

Delft University of Technology

Efficient Learning of Communication Profiles from IP Flow Records

Hammerschmidt, Christian; Marchal, Samuel; State, Radu; Pellegrino, Nino; Verwer, Sicco

DOI
10.1109/LCN.2016.92
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - 2016 IEEE 41st Conference on Local Computer Networks, LCN 2016

Citation (APA)
Hammerschmidt, C., Marchal, S., State, R., Pellegrino, N., & Verwer, S. (2016). Efficient Learning of
Communication Profiles from IP Flow Records. In P. Kellenberger (Ed.), Proceedings - 2016 IEEE 41st
Conference on Local Computer Networks, LCN 2016 (pp. 1-4). IEEE. https://doi.org/10.1109/LCN.2016.92

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/LCN.2016.92
https://doi.org/10.1109/LCN.2016.92

Efficient Learning of Communication Profiles from
IP Flow Records

Christian Hammerschmidt∗, Samuel Marchal†, Radu State∗, Gaetano Pellegrino‡, and Sicco Verwer‡
∗SNT, University of Luxembourg

†Aalto University
‡TU Delft

Email: {christian.hammerschmidt,radu.state}@uni.lu; samuel.marchal@aalto.fi; {g.pellegrino,s.e.verwer}@tudelft.nl

Abstract—The task of network traffic monitoring has evolved
drastically with the ever-increasing amount of data flowing in
large scale networks. The automated analysis of this tremendous
source of information often comes with using simpler models
on aggregated data (e.g. IP flow records) due to time and
space constraints. A step towards utilizing IP flow records more
effectively are stream learning techniques. We propose a method
to collect a limited yet relevant amount of data in order to
learn a class of complex models, finite state machines, in real-
time. These machines are used as communication profiles to
fingerprint, identify or classify hosts and services and offer high
detection rates while requiring less training data and thus being
faster to compute than simple models.

I. INTRODUCTION

Due to the high volume of data exchanged in modern
networks, in-depth analysis of the whole traffic is no longer
realistic. A more common approach is to analyze aggregated
communication information of which IP flow records is an
example. The main challenge lies in the extraction of relevant
information from this meta data. In this paper, we focus on the
problem of creating a model to classify hosts based on their
traffic summary statistics. We refer to this task as behavioral
communication profiling. Current methods addressing this task
use batch processing techniques over large amount of data [1],
[2]. This has two drawbacks being the delay induced in model
learning due to long period of data collection and the limited
complexity of the analysis methods [3] due to space and
computation limitation. Consequently, these simple methods
are not able to model accurately communication profiles.

To address these limitations, we propose to use complex
models for modeling fine grained communication profile with
finite state machines. In contrast with previous work [4],
[5], we use finite state machines with a stream learning
component allowing us to start learning a communication
profile in real-time as network traffic is observed. We show
that the amount of training data required to learn an accurate
communication profile can be determined on the fly, limiting
thus data collection time and amount of data to process. We
assess that profiles learned from limited IP flow data are as
efficient as ones using more training data for the use case of
botnet hosts detection. To summarize our contributions:
• We introduce a feature engineering method to aggregate

IP flow records into a state space representation, which
can be input to a finite state machine (Section III-B);

• We present methods to evaluate the amount of informa-

tion contained in the training set, which allows to control
data collection and selection (Section III-C);

• We validate our techniques on real-world traffic obtaining
competitive detection rates (Sections IV and V).

II. BACKGROUND

A. IP Flow Analysis

IP flows records are statistics from packets exchanged
between two hosts. The statistics are collected and aggregated
by a specialized device (e.g. a router). We refer to [6] for
an overview of the basics of IP flow record data collection.
IP flow records are tuples of features including source IP
address, source port, destination IP address and destination
port to describe the participants. The start time and duration
specify when the flow occurred, and transport protocol, packet
counts and amount of data exchanged in both directions
summarize the exchange itself. Table I provides a summary
of the considered features.

B. Probabilistic Deterministic Finite Automata (PDFA)

Finite state automata are a type of automaton model often
used to describe computation and processes in a formal
way. We use finite state automata with probabilities, called
probabilistic deterministic finite automata (PDFA). Introduc-
tions to the field of automaton theory can be found in [7].
A Probabilistic Deterministic Finite Automaton (PDFA) is
quintuple A = 〈Q,T,Σ, q0, P 〉 where Q is a finite set of states,
T : (Q,Σ)→ Q are labeled transitions with labels drawn from
an alphabet Σ, q0 ∈ Q is the start state. The probability matrix
P gives the probability of observing event a ∈ Σ in state q
by pa,q . A PDFA starts in the start state q0 and generates
strings by traversing transitions and drawing events using P .
For example, the probability of generating abc is given by
pa,q0pb,q1pc,q2 where q1 = T (q0, a) and q2 = T (q1, b).

C. State-Merging Algorithms

The task of inferring PDFAs from a given set of obser-
vations is to find a PDFA accepting the words representing
the observed behavior. Currently, state-merging algorithms are
state-of-the-art in learning automatons [8]. Given a set S+

of observed behaviors encoded as words over an alphabet Σ
called the input sample, the goal is to find a (non-unique)
smallest PDFA A that is consistent with S+. A PDFA is
considered consistent with S+ if it satisfies a type of Markov

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

TABLE I: Features of IP flow records. Time is used to
aggregate sliding windows.

Features Description Values
protocol transport protocol of the flow categorical: tcp, udp, etc.
time time since previous flow started timestamp
duration duration of the flow time in ms
pakets Count of packets exchanged numerical
dataexc Amount of data exchanged numerical, in KB
datarec Amount of data received numerical, in KB

Fig. 1: Left: a prefix tree for a dataset containing the words
{121, 111, 231, 231.615, 231.374}. States contain occurrence
counters. Transitions are labeled with the symbol firing them.
Right: an automaton obtained by merging the transitions 615
with the root and 374 with the state lead to by 121.

property i.e. for every prefix s from S+ that reaches the
same state q in A, the sample probabilities of future suffixes
P (s′ | s) = count(ss′)/count(s) of the states are not
significantly different. The size of a PDFA is measured by
its number of states.

The starting point for state merging algorithms is the
construction of a tree-shaped PDFA A from the input sample
S+. This is called augmented prefix tree acceptor (APTA).
Figure 1 (left) shows a prefix tree for a small input sample.
It contains all samples from S+ in a directed graph, using the
symbols of the samples in S+ as labels for the edges. Two
samples from S+ share a path if they share a prefix. The state
merging algorithm reduces the size of the automaton iteratively
by reducing the tree through merging a pair of states in A,
using a heuristic to decide which pairs are best to merge. The
merges reduce the size of the automaton (number of states),
and introduces loops. Figure 1 (right) depicts the automaton
after a state-merging operation.

III. BUILDING COMMUNICATION PROFILES

A. Communication Profiles

A communication profile provides a concise description
of a participant or a group of participants in a network.
We build profiles only using connection-level communication
information provided by IP flow records. The main task is to
extract the key behavior from the records, and reduce the data
into a compact description. Given IP flow records from an
unknown source, we can classify; given a known source, we
can predict future behavior. Mathematically, a communication
profile is a PDFA learned from IP flow records as described
in Section II. To infer information about a single host from
its IP flow records, we aggregate consecutive flows within a

short time period into a single word and use a sliding window
technique to obtain sequences of words describing consecutive
flows. These words are descriptions of short-term behavior.

B. Encoding IP Records for PDFAs

We obtain input words for PDFAs from IP flow records by
converting each IP flow record into discrete symbol and using
a sliding window to form a sequence. Each numeric feature
of a record, as given in Table I, is put into a discrete bin
and represented by the bin number. We calculate percentiles
as bin boundaries. E.g. using 25-percentile ranks, we create
4 bins (labelled [0, 1, 2, 3]) and calculate feature values such
that 25%, 50%, 75% and 100% of the data fall below. For
categorical values (protocol), we assign each feature value a
unique number. The symbolic representation of an IP flow
record is the concatenation of the values for all its five features
(excluding time) and represents a letter e.g. 02213. After
encoding IP flow records as symbols, we aggregate all flows
starting within a short, fixed time by sliding a window over all
flows, incrementing the start of the window one flow at a time.
An input word for a PDFA used as communication profile
then consists of a sequence of symbols from a window, where
each flow starting within the window’s time is represented by
a letter.

C. Data Estimation Criteria

The prefix tree (APTA) is the starting point for all state
merging learning algorithms. It is a compact way to represent
all the training data and offers ideal access to analyze the
impact of varying training set sizes on the learning process.
The key in minimizing the data needed to learn a model is
understanding the error introduced by using a partial sample
of the data: It enables us to analyse the quality provided by
a partial view of the data with respect to the complete data.
We apply two criteria to judge the completeness of the partial
sample: For a formal approach, we check the Hoeffding bound
(1), a type of concentration inequality [9]. For an informal,
application-driven approach we observe the growth in states
and transitions when adding more data to the prefix tree, we
define this criteria as the freshness (2). Equation (1) states
the Hoeffding inequality. It bounds the difference between the
true mean r of a random variable with the range of the set R
with its estimation r̄ calculated on a finite sample with low
error δ: With probability 1 − δ, the error in the estimation r̄
only deviates by an ε from r. The true mean r is the mean
calculated on all, possibility infinite samples.

r ≤ r̄ − ε with prob 1− δ where ε =

√
R2ln(1/δ)

2n
(1)

We chose the one-sided upper bound, as it would be most
helpful to reason about decisions heuristics applied in state-
merging algorithms take. The estimation is sub-linear in terms
of the confidence δ and quadratic in sample number for
precision ε. We apply this technique to the APTA by estimating
the relative frequency ci

ns
of transition i in each state s

where ns =
∑

ci∈s ci. This allows us to bound the error in

TABLE II: Scenarios (ID) composition summary. Records are
labeled as background, malicious (bnet) or normal traffic.

ID #Flows / Duration / Size Malware
(#bots)

Class Distribution
back / bnet / norm

10 1,309,791 / 4.75 hrs / 73GB Rbot (10) 90.7 / 8.1 / 1.2
11 107,251 / 0.26 hrs / 5.2GB Rbot (3) 89.9 / 7.6 / 2.5
12 325,471 / 1.21 hrs / 8.3GB NSIS.ay (3) 97 / 2.3 / 0.7

the empirical probability distribution defined by occurrence
counts.

IV. EXPERIMENTS

Our experiments are designed to determine whether a full
data representation can be obtained from a partial view of the
data by observing freshness and the Hoeffding bound to judge
prefix tree completeness. Afterwards, we empirically validate
this dataset reduction method by learning communication
profiles from the obtained sets. We compare their performance
in host classification with profiles trained on full training sets.

A. Dataset and Data Preparation

We use a publicly available dataset of manually labeled IP
flow traces [10]. It contains real communications from hosts
running botnet malware as well as background and legitimate
traffic and is organized in several scenarios (ID), each running
one or more infected hosts connected to the Internet. We chose
scenarios (Table II) that run multiple infected hosts at the
same time, allowing us to repeat the same analysis on different
instances of the bots. The scenarios differ in characteristics:
due to spamming and flooding, some scenarios contain many
flows despite few hosts, whereas in others much less traffic
per host is captured. The background traffic is real legitimate
traffic from other participants in the network.

The IP flow records (Table II) are encoded using the
features stated in Table I. Numeric attributes are discretized
by assigning a number according to the percentile its value
is in. The percentiles themselves are obtained by selecting a
random subset of IP addresses from normal traffic (norm) to
calculate the statistics. Any knowledge transfer is prevented by
excluding these IP addresses from any further experiments. All
flows irrespective of their duration, starting within t = τ ms
are collected in a window to obtain short term interaction
patterns of each IP address. We advance the window on a
per-flow level. The duration τ is chosen using the streaming
data analysis. This process can be done in real-time as the
completed flows are exported.

B. Streaming Data Collection

We observe two different criteria for stopping data col-
lection: In an application-driven approach, we observe the
freshness ∆ of samples ws with respect to an APTA A. We
define it as the ratio JwK

|A| of number JwK of states newly created
in APTA A when adding sample w versus the total number
of states |A| in APTA A. Here, J·K denotes the length of the
word w minus the length of its longest prefix in A. When w
is a set, we define JwK =

∑
wi∈sJwiK as the sum of states

created from the samples in the set. Adding samples that are

already contained or have large prefixes in the tree only adds
little extra information. The freshness ranges between 0 and
1, and low values indicate that the sample already has many
duplicates, or at least long prefixes in the APTA. It serves
as an indicator: if it falls below a threshold, the prefix tree
already contains most of the data. Because this measure does
not guarantee good estimates of the transition probability in
each state, we also use a statistics-driven approach: empirical
distributions in the states of the APTA have to be bounded by
the Hoeffding bound with varying thresholds. The more states
have distributions bounded, the better the APTA summarizes
the true source.

C. Profiling Behavior

We learn communication profiles with the dfasat software
package [11] using Alergia and Overlap heuristics. The goal
is to obtain a small automaton that can reliably distinguish
legitimate from botnet sources. The classification task focuses
on hosts, not individual traffic flows. We use the full training
sets, as well as smaller training sets obtained from an analysis
of freshness and Hoeffding bounds on local distributions to
learn communication profiles. To judge whether a host is
malicious or not, we evaluate its associated communication
profile, an APTA A, by calculating its acceptance rate: the
ratio of accepted versus rejected windows from an evaluation
set. A preliminary analysis showed that an acceptance ratio
exceeding 75% any time after the first 25 windows is a good
threshold to classify hosts as malicious.

V. RESULTS

A. Streaming Data Collection

We chose a small alphabet size obtained through few bins
(4 per feature) and short windows (τ = 20 ms). An inter-
esting observation across the different scenarios is the non-
monotonicity of freshness. It clearly illustrates that the global
behavior of a host is composed of several small, different be-
haviors. This property is captured by PDFAs, which can have
multiple loops with transitions of high probability, connected
by transitions of lower probability. This is particularly easy
to see in Figure 2(a), indicated by a vertical dashed line:
after adding increasingly less new information to the prefix
tree, the updates at the 32% mark of the training set add a
new behavior. The increase in freshness shows that words
inserted encode behavior without prefixes in the APTA, i.e.
previously unseen behavior. This is also visible in a plot of
the states inserted into the prefix tree, i.e. the length of the
samples, and indicates that windows start to contain more
words. The dataset description of Scenario 10 lists a sequence
of bandwidth increases and a switch from a UDP-based flood
attack to an ICMP-based attack. The former did not use
up the full bandwidth, the latter did. This makes extreme
values and monotonicity of freshness an interesting candidate
for clustering behavior. Figure 2(c) shows the fraction of
transitions fulfilling the Hoeffding bounds for a weak choice
of parameters, δ = 15% and ε = 0.15. In neither scenario

(a) (b) (c)

Fig. 2: Overall freshness in Scenario 10 (a) and Scenario 12 (b). The blue line shows the development of the overall freshness,
the green line depicts the freshness of the last update adding the next 1% of the training data to the APTA. The dashed vertical
line indicates a point of change: local updates suddenly contain a lot of new samples without prefixes, or much longer samples.
The Hoeffding inequality applied on transitions in the APTA, using δ = 15% and ε = 0.15, depicted for Scenario 10 (c).

TABLE III: Results summarized. The environment contains 48
benign hosts in total. We trained on 1 of the 10, respectively
3, hosts in the dataset and detect the others.

Experimemt Alergia
TP / FP / Pr

Overlap
TP / FP / Pr

Baseline in Scenario 10 6 / 0 / 1 7 / 0 / 1
Baseline in Scenario 11 2 / 0 / 1 2 / 0 / 1
Baseline in Scenario 12 1 / 0 / 1 1 / 0 / 1
48% in Scenario 10 6 / 0 / 1 7 / 0 / 1
12% in Scenario 11 0 / 0 / 0 0 / 0 / 0
50% in Scenario 11 2 / 0 / 1 2 / 0 / 1
52% in Scenario 12 1 / 0 / 1 1 / 0 / 1

the ratio of transition bounded correctly exceeded 30%. As a
distribution-free bound, is conservative for our use-case.

B. Profiling Behavior

We use the training datasets determined in the previous step
to learn PDFAs as communication profiles. Communication
profiles trained on all IP flow records of one malicious IP
address in each scenario are the baseline. By inspecting the
freshness, we chose 48% of Scenario 10, and 52% of Scenario
12 training data. For both cases, Figure 2(a) and 2(b) show a
plateau in global freshness, and the freshness of local updates
is also low. In Scenario 11, freshness keeps increasing until
the end, but is very low (∆ < 0.13). We chose two splitting
points: the low point of freshness at 12% of the training data
(∆ = 0.03), and for the lack of another extreme point, we
also split at 50%. Table III summarizes the results: true and
false positives (TP/FP) and precision (Pr), a ratio of TP

TP+FP
describing how many of the identified hosts were relevant.
For all but the 12% split, results for the communication profile
learned from the reduced set are the same as from the baseline.
It is very likely that the learning algorithm can infer the core
structure from the reduced set and generalize enough. The
inability to detect the malicious hosts in Scenario 11 with only
12% of the training data is not surprising. Just observing the
freshness can be deceptive: a highly redundant representation
of additional data can add valuable data to discriminate hosts,
but does so at slow rate.

VI. DISCUSSION AND CONCLUSION

Overall, manually inspecting plots of freshness to decide
on smaller training datasets yields good results. We think
that it can serve as a tool during preprocessing, just as the
Elbow method which is used by manual inspection for clus-
tering. We are currently working on an algorithmic solution
to automatically identify the splitting point, as well as using
Kullback-Leibler divergence measures to detect a wider range
of change-points, such as slow drifts in the occurrence of
existing behaviors.

REFERENCES

[1] K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Internet traffic behavior
profiling for network security monitoring,” IEEE/ACM Transactions on
Networking, vol. 16, no. 6, pp. 1241–1252, 2008.

[2] M. Jaber, R. Cascella, and C. Barakat, “Using host profiling to refine
statistical application identification,” in Proceeding of IEEE INFOCOM,
2012, pp. 2746–2750.

[3] S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture
for large scale security monitoring,” in Proceedings of the IEEE Inter-
national Congress on Big Data, 2014, pp. 56–63.

[4] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in IEEE S&P, 2009, pp. 110–125.

[5] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful
models for network honeypots,” in ACM AISEC, 2012, pp. 37–48.

[6] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 4, pp. 2037–2064, 2014.

[7] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory,
Languages, And Computation. Addison-Wesley Longman, 1990.

[8] S. Verwer, R. Eyraud, and C. De La Higuera, “PAutomaC: a probabilistic
automata and hidden Markov models learning competition,” Machine
learning, vol. 96, no. 1-2, pp. 129–154, 2014.

[9] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University, 2013.

[10] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, Sep. 2014.

[11] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and P. Dupont,
“A framework for the competitive evaluation of model inference tech-
niques,” in Proceedings of the First International Workshop on Model
Inference In Testing. ACM, 2010, pp. 1–9.

