridging structure; the lat-

er process would photo-fragment the a-C(:H) grains. Thus, this H 2 

ormation mechanism will be inefficient deep inside the cloud, be-

ause there are too few extreme ultraviolet (EUV) photons left. Nei-

her will this process be important in intense radiation fields, be-

ause of the rapid photo-fragmentation of the grains. These ideas

ppear to be in general agreement with the H 2 observations pre-

ented in Habart et al. (2004) , who suggest an enhanced H 2 for-

ation rate in moderately-excited PDRs. Because the small grains

 a ∼ 0.5-5 nm) dominate the dust surface and the C-H bond photo-

issociation efficiency decreases with dust size (other channels

uch as thermal excitation or fluorescence begin to compete), these

rains make the largest contribution to the total H 2 formation rate.

owever, either fast rehydrogenation of the small grains or advec-

ion of unprocessed grains from deeper inside the cloud are nec-

ssary to sustain a steady H 2 formation rate. This aspect of the

V promoted process still has to be investigated in more detail, by

oing beyond the steady-state approach of the current main PDR

odels. These possible H 2 formation processes are summarized in

ig. 13 . 

.2.5. Impacts of H 2 formation in PDR studies 

The efficiency of H 2 formation controls the depth within the

loud at which the dominant form of hydrogen changes from

tomic to molecular. As the gas temperature decreases, as we go

rom the PDR edge to the inner part of the cloud, the H 2 formation

fficiency thus affects the gas temperature at which molecular gas

egins to appear, and hence the amount of warm molecular mate-

ial in PDRs. The warm molecular layer immediately following the

/H 2 transition is crucial to explain several PDR tracers, such as

he rotational emission of H 2 ( Habart et al., 2004 ), high- J CO lines

oblin et al. , and abundances of CH 

+ (and other species resulting

rom warm molecular chemistry). These tracers are then used to

nderstand energy transfer (e.g. radiative vs. mechanical) in ex-

ragalactic studies (e.g. Kamenetzky et al. 2014; Rosenberg et al.

015 ). A precise understanding of the H 2 formation mechanisms at

lay is thus crucial for the interpretation of these tracers. 

.3. Cold shielded ISM 

Here we define the cold shielded interstellar medium as any

edium characterized by low temperatures (below 15 K), medium

pecies densities (a few 10 4 ), and high visual extinction (i.e., ab-

ence of directly incident UV photons). Such regions, like for ex-

mple cold dense cores as defined by Bergin and Tafalla (2007) ,

ake up one stage of the star formation process. There is no ob-

ervational evidence of small grains ( Rapacioli et al., 2005; Tibbs
t al., 2016 ), while grain growth is suspected to occur early in the

rocess of cold core formation ( Pagani et al., 2010; Steinacker et al.,

015; Ysard et al., 2016 ). 

Observations indicate a log-normal distribution of dust mass,

ith a peak in the distribution around 0.5-1 μm ( Steinacker et al.,

015; Ysard et al., 2016 ). These grains are covered by mantles of

olecules, mostly composed of H 2 O ( Boogert et al., 2015 ). There-

ore, in these regions, H 2 formation proceeds mostly via physisorp-

ion (LH) pathways. Due to low gas temperature, the sticking coef-

cient is close to unity. The low temperature of the grains prevents

 atom desorption, and H atom diffusion allows efficient H 2 re-

ombination. H 2 formed will progressively desorb as its coverage

ncreases and the average binding energy decreases ( Amiaud et al.,

006 ). Due to the interactions with other adsorbed H 2 molecules,

he desorbing hydrogen molecules are expected not to be vibra-

ionally excited ( Congiu et al., 2009 ). 

H 2 cannot be directly observed in the cold shielded ISM, but it

s very likely that most of the hydrogen is in the molecular form.

his is because the destruction of H 2 by secondary UV radiation,

nduced by cosmic rays, is readily compensated for by a high for-

ation efficiency. From the chemical point of view, H 2 is the most

bundant molecule in cold cores; however, the influence of molec-

lar hydrogen on the surface chemistry of the cores is limited.

ost hydrogenation reactions on the surfaces involving H 2 have

ignificant barriers so that, even though the abundance of H 2 is

arger than that of atomic hydrogen, the reactions with H are con-

idered to be much faster. There are a few of these reactions that

re, however, exothermic and may proceed via tunneling; for ex-

mple, H 2 + OH ( Meisner et al., 2017; Oba et al., 2012 ). 

Recently, astrophysicists have modified gas-grain codes to take

nto account the competition between reaction and diffusion on

he surfaces ( Garrod and Pauly, 2011; Ruaud et al., 2016 ). This dif-

usion increases significantly the efficiency of reactions with acti-

ation barriers. A simple way to understand this effect is to con-

ider that a species (the most mobile one) reaching a site on the

urface which is already occupied by another species, will have a

ertain probability to remain associated with that species for some

ime, rather than leaving it instantaneously. During this time, the

robability for a reaction with barrier to occur increases. With this

ew generation of models, the abundance of H 2 on the surface is

mportant. 

The crucial parameter to determine the surface abundance of

 2 is not its rate of formation (which is very fast in the cold

hielded ISM), it is rather its binding energy. The binding energy of

 2 on water ices is such that at high densities (above 10 9 cm 

−3 at

0 K), the molecules begin to get depleted from the gas phase and

tart to dominate the coverage of the grains ( Hincelin et al., 2015;

akelam et al., 2016 ). The sticking of H 2 onto multi-layers, i.e. on

o itself, is much less efficient ( Cuppen and Herbst, 2007 ) slowing

own the depletion of H 2 from the gas. The details of the sticking

f H 2 on the surface has to be carefully considered in gas-grain

odels because it can affect the general grain chemistry as for in-

tance shown by Wakelam et al. (2016) in protoplanetary disks. 

It has been proposed in the literature that the formation of

 2 on dust surfaces would be so exothermic that each reaction

orming H 2 would locally heat the surface of the grains, allowing

or the evaporation of some light species such as CO ( Duley and

illiams, 1993 ). Such non-thermal evaporation processes have

een added to several gas-grain models, and desorption by such a

oute is claimed to be more efficient than desorption by cosmic-ray

eating ( Duley and Williams, 1993; Roberts et al., 2007; Willacy

t al., 1994 ). However, in contrast, recent experiments have re-

orted a negative effect on desorption rates due to H 2 formation

 Minissale et al., 2016 ). Here the energy release upon H 2 forma-

ion changes the morphology of the ice ( Accolla et al., 2011 ). Cal-

ulations have shown that H 2 formation can heat nanograins up to
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5 IMAPS, Interstellar Medium Absorption Profile Spectrograph, on board the 

ORFEUS-SPAS I mission, is the only instrument which recorded the far-UV H 2 bands 

at high spectral resolution with R > 10 0 0 0 0. 
6 direct expulsion of atoms and ions from the surface at extreme surface irregu- 

larities ( Draine and Salpeter, 1979 ). 
53 K ( Navarro-Ruiz et al., 2014 ). Taking into account that grains in

dark clouds are larger and that water ice efficiently dissipate ex-

cess energy, it is unlikely that H 2 formation triggers desorption of

other species. 

4.4. Hot shielded regions 

In the process of forming a star, cold cores evolve towards

warm/hot shielded regions (also known as hot cores or hot cori-

nos for massive and low mass protostars respectively) where the

dust and gas temperature is a few hundred Kelvin and the density

of the gas is above 10 7 cm 

−3 . Gas and dust are inherited from the

previous growth phase, so that hydrogen is almost entirely molec-

ular and grains are big. The ices that formed earlier have evapo-

rated, so that the grains are bare. The H 2 molecules cannot be ob-

served in these regions, and their abundance in itself does not have

much impact on the chemistry. The H 2 formation rate however de-

termines the abundance of atomic hydrogen, which is involved in

many destruction reactions with activation barriers ( Harada et al.,

2010 ). 

Rate equation simulations including both physisorption and

chemisorption, ( Cazaux et al. (2005) ) have shown that H 2 for-

mation on carbonaceous surfaces could be efficient up to about

10 0 0 K, although this efficiency would decrease with the temper-

ature. Up to 300 K, both Langmuir-Hinshelwood and Eley-Rideal

(with chemisorbed H) mechanisms would contribute. At higher

temperatures, the chemisorbed H starts to move and the Langmuir-

Hinshelwood mechanism dominates. 

Iqbal et al. (2012) performed a detailed study of the temper-

ature dependent H 2 formation efficiency, using continuous-time

random-walk Monte Carlo simulations on both silicate and car-

bonaceous surfaces. Their results show that the H 2 formation rate

estimated by the rate equation method was overestimated be-

cause the mean abundance of H atoms at high temperature can be

smaller than 1H per dust grain (see Caselli et al., 1998a; Cazaux

et al., 2005; Cuppen et al., 2013 , for more details on this well

known problem associated with rate equation models). Assum-

ing deep chemisorption sites, present together with shallower ph-

ysisorption sites, the H 2 formation remains efficient up to 700 K

on both surfaces without the Eley-Rideal mechanism. These mod-

els have however only used low H fluxes, simulating ISM regions

with densities smaller than 100 cm 

−3 . At higher H fluxes, the effi-

ciency of H 2 formation may remain significant at even higher tem-

peratures. 

4.5. Shocked environments 

4.5.1. Shocks in the ISM and their role in h 2 formation 

In the multiphase environment of galaxies, different types of

shocks are expected. Fast shocks, ranging over 100 − 10 0 0 km s −1 ,

heat the gas to high temperatures ( T ≈ 10 6 − 10 8 K), and produce

EUV and X-ray photons that photo-ionize the tenuous medium

( Allen et al., 2008 ). These shocks provide one source of energy

that produce the Hot Ionized Medium in galaxies, and in the

circum-galactic medium when the accreted gas from cosmological

filaments is shocked at the halo boundary ( Birnboim and Dekel,

2003; Cornuault et al., 2016 ). On the other hand, low-velocity

shocks (typically � 50 km s −1 ) are known to (i) initiate the for-

mation of molecules in the gas that cools behind the shock (e.g

Hollenbach and McKee, 1979 ), and (ii) be a very efficient process

for exciting molecules, especially H 2 , via collisions in the dense gas

compressed and heated by the shock. Depending on the physical

conditions in the shocked and post-shock gas, the different H 2 for-

mation mechanisms discussed above may occur. 
Jenkins and Peimbert (1997) describe a steady change in the

ine profile as J increases from 0 to 5 in high-resolution IMAPS 5 ob-

ervations of what they interpret as H 2 forming in the post-shock

one of originally atomic gas. They suggest that the H 2 seen in

bsorption in the higher J levels (which are broader and slightly

hifted toward negative velocities relative to the lowest J levels) is

nitially produced via the formation of a negative hydrogen ion H 

−

n the warm (20 0 0 K < T < 6500 K) and partially ionized medium

ust behind the shock, through the reactions: 

 + e − −→ H 

− + h νand H 

− + H −→ H 2 + e − (1)

ater, in zones where the post-shock gas has cooled well below

0 0 0 K and is almost fully recombined, the formation of H 2 on

rains dominates and is more easily seen in the lowest J levels. 

.5.2. Gas conditions in shocks 

The typical physical conditions in shocks are given in Table 2 .

ere we have separated observations of Galactic and extragalac-

ic shocked regions. In Galactic regions, most of the constraints

n the physical conditions in shocked molecular regions come

rom CO, H 2 , SiO and H 2 O observations in supernovae remnants

 Gusdorf et al., 2012; Hewitt et al., 2009; Nisini et al., 2010 ) and

utflows from young stellar objects (e.g. Gusdorf et al., 2015; Po-

io et al., 2015 ). In extragalactic shocked regions, like AGN- or

tarburst-driven outflows or galaxy interactions, observations of H 2 

ine emission show a distribution of temperatures much above the

quilibrium temperature set by UV and cosmic ray heating. The

ame holds, on much smaller scales, in the case of the diffuse ISM

n the Solar neighborhood ( Gry et al., 2002; Ingalls et al., 2011 ).

he range of gas temperatures can only be accounted for if su-

ersonic turbulence dissipates and heats the gas through spatially

ocalized events (e.g. Falgarone and Phillips, 1990; Hily-Blant and

algarone, 2009; Guillard et al., 2015 ). 

The formation of H 2 in shocked regions greatly affects the gas

ooling efficiency ( Cuppen et al., 2010 ). For J -shocks, the cool-

ng is first dominated by H 2 for a very short period of time,

t high temperatures where the molecule experiences dissoci-

tion. Then, at ≈ 80 0 0 K, the [O i ] λ = 6300 Å line takes over.

hen the gas has cooled down sufficiently, H 2 , H 2 O, O and C 

+ 

ominate the cooling. More precisely, at T ≈ 10 0 0 K, the fine-

tructure line [O i ] λ = 63 . 2 μm dominates. Other important lines in

his temperature range are [C i ], [N i ] λ = 5200 Å, [C ii ] λ = 158 μm,

N ii ] λ = 121 . 8 μm, [S ii ] λ = 34 . 82 μm and [Fe ii ] λ = 25 . 99 μm. At

ower temperatures, the oxygen is converted into CO, H 2 O, and OH,

hich become the dominant coolants. For C -shocks, H 2 is the main

oolant for T > 300 K, which provides excitation of the mid-IR rota-

ional lines. Remarkably, the cooling is dominated by H 2 O emission

t T < 200 K ( Flower and Pineau des Forêts, 2010 ). 

.5.3. Dust processing in shocks and impact on h 2 formation 

Grain processing in shocks affects the formation of H 2 and

rises from interactions between the grain and other “particles”

grain, atom, ion, atomic nucleus, electron, photon). These interac-

ions can be destructive , i.e. leading to a transfer of grain atoms to

he gas-phase, and thus to a net mass loss from the grain, or non-

estructive where the grain size distribution becomes modified but

he total dust mass is conserved. These processes are counterbal-

nced by grain formation, specifically accretion and nucleation, but

lso coagulation between grains. 

Destructive interactions can directly eject atoms and ions from

he grain surface (via sputtering , ion field emission 

6 or direct
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oulomb explosion via extreme charging effects arising from

lectron-grain interactions or the photoelectric effect), or vapor-

ze/sublime the grain, in case of � 20 km s −1 grain-grain collisions.

aporisation/sublimation via absorption of energetic photons (UV,

) or interaction with cosmic rays, may also be an important de-

truction mechanism for volatile material, such as ice mantles. 

Grain-grain collisions at velocities � 1 − 2 km s −1 lead

o non-destructive fragmentation (or shattering ) of both grains

 Tielens et al., 1994 ). The size distribution of the fragments fol-

ows a power-law, suggesting that dust fragmentation in shocks

s responsible for the observed power-law size-distribution in the

iffuse ISM ( Clayton et al., 2003; Jones et al., 1996; Weingartner

nd Draine, 2001 ). By definition, fragmentation is not a destructive

rocess. It re-distributes the dust mass towards smaller grain sizes,

ncreasing the total cross-section of the distribution of grains, and

ence their optical and UV extinction. 

Dust grains, through gas-grain interactions, have an important

mpact on the physical and chemical properties of the shock. The

rains participate in the formation of molecules and their removal,

nd the inertia of the grains can modify the propagation of the

hock, especially in the case of C-shocks. A detailed review of the

rocesses involving grains in shocks, as well as their impact on

he structure of C-shocks, can be found in ( Flower and Pineau des

orêts, 2003 ). For detailed calculations of the evolution of the dust

ize distribution in MHD shocks, see Guillet et al. (2011) . 

.5.4. Impact of H 2 formation on shock dynamics 

In shocks, chemistry and hydrodynamics are coupled. Chemical

rocesses, in particular H 2 formation, have a very important im-

act on the shock structure. H 2 formation plays a role in the ther-

al balance of the shock, which in turn impacts the number of

eactions the shock can initiate and the consequent reaction rates.

ithout chemistry, the ionization fraction would vary only via the

ifferential com pression of the ionized and neutral fluids by the

hock wave, and would have the same value in the pre-shock and

ost-shock regions. Allowing for chemistry, the ionization degree

f the post-shock region is one order of magnitude lower. H 2 af-

ects the ionization fraction because it essentially initiates the neu-

ralization of C 

+ via the reaction: 

 

+ + H 2 −→ CH 

+ + H (2)

ollowed by a chain of reactions, which balance overall to yield 

H 

+ + e − −→ C + H (3)

onsequently, the ion-neutral coupling is weaker, hence broaden-

ng the size of the precursor (the width of the shock is ≈ 5 times

arger). Since the energy of the shock is dissipated over a larger

egion, as compared to the hypothetical case without chemistry,

he maximum temperature of the shock is lower ( Pineau des Forets

t al., 1997 ). 

.6. Mixed regions 

Pure shocked regions are difficult to isolate in Galactic and ex-

ragalactic sources (e.g. Ingalls et al., 2011; Guillard et al., 2009 ).

n addition to the shock excitation, a background UV field or cos-

ic rays are often present, which affect the thermal and chem-

cal characteristics of the gas, in particular H 2 formation. For in-

tance, protostars generate a strong ultraviolet radiation field that

onizes their surroundings. This field drives powerful shock waves

n the neighboring medium in the form of jets and bipolar out-

ows, whose structure can be partially organized by a local, strong

agnetic field. Such an ejection activity locally modifies the inter-

tellar chemistry, contributing to the cycle of matter. Excitation of

 2 gas in galaxies is therefore a mix of processes, and the degener-

cy of models makes the identification of the dominant processes

 challenge for modern astrophysics (e.g. Appleton et al., 2013 ). 
The treatment of irradiation, which includes UV heating but

lso its impact on the chemistry through photo-ionization and

hoto-dissociation, is crucial in shock models to interpret com-

lex regions where a mix of excitation is observed ( Lesaffre et al.,

013 ). Preliminary results comparing steady-state H 2 abundances

ith and without radiative transfer and shielding effects in high-

esolution MHD simulations seem to show very important differ-

nces in H 2 abundances ( Hartwig et al., 2015; Richings et al., 2014 ).

hen the protecting effect of the shielding is not taken into ac-

ount, most of the molecular hydrogen is photo-dissociated and

nly about 3% of the total mass of H 2 (compared to the case that

ncludes shielding effects) survives in the densest regions where

he formation is efficient enough to counterbalance the photo-

estruction ( Valdivia et al., 2017b ). More generally, (magneto)-

ydrodynamical simulations of the ISM which includes coupling

ith radiation and radiative transfer effects will be the subject of

ntense developments in the next years. 

. Conclusions and perspectives 

In this paper, we present an overview of where we stand on the

uestion: How does H 2 form in the interstellar medium? This re-

ort of our understanding of this fundamental scientific problem,

f course, is moulded by the opinions and experience of the au-

hors of this paper. These opinions were distilled by gathering to-

ether these scientists who are working in different fields of re-

earch which impinge on interstellar H 2 formation: experimental

nd theoretical physico-chemistry, observers and modelers of the

nterstellar medium. 

As far as chemical physics is concerned, the physisorption (LH)

echanism for H 2 formation has been extensively studied, and

ith some exceptions, conclusions have converged. Amorphous

arbonaceous surfaces have been the least studied, and are proba-

ly the richest and most complex materials to investigate. When it

omes to H 2 formation involving chemisorbed atoms (ER), molec-

lar synthesis by this pathway has been investigated in much less

etail ; specifically, no experiments have been performed on sili-

ates although there are calculations that address this process and

hould be tested with experiments. Formation of molecular hy-

rogen on graphite surfaces (an idealized representation of an in-

erstellar dust grain) has been well investigated both experimen-

ally and theoretically. This detailed investigation is probably a

nique situation, and even then marginal discrepancies can still

e found between different studies, especially for the case of com-

utational work. The characterization of the ro-vibrational excita-

ion of nascent H 2 leaving from the surface of the dust grain has

een performed for formation on graphite. These studies can guide

earches for observational signatures of H 2 formation in space and,

ence, should be extended over a wider range of environmental

arameters and surface types. 

In calculations of the dynamics of the formation process, the

ticking coefficient of H atoms on a graphitic surface is difficult

o determine. The current calculations have developed models to

ake into account energy exchange (via phonons) with the surface

uring the collision, either for the physisorption site or for the

hemisorption site. These models are limited in not just the num-

er of degrees of freedom they consider, but also the limited range

f geometries investigated and the fact that the surface is mod-

led as “perfect”. The challenge is to include, in the same model,

hysisorption sites and chemisorption sites when calculating the

ticking coefficient of an H atom on a graphitic surface. 

More generally, the coupling between physisorption and

hemisorption is probably the most challenging to study, and

he most pressing problem with which both experimentalists and

uantum physicists are battling. It is noteworthy that most of the

tudies discussed above have focused on only one of these two
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6

formation mechanisms. However, the fact that H 2 is formed in

a wide variety of astrophysical environments suggests that both

these mechanisms operate in parallel. Furthermore, there is a need

to transform the results of laboratory studies of surface processes

(sticking, diffusion, desorption, energy partition, etc.) to the effi-

ciency of formation of molecular hydrogen in actual ISM environ-

ments. This has been done to a certain extent for silicate surfaces,

but more work is needed both on silicates and carbonaceous ma-

terials. 

New routes to H 2 formation, via UV irradiation of hydrogenated

carbons, or via other energetic routes, have to be investigated in

greater detail. It has been demonstrated that hydrogenated car-

bons can efficiently produce H 2 following energetic events, but af-

ter this carbonaceous grains need to be resupplied with H atoms.

This ”refilling mechanism” is complex and probably couples dif-

fusion via physisorbed states and storage via chemisorbed states.

The existence of these potential H 2 reservoirs underlines the need

to studying the links between physisorption and chemisorption on

disordered materials. In the specific case of astrophysical shocks,

the interaction of high temperature gas with cold surfaces, and the

impact of this interaction on H 2 formation, also still needs to be

studied. 

Finally, on several relevant surfaces many aspects of the H 2 for-

mation process, such as nuclear spin conversion and energy par-

titioning, remain open questions. The observed trends, revealed

mostly by the study of H interaction with graphite, have to be con-

firmed. In the case of LH processes, the substrate retains a minor

part of the energy released by H 2 formation. 

For the chemical modeling of cold cores, the amount of H 2 on

the surfaces can have a big impact on the abundances of other

species. Thus, the study of H 2 formation in the presence of co-

adsorbed H 2 (with perhaps also H 2 O, CO, CO 2 ) by experimentalists

would be important. Such experiments would perhaps reveal the

possibility of trapping nascent H 2 in ices. 

In the near future, JWST (launch foreseen in late 2018) will al-

low medium resolution ( λ/ �λ≈ 30 0 0) spectroscopy of H 2 lines,

with an increase of two orders of magnitude in spatial resolution

and sensitivity compared to ISO or Spitzer. This mission will pro-

vide a fantastic set of new data which will present stringent tests

of our current understanding of H 2 in space. The gain in sensitiv-

ity and spatial resolution (0.3” at 10 μm) will generate high quality

maps of the H 2 rotational and ro-vibrational transitions. A wealth

of moderately/highly excited J levels will be detectable for the first

time. Combined with data probing the ro-vibrational levels, these

observations will cover a huge range of excitation energies, making

them excellent probes of the excitation of H 2 and the associated

gas. 

In the nearby Galactic sources, the critical H/H 2 transition

zones, that could be very sharp because of the H 2 self-shielding

and strong gas density gradients, will be resolved via the H 2 ro-

vibrational and rotational emission line profiles. This will constrain

the possible H 2 formation mechanisms (ER, LH on small grains

fluctuating in temperatures or UV processes) and ortho-to-para ra-

tios associated with H 2 formation in a warm gas. The wavelength

coverage of JWST will allow us to study in detail the links between

H 2 and the properties of the small dust particles. How rapidly the

dust properties change at the cloud edge, via photo-processing,

and how these changes impact the H 2 formation process, are just

two of the key questions that JWST will address. 

Being the first instruments able to spatially and spectrally re-

solve H 2 , and forbidden lines of the ionized gas, at rest-frame near-

IR and mid-IR wavelengths out to z = 1 . 5 − 3 . 5 , the JWST spec-

trometers will also allow the study of H 2 line emission in the dis-

tant Universe. These spectrometers will allow us to investigate the

physical state, and the kinematics, of the warm ( > 50 K) molecular

gas. these observations will constrain the impact of galaxy merg-
rs and AGN feedback on the formation and evolution of massive

alaxies. In z ∼ 2 active star-forming galaxies, high gas velocity dis-

ersions (e.g. Lehnert et al., 2009 ) suggest high turbulence, and we

an expect bright H 2 emission ( Guillard et al., 2015a, 2009 ), as sug-

ested by H 2 detections in z ≈ 2 infrared-luminous galaxies ( Fiolet

t al., 2010; Ogle et al., 2012 ). Identifying the source of turbulence

n high-redshift sources is a key step forward for studies of galaxy

volution. 

The spectrometer EXES on SOFIA can probe several H 2 rota-

ional lines with diffraction limited resolution of 1–5” and a spec-

ral resolution of R ∼ 10 4 − 10 5 at 20 μm. This is the only instru-

ent with sufficient spectral resolution and sensitivity to measure

 pure rotational H 2 line profile from a relatively faint source. Stud-

es, like that reported by Jenkins and Peimbert (1997) , emphasize

he interest of observing H 2 at high spectral resolution in order to

tudy the velocity profiles of the different H 2 rotational excitation

evels ( J ) to, for example: 

1. Isolate components or cloud regions with different rotational

excitation. 

2. Determine the role of internal spatial structures in the self-

shielding of diffuse H 2 that strongly influences the HI → H 2 

transition in galaxies. 

3. Study the increase in velocity dispersion with J . Specifically, can

we confirm the creation of H 2 in warm, partly-ionized post-

shock zones proceeds via the formation of H 

−? 

4. Measure the temperature and turbulence of H 2 in high- J levels.

Is the excess abundance in J > 2 in diffuse clouds due to shocks,

or dissipation of turbulence in vortices? 

5. Find what fractions of the 4.5 eV of energy released upon H 2 

formation are transferred to internal excitation of the molecule,

kinetic motion of the molecule, and the thermal bath of the

grain. 

The possibility of observing the H 2 electronic bands at high

pectral resolution in absorption in the UV might be opened (in

he distant future) by the LUVOIR project. LUVOIR is one of four

ecadal Survey Mission Concept Studies initiated by NASA in 2016,

hich should include a high-resolution UV spectrometer. This

pectrometer would allow to observe the far-UV electronic bands

f H 2 at high resolution (R > 120 0 0 0) toward many stars in

ur Galaxy, as well as towards individual stars in the Local Group

alaxies. Such a capability would allow us to extend the study of

 2 formation to very different environments. 
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