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Accelerated Vector Pruning for Optimal POMDP Solvers

Erwin Walraven and Matthijs T. J. Spaan
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

Abstract

Partially Observable Markov Decision Processes (POMDPs)
are powerful models for planning under uncertainty in partially
observable domains. However, computing optimal solutions
for POMDPs is challenging because of the high computational
requirements of POMDP solution algorithms. Several algo-
rithms use a subroutine to prune dominated vectors in value
functions, which requires a large number of linear programs
(LPs) to be solved and it represents a large part of the total
running time. In this paper we show how the LPs in POMDP
pruning subroutines can be decomposed using a Benders de-
composition. The resulting algorithm incrementally adds LP
constraints and uses only a small fraction of the constraints.
Our algorithm significantly improves the performance of ex-
isting pruning methods and the commonly used incremental
pruning algorithm. Our new variant of incremental pruning is
the fastest optimal pruning-based POMDP algorithm.

Introduction
Dealing with uncertainty and partial observability in planning
problems is a challenging goal in the development of intelli-
gent agents. Partially Observable Markov Decision Processes
(POMDPs) have emerged as a successful framework for plan-
ning under uncertainty in partially observable domains (Kael-
bling, Littman, and Cassandra 1998), and have been used
in several real-world applications such as aircraft collision
avoidance (Bai et al. 2012) and guidance of people with de-
mentia (Boger et al. 2005). A significant body of research has
focused on POMDPs in the past, but solving POMDPs to opti-
mality remains difficult. Although several approximate meth-
ods for POMDPs exist (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005), optimal solutions are commonly
used in recent literature (Karmokar, Senthuran, and An-
palagan 2012; Qian et al. 2016; Li and Jayaweera 2015;
Blanco et al. 2015; Roijers, Whiteson, and Oliehoek 2013;
Raphael and Shani 2012). Moreover, an advantage of optimal
solutions is that they are independent of the initial belief.

Incremental pruning (Cassandra, Littman, and Zhang
1997) is a popular method for computing optimal POMDP
solutions. It is based on a subroutine that removes dominated
vectors from value functions, which is known as pruning. The
subroutine solves a large number of LPs during its execution
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to check whether a vector is dominated by a set of vectors,
which turns out to be a costly operation. For example, Cas-
sandra, Littman, and Zhang (1997) have shown that linear
programming represents a major part of the total running
time. Existing research focusing on the scalability of the LP
subroutine typically aims to solve fewer LPs and exploits the
POMDP structure to create LPs with fewer constraints (Feng
and Zilberstein 2004). However, existing work does not try to
exploit the structure of the LPs to derive more efficient algo-
rithms to solve the LPs. We demonstrate that such a structure
can be used to derive faster algorithms.

In this paper we show that a more efficient vector prun-
ing method can be obtained by selecting LP constraints in
a smart way. We take the original LP and apply a Benders
decomposition (Benders 1962) to derive an algorithm which
incrementally adds constraints. LP solvers do not automat-
ically apply such a decomposition, and therefore we show
how it can be implemented manually in the context of prun-
ing for POMDPs. The resulting algorithm only needs a small
fraction of the constraints in the original LP. We show that
the algorithm always finds the optimal LP solution, and we
prove that some constraints will never be added to the LP
formulation. Experiments show that our algorithm improves
the performance of existing pruning methods, and our re-
sults show that the accelerated pruning algorithm creates the
fastest variant of incremental pruning for POMDPs.

Background
In this section we introduce Partially Observable Markov
Decision Processes and decomposition of linear programs.

Partially Observable Markov Decision Processes
A POMDP (Kaelbling, Littman, and Cassandra 1998) con-
sists of a set of states S, a set of actions A and a set of obser-
vations O. If action a ∈ A is executed in state s ∈ S, then
the state changes to s′ ∈ S according to the probability dis-
tribution P (s′|s, a) and a reward R(s, a) is received. Rather
than observing state s′ directly, the agent receives an obser-
vation o ∈ O according to probability distribution P (o|a, s′).
The agent aims to maximize the expected discounted re-
ward E [

∑∞
t=0 γ

tRt], where 0 ≤ γ < 1 is the discount rate
and Rt is the reward at time t. The agent maintains a belief b
over states, which can be updated using Bayes’ rule.



input :vector set W
output :pruned set D

1 D ← ∅
2 while W 6= ∅ do
3 w ← arbitrary element in W
4 if w(s) ≤ u(s),∃u ∈ D,∀s ∈ S then
5 W ←W \ {w}
6 else
7 b←FindBeliefStd(D,w)
8 if b = φ then
9 W ←W \ {w}

10 else
11 w ← BestVector(b,W)
12 D ← D ∪ {w}, W ←W \ {w}
13 end
14 end
15 end
16 return D

Algorithm 1: Vector pruning (White & Lark)

An agent uses a policy π : ∆(S)→ A to make decisions,
where ∆(S) denotes the continuous set of probability dis-
tributions over S. A policy π can be defined using a value
function V π : ∆(S) → R. The value V π(b) denotes the
expected discounted reward when following policy π starting
from b and is defined as:

Eπ

[ ∞∑
t=0

γtR(bt, π(bt))

∣∣∣∣∣ b0 = b

]
, (1)

where R(bt, π(bt)) =
∑
s∈S R(s, π(bt))bt(s) and belief bt

is the belief at time t. The optimal value function V ∗(b) =
maxπ V

π(b) is the best value function that can be achieved.
A maximizing policy π? is an optimal policy.

Value functions are piecewise linear and convex in the
finite-horizon setting, and can be defined using a set of
vectors (Sondik 1971). If only immediate rewards are
considered, then the optimal value function is V0(b) =
maxa∈A

∑
s∈S R(s, a)b(s) = maxa∈A b · αa0 , where αa0

is a vector (R(1, a), . . . , R(|S|, a)) and · denotes the inner
product. The value function Vn at stage n of value iteration
is Vn(b) = max1≤k≤|Vn| b · αkn, and Vn+1 can be computed
using the Bellman backup operator H:

HVn =
⋃
a∈A

Ga, with Ga =⊕o∈O Goa and (2)

Goa =

{
1

|O|
αa0 + γgkao

∣∣∣∣ 1 ≤ k ≤ |Vn|
}
.

Note that Vn denotes a set containing vectors and Vn(b)
denotes the value in belief b computed using the vectors
in Vn. The operator ⊕ denotes the cross sum operator.
For two sets Q and R the operator can be defined as
Q ⊕ R = {q + r | q ∈ Q, r ∈ R}. The vector gkao
can be obtained by back-projecting the vector αkn from
value function Vn using action a and observation o using
the equation gkao(s) =

∑
s′∈S P (o|a, s′)P (s′|s, a)αkn(s′).

input :vector set U , vector w
output :belief state b or symbol φ

1 if |U | = 0 then
2 return arbitrary belief b
3 end
4 max d
5 s.t. (w − u) · b ≥ d ∀u ∈ U
6

∑|S|
i=1 bi = 1, bi ≥ 0 ∀i, d free

7 return b if d > 0 and φ otherwise

Algorithm 2: FindBeliefStd – computes the belief
in which w improves U the most

When computing HVn, it contains more vectors than nec-
essary if there are vectors which are never the value-
maximizing vector for a given belief b. A pruning subrou-
tine prune can be executed after computing each cross
sum. The resulting algorithm is known as incremental prun-
ing (Cassandra, Littman, and Zhang 1997) and computes
a Bellman backup as HVn = prune

( ⋃
a∈AGa

)
, where

Ga = prune
(
prune

(
Ḡ1
a ⊕ Ḡ2

a

)
. . .⊕ Ḡ

|O|
a

)
and Ḡoa =

prune(Goa). The pruning operator can be implemented
using a series of LPs. Algorithm 1 shows a pruning al-
gorithm proposed by White and Lark (White 1991). The
procedure BestVector returns the vector from W with
the highest value in belief b (Littman 1996). The proce-
dure FindBeliefStd uses an LP to find the belief in
which the value function U improves the most when adding
vector w. The procedure is shown in Algorithm 2.

Benders Decomposition
We use the Benders decomposition technique (Benders 1962),
which can be applied to LPs of the following form:

max px+ hy s.t. Cx+My ≥ q (3)

where p and h are row vectors containing coefficients and
the column vectors x and y represent decision variables. The
constraints are defined by the column vector q and matricesC
and M , which contain constants. If the vector x is replaced
by a vector x̄ containing constants, then (3) reduces to:

ϕ(x̄) = max hy s.t. My ≥ q − Cx̄. (4)

In the general case we can write (3) as maxx (px+ ϕ(x)).
The dual of (4) can be written as:

min (q − Cx̄)>z s.t. M>z = h>, z ≥ 0 (5)

where z is a column vector containing the dual decision
variables and > denotes the transpose operator. Any vec-
tor z satisfying the dual constraints remains feasible if x̄
in the objective is replaced by another vector because the
dual constraints do not depend on x̄. If the dual in (5) is
solved for a given x̄ to obtain dual solution z̄ then it holds
that ϕ(x) ≤ (q − Cx)>z̄ for all vectors x. The Benders al-
gorithm initializes the master problem maxx px+ ϕ without
constraints, where ϕ is a real-valued variable. It solves the
master problem to obtain the solution x̄, then it solves (5) to
obtain the solution z̄ and a new constraint ϕ ≤ (q−Cx)>z̄ is
added to the master problem. This repeats until convergence.
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Figure 1: Value function U with vector w and the feasible region of the corresponding LP (a and b), region example (c)

Decomposing the Linear Program
As discussed, Algorithm 2 uses an LP to check whether there
is a belief b in which the value function represented by U
improves after adding vector w. The LP maximizes the im-
provement d and the algorithm returns the corresponding
belief b. The LP in Algorithm 2 will be referred to as the
standard LP, parameterized by the tuple (U,w). We start with
an analysis of the standard LP, after which we use a decom-
position to derive a new algorithm to replace Algorithm 2.

Analysis of the Standard LP
In Figure 1a we visualize a value function U containing 4
vectors and a vector w (dashed) for a POMDP with 2 states.
We define a corner belief as a belief point in which the slope
of the value function changes. In Figure 1a the corner beliefs
of the value function U correspond to the dots on the upper
surface of the value function. We call each extremum of the
belief simplex an extreme corner belief. In Figure 1a there
are 5 corner beliefs, 2 of which are extreme corner beliefs.
The standard LP finds the belief point corresponding to the
maximum improvement when adding w to U . It has been
shown by Cheng that this belief point is one of the corner
beliefs (Cheng 1988). The belief point corresponding to the
maximum improvement will be referred to as the witness
corner belief. In Figure 1a the witness corner belief is the
corner belief (0.18, 0.82).

The constraints are shown in Figure 1b, in which each
line corresponds to a constraint (w − u) · b ≥ d, where u ∈
U . The vertical axis represents the objective that needs to
be optimized. Therefore, the set of feasible LP solutions is
represented by the shaded area under the concave surface
and the arrow indicates the direction of optimization. We
let d(b) denote the optimal objective value in belief point b.
The lemma below describes the correspondence between the
constraints and the vectors in U . A proof can be found in the
supplement that is available on the homepage of the authors.
Lemma 1. Each corner of the feasible region of the standard
LP (U,w) corresponds to a corner belief of value function U .

Constraints intersecting at the witness corner belief are
necessary to define the optimal LP solution. Other constraints
can be removed without changing the optimal LP solution
(e.g., constraints with a star). If there are multiple witness
corner beliefs with the same optimal objective value, then the
constraints intersecting at one of these corners must be kept.

Theorem 1. Constraints that do not intersect at the witness
corner belief are irrelevant and can be removed from the LP
without affecting the optimal objective value d.

Proof. We assume that the value function U has m corner
beliefs b1, . . . , bm and w.l.o.g. we assume that bm is the wit-
ness corner belief. From Lemma 1 we know that each corner
belief bl corresponds to an objective value d(bl). It holds
that d(bl) ≤ d(bm) for l = 1, . . . ,m − 1 because bm is the
witness corner belief and the objective is maximized. The
LP returns the value max(d(b1), . . . , d(bm)) = d(bm). Only
the constraints intersecting at witness corner belief bm are
required to impose constraints on this value.

Ideally we would only add necessary constraints, but de-
ciding which constraints are necessary is difficult since it
requires knowledge about the unknown optimal LP solution.
We will derive an algorithm which selects constraints in a
smart way, such that some constraints are never used.

Applying a Benders Decomposition
We start with a high-level overview of our algorithm, shown
in Algorithm 3. It initializes a master LP which initially only
imposes constraints on the beliefs bi. Then the algorithm
iteratively selects vectors û and adds the corresponding con-
straints d∗ ≤ (w − û)b to the master LP. In each iteration
the master LP is solved to optimality, and it finds a new con-
straint which reduces the objective value for belief point b the
most. If the belief points found in two successive iterations
are identical, then the objective cannot be further reduced
and the algorithm terminates. The optimization procedure on
lines 4–15 will be referred to as the decomposed LP.

We show that the algorithm can be derived using a Ben-
ders decomposition. We define vector w and the vectors
in U = {u1, . . . , uk} as row vectors and b = [b1, . . . , b|S|]

>

is a column vector. We rewrite the standard LP using matrix
notation as follows:

d∗ = max [1][d] (6)

s.t.

w − u1...
w − uk


 b1...
b|S|

+

−1
...
−1

 [d] ≥

0
...
0


[1 . . . 1]

[
b1 . . . b|S|

]>
= 1, d free,

bi ≥ 0 i = 1, . . . , |S|.



Notice that there is a correspondence with the notation in
Equation 3 (e.g., b corresponds to x and d corresponds to
y). If the vector b is replaced by a fixed belief b̄ for which∑
i=1,...,|S| b̄i = 1 and b̄i ≥ 0 (i = 1, . . . , |S|), then (6)

reduces to the LP below.

d∗(b̄) = max [1][d] (7)

s.t.

1
...
1

 [d] ≤ Cb̄ with C =

w − u1...
w − uk


d free

The dual of (7) can be written as:

min (Cb̄)>z (8)
s.t. [1 . . . 1]z = 1, zj ≥ 0 j = 1, . . . , k,

where z is a column vector representing the dual solution.
After solving (8) for a fixed belief b̄, the dual solution z̄ can
be obtained, which we use to define an upper bound on d∗:

d∗ ≤ (Cb)>z̄ (9)

for any b. A Benders algorithm initializes the following LP:

max d∗ (10)
s.t. [1 . . . 1]b = 1, d∗ free, bi ≥ 0 i = 1, . . . , |S|

and solves this master LP to obtain b̄. Then it solves (8)
using b̄ to obtain z̄, after which constraint d∗ ≤ (Cb)>z̄ is
added to the master LP. This repeats until convergence.

The solution of (8) for a given b̄ can be obtained without
solving an LP. It holds that z̄ = (z̄1, . . . , z̄k)> where z̄j is
equal to 1 if j equals arg minr=1,...,k

{
(w − ur)b̄

}
and 0

otherwise. Since z̄ contains only one entry z̄j that equals 1,
the constraint in (9) can be written as d∗ ≤ (w − uj)b using
row j of matrix C, where j = arg minr=1,...,k

{
(w − ur)b̄

}
.

This constraint is equal to the constraint that is added on
line 10 and 11 of Algorithm 3. The derivation shows that the
decomposed LP (i.e., lines 4–15 of Algorithm 3) corresponds
to the Benders decomposition of the LP in Algorithm 2.

Although we identified only one subproblem, we call this
a decomposition because the full optimization problem has
been decomposed into two smaller problems. The algorithm
can be terminated early if the objective drops below 0, be-
cause it only returns a belief if the objective value is greater
than 0. The supplement contains an example which illustrates
the execution of our algorithm.

Analysis of the Decomposed LP
In this section we present a formal analysis of the charac-
teristics of the decomposed LP, which makes clear why the
algorithm can run faster compared to the standard LP. In our
analysis we use the terms vector and constraint interchange-
ably, since each a vector corresponds to a constraint. The
correctness of Algorithm 3 immediately follows from the fact
that it corresponds to a Benders decomposition.
Theorem 2. The decomposed LP in Algorithm 3 computes
the same optimal objective value d as the standard LP in
Algorithm 2 and terminates after a finite number of iterations.

input :vector set U , vector w
output :belief state b or symbol φ

1 if |U | = 0 then
2 return arbitrary belief b
3 end
4 define the following master LP:
5 max d∗

6 s.t.
∑|S|
i=1 bi = 1, bi ≥ 0 i = 1, . . . , |S|, d∗ free

7 choose an arbitrary belief b′
8 U ′ ← ∅
9 do

10 b̄← b′, û← arg minu∈U
{

(w − u) · b̄
}

11 add d∗ ≤ (w − û) · b to master LP
12 U ′ ← U ′ ∪ {û}
13 solve master LP to obtain belief b′

14 while b′ 6= b̄;
15 d̄← last objective d∗ found
16 return b̄ if d̄ > 0 and φ otherwise

Algorithm 3: FindBeliefDec – computes the belief
in which w improves U the most

Before we proceed we introduce the notation correspond-
ing to important concepts. The decomposed LP incrementally
adds constraints, and each constraint corresponds to a vec-
tor u ∈ U . At any point in time during the execution of
the decomposed LP, the constraints added to the master LP
are defined using a set U ′ ⊆ U . This set is also defined
on line 8 of Algorithm 3. For each u ∈ U ′ there is a con-
straint (w − u) · b ≥ d. The constraints in U ′ ⊆ U define an
optimal solution b′ and the corresponding objective value d′.
If the algorithm selects a constraint u on lines 10–11 for a
given b̄, then we say that the algorithm uses belief b̄ to add u.
The region Zu in which u restricts the LP solution space is:

Zu = {b | (w − u) · b ≤ (w − u′) · b ∀u′ ∈ U ′} . (11)

The belief b′ has neighbors b1, . . . , bl which are also cor-
ners of the feasible region, with corresponding objective val-
ues d(b1), . . . , d(bl). In Figure 1b each corner of the feasible
region has two neighbors, except the corners at the extrema
of belief space. For state spaces with more than two states
corner beliefs may have more than two neighbors. We define
the neighbors of b′ using a set NB(b′):

NB(b′) = {b | b is corner belief and ∃c ∈ U ′ (12)

such that b′ ∈ Zc and b ∈ Zc, b 6= b′}.
This set contains the corners b of the feasible region that can
be reached from b′ in one step, because there is at least
one constraint c ∈ U ′ such that b′ ∈ Zc and b ∈ Zc.
The lowest objective value of the neighbors is dmin(b′) =
minb∈NB(b′) d(b). Since the feasible region of an LP is con-
vex, it holds that dmin(b′) ≤ d′. The region Z(b′) in which
the objective value is at least dmin(b′) is defined as:

Z(b′) = {b |minu∈U ′{(w − u) · b} ≥ dmin(b′)}. (13)

In the example in Figure 1c the lines (except the bold vertical
line) correspond to constraints in U . The black constraints



have been added so far and belong to the set U ′ ⊆ U . The
belief b′ is the current optimal solution of the master LP, and
its two neighbors are represented by dots. In the example it
holds that dmin(b′) equals 0.05, and therefore the regionZ(b′)
contains the beliefs in which the objective is at least 0.05.

Now we will show that the optimal objective value of the
standard LP, which corresponds to the objective value d̄ on
line 15 of Algorithm 3, is at least dmin(b′). Since the feasible
region of an LP is convex, this implies that the solution b̄
returned by the decomposed LP is a belief point in Z(b′).
Theorem 3. Given the current optimal solution b′ and the
corresponding objective value d′ of the master LP, it holds
that d∗ ≥ dmin(b′), where d∗ is the optimal objective value
of the standard LP.

Proof. By contradiction. We assume that d∗ < dmin(b′). For
each b ∈ Z(b′) there must be a constraint u /∈ U ′ such
that (w − u) · b ≤ d∗ < dmin(b′). We consider an arbitrary
neighbor bl ∈ NB(b′) of b′ and a constraint c ∈ U ′ such
that b′ ∈ Zc and bl ∈ Zc. All corner beliefs b ∈ Zc except b′
are also neighbor of b′ according to definition of NB , which
implies that d(b) ≥ dmin(b′) for each b ∈ Zc. Now we
can conclude that Zc ⊆ Z(b′). Consider the belief bc that
was used to add c. We know that bc ∈ Zc because bc is a
belief in which c restricts the current LP solution space. It is
impossible that bc /∈ Zc because outside the regionZc there is
already another constraint which is more restrictive than c in
point bc, which would have been selected in point bc instead
of c. It holds that d(bc) ≥ dmin(b′) because bc ∈ Zc ⊆
Z(b′). For bc there must be a constraint u /∈ U ′ for which
(w − u) · b ≤ d∗ < dmin(b′). Constraint u must have been
added before c on line 11, which leads to a contradiction.

In the following theorem we define when a constraint u /∈
U ′ is never added during subsequent iterations, which shows
why Algorithm 3 does not always use a constraint for
each u ∈ U .
Theorem 4. Consider the current optimal solution b′ and a
constraint c /∈ U ′. If Zc ∩ Z(b′) = ∅, then constraint c will
never be added to the master LP in subsequent iterations.

Proof. For each b ∈ Zc it holds that (w − c) · b < dmin(b′)
because Zc ∩ Z(b′) = ∅. During subsequent iterations Algo-
rithm 3 will never find a belief b in which d(b) < dmin(b′),
because it terminates after finding the optimal solution, which
is at least dmin(b′) according to Theorem 3. This implies that
Algorithm 3 never finds a belief b ∈ Zc during subsequent
iterations. Hence, constraint c is never added to the master
LP during subsequent iterations.

Figure 1c visualizes the ideas behind Theorems 3 and 4.
The optimal solution of the standard LP belongs to the re-
gion Z(b′) and is at least dmin(b′). The dashed constraint
restricts the solution space in a region that is not part of Z(b),
and therefore it is never added in remaining iterations. Below
we show that the decomposed LP only finds beliefs b ∈ Z(b′)
during subsequent iterations.
Theorem 5. Consider the current optimal solution b′. The
decomposed LP only finds belief points b ∈ Z(b′) during
subsequent iterations.

Domain Std (s) Dec (s) Speedup Constr. (%)

Hallway2 88.75 13.35 6.65 18.4± 27.6
4x5x2 70.55 12.49 5.65 12.5± 17.1
AircraftID 36.66 7.39 4.96 8.8± 14.6
4x3 34.38 8.69 3.96 17.8± 19.4
Shuttle 28.13 8.04 3.50 18.5± 20.3
Tiger-grid 43.86 12.86 3.41 12.9± 18.7
Hallway 20.83 7.97 2.61 26.9± 28.1
RockS4x4 0.54 0.25 2.16 36.8± 22.9
Cheese 0.08 0.04 2.00 87.7± 22.2
Network 5.77 4.65 1.24 26.7± 19.8
4x4 0.16 0.15 1.07 74.9± 22.9
1D 0.003 0.003 1.00 84.0± 21.8
Partpaint 0.62 0.62 1.00 39.0± 31.9

Table 1: Performance of the standard and decomposed LP

Proof. By contradiction. Suppose that a belief b /∈ Z(b′) is
found during a subsequent iteration, then it holds that d(b) <
dmin(b′). For each b ∈ Z(b′) there must be a constraint u /∈
U ′ such that (w − u) · b < dmin(b′). There exists a con-
straint c ∈ U ′ for which Zc ⊆ Z(b′), and we consider the
belief bc that was used to add c. It holds that bc ∈ Zc be-
cause bc is a belief point in which c restricts the current
LP solution space. Moreover, it holds that d(bc) ≥ dmin(b′)
because bc ∈ Zc ⊆ Z(b′). In belief bc there must be a con-
straint u /∈ U ′ for which (w − u) · b < dmin(b′). Hence,
constraint u must have been added before c, which leads to a
contradiction.

Experiments
In this section we evaluate our algorithm at the level of indi-
vidual LPs, vector pruning and POMDP solving.

Performance of the Decomposed LP
First we compare the performance of the decomposed LP
and the standard LP. We selected all POMDP domains used
by Cassandra, Littman, and Zhang (1997), Feng and Zilber-
stein (2004) and Raphael and Shani (2012). For each domain
we consider the first 30000 LPs that are solved during the
execution of incremental pruning (or until the problem is
solved or memory limits are exceeded, details in the sup-
plement). For each LP we execute the standard LP and the
decomposed LP, during which we measure the running times
and the number of constraints added by the decomposed LP.
In the paper we use the LP solver GLPK. Results for Gurobi
and lpsolve can be found in the supplement.

The results are shown in Table 1. The columns Std (Stan-
dard, Algorithm 2) and Dec (Decomposed, Algorithm 3)
represent the total running time of solving 30000 LPs, and
the column Speedup shows the corresponding speedup. From
the results we conclude that our algorithm improves the per-
formance in each POMDP domain. The column Constr shows
the average fraction of the constraints that is used by the de-
composed LP. In many cases the decomposed LP uses only a
small fraction of the constraints. The relatively large standard
deviation can be explained by observing that in small LPs a
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Figure 2: Vector pruning speedup

relatively large fraction of the constraints is needed, which af-
fects the standard deviation. The supplement contains graphs
confirming this explanation.

Performance of Pruning Algorithms
Now we will show that Algorithm 3 improves the perfor-
mance of Algorithm 1. We use a value function of 4x5x2
to create value functions V1, . . . , V1000 for which |Vq| = q
and prune(Vq) = Vq. The pruning algorithm solves q LPs
to prune Vq. More details about the value functions Vq can
be found in the supplement. For each Vq we measure the
speedup that is obtained when using Algorithm 3. Figure 2
shows the speedup for value functions of increasing size.
On small value functions our algorithm runs slightly slower
because then the gain is small compared to the overhead in-
troduced by solving multiple LPs. On larger instances our
algorithm performs consistently better, which confirms that
Algorithm 3 improves the performance of Algorithm 1.

Figure 3 shows the pruning time of three methods: the
standard variant of White & Lark’s method (Algorithm 1+2,
W&L std), the decomposed variant of White & Lark’s method
(Algorithm 1+3, W&L dec) and Skyline (Raphael and Shani
2012). We do not consider Cheng’s pruning algorithm (Cheng
1988) because it enumerates corners of the belief space,
which scales exponentially in the number of states. In the
figure each dot represents an instance. For Skyline we use
the iterative variant, which is the fastest variant available. It
makes transitions in the so-called Skyline graph using an
algorithm inspired by simplex for LPs, and in our tests it runs
slower than White & Lark’s algorithm. Our algorithm im-
proves the performance of White & Lark’s pruning algorithm,
and it outperforms all other pruning algorithms.

Performance of Incremental Pruning
Now we show that integrating our algorithm in incremental
pruning creates the fastest incremental pruning algorithm.
We do not consider other value iteration algorithms, because
incremental pruning delivers superior performance compared
to other exact POMDP algorithms (Cassandra, Littman, and
Zhang 1997). We implemented generalized incremental prun-
ing (Cassandra, Littman, and Zhang 1997), abbreviated GIP,
which is the fastest variant available, and we enhanced it
with our decomposition method (GIP-D). We also compare
with region-based incremental pruning algorithms (Feng and
Zilberstein 2004), abbreviated IBIP and RBIP, which exploit
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Figure 4: Incremental pruning performance in seconds

information about regions of the belief space when pruning
vectors after computing the cross sum.

We provide the results for 4x3, 4x5x2, Network and Shut-
tle, which we solved to optimality in 10, 18, 98 and 59 itera-
tions, respectively. Figure 4 shows the total running time of
the dynamic programming stages in seconds. We conclude
that Algorithm 3 improves the performance of generalized
incremental pruning, and the resulting algorithm outperforms
IBIP and RBIP. Other large domains from Table 1 could not
be solved to optimality due to the large number of vectors
remaining after pruning. However, GIP-D only replaces the
LP in GIP by a faster alternative, as shown in the first ex-
periment, and therefore it can be expected that GIP-D also
provides improved performance in these larger domains.

Related Work
Region-based pruning (Feng and Zilberstein 2004) and Sky-
line (Raphael and Shani 2012) are recent pruning methods,
and we have shown that our algorithm outperforms both meth-
ods. Among the exact value iteration methods which seek
the minimum number of beliefs to construct the next value
function (Sondik 1971; Cheng 1988; Kaelbling, Littman, and
Cassandra 1998), the witness algorithm is the fastest (Littman,
Cassandra, and Kaelbling 1996). However, incremental prun-
ing delivers superior performance compared to the witness
algorithm (Cassandra, Littman, and Zhang 1997).

Benders decompositions have been used to create a dis-
tributed algorithm for factored MDPs (Guestrin and Gordon
2002). Our subproblems cannot be distributed since there
is only one subproblem. Methods have been developed to
identify LP constraints that do not constrain the feasible re-
gion (Mattheiss 1973). Such constraints never occur in our
LPs, because they only contain constraints corresponding to



dominating vectors. The approximate POMDP algorithm α-
min adds constraints to a MILP when expanding the set of
belief points (Dujardin, Dietterich, and Chadès 2015). Since
we consider given and finite sets of constraints, we can rely
on a constraint selection rule that is conceptually simpler.

Vector pruning is also used in multi-objective decision
making (Roijers, Whiteson, and Oliehoek 2013), finite state
controllers for POMDPs (Poupart and Boutilier 2003), ap-
proximate point-based POMDP algorithms (Smith and Sim-
mons 2005) and Decentralized POMDP algorithms (Spaan,
Oliehoek, and Amato 2011). We expect that our work has the
potential to improve algorithms in these areas.

Conclusions
We presented a new algorithm to replace the LP that is used
in several exact POMDP solution methods to check for domi-
nating vectors. Our algorithm is based on a Benders decom-
position and uses only a small fraction of the constraints in
the original LP. We proved the correctness of our algorithm
and we analyzed its characteristics. Experiments have shown
that our method outperforms commonly used vector pruning
algorithms for POMDPs and it reduces the running time of
the generalized incremental pruning algorithm. The resulting
variant of incremental pruning runs faster than any existing
pruning-based algorithm to solve POMDPs optimally.

In future work we will study whether other decomposition
methods for LPs can be applied in this domain. For instance,
the Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960)
generates columns rather than rows and may enable the con-
struction of pruning algorithms with different characteristics.
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