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Abstract

In various propulsion and power systems, modeling of non-ideal fluid flows (fluids that depart from ideal
gas behaviour), presents a great challenge. For example, in organic rankine cycle (ORC) turbines, where a
part of the expansion process occurs close to the vapour saturation curve, the flow devietes highly from ideal
behavior. A branch of fluid dynamics called the Non-ideal compressible fluid dynamics (NICFD) deals with
the modeling and analysis of such non ideal fluid flows.

As a consequence of the need for accurate thermo-physical property computation, various models have
recently been developed for non ideal flows and a number of libraries are available to accurately predict
the thermo-physical properties. However, the available thermodynamic libraries are often computation-
ally costly since they require solving of complex equations of state (EoS) to obtain thermo-physical prop-
erties. When these libraries are coupled with existing simulation codes, (for example in computational fluid-
dynamics), the simulation process is computationally inefficient. This thesis is an endeavor towards enhanc-
ing the computational efficiency of the process of thermodynamic property calculation with the use of the
Look up table (LUT) approach.

The LUT method aims at computing thermodynamic properties of a fluid with the help of array indexing
operations applied on pre calculated or existing thermodynamic tables. These tables are initially obtained
from a thermodynamic library (FluidProp). A binary search algoriths helps in accurately locating the query
point(s) on the thermodynamic domain. A data interpolation algorithm is then used to predict the thermody-
namic properties of interest. The presented LUT method ensures inherently high accuracy with a very small
computational cost, as demonstrated later in the thesis.

To check the applicability of the LUT method, it is used to obtain the pressure variation across a control
volume with subsonic flow conditions. As a second and a much larger application, the LUT tool is coupled
with an in house MOC (Method of Characteristics) tool to desin the geometry of a supersonic nozzle.

A comprehensive analysis of this method is presented by comparing the accuracies and computational
cost with the results from FluidProp. Both interpolation methods implemented in the proposed LUT method
prove to be computationally efficient and accurate. The method is successfully applied to the MOC tool to
design the geometry of the diverging section of a supersonic nozzle.
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1
Introduction

1.1. Background
Non-ideal compressible fluid dynamics (NICFD) is the branch of fluid dynamics that deals with the flow char-
acteristics of fluid flows that deviate from the ideal fluid conditions in the compressible flow regime. NICFD
is particularly important for the study of the actual characteristics of dense vapours, supercritical flows and
compressible two-phase flows, whereby the thermodynamic behaviour of the fluid differs considerably from
that of a perfect gas [8] . To correctly predict the thermodynamic behaviour of the fluids deviating from flow
ideality, a substantial understanding of non ideal fluid thermodynamics is necessary [16] [15] .

At low pressures and high temperatures, fluids exhibit ideal gas behavior as the compressibility factor z =
1. Under such thermodynamic conditions, the fluid follows the ideal gas law and the flow can be predicted
by the ideal gas equation of state (EoS). However, under the thermodynamic state where, where z 6= 1, the
flow departs from the ideal gas law. For example, in Organic Rankine Cycle turbines (ORC), a part of the ex-
pansion process occurs typically in the proximity of the vapour saturation curve or the critical point. In these
thermodynamic conditions, the fluid behavior is known to significantly depart from the ideal gas model. The
Equations of State (EoS) and their derivatives are most commonly used to accurately predict the thermody-
namic properties for non-ideal fluid flows. However, the use of these EoS through thermodynamic libraries
like FluidProp [5] is computationally costly for detailed numerical studies, for instance in Computational
Fluid Dynamics(CFD) analysis.

To reduce the computational cost, the Look Up Tables(LUT) can be used as an alternate approach to
determine the thermodynamic properties. The LUT method has a simple application and it is capable of
calculating the thermo-physical properties accurately.

1.2. Look Up Tables Overview
For applications involving complex thermodynamics, the computational cost for the calculation of thermo-
physical properties is often high. The thermo-physical properties for real gases can be calculated by with the
help of EoS and as their respective derivative forms. However the direct solution through EoS is often com-
plex and computationally costly [15]. To increase the computational efficiency of thermo-physical property
calculation, an alternative approach in the form of Look-up Tables (LUT) can be used to predict the fluid
behaviour [15] [7].

A thermodynamically consistent LUT method to compute thermo-physical properties is proposed by Pini
et. al. [15]. For this method, a thermodynamic mesh is generated on the log (v)−s domain. The values of spe-
cific internal energy e, which is expressed in the form of specific entropy s and specific volume v is obtained
for each node with the help of the EoS implemented in the thermodynamic library FluidProp [5]. Following
this, the values at the nodes are used to formulate a fundamental relation for e = e(v, s). This fundamental
relation is obtained for each cell of the grid. The bi-cubic bivariate interpolation form for the fundamental
relation is used to obtain first derivatives, which are then used to compute the rest of the thermodynamic
properties. Similarly, to obtain the transport properties, pini et. al. propose the formulation of a bilinear
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2 1. Introduction

functional forms of dynamic viscosity µ and the thermal conductivity k. The reader is referred to [15] for
more information on these formulations.

This LUT method uses the k-d tree algorithm [3] [13] for locating the query vector on the thermodynamic
grid. As explained by the author, the thermodynamic pair (v, s) is necessary for the formulation of the funda-
mental relation e(v, s). If the input pair is not of the form (v, s), the input pair is converted to the form (v, s)
through iterative solving of a non-linear system of equations.

The major advantages with the implementation of the LUT approach proposed by Pini et. al. [15] is
that the method is able to maintain thermodynamic consistency and stability. The author demonstrates the
model’s applicability through its use in blade to blade calculations and through flow calculations in multi
stage machines. Since (log (v), s) is selected as the domain on which the thermodynamic mesh is generated
and the fundamental relation e(v, s) is built using v, s as independent variables, this method requires the in-
put pair to be in the form of (v, s). An input pair of any other couple needs to be converted to the form (v, s)
by solving a system of non-linear equations, which can add to the computational time by a small margin.
However, overall this LUT approach is computationally efficient and maintains a good accuracy in thermo-
physical property calculations.

Miyagawa and Hill [12] present an LUT method to compute the thermodynamic properties of steam with
with the help of the Taylor’s series expansion. On a structured grid, for a given interval of temperature and
pressure in the superheated region, this method helps in calculating the steam properties accurately with
a small computational cost. The initial values of the properties (and derivatives) to generate thermody-
namic tables are obtained using the Helmholtz energy formulations. A structured grid is built on the p,T
domain with pressure and temperature as independent variables. The centre of each cell contains the nodal
point which stores the thermodynamic properties and their derivatives for each cell. A truncated expansion
method for Taylor series is then used to compute the thermodynamic properties. The method works suffi-
ciently well in superheated regions, however according to Miyagawa and Hill [12], the method with pressure
as the independent variable is not well suited for computation of properties in the critical regions.

Miyagawa and Hill [20] presented another Look Up table method that makes use of the Taylor series ex-
pansion to compute the temperature, specific volume and entropy. For this method, pressure and enthalpy
are used as the independent variables. Similar to the previous LUT method proposed by the author, a struc-
tured grid on (p,h) domain is built for this method. The nodal point is considered to be in the middle of each
cell where the initial thermodynamic properties are stored. A truncated Taylor series (upto 2 orders) is then
used to evaluate the temperature, specific volume and the entropy for the region of interest [20]. The major
drawback of the method is that for the calculation of the desired properties, it is also required to store the first
and second derivative values initially on the nodes.

1.3. Motivation
As mentioned in section 1.1, the use of EoS through thermodynamic libraries renders the process of prop-
erty calculation computationally costly. Processes such as CFD analysis, which require iterative solving of
governing equations are often computationally expensive [15]. Therefore, it becomes important to use a dif-
ferent approach to predict thermodynamic properties in order to reduce computational time, while aiming
to maintain an optimum accuracy with respect to the EoS solutions.

A common feature for the LUT methods mentioned in section 1.1 is the use of first and second order
derivatives of the properties for obtaining the thermodynamic properties. Another highlight is the use of
structured grids to mesh the domain and generate thermodynamic tables.

Proposed as an original part of this project is the application of the LUT method on an unstructured grid
for thermo-physical property calculation. Secondly, one of the two interpolation schemes used in the pro-
posed LUT method is a simple inverse data weighing interpolation scheme called Shephard’s interpolation
[17] . This method is fairly simple in its application and does not require any functional formulation or pre-
stored derivative values for interpolation. As opposed to the complex process of solving the EoS to predict
thermodynamic properties, the LUT method uses simple array indexing operations on the thermodynamic
tables. This approach is fast as it uses a binary search algorithm (for example, k-d tree) and an interpolation
scheme (like Shephard’s Interpolation) on the data obtained from the thermodynamic tables. Upon success-
ful implementation, the LUT method for thermo-physical property calculation can have many applications.
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1.4. Scope and Objectives
The application of any LUT approach can be broken down into a series of steps listed in table 1.1:

Step Task

1 Mesh generation

2 Table generation or loading

3 Search algorithm application for nearest-neighbour search

4
Looking up data or using an interpolation method to calculate the
required data

Table 1.1: Steps involved in a Look Up Table approach for obtaining the required data of interest

To compute thermodynamic properties using the LUT method, a mesh is built on the thermodynamic
domain of interest. Each node of the thermodynamic mesh stores the thermodynamic properties which are
obtained from FluidProp as a part of pre-processing. Next, a suitable search algorithm is used to search for
the point of interest (or the query point) on the thermodynamic domain and find its nearest neighbours.
Finally, an interpolation method such as the Shephard’s interpolation [17] [10] is applied to compute the set
of thermodynamic properties of interest [11].

The overall LUT algorithm aims to predict the thermodynamic properties with low computational cost
and an optimum accuracy with respect to FluidProp. For testing the applicability of the LUT method, this
work also aims at integrating the LUT approach with an in house tool known as the MOC(Method of Charac-
teristics) tool for designing supersonic nozzle geometries [1].

This thesis work is aimed at answering the following research questions:

1. How does the application of an unstructured tabulation method affect the computational cost for the
thermo-physical property calculation?

2. How does the change in mesh density affect the accuracy of the LUT algorithm?

3. What is the applicability of the LUT approach for design problems? For example, can it be applied to a
supersonic nozzle design tool like MOC to reduce the computational cost of the overall design?

1.5. Outline
Chapter 2 of the thesis outlines the theoretical background on topics of flow ideality, interpolation methods
and the binary search algorithm. Chapter 3 describes the overall methodology of LUT algorithm. The chapter
is divided into sub parts which describe the unstructured mesh generation, application of a search algorithm
and interpolation methods on the LUT for thermodynamic property calculation. Chapter 4 contains the
analysis of the LUT method. Here, the accuracy of thermodynamic properties and the computational time
of the LUT method are evaluated. Chapter 5 presents two applications of the LUT tool and the associated
results. First is an expansion problem which is self contained within the LUT tool. Second is the integration
of LUT tool with MOC tool [1] to design the diverging section of a supersonic nozzle using Toluene as the
working fluid under the given thermodynamic conditions. Chapter 6 presents all the conclusions of the work
done in the thesis. It also highlights the shortcomings or limitations of the work and then points out some
recommendations for future work.





2
Theoretical Background

This chapter discusses the theory of to non-ideal fluids and the description of tools (search algorithm and inter-
polation methods) using which the LUT method is implemented in chapter 3.

2.1. Ideal and Non-ideal fluids
2.1.1. Flow Ideality
It is observed from experimental observations that p−v−T behaviour of gases at low pressures, closely follows
the relation given by equation 2.1. A fluid which follows the equation 2.1 at all pressures and temperatures is
called an ideal fluid.

P v = RT (2.1)

where R is the gas constant and is different for each gas. It is given by equation 2.2 as follows:

R = R0

M
(2.2)

Equation 2.1 is called the ideal gas equation of state and can be established using the postulates of the kinetic
theory of matter, with two important assumptions that there are no intra-molecular cohesive forces and that
the molecules have a negligible volume as compared to that of the gas. At very small pressure or very large
temperature, the intermolecular forces of attraction and the molecular volumes are not of great significance
and the gas closely obeys the ideal gas equation. However, when the pressure increases, the intermolecu-
lar forces of attraction and repulsion increase and the volume of the molecules becomes non negligible as
compared to the volume of the gas. This leads to a considerable deviation from the real gas behaviour [4].

2.1.2. Non-ideal Flow
The amount of deviation of a real gas from the ideal gas is expressed in terms of the compressibility factor z.
z is given by equation [4][14]:

P v = zRT (2.3)

The compressibility factor can also be defined by equation 2.4.

z = v

vi deal
(2.4)

where vi deal =
RT

p
(2.5)

For an ideal gas, the value of z = 1. The value of z can be can be above or below 1 for a non ideal gas, depending
upon the deviation from ideal behaviour. The variation of z with pressure, for a given temperature is given by
the compressibility charts. Since different gases behave differently at different temperatures and pressures,
the compressibility charts are different for different gases. But, if the pressure and temperature of the gases is
normalized with respect to their critical pressure and temperature, z is approximately the same.This is known

5



6 2. Theoretical Background

as the Principle of Corresponding States. These normalized pressure and temperature are given by equations
2.6 and 2.7, respectively [4][14].

Pr = P

Pc
(2.6)

Tr = T

Tc
(2.7)

Pc and Tc are the critical pressure and the critical temperature of the gas respectively.
It is noted from the compressibility charts that fluids have maximum deviation from ideal behaviour in the
vicinity of the critical point and the saturation curves.

Figure 2.1: Compressibility factor for Carbon Dioxide

Figure 2.1 shows the compressibility factor for carbon dioxide on the T − s thermodynamic domain. It
is seen that in the region far from critical point, z = 1 and hence the fluid can be modelled in this region
using the Ideal gas EoS. However, close to the critical point, z shows maximum deviation from unity and
therefore departs from the ideal gas behaviour. It is essential to use appropriate EoS for accurately predicting
thermodynamic properties for such regions where the fluid departs significantly from ideal gas law.

van derWalls EoS
The van der Walls equation is one of the most common EoS which are applicable to real gases. It is basically
an improved version of equation 2.1 [14]. By taking into account the intermolecular forces of attraction and
the volume occupied by the molecules, the van der Walls equation [14] [4] is given as follows:

(P + a

v2 )(v −b) = RT (2.8)

The term a
v2 accounts for the inter-molecular forces and the term b accounts for the volume occupied by

the molecules. The values of these parameters can be empirically obtained for different gases. At the critical
point however, the values are determined by eliminating the volume term by calculating the first and the
second derivatives of the pressure with respect to the volume. This yields the following values of a and b as
represented by equation 2.9 .

a = 27R2T 2
cr

64P 2
cr

b = RTcr

8Pcr

(2.9)
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SpanWagner Equation of State (SW)
Span-Wagner EoS is described as a fundamental equation in the form of Helmholtz energy, α, in non dimen-
sional form [18] . The reduced Helmholtz energy is split into two parts. The first part predicts the behaviour
of a hypothetical ideal gas (superscript o) for a given temperature and density and the second part predicts
the residual behaviour (superscript r) of the non-ideal fluid [18]. Therefore, the EoS is written in the form:

a(T,ρ)

RT
= α0(T,ρ)+αr (T,ρ)

RT
= a0(τ,δ)+ar (τ,δ) (2.10)

where a is the specific or molar Helmholtz energy, R is the corresponding gas constant, T is the temperature, ρ
is the density, τ is the inverse reduced temperature, and δ the reduced density. Equations 2.11 -2.12 represent
the inverse reduced temperature and reduced density respectively.

τ= Tr

T
(2.11)

δ= ρ

ρr
(2.12)

Using Helmholtz energy as a function of temperature and density is suitable for the formulation of the
fundamental equations [6]. With this, all thermodynamic properties can be calculated by combinations of
derivatives of a0 and ar with respect to τ and δ. For example, the pressure can be determined by equation
2.13. Similarly other thermodynamic properties of interest can be computed using the fundamental equa-
tions and their derivates. For details regarding the solution of α0(τ,δ) and αr (τ,δ), the reader is directed to
[18] .

p(T,ρ) =−
(
δa

δv

)
T

(2.13)

2.1.3. Thermo-physical Libraries
As discussed in section 2.1.1 and 2.1.2, the ideal gas EOS has a limited applicability. For non-ideal fluid flow
conditions dominated by z 6=1, the ideal gas EoS gives inaccurate results for thermo-physical properties. To
correctly compute the theromo-physical properties in such regions, it is required to use EoS to correctly pre-
dict the fluid behaviour. Different EoS are used through different thermo-physical libraries such as CoolProp
and FluidProp, which have a wide application and usage.

FluidProp
FluidProp is a thermo-physical package which is developed by a group of researchers from the Propulsion
and Power Group at the Delft University of Technology [5]. It is vastly used to model a wide variety of flu-
ids and mixtures using different thermodynamic libraries enlisted in table 2.1. In applications such as CFD
simulations and dynamic energy system modelling, the derivatives of thermodynamic properties are used. A
large set of these derivatives can also be obtained using FluidProp 1.

FluidProp can be used for the following calculations:

• Accurate calculation of fluid properties in the vicinity of the critical point

• Computation of the critical point for mixtures of fluids

• Obtaining efficient algorithms for phase equilibria.

A native model for the SW-EoS is implemented in the FluidProp database. The SW-EoS forms the basis for
the generation of the thermodynamic tables which are used in the LUT method for thermodynamic property
computation.

1http://www.asimptote.nl/software/fluidprop
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Library Model/Institute

GasMix Ideal Gas Equation

RefProp National Institute of Standards and Technologies

StanMix
improved Peng Robinson cubic equation of state Stryjek Vera modifi-
cation

PCP-SAFT Perturbed Chain Polar SAFT equation of state

IF97 International Association for the Properties of Water and Steam

TPSI Department of Mechanical Engineering, Stanford University

Table 2.1: Thermodynamic libraries in FluidProp

CoolProp
CoolProp[2] is an open source thermo-physical fluid properties database that contains pure fluids, pseudo-
pure fluids, and properties for humid air. The thermodynamic properties in CoolProp are calculated using
the Helmholtz energy EoS, also known as the multi-parameter equations of state (MEOS) [19]. Almost all the
fluid models in CoolProp are based on Helmholtz energy formulations, and therefore the thermodynamic
properties of interest can be obtained directly from partial derivatives of the Helmholtz energy. It can pro-
vide an accurate calculation of thermodynamic properties such as enthalpy and entropy for over 100 fluids.
However, a major limitation of CoolProp is its inability to compute thermo-physical properties for mixture
of fluids [2]. Coolprop can be used across various platforms and has wrappers for the commonly used pro-
gramming languages and technical software such as Javascript, Microsoft Excel, Python, Fortran, MATLAB
etc 2.

2.2. Tools required for LUT implementation
2.2.1. Nearest neighbour search: k-d tree algorithm
The Nearest Neighbour (NN) search involves finding one or more data points which are closest to a given
query point. The NN search is of practical importance in a number of fields, the most common of which
involve data compression, image pixel analysis and data retrieval. In any LUT method, NN search is essential
in identifying the correct index of the query vector or the grid element where it lies. The corresponding time
associated with any search algorithm increases proportionally with the increase in number of mesh nodes or
the size of the stored data tables. Using a fast binary search algorithm for grid location and nearest-neighbour
search, a considerable reduction in search time and thereby, reduction in overall computational time can be
achieved.

The k-d tree is a data structure for organizing points in a k-dimensional space. They are defined as a binary
trees in which every node is a k-dimensional point [13] [3]. At every non-terminal node, the space is split into
two halves by a splitting hyperplane. The left subtree consists of the points to the left of this hyperplane plane
and the right subtree contains the points to the right of the hyperplane.The initial direction of split can be
chosen at random. For example, if x is chosen as the initial dimension, then the initial splitting hyperplane
will be along the y axis, in case of a 2-d tree [13] [3]. This hyperplane will pass through the median x value
of the initial data set. All x values smaller than the x value on the splitting plane will be in the left sub-tree
and all x values larger than the x value on the splitting plane will be in the right sub-tree. This procedure is
recursively followed till every sub space contains only one data point [13] [3].

For the LUT method discussed in chapter 3, k-d tree algorithm is used to find the location of the given
thermodynamic pair (query vector) on the thermodynamic domain (grid) and the nearest neighbours.

2www.coolprop.org
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2.2.2. Data Interpolation
The set of thermodynamic quantities normally involved in the process or fluid-dynamic calculations, e.g.,
P,T,h,c,cv ,cP , can be calculated using an interpolation method applied to thermodynamic tables [15] [7] [12]
[20]. Interpolation methods like polynomial interpolation (linear, cubic, etc.) or Inverse data interpolation
can be easily employed on the LUTs to obtain the desired thermodynamic quantities.

2.2.3. Shephard’s Interpolation
Shephard’s method is a type of Inverse Distance Weighting (IDW) method. It is a deterministic method for
multivariate interpolation with a set of known scattered data points. With the help of the weighted average
of the values at known data points, the values at the unknown points are calculated [10] . It is a type of IDW
since it makes use of the inverse of the distance of the query point to each known data point (proximity) while
assigning weights. The interpolated function is given as:

f̃ (x) =
N∑
k

wk (x)∑
n=1 wi (x)

f (xk ) (2.14)

In equation 2.14, wi is the weight function at a point i and is given by:

wi (x) = ||x −xi ||−p (2.15)

In equation 2.14 and 2.15 , ||x −xi || denotes the distance between the query point and the data point and
p is a positive real number. As mentioned by Ken Anjo et. al., it can be seen that as weight function will
decrease as the distance between query point and data point increases (since p is positive). Therefore, higher
the value of p, more is the influence of the data points closer to the query point [10].

(a) p = 1 (b) p = 2

Figure 2.2: Shephard’s interpolation for different values of p

For varying values of p, it can be noted that:

1. For 0 < p ≤ 1, f̃ has sharp peaks. This can be seen in figure 2.2a where the curve shows sharp peaks at
the data points [10] .

2. For p > 1, the interpolated curve is smooth at the data points [10] . However, it must be noted that the
derivate values at these points will be 0. This is evident from figure 2.2b .



10 2. Theoretical Background

Figure 2.3: Exampale of Shephard’s interpolation for randomized Temperature data

Although the weight functions can be controlled by the user using the parameter p, it can be seen from
figure 2.2 that Shephard’s interpolation might not be the best interpolation method if p is not chosen care-
fully, keeping in mind the data points. An example of shephard’s interpolation on randomized values in a
temperature interval is shown in figure 2.3.

2.2.4. Polynomial Interpolation
Polynomial interpolation is the type of interpolation in which the aim is to construct a polynomial p(x) using
the values f (x0), f (x1),(x2).... f (xn) of the function f (x) at the known points x0,x1,x2,...,xn .If the interpolating
polynomial is in the form of equation 2.16, then equation 2.17 means that p interpolated the given data
points.

p(x) = an xn , an−1xn−1, .., a0 with n = [0,1,2...n] (2.16)

p(xi ) = fi , i = 0,1,2, ...,n (2.17)

Since there are n + 1 conditions, we can have n + 1 coefficients of p which can be used to generate the
required polynomial.
The simplest case of polynomial interpolation is when n = 1. This is the case of linear interpolation. The
linear interpolant p is expressed in the following ways:

p(x) = x −x1

x0 −x1
. f0 + x −x0

x1 −x0
. f1 (2.18)

p(x) = f0 + f1 − f0

x1 −x0
.(x −x0) (2.19)

Equation 2.18 is the lagrange’s form of linear interpolation whereas equation 2.19 is of the Taylor’s form.
Interpolating to just the function values is termed as Lagrange interpolation. Interpolating to function and
consecutive derivative values of some function is termed as Hermite interpolation.
Figure 2.4 shows the interpolated function p between points x0 and x1 of the function f (x). The function
values at x0 and x1 are f0 and f1 respectively. It can be noted here that at any given point xi it is possible that
p(xi ) 6= fi . This leads to a interpolation error. The interpolation error often depends upon the the type of data
being interpolated and the interpolating function.
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Figure 2.4: Exampale of linear interpolation and cubic interpolation for Temperature data points in 1 dimension

Equations 2.16 through 2.19 can be written for any polynomial of degree n and can be modified to write
in two or more variables. For instance for a cubic polynomial in two variables, equation 2.21 is used to inter-
polate the polynomial p(x, y).

p(x, y) =
n∑

j=0

m∑
i=0

ai j xi y j (2.20)

In a similar way polynomials of different degrees or number of variables can be generated.

Bicubic Interpolation
Bi-cubic interpolation is a form of polynomial interpolation for interpolating data points on a two-dimensional
grid. The interpolated values are more accurate than those obtained by bilinear interpolation or nearest-
neighbour interpolation on the same grid. For bi-cubic bivariate interpolation, the equation 2.20 can be
written as follows:

p(x, y) =
3∑

j=0

3∑
i=0

ai j xi y j (2.21)

For For bi-cubic, bi-variate polynomial interpolation, sixteen coefficients (ai , j ), are obtained using the func-
tion values p(x, y) at sixteen known data points (x, y).

2.2.5. Thermodynamic Consistency
For a given pure substance or a mixture of a certain composition, thermodynamic consistency implies that
for three given properties (thermodynamic triple), for example p,T and ρ, if T = f (p,ρ) & P = g (T,ρ), then
P ≡ g ( f (P,ρ),ρ) [15]. In most of the existing LUT approaches, f , g are replaced by their approximate coun-
terparts i.e f̃ , g̃ respectively. This replacement leads to the condition P 6= g ( f (P,ρ),ρ). This leads to a certain
consistency error ε= P − g̃ ( f̃ (P,ρ),ρ) [15]. In LUT applications, the thermodynamic consistency error can be
reduced by a more accurate implementation of the method.





3
Look Up Table Method

This section describes in detail the application of the Look Up Table (LUT) method to calculate the thermody-
namic properties of a fluid for given thermodynamic conditions.

Figure 3.1: Flowchart showing the step by step procedure to calculate thermodynamic properties using the LUT Method

As discussed in chapter 2, to reduce the computational time, it is inherent that while obtaining thermo-
physical properties for real fluid flows, an approximate property calculation technique should be used instead
of direct solution of the complex EoS [16] [15]. The LUT methods are computationally less costly than solving
the standard EoS when it comes to calculating the thermo-physical properties. The LUT algorithm combines

13
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the array indexing operations with tools such as a binary search algorithm and an interpolation technique to
calculate the thermo-physical properties. First, an unstructured mesh is generated on a thermodynamic do-
main of interest. The prerequisite data for construction of the initial thermodynamic tables is either obtained
from pre-existing experimental data or through EoS libraries like FluidProp [5] or Coolprop [2]. This data is
stored on each node of the grid. The query point(s) of interest for which the thermo-physical properties are
desired is then located on the grid using a search algorithm. Lastly, the properties are computed using an in-
terpolation technique. Figure 3.1 shows the basic structure of the LUT approach for thermodynamic property
calculation.

3.1. Unstructured Thermodynamic mesh generation
In an unstructured grid, all nodes are automatically defined in an arbitrary manner. The elements of the mesh
are triangles or tetrahedrons for 2D and 3D meshes respectively. Since the unstructured meshes are flexible
and fast, they are suited to mesh complex geometries.

The first step towards the thermodynamic mesh generation for the proposed LUT method is the dis-
cretization of the saturation lines for the given fluid. The saturation lines for the fluid are discretized ac-
cording to a given time interval. The discretized liquid and vapour saturation lines for octamethyltrisiloxane
(C8H24O2Si3) (MDM) is presented in Figure 3.2. The discretized points for the construction of the geometry
for the VLS curve can be placed both uniformly as well as variably. It can be seen in figure 3.2 that the points
are placed uniformly on both vapour and liquid saturation lines, till they approach the critical point. Near
the critical point, the density of points on the vapour and liquid saturation curves is increased to capture the
geometry of the curves in the critical region more accurately. The curve is represented in normalized domain
with the help of an algebraic transformation. Figure 3.3a shows how the single phase region is incorporated
as a separate zone. Figure 3.3b shows the unstructured thermodynamic mesh generated by UMG2. Each
node of this mesh is used to store the thermo-physical properties obtained from the thermodynamic library
FluidProp.
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Figure 3.2: Discretized liquid and vapour saturation curves

Multi-zoneMesh Generation
In figure 3.3a, it can be seen that the geometry extends to also include the supercritical zone. This is impor-
tant to represent the processes that occur in the dense gas region. Across the saturation curves, the properties
such as speed of sound exhibit high discontinuities. Therefore to avoid high interpolation errors, the grid is
meshed as 2 separate zones, one for the VLE region and the other for the single phase region. The discretized
saturation curves form the base for meshing the 2 zones separately. Figure 3.3a shows that the domain is
divided into 2 zones over which the mesh is generated. These zones have their own separate mesh connec-
tivities. This is also greatly advantageous in the location of the query vector and its neighbours as the spatial
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(a) Division of zones on the mesh (b) Unstructured mesh for MDM

Figure 3.3: Unstructured Thermodynamic mesh generation for the LUT Method

search can be exclusively conducted in either of the zones separately.

UMG2
The mesh generation tool UMG2 is an automatic tool for mesh generation on geometries of an arbitrary,
complex shapes for unstructured forms. The geometry of the domain and mesh element sizing information
is provided to UMG2 in the form of data input files. The triangular elements of the mesh are generated based
upon delauney’s triangulation method. This process is entirely automated by UMG2. The functionality of
U MG2 is beyond the scope of this work.

3.2. Thermodynamic Table Generation
The runtime computation for various processes is replaced with simple array indexing operations on stored
data tables using an LUT approach. These tables can be pre-calculated and stored in the program memory,
calculated as part of a program’s pre-processing phase, or they can even be stored in hardware for application-
specific platforms.

For the LUT method presented here, for a given fluid, the thermodynamic tables are generated for each
block (zone) of the mesh as a part of pre-processing. The thermodynamic table stores the thermodynamic
properties corresponding to every node of the mesh. The thermodynamic properties for each node are ob-
tained using the thermodynamic library FluidProp [5] which has a native model for SW-EoS implemented in
its database. The thermodynamic tables are stored in the program’s memory after the initial generation.

The thermodynamic tables form the basis of operation for the k-d tree search algorithm and the thermo-
dynamic interpolation. As a result of the k-d tree operation on the thermodynamic tables, the nearest neigh-
bours for the the desired query vector are obtained. The thermodynamic properties of the nearest-neighbour
points are used to interpolate the thermodynamic properties at the query vector.

3.3. Query vector and nearest neighbour search
As noted by Pini et. al. [15], for a given query vector in any thermodynamic input pair, the identification and
location of the correct grid element which contains the query vector, underlines one of the most important
operations of any LUT method [15]. The corresponding time associated with a search algorithm increases
proportionally with the increase in number of mesh nodes. Using a fast binary search algorithm for grid loca-
tion and nearest-neighbour search, a considerable reduction in search time and thereby, reduction in overall
computational time can be achieved. For the LUT method presented, a robust kd-tree space partitioning
algorithm is implemented. The thermodynamic domain is transformed into a tree structure with the help
of the k-d tree algorithm for accurate and efficient search procedure. The size of the tree structure depends
upon the number of nodes in the grid. Since the k-d tree binary search algorithm functions on the Euclidean



16 3. Look Up Table Method

space for faster search, the entire thermodynamic domain is transformed into a normalised space. The k-d
tree search algorithm is used in the LUT algorithm for the following two purposes:

1. Locating the query vector on the grid: The k-d tree algorithm retrieves the element on the grid node
on which the query vector lies.

2. Locating the nearest-neighbours to the query vector: The k-d tree search also retrieves the desired
number of points nearest to the query vector. The search algorithm obtains the values of the index
(node) of the required number of points to the query vector. This search is based upon the euclidean
distance of the search points from the query vector. Once the index of the nodes nearest to the query
vector is known, the thermodynamic properties at those nodes can be obtained using the thermody-
namic tables which are generated as part of section 3.2. These properties are then used as a part of
section 3.4 to obtain the interpolated values at the query vector. An example of the euclidean distances
and the grid element in which query vector location and its nearest neighbour search on the thermody-
namic domain is presented in table 3.1. The algorithm identifies that the query vector lies on element
number 2909.

Zone Element Euclidean distance (from query vector)

Query vector 2 2909 0.00

NN 1 2 2913 0.009

NN 2 2 2910 0.0098

NN 2 2 2911 0.0099

Table 3.1: Location of the query vector and 3 nearest neighbours as identified by the k-d tree search algorithm

3.4. Thermodynamic Interpolation
As a part of the final step for the thermo-physical property computation, the application of an interpolation
algorithm is required. The LUT method presented here uses two interpolation methods, namely, bicubic
bivariate interpolation and inverse data weighing, in the form of shephard’s interpolation.

Shephard’s Interpolation:
The Shephard’s interpolation scheme, as described in section 2.2.2 is a deterministic method suitable for
multivariate interpolation. For the most optimum results, the number of scattered data points for interpolat-
ing the required thermodynamic property is set as n = 3. Shephard’s interpolation can be implemented for a
different set of input states like (p,T ), (p, s), (v, s), (h, s) and (v,u).

Bi-cubic Bivariate Interpolation:
Bi-cubic bivariate interpolation uses a bi-cubic function to interpolate the thermodynamic properties of in-
terest using the thermodynamic tables. According to equation 2.21 , 16 values of coefficients ai j are required
for interpolation. These coefficients are calculated using the thermodynamic data obtained from the 16 near-
est neighbours of the query vector with the help of the k −d tree algorithm, as described in section 3.3. The
k −d returns the index and the euclidean distance of the nearest 16 data points from the query vector. The
thermodynamic property of interest is then computed with the help of a cubic function explained in section
2.2.2 .

3.5. Process Automation
For the different steps involved in the process of thermo-physical property calculation through the LUT
tool, interfacing between multiple tools (fortran codes) is required. Figure 3.4 demonstrates the automa-
tion process for interfacing between different tools to determine the thermo-physical properties and then
post-process them for analysis. The tool tmesh obtains the thermodynamic data from FluidProp and using
that data determines the geometry of the VLS curve for the selected working fluid on the thermodynamic
plane of interest. This geometry of the VLS curve is then passed onto UMG2 for mesh generation. The mesh
file is then used by the LUT tool. Along the mesh file, an input file is also passed onto LUT tool. This input files
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store data such as the thermodynamic input pair (eg: (v, s)), interpolation type, search algorithm type, etc.
The thermo-physical property calculation takes place within the main LUT tool which has the binary search
and interpolation algorithms implemented within itself. The thermo-physical properties are mesh data are
then written in data files which can be analysed for mesh sensitivity, accuracy and computational time.

Figure 3.4: Flowchart showing the process automation for generation and analysis of thermo-physical properties





4
Analysis and Results of the LUT Method

In this chapter the computational efficiency and accuracy of the LUT method for thermo-physical property
calculation are assessed.

4.1. Computational Time
The major advantage of using the LUT method is the gain in computational efficiency while calculating
thermo-physical properties of the given fluid. In this chapter, the computational efficiency and accuracy
of the LUT method are analysed for Siloxane MDM and Carbon Dioxide (CO2). The thermodynamic tables
are generated based upon the Span-Wagner EoS implemented in FluidProp.

(a) (T − s) thermodynamic domain for MDM (b) (T − s) thermodynamic domain for CO2

Figure 4.1: Thermodynamic domains for MDM and CO2 considered for analysis

Figure 4.1 shows the thermodynamic domains considered for MDM and CO2. The compressibility factor
z varies between 0.7 & 0.9 for MDM and for CO2, the value of z varies between 0.7 & 0.8. For the analysis,
the areas of interest, as shown in figure 4.1 are chosen to analyse the computational cost and accuracy for
thermo-physical property calculation close to the critical point where non-ideal fluid behaviour is observed.
The areas of interest for both fluids is isolated and meshed separately. For the analysis, 10000 randomly
distributed query points are considered on the (T − s) thermodynamic domain, near the critical region. For
various thermodynamic input pairs, namely (h, s), (v s),(pT ),(ps), a set of thermodynamic properties, namely
(p, t ,h, s,c,u,cv ,cp ), is evaluated using the LUT method on in the area of interest. The number of nodes on
the grid is varied between 150 and 4785 for the analysis.

19
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The computational efficiency of the LUT method is now analysed by comparing the computational time
for the LUT method with the time for direct evaluation of thermodynamic properties using FluidProp. Tables
4.1 and 4.2 show the ratios of computational times of the two interpolation methods with respect to Fluid-
Prop for MDM and CO2 respectively. It can be seen that both interpolation methods used in perform better
than the direct property evaluation using the EoS in FluidProp. For Shephardś interpolation, maximum gain
in computational efficiency can be seen for the thermodynamic input pair (p, s), which is 33.8 times faster
than direct property calculation using EoS. For bi-cubic interpolation, the gain in computational efficiency
for the same input pair with respect to direct property calculation is 22.61 times over the direct property cal-
culation using EoS. A similar reduction in computational cost can be noticed for other input pairs. Shephardś
interpolation method proves to be faster than bi-cubic interpolation because it requires the search algorithm
to be performed for 3 nearest neighbours as opposed to 16 for bi-cubic interpolation. This gain is also at-
tributed towards the simpler interpolation algorithm which does not require the calculation of interpolating
coefficients, as required by bi-cubic interpolation.

v s pT hs ps

Time(FluidProp)/Time(Shephard) 32.21 33.37 32.98 33.81

Time(FluidProp)/Time(Bicubic) 21.95 22.35 22.22 22.61

Table 4.1: Comparison of the ratio of times between FluidProp and LUT method (Shephard’s interpolation and Bi-cubic interpolation)
fr different input pairs for MDM for 4785 nodes

v s pT hs ps

Time(FluidProp)/Time(Shephard) 38.97 39.22 39.13 39.00

Time(FluidProp)/Time(Bicubic) 23.64 25.82 24.89 24.43

Table 4.2: Comparison of the ratio of times between FluidProp and LUT method (Shephard’s interpolation and Bi-cubic interpolation)
for different input pairs for CO2 for 4785 nodes
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Figure 4.2: Comparison of computational time for FluidProp, Shephard’s interpolation and Bi-cubic non consistent interpolation for
MDM and CO2 for 4785 mesh nodes

A large gain in computational efficiency for both MDM and CO2 can be seen through figure 4.2. The
shephardś interpolation method is 26.8 times faster than FluidProp for MDM and 38.9 times faster than Flu-
idProp for CO2. The bi-cubic interpolation is 24.2 times faster than FluidProp for MDM and 23.8 times faster
than FluidProp when the working fluid is CO2. The gain in computational efficiency for LUT method (for



4.2. Accuracy 21

both shephardś interpolation and bi-cubic interpolation) can be attributed to the replacement of direct prop-
erty calculation by array indexing operations (binary-searching and interpolation). Shephard’s interpolation
proves to be the fastest for both MDM and CO2 because of its simple inverse data weighing method used for
interpolation. Bi-cubic interpolation proves to be slower than shephardś method because of the calculation
of coefficients required for bi-cubic interpolation. Overall, the LUT method outperforms the direct property
calculation by FluidProp.

4.2. Accuracy
The accuracy of LUT method is hereby evaluated quantitatively by computing the mean relative error in the
thermodynamic properties against the quantities computed by the Span Wagner EoS implemented in Flu-
idProp. Similar to section 4.1, 10000 points are considered for assessment in the region of interest shown in
figure 4.1a and 4.1b for MDM and CO2 respectively. The results in this section report the Mean Relative Error
(MRE) for the set of thermodynamic properties (p, t ,c,cp ...) for the input pair (v, s). For any given thermody-
namic property φ, the MRE is evaluated by equation 4.1, as below:

MRE% =
n∑
i

φLU T −φF P

φLU T
100 (4.1)
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Figure 4.3: Variation of Mean Relative Error [%] in thermodynamic properties of 10000 randomly distributed query points for MDM
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Figure 4.3 shows that for coarse grids, both Shephard’s interpolation and bi-cubic interpolation have rel-
atively high MRE. This is because of a large variation in data points used to interpolate the thermodynamic
values. However as the grid becomes finer, both interpolation methods show an increase in the accuracy of
the thermo-physical properties. For MDM, the errors in pressure reduce from 4.8% for 150 nodes to 0.3% as
the node size is increased to 4785. A similar trend can be noticed for other thermodynamic properties. The
bi-cubic interpolation outperforms the Shephard’s interpolation for finer meshes with errors of upto 4 orders
lesser than shephardś interpolation.

0 1000 2000 3000 4000 5000

Grid Nodes [-]

10-2

10-1

100

101

102

M
R
E
 (
p
re
ss
u
re
) 
[%

]

Shephard

Bicubic

(a) Percentage error in pressure

0 1000 2000 3000 4000 5000

Grid Nodes [-]

10-4

10-3

10-2

10-1

100

M
R
E
 (
te

m
p
e
ra

tu
re

) 
[%

] Shephard

Bicubic

(b) Percentage error in temperature

0 1000 2000 3000 4000 5000

Grid Nodes [-]

10-1

100

101

102

M
R
E
 (
c)
 [
%
]

Shephard

Bicubic

(c) Percentage error in speed of sound (c)

0 1000 2000 3000 4000 5000

Grid Nodes [-]

100

101

102

M
R
E
 (
c p
) 
[%

]

Shephard

Bicubic

(d) Percentage error in specific heat (cp )

Figure 4.4: Variation of Mean Relative Error [%] in thermodynamic properties of 10000 randomly distributed query points for CO2

For CO2, although the overall observations are the same as those for MDM, however, it can be noticed
from figure 4.4 that for finer meshes, Shephard’s interpolation outperforms bi-cubic interpolation for cal-
culation of c and cp . Overall, both interpolation methods show a significant improvement in accuracies as
meshes become finer.

Figure 4.5 shows the frequency distribution of 10000 query points for absolute error in thermodynamic
properties. For the frequency distribution in pressure, the frequency of query points is higher for smaller
relative error values. Under 0.05% of the query points show the relative error over 0.015% in pressure and
over 0.00025% in temperature. 99.98% points have an error in speed of sound less than 0.007% and the same
percentage of points show less than 0.0005% error in cp . Similar observations can be made for CO2 from
figure 4.6. Frequency distribution for c and cp for CO2 have been adjusted to exclude the 0.3% points with
error more than 0.005% and 0.01% points with error more than 0.0040% for c and cp respectively.
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Figure 4.5: Frequency distribution of points for the absolute error [%] in thermodynamic properties calculated using Shephard’s
interpolation with 4785 grid points for MDM
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5
Application of LUT

This chapter presents two applications of the Look Up Table method. The time comparison for property com-
putation and the accuracy of the thermo-physical properties calculated using the LUT approach is presented
for both applications.

5.1. Isentropic Expansion through a fixed Control Volume
It is well known that for the isentropic expansion or compression of an ideal gas, the Mach number is only
dependent upon the pressure ratio at the exit (static) to inlet (total) and on the specific heat ratio [6] . However,
in some cases an expansion process can occur in a region where the ideal gas law is not applicable (z 6= 1).
This section represents an application of the LUT method to compute the Mach number and pressure ratios
of an isentropic expansion process occurring in the region where (z 6= 1).

5.1.1. Control Volume
For an inertial reference frame, a control volume is a volume fixed in space or moving with constant flow
velocity through which the continuum (gas, liquid or solid) flows. Under steady state conditions, a control
volume can be thought of as an arbitrary volume in which the mass of the fluid, gas or solid flowing through it,
remains constant. As a continuum moves through the control volume, the mass entering the control volume
is equal to the mass leaving the control volume. When no work is done on or by the system and there is
no transfer of heat, the energy within the control volume remains constant. Often in propulsion and power
problems, the dynamics within the control volume are of great interest. For any given fluid flow conditions,
the basic laws of nature, that is, conservation of mass and energy are always satisfied. In addition to the flow
conditions, each flow is subjected to certain physical constraints, mathematically referred to as boundary
conditions, which must be satisfied physically [21].

Conservation ofMass
The mass rate change inside any control volume is given by the difference between the mass flow rate at the
entry and the mass flow rate at the exit of the control volume. For a single inlet and a single outlet control
volume, the mass flow rate is given as follows by equation 5.1 :

dmcv

d t
= ṁi n −ṁout (5.1)

For steady flow, there is no mass added to or subtracted from the system. Therefore, the mass flow rate at
the inlet and the exit of the control volume is the same and is given by 5.2.

ṁcv = ṁi n = ṁout (5.2)

Conservation of Energy
The physical idea behind the energy flow through a control volume is that any rate of change of energy in
the control volume can only be caused by the rates of energy flow into or out of the system. Since the heat
transfer and the work done are already included, the only other contribution towards a change in energy of
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the system can only be associated with the mass flow in and out of the system, which carries energy with it.
This gives the desired form of the energy equation as follows:

(Rate of change of energy in CV) = (Rate change of heat added to CV)− (Rate of work done)
+ (Rate of energy flow into the CV)− (Rate of energy flow out of CV)

(5.3)

The first law for a fluid flow can thus be written as:

d

d t

∑
Ecv =∑

˙Qcv +
∑

Ẇ +∑(
ṁ(h + v2

2
)+ g z

)
(5.4)

In equation 5.4, Q̇ and Ẇ are often referred to as thermal power and mechanical power. For steady state
assumption, these quantities can be assumed to be zero. Moreover, for aerospace applications the velocities
are very high and the term that is associated with changes in the elevation or height is almost negligible in
comparison. Therefore, the term g z can be neglected. The simplified energy equation is given by 5.6 . For a
detailed explanation on each term mentioned in the equations 5.3 and 5.4 , the reader is referred to [21].

0 =
(

hexi t +
v2

exi t

2

)
−

(
hi n + v2

i n

2

)
(5.5)

htot =
(

hexi t +
v2

exi t

2

)
=

(
hi n + v2

i n

2

)
(5.6)

Isentropic Expansion through Control Volume
If the fluid expansion takes place with no flow of heat energy either into or out of the system, the process is
called isentropic expansion. The relations of the pressure ratio and temperature ratio with the Mach number
is given by equations 5.7 and 5.8 respectively. For the derivation of these relations, the reader is directed to
[9].

Pt

P
=

(
1+ γ−1

2
M 2

) −γ
γ−1

(5.7)

Tt

T
=

(
1+ γ−1

2
M 2

)−1

(5.8)

However, in the case of an expansion process taking place under non-ideal conditions, the ideal-gas law is
not valid. For such thermodynamic states, where ideal gas law cannot be used to derive the isentropic flow
relations, the isentropic gas flow can be computed using equations 5.6 and 5.2 . For an isentropic flow through
a nozzle with a varying cross-section area, A = A(x), these equations can be written as follows:

ṁx = (ρAu)x = const ant (5.9)

h0x = (h + 1

2
u2)x (5.10)

Figure 5.1: Single inlet and outlet Control Volume for subsonic flow conditions

Figure 5.1 shows a control volume through with a single inlet and outlet. The control volume can be
treated as adiabatic (negligible heat transfer between the gas and CV wall), The system is assumed to be
operating at steady state so that there are no occurring in mass of fluid or its energy within the control volume.
The gravitational potential energy of the fluid is neglected. For an isentropic flow across a control volume
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with single inlet and outlet, the total enthalpy remains constant across the process. This total enthalpy at any
location in the system can be expressed as a function of the total pressure and temperature at the inlet of
the control volume. The density and the static enthalpy can be expressed as functions of static pressure and
entropy. Since the entropy of the system remains constant, it can also be expressed as a function of the total
conditions at the inlet.

h0x = h0x (pt0,T0) (5.11)

hx = hx (p, s) (5.12)

ρx = ρx (p, s) (5.13)

s = s(pt0,T0) = const ant (5.14)

Using equations 5.9 through 5.14, the energy equation an be reduced in the form of the following implicit
function:

h0x (Pt0,T0) =
(
h(p, s)+ 1

2
(

ṁ

ρ(p, s)
)2

)
x

(5.15)

h0x (Pt0,T0) = f (p) (5.16)

For given total inlet temperature, total inlet pressure, a fixed mass flow rate and area of the control volume
at any given section of the geometry, equation 5.15 can be solved using an iterative root solving method like
the Bisection Method.

To test the applicability of the LUT method, an isentropic expansion case is simulated through a control
volume with MDM as working fluid on the T − s thermodynamic domain with 4785 mesh nodes. The inlet
conditions of the fluid are at the stagnation state (total condition). The control volume is discretized into 1000
equally spaced parts in the x direction. The inlet and exit areas are fixed and the area varies linearly with the
distance in the direction of the flow. The inlet conditions are shown in table 5.1 .

Parameter Symbol Value Units

Inlet to Exit area ratio Ar 4 -

Total inlet pressure pt0 1256847.5 Pa

Total inlet temperature Tt0 558.6 K

Mass flow rate ṁ 20.0 kg/s

Compressibility factor z 0.54 -

Table 5.1: Inlet conditions for the control volume
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To obtain the static pressure (ps ) at any given position x, equation 5.16 can be implicitly solved. For the
isentropic expansion process, the variation of static pressure is obtained for the discretied domain from inlet
to exit of the nozzle. The solution of the equation 5.16 is obtained using the Bisection method for iterative
root solving. To analyse the LUT method and test its accuracy, equation 5.16 is solved by using pressure values
from FluidProp and Shephard’s interpolation. An isolated grid with 4785 elements is used for the analysis.

MRE(ps /pt0) MRE(Mach) Time(FluidProp/Time(LUT))

0.32 % 0.21 % 5.69

Table 5.2: Mean relative error in pressure ratio and mach number (with respect to FluidProp) and the time ratio between FluidProp and
LUT

As seen in figure 5.3, an increase in number is noted and figure 5.2 shows the decreasing pressure ratio
across control volumes while moving downstream in x direction. As expected, LUT method with Shephard’s
interpolation is computationally less costlier than FluidProp. Table 5.2 shows the that the LUT method is
approximately 5.69 times faster than the direct solution of EoS through FluidProp. This can be attributed to
the reduction in time in LUT calculations, which is obtained because of direct search operation and numerical
interpolation on existing thermodynamic tables instead of comparatively slower and complex EoS solution.

5.2. Supersonic Nozzle design through Method Of Characteristics

5.2.1. Method of Characteristics

The Method of Characteristics (MOC) is a technique for solving partial differential equations. The MOC tech-
nique can be used to design the for the supersonic nozzles. In this technique, partial differential equations
are used to calculate isentropic properties for the supersonic flows. These supersonic flows belong to a hy-
perbolic class of partial differential equations. A set of characteristic equations and compatibility relations
are used to obtain the supersonic nozzle profile (out of scope).

To test the applicability of the LUT method of thermodynamic property calculation, the LUT tool is inte-
grated with an in house MOC tool, designed by Ir. Nitish Anand (Propulsion and Power group in TU Delft).
For a detailed insight into the MOC technique for supersonic nozzle design through the MOC tool, the reader
is referred to [1].

5.2.2. Data flow structure between LUT tool and MOC tool

To determine the nozzle design, the MOC tool requires certain thermodynamic properties for the working
fluid under the desired working conditions. These properties can be obtained by the MOC tool using either
the Ideal gas equation or Van der Walls EoS or Refprop. Integration of the MOC tool with the LUT algorithm
provides another option for the MOC tool to obtain the thermodynamic properties of interest. To test the ap-
plicability of LUT tool for the supersonic nozzle design, the LUT tool is integrated with the MOC tool. For an
input thermodynamic pair (h, s) provided by the MOC tool, the LUT tool returns the thermodynamic data set
{P,T,D,c,cp,cv} for every iteration. Both MOC tool and LUT tool have their individual input files. The MOC
and LUT input files are presented in appendix A. A file containing the mesh connectivity data for the thermo-
dynamic domain is required for the thermodynamic tables to be created as a part of the pre processing. The
overall data flow between the tools is represented in figure 5.4 .
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Figure 5.4: Data Flow between LUT tool and MOC tool

5.2.3. Supersonic nozzle design test case and results
The MOC tool is used to design the diverging section from the throat to the exit of the supersonic nozzle. The
starting inlet conditions and the properties of the working are listed in table 5.3 . The input files for both LUT
tool and MOC tool are included in Appendix A. For the design, Tol uene is chosen as the working fluid and
the design Mach number is 2.0. For the analysis of the supersonic nozzle design and the computational time,
the design test case is run for both the LUT method and FluidProp (through the LUT tool).

Parameter Symbol Value Units

Total enthalpy ht0 676.019 J/kg

Total temperature Tt0 580 K

Entropy st0 0.9 kJ/K

Total pressure pt0 20.4e5 Pa

Design Mach Number Mdes 2.0 −
Critical pressure Tc 591.79 K

Critical temperature pc 2.09x106 Pa

Compressibility factor z 0.7 -

Table 5.3: Fluid Properties and Inlet conditions for nozzle design

Thermodynamic grid
A thermodynamic grid based on the pre-existing (h, s) values is generated. These pre-existing values are
obtained from nozzle design data using RefProp. The grid size is varied between 3075 nodes to 15810 nodes
with mesh refinement downstream of the isentropic expansion process. The isentropic expansion process on
the thermodynamic grid generated on (h,s) domain can be seen in figure 5.5.

Geometry of the supersonic nozzle
It can be seen from figure 5.6 that the discontinuity in the nozzle geometry close to the exit of the nozzle
for the coarse mesh increases. An error in the exit area of the nozzle can also be noted with respect to Flu-
idProp. These differences in design can be explained by higher errors in thermodynamic properties due to
interpolation on the coarse mesh. The MOC requires the mass flow rate at the all design iterations to be
nearly constant, however for coarse meshes, this design condition is not met and the mass flow rate varies.
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Figure 5.5: h − s thermodynamic domain for the expansion through the supersonic nozzle
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As the mesh becomes finer, the errors in thermodynamic properties received by MOC through LUT tool de-
creases, thereby reducing the variation in the mass flow rate at all design iterations. With mesh refinement
downstream in the expansion process (close to the nozzle exit), the nozzle geometry improves significantly,
as can be seen from figure 5.6c.
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(a) Nozzle geometry designed by mesh nodes n = 3075
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(b) Nozzle geometry designed by mesh nodes n = 5435
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(c) Nozzle geometry designed by mesh nodes n = 15810

Figure 5.6: Variations in design of the supersonic nozzle geometry using LUT method (Shephard’s Interpolation) for feeding
thermodynamic properties to the nozzle design tool MOC

An increase in accuracy of the nozzle geometry is noted as the number of mesh elements increases. This
is evident from figure 5.7 , which shows the variation of area ratio of the nozzle with the increasing number of
grid nodes. The area ratio is defined as the ratio of area at the exit of the nozzle to the area at its throat. With
increasing number of nodes and grid refinement towards the exit of the nozzle, the accuracy of the nozzle
geometry FluidProp increases. The increase in the accuracies of the thermodynamic properties translates
into an increase in the accuracy of the geometry.

Computational cost
The computational cost of the overall design process can be divided into three parts:

1. Time for for pre-processing: This part involves the time required by the design process to read the data
from the LUT input file and the thermodynamic tables for each iteration. Figure 5.8 shows that the
pre-processing time is the same for both LUT algorithm and FluidProp.

2. Time for thermodynamic property calculation: For every iteration, the MOC tool passes the query vec-
tor to the LUT algorithm to calculate the required thermodynamic properties. Figure 5.8 shows that for
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Figure 5.7: Percentage error in exit to throat area ratio for the nozzle design

actual property calculation, LUT is 300 times faster than FluidProp.

3. Time for MOC calculation: The time required by MOC tool for its internal calculations is the same for
both LUT and FluidProp. This can also be seen from figure 5.8.
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Figure 5.8: Time comparison between FluidProp and LUT for individual phases of the nozzle design using MOC.

The overall time ratio for nozzle design using LUT and Fluidprop is approximately 1.4. The time ratio
reduces further as the number of grid elements increase, because of increasing number of data points. This
leads to an increase in the pre processing time for LUT operations, that is, reading of mesh file and thermo-
dynamic tables. This overall ratio can further be improved by eliminating the pre processing stage for each
iteration, as a part of future work.
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Conclusions and Future Recommendations

6.1. Conclusions
In order to reduce computational cost for thermodynamic property calculation, a Look Up Table method
is implemented. The presented LUT method makes use of Shephard’s interpolation and bi-cubic bi-variate
interpolation to compute the properties of interest. These interpolation methods work in cohesion with the
binary search algorithm, namely the k-d tree algorithm. The accuracy and the computational time of the
properties obtained by the LUT method is computed with respect to the properties obtained using FluidProp,
an external thermo-physical library. To test the applicability of the method, an isentropic expansion process
under non ideal flow conditions is considered. As a second application, the LUT tool is integrated with an in
house MOC tool for supersonic nozzle design. The nozzle geometry obtained using LUT and FluidProp are
compared for accuracy in design and computational time.

With respect to the presented work, the following conclusions can be drawn:

• The research presents a successful implementation of an LUT method based on integration of array
indexing operations on existing thermodynamic tables (obtained as a part of pre-processing), interpo-
lation methods (Shephard’s interpolation and Bi-cubic interpolation) and the k-d tree search algorithm.

• The LUT method is capable of working with a variety of thermodynamic input pairs. Pairs such as (v, s),
(p,T ), (h, s) and (p, s) are successfully tested for accuracy and computational time. The applicability of
pairs (p, s) and (p,T ) is tested with the isentropic expansion process whereas the use of (h, s) is tested
with the supersonic nozzle design application through MOC.

• The LUT method proves to be computationally efficient for the thermodynamic property calculation.
For 10000 points tested, the LUT method with both Shephard’s interpolation and bi-cubic bivariate
interpolation proves to be faster (for both MDM and CO2) than direct property calculation using Flu-
idProp, while maintaining high accuracies in thermodynamic properties at the same time. This gain
in computational efficiency can be attributed to the replacement of direct property calculation using
complex EoS by simple array indexing operations on existing thermodynamic tables for the respective
fluids.

• The LUT method is used successfully to analyse an isentropic gas flow through a single inlet and out-
let control volume for subsonic flow conditions. The direct comparison of the results obtained using
LUT with FluidProp shows that the LUT method is approximately 5.7 times faster and has a minute
inaccuracy with respect to FluidProp. This process also validates the accurate application of the bisec-
tion method within the LUT tool, for solving the energy equation in implicit form to obtain the static
pressures across the discretized control volume.

• The coupling of the LUT tool with the supersonic nozzle design tool MOC presents the second working
application of the LUT method. The LUT tool is approximately 1.4 times faster than FluidProp for
the overall nozzle design. For the computation of thermodynamic properties of all query points alone
(excluding pre-processing and MOC operation), the LUT method is 300 times faster than FluidProp on
an average for various mesh sizes tested.
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Overall, the LUT method presents a successful alternative for thermodynamic property calculation with
a high computational efficiency and accuracy in properties. The tool also shows successful applicability for
an isentropic expansion through a control and the geometry design for a supersonic nozzle (coupled with
MOC).

6.2. Future Recommendations
Based on the outcomes, results and conclusions of the thesis project, the following recommendations for
future work can be made:

• Thermodynamic domains other than (T, s) and (h, s) can be built used for the analysis of the LUT
method. These domains can then be tested with the implemented interpolation methods and search
algorithm to test their functionality and compare the results obtained with the results in chapter 4 and
chapter 5.

• A study can be carried out on whether more complex methods for scattered data interpolation, such as
Radial Basis Functions [10] or Krigging [10] can be implemented in addition to bi-cubic interpolation
and shephard’s interpolation scheme to further enhance the accuracy of the LUT method.

• Implementing bi-cubic bi-variate interpolation for MOC tool can further reduce the computational
errors in the nozzle design process. Although this interpolation method is already implemented in the
LUT tool, it does not work currently for the nozzle design process through MOC.



A
A.1. MOC Input File
The contents of the MOC tool input file used for the analysis in chapter 5 is as shown below:

# PLANAR | | delta =0 or AXISSYM | | delta =1

NozzleType PLANAR

# ’PRFT’ = Perfect Gas , EoS = Equation of State , EoS_TAB = Using Table , LUT = Look Up Table

GAS_EQU LUT

FLDNAME=Toluene
THROAT_PROP = FILE

#EoS : Solve − Numerical i s e : NULL
VrhoGuess = 0.03
TGuess = 580
PGuess = 20e5

# RealGas Table # ’ Create ’ ’ Calc ’
Table_Oper Calc
LLim = 200
ULim = 700
dV = 10

# REAL GAS PROP − SI Units ( Toluene ) ( r e f : Wiki )
Tc = 591.79 # K
Pc = 2.09 e6 # Pa
Vc = 0.000316 # m^3/mol
M = 0.09214 # kg/mol
Ho = 676.019 # J /Kg
so = 0.9 # J /kg . K
gamma = 1.055 # cnst
To = 580 # K
Po = 20.4 e5 # Pa
R = 8.314 # mol/Kg/K

# Input : Throat Design

35
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rho_t 20
y_t 1
rho_d 20
n 20

# Accuracy : Accuracy Required

#Corr_n 1000
tolerance_v 1e−9
tolerance_x 1e−9
#Corr_n_inv 100
dtau 0.1
# Reflex :

n_ref = 50
# Design Output : Output Mach Number

Noz_Design_Mach 2.0

# WriteData : Writing Variables

File_Name_NProp Nozzle_prop . out
VAR x y u v M rho SoS T P

File_Name_NCods Nozzle_coords . out

A.2. LUT Input File Data
The contents of the LUT input file used for the analysis in chapter 5 is as shown below:

f l u i d : Toluene
unit : SI
database : Refprop
search algorithm type : kdtree
interpolat ion method : shephard ’ s interpolat ion
pair query vector : (h , s )
query vector : input from MOC d i r e c t l y
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