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 The increased availability of detailed trajectory data sets from naturalistic, observational, and simulation-based
studies, is a key source for potential improvements in the development of detailed safety models that explicitly
account for vehicle conflict interactions and various driving maneuvers. Despite the well-recognized research
findings on both crash frequency estimation and traffic conflict analysis carried out over the last decades, only
recently researchers have started to study and model the link between the two. This link is typically made by
statistical association between aggregated conflicts and crashes, which still relies on crash data and ignores
heterogeneity in the estimation procedure. More recently, an extreme value (EV) approach has been used to
link the probability of a crash occurrence to the frequency of conflicts estimated from observed variability of
crash proximity, using a probabilistic framework and without using crash records.
In this study the Generalized Extreme Value distribution used in the block maxima (BM) approach and the
Generalized Pareto Distribution used in the peak over threshold approach (POT), are tested and compared for
the estimation of head-on collisions in passing maneuvers. The minimum time-to-collision with the opposite
vehicle is used in both EV methods. Detailed trajectory data of the passing, passed and opposite vehicles from
a fixed-based driving simulator experiment was used in this study. One hundred experienced drivers from
different demographic strata participated in this experiment on a voluntary basis. Several two-lane rural highway
layouts and traffic conditions were considered in the design of the driving simulator scenarios. Raw data was
collected at a resolution of 0.1 s and included the longitudinal and lateral positions, speeds and accelerations of
all vehicles in the scenario. From this raw data, both methods were tested for stationary and non-stationary
models. The latter allowed not-only for a better modeling performance in estimating the number of expected
crashes, but also for a quantified analysis of the detailed driving choices affecting the head-on crash probability
during passing maneuvers. The estimation results showed that the BM approach yielded more stable results
compared to the POT approach, but the latter was able to produce crash rate estimates more consistently
sensitive to the covariates of interest. Finally, the estimated distributions were validated using a second set of
data extracted from an additional driving simulator experiment.
The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will
attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed
analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a
traffic simulation environment.
© 2016 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The literature has frequently addressed the advantages of using
surrogate safety measures over crash data [1], especially nowadays
when advanced sensing technologies which facilitate the collection of
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detailed data on vehicles' trajectories are becoming readily available
[2]. Crash data suffer from underreporting and frequently poor quality.
Crashes are also infrequent, the ratio between conflicts and actual
crash frequencies, according to Gettman et al. [3], is generally in the
range of thousands to 1 (depending on the definition of conflict).
Furthermore, the use of crash data is a reactive approach while using
surrogate safety measures is a proactive and time-efficient approach
[4]. Finally, the use of crash data to develop safety models is often
carried out in an aggregated manner, limiting the insights on heteroge-
neous crash causations and on the details of driver crash avoidance be-
haviors. As a result, the use of surrogate safety measures for modeling
and estimating safety is considered as a promising approach to achieve
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those targets and have a clear advantage over the use of crash data.
Zheng, Ismail, andMeng [5] indicate that the validity of a surrogate safe-
tymeasure is usually determined by its correlationwith crash frequency
which is usually assessed using regression analysis. For example, Sayed
and Zein [6] found a statistically significant relationship between
crashes and conflicts with an R2 in the range of 0.70–0.77 at signalized
junctions. However, the regression analysis still incorporates the use
of crash counts which are known to suffer from availability and quality
issues. Besides, it is difficult to insure the stability of the crash-to-
surrogate ratio and this relationship also hardly reflects the physical na-
ture of crash occurrence [5]. Jonasson and Rootzén [7] concluded that
comprehensive and generalized answer to the question “are near-
crashes representative for crashes?” may be less useful. Instead careful
separate analyses for different types of situations are needed. Recently
Songchitruksa and Tarko [8] developed a new and more sophisticated
approach based on the extreme value (EV) theory to estimate crash
probability based on specific crash proximity measures. The field of EV
theorywas pioneered by Fisher and Tippett [9]. It is a commonly applied
theory in many fields, such as in meteorology, hydrology, and finance
[5]. However, Songchitruksa and Tarko [8] indicate that its application
in the field of transportation engineering is still limited. According to
Tarko et al. [1] the EV approach has three considerable advantages
over the aggregated traffic conflict technique: (1) The EV theory aban-
dons the assumption of a fixed coefficient converting the surrogate
event frequency into the crash frequency; (2) the risk of a crash given
the surrogate event is estimated for any condition based on the ob-
served variability of crash proximity without using crash data; (3) the
crash proximity measure precisely defines the surrogate event. This
method has the potential to estimate the probability of extreme events
from relatively short period of observations and it proposes a single di-
mension to measure the severity of surrogate events and to identify
crashes. The implicit assumption of the EV theory is that the stochastic
behavior of the process being modeled is sufficiently smooth to enable
extrapolation to unobserved levels [8]. In the context of road safety,
the more observable traffic events are used to predict the less frequent
crashes, which are often unobservable in a short time period [5]. More
recently, Songchitruksa and Tarko [8] used an EV approach to build up
relationships between occurrence of right-angle crashes at urban
intersections and frequency of traffic conflicts measured by using
post-encroachment time. A major improvement of this study is that it
links the probability of crash occurrence to the frequency of conflicts
estimated from observed variability of crash proximity, using a probabi-
listic framework and without using crash records. The generic formula-
tion of the application of EV to road safety analysis was then proposed
by Tarko [2] and it was only recently applied to other crash types and
data sets [5,7].

In this study the time-to-collision or TTC [10] will be used as a
surrogate safetymeasure of the risk to be involved in a head-on collision
with the opposite vehicle while passing on two-lane rural highways.
According to NHTSA [11] head-on collisions constitute 2.3% of the
total crashes on two-lane highways, but they are responsible for 10.4%
of the total fatal crashes. Not many studies have focused on the detailed
analysis of the link between passingmaneuvers and head-on-collisions.
The TTC was previously used by Farah et al. [12] to evaluate the risk of
passing behavior on two-lane rural highways. The authors defined the
minimum TTC, as the remaining gap between the passing vehicle and
the opposite vehicle at the end of the passing process. This measure
expresses the risk involved in the passing maneuver. The authors
developed a Tobit regression model that explains the minimum TTC.
Traffic related explanatory variables were found to have the most
important effect on the minimum TTC, but also the road geometric
design and the driver characteristics were also found to have a signifi-
cant contribution. Other researchers also used the TTC as a measure
for head-on conflicts in studies with a similar purpose [13,14].

There are two families of EV distributionswhich follow two different
approaches to sample extreme events: (1) the Generalized Extreme
Value (GEV) distribution which is used in the block maxima or minima
(BM) approach, where maxima over blocks of time (or space) are con-
sidered; and (2) the Generalized Pareto Distribution (GPD) which is
used in the peak over threshold approach (POT) [15], where all values
above some certain level are used. Previous studies suggested that the
POT approach is more effective in conditions of short-time observations
and from the aspect of estimation accuracy and reliability [5,8]. In this
study both distributions will be examined and compared.

2. Research method

This section presents: (1) themodeling approach and (2) the labora-
tory experiment designed to collect the data, including description of
the characteristics of the participants in the study, and a preliminary
statistics of the collected data.

2.1. Modeling details

In this study two families of extreme value distributions are used to
sample extreme events: (1) BM approach using the GEV distribution;
and (2) POT approach using the GPD. The following paragraphs describe
those two approaches in more detail.

2.1.1. Block maxima (BM) using the generalized extreme value (GEV)
In the GEV distribution the extreme events are sampled based on the

blockmaxima (BM) approach. Following this approach the observations
are aggregated into fixed intervals over time and space, and then the
extremes are extracted from each block by identifying the maxima in
each single block. Mathematically, the standard GEV function is as
follows [5]:

G xð Þ ¼ exp − 1þ ξ
x− μ
σ

� �h i−1
ξ

� �
ð1Þ

where, {X1,X2,… ,Xn} is a set of independently and identically distribut-
ed random observations with unknown distribution function F(x)=
Pr(Xi ≤ x), the maximum Mn=max{X1,X2,… ,Xn} will converge to a
GEV distribution when n→∞. Three parameters identify this distribu-
tion: the location parameter, −∞ b μ b ∞; the scale parameter, σ N 0;
and the shape parameter,−∞ b ξ b ∞. If the shape parameter, ξ, is pos-
itive, then his would yield the Frechet Cumulative Distribution Function
(CDF) with a finite lower endpoint, (μ− σ/ξ), if ξ is negative, this
will yield the (reversed) Weibull CDF with finite upper endpoint
(μ+ σ/|ξ |), and if ξ=0 this yields the Gumbel CDF.

The BMmethod can also be used to studyminimaby considering the
maxima of the negated values instead of minima of the original values.
This is how the minimum TTC is handled in this study.

For the BM approach, and in the case that most blocks have
enough observations, the r-largest order statistics is often recom-
mended. It enables the incorporation of more than one extreme
from each interval in order to increase the confidence of parameter
estimates. Yet, this consideration depends not only on the nature of
the phenomenon being modeled, but also on the sample available
for estimation. It is usually recommended to have at least a sample
of 30 maxima (or minima). The size of the chosen interval should
be large enough so that there are enough observations from which
a maxima is chosen in which it is truly an extreme value, and small
enough to provide a sample larger than 30.

2.1.2. Peak over threshold (POT) using the Generalized Pareto
Distribution (GPD)

According to the GPD an observation is identified as an
extreme if it exceeds a predetermined threshold. The distribution
function of exceedances X over a threshold μ for a set of indepen-
dently and identically distributed random observations
{X1,X2, … ,Xn} is: Fu(x)= Pr (X− u ≤ x | X Nu). With a high enough
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Fig. 1. TTC with the opposite vehicle.

Table 1
Data summary statistics.

Variable Mean Median 15th
percentile

85th
percentile

Accepted passing gap (s) 21.47 20.75 17.39 28.79
Passing duration (s) 4.98 4.83 3.50 6.48
Passing vehicle speed (m/s) 22.21 21.29 17.27 27.39
Front vehicle speed (km/h) 66.20 60.00 60.00 80.00
Opposite vehicle speed (km/h) 76.28 85.00 65.00 85.00
Following distance from front vehicle
when starting to pass (m)

15.47 12.80 8.39 22.92

Minimum TTC (s) 2.37 1.98 0.76 4.10
Gap from passed front vehicle at end
of the passing maneuver (s)

2.44 2.24 1.49 3.42
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threshold u, the conditional distribution Fu(x) can be approximated
by a GPD. The function of GPD is given as follows:

G xð Þ ¼ 1− 1þ ξ � x
σ

� �� �−1
ξ

ð2Þ

where σ N 0 is the scale and −∞ b ξ b ∞ is the shape parameter,
respectively.

Similarly to the BM approach, the determination of the threshold in
the POT approach determines the sample size. Therefore, an optimal
threshold should be chosen so that the observations that exceed the
threshold are real extremes, but still constitute a reasonable sample
size with relatively small variance. Choosing a small threshold will
bias the results by considering normal observations as extremes, while
choosing a high threshold would result in few observations as extremes
and thus large variabilitywhichwould also bias the estimation results of
the distribution.

In this study, both models' parameters were estimated using the
maximum likelihood method (ML) in R (v3.0.3) using the exTremes
and evd packages [16]. Details on the statistical properties of the GEV
and GPD can be found in Coles [17] and on the theoretical background
of its applicability for surrogate safety analysis in Tarko [1,2].

2.1.3. Examination of the EV criteria
When using the EV approach there are three main criteria that

should be examined and addressed. These are: the sample size, serial
dependency, and non-stationarity [5]. With respect to the sample size,
in the BM approach the interval size determines the sample size while
in the POT approach, the chosen threshold is the main factor. In both
approaches the target is to achieve a balance between bias and variance
as discussed above. In the case of passing maneuvers, it is possible to
assume that the TTCs resulting from different passing maneuvers are
independent if only cases where a single vehicle is overtaking another
single vehicle are considered. However, since these maneuvers are
non-stationary as various factors (road design, traffic conditions, driver
characteristics) might affect the measured TTCs and increase the
heterogeneity, several covariates should also be tested in the
estimation procedure.

2.1.4. Estimation of the risk of passing maneuvers using EV
A passing maneuver is considered to be a risky maneuver as it re-

quires from a fast driver, who wants to pass a slow driver, to search
and decide on an appropriate gap in the traffic on the opposite direction
and execute this maneuver while maintaining safe distances from all
the surrounding vehicles. Therefore, a driver failure to correctly
estimate these safe distances might lead for several potential types of
collisions, such as a collision with the opposite vehicle, the passed
vehicle, or run of the way crashes. This paper will focus on the risk of
head-on collisions (i.e., a collision with the opposite vehicle).

A quite often used measure for estimating the risk of a head-on
collision is the TTC. The TTC is defined by Hayward [18] as the time
left to collision between two vehicles if they remain on their paths
and continue with constant speeds. Minderhoud and Bovy [19] defined
two TTC indicators for risk. The first is the Time Exposed Time to
Collision which is the total sum of the times that a driver spent with
sub-critical TTC. The second is the Time integrated TTC which is the
time integration of the difference between the critical and actual TTC
during the time spent with sub-critical TTC. In this study, theminimum
TTC to the opposite vehicle at the end of the passing maneuver will be
used as a head-on collision proximity measure [10]. This is actually
the most critical time-to-collision during a passing maneuver. This
measure has been used by several previous studies [12,20,21], and
proved to be a valuable measure for risk of head-on collisions.
2.2. Laboratory experiment

A laboratory experiment using a driving simulator previously devel-
oped by Farah et al. [12] for modeling drivers' passing behavior on two-
lane highways was used in order to collect data on the time-to-collision
with the opposite vehicle. The simulator used in this experiment, STISIM
[22], is a fixed-base interactive driving simulator, which has a 60 hori-
zontal and 40 vertical display. The driving scene was projected onto a
screen in front of the driver. The simulator updates the images at a
rate of 30 frames per second. The situations that participants encoun-
tered were defined by the vehicles shown in Fig. 1. The subject vehicle
is passing an impeding vehicle (front vehicle) while another vehicle is
approaching from the opposite direction. This paper focuses on themin-
imum TTC surrogate safety measure while passing on two-lane rural
highways. Mathematically, the TTC is calculated by the division of the
distance between the fronts of the subject vehicle and the opposite
vehicle by the sum of their speeds. The minimum TTC is the TTC value
at the end of a successful passing maneuver.

To understand how various infrastructure and traffic factors affect
the TTC when passing, a number of simulator scenarios were designed.
Each scenario included 7.5 km of two-lane rural highway section,
designed on a level terrain, and with no intersections. Daytime and
good weather conditions were assumed, which allowed good visibility.
However, each scenario design varied according to four main factors of
two levels each. The choice of these factors was based on previous
studies that showed their significant impact on passing decisions. Two
levels were used for each factor. These factors are: speed of the front ve-
hicle (60 or 80 km/h); speed of the opposite vehicle (65 or 85 km/h);
opposite lane traffic volume (200 or 400 veh/h); and road curvature,
lane and shoulder width (300–400 m, 3.75 m, and 2.25 m or 1500–
2500 m, 3.30 m, 1.50 m, respectively). The determination of sight
distance in the driving simulator was attempted, but because of the
limited resolution of the screens (compared to human eye resolution
in reality), this factor was not found to have an impact on the driver
behavior. This produces (24)16 different scenarios. The partial con-
founding method [23] was used to allocate for each driver 4 scenarios
out of the 16 scenarios. Detailed information on this experiment can
be found in Farah et al. [12].

Image of Fig. 1
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Fig. 2. CDF of minTTC (s) for the full dataset (left) and filtered data (right).
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2.2.1. Participants
One hundred drivers (64males and 36 females) with at least 5 years

of driving experience participated in the driving simulator experiment
on a voluntary base. The drivers' age ranged between 22 and 70 years
old. Drivers were instructed to drive as they would normally do in real
world. An advertisement on the experiment was published at the
Technion campus in Israel and drivers who were interested to
participate contacted the researchers.
2.2.2. The data
The data set from the driving simulator experiment resulted in

1287 completed passing maneuvers, in which 9 ended with a collision
(these observations were removed from the estimation data sets).
Table 1 below presents summary statistics of passing maneuvers
related variables.

Passing gaps were defined as the gap between two successive vehi-
cles on the opposite lane at the time the lead opposite vehicle is at the
same line with the subject vehicle. The passing duration is measured
Table 2
List of covariates tested in the BM Approach.

Acronym Description

passinggap The time gap between two opposite vehicles at the time the
subject meet the lead opposite vehicle (s)

speedopposing The speed of the opposite vehicle at the moment of start
passing (m/s)

speedfront The speed of the front vehicle at the moment of start passing (m/s)
followinggap The time gap between the subject vehicle and the front vehicle at

the moment of start passing (s)
passduration The passing duration (s)
curvature The road curvature (1/m)
from themoment the subject vehicle left front wheel crosses the center
line (as shown in Fig. 1) until the passingmaneuver endswhen the rear
left wheel crosses the centerline. Vehicles' speeds as summarized in
Table 1 are measured at the beginning of the passing maneuvers. The
following distance from front vehicle when starting to pass is measured
as the distance between the front of the subject vehicle and the end of
the front vehicle as illustrated in Fig. 1. Finally, the minimum TTC is
measured at the end of the passingmaneuver (since up till thismoment
there is still a risk of collision) and reflect the risk to collide with the
opposite vehicle.

3. Results and analysis

This section presents the results of the analysis following the
research method described above. First, the estimation results of the
BM using the GEV model is presented, followed by the estimation
results according to the POT using the GPD, and finally a validation of
the results using a second database.

3.1. Block maxima approach (BM) results

A GEV distribution is fitted using the non-crash passing maneuvers
and the respectiveminimumTTCmeasurements. For the block intervals
we use the annotated time that contain the entire passing maneuver.
Both the chosen block interval and the resulting number of observations
in each block are variable [7]. In this case, the calculated probability
represents the probability of a head-on collision for a single passing
maneuver. Furthermore, past studies concluded that with minimum
TTC smaller than a low limit (typically, 1 to 1.5 s) are useful as crash sur-
rogates [7,24]. The filtered data according to this approach, and choos-
ing a limit of 1.5 s, resulted in 463 maxima. Fig. 2 (left) presents the
CDF of the minimum TTC (min{TTC}) for the full data set, while Fig. 2

Image of Fig. 2
Image of Fig. 3


Table 3
Estimation results of the best model for non-stationary BM approach.

Parameter Estimated value Standard error

μ ̂ μ ̂
0

−1.06 (0.139)

μ ̂
1 (speedfront) 0.0245 (0.00644)

μ ̂
2 (followinggap) 0.00274 (0.00179)

μ ̂
3 (passinggap) −0.0212 (0.00445)

μ ̂
4 (curvature) −38.1 (13.5)

σ ̂ 0.369 (0.0145)

ξ ̂ −0.225 (0.0412)

N 463
Neg. loglikelihood 215.54

1 For non-stationary models, it is common practice to transform the data to a density
function that does not depend on the covariates, using the following function
Zi=− log(1+(ξ/σ*(Xi−μi))^(−1/ξ) (Gilleland and Katz, [16]).
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(right) presents the CDF of themin{TTC} for the filtered data. For the full
data set, 50% of the observationswere less than a TTC of about 2 s, while
in thefiltered data, 50%of the observationswere less than a TTCof about
0.9 s. Different values for the filtering threshold were tested and the
1.5 s resulted in the best fitting. Furthermore, this value is consistent
with the literature.

We first estimated a stationary blockmaximamodel for themaxima
of the negated values instead of minima of the original values, i.e.
max{−TTC}. Thefitted distribution resulted in the followingparameters
of the GEV cumulative distribution function: μ ̂ ¼ −0:993 ð0:0212Þ,σ ̂ ¼
0:383 ð0:0163Þandξ̂ ¼ −0:236 ð0:0500Þ, where the values in parenthe-
sis are the standard errors. Fig. 3 (left) presents the kernel probability
density function of the empirical and modeled negated TTC, and Fig. 3
(right) presents the simulated QQ plot. From these figures it can be con-
cluded that themodeled GEV distribution has satisfactory fitting results
to the empirical data since the points fall close to the 45° line in the
simulated QQ plot.

With this stationary model the estimated probability of
max{−TTC} ≥ 0 is 0.0179 with 95% confidence interval
(0.0177,0.0182). The confidence intervals of estimations were comput-
ed using simulation, assuming the (independent) normal distribution
under regularity conditions of the parameters and a simulation experi-
ment size of 1 × 106. During the driving simulator experiment, 463 near
head-on collisions (using the threshold of 1.5 s) and 9 actual collisions
were recorded. In other words, the probability for a head-on collision
assuming a near head-on collision during a passing maneuver is 9/
472 = 0.0191, with a 95% confidence interval (0.0088, 0.0359). This
value is comparable to the estimate resulting from the fitted GEV
distribution.

However, the process of a passing maneuver may be affected by the
detailed conditions of each specific passing, such as the relative gaps
and speeds between the vehicles surrounding the subject vehicle. To
account for the fact that the TTCs are non-stationary observations and
are affected by several factors,we tested the inclusion of different covar-
iates that were collected during the driving simulation experiment in
the location parameter of the BM model (see Table 2).

Several linear combinations of these variables were tested during
the model estimation task. To test reduced model structures and the
inclusion of variables, the likelihood ratio test was used [17]. The final
model was also tested against the stationary one, resulting in a
p-value (3.741 × 10−8) significantly smaller than alpha = 0.05.

The results in Table 3 indicate that as the speed of the front vehicle
increases the negated TTC increases, and the TTC decreases which is
logical since it is more difficult for the subject vehicle to pass the front
vehicle. This is also in line with the conclusions from previous studies
[12,25]. Similarly, as the passing gap that is accepted is larger, the negat-
ed TTC decreases, and the TTC increases. On the other hand, as drivers
start their passing maneuvers from a larger gap from the front vehicle,
the negated TTC increases and the TTC decreases. Drivers take longer
time to pass the front vehicle, getting closer to the opposite vehicle,
and resulting in shorter TTC. The road design impacts the TTC as well.
As expected, as the road curvature is larger, the negated TTC is lower,
and the TTC is higher. This indicates an adaptation behavior by drivers
who compensate for the difficulty of the passingmaneuver on complex
roads by increasing their safety margins. Previous results by Farah and
Toledo [26] found that on roads with larger curvature, drivers accept
larger critical gaps, which supports the results of this study. The speed
of the opposite vehicle was not found to be significant at the 95% confi-
dence level, however, this variable is indirectly included through the
passing gap which is measured in time.

Fig. 4 (left) presents the probability density function of the empirical
and modeled standardized1 maximum negated TTC, and Fig. 4 (right)
presents the simulated QQ plot for the non-stationary model. The results
indicate a good fit between themodeled GEV distribution and the empir-
ical data, and a better fit compared to the results of the stationary model
presented in Fig. 3. Also, the negative log-likelihood has improved from
229.5 to 215.5,maintaining a ξN−0.5 that assures the regular asymptotic
properties of the maximum likelihood estimators [17].

To estimate the probability of a head-on-collision during a passing
maneuver (max{−TTC} ≥ 0), for the non-stationary model, simulated
covariates or directly location parameters have to be generated.
From the estimated location parameters for the estimation dataset,
a normal distribution was fitted with satisfactory results with a mean
of −0.996, standard deviation of 0.115 and a Kolmogorov–Smirnov
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test statistic of 0.0452. The simulated probability of max{−TTC} ≥ 0 is
0.0190 with 95% confidence interval (0.0188,0.0193), resulting in a
better estimate than the stationary model.

3.2. Peak over threshold (POT) results

In this section the estimation results of the GPD following the POT
approach are presented. This analysis was conducted in order to
compare with the BM approach results, as previous studies concluded
that the POT approach often performs better than the BM approach,
especially in situations of short-time observations [5]. As a first step for es-
timating the GPD, a threshold needs to be determined and selected from
the observedmaximum negated TTC. To determine the optimal threshold
an assessment ofmean residual life and stability plotswere carried out fol-
lowing Coles [17]. A threshold can be determinedwhen themean residual
life plot is almost linear and the modified scale and shape estimates be-
come constant. In Fig. 5 (left) the mean residual life plot of the maximum
negated TTC thresholds is linear starting from a threshold of −2.0 s,
where the line becomes more stable, until about −0.2 s. This is better
Table 4
Estimation results for two stationary POT models.

Parameter u=−0.25 s u=−0.5s u=−1.0s u=−1.5s

σ ̂ 0.181 (0.0393) 0.375 (0.0427) 0.738 (0.0485) 1.150 (0.0136)

ξ ̂ −0.703
(0.1930)

−0.742
(0.0973)

−0.733
(0.0518)

−0.764
(0.00752)

Neg. log
likelihood

−70.68 −81.58 −10.52 175.64
shown in Fig. 5 (right) where the mean residual life plot of the negated
TTC thresholds larger than−2.0 s is presented.

The stability ofGPDmodified scale and shape parameterswere also an-
alyzed. Fig. 6 shows stability plots considering a range between−2.5 and
−0.2 s. Both parameters seem to be relatively stable in the range between
−1.1 and−0.5 s. Considering the lowmagnitudes of the variability of the
modified scale parameter over the full range of tested threshold values,
different stationary models were fitted using the full dataset for the
thresholds of u=−1.5,−1.0,−0.5 and−0.25 s, using theMLmethod.

Since the estimated shape parameter is stable and its value is ξ̂ b−0
:5 the estimators from theML are generally not reliable [27]. (See Table 4)
Fig. 7 presents the probability density function of the empirical and
modeled negated TTC and the simulated QQ plot for the estimated
models. The figures of the probability density functions indicate a good
fit between the modeled GPD distribution and the empirical data. It is
worthnoting that thepdf at−min{TTC}=0 is not zero, but a significantly
low value due to the short upper tail for the estimated distribution of ex-
cesses and its low estimated upper bound (u− σ ̂ = ξ̂).

With these stationary models using the fitted GPD, the estimated
probability of head-on collision is 0.00628 with 95% confidence in-
terval (0.00612, 0.00643) for a −0.25 s threshold near-crash; the
0.00240 (0.00234, 0.00254) for a −0.5 s threshold, 0.00107
(0.000972, 0.00109) for a −1.0 s threshold, and 0.000480
(0.000392, 0.000475) for a −1.5 s. threshold. The empirical value
stands at 0.00699 (with a 95% binomial confidence of 0.00320,
0.0132), indicating −0.25 s as the suitable threshold for the station-
ary POT model. However, the instability of the estimated parameters
for thresholds greater than −0.5 s and the lower fit for −0.25 s
makes this decision less straightforward.
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Fig. 7. (Kernel) Probability density plot (left) and simulated QQ plot (right) for the stationary POT model for different thresholds (−0.25,−0.5,−1.0 and −1.5 s).

Table 5
Estimation results for the best model for non-stationary POT approach (u=−0.5s).

Parameter Estimated
value

Standard
error

σ ̂ σ ̂
0 0.394 (0.00774)

σ ̂
1 (speedfront) −0.00559 (2 × 10−8)

σ ̂
2 (passingRate = passingduration/passinggap) 0.451 (0.0934)

ξ ̂ −0.830 (0.0601)

N 113
Neg. loglikelihood −84.27
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Similarly to the BM modeling effort, we tested the inclusion of the
same different covariates (see Table 2) in the scale parameter formula-
tion to account for the impact of different factors on TTCs. To test
reduced model structures and the inclusion of variables, the likelihood
ratio test was used [17]. Non-stationary models for both thresholds
of −0.25 s and −0.5 s were considered.

Table 5 presents the results of the best fitted model.2 The
covariate passingRate represents the percentage of the passing
gap that was used during the maneuver. From the results, the in-
crease in the speed of the front vehicle reduces the scale parame-
ter, and therefore the variance of the minimum TTC distribution;
on the other hand, the increase of the passingRate increases
the variance of the minimum TTC distribution. The estimated prob-
ability of head-on collision is now 0.00711 (0.00660, 0.00765),
much closer to the observed 0.00699 than the stationary model.
Despite this improved result, the shape parameter is always less
than −0.5 s corresponding to a distribution with a very short
bounded upper tail, limiting the theoretical robustness of the
maximum likelihood approach.

3.3. Validation

This section aims at validating the previous results by applying the
previouslyfittedmodel to estimate theprobability of a head-on collision
2 The evd and extremes package support the plotting of non-stationary GDP density
functions.
in a different dataset, i.e. a second experiment. In this new experiment
different 100 drivers (69 males and 31 females) participated. Their
age ranged between 21 and 61 years old. The instructions and experi-
mental conditions were identical to the first experiment. The simulator
scenarios included aswell rural two-lane road sections eachwith a total
length of 7.5 km. The same two-level four factors as in the first experi-
ment were used to generate the scenarios. However, the values in
each levelwere not fixed but randomly drawn from a specified distribu-
tion. Speeds were drawn from truncated uniform distributions, while
passing gapswere drawn from truncated negative exponential distribu-
tions. More details on the design of the scenarios can be found in Farah
and Toledo [26]. A total of 562 passing maneuvers were observed, 9 of
which resulted in actual collisions. To check the consistency among
covariate data sets, the CDF for each of the covariates considered previ-
ously were computed (see Fig. 8). The data plotted in Fig. 8 is filtered for
min {TTC} b 1.5 s. It is worth noting that driving speeds in the first
experimentwere fixed to certain valueswhile in the second experiment
were randomly drawn from truncated uniform distributions. This will
result in a potential bias in the estimated values, as the estimated
model used limited speed-related data.

Recall the estimated BM stationary model; the estimated proba-
bility of a head-on collision given a 1.5 s near-collision threshold
was 0.0179 (0.0177, 0.0182). In the validation dataset there were
166 near-collision observations (i.e. with min {TTC} b 1.5 s). There-
fore, the simulated number of head-on collisions is 2.97. On the
other hand, the empirical probability for a head-on collision given a
1.5 s near-collision threshold is 9/166= 0.0508, with a 95% binomial
confidence interval (0.0235, 0.0943). Fig. 9 presents the probability
density function and QQ plot of the validation and the simulated
negated TTCs using the BM stationary model.

For the stationary POT approach, the probability of a head-on-
collision is 0.00240 (0.00234, 0.00254) for a−0.5 s threshold, resulting
in a simulated number of head-on collisions of 1.4, even lower than the
BM stationary model. The lower estimates of the two models may be
due to the different simulator experimental settings, namely to the
different speed distributions used. The lower resulting min {TTC}
for validation data set (Kolmogorov–Smirnov statistic D=0.99N0.12
for a 0.05 level, rejecting the null hypothesis of being drawn from the
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same distribution) already indicated a possible misfit of a simple
stationary model.

The same test was carried out for the non-stationarymodels. For the
non-stationary BMmodel the simulated number of head-on collisions is
3.4, still far from the observed values (see Fig. 10). However, the non-
stationary POT model resulted in a simulated number of collisions of
16.3, mostly due to the difference in passingRate and front vehicle
speed in the new dataset. Despite overestimating the number of
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Fig. 9. Probability density plot (left) and QQ plot (right)
head-on collisions, the unstable POT model was able to capture the
increased risk in the validation dataset.

4. Summary and conclusions

In this study an extreme value (EV) approach was applied for the
estimation of the probability of head-on collisions that result from
unsuccessful passing maneuvers on two-lane rural highways. Both,
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for the validation set and the stationary BMmodel.
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Fig. 10. Probability density plot (left) and QQ plot (right) for the validation set and the non-stationary BMmodel.
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the block maxima (BM) approach using the Generalized Extreme Value
(GEV) distribution and the peak over threshold (POT) using the Gener-
alized Pareto Distribution (GPD), were tested and compared using the
minimum time-to-collision with the opposite vehicle during passing
maneuvers.

This paper brings practical insights to the relatively scarce literature
on the use of EV method in detailed road safety analysis. The method,
which can be leveraged with the availability of detailed data, shows
promising results in quantifying accident probability and in identifying
influencing factors. Such knowledge, will bring the necessary capability
of not only quantitatively assessing the benefits of interventions
targeting such detailed variables (e.g.: safety gap markings, local
speed limits and Advanced Driver Assistance Systems) for which safety
data is not yet available, but also modeling attributes suitable for
integration in accident-free detailed simulators (known to be capable
of simulating conflicts, but not accidents).

Our estimations showed that the BM approach yielded more stable
results compared to the POT approach, but the latter was able to pro-
duce crash rate estimates more consistently sensitive to the covariates
of interest. Zheng et al. [5] who conducted a comparative study for
the case of using post encroachment time measure for predicting lane-
changing maneuver related crashes found that the POT approach
performed better than the BM approach. In fact, the data set used in
the study by Zheng et al. [5] was relatively limited, and for limited
data sets the POT is known to be a more efficient approach than the
BM approach. Zheng et al. [5] site two studies [28,29] which concluded
that “the BMapproachwouldworkwell if the number of observations is
large, while the POT approach would have a poor performance”. How-
ever, definitive conclusion regarding which method is supreme can
not yet be made and further comparative studies are needed in order
to reach a firm conclusion. The on-going discussions in the statistics
field on the merits of both POT and BM approaches [32] support as
well the need for more comparative studies. In general, POT tends to
be more efficient than BM in several circumstances, though typically
needing a number of exceedances larger than the number of blocks;
the BM method may be also preferable when the observations are not
exactly independent and identically distributed.

Nevertheless, it was found that the non-stationary BM model per-
formed better than the stationary BM model. This is expected since
the introduced covariates significantly affect the TTC and were found
to be important explanatory variables in previous studies [12,25]. Fur-
thermore, the predicted probability of head-on collisions based on the
BM approach was sufficiently close to the probability of head-on colli-
sions based on the empirical data from the driving simulator. This also
indicates that for passing maneuvers the TTC is a good surrogate safety
measure for near-crashes of head-on collisions. This is different from the
conclusion reached by Jonasson and Rootzén [7] who found severe dis-
crepancy between the rear-striking near-crashes (using the TTC) and
rear-striking crashes. However, this can be explained by themechanism
of crash occurrence and the state of the driver. In passing maneuvers
drivers are aware and conscious of their actions and therefore head-
on collisions usually result from an error in drivers' judgment of the
suitability of the passing gap. On the other hand, in rear-striking col-
lisions, the state of the driver in these collisions might vary a lot. It
can result, similarly to passing collisions, from drivers' errors in judg-
ing their gap and speed from the front vehicle, but it can also result
from the driver being distracted. In the first case, it is most likely to
observe an evasive action of the driver to prevent the collision but
in the second case no evasive action might be observed. These
causes, as Jonasson and Rootzén [7] indicate, a selection bias, and
therefore, careful selection of near-crashes is a crucial issue in
preventing this from occuring.

The POTmodels resulted in more accurate predicted probabilities of
head-on collisions and a non-stationarymodel more sensitive to the co-
variates of interest. This also indicates that the TTC is a good surrogate
safety measure for head-on collisions. However, it is worth noting that
in all POT models, the shape parameter is less than −0.5 which corre-
sponds to distributions with a very short bounded upper tail. Although
this situation is rarely encountered in applications of extreme value
modeling, the theoretical limitations of the maximum likelihood ap-
proach and the asymptotic properties of its estimators are still at stake.

Despite these promising results, future research by the authors will
attempt to expand this work in several possible directions as follows:
(1) testing alternative surrogate measures of head-on collisions such
as the Time Exposed Time to Collision or Time integrated Time to
Collision [19]; (2) developing a more sophisticated measure of risk
which accounts for the complexity of the passing maneuver and
considers the probability to collide not only with the opposite vehicle
but also with the passed vehicle (i.e. when the driver returns too soon
to its lane). One possibility is, similarly to Jonasson and Rootzén [7], to
use a bivariate model which considers the TTC and the headway
between the passing and passed vehicle at the end of the passing
maneuver; (3) extending the non-stationary models by including
other covariates related to road design (this study accounted only
for the road curvature) and drivers' characteristics, such as socio-
demographic and driving styles; (4) testing different estimation tech-
niques (e.g.: probability weighted moments) that may result in more
robust estimates; (5) examining the transferability of such models and
validation of the results with other datasets especially from field
studies; (6) applying the developed models in traffic microscopic
simulation environments for safety assessment [30,31].
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