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Recently reported piezoresponse force microscopy (PFM) measurements have proposed that

porcine aortic walls are ferroelectric. This finding may have great implications for understanding

biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex

anatomical structure of the aortic wall with different extracellular matrices appears unlikely to

be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous

switching of the polarization, is a polar crystal structure of the material. Although the PFM

measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at

different positions on the tissue, suggesting that the whole aorta is ferroelectric. To corroborate this

hypothesis, we analyzed entire pieces of porcine aorta globally, both with electrical and electrome-

chanical measurements. We show that there is no hysteresis in the electric displacement as well

as in the longitudinal strain as a function of applied electric field and that the strain depends on

the electric field squared. By using the experimentally determined quasi-static permittivity and

Young’s modulus of the fixated aorta, we show that the strain can quantitatively be explained by

Maxwell stress and electrostriction, meaning that the aortic wall is neither piezoelectric nor ferro-

electric, but behaves as a regular dielectric material. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4998228]

Piezoelectricity in bones was first reported in 1957.1 The

main components of bone are the mineral hydroxyapatite

Ca10(PO4)6(OH)2 and collagen.2 The unit cell of hydroxyapa-

tite, P63/m, is centrosymmetric and, therefore, this natural

mineral cannot be piezoelectric.3 We note that polymorphs

with non-centrosymmetric unit cells have been predicted.4

Recently, piezoelectricity was confirmed in synthetic hydroxy-

apatite, namely, in electrically poled, textured ceramics5 and in

nanocrystalline thin films.6 In short, the piezoelectricity in

bones is due to collagen. The polypeptide chains in collagen

are arranged in a coiled-coil triple helix forming rod-like mole-

cules with short-range crystallinity.7 The quasi-hexagonal

packing of oriented collagen molecules, with symmetry group

C6,
8 leads to shear piezoelectricity in the axial direction; dry

bone polarizes when a shearing force acts on the oriented col-

lagen fibers so that they slip past one another. The piezoelectric

charge coefficient, d14, for dry horse femur8 and dry bovine9

bone is in the order of 0.2 pC/N. Other constants, such as d33

in the longitudinal direction, are negligible.10

Both the direct and the converse piezoelectric effect have

been demonstrated. The extracted linear relationship between

electrical displacement and stress, as well as between electric

field and strain, proves that bones are truly piezoelectric,1 as

they demonstrate interconversion between electrical charge

and mechanical strain. The electromechanical coupling of ori-

ented collagen fibers can have significant consequences for

human physiology.11 For instance, it might explain Wolff’s

law, stating that bone in a healthy person or animal remodels

itself under an applied mechanical load.12–14 We note also

that, recently, piezoelectricity has been suggested as a tough-

ening mechanism in seashells.15

Piezoelectricity has been reported not only in calcified

biological tissue, such as bone and teeth, but also in soft bio-

logical tissues such as ligament, trachea, and intestines.16

The electromechanical coupling is not limited to collagen,

but observed in a variety of biopolymers such as cellulose,

elastin, keratin,17 and chitin, which suggests that all fibrous

molecules in an oriented state are piezoelectric.

By definition, polycrystalline materials with randomly

oriented grains must be ferroelectric in order to exhibit piezo-

electric properties.18 Ferroelectricity means that the material

exhibits a spontaneous polarization, which can be switched by

an electric field.19 However, despite the “near-ubiquitous

presence of piezoelectricity in biological systems,”20 there

has been very limited evidence for ferroelectricity, especially

in soft tissues. The first reports of a ferroelectric response in

porcine aortic walls by means of piezoresponse force micros-

copy (PFM)21–24 were therefore surprising. PFM detects thea)E-mail: lenz@mpip-mainz.mpg.de
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local deformation of a sample caused by an applied electric

field from the tip of the cantilever of a scanning force micro-

scope.25,26 For the porcine aorta, the reversal in the piezores-

ponse phase occurred at about 10 V leading to an estimated

coercive field of only 10 kV/m,21 three orders of magnitude

smaller than typical ferroelectric polymers such as polyvinyli-

denedifluoride (PVDF).27 It was argued that the asymmetry in

the coercive voltage could reflect the existence of an internal

polarization, as the aorta is internally biased outward.28 The

phase contrast was approximately 180�, which is a clear indi-

cation of polarization switching. Associated with the phase

reversal, the deformation-voltage butterfly loops were also

observed. The piezoelectric charge coefficient was estimated

to be 1 pm/V.21 It was noted that this value is two orders of

magnitude larger than the one previously reported for blood

vessel walls, measured on a macroscopic scale.16 Although

the PFM measurements were performed locally, the phase-

voltage hysteresis loops obtained at different points of the

sample were consistent, which indicated global ferroelectric-

ity of the whole aortic tissue.

The ferroelectricity was claimed to be due to the pres-

ence of elastin,22 an important extracellular matrix protein

found in connective tissue. The fibrillar component of elastin

consists of simple amino acids such as glycine, valine and

alanine.29 Both crystalline c-glycine30,31 and b-glycine32 are

ferroelectric, yet the aorta is not a single crystal. Hence, the

reported PFM switching in both aortic walls and elastin was

unexpected, and has generated a lot of excitement, but con-

siderable skepticism remains. The latter was expressed, for

instance, in the following statement: “Readers should keep

in mind that crystalline ferroelectrics are not known to exist

in humans, and no in vitro or even in situ work has been

reported.”33 Here, we contribute to the scientific discussion

on biological ferroelectricity by analyzing porcine aorta

globally instead of only locally. To that end, we measured

both electric displacement and strain as a function of applied

electric field on a 1 cm2 piece of porcine aorta. We observed

neither ferroelectric nor piezoelectric response of the fixated

tissue. The strain is proportional to the electric field squared,

which indicates that the strain is due to both Maxwell stress

and electrostriction, phenomena that occur in any dielectric

material.

The aorta specimens were prepared following a proce-

dure reported in the Supporting Information of Ref. 21. In

short, about 12 cm of aortas (middle section) was harvested

from pigs (sus scrofa domestica), which were part of an

experimental lung physiology study at the University

Medical Center of Mainz. After removal of surrounding fat

and tissue, the aortas were immediately immersed in ice-cold

phosphate-buffered saline (PBS). The tissue was always kept

at 4 �C until final fixation. Figure 1(a) shows a photograph of

a piece of the descending thoracic aorta.

For histology, cleaned aortic samples were snap frozen

and sectioned into 10 lm slices with a cryostat (HM 560

Cryo-Stat, Thermo Scientific). In order to illustrate cells and

elastic fibers, a van Gieson stain was applied. Histological

images were acquired using a conventional light microscope

(AxioVert200, Zeiss) at 10� and 40� magnification and are

shown in Fig. 1(b). The general structure of blood vessels

can be subdivided into the intima, media, and adventitia

from the inside out.34–37 The intima with its endothelial cells

delimits the vessel wall from the lumen. The media with

smooth muscle cells and connective tissue such as elastin

fibers [see inset of Fig. 1(b)] accounts for the majority of the

vascular wall, especially in big arteries. The adventitia repre-

sents the border to the tissue surrounding the vessel, fre-

quently with its own blood supply.

For electrical and mechanical characterization, porcine

aortic samples with an area of about 1 cm2 and a thickness of

1 mm were fixated using 4% paraformaldehyde in PBS for

1 h at ambient temperature. Then, samples were dehydrated

in an ascending ethanol/deionized water series for 15 min

each (30/70; 50/50; 70/30; 100/0). Afterwards samples were

subjected to an ascending hexamethyldisilazane/ethanol

series (30/70; 50/50; 70/30; 100/0) for 15 min each and

finally dried overnight in a hood.

Uniaxial tensile tests were performed on an Instron

Model 3365 universal testing system equipped with a 1 kN

load cell. Tensile specimens of fixated porcine aorta, having

an approximate width of 5 mm, a thickness of 1 mm and a

length of 4 mm, were stretched between the clamps with a

tensile rate of 1 mm/min at ambient temperature.

The electric displacement as a function of electric field

was measured using a Radiant precision multiferroic test sys-

tem (Radiant Technologies, Inc.) at a frequency of 10 Hz.

Simultaneously, the strain as a function of electric field was

measured using a MTI 2100 photonic sensor interfaced with

the Radiant tester. Piezoelectricity was additionally investi-

gated using a Berlincourt-type piezometer (PM300, Piezotest,

London, UK). A static force of 10 N was used under a 0.25 N

peak to peak sinusoidal excitation at 110 Hz. Impedance was

measured using a Schlumberger Si 1260 Impedance Analyzer.

All electrical measurements were performed in ambient con-

ditions. We emphasize that we tested aortas from two different

pigs and various pieces from each aorta. Our results could be

reproduced in all the tests.

Figure 2(a) shows the electric displacement versus elec-

tric field. Electrical conduction can be excluded as the

dielectric loss is less than 1%. A linear relation is obtained

up to the maximum electric field of about 6 MV/m, which is

FIG. 1. (a) Photograph of the descending thoracic aorta before fixation.

Upper picture shows the circular aorta, while the lower picture demonstrates

tissue sample cut open at the dotted line with the inner wall (intima) on top.

Scale bar is 1 cm. (b) Histological image of the aorta illustrating the cross-

section of the aortic wall (adventitia, media, and intima, 10�). The inset

shows a 40� magnification of elastic fibers in the media. Arrowheads point

to small vessels inside the adventitia.

133701-2 Lenz et al. Appl. Phys. Lett. 111, 133701 (2017)



much larger than the coercive field of 10 kV/m extracted from

reported PFM measurements. However, there is no indication

of hysteresis as would have been expected for a ferroelectric

capacitor. The aortic specimen behaves as a normal dielectric.

The bottom inset shows that the relative dielectric constant at

1 kHz is about 6 and independent of the applied bias. The top

inset shows the frequency dependence. The dispersion could

be due to ionic movement or minute amounts of residual

water. We take a value of 26 for the quasi-static relative

dielectric constant as extracted from the slope of the displace-

ment as a function of electric field, cf. Fig. 2(a).

The electrical displacement, D, for a capacitor under an

applied electric field, E, is the sum of the induced polariza-

tion, Pi, and spontaneous polarization Ps
38

D ¼ Pi þ Ps ¼ e0erEþ Ps ¼ e0erE; (1)

where e0 is the vacuum permittivity and er is the relative

dielectric constant. The spontaneous polarization is due to

aligned electric dipoles in a ferroelectric material and depends

on the electric field and the poling history. However, this non-

linear contribution to the displacement can be disregarded for

the aorta, Ps ¼ 0, as there is no hysteresis in the displacement

as function of electric field, cf. Fig. 2(a). There is no sign of a

ferroelectric spontaneous polarization. The displacement is

only due to the induced polarization, which represents the

charging of any linear dielectric capacitor.

To investigate the electromechanical properties of the

porcine aortic wall, we measured the strain as a function of

electric field, as presented in Fig. 2(b). The strain is negative;

the aorta specimen contracts when an electric field is applied.

Here again, there is no indication of hysteresis; a butterfly

shape as expected for ferroelectric materials is not observed.

The shape of the strain versus electrical displacement curve

looks like a parabola. As verification we present the strain as

a function of electric field squared in Fig. 2(c). A straight

line is indeed obtained and the least square approximation

yields a slope of �2.08� 10�18 m2/V2. This value also allows

fitting the measured data in Fig. 2(b), as indicated by the red

lines.

The aortic wall is hence not ferroelectric, but also not

piezoelectric as additionally supported by Berlincourt-type

piezometer measurements. No measurable signal could be

detected for d33, d13, and d15 demonstrating that the aortic

wall is not piezoelectric, i.e., there is no surface charge gen-

erated under mechanical stress.

The strain induced in a non-piezoelectric, isotropic

dielectric material by an electrostatic field has two sources.39

The first one is the Maxwell strain, which is due to the electro-

static force resulting from the free charges on the electrodes

of a capacitor. The second one, referred to as electrostriction,

is a universal property of solid and liquid dielectrics40,41 aris-

ing from changes in the dielectric constant with the electri-

cally induced strain.42,43 The total longitudinal strain, S33, is

given by39,42,43

S33 ¼ �
1

2
ere0E2=Y � 1þ 2vð Þ � �a1 þ a2 1� 2vð Þ

er

� �
;

(2)

where Y is the Young’s modulus, � is the Poisson ratio, and

a1 and a2 are two electrostrictive parameters describing the

change in dielectric properties of the material under shear

and bulk deformation, respectively. This equation holds for

non-compliant electrodes; for compliant electrodes, the lon-

gitudinal strain is twice as large.44 When the dielectric con-

stant is independent of deformation, then a1 and a2 vanish

and only the compressive Maxwell strain remains, given by

the first term of Eq. (2) as

S33;Maxwell ¼ �
1

2
ere0E2=Y � 1þ 2vð Þ; (3)

and the pure electrostrictive contribution is given by the sec-

ond term of Eq. (2) as

FIG. 2. Electro-mechanical characteri-

zation of aortic walls. (a) Electrical

displacement as a function of electric

field. The top inset shows the disper-

sion in relative dielectric constant. The

bottom inset shows the relative dielec-

tric constant as a function of voltage

measured at 1 kHz. (b) Strain as a

function of electric field. (c) Strain as a

function of electric field squared. (d)

Stress-strain curve. From the slope

between 1% and 2% the Young’s mod-

ulus is obtained as 160 6 20 MPa.

133701-3 Lenz et al. Appl. Phys. Lett. 111, 133701 (2017)



S33;Electrostriction ¼
1

2
ere0E2=Y � �a1 þ a2 1� 2vð Þ

er

� �

¼ Q33D2; (4)

where Q33 is the commonly used longitudinal electrostrictive

coefficient, derived from the phenomenological Devonshire

theory.40 For ionic insulators, the electrostrictive strain is

dominated by anharmonicity in the electrostatic potential

leading to a positive Q33.41 For polymers, covalent bonding

is much stronger than intermolecular forces such as van der

Waals interactions. This effectively leads to a negative value

of Q33, and, hence, to a compressive strain. Both the

Maxwell- and electrostrictive strain depend on the squared

electric field and are therefore indistinguishable.

In order to quantitatively analyze the strain, a value for

the Young’s modulus is required. Since the porcine aorta

samples underwent fixation before electrical characteriza-

tion, we cannot use literature values reported for fresh aortas.

Therefore, we performed a tensile test for a piece of fixated

porcine aorta. A typical stress-strain curve in the linear

regime is presented in Fig. 2(d). From the slope between

1.0% and 2.0% strain, we extract an average Young’s modu-

lus of 160 6 20 MPa. The process of fixation increases the

stiffness of the aorta piece by two orders of magnitude with

respect to a fresh porcine aorta due to denaturation of the

proteins by alcohol and cross-linking by paraformaldehyde.

We calculate from Eq. (3) the Maxwell strain by taking

the extracted value of 26 for the static dielectric constant,

and a Poisson ratio of 0.3.45 We calculate for the proportion-

ality constant between strain and electric field squared a

value of �1.1� 10�18 m2/V2. This value is about half of the

experimentally determined slope, cf. Fig. 2(c), meaning that

about half of the strain is due to Maxwell stress. The other

half of the strain is due to electrostriction, leading to an

extracted electrostrictive coefficient, Q33, of �17.4 m4/C2.

We note that this coefficient can be estimated from the

empirical linear relation for the absolute value of the hydro-

static electrostrictive constant Qh ¼ 1/e0erY.40,46 A theoreti-

cal derivation for electrostrictive polymers is reported based

on a microscopic Debye/Langevin formalism.47 The calcu-

lated value of 27 m4/C2 is in fair agreement with the experi-

mentally extracted value for the aortic wall.

Our measurements at electric fields up to 6 MV/m

allowed us to demonstrate that the strain as a function of elec-

tric field is a parabola, i.e., the strain depends on the electric

field squared. In contrast, reported PFM measurements were

performed at much lower fields up to only 0.1 MV/m. To

compare the local and global datasets, we approximated our

global strain/electric field curve as a straight line. At low

fields, we then obtain a slope of 2 pm/V, which could explain

the value of 1 pm/V as extracted from the reported local PFM

measurements.

Our global strain measurements on aortic walls are at var-

iance with reported PFM measurements.21–24 Piezoresponse

force microscopy is a powerful tool and well-established in

the ferroelectric community.25,26,48–51 However, it was dem-

onstrated to be prone to artifacts.52–54 We deliberately tried,

but failed to reproduce the PFM phase switching. The

reported switching might be due to voltage gated ion channels

or reorientation of dipoles, which are “internally biased out-

ward” in the aorta. These responses are not ferroelectric but

remain intriguing and open for further investigation.
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