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Quantification of Emission Potential of Landfill Waste
Bodies Using a Stochastic Leaching Framework
T. J. Heimovaara1 and L. Wang1

1Department of Geoscience and Engineering, Faculty of Civil Engineering and Geoscies, Delft University of Technology,
Delft, The Netherlands

Abstract Sanitary engineered landfills require extensive aftercare to safeguard human health and the
environment. This involves monitoring emissions like leachate and gas, maintaining cover layers, and managing
leachate and gas collection systems. Researchers have explored methods to conclude or extend aftercare.
Quantifying emission potential, a key concept integrating various processes influencing emissions, is essential
for managing and predicting landfill impacts. In this study we developed a stochastic travel time model based on
water life expectancies. The model is used to predict leachate production rates and leachate chloride
concentrations from landfill waste bodies. Unknown parameters are quantified by matching model output to
measured time series using Bayesian inference. Once parameter distributions have been obtained, we are able to
describe the measured long‐term leachate dynamics. By analyzing the parameters and evolution of model states,
we obtain a deeper understanding of the water and mass balance of the waste bodies. We demonstrate that the
model can be used to quantify the chloride emission potential and the estimated values of total chloride mass
match data quantified by sampling from the waste body. The results confirm that emissions with leachate are
dominated by preferential flow infiltrating from the cover layer. Similar results have been obtained by applying
the model to datasets from four different waste bodies, demonstrating that the approach is generally applicable
for conservative solutes. Understanding of the water balance of the landfill together with conservative solute
leaching is a necessary first step for further evaluating emission of reactive species.

Plain Language Summary Landfills have historically been the primary waste disposal method in
Europe, leading to numerous legacy sites requiring extensive aftercare to safeguard human health and the
environment. Long‐term aftercare of sanitary engineered landfills requires insight in the risk associated with
possible emission of contaminants from the landfill waste body. In this research we developed an approach
where data measured at the landfill sites are combined with a model in order to quantify the amount of mass that
will emit from the waste body over a certain period of time. This is important information for landfill operators
and responsible authorities in order to develop approaches for landfill aftercare. Especially because after‐care is
expected to last for a very long time (up to several centuries).

1. Introduction
Landfills have long been the primary method of waste disposal in Europe, resulting in a large number of legacy
landfills that require aftercare to protect human health and the environment. Aftercare typically involves
monitoring emissions such as leachate and gas, as well as maintaining the cover layer and collection systems. The
European Landfill Directive (EC, 1999) mandates a minimum 30‐year aftercare period, but regulatory authorities
may choose to shorten or extend this period based on a range of factors. To aid in decision‐making, several authors
have reviewed different approaches to ending or prolonging landfill aftercare (Barlaz et al., 2002; Laner
et al., 2011). Several authors (Butt et al., 2008; Laner et al., 2012) have advocated for using risk‐based assess-
ments to evaluate the potential for harm. By exploring these and other solutions, we can work toward reducing the
environmental impact of legacy landfills while ensuring the continued protection of public health.

In many cases the aftercare of sanitary engineered landfills consists of post‐closure monitoring of emissions (e.g.,
leachate and gas) and maintenance of the cover layer and leachate and collection systems. Laner et al. (2012)
postulate that post‐closure care can end once a landfill no longer poses a threat to human health and the envi-
ronment. Quantitative predictions of future emissions are important in order to assess future threat. Barlaz
et al. (2002) advocate the use of technical criteria based on measured time‐series of leachate composition, and
leachate and gas production rates. One such technical criterion is the presence of barrier systems which require
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maintenance during the aftercare period. Laner et al. (2011) address the importance of assessing the remaining
substance release potentials. The assessment should be site specific and take into account the deposited waste and
the relevant boundary conditions that influence the flow of water through the landfill including the performance of
the barrier systems. They propose a continuous emission model assuming that the status quo persists (after
installation of a cover layer) based on a first order decay rate as proposed by Belevi and baccini (1989). Although
Laner et al. (2011) give suggestions how to quantify the remaining substance source term, no experimental data
are provided.

A research program aiming to achieve a significant reduction in emissions fromMunicipal SolidWaste landfills is
currently being carried out in the Netherlands (Kattenberg et al., 2013). More information on this program can be
found at the website of the research program (Stichting Duurzaam Storten, 2022a, 2022b). In this program
different approaches to stabilize waste bodies by irrigation, recirculation and discharge of leachate and aeration of
the waste body are being tested. The approaches are tested at full‐scale at three different landfills. In order to
assess the success of the stabilization measures, site specific Environmental Protection Criteria have been derived
(Brand et al., 2016; Dijkstra et al., 2018). These criteria are defined to be the maximum allowable concentration of
contaminant in the drainage system below the waste body, which will not lead to a concentration in the
groundwater 20 m downstream of the landfill which damages human health or the ecosystem. The underlying
modeling approach assumes that source term for all compounds in the drainage system remain constant over the
complete evaluation period of 500 years.

In all the papers cited above, there is a common agreement that it is important to have a quantitative understanding
of the source term controlling emissions of the contaminants present in the waste body. In this paper we would
like to propose some definitions in order to clarify different approaches to quantify the source term.

The total mass of different compounds can be measured in the laboratory from samples taken from the field using
destructive analytical techniques. Because contaminants can be bound in solids, total mass can lead to a sig-
nificant overestimation of leachable mass. Leachable mass can be quantified in the laboratory using different
types of leaching methods (Kosson et al., 2002; van der Sloot et al., 2017). However, characterization of het-
erogeneous landfill waste bodies using sampling and laboratory analysis requires a large amount of samples
because of the inherent uncertainty caused by spatial variability (Sormunen et al., 2008a, 2008b). In addition to
the spatial variability it is also important to realize that waste bodies most likely contain zones or pockets which
isolate volumes of waste from mobile water, such as waste stored in a closed plastic bag. The presence of dead
zones implies that not all contamination present in the waste body will be released from the waste body.
Consequently, laboratory techniques to assess the source term of contaminants may overestimate the amounts that
can be released under field conditions.

In this paper we introduce the term emission potential in order to describe the amount of mass that can be released
from the waste body. The emission potential is the result of all processes involved in causing emissions of
compounds from waste bodies. It is related to the multi‐physical coupling between fluid flow, solute transport, bio
geochemical transformations, waste body settlements and many more. The emission potential is the source term
in a modeling framework that is able to describe the leachate flux and leachate concentration as a function of time.
For conservative solutes we hypothesize that the emission potential can be quantified by fitting models to
measured time series. Finally, using these models allows us to quantify the emission from the waste body under
different scenarios, for example, over a time period of 500 years. Understanding the water balance and mass
balance behavior of conservative solutes is a necessary first step for evaluating the emissions of reactive
compounds.

Fellner and Brunner (2010) give an overview of modeling approaches available in the literature for quantifying
leachate production. They show that preferential flow is a dominant process in waste bodies and needs to be
incorporated in models in order to describe landfill leachate production dynamics (Fellner & Brunner, 2010;
Uguccioni & Zeiss, 1997). In order to describe the heterogeneous flow and transport through waste bodies,
several Lagrangian based travel time models have been developed (Malmström et al., 2004; Rosqvist & Des-
touni, 2000; Zacharof & Butler, 2004a, 2004b). Lagrangian modeling of water flow and solute transport in
catchment systems has seen significant progress since then (Benettin & Bertuzzo, 2018; Benettin et al., 2015;
Benettin et al., 2015, 2015, 2017; Harman, 2015; Harman, 2015, 2015; Hrachowitz et al., 2016; Rinaldo
et al., 2015). The advantage of these Lagrangian approaches is that is allows for describing water flow and solute
transport in large scale systems where heterogeneity is captured through probability distributions.
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Given the large heterogeneity present in landfills we have developed a stochastic Lagrangian travel time modeling
framework to simulate landfill water and mass balances in order to quantify the emission potential of waste
bodies. The parameters in the model are calibrated using time series measurements of leachate volumes pumped
from the drainage system and bi‐weekly chemical analyses of chloride concentrations in pumped leachate.
Measuring pumped leachate volumes and leachate quality is standard procedure for landfill operators in the
Netherlands and as such obtaining these time series is much easier and cheaper than taking samples from the
landfill for analysis in the laboratory. The source term in the model after calibration is considered to be the
emission potential. Long‐term extrapolations using the calibrated model provide insight how the emission po-
tential impacts future leachate quality. The generic feasibility and applicability of the proposed concept for
quantifying the water balance and the leaching of conservative solutes is demonstrated using data from four
different waste bodies.

2. Theory and Methods
In order to develop the model equations we hypothesize that the chloride concentration in (pumped) leachate is
mainly controlled by dilution of highly concentrated base flow from the waste body with infiltrating water
originating from rainfall. We assume that the waste body is a causal system for leachate production and solute
transport. This implies that the output of the system at any given time depends only on the input and the system's
past behavior and consequently, the flow of water and transport of solutes through the waste body can be modeled
using travel time probability distributions. In this paper we assume that the travel time probability density
functions (pdf) are constant in time. The approach we follow is similar to the one described by Benettin
et al. (2015).

If we follow a water parcel that enters the waste body at time tin and exits the waste body at time tex then the total
time in the waste body (TT = tex − tin) at any moment in time can be characterized by its age (or residence time)
indicated as TR and the time it will still remain in the waste body before it exits the waste body (its life expectancy)
indicated as TE. Residence time and life expectancy are related to the total travel time TT by:

TT = TR + TE. (1)

Each day as the water parcel moves through the waste body, its residence time increases with 1 day and its life
expectancy decreases with one day which can be written as:

dTR

dt
= 1,

dTE

dt
= − 1. (2)

Equation 2 can be seen as a celerity with unit value, where the sign determines which property is described.

2.1. Water Balance

The upper boundary of the landfill is its surface where water can enter as rainfall and leaves as evapotranspiration.
The lower boundary consists of the drainage system where water is pumped out of the landfill as leachate. To
simplify the problem we assume that we can model the landfill as a one‐dimensional 2‐layered column, where the
first layer represents a cover layer and the second layer is the waste body.

The water storage in the landfill is defined as:

Sw =
Vw

Alf
= Scl + Swb,

in which Vw is the is the volume of water per unit area and Alf is the surface area of the landfill and Scl and Swb are
the water storage in the cover layer and waste body respectively.

2.1.1. Water Balance of the Cover Layer

The water balance of the cover layer links water entering the landfill as rain and leaving the landfill as evapo-
transpiration to the amount of water infiltrating in to the waste body:

Water Resources Research 10.1029/2024WR038360
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dScl(t)
dt

= qrf (t) − qev(t) − qinf(t), (3)

where Scl is the storage in the cover layer.

The infiltration flux is assumed to be a non‐linear function of the storage in the cover layer.

qinf = − Kcl(Seff )bcl (4)

where Seff is the effective storage which ranges from zero to one and is defined as:

Seff =
Scl − Sclmin

Sclmax
− Sclmin

where Kcl is the hydraulic conductivity of the cover layer (m d− 1), Sclmax
is the maximum achievable storage in the

cover layer, Sclmin
is the minimum storage in the cover layer above which water will still freely drain and bcl is a

dimensionless empirical parameter which is larger than 0. When bcl is less than 1, drainage from the cover layer
predominantly occurs at low effective storage values, whereas if it is larger than 1, drainage predominantly occurs
at high effective storage values.

The actual evapo‐transpiration is calculated from the potential evapotranspiration:

qev = Epot C f fred, (5)

where Epot is the potential evaporation [m/day], Cf is an empirical crop factor which is assumed to be a landfill
specific constant and fred is a factor allowing evapo‐transpiration to be reduced in order to prevent the storage in
the cover layer to become negative.

This model assumes that flow is caused by gravity only, that is, gradients in the hydraulic head of the soil do not
drive water flow. The magnitude of flow is strongly controlled by the storage in the cover layer.

2.1.2. Water Balance of the Waste Body

The water balance of the waste body is calculated as:

dSwb(t)
dt

= qinf(t) − qleach(t), (6)

where qleach is the leachate flux from the waste body to the drainage system.

We can rewrite Equation 6 as a function of life expectancies using a probability distribution of life expectancies
pSwb(TE, t) using:

dSwb (TE, t)
dt

=
∂Swb (TE, t)

∂t
+
dTE

dt
∂Swb (TE, t)

∂TE
,

to get

dSwb (TE, t)
dt

= qinf(t)pqinf(TE, t) − qleach(t) (7)

where

qleach(t) = Swb(0, t) (8)

Water Resources Research 10.1029/2024WR038360
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which states that the leachate flux is equal to all the water present in the waste body with a life expectancy of 0 at
time t. Please note that after we have solved for Swb (TE, t) we can calculate pSwb(TE, t) with:

pSwb(TE, t) =
Swb (TE, t)
Swb(t)

.

In order to numerically solve Equation 7, we need to discretize along life expectancies (TE) . TE can range from
0 to infinity. To simplify implementation we chose to discretize TE in a discrete number of daily values from TE,0
to TE,ntt . Swb (TE,i, t) represent water storage cells with a life expectancy TE,i at time t. Swb (TE,ntt , t) represents a
bulk cell containing all water with a life expectancy larger than ntt days. All water with TE > TE,ntt is assumed to be
added to the storage in the bulk of the waste body Sbulk:

Sbulk(t) = Swb (TE ≥ TE,ntt , t) (9)

The consequence of this choice is that an additional water flux needs to be added to the model the rate of change in
Sbulk(t). We call this flow, base flow and assume that it is a function of Sbulk. The base flow (qbF) controls the
leachate flow from the landfill in prolonged drought periods, however, it cannot continue indefinitely because of
the finite amount of water stored in the bulk of the waste body. To take this finite amount in to account, we apply a
gamma distribution function in order to allow qbF to reduce gradually after the bulk storage reaches a critical
level:

qbF (Sbulk) = qbF0
fbF (Sbulk)

SbF
, (10)

where

fbF (Sbulk) =
xσbF − 1e− (Sbulk − Sbulk,min)

Γ(σbF)

where Sbulk,min is the minimal storage in the bulk where the base flow drops to zero, Sbf (m) is a scaling factor for
the bulk storage and σbF (m) determines the shape of the base flow function.

Including the base flow in Equation 7 leads to:

dSwb (TE, t)
dt

= qinf(t)pqinf(TE, t) + qbF (Sbulk(t)) pqbF(TE, t) − Swb(0, t) (11)

where we have two distinct sources for the water traveling through the waste body: (a) water infiltrating from the
cover layer, qinf and (b) the base flow released from the bulk of the waste, qbF .

The probability distribution pqinf(TE, t) describes the life expectancies along a large number of trajectories in the
waste body along which water is moving. Following Rosqvist and Destouni (2000), we assume that the ensemble
of the life expectancies of all particles infiltrating from the cover layer can be described with a bimodal log‐
normal probability density function. For this paper we assume that this bimodal probability distribution func-
tion is time invariant.

pqinf(TE) = βpqinf ,f ast(TE) + (1 − β)pqinf ,slow(TE) (12)

pqinf ,i(TE) =
1

TEσi
̅̅̅̅̅
2π

√ exp (
− (ln(TE) − ln(τi))2

2σ2i
) (13)

In these, pqinf ,f ast(TE) and pqinf ,slow(TE) are log‐normal probability distribution functions for fractions of water
experiencing fast flow and slow flow respectively (indicated with index i in Equation 13) where β is the fraction of
water following the fast flow probability distribution function.

Water Resources Research 10.1029/2024WR038360
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The probability distribution function for the life expectancies of the base flow is assumed to be a time invariant
gamma distribution, in which Γ is the gamma function and abF is a value between 0 and 1:

pbF (TE) =
xabF − 1e− x

Γ(abF)
(14)

where x is a normalized life expectancy of the water released from the bulk waste defined as:

x = TE/TE,norm (15)

As stated before, assumptions underlying this approach are that the flow in the waste body is considered to be a
causal process and that both travel time distributions are assumed to be time invariant. This implies that the flow
occurs along specific paths or streamlines and that the flow rates in these paths remain constant in time. Har-
man (2015) shows that it is relatively simple to relax the assumption of time independent pdfs, for example, by
making TE a function of the storage.

2.1.3. Water Balance of the Drainage Layer

In the landfills analyzed for this paper, leachate is actively pumped from the drainage system by an automatic
system that maintains the water level between a minimum and a maximum value. As a consequence, water levels
in the drainage system are nearly constant and we can assume that the flux from the drainage system is identical to
the flux entering the drainage system:

qdrain = qleach (16)

2.2. Solute Mass Balance

In order to demonstrate the concept we chose to consider only conservative solutes for this paper. This implies that
the mass flux is fully controlled by water flow. Because the probability distribution of life expectancies implicitly
takes account of the dispersion that occurs as water flows through the system we neglect solute diffusion as a
separate process because it is very slow. The solute flux can therefore be written as:

qM = qw c (17)

The solute mass balance of the cover layer can be calculated as:

dMcl(t)
dt

= crain(t)qrf (t) − ccl(t)qinf(t). (18)

The solute mass balance can be defined with:

dMwb (TE, t)
dt

= cinf(t)qinf(t)pqinf(TE, t) + cbulk(t)qbF (Sbulk(t)) pqbF(TE, t) − Mwb(0, t) (19)

whereMcl andMwb are the total mass of conservative species present in the cover layer and waste body (kg/m2),
respectively. As we only consider old landfills which no longer accept waste and we assume that the concentration
of conservative solutes in rain in the Netherlands is much lower than those found in landfill leachate we take
influx of solutes with rainfall to be zero. In the waste body each water parcel with a specific life expectancy is
associated with a specific mass (Mwb (TE, t) similar to the storage in the waste body. The concentration of con-
servative species for the cover layer is:

ccl(t) =
Mcl(t)
Scl(t)

,

and the concentrations of the water parcels in the waste body are:

Water Resources Research 10.1029/2024WR038360

HEIMOVAARA AND WANG 6 of 26

 19447973, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038360 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [03/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



cwb (TE, t) =
Mwb (TE, t)
Swb (TE, t)

.

2.3. Solution Algorithm for Cover Layer

Implementing the equations for the cover layer as a differential equation results in a model that requires quite a lot
of time to solve. In order to have a fast model which allows for a large number of runs in a Monte Carlo simulation
framework, we chose to simulate the flows for the cover layer with an algorithmic implementation based on the
equations in paragraph 4.1.1. Rainfall data and potential evapotranspiration data are available as daily average
fluxes. The implementation is shown in Algorithm 1 using a time step Δt of 1 day.

Algorithm 1. Implementation of the Water Balance Algorithm for the Cover Layer

1. Estimate infiltration flux with Equation 4 and estimate the new storage

Sclestn+1 = Scln + (qr fn+1 − qinfn + qEvn+1)Δt. (20)

2. If the estimated amount of water in the cover layer is larger than the maximum
available storage capacity, Sclestn+1 >Sclmax, we need to increase the amount of

infiltration by short circuiting the flow to the waste body and and then
recalculating Sclestn1

with the corrected q ínfn

q ínfn = qinfn + (Sclmax
− Sclestn+1 )/Δt, (21)

Sclestn+1 = Scln + (qr fn+1 − q ínfn + qEvn+1)Δt. (22)

3. However if (Sclestn+1 <0 and Scln >Sclmin) then we need to limit the amount of

infiltration (there is not enough water in the cover layer to sustain infiltration)
and perhaps also reduce the amount of evaporation:

q ínfn = (Sclmin
− Scln)/Δt (23)

after which we again calculate Sclestn+1 using equation 22.

4. If the estimated storage after correction is still negative, (Scln+1 <0), we need

to limit the amount of evaporation and then recalculate Sclestn+1

qÉvn+1 = qEvn+1 + Scln+1/Δt, (24)

Sclestn+1 = Scln + (qr fn+1 − q ínfn + qÉvn+1)Δt. (25)

This approach implicitly implements the fred term in Equation 5.
5. All conditions should now be fulfilled so we have a new update of the storage in
the cover layer:

Scln+1 = Sclestn+1 (26)
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2.4. Solution Algorithm for the Waste Body

In order to solve Equation 11 we discretize it over both time dimensions where we use a daily time step dt = 1
day and for each time step, the life expectancy is distributed over ntt + 1 values ranging from 0 to ntt. This
approach is illustrated in Figure 1. Each day, water infiltrating from the cover layer is distributed among the cells
in the waste body using pqinf(TE) and water flowing from the bulk as base flow using pbF (TE) .

At t = 0, all cells are initialized with an initial amount of storage Sini. Then every daily time step, all cells are
shifted in life expectancy, that is, the cell with TE = 1 becomes 0, the cell with TE = ntt becomes ntt − 1 days and
the cell with TE = ntt − 1 is filled with water from the bulk waste depending on the base flow.

2.5. Model Calibration Using Bayesian Inference

Before we can use this model to simulate leachate production rate and quality we need to quantify the parameters.
The parameters can be obtained by history matching of simulated leachate volumes and leachate concentrations to
those obtained from measurements. We inferred the values of the parameters with the Multiple‐try DREAM(ZS)
package Laloy and Vrugt (2012), implemented in pyDREAM Shockley et al. (2018). DREAM (Vrugt, 2016)
applies a Bayesian inference scheme to obtain the distribution of model parameters (θ) which optimally describe
the measured data in a probabilistic framework. Bayesian inference,

p(θ| ŷ)∝ p(θ) ⋅L(θ| ŷ), (27)

allows us to calculate the joint posterior probability distribution (p(θ| ŷ)) of the set of parameters using the
measured data. The posterior distribution is calculated using the prior distribution of the parameters (p(θ)) and the
likelihood of the parameters given the measured data (L(θ| ŷ)) .

For the likelihood function we applied the generalized likelihood function proposed by Schoups and
Vrugt (2010):

L(θ|ŷ) = − n ln
2σξωξ

ξ + ξ− 1
− ∑

n

t=1
σt − cβ∑

n

t=1
|aξ,t|2/(1+β). (28)

For a detailed description and explanation of the parameters in this function we refer to Schoups and Vrugt (2010).
We chose to use the generalized likelihood function because it allows for an improved handling of residual errors
which can be correlated, heteroscedastic and non Gaussian with varying degrees of kurtosis and skewness. As a
result, this approach allows for a correct statistical description of the data and residual errors, without the need for

Figure 1. Illustration of the conceptual model of the landfill system. The cover layer allows rain water to be buffered so that
evaporation can also occur on days without rainfall. Water subsequently infiltrates in to the waste body. In the waste body the
infiltrated water is distributed over a discrete number of life‐expectancy cells and the remainder is added to the bulk. On a
daily basis water in the cell with a life expectancy (TE) of zero is emptied in the drainage system fromwhere it is immediately
removed as leachate.
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separating the different error sources. In Equation 28, we defined the measurement error as σt = σ0 + σ1 yt(θ),
aξ,t is an independently and identically distributed random error with zero mean and unit standard deviation,
described by a skew exponential power (SEP) density using parameters ξ and β to account for non‐normality,
scalars ωβ, σξ, and cβ are derived from values of ξ and βwhich are a skewness and kurtosis parameter respectively
and ϕ = {ϕ1,… ,ϕ4} stores coefficients for an auto‐regressive model of error residuals.

The generalized likelihood function is based on an additive non‐linear regression model:

Y = E + e

where Y is a vector of n observations, E is a corresponding vector of expected values; and e is a vector of zero
mean random errors or residuals. The vector e includes measurement error, model input, model structural errors.
In order to account for heteroscedastic errors, Schoups and Vrugt (2010) suggest to include multiplicative bias
factors in order to account for systematic deviations in model predictions:

Et = Yh,t (X|θh)μt. (29)

In this equation we assume that expected values can be modeled with a mass‐balanced base flow model h, which
yields simulated values Yh as function of an observed input X and a vector of model parameters θh. In this
equation the simulated flow Yh,t, and bias factor μt vary as a function of time. Schoups and Vrugt (2010) suggest to
amplify the non‐linearity in the response of the leachate production using

μt = exp (μ1 Yh,t), (30)

but we found that we obtained the best results by not including this bias factor so we kept μ1 to zero.

As suggested by Vrugt (2016), we include σ0, σ1, β, ξ, ϕ and ymin as so‐called nuisance variables in the inference
together with all the other unknown parameters.

The generalized likelihood function was applied to both the times series of leachate production volumes and
concentration data. The prediction of the cumulative total was constrained by adding a third normal likelihood
term based on the cumulative leachate production over the inference period as a likelihood based on a sum of
squares:

Lcum (θ|ŷcum) = −
1
2
ln(ycum − ŷcum)

2
. (31)

The total liklihood, Ltot is the sum of the three likelihood values.

2.6. Boundary Conditions

The model is driven by daily rainfall and evaporation data which we downloaded from the Royal Dutch Mete-
orological Institute (KNMI, n.d.).

2.7. Initialization of the Model

Initial values for the model states need to be defined before we can keep track of the change in states which are
driven by the varying boundary conditions. The important states are the storage in the cover layer, Scl, the storage
in the waste body, Swb and the solute mass in the cover layer and waste body respectively,Mcl andMwb. The model
is started in the past well before measurements become available so that the effect of the initial conditions have
been minimized by the seasonally varying boundary conditions. For the scenarios presented here, we start the
simulation on the first of January 2003. The model is driven by daily precipitation and potential evapotranspi-
ration data.

In order to facilitate a physical interpretation of the initial storage states we relate them to the average water filled
porosity and heights of the cover layer and waste bodies. In addition we estimate the initial mass present in the
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cover layer and waste body using an average concentration. The effect of initializing with average values will
become smaller over time due to the cyclic seasonality in the meteorological boundary conditions.

The initial states are calculated with:

Scl = θwcl
∗Hcl (32)

Swb = θwwb
∗Hwb (33)

Mcl = Scl ccl (34)

Mwb = Swb cwb (35)

where subscripts cl and wb indicate cover layer and waste body. θwcl
and θwwb

are the volumetric water contents in
the cover layer and waste body [‐], Hcl and Hwb are the thickness of the cover layer and waste body [m]. Mcl and
Mwb are the solute masses in the cover layer and waste body per unit landfill area. The maximum saturation of the
cover layer is then parameterized using the maximum volumetric water content (θwcl ,max) which is equal to the
porosity of the cover layer. In order to ensure that the minimum storage in the cover layer is always less the
maximum storage, it is initialized as a fraction of θwcl ,max: fwcl,min. The saturation of the cover layer is initialized as
to be half the difference between Sclmax

and Sclmin
, and the saturation of the waste body was initialized directly. The

minimum bulk storage, Sbulkres is parameterized in a similar manner with fwwb,min.

Each life expectancy cell and the bulk storage in the waste body are initialized with the same initial concentration
from which the initial mass present in the waste body is calculated. The amount of mass removed every time step
with the leachate is the amount of mass present in the cell with a life expectancy of 0 days. Mass can only enter the
life expectancy cells from the bulk with the base flow. The mass in the bulk is updated every time step with the
amount removed with the base flow. The mass in the life expectancy cells remains constant with time, infiltrating
water from the cover layer only leads to dilution of the concentration.

3. Site Specific Data and Prior Distributions of Unknown Parameters
3.1. Landfills

All data are from two landfills which are currently part of the Natural Biodegradation Research Program on Dutch
Landfills (Stichting Duurzaam Storten, 2017). The Wieringermeer landfill is near Medemblik and the Braam-
bergen landfill is near Almere, both in the Netherlands. Details for these landfills are given in Table 1. Both
landfills are operated by Afvalzorg N.V.

Geo‐referencing available as‐built drawings to background maps and recent high resolution areal photographs in a
GIS package, allowed us to estimate the surface area of the basal drainage system and the heights and surface
areas of the landfills. The heights of the basal drains have been measured in 2016. As the topography of the sites is
variable, we estimated the volume of the waste body from the GIS derived data and then calculated the average
height of the waste body by dividing the volume by the area of the basal drainage system. Background data for the
four landfill cells can be found in Table 1.

Detailed monitoring of produced leachate volumes and leachate quality is carried out in the context of the
biodegradation research program by the landfill operator since March 2012.

Data available for model calibration and verification were the cumulative leachate production measured every
15 min from 14 June 2012–1 November 2024 and chloride concentrations measured in a commercial laboratory
over the same period. Laboratory analyses were performed on leachate samples that were taken once every
2 weeks.

By testing different attempts to infer the parameters from the data, we found that the best results were obtained
when cumulative leachate production is transformed to weekly leachate production rates by differentiation of the
cumulative production. This transformation allows the model to capture the weekly dynamics in the data.

Rainfall and potential evaporation data are downloaded from automatic weather stations operated by the Royal
Dutch Meteorological Institute (KNMI, n.d.). For the Wieringermeer landfill we used the data from the Berkhout
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station, for Braambergen we used the data from the Lelystad station. Daily rainfall, and calculated reference
evapo‐transpiration were used for the water balance analysis.

Between October 2016 and February 2017 a large number of wells were installed at both landfills through which
the waste body is aerated. As the aim of aeration is to ultimately improve leachate quality, the filters of the wells
are installed deep in the waste body (about 1–2 m above the top of the drainage system. In 2023 additional wells
were installed at Braambergen.

3.2. Prior Distribution Ranges

In order to use Bayesian inference we require prior distributions of uncertain model parameters. We chose to
initialize the optimization with uniformly distributed priors over a predefined search range (Table 2). The initial
ranges were defined based on the expected physical values and sometimes by trial and error. In this last case, when
it became apparent during the optimization that the initial prior was too constrained, the boundaries of the dis-
tribution were extended. For priors where variation is expected to vary across orders of magnitude, the ranges
were initialized using the log‐10 values of the parameters.

The number of finite travel times (ntt) was set to be equal 1,825 days (or 5 years). The model bias factor μ1 in
Equations 29 and 30 was set to zero as first inference attempts indicated that model bias was not important.

In order to minimize the effect of the initial parameters on the calibration with measured data we started the model
on 1 January 2003. This ’burn‐in’ time, allows for the base flow from the bulk that initiated on 1 January 2003, to

Table 1
General Background Information on the Landfill Cells

Braambergen Wieringermeer
Town Almere Medemblik

Compartment ID 11N, 11Z and 12 VP06

Area basal drainage
system (m2)

11N: 34,802 28,355

11Z: 35,188

12: 30,000

Time in operation 1,999–2008 1,992–1,998

Total amount of
waste [ton]

1,216,723 281,083

Volume of landfill
cell (m3)

11N: 345,426.2 323,094

11Z: 388,981.9

12: 315,254.4

Average Height of the
landfill (m)

11N: 9.9 12.2

11Z: 11.1

12: 10.5

Current landfill cover Soil, incinerator bottom ash, jet grout (1.5 m) Soil (1.5 m)

Landfill gas extraction 36 gas wells 2 gas wells + 1 shared

Bottom liner Combination of mineral (50 cm sand bentonite) and 2 mm HDPE foil Single 2 mm HDPE foil

Leachate drainage and
collection

3 separate drainage systems for 11N, 11Z and 12 (3 pump pits) Separate drainage system for compartment 6, single pump pit

Aeration system Installed between Nov 2016‐Jan 2017 and expanded in 2022 11N:
well spacing: ca. 20 m, after expansion about 10 m (total number:
11N: 65, after expansion 113) 11Z well spacing: ca. 15m after

expansion about 7 m (total number: 114 after expansion 163) 12 well
spacing: ca. 20m (total number: 56) filter length: 2m depth filter: 1 m

above the top of the drainage system

Installed in Oct 2016 well spacing: ca 14 m total number gas wells:
109 filter length: 2 m depth filter: 1.4 m above the top of the drainage

system
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have moved completely across all 1,825 cells before the results are compared
to any measurement values. As such the solute mass and volume of water in
the travel time cells are by then fully constrained by the base flow from the
bulk waste 5 years earlier.

The model was calibrated using measured leachate volumes and chloride
concentrations from the first of January 2014 to the 31st of December 2020.
The remaining available data from the complete data set from 12 June 2012
until 1 November 2024 were used to assess the model performance beyond
the calibration range.

Calibration was initially started allowing the pyDREAM to randomly sample
from the prior distributions. Once the inference had converged, pyDREAM
was restarted with the final values of the 3 chains as an initial guess until the
Gelman Rubin criterion indicating convergence was met (Vrugt (2016)). The
data were analyzed using the final distributions from this last optimization.
The convergence and consequently the parameter distributions were assessed
using the final 50% of the length of each chains Vrugt (2016). The optimal
parameter set is the Pareto optimal of the three likelihoods calculated for
leachate cumulative outflow, leachate outflow rate and leachate
concentration.

4. Results and Discussion
4.1. Simulated Leachate Outflow Rate and Leachate Concentration
Values

After convergence in pyDREAM we may assume that all likelihood values in
the final parameter set are samples from the distribution of likelihood values
in the model that fit the measurements best. Because the inference is carried
out in a hyperspace with 29 dimensions, different parameters can be highly
correlated with each other. This is illustrated in Figure S1 in Supporting In-
formation S1 for some of the parameters in the converged set for the
Braambergen 11N waste body that have a Pearson's correlation coefficient
larger than 0.75. The presence of a strong correlation between parameters is
an indication that the range of some parameters can cover the complete prior‐
range. The parameter inference procedure has sampled the correlation in the
posterior joint probability distribution. As a result, we cannot use averaged
parameter values from the posterior joint probability distributions. Instead,
we need to select individual parameter vectors from the total converged
distribution of parameters.

In order to provide insight in how well the model is able to describe the
measured data we decided to present model estimations based on the posterior
likelihood for parameters vectors where the density is 1, and close to 0.95, 0.5,
and 0.05 from the converged distribution. The cumulative distribution of
likelihood values shown Figure S2 (Supporting Information S1) for the four
waste bodies analyzed for this paper. The likelihood values corresponding to
the probability quantiles of the lines in the following graphs are reported in
the legends of the figures.

The results of the simulated values of leachate production and leachate chloride concentration are compared with
measured values for the Braambergen 11N waste body in Figure 2. In the Supporting Information (Figure S3 in
Supporting Information S1) we present similar figures for the Braambergen 11Z and 12 and the Wieringermeer
VP06 waste bodies.

The generalized likelihood model of Schoups and Vrugt (2010) allows us to calculate a simulated measurement
error with the forward model. For all sites the model is able to describe cumulative leachate production and

Table 2
Priors for the Parameter Distributions Used in the Bayesian Inference

Parameter Minimum Maximum 10log

Cover layer

Cf 0.75 1.5 –

θwcl ,max 0.3 0.5 –

fwcl ,min 0.0001 1 –

Kcl − 5 3 x

bcl 0 8 –

cinicl − 4 − 4 x

Waste body

τfast 1 730 –

σfast − 5 2.5 x

Δτslow 0 9,125 –

σslow − 5 3 x

β f 0 1 –

θwbini 0.0 0.5 –

fwbmin
0.0 0.5 –

bF0 − 5 − 2 x

ciniwb 2 6 x

SbF 0 15 –

σbF 0 15 –

abF − 9 0 x

tnorm 0 1,825 –

Generalized likelihood

σ0 − 8 2 x

σ1 − 8 2 x

μ1 0 –

β − 1 1 –

ξ 0.1 10 –

ϕ1,leachate − 1 1 –

ϕ1,conc − 1 1 –

[ϕ2,ϕ3,ϕ4] [0, 0, 0] –

Note. Priors are uniform distributions. The column10 log indicates which
parameters have a range defined by the10 log values. Parameters with only a
minimum value have not been inferred, the given values are used as a constant.
The parameters for the generalized likelihood function are the same for both
the leachate flow and the concentration data, except for the correlation
parameter ϕ1 which were maximized based on trial and error.
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leachate flow dynamics with similar accuracy. The uncertainty estimated with the 95% confidence intervals is
able to capture the spread in the measurement data for the data set used for the calibration.

In the generalized likelihood model of Schoups and Vrugt (2010), heteroscedasticity is explicitly accounted for by
assuming that the measurement error increases linearly with the expected value:

σt = σ0 + σ1Et.

The inferred parameters in the generalized likelihood model (σ0,leachate, σ1,leachate, σ0,conc, and σ1,conc) of which the
log10 values are reported in Table 3, allow us to calculate the estimated measurement error for the simulated
leachate production rates and leachate concentrations. For a leachate production rate of 1 × 10− 3 m/day the
measurement error parameter set with the highest likelihood will be 0.72 × 10− 3 m/day or about 72% of the
expected value. This implies that the approximate 95% confidence interval ranges between − 0.41 × 10− 3 and
2.41 × 10− 3 m/day. The negative value is a consequence of the simplified approach for estimating the confidence
interval.

For the concentration data this calculation is less straight forward because the measurement error is estimated
using the log10 transform of the measured concentration data. The measurement error for the log10 of the
concentration for the highest likelihood with an expected value of 1,000 mg/L is 0.11, or about 4% of the log10
transformed concentration. This leads to a 95% confidence interval between 612 and 1,634 mg/L. Similar values
can be estimated for the other waste bodies as is graphically shown in Figure S3 (Supporting Information S1).

Although the uncertainty in the simulated values is significant, the estimates of the expected values give a good
description of both measured time series. Please note that the calibration was carried out using data that were
measured between 1‐1‐2014 and 31‐12‐2020.

The estimates of the leachate production rates do not capture the extremes in the measured data. This is due to
several reasons. The first is because the optimal parameter set is a pareto optimum of both leachate production
rates and chloride concentrations. The simulation represented by the red line in Figure S3 (Supporting Infor-
mation S1) for the Braambergen 11Z waste body is a clear example, with a high likelihood for the concentration

Figure 2. Simulated and measured values of cumulative leachate production (CL [m]), leachate pump rate (LPR [m/day])
and leachate chloride concentration (conc [kg/m3] for Braambergen 11N. The four colors are the results of four scenarios
corresponding to distinct values of likelihood from the converged parameter set. The shaded areas are the 95% confidence
intervals estimated from the generalized likelihood model. The legends give the likelihood of the parameter set for the three
objective functions used for optimization.
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data, but a lower one for the leachate data. An important reason for this ambiguity lies in the fact that the model is
an initial boundary value problem in which many of the waste body properties cannot vary with time. Early
attempts, where first only leachate production data were used in the objective criterion, gave better fits of
measured leachate production values, however attempts to subsequently describe the concentration data with
fixed optimal parameters for the leachate production rate simulation led to poor results for the concentration data
(results not shown). This implies that the assumption of purely convective flow for chloride is not completely true
or that the parameters in the model vary with time. When inferring the parameters from both time series, leachate
production rates need to be smoothed in the model to a certain extent. Another example of the initial boundary
condition problem can be seen in the early predictions of the concentration data (before the start of the calibration
period in 2014) where the simulated concentrations poorly describe the measured values for Braambergen 11N,
12 and Wieringermeer waste bodies.

The second reason is related to the quality of the measurement data. Leachate levels in the pump‐pits of the waste
body cells are allowed to vary over a narrow bandwidth of 10 cm. When the maximum level is reached, the pump
will be switched on, when the minimum level is reached it switches off. During pumping, flow is cumulatively

Table 3
Statistics and Optimal Parameter Values After Optimization With DREAM(ZS), Braambergen 11N, Number of Samples in Converged Parameter Set = 60,000

Mean Std Min 25.00% 50.00% 75.00% Max 1 0.975 0.5 0.025

Cf 0.98 0.08 0.80 0.93 0.98 1.04 1.17 1.06 1.03 0.88 0.98

θwcl,max
0.31 0.01 0.30 0.31 0.31 0.32 0.38 0.32 0.31 0.32 0.31

fwcl ,min 0.19 0.03 0.11 0.17 0.20 0.22 0.26 0.20 0.22 0.23 0.25
10logKcl 1.76 0.66 − 0.53 1.26 1.76 2.28 2.99 2.15 1.20 2.17 − 0.08

bcl 3.48 1.35 0.85 2.67 3.21 3.80 8.00 2.90 2.00 3.46 1.19

τfast 297.04 191.65 26.05 135.26 241.12 453.54 727.53 244.97 171.36 162.45 140.90
10logσfast 0.44 0.09 0.18 0.36 0.44 0.51 0.69 0.40 0.36 0.41 0.39

Δτslow 5092.93 2058.14 1007.65 3182.48 5063.49 6673.43 9112.41 7063.72 6855.75 1933.23 2796.92
10logσslow − 1.86 1.57 − 4.97 − 3.10 − 1.94 − 0.55 0.94 − 1.07 − 2.71 − 3.01 − 4.33

β f 0.71 0.14 0.33 0.61 0.70 0.81 0.99 0.78 0.68 0.73 0.71

θwbini 0.45 0.03 0.36 0.43 0.45 0.47 0.50 0.46 0.43 0.42 0.43

Smin 0.38 0.07 0.17 0.33 0.38 0.44 0.50 0.38 0.35 0.45 0.40
10log bF0 − 1.90 0.23 − 2.73 − 2.03 − 1.86 − 1.73 − 1.50 − 1.89 − 1.65 − 1.86 − 2.09
10logcinicl − 0.49 2.26 − 4.00 − 2.39 − 0.74 1.00 4.87 − 3.48 − 2.91 0.31 − 3.70
10logciniwb 3.39 0.05 3.30 3.35 3.38 3.41 3.60 3.38 3.41 3.41 3.40

SbF 7.47 4.28 0.28 3.12 8.25 11.11 14.99 10.14 14.19 9.80 9.69

σbF 1.80 0.48 1.11 1.47 1.69 1.95 3.34 1.45 1.45 1.67 1.15
10logabF − 4.76 2.39 − 8.99 − 6.80 − 5.05 − 2.69 − 0.50 − 5.77 − 4.50 − 2.50 − 7.16

TE,norm 1265.17 391.84 5.84 1024.45 1333.88 1566.78 1824.89 1010.26 1122.62 1345.83 1500.61
10logσ0,leachate − 3.63 0.04 − 3.78 − 3.65 − 3.63 − 3.61 − 3.55 − 3.63 − 3.63 − 3.69 − 3.64
10logσ1,leachate − 0.35 0.13 − 0.75 − 0.43 − 0.35 − 0.26 0.05 − 0.43 − 0.36 − 0.63 − 0.38

βleachate 0.94 0.05 0.71 0.90 0.95 0.98 1.00 0.99 0.98 0.97 0.74

ξleachate 1.24 0.05 1.08 1.20 1.23 1.27 1.40 1.25 1.22 1.22 1.28

ϕ1,leachate 0.66 0.03 0.55 0.64 0.67 0.69 0.70 0.67 0.65 0.68 0.61
10logσ0,conc − 1.03 0.05 − 1.16 − 1.06 − 1.02 − 0.99 − 0.91 − 1.01 − 1.00 − 0.96 − 1.06
10logσ1,conc − 5.16 1.68 − 8.00 − 6.63 − 5.07 − 3.68 − 1.95 − 5.45 − 6.26 − 4.43 − 2.46

βconc 0.93 0.05 0.75 0.91 0.95 0.97 1.00 0.97 0.97 0.95 0.78

ξconc 0.93 0.09 0.69 0.87 0.92 0.99 1.22 0.90 1.03 1.11 1.01

ϕ1,conc 0.59 0.07 0.36 0.54 0.59 0.64 0.70 0.59 0.53 0.67 0.58

Ltot 2569.35 4.88 2536.62 2566.29 2569.90 2572.43 2580.20 2580.20 2576.75 2569.90 2561.41
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recorded. Since, the start of monitoring in April 2012, several problems were encountered with the pumps causing
them to be switched off leading to a zero flow. As a consequence, the drainage system buffered the leachate. As
soon the issues were fixed, the pumps quickly pumped the excess water until the set‐points were reached.
Pumping excess water led to temporarily much higher flow rates. In order to minimize this effect in the data, flow
rates were obtained by taking backward differences of the cumulative data over a period of 7 days.

Because measurements of qrf (t) and qleach(t)were used to calibrate the model, the uncertainty in the water balance
is mainly associated with the estimation of qev(t). In the approach we used, the final estimate of qev(t) is deter-
mined by multiple (correlated) parameters in the model. For most of the time qev(t) is equal to the estimated
potential evapotranspiration, but there are moments when evaporation became zero due to insufficient water
present in the cover layer.

The posterior distributions of the model parameters indicate the model sensitivity of the system to the parameter
values within the optimal likelihood parameter set. Figure 3 gives examples of posterior cumulative parameter
distributions (in black) compared to the prior distributions in blue: the left column shows the inferred distributions
for Cf , bF0, and ciniwb which are examples that have narrow distributions compared with the prior ranges given in
Table 2. This narrow distribution implies that the measured data contains sufficient information to infer these
parameters. The total water balance depends strongly on the crop factor, Cf , because the surface area of the waste
body is fixed and the crop factor is the only parameter that can limit or enhance the evapotranspiration. Outflow
concentrations strongly depend on the amount of solute mass present in the waste body, which is controlled by the
initial concentration ciniwb and the base flow, bF0, which constrains the lowest flow rate during dry periods.

The parameters in the right column of Figure 3 are examples of poorly inferred parameters because the posterior
distribution is very similar to the uniform prior distribution in Table 2. The outflow concentration does not depend
on the initial concentration in the cover layer, cinicl, in 2003. The simulation results show that any conservative
solute in the cover layer is quickly removed. The posterior distribution can also be similar to the prior when the
parameter is highly correlated with another one, a good example of this is the distribution of the mobile fraction in
the cover layer, β f which is highly correlated with τfast as shown in Figure S1 (Supporting Information S1). The
last example of a poorly inferred parameter is the posterior distribution for Δτslow which does have a narrower
range than the prior, however the final parameter range is still uniform over a wide range. The reason for this is
that the inferred values cause the τslow value in Equation 13 to be larger than ntt = 1825 days. Given the way the
model is implemented, any value larger than ntt would lead to the same result.

4.2. Error Model

In order to check if the parameters in the error model are correctly inferred we follow the approach used by
Schoups and Vrugt (2010) were different aspects of the residuals are evaluated. Figure 3 presents the results of
this analysis for the Braambergen 11N waste body. For the error model we assume that the errors are hetero-
scedastic, the left plots show the residuals as a function of the expected values of measured leachate production
rates and concentrations. The errors are nicely distributed around zero indicating that there is no bias in the results.
The middle plots show that the distributions of errors are well described using the inferred parameters in the
Skewed Exponential Power distribution of the generalized likelihood model. Clearly the error model does not
follow a normal distribution. Finally, the autocorrelation in the residuals is adequately captured with the auto-
correlation parameter even though the range for this parameter was constrained by a maximum value of 0.7. In
addition, the different chains show similar results demonstrating that the final parameter set is indeed from a
converged distribution (see Figure 4).

4.3. Extrapolation to 2066

The model allows us to make predictions of how emissions vary in the future while taking the uncertainty in the
inferred model parameters in to account. The results for the Braambergen 11N waste body are shown in Figure 5,
for the other waste bodies we refer to the Supporting Information S1, Figure S4. For all waste bodies, simulated
results for selected parameter sets lie close to each other in the time range used to infer the parameters, but before
and after the measurement time range, the results can diverge. This most clearly seen in the plot of the cumulative
leachate production because small differences in simulated cumulate over time. For the time range used for the
parameter inference these small differences are compensated, so the results for the different parameter sets do not
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diverge from each other. Similar effects also occur for leachate production rates and leachate concentration data.
However, as the effects do not cumulate as quickly as for the cumulative leachate production, it will take a much
longer time series to see the effects in the graphs.

The simulated cumulative leachate production starts to deviate significantly from the measured cumulative flow
after 2022 and in spring 2024 we see that measured flow rates fall above the 95% intervals. This is due to the fact
the past years have moved from exceptionally dry to exceptionally wet in a very short time. An additional factor is
that in 2022 additional wells were installed on Braambergen.

One of the most important assumptions in developing this approach is that the probability density functions of the
travel time distributions do not change with time. It is likely that this assumption is too strict. Apparently, the

Figure 3. Posterior (black) and prior (dashed blue) cumulative distributions of selected parameters for Braambergen 11N. The
left column gives examples of sensitive parameters that have converged to narrow posterior distributions, the right column
gives examples parameters which are highly correlated with other parameters or which are not sensitive and therefore are
close to the prior.
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waste body is not able to store more water as rainfall increases, instead preferential flow to the drainage system
seems to increase as well. Measurement artifacts also play a role. Because of the excess amount of water due to
heavy rainfall, the landfill operator had to reduce the discharge to the water treatment plant by reducing the pump
rate from the drainage system for a couple of weeks. The reduced flow of water may have led to a higher leaching
of chloride.

In order to capture time dependent changes in the properties of the waste body and boundary conditions other
approaches are required than used for this paper. Parameter distributions can be adjusted so that they become time
dependent. This could be done by making them depend on the storage in the waste body as suggested by Har-
man (2015) or by inferring parameters and states in time using a particle filter as suggested by (Wang &
Heimovaara, 2023).

The long‐term predictions (Figure 5) indicate that chloride is gradually leached from the waste body and the
concentration varies with the seasonal variation in infiltration. All scenarios (see also Figure S4 in Supporting
Information S1) indicate that water storage in all waste bodies reach a long‐term dynamic steady state where base‐
flow is compensated by storage from infiltration with life‐time expectancies above ntt or 1,825 days.

The concentration in the leachate is controlled by chloride mass and amount of water draining from the bulk
volume of the waste body as base flow. The base flow rate is controlled by the volume of water stored in the bulk

Figure 4. Braambergen 11 N. Plots of the residuals as a function of leachate production rate or concentration, distribution of
the errors and auto‐correlation in the errors for the flow data (top row) and concentration data (bottom row).
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volume. Figure 6 shows the base flow as function of the bulk storage, Figure 7 the simulated base flow over time
and Figure 8 shows the bulk concentration which is the ratio of the solute mass and storage. Each parameter set
results in base flows with a different magnitude, however as the model is simulating both the water balance and
the chloride mass‐balance, final outcomes are very similar (see Figures 2 and 5). The differences in magnitudes
for the base flow are caused by the fact that concentration is the ratio of solute mass over water storage. A higher
concentration leads to a higher water mass, which therefore will lead to higher bulk storage values and therefore a
different base flow function to achieve similar base flow mass rates. A clear indication of the mass balance are the
similar magnitudes of the variations in the bulk storage (Sbulk) in Figure 8.

The oscillations in the base flow (Figure 6) can be explained by the seasonal variation in the infiltration leading to
a variation in the bulk storage (Figure 8) and the slope of the base flow function (Figure 6).

4.4. Life Expectancy Distributions

In Figure 9, cumulative density functions are plotted for the life expectancy time distributions used to partition the
water from the infiltration flux from the cover layer and the base flow from the bulk. Until a life expectancy of
2,500 days, the probability density functions for qinf are completely determined by the fast flow fraction for all
scenarios except the green one. Apparently the slow fraction only has an impact on water with a life expectancy
which is much larger than 2,500 days. Given the fact that all water with a life expectancy older than ntt = 1825
days is added to the bulk, the results imply that about 40% of the infiltrating water is added to the bulk of the waste
body and that about 20% of the infiltrating water will have left the waste body as leachate after about 45 days. The
same is true for the green scenario as the jump occurs after 1,900 days.

The cumulative density function for the base flow indicates that in all scenarios, except for the 50% probability
scenario (green with a likelihood of 2487) are directly added to the cell with a life expectancy of 1,825 days which
is consistent with convective transport with the water.

Figure 5. Long term extrapolation of cumulative leachate production (CL [m]), leachate pump rate (LPR [m/day]) and
leachate chloride concentration (conc [kg/m3] for Braambergen 11N. The scenarios are identical to the ones presented in
Figure 2.
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Because 20% of the water infiltrating from the cover layer has a life expectancy of less than 45 days, leachate
concentration dynamics are dominated by this water moving preferentially through the waste body. This pref-
erential flow explains why in winter concentrations are low and in summer concentrations are high. In the
Netherlands, evapo‐transpiration is high in summer leading to no or very low infiltration fluxes from the cover
layer and solute present in cells with short life expectancy is not diluted. In winter evapo‐transpiration is very low,
leading to high infiltration fluxes which significantly dilute the solute present in the cells with short life
expectancy.

Figure 6. Base flow (bF) functions for Braambergen 11N using Equation 10.

Figure 7. Simulated base flow (bF) for Braambergen 11N.
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4.5. Emission Potential

The model keeps track of the mass balances of water and chloride in the waste body. The dynamics in the long
term leachate production rates and leachate chloride concentrations are controlled by the mass present in the bulk.
The only source for chloride in the leachate is the mass present at initialization, water is added via precipitation
and subsequent infiltration in to the waste body. These assumptions lead to a gradual decrease in chloride mass
which then leads to a gradual reduction in leachate concentrations as well.

Figure 8. Simulated chloride concentration, mass and total storage in the bulk of the waste body for Braambergen 11N.

Figure 9. Cumulative densities of the travel time distributions for the infiltration flux from the cover layer (qinf) using
Equation 12 and the base flow from the bulk (qbF) using Equation 14.
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Figure 10 shows the simulated totals of chloride mass, water storage and corresponding chloride concentrations
for the waste body of Braambergen 11N. Clearly the mass shows an exponential decrease with time, which is to be
expected. For the Braambergen 11N case, the difference in estimated total mass, varies from about 9,200 ± 100
g/m2 in 2008 to 510 ± 250 g/m2 in 2066. The corresponding emission from 2008 to 2066 ranges from 8,364 tot
9,018 g/m2.

The leachate volume in the waste body decreases from 4.5 m to values between 2.6 and 4 m. The concentration is
the ratio of the mass and the storage. As long as base flow occurs, the total mass in the waste body will decrease.
The rate of decrease is controlled by the magnitude of the base flow and the concentration in the bulk. Similar
patterns have been found for the other waste bodies in this study as well.

In 2018 a number of samples were taken from Braambergen 11N while drilling holes for gas injection wells in the
waste body. These solid samples were sent to the laboratory for further analysis. The chloride measurements for
these samples ranged from 287 to 540 mg/kg dry waste. Assuming an average waste body height of about 10 m
and a dry bulk density of 1,600 kg/m3 this would imply values ranging from 4,592 to 8,640 g/m2. The values in
Figure 10 range from 3,560 to 5,436 g/m2. Although these numbers should be considered with care, because of
the uncertainties related to the total mass of waste and water content, the magnitude and range of the values are
however, very similar.

These results indicate that our approach provides insight in the mass controlling long‐term emissions from waste
bodies. The total mass in Figure 10 shows the emission potential of this waste body as function of time. This mass
controls the concentration in the leachate and as no new mass is added to the waste body it also will control future
emissions.

5. Implications for Managing Landfill After Care
The model and parameter inference approach based on life‐expectancy modeling is a viable approach to describe
measured time series of leachate production rates and leachate concentration dynamics. Because the parameter
inference approach provides us with uncertainty estimates, we also obtain insight in the uncertainty of the
simulated values. The inferred parameters allow us to understand the uncertainty in the parameters controlling the
emission of solutes from the waste body. The model allows us to make sense of the measured variations in
leachate concentration data without having the need to smooth the data.

Figure 10. Total chloride mass, total storage and solute concentration in the waste body of Braambergen 11N.
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An important result is that this approach can provide minimum and maximum estimates of leachate concentra-
tions over time which can be used to assess the necessity of landfill after‐care measures. In addition the inferred
parameter distributions allow for an estimate of amount of mass in the waste body that is controlling the long‐term
leachate concentrations. This information is essential for understanding long term future risk associated with
leachate emissions.

The approach we present currently only estimates the water balance and the emission of conservative solutes such
as chloride which is a necessary first step to assess the emission of reactive compounds. We illustrate this in
Figure 11 where time series of a selection of reactive parameters are shown. Normalizing all measurements by the
chloride concentrations will illustrate the impact of dilution by preferential flow. If dilution has a significant
impact, normalizing by chloride will remove a lot of variation from the time series. This is clearly seen for the

Figure 11. Time series of reactive parameter concentrations in the leachate of Braambergen 11N. The left columns shows the
measured time series, the middle column shows the correlation with the measured chloride concentrations and the right
column shows the time series of concentrations normalized to chloride.
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time series of ammonium (NH4), bicarbonate (HCO3), and dissolved organic carbon (DOC) in the right column
in Figure 11. A strong indication of non‐conservative behavior is the increasing trend in these three time series.
For calcium (Ca) and manganese (Mn) the behavior is different, the impact of dilution is much less clear.

The non‐conservative behavior of these parameters is controlled by a multitude of processes. NH4, DOC and
HCO3 are to a large extent controlled by the hydrolysis of solid organic matter in the waste body, where the
dissolved compounds are further degraded under a range of redox conditions present in the waste body. Since
2018, the Braambergen 11N waste body has been aerated by the landfill operator by over extracting landfill gas
from the waste body which effectively pulls in oxygen from the ambient air. As a result, in part of the waste body
aerobic degradation can occur, leading to a significant increase in theCO2 pressure. The behavior of HCO3 is also
impacted by dissolution and precipitation of a wide range of carbonate minerals which are strongly influenced by
the partial CO2‐pressure in the waste body. In anaerobic landfills the partialCO2‐pressure is in the order of 0.5 bar
and in aerobic parts of the waste body it can be higher. Pumping of leachate from the leachate system leads to a
large amount of turbulence in the pump‐pit causing the leachate to mix with the ambient air, thus rapidly lowering
the CO2‐pressure, which causes a significant precipitation of carbonate minerals in the pump‐pit. This is probably
the reason why the calcium concentrations do not seem to be influenced by dilution, they are most likely
controlled by the solubility of calcium carbonate in the pump‐pit. Manganese is a very redox sensitive parameter
and it is soluble under anaerobic conditions. The time series of chloride normalized Mn concentrations implies
that leaching is to a certain degree conservative.

Clearly, assessing emission potential from time series of reactive parameters is not straightforward. However,
knowing the impact of dilution after assessing the water balance and the emission of chloride provide insights in
the net effect of hydrolysis and degradation on the concentration of for example, NH4. Such insights will guide
the development of reactive transport models with which we can assess the long term behavior of chemical
compounds distributed over the solid mineral, solid organic, liquid and gas phases present in the waste body. The
models will need to include processes such as dissolution and precipitation of minerals, hydrolysis of organic
matter, sorption to reactive surfaces and the biological degradation of organic compounds under a wide range
redox conditions. Such reactive transport models need to include both transport with the flowing water, as well as
transport of the landfill gas migrating through the waste body.

The results presented in this paper clearly demonstrate that concentrations of chloride in leachate are dominated
by dilution with water infiltrating from the cover layer and quickly moving via preferential path ways to the
drainage system. Transport of mass from the bulk of the waste body to the drainage system is a relatively slow
process. Dilution is a dominating mechanism reducing the actual leachate concentrations compared with the
solute concentrations present in the waste body.

Environmental protection criteria are related to the actual concentrations in the leachate and if these are
consistently below accepted values, landfill after care can be reduced (Brand et al., 2016; Dijkstra et al., 2018).
Quantification of the emission potential is an essential step in assessing if the leachate concentrations comply with
environmental protection criteria under a wide range of scenarios under the constraint of the boundary conditions
close to the ones used for quantifying the model parameters.

Enhancing preferential flow by engineered measures in the waste body, may reduce these concentrations even
further because the amount of water being stored in the bulk will decrease. This then leads to a decrease in the
release rate from the bulk because of a decrease in storage. However the decrease in emission potential will slow
down as well. When relying on such engineered measures it is important to ensure that the engineered solutions
are robust and remain operational over extended periods of time under a range of varying boundary conditions.

Extreme scenarios such as flooding of the landfill may have to be taken in to account as well as these may lead to
enhanced leaching (Laner et al., 2009; Nicholls et al., 2021). Emission potential estimates obtained by applying
the methods proposed in this paper are a good starting point in evaluating the consequences of such extreme
events.

This methodology requires long‐term time series of leachate production rates and leachate concentration values in
order to infer the parameters. Leachate production rates and leachate concentrations are parameters that landfill
are obliged to measure in order to be compliant with the regulations. For the Wieringermeer and Braambergen
landfills the landfill operator, Afvalzorg, did increase the measurement frequency significantly. When applying
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the approach to new data sets one can start using the posterior distributions obtained published with this paper,
instead of starting with fresh uninformative priors.

6. Summary and Conclusions
A model has been developed for simulating leachate production rates and leachate concentrations using a mass
balance approach combined with a stochastic travel time approach based on life time expectancies. The model is
one dimensional and consists of two layers. The first layer is a reservoir model for the cover layer, the second
layer a stochastic life expectancy model. The model is driven by measured rainfall and potential evapotranspi-
ration and is calibrated using measured leachate production rates and leachate concentrations. Posterior parameter
distributions are inferred using a Bayesian MCMC approach implemented in PyDREAM (Shockley et al., 2018)
where the objective functions are based on the generalized likelihood model of Schoups and Vrugt (2010). The
model has been applied to analyze data sets obtained from two different landfills and a total of four waste bodies.

We also propose to use emission potential as a term to describe the amount of mass that can be released from the
waste body under realistic meteorological conditions. This emission potential is the source term for a conservative
solute (chloride) in a modeling framework that can describe measured leachate flux and leachate concentration.
Quantifying the water balance and conservative leaching is a necessary first step before evaluating the leaching of
more reactive compounds.

The model with posterior parameter distributions can describe the measured time series of leachate production
rates and leachate chloride concentrations. In addition uncertainty bandwidths using inferred measurement errors
can be determined as well. Model simulations can be carried out to extrapolate leachate production and leachate
concentration in to the future allowing for assessment of the future development of concentration and leachate
production volume.

The hydrological parameters, travel time distributions and stagnant zone properties derived with the approach
presented in this paper form the basis of a reactive transport model setup in which both conservative and reactive
substances can be estimated simultaneously.

The results indicate that the waste bodies that have been studied, have reached seasonal steady state until 2022,
where total water storage in the waste body oscillates around a constant value. From 2022 onward, the measured
cumulative leachate production is larger than simulated. This implies that using time independent life‐expectancy
probability distributions is too strict.

The oscillations in leachate production rates and leachate concentrations are controlled by infiltration rates from
the cover layer and the life time expectancy distribution. Leachate concentrations depend strongly on the
simulated base flow which is controlled by the storage in the bulk of the waste body where life expectancy of
water is longer than 1,825 days.

Emission potential is a combination of the total mass present in the waste body and the expected future behavior of
the base flow. The model can be used to plot the future development of the two parameters controlling leachate
concentrations being total solute mass and total water storage for different climate forcing scenarios. The total
mass is a quantification of the emission potential. The results of such simulations can be used to assess different
landfill after care scenarios and therefore it allows us to estimate leachate concentrations and the expected
emission over a predefined time period.
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