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A B S T R A C T

Smallholder farmers are critical to global food production and natural resource management. Due to increased 
competition for water resources and variability in rainfall due to climate change, chronic irrigation water scarcity 
is rising particularly in drought-prone regions. Improving the awareness of climatic risk to yields and incomes is 
critical to sustainable agricultural intensification. However, adopting a new technology represents a certain level 
of risk for the farmers, who invest time and economic resources in changing their practices. We have developed a 
mobile application, currently for cotton, that would allow farmers to actualize the risk of growing cotton. By 
implementing a sociohydrological dynamic model with a kernel principal component analysis structural error 
model, the software provides a risk forecast of the yield and profit the user can expect at the end of the season. 
The mobile app not only processes social and agricultural information provided by the user but also retrieves and 
continually updates climate datasets from the web, as well as market prices. The users can request the execution 
of the sociohydrological model to the servers from their own mobile devices. By following an agile methodology, 
the mobile app has been tested with ~100 farmers in order to get feedback from real users; this brought the 
opportunity to redesign the functionality based on the correct understanding of information and, a fast and clear 
management of the tool and helping in the adoption of the technology. This was combined with existing 
knowledge around communicating risk by using multiple modes of communication - text, graphics, sound and 
video - all of which were implemented to reinforce the knowledge communicated and ensure sufficient redun-
dancy. This turned out to be beneficial for farmers with low prior knowledge and higher acceptability of the 
mobile app by the users as evidenced through feedback rounds with them. This study exemplifies an approach to 
address the gap in communicating risks in agriculture using a user-friendly mobile application.

1. Introduction

The effectiveness of agricultural extension can potentially increase 
with the integration of technologies such as mobile phones [1]. For 
example, mobile phones can improve agricultural extension service 
delivery and potentially catalyze improvements in farm productivity 
and rural incomes [2,3]. There is a high diffusion of smartphones in the 
world, with one-third of the global population owning a smartphone, 
more than half the population of the world connected to the internet, 
and mobile subscriptions having reached around 7.76 billion in 2017 
[4].

Studies have investigated the widespread usage of mobile phone 

applications (apps) and other software tools for agricultural purposes 
[4–7]. Eichler Inwood and Dale [8] have described software tools from 
the perspective of farm or farmer-relevant functions such as regulatory 
compliance, information management, agronomy (for profitability, 
reference information and sensed data), product tracking and emissions 
accounting. Another categorization can be based on where the mobile 
app intervenes within the stage of the agricultural value chain - (i) 
pre-harvest (inputs and knowledge); (ii) harvest and transportation; (iii) 
processing and storage, and (iv) distribution, packaging and handling of 
finished goods [6].

Agriculture comprises complex interconnected systems and their 
corresponding uncertainties [9]. Risk is inherent in agriculture, and risk 
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management is an integral part of farm management to balance profits 
and risks, reducing losses, and utilizing opportunities [10]. Agricultural 
risks can arise from diverse sources, such as changing (input and output) 
prices, agricultural and environmental policies, global trends in con-
sumptions, global markets, and climate and biological variables [11]. 
While risk assessment and modelling can be essential in supporting 
decision-making at the farm-level, these require objective data which 
can be sparse, and subjective data can be flawed in this context [12]. A 
better understanding of risk and risk management can help not only 
farmers in making better agricultural decisions, but also policymakers in 
assessing different risk protection tools [13].

Hence, progress in mobile technology in agriculture needs user- 
friendly applications which communicate quality, trustworthy and 
timely advisories [3,4], while also incorporating the corresponding 
risks.

Despite the multitude of mobile phone applications in agriculture, 
more research is needed on specific applications to reduce risks related 
to agricultural activities. Any mobile app on precision agriculture or 
farm management (such as those reported in [5,14]) can potentially 
support the reduction of farm risk, but may not address it directly. Ap-
plications have been able to support farmers in crop choice based on 
weather and market conditions, potentially reducing risk [15].

A mobile phone application for farmers to visualize and communi-
cate agricultural risks is a logical next step forward considering inter-
connected agricultural systems, the inherent risk in agriculture, and the 
growing potential for the use of agricultural mobile applications. This 
study describes the development of the Makara app, aimed at commu-
nicating agricultural risks and risk mitigation strategies, which has been 
tested with (primarily) cotton-growing farmers in a drought-prone re-
gion of Maharashtra (India). Specifically, the area of study corresponds 
to 4 districts: Amravati, Nagpur, Wardha and Yavatmal (Fig. 1). Readers 
are directed to the literature for more details on the region whose data 
was used for model calibration [16–18].

2. Methodology

2.1. System overview

2.1.1. Front End features
Makara’s Front End (FE) interface allows farmers to input the precise 

geographic coordinates of their farms, ensuring that location-specific 
climate and market information are utilized for tailored recommenda-
tions. The user can input farm-specific information, including plot size, 
soil type, irrigation methods, and crops they plan to sow. These include 

cotton, maize, and soybean, and can account for mixed or intercropping 
patterns. Farmers can store comprehensive expenditure details for in-
puts associated with each crop, and the mobile app maintains detailed 
accounts for each plot across cropping seasons. These inputs are auto-
matically integrated into the risk communications.

When communicating risk, the factors that were relevant while 
devising the (yield, income and profit) risk communication strategy 
were the framing, format, and mode of communication. The framing of 
the risk communication was a major decision variable. It is important to 
account for the framing effect on the perception of the risks, i.e. the same 
prospects are perceived as more attractive if they are framed in terms of 
success rather than failure [19]. Another decision variable was the for-
mats to communicate risks - numeric, verbal and visual [20,21]. 
Numeric formats involve risk communication via numbers or statistics 
(such as probabilities or likelihoods). Verbal formats use words or 
phrases to convey the likelihood or severity of the risk (e.g., "low risk"). 
Visual formats represent risk information graphically using diagrams, 
graphs or charts. Additionally, risk communication via multimedia 
technology (such as mobile phones) can employ different modes of 
communication, e.g., text, graphics, sound and video [22]. Other fea-
tures, such as the farm expenditure table for financial record-keeping 
and the crop calendar and journal for tracking farm management ac-
tivities in alignment with recommended good practices, further facili-
tated the farmers’ usage of the mobile app.

The design of risk communication in this study was shaped through 
an iterative process of stakeholder engagement with about 100 farmers 
from the study region. The farmer stakeholders provided feedback that 
aided consequent modifications of the risk communication strategy. Five 
distinct feedback campaigns were conducted between March 2023 and 
January 2024, employing engagement methods such as observational 
walk-throughs, focused group discussions (FGDs) and individual feed-
back sessions [23,24], an example of which is shown in Fig. 2. These 
sessions, which were conducted through both in-person and virtual 
means, gathered stakeholder opinions on variables such as the ease of 
using the mobile app and the trust in its outputs. This approach ensured 
that the risk communication design was continuously refined and 
adapted to meet the actual needs and preferences of the farmers.

2.1.2. Back End features
The smallholder sociohydrological model (SHM) introduced by 

Pande and Savenije [25] was the basis of the model at the Back End (BE). 
The model is a dynamic system model that represents farm scale dy-
namics through the interactions between five state variables. The five 
state variables are the farmer’s capital, soil moisture of the farm, 

Fig. 1. Location of the area of study. left) Maharashtra state; right) 4 districts: Amravati, Nagpur, Wardha and Yavatmal.
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livestock if any, soil fertility that quantifies the nitrogen content of the 
soil, and fodder. These state variables are interlinked by various fluxes 
that then update the states of these variables. For example, soil moisture 
is updated after every time step (daily) by daily precipitation and 
evapotranspiration. The latter is determined by the crops grown by the 
farmer, which results in crop yields based on the evapotranspiration that 
is possible through the growing season(s). Farmers selling their produce 
in the market generate income flux, thereby increasing their capital just 
as expenditure on irrigation and other crop-related activities reduces 
their capital. The SHM also cuts on expenditure if the capital state 
variable of the farmers falls below zero, introducing a feedback loop of 
past poor yields on possibly low future yields due to cuts on farm inputs. 
Similarly, the farmer’s fertilizer application linearly provides nitrogen 
inputs to the soil, updating the soil fertility state variable. For more 
details on the sociohydrological model, readers are referred to Pande 
and Savenije [25].

One critical sub-component of the model is how soil moisture and 
crop yield are interlinked. Pande and Savenije [25] used a single bucket 
model, which was enhanced by Djohan et al. [26], by using stress and 
biomass growth equations of the FAO AquaCrop model [27]. This study 
recoded the equations to be the same as those of the FAO AquaCrop 
model [27,28] and recoded the model to improve computational effi-
ciencies. Further, Djohan et al. [26] also introduced a structural error 
model based on the regression of structural errors, i.e. discrepancies 
between yields observed in the 2019 household survey [16,18] and 
yields predicted by the SHM, with location-specific characteristics such 
as rainfall, soil types, farmer income, in a nonlinear kernel space [26]. 
The sum of yields predicted by the sociohydrological system dynamic 
model and the Kernel Principal Component Analysis (KPCA) machine 
learning-based structure error model (to be discussed in the methods 
section) results in a hybrid model that is then used for risk 
communication.

The hybrid model provides a yield prediction along with its uncer-
tainty for each farm location based on spatial heterogeneities that it 
learns from the 2019 farm surveys. There are however additional un-
certainties due to temporal variability in precipitation and temperature. 
Simulated yields are collated for years from the past with soil moisture 
conditions ‘similar’ to the soil moisture condition of a farm at the 
beginning of a simulation period. The overall uncertainty is then rep-
resented as the combination of spatial and temporal uncertainties. Each 
temporally ‘similar’ yield simulation also has associated spatial uncer-
tainty as modelled by the hybrid yield prediction model.

The following section explains the sequence of communication be-
tween the FE and BE. It also outlines how the results are presented in the 
article.

2.1.3. Sequence of communication of the Makara App
Fig. 3 shows that the information management and model 

implementation in the mobile app are carried out on two different 
servers to separate the users’ data from the model parameters and time 
series of climate data. The Front-End server processes and stores 
farmers’ information in its database and the Back-End server scraps 
information from the web and runs the model.

Initially, the system administrator sets up the model parameters, 
such as the phenological parameters of the FAO AquaCrop model and 
socioeconomic factors. All this information is kept in the Back-End 
database and has to be manually updated by an administrator. In 
addition, the server retrieves climatic data from NASA-POWER [29] and 
crop prices from markets nearby [30] from the web automatically and 
continuously; this information is also stored in the BE database. In the 
Front-End database, users create accounts and can then generate Farm 
instances, which contain information such as location, soil type and best 
practices.

The execution of the model is requested by users from their devices 
directly to the FE server. Through the Django-REST [31], an Application 
Programming Interface (API) was developed to enable communication 
between the FE and BE servers. Thus, a service was set up in which by 
accessing specific URLs a request is submitted, executing concrete 
functions and returning an HTTP response. The users’ devices commu-
nicate directly with the FE server, in which the information is processed 
and packed to be sent to the BE server using a Representational State 
Transfer (REST) approach, and the model is executed in the BE server. 
An inverse process is done to retrieve the model’s output and deliver it to 
the user.

A Graphical User Interface (GUI) was developed and it is displayed 
on the users’ mobile devices when they are using the mobile application. 
By using the mobile app, farmers can provide information about their 
farms and the practices they are engaged in. Some relevant information 
that the users provide are location, irrigation scheme, fertilization 
practices, crops grown and farm size; but also, some socioeconomic in-
formation can be retrieved such as family size, seeds and fertilizer costs, 
and costs of practices. This information is processed by the FE server and 
stored in the FE database.

The BE database contains information related to the climate, soil, 
and crop parameters. The soil dataset is directly populated from a geo-
spatial source into a database that is geotagged. The climatic time series 
are obtained from the National Aeronautics and Space Administration 
(NASA) Langley Research Center (LaRC) Prediction of Worldwide En-
ergy Resource (POWER) project funded through the NASA Earth Sci-
ence/Applied Science Program [29], which is continuously updated by 
the system. This climatic information is processed to fill gaps. Since 
reference evapotranspiration (ET0) is not provided, it is estimated from 
the Top-Of-Atmosphere Shortwave Direct Normal Radiation and Tem-
perature data [32]. Similarly, crop prices are constantly updated by web 
scraping from official sources due to the lack of a reliable API.

Since a part of the SHM involves the implementation of the Aqua-
Crop model, the parameter values provided by the FAO’s documentation 
[33] are used as initial values and calibrated for the region based on 
yields observed in the 2019 surveys.

The users access the system through authentication. In order to 
request the execution of the model in the BE from their mobile device, 
the users communicate directly with the FE server, in which the data 
needed for the model execution is pre-processed and packed. The in-
formation is then sent to the BE server in a JavaScript Object Notation 
(JSON) format through a POST, a standard HTTP method used to send 
data to a server for processing. A specific URL is defined in the REST 
environment to perform the model execution. Once this information is 
unpacked, it is used to link the parameters and time series in the BE 
database, by choosing the georeferenced information that is closest to 
the farm’s location. The farmer’s socioeconomic information is parsed 
together with the retrieved parameters and time series inputs into the 
hybrid model (composed of the calibrated SHM and the trained KPCA 
model). Finally, the probabilistic forecast is sent to the FE server, which 
stores it in the FE database and shows it in a graphical and audible way 

Fig. 2. A photograph depicting the stakeholder engagement, taken during a 
focused group discussion with farmer stakeholders (March 2023). Photo cour-
tesy: Solidaridad.
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Fig. 3. The sequence diagram used for the Makara App. Web data is scraped and prepared, followed by user data management (including farmer inputs). Admin 
parameter management (model sensitivity analysis calibration) is performed in the next step, and finally, the model is run (simulation).
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to the user.

2.2. Model input and management

2.2.1. Data scraping

2.2.1.1. Climatological data. The model uses climatological extracts of 
data extracted from the NASA-POWER Project [29] (see Table 1). The 
model uses raw precipitation and temperature data and processes 
evapotranspiration through the top of the atmosphere shortwave radi-
ation [32] by using the calibrated Hargreaves and Samani equation [34,
35]. The temporal resolution of the model is daily, and the spatial res-
olution is 0.5◦ x 0.5◦. There are time lags of 2 days for temperature and 
precipitation, and 180 days for solar radiation, which are filled by the 
respective historical averages corresponding to the missing calendar 
days.

2.2.1.2. Soil Data. The model uses soil properties such as depth, wilting 
point (WP), full capacity (FC), porosity and saturation coefficient (Ksat), 
Readily Evaporable Water (REW) and Total Evaporable Water (TEW) as 
parameters. This information is initially extracted and processed from 
the Indian soil dataset provided by the National Information System for 
Climate and Environment Studies (NICES) program of the Soil and Land 
Resources Assessment Division, Indian Space Research Organisation 
[36]. The used dataset has a resolution of 5 km x 5 km.

For soil depth, the original dataset provides a fraction of a grid that is 
in the ranges specified by bounds 0, 25, 50, 75, 100, 150, 200 cm and 
below. A representative value for every grid is obtained by applying the 
weighted average of the ranges (weighted by the fractions). To infer 
other parameters, the original dataset provides a fraction of the grid’s 
area of a specific texture type and corresponding soil properties are then 
extracted.

Fig. 4 shows the spatial resolutions of precipitation (and other 
climate variables obtained from POWER dataset) and soil data. The grid 
nearest to the user’s specified farm location is then used to obtain farm- 
specific data.

2.2.2. User input
Users may specify detailed inputs about their respective land, soil, 

and water-related characteristics. Land details include the location 
(retrieved from either their GPS location or via a manual search) and the 
area of the land. Soil characteristics include the soil depth, soil textural 
class and soil health parameters. For soil characteristics, the NICES 
dataset maintained by the National Remote Sensing Centre (Indian 
Space Research Organization, Government of India) is used to assign 
initial values of soil depth and soil textural class (see previous section). 
Users may overrule the soil textural class parameter based on their local 
farm locations based on the two prominent textural categories in the 
region, black cotton soil or red soil, assigned to clay and sandy clay 
textures, respectively [37]. Further, they are optionally prompted to add 
details of their soil health parameters including major and minor nu-
trients. Users are able to record their irrigation water sources (from 
choices including borewells, canals, pipelines, etc.) and technologies 
(including flood, drip and sprinkler). They are then prompted to add 

cropping choices and characteristics. Crop choices include cotton, maize 
and soybean based on local cropping choices, which were operational-
ized using AquaCrop parameters. There is an option of inter- or 
multi-cropping as well. Finally, to initialize the model, users may also 
input socio-demographic inputs such as livestock, family members, 
capital, loans and interest rates.

2.2.3. Data management

2.2.3.1. Assigning data to farms. Due to the resolution of the soil data set 
(5 km x 5 km) and the climatic time series (0.5◦ x 0.5◦), a strategy is 
needed to assign data to a geographical point defined by a farm’s co-
ordinates. A simple approach of choosing a soil and climate grid that is 
closest to the farm location is followed. This provides a reliable output to 
the users within a short time of processing, by establishing appropriate 
relationships in the database and bringing in the possibility to reuse 
queries in similar requests. A class ‘Land’ is defined that is linked to the 
closest Precipitation, Temperature and Evapotranspiration classes 
through a many-to-one relationship (Fig. 5). This relationship means, for 
example, that a Land can only contain a time series of Precipitation, but 
several Lands can share the same Precipitation time series. Similarly, an 
instance of class Land is linked to soil properties and soil depth. The 
coordinates are used to assign Land to a district, an administrative di-
vision. This allows scraping of crop prices based on the locations of 
nearby markets. Every time a user requests an execution of the model, 
the BE server finds the closest instances of the dataset and checks if an 
instance Land with these characteristics already exists. If this is the case, 
an instance of class ‘Farm’ is created and linked to the Land; otherwise, a 
new instance of Land is created and later linked to a Farm. Two instances 
of farms that are located relatively close share the same climatic time 
series and soil parameters; however, the distinction is defined by the 
crop cultivated and the type of irrigation and agricultural practices 
farmers implement.

2.2.3.2. List comprehension. In order to implement faster execution of 
the model, the model was encoded using list comprehension instead of 
other data structures because it 1) is Python native, and the addition of 
3rd party packages is minimized; 2) represents a quick execution 
compared to other loops implementation; 3) allows conceptualizing of 
the model as a continuous series of values rather than year-defined 
stages, enabling seasonal data managemet even for agricultural sea-
sons that spans across of two calendar years; 4) allows the processing of 
information through logical filters.

2.3. BE Model calibration and KPCA structural error model

Model calibration was conducted to obtain a set of parameters that 
leads to model simulations closely replicating the observed yields. This 
was done in two stages: parameter sensitivity analysis and then cali-
brating the sensitive parameters.

2.3.1. BE Model sensitivity analysis
Model sensitivity analysis is a procedure which estimates the rate of 

change in the model output as a response to the change in model pa-
rameters [38]. Initially, model constants and parameters were differ-
entiated based on the SHM conceptualization. The constants were 
excluded from the calibration process, resulting in 15 parameters to be 
calibrated. The parameters related to the crop growth model were 
phenological parameters including time to emergence (’t_cc0′), time of 
senescence (’t_ss’), time to maturity (’t_m’); canopy development pa-
rameters like the canopy growth coefficient (’cgc’), canopy decline co-
efficient (’cdc’), initial canopy cover (’cc0_’); farm management 
parameters like the planting density (’density’); and others such as the 
initial harvest index (’hi_0′). Socio-economic and demographic param-
eters included the size of the user’s family (’family_size’), number of 

Table 1 
Variables extracted from NASA-POWER.

Variable Variable 
acronym

Unit Lag 
(days)

Precipitation Total Corrected PRECTOTCORR mm/day 2
Temperature at 2 Meters T2M C 2
Min Temperature at 2 Meters T2M_MIN C 2
Max Temperature at 2 Meters T2M_MAX C 2
Top-Of-Atmosphere Shortwave Direct 

Normal Radiation
TOA_SW_DNI MJ/m^2/ 

day
180
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Fig. 4. Maps showing the gridded dataset of (a) mean annual precipitation (mm/year) and (b) soil depth data (mm). Weather data from NASA Power and soil data 
from NRSC had resolutions of 0.5◦ × 0.5◦ and 5 km × 5 km respectively.
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livestock (’livestock’), loan amounts (’loan_debt’) and interest rates 
(’interest_rate’), and the prices of inputs such as seeds (’price_of_seeds’) 
and fertilizers (’fert_price’), respectively and outputs such as the selling 
price of the crop (’price_of_crop’).

SHM sensitivity was first determined globally, to estimate the change 
in the objective function as a function of changing each parameter, while 
all the other parameters were also changing [39]. Parameters were 
varied using the Latin Hypercube (LH) sampling technique [40] for the 
entire project area over a time series of 10 years/seasons of data. Each 
parameter was sampled between its minimum and maximum values 
(based on secondary literature, assuming a uniform probability distri-
bution between the extreme values). The sensitivity index was the 
variation of the output yields (averaged across 10 years) corresponding 
to each parameter as a fraction of the global variation (considering all 
parameters). After the sensitivity indices of all parameters were 
computed, parameters were sorted in decreasing order of sensitivity, 
and then the parameters that explained ~98% of the total variance were 
selected for the next step of model calibration.

2.3.2. BE Model calibration
The Shuffled Complex Evolution - University of Arizona (SCE-UA) 

algorithm was used to optimize the sensitive model parameters identi-
fied during sensitivity analysis [41]. The SCE-UA combines the simplex 
procedure [42] with a controlled random search [43], competitive 
evolution and a complex shuffling concept [41]. This algorithm was 
selected due to its superior performance compared to other global and 
local search algorithms used to calibrate models [44]. The parameters 
identified as sensitive were optimized to minimize the objective function 
of the Root Mean Squared Error (RMSE, [33]), as defined in Equation 1: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x̂i)
2

N

√

(1) 

Where N is the total number of observations; xiis the ith observed value of 
x and x̂i is the ith predicted value of the same variable.

Table 2 provides the parameters of the search algorithm. These 
include parameters such as maximum number of function evaluations, 
number of complexes and other parameters linked to the convergence 
criteria of the algorithm.

2.3.3. KPCA structural error model
Djohan et al. [26] provide a machine-learning algorithm to model 

the part of the observed yield that is not explained by the SHM of Pande 
and Savenije [25]. The previous sections provide the calibrated SHM. 
The difference between thus calibrated SHM simulated yields for 2019 
and observed yields at farms specified in the survey are regressed in a 

Fig. 5. The class diagram of data management of Makara App.

Table 2 
Parameters of the Shuffled Complex Evolution - University of Arizona (SCE-UA) 
algorithm used to optimize the sensitive model parameters.

Parameter Description Value

maxn Maximum number of function evaluations allowed during 
optimization

10000

kstop Maximum number of evolution loops before convergence 30
pcento The percentage change allowed in kstop loops before 

convergence
0.001

peps Value of NORMALIZED GEOMETRIC RANGE needed for 
convergence

0.001

iniflag Flag for initial parameter array (=1, included it in initial 
population; otherwise, not included)

0

ngs Number of complexes (sub-populations) 5
iseed Initial random seed 0

Table 3 
Description of the variables obtained from the 2019 survey [18] and climate 
forcing used in KPCA to develop the structural error model.

Variables Unit Description

Family help person 
(s)

Farm labor help from the family/children

Cotton area ha Total cotton area of the farmer
Seeds cost INR/ha Local cost of cotton seeds
Pesticide cost INR/ha Local cost of pesticide
Fertilizer cost INR/kg Local cost of fertilizer
Fertilizer 

amount
kg Total fertilizer usage of the farmer

Soil depth mm Soil depth in the field
Latitude degree Latitudinal coordinate of the farmer
Longitude degree Longitudinal coordinate of the farmer
Precipitation mm Total precipitation in the 2018-19 planting season
ETc mm Total reference evapotranspiration in the 2018-19 

planting season
Irrigation mm The predicted cotton yield per hectare using the SHM
Model yield kg/ha Total irrigation in the 2018-19 planting season
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nonlinear space as a function of variables shown in Table 3. Six different 
kernels (Radial Basis Function, Polynomial degree 2 to 5 and cosine 
kernels) are used to transform these variables in nonlinear space, where 
linear regressions are performed on principal components that signifi-
cantly explain the variance of observed structural error.

3. Results

3.1. Model sensitivity analysis and calibration

3.1.1. BE Model sensitivity analysis
Fig. 6 illustrates the results of the sensitivity analysis of the SHM 

operating at the BE.
The y-axis of Fig. 6 shows fractions of total variability in yield 

explained by parameters in the x-axis. This fraction also has its own 
spatial variability (due to climatological data variability). 95% of vari-
ability is explained by t_ss, t_cc0. Further, only six parameters of the 
SHM (listed in Table 4) are chosen as they explained ~98% of the cor-
responding variability and then calibrated using the SCE - UA optimi-
zation. The SHM-modeled yields for the 2018-19 season from this 
calibration are then subtracted from the observed yields from the farmer 
surveys and KPCA is used to model the structural deficiency. The sum of 
the SHM prediction and the KPCA model of structural errors, i.e. the 
hybrid model, is then used as the predicted yield. For more details on the 
intermediate results, readers are referred to Djohan et al. [26].

3.1.2. Back-End Model

3.1.2.1. SHM calibration. Table 4 shows the best-fit values of the sen-
sitive parameters after SCE-UA optimization. Descriptions are derived 
from the FAO AquaCrop manua [33]. References for default values are 
also provided within the table. Some phenological parameters have been 
transformed to ensure consistency in units. For the insensitive parame-
ters, default values are used [33].

3.1.2.2. KPCA structural error model. Using the parameters above, the 
SHM simulates the yields of households reported in the 2019 survey [16,
18] and residuals obtained by subtracting it from the observed yields. 
These residuals were then used as dependent variables and regressed 
with nonlinear transformations of household-specific information of the 
variable reported in Table 4 that were found to be the significant pre-
dictors of the residuals [26]. Table 5 shows the performance of these 
regressions with various kernels on the training (75% of households), 

testing (25% of households in the survey) and overall data sets. The 
best-performing kernel RBF was chosen based on its performance on the 
test data set. RBF kernel has the lowest mean absolute error (MAE) of 
371 kg/ha and the highest Nash Sutcliffe (NS) coefficient value of 0.183 
compared to the other kernels on the test data. Polynomial degree 2 and 
cosine kernels are also close in performance with MAE and NS of 392 
kg/ha and 388 kg/ha and 0.115 and 0.149 respectively and can also be 
used as kernels.

Using the RBF kernel, Fig. 7 (a) below shows the scatter of predicted 
residuals (i.e. prediction of structural errors) against the observed yield 
in the survey. The slope of the best-fit line (μ) is close to 1, which in-
dicates low bias in the predictions. The r2 shows that the RBF-based 
KPCA explains nearly 30% of the variance in observed residuals. 
Further, Fig. 7 (b) shows the residuals of these predictions, over which a 

Fig. 6. Boxplots with density traces (using violin plots) depicting the global sensitivity of model parameters. The X-axis lists parameters and the Y-axis denotes the 
fraction of the total yield variability across the study area corresponding to the particular parameter. The full forms of the parameters are provided in Table 4.

Table 4 
Best-fit values of sensitive parameters after SCE-UA optimization.

Sensitive 
parameters

Definition of 
parameter

Units Default 
value 
(reference)

Value after 
SCE-UA 
optimization

t_ss Time between 
sowing and start of 
senescence (growing 
degree days)

◦C 1400 [45] 1799

t_cc0 Time from sowing to 
emergence (growing 
degree days)

◦C 45 [33] 78

cgc Canopy growth 
coefficient (fraction 
ground cover 
increase per growing 
degree day during 
the canopy 
development phase)

◦C-d− 1 0.007 [33] 0.008

density Number of plants per 
hectare

plants/ 
hectare

105,000 
[33]

108,632

hi_0 Reference harvest 
index (weight of lint 
and seed cotton 
divided by total dry 
biomass)

% 32.5 [33] 39.8

cdc Canopy decline 
coefficient (fraction 
of ground cover 
decline per growing 
degree day after the 
start of senescence)

◦C-d− 1 0.0025 [33] 0.0027
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Gaussian distribution is fitted to represent the distribution of a random 
variable, ϵr, such that the residuals are independent innovations of the 
random variables and drawn from the distribution. With the fitted mean, 
μ, of 40 kg/ha and standard deviation, σ, of 393 kg/ha, the distribution 
of the residuals has a small bias but high variance. This means that there 
are still several other unobserved variables not accounted for by the 
RBF-based KPCA model and as a result only ~30% of the observed 
variance is predicted by the model (r2 = 0.30).

Fig. 8 shows the performance of the yield predictions by the hybrid 
model (i.e. the sum of the calibrated SHM and KPCA structural error 
model) when compared to observed yields. The r2 shows that the hybrid 
model is able to explain 20% of the variation in observed data with 
uncertainty bounds (shown in yellow) covering almost 65% of the pre-
dicted data points. The slope of the best-fit line between the observed 
and the predicted is 0.80, showing the lower observed yields are over-
predicted and higher values are overpredicted on average.

Fig. 9 depicts the spatial variability of mean yield predictions by the 

Table 5 
Results of the best-performing kernel in predicting observed SH model residuals 
(best structural error model)

Training Data Test Data All Data

MAE 
[kg/ha]

NS [-] MAE 
[kg/ha]

NS [-] MAE 
[kg/ha]

NS [-]

RBF 291 0.336 371 0.183 311 0.296
Poly 
deg 2

322 0.221 392 0.115 340 0.196

Ploy 
deg 3

354 0.0372 416 0.00726 370 0.0352

Ploy 
deg 4

363 -0.00266 421 -0.0507 377 -0.00967

Poly 
deg 5

363 -0.00266 421 -0.0507 377 -0.00967

Cosine 321 0.212 388 0.149 338 0.2

Fig. 7. (a): A scatter plot of the predicted and observed yield differences; (b) the histogram of the residual error (ϵr).
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hybrid model over the study region. It shows yield prediction under 
rainfed and under flood-irrigated conditions, in Figs. 9 (a) and (b), 
respectively. This shows that yield predictions under rainfed conditions 
are driven mostly by soil depths and rainfall patterns in space. The 
pattern smooths out, in particular, the effect of soil depth on yields, 
under flood irrigation conditions. This shows irrigation and smart advice 
towards good irrigation practices can make a big difference to sustain-
able farm incomes.

Risk prediction of Makara App is based on end-of-season yield pre-
diction by the hybrid model and conditioned by local practices as 
inputted by the users (e.g. with respect to irrigation). Risk to yield, in-
come and profit are represented by the 70% high probability region 
around the mean prediction as given by the uncertainty bound (yellow 
uncertainty interval in Fig 8). Also reported as part of the risk advisory 
are 95 percentile and 5 percentile yield values as the highest and lowest 
possible yields respectively. These percentile values are analytically 

obtained by adding mean prediction to corresponding quantiles of the 
Gaussian distribution fitted on the residuals in Fig. 7.

3.2. Makara v.1. features

The previous section presented the hybrid model, which is the pre-
dictor engine of the Makara App. Using the mobile app’s screenshots 
(Figs. 10-13), this section elaborates on how inputs are received by the 
FE and the prediction is supplied back to the FE from the BE following 
the sequence diagram shown in Fig. 3.

3.2.1. Web data scraping and preparation
After creating an account, users start with no land. They have to 

create the land attributes and link them to other climate inputs (See 
Fig. 10). They start by specifying the latitude and longitude of their 
farm. This gives the geographic location for which relevant climate and 

Fig. 8. A scatter plot between the observed and predicted yields using the hybrid model, along with the corresponding best-fit line.

Fig. 9. Spatial variability in the yield predictions by the hybrid model over the study region under (a) rainfed, and (b) under flood-irrigated conditions.
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market data are harvested and populated in the BE database.

3.2.2. User data management (including farmer input)
They then further provide through the mobile app other farm- 

specific inputs such as the size of the land and the type of soil it has 
(Fig. 11a), soil fertility-related information (Figs. 11b and 11c) and 
water resources (Fig. 11d) that they can possibly use for irrigation. All 
this information is then used to populate the FE database of the class 
diagram shown in Fig. 5.

3.2.3. Admin parameter management (including model sensitivity analysis 
and calibration)

After having the Land database in the BE populated, additional crop- 
specific parameters are required in order to use the hybrid model for risk 
prediction (Section 2.3). This is achieved by the Makara App requesting 
farmer inputs on the crop growing season and crop types. They are then 
further requested to input whether there is multiple or intercropping and 
if so how are different crops arranged within. These are communicated 
back to the BE server, where crop-related parameters are further mined 
from an already calibrated database of the parameters of the hybrid 
model (results shown in Section 3.1.2).

3.2.4. Model run (simulation)
Once the location-specific parameters of the hybrid model have been 

assigned, the model simulates the yield, income and profit at the end of 
the growing season. The latter two are based on yield predictions, the 
price of cotton from the nearest market and agricultural expenses input 
by the farmers. This time, rather than farmers providing inputs to the BE, 
they receive risk advice based on model simulation from the BE. The GUI 
through which they receive advice was devised after interactions with 
100 farmers (see methods section). The selected strategy delivers fore-
casts for crop yield, income, and profit, presented in a user-friendly 
audio-visual format.

A numerical format was selected, which communicated the ranges of 
yields, incomes and profit which had a 70% probability of occurrence 
based on the backend model calculations. This positive framing was 
preferred over framings in terms of failure, e.g. probability of falling 

below a certain value, to nudge farmers’ perceptions towards opportu-
nities instead of failure [46]. This aligned with the general recommen-
dations for risk communication to preferably be exact, simple, concrete 
and relatable in terms of the information provided [21]. Moreover, 
multiple modes of communication were used - text, graphics, sound and 
video - all of which were aimed at reinforcing the knowledge commu-
nicated by each other. The automated voice would read out the content 
of the risk communication, while also establishing the broader context. 
This was in line with the claim that in audio-visual presentations, 
redundancy is beneficial for learners with low prior knowledge about 
communication [22].

4. Discussion

The risk communication relies on a hybrid model that is a mix of a 
sociohydrological system dynamic model and a KPCA-based structural 
error model. While the sociohydrological model considers the temporal 
dynamics of soil water and plant growth, the KPCA model learns the 
spatial patterns in the variance of observed yields unexplained by the 
sociohydrological dynamics as a function of various farm scale charac-
teristics. These included cotton area, input costs and biophysical char-
acteristics such as soil depth, temperature and precipitation. Such a 
hybrid model was able to explain 20% of the observed variance of yields 
at plot scale. These are low-medium accurate, especially compared to 
studies that have used machine learning methods in predicting yields 
with very high-resolution datasets (e.g. see [47,48]). However, this 
study demonstrates better yield predictive performance at the farm scale 
when compared to other smallholder yield studies using crop simulation 
models and input data with resolutions finer than that used in this study 
[49,50].

The difference between these and the present study is that the former 
uses very high to high spatial resolution time series data of biophysical 
variables such as greenness, temperature and canopy cover, e.g. by using 
SkySat, PlanetScope and Sentinel-2 at 2m to 20m resolution data at 
various points in time during a growing season [47,48]. Meanwhile, the 
present study uses a sociohydrological model to ingest lower-resolution 
temperature and rainfall time series data and the average of these in 
addition to socioeconomic data for the KPCA model (NASA POWER data 
at 0.5 degrees). The intention of the present model is to provide 
forward-looking yield predictions and corresponding risk advisory as a 
function of agricultural practices so that farmers can be motivated to 
take up good agricultural practices. This is not explicitly possible in 
high-resolution imagery-based machine learning yield predictors.

However, the differences also highlight a way forward in improving 
the accuracy of the present model by ingesting higher-resolution data-
sets than those that are currently being used. This can be done for 
example by assimilating Sentinel- 2A data to update biomass states as 
simulated by the sociohydrological model (e.g. see [51]) as well as by 
using higher resolution predictors in the KPCA structural error model. 
Additional data on socioeconomic variables such as indicators of tradi-
tional or cultural practices as predictors may also help improve the 
structural error model. Multiple machine learning algorithms could also 
be compared to investigate if there are other machine learning models 
for structural errors that improve the accuracy of the yield predictions 
(e.g. [47]).

5. Conclusions

This study presents a risk communication application, Makara v.1., 
that transforms insights generated by a complex sociohydrological 
model into a format that is easily interpreted by low-technology literacy 
farmers. The model considers both farm-specific climatic, and soil in-
formation as well as user-provided irrigation practices and other rele-
vant information to predict yields with uncertainty bounds. The 
predictions were based on a hybrid model that is composed both of the 
SHM and as well a machine learning algorithm (RBF Kernel PCA) based 

Fig. 10. Initial inputs for the Makara App: (a) adding a land and (b) specifying 
its location.
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structural error model. The sensitive parameters of the SHM were cali-
brated using survey data collected from farmers in 2019. The difference 
between the farm-scale yield observations and the calibrated SHM- 
predicted yields was interpreted as a structural error. These structural 
errors were then regressed with additional socioeconomic and other 
location-specific variables in RBF kernel space to develop a KPCA 
structural error model. The sum of the SHM and KPCA-modelled yields 
then forms the hybrid model. The hybrid model also provides uncer-
tainty bounds, on the basis of which a farmer’s risk to yield, income and 
profit is communicated.

One unique contribution of the Makara App is the risk prediction 
engine at the BE that predicts yields and their uncertainty at the farm 
scale, which this article demonstrates. This forms the basis of a risk 

advisory that is informed both by farm-scale water human dynamics as 
well as machine learning algorithms. Yet another contribution of the 
mobile app is the user-friendliness to input farm scale information that 
contextualizes risk predictions better and the communication of the risk 
to low technology literacy farmers. The former is equally important, e.g., 
with respect to irrigation practices, which the study demonstrates has a 
significant effect on predicting yields and risks at farm scale. The article 
also reports the design methodology for a user-friendly GUI that 
required several rounds of feedback with about 100 farmers from the 
study area. This was combined with existing knowledge around 
communicating risk by using multiple modes of communication - text, 
graphics, sound and video - all of which were aimed at reinforcing the 
knowledge communicated by each other. This brought in sufficient 

Fig. 11. Land-related inputs of Makara: details on (a) land size and soil, (b-c) soil fertility, and (d) water resources; (e) screenshot of the mobile app processing 
the data.
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redundancy that turned out to be beneficial for learners with low prior 
knowledge about the communication and for higher acceptability of the 
mobile app by the farmers as evidenced through feedback rounds with 
the farmers. The Makara App is currently undergoing field trials in a real 
operational environment with ~600 farmers in the study area, the 
feedback of which would verify the regional scalability of the mobile 
app to wider farmer populations and be presented in future research.

Ethics Statement

Not applicable: This manuscript does not include human or animal 
research.

CRediT authorship contribution statement

Mario Alberto Ponce-Pacheco: Writing – review & editing, Writing 
– original draft, Visualization, Validation, Software, Methodology, 

Fig. 12. Crop management in Makara - (a) adding crops, (b) specifying inter/multi-cropping and relative area of each crop, and (c) screen prior to forecast.

Fig. 13. The prediction screens of Makara, enabled in 3 languages with a voice-over - (a) contextualization of the risk assessment methodology, (b) disclaimer text 
and consent, and (c) the risk communication, which highlights a range of yield which has a 70% probability of being achieved.

M.A. Ponce-Pacheco et al.                                                                                                                                                                                                                    Smart Agricultural Technology 10 (2025) 100759 

13 



Formal analysis, Data curation, Conceptualization. Soham Adla: 
Writing – review & editing, Writing – original draft, Supervision, Project 
administration, Methodology, Conceptualization. Ramesh Guntha: 
Software, Methodology. Aiswarya Aravindakshan: Software, Meth-
odology. Maya Presannakumar: Software, Methodology. Ashray 
Tyagi: Funding acquisition. Anukool Nagi: Funding acquisition. Pra-
shant Pastore: Funding acquisition. Saket Pande: Writing – review & 
editing, Writing – original draft, Project administration, Methodology, 
Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Z. Xu, A.E. Adeyemi, E. Catalan, S. Ma, A. Kogut, C. Guzman, A scoping review on 
technology applications in agricultural extension, PLOS ONE 18 (2023) e0292877, 
https://doi.org/10.1371/journal.pone.0292877.

[2] X. Fu, S. Akter, The Impact of Mobile Phone Technology on Agricultural Extension 
Services Delivery: Evidence from India, J. Dev. Stud. 52 (2016) 1561–1576, 
https://doi.org/10.1080/00220388.2016.1146700.

[3] Role of Mobile Phone Technology in Improving Small Farm Productivity, in: 
S. Mittal, G. Tripathi (Eds.), Role of Mobile Phone Technology in Improving Small 
Farm Productivity, Agric. Econ. Res. Rev. Agric. Econ. Res. Rev. (2009), https:// 
doi.org/10.22004/ag.econ.57502.

[4] K.S. Kumar, C. Karthikeyan, Status of mobile agricultural apps in the global mobile 
ecosystem, Int. J. Educ. Dev. Using Inf. Commun. Technol. 15 (2019) 63–74.

[5] A.A. Aletdinova, Popular Mobile Applications for Crop Production, IOP Conf. Ser. 
Earth Environ. Sci. 666 (2021) 032036, https://doi.org/10.1088/1755-1315/666/ 
3/032036.

[6] A. Anand, S. Raj, Agritech Startups: The Ray of Hope in Indian Agriculture 
(Discussion Paper No. 10), National Institute of Agricultural Extension 
Management (MANAGE), Hyderabad, 2019.

[7] A. Balkrishna, J. Sharma, H. Sharma, S. Mishra, S. Singh, S. Verma, V. Arya, 
Agricultural Mobile Apps used in India: Current Status and Gap Analysis, Agric. Sci. 
Dig. (2020).

[8] S.E. Eichler Inwood, V.H. Dale, State of apps targeting management for 
sustainability of agricultural landscapes. A review, Agron. Sustain. Dev. 39 (2019) 
8, https://doi.org/10.1007/s13593-018-0549-8.

[9] C. Blackmore, N. Sriskandarajah, R. Ison, Developing learning systems for 
addressing uncertainty in farming, food and environment: what has changed in 
recent times? Int. J. Agric. Ext. 6 (2018) 03–15.

[10] R.B.M. Huirne, M.P.M. Meuwissen, J.B. Hardaker, J.R. Anderson, Risk and risk 
management in agriculture: an overview and empirical results, Int. J. Risk Assess. 
Manag. 1 (2000) 125–136, https://doi.org/10.1504/IJRAM.2000.001491.
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