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Abstract—This paper presents a novel Graph Optimal Trans-
port (Graph OT) framework for analyzing and aligning plant
structures across different growth stages and transformations.
Our method extends existing graph matching techniques by
incorporating domain-specific botanical features and employing
a multi-scale matching strategy that captures both local and
global structural characteristics. The framework combines mul-
tiple feature representations, including node descriptors, spectral
embeddings, Node2Vec embeddings, and relative positions, to
construct an augmented cost matrix for optimal transport-
based matching. We evaluated our approach on a dataset of 50
distinct plant structures under various transformations, including
rotation, deformation, and partial matching scenarios.

The results indicate that our Graph OT framework signifi-
cantly outperforms traditional optimal transport (OT) methods,
achieving node-matching accuracy scores of 0.75 for rotated,
0.74 for deformed structures, 0.67 for cut structures, and 0.71
for structures with skipped nodes. Our approach demonstrates
particular robustness in handling complex transformations. This
method provides a powerful tool for botany applications such
as crop management, growth modeling, and automated pruning
systems.

Index Terms—Optical Transport, Graph Theory, Spectral
Embedding, Plant Matching, Structural Alignment

I. INTRODUCTION

The study of plant structures and their growth patterns is
a crucial area of research in botany, agriculture, and environ-
mental science [1]. Plant registration, the process of align-
ing and matching structural representations between different
specimens, enables transformative applications in plant science
and agricultural technologies.

Traditional approaches to plant structure analysis have been
constrained by manual measurement techniques and simplified
representations that inadequately capture the intricate morpho-
logical complexities of plant architectures. In recent years,
the advent of high-resolution 3D scanning technologies has
enabled researchers to capture detailed representations of plant
structures, creating an urgent need for more sophisticated
computational methods to analyze and compare complex plant
datasets.

The potential of plant registration extends beyond mere
structural analysis. By establishing precise structural corre-
spondences, robot policies can be transferred between different
plant specimens, enabling comparative analysis of growth pat-
terns and architectural characteristics. This approach paves the

Fig. 1: The registration of plant structures involves aligning
graphs, where the red graph represents the source and the blue
graph represents the target. Meanwhile, green lines indicate the
matches identified between these graphs.

way for developing generalized learning algorithms capable of
operating across multiple plant types, bridging the gap between
individual plant studies and broader botanical understanding.

This paper presents a novel approach to perform registration
between two plants using Graph Optimal Transport (Graph
OT), a framework that combines graph theory, optimal trans-
port, and machine learning techniques. Our method aims to
address several key challenges in plant structure analysis:

1) Examination and alignment of plant structures from
various angles;

2) Comparison and alignment of plant structures through-
out various deformations, as a plant is not a rigid object;

3) Assessment and alignment of plant structures in trimmed
versions of the plants.

Using recent advancements in graph comparison and opti-
mal transport theory, our approach offers a robust and flex-
ible framework for plant registration. The proposed method
extends existing graph matching techniques by incorporating
domain-specific features relevant to plant morphology and by
employing a multi-scale matching strategy that captures both
local and global structural characteristics. Through this work,
our aim is to contribute to the field of computational botany
by providing a powerful tool for analyzing plant structures,
which can aid in various applications such as crop harvesting,



growth modeling, and plant pruning. The main contributions
of this paper are:

1) Development and use of a novel 2D plant graph dataset
to test plant structure analysis techniques.

2) An extended Graph Optimal Transport framework
tailored for plant registration, incorporating domain-
specific features and multi-scale matching.

3) A comprehensive evaluation demonstrating effectiveness
across various transformation scenarios.

The paper is organized as follows: Section II provides
mathematical background on Optimal Transport. Section III
summarizes the main related works in the field. Section
IV describes the proposed Graph Optimal Transport (Graph
OT) framework in detail. Section V introduces our novel
2D plant graph dataset created for evaluating graph match-
ing algorithms. Section VI presents experimental results and
comparisons with existing methods, and a detailed analysis
of the Graph OT framework’s registration capabilities across
different plant structure transformations. Finally, Section VIII
concludes the paper with a discussion of the implications of
our work and potential directions for future research.

II. BACKGROUND

Optimal Transport (OT) is a mathematical framework that
has gained significant attention in various fields, including
machine learning, computer vision, and data analysis [2]. It
provides a principled way to compare and align probability
distributions, making it particularly useful for comparing struc-
tured data such as graphs [3].

The concept of Optimal Transport dates back to the work
of Gaspard Monge in the 18th century [4], who formulated it
as a problem of efficiently moving piles of soil. In the 1940s,
Leonid Kantorovich generalized this problem, leading to what
is now known as the Monge-Kantorovich problem [5].

Let µ and ν be two probability measures defined in the
spaces X and Y , respectively. The Optimal Transport problem
aims to find a transport plan π that minimizes the cost of
moving the mass from µ to ν. This can be expressed as follows

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) (1)

where c(x, y) is a cost function that defines the cost of moving
the mass from x to y, and Π(µ, ν) is the set of all joint
probability measures in X × Y with marginals µ and ν.

A particularly important concept in OT is the Wasserstein
distance, also known as the Earth Mover’s Distance (EMD)
[6]. For discrete probability distributions p and q, the Wasser-
stein distance of order p is defined as:

Wp(p, q) =

 inf
π∈Π(p,q)

∑
i,j

πijd(xi, yj)
p

1/p

(2)

where d(xi, yj) is a distance metric between points xi and yj .
Optimal transport has been successfully applied to graph

comparison tasks [3]. In these applications, graphs are typi-
cally represented as probability distributions over their nodes

or edges, and the OT framework is used to find an optimal
alignment between these distributions.

The Gromov-Wasserstein distance [7] is particularly rele-
vant for graph comparison, as it allows for comparing distri-
butions that lie in different metric spaces. This is crucial for
graphs, as they often do not share the same set of nodes.

While the OT problem has a clear mathematical formu-
lation, solving it efficiently for large-scale problems can be
challenging. Various algorithms have been proposed to address
this, including: 1) The Hungarian algorithm for the linear
assignment problem [8], 2) the Sinkhorn algorithm for entropic
regularized OT [9] and 3) approximation methods for large-
scale OT [10].

These computational advances have made OT increasingly
practical for real-world applications, including the comparison
and alignment of complex structures like graphs and plants.

In this work, we explore how these concepts from Optimal
Transport can be applied and extended to the specific problem
of graph registration, incorporating additional graph-theoretic
features to enhance the alignment process.

As a matter of fact, graph theory provides a powerful
framework for representing and analyzing complex structures,
including plant architectures. A graph G = (V,E) consists
of a set of vertices V and a set of edges E connecting
these vertices. In the context of plant structures, the vertices
can represent branch junctions or endpoints, while the edges
represent the connections between these points.

Graph-based representations of plants offer several advan-
tages:

1) They capture the topological relationships between dif-
ferent parts of the plant.

2) They can incorporate additional attributes such as branch
lengths, angles, and other morphological features.

3) They allow for the application of well-established graph
algorithms and analysis techniques.

The next section highlights the main application devel-
opments of graph-based optimal transport related to plant
matching.

III. RELATED WORK

Previous work has explored the use of graphs in plant
structure analysis, including the development of multiscale tree
graphs [11] and the application of graph-based methods for
plant registration [12].

The application of Optimal Transport (OT) to graph com-
parison tasks has led to the development of Graph Optimal
Transport (Graph OT) methods. These approaches aim to
find correspondences between nodes in different graphs by
formulating the problem as an optimal transport task.

Recent work in this area includes Vayer et al. [3], who pro-
posed a framework for comparing graphs using the Gromov-
Wasserstein distance, allowing for the comparison of distri-
butions in different metric spaces. Additionally, Maretic et
al. [13] introduced a GOT framework that leverages both
local and global graph structures for more accurate matching.
Moreover, Marectic et al. [14] improved their GOT framework



by presenting fGOT, an approach that utilizes filters to refine
the algorithm’s performance and manage incomplete graphs.

While GOT methods have not been widely applied to
plant structure analysis, efforts have been made to develop
registration techniques for plant point clouds. Recent research
by the University of Bonn has made significant strides in
plant registration techniques. Chebrolu et al. [12] developed a
novel approach to register spatio-temporal plant point clouds,
focusing on phenotyping applications. Their method employs
deep learning to learn optimal features for matching plant
structures across different time points. This work addresses
similar challenges in plant structural comparison but differs
methodologically from GOT approaches.

Although their work addresses similar challenges in plant
structural comparison, there are key methodological differ-
ences. Chebrolu et al. [12] transform point cloud data into
skeletal graph representations as an intermediate step, whereas
our approach operates directly on graph structures. This
distinction is crucial: we focus on graph-level registration
techniques, treating the graph extraction as a preprocessing
step outside the scope of our primary registration method.
Also, the matching itself is done with non-rigid ICP, which
is not the case for us.

Research focusing on spatial-temporal matching of plant
structures provides valuable information on the challenges of
the problem of plant alignment [15], [16]. These works are
complementary to our graph-based optimal transport approach.
By targeting different aspects of the plant registration problem,
these studies collectively advance our understanding of com-
putational methods for analyzing plant morphology.

The related work section highlights the potential of employ-
ing Graph Optimal Transport techniques for plant registration.
By integrating the advantages of graph-based representations,
optimal transport theory, and domain-specific plant character-
istics, our research seeks to improve current advances in plant
registration. In the subsequent section, we will elaborate on
our novel Graph OT-based approach to plant registration and
alignment.

IV. GRAPH OPTIMAL TRANSPORT FOR PLANT STRUCTURE
ALIGNMENT

This section presents a novel algorithm for aligning and
comparing plant structures using an extended Graph Opti-
mal Transport (Graph OT) framework. Our approach builds
upon recent advancements in graph comparison using Opti-
mal Transport, while incorporating domain-specific features
relevant to plant structures.

Figure 2 presents the complete pipeline of our proposed
method. The algorithm consists of several key stages, each
designed to capture different aspects of the plant structure
comparison problem.

The pipeline begins with two input graphs (G1 and G2)
representing the plant structures to be compared. These graphs
are processed in parallel during the feature extraction phase,
which calculates four different feature types: Node Descrip-
tors, Spectral Embeddings, Node2Vec Embeddings, and Rel-

ative Positions. Each feature type will be discussed in greater
detail later in this section.

These features are then combined to construct an augmented
cost matrix, which serves as input to the hierarchical matching
process. The matching process employs Optimal Transport
principles to find correspondences between nodes while main-
taining both local and global structural consistency.

The final stage involves a RANSAC-based refinement step
that helps to account for geometric transformations between
the plant structures. The pipeline outputs the matched nodes,
which can then be used for accuracy calculation and subse-
quent analysis tasks.

This integrated approach allows us to leverage both struc-
tural and spatial information effectively, making the matching
process robust to various types of variations in plant structures,
including rotations, deformations, and partial matches.

A. Feature Extraction

To capture the structural and positional information of the
plant, we compute several node-level features and embeddings.
which are comprised of the following steps.

1) Relative Positions: To mitigate the sensitivity to global
graph transformations, we compute the positions of the nodes
relative to the centroid of the graph. Given a graph’s original
node positions of a graph pvv ∈ V , we first normalize these
positions. We then compute the centroid of the graph c and
define the relative position of each node as p′v = pv − c. This
transformation ensures that the graph structure is invariant to
global translations, the topological relationships are preserved
and the node positions are comparable across different graph
instances.

2) Node Descriptors: In our novel approach to enhance the
graph matching process, we introduce a comprehensive set of
node-level features that capture both local and global structural
information of the plant. For each node v ∈ V , we compute
the following unique combination of graph-theoretic features:

f(v) = [d(v), c(v), e(v), b(v), ec(v), cl(v), dr(v)] (3)

For each node v ∈ V , we compute a set of local and global
topological features. The degree d(v) represents the number
of edges connected to the node, capturing the branching
complexity at each point. The clustering coefficient c(v) mea-
sures the interconnectedness of a node’s neighboring nodes,
indicating the compactness of local branch structures. Eigen-
vector centrality e(v) assigns importance to a node based on
the significance of its neighbors, highlighting key structural
junction points. Betweenness centrality b(v) quantifies how
often a node lies on the shortest paths between other nodes,
identifying critical connective branches. Eccentricity ec(v)
measures the maximum distance from a node to all other
nodes, characterizing the node’s structural extremity. Close-
ness centrality cl(v) captures a node’s proximity to all other
nodes, indicating its centrality within the plant structure. The
distance from the root dr(v), calculated as the shortest path
distance from the node to the plant’s root, provides information
on the hierarchical positioning of the node.



Graph G1 Graph G2Input Graphs

Node
Descriptors

Spectral
Embeddings

Node2Vec
Embeddings

Relative
PositionsFeature Extraction

Augmented Cost MatrixCost Matrix Computation

Hierarchical Matching

RANSAC Refinement

Matching Process

Matched Nodes

Accuracy Calculation

Output

Fig. 2: Pipeline for graph matching and analysis, with aligned labels and connecting lines.

3) Spectral Embeddings: We compute the spectral embed-
ding of the graph using the eigenvectors of the normalized
Laplacian matrix L, defined as

L = I −D−1/2AD−1/2 (4)

where A is the adjacency matrix and D is the degree matrix.
We use the eigenvectors as a low-dimensional representation
of the graph structure.

4) Node2Vec Embeddings: To capture higher-order neigh-
borhood information, we employ a simplified version of ran-
dom walk-based embedding, inspired by Node2Vec [17]. Our
implementation differs from the original Node2Vec in several
key aspects:
Unbiased Random Walks: Unlike Node2Vec, which uses
biased random walks controlled by parameters p and q, our
implementation uses simple unbiased random walks. For each
node v, we perform a random walk of fixed length:

walk(v) = (v0 = v, v1, . . . , vl) (5)

where l is the walk length, and each vi+1 is chosen uni-
formly at random from the neighbors of vi. Fixed Walk
Length: Our walks have a fixed length equal to the number
of nodes in the graph, whereas Node2Vec typically uses
shorter, parameterized walk lengths. Embedding Generation:
We use Word2Vec [18] to generate embeddings from these
walks, similar to Node2Vec. For each node v, we compute an
embedding ϕ(v) ∈ Rd, where d is the embedding dimension.

B. Cost Matrix Definition

This simplified approach retains the ability to capture some
higher-order neighborhood information while being computa-
tionally less expensive than the full Node2Vec algorithm. The
resulting embeddings contribute to the cost matrix used in the
optimal transport problem:

Cij = . . .+ wn|ϕi − ϕj |2 + . . . (6)

where wn is the weight for the embedding component in the
cost matrix. Although this approach loses some of the fine-
grained control over the exploration-exploitation trade-off that
Node2Vec offers, it provides a computationally efficient way to
incorporate higher-order structural information into our graph
matching process.

In short, the proposed cost matrix C for Graph Optimal
Transport is constructed by combining the different feature
representations:

Cij =ws∥si − sj∥2+
wf∥fi − fj∥2+
wn∥ϕi − ϕj∥2+
wp∥prel,i − prel,j∥2

(7)

where si, sj are spectral embeddings ; fi, fj are node descrip-
tor features ; ϕi, ϕj are Node2Vec embeddings ; prel,i, prel,j
are relative positions ; ws, wf , wn, wp are weights for each
component.



C. Hierarchical Matching

The hierarchical matching approach employs a sophisticated
node neighborhood analysis to refine graph matching results.
The core innovation lies in using a ”hop-based descriptor”
strategy that captures the local topological context of each
node beyond simple structural features. This approach involves
neighborhood exploration, where the algorithm computes de-
scriptors by counting the number of unique neighbors within
progressively larger hop distances (1-hop, 2-hop, etc.).

The process begins by solving the Optimal Transport prob-
lem using the Earth Mover’s Distance (EMD):

min
π∈Π(p,q)

∑
i,j

πijCij (8)

where p and q are uniform distributions over the nodes of
the two graphs. Following this, we extract the initial matches
greedily from the transport plan π.

After initial matching using optimal transport, the algo-
rithm applies a similarity criterion. It checks the hop-based
descriptors of matched node pairs, retaining nodes only if
their neighborhood structures are sufficiently similar, using
a similarity threshold. This refinement process effectively
filters out potentially incorrect initial matches by ensuring that
matched nodes have comparable local graph structures, not just
similar individual node properties. Let H(n, k) represent the
number of unique neighbors of node n within k hops. The
hop similarity is defined as:

Hop Similarity = 1−∥H(n1,max hops)−H(n2,max hops)∥
max hops

(9)
By incorporating this hierarchical matching strategy, the al-
gorithm enhances matching precision by considering not just
individual node characteristics, but their broader topological
context within the graph. The method is particularly valuable
in scenarios with complex graph structures where simple one-
to-one node matching might fail to capture intricate structural
relationships. This approach allows for both local and global
consistency in matching, addressing the multi-scale nature of
plant structures and providing a robust method for comparing
and aligning plant structures represented as graphs.

D. RANSAC Refinement

In order to incorporate possible geometric changes between
the plant structures, we utilize a RANSAC-based refinement
step. Initially, we used preliminary matches to approximate the
transformation between the two graphs. The transformation is
then applied to the unmatched nodes. In addition, additional
matches are identified on the basis of proximity within the
transformed space.

V. DATASET

To evaluate graph matching algorithms, we propose a novel
2D plant graph dataset. The dataset consists of 50 two-
dimensional plant graphs, where each graph G = (V,E) rep-
resents a plant structure. Vertices V represent branch junctions
or endpoints, while edges E represent the physical connections

between these points. Each vertex contains spatial coordinates
(x, y). To maintain compactness and enhance computational
efficiency, the graphs are restricted to at most 25 vertices.

To evaluate algorithm performance under different scenarios
commonly encountered in plant analysis, we apply four types
of transformations, which are shown in Figure 3:

1) Rotation: Each base graph is rotated at angles θ ∈
{0°, 10°, 20°, . . . , 350°} around its centroid.

2) Deformation: Simulates natural plant movement
through local perturbations and global warping.

3) Cutting: Simulates partial plant structures by removing
sections of the graph while preserving the largest con-
nected component.

4) Node Skipping: Simulates missing or occluded nodes
by removing nodes and reconnecting edges to the nearest
remaining nodes.

To summarize, the complete dataset includes:
• 50 base graphs
• 1750 rotated variants (50 graphs × 35 rotation angles)
• 50 deformed variants
• 50 cut variants
• 50 skipped node variants

VI. RESULTS

The evaluation encompasses 50 distinct plant structures,
each represented as a graph with varying complexity and
structural characteristics. Our primary metric is node match-
ing accuracy, which quantifies the proportion of correctly
identified correspondences between nodes in pairs of plant
graphs. This metric directly reflects the algorithm’s ability to
identify and match corresponding structural elements across
different plant representations. Our experimental evaluation
demonstrates the effectiveness of the proposed Graph Optimal
Transport (Graph OT) framework for plant structure alignment.
By conducting thorough evaluations on a varied dataset of
plant configurations, we measure the performance of our
approach relative to a traditional Optimal Transport (OT), ICP
and PRBoNN [12].

A. 2-D Plant Registration with Graph OT

We evaluated the performance of our Graph Optimal Trans-
port (Graph OT) framework in matching plant structures under
rotation transformations. As shown in Figure 4, our method
demonstrates robust performance when matching original plant
structures to their rotated counterparts. The accuracy distri-
bution across all plants reveals strong matching capabilities,
with the majority of plants achieving accuracy scores above
0.7. The Graph OT framework consistently outperforms the
baseline OT method, which struggles to establish correct
correspondences under rotation (average accuracy ≈ 0.1).

The distribution plot indicates that while performance varies
across different plant structures, the Graph OT framework
maintains reliable matching capabilities. This robust perfor-
mance under rotation transformations is particularly note-
worthy as it establishes a strong foundation for handling



(a) Original (b) Rotated (c) Deformed (d) Cut (e) SkippedNode

Fig. 3: All the different transformation types applied on the point clouds.

Fig. 4: Accuracy Distribution across all plants: Original ⇒ Rotated

more complex structural variations in plant matching scenar-
ios. Beyond rotation, we also evaluated our framework on
three additional transformation types: deformation, cutting,
and node skipping. The Graph OT framework maintains strong
performance across all transformation types, achieving average
accuracies of 0.74 for rotated structures, 0.67 for cut structures,
and 0.71 for skipped node transformations.

The experimental results reveal a substantial performance
advantage of our Graph OT framework over the baseline OT
method. As illustrated in Figure 4, our approach consistently
achieves significantly higher accuracy scores across the entire
dataset. The Graph OT method demonstrates strong perfor-
mance, with average accuracy values of 0.75 across different
plant structures. Representing a marked improvement over the
baseline OT method.

B. Comparisons with State-of-the-Art Methods

Table I presents a comprehensive comparison between our
Graph OT framework and two state-of-the-art methods: ICP

and PRBoNN. The results demonstrate that Graph OT con-
sistently outperforms both alternatives in most transformation
types, with particularly notable improvements in handling
deformed and cut structures. While ICP shows competitive
performance in rotation scenarios, our method maintains su-
perior performance in more complex transformations where
traditional approaches struggle.

The performance distribution exhibits several notable char-
acteristics:

• The Graph OT algorithm frequently achieves near-perfect
matching scores (accuracy ≈ 1.0) for numerous plant
structures, particularly evident in standard configurations.

• Even in challenging cases, the Graph OT framework
maintains acceptable performance levels with accuracy
scores consistently above 0.4.

• The integration of multiple feature types enables robust
performance across varying plant structures.

The stark contrast in performance can be attributed to



TABLE I: Comparison of matching accuracy (mean ± std)
across different algorithms and transformation types.

Method Original Rotated Rotated Rotated
⇓ ⇓ ⇓ ⇓

Rotated Deformed Cut SkippedNode

OT 0.06± 0.05 0.06± 0.05 0.08± 0.07 0.07± 0.05
Graph OT (Ours)0.75± 0.20 0.74± 0.21 0.67± 0.24 0.71± 0.18
ICP 0.67± 0.14 0.61± 0.12 − −
PRBoNN [12] 0.33± 0.42 0.14± 0.24 0.21± 0.30 0.27± 0.39

several key methodological innovations. Our integration of
multiple feature types, including node descriptors, spectral
embeddings, and relative positions, enables the framework to
capture both local and global structural properties effectively.
This comprehensive feature representation, combined with
our hierarchical matching approach, proves to be particularly
advantageous when handling complex plant structures.

C. Ablation study of the Graph OT

To fully comprehend the role of each element in our Graph
OT framework, we executed a comprehensive ablation study.
We evaluated the performance of different method variants
by removing or altering specific features to understand each
component’s individual and collective significance. The anal-
ysis yielded detailed insights into each feature’s contribution
to the alignment of plant structures. The results of the ablation
study are summarized in Table II.

Excluding node descriptor features, which encapsulate both
local and global graph-theoretical properties, resulted in a
marked decrease in accuracy, particularly for intricate plant
structures. This highlights the crucial role of detailed node-
level data in distinguishing structurally similar branches.

Spectral embeddings, which capture fundamental topolog-
ical aspects, showed a significant impact when omitted. The
absence of a low-dimensional spectral representation, which
captures global structural similarities, led to a noticeable
performance deterioration.

The omission of Node2Vec embeddings, which capture
higher-order neighborhood information, marginally improved
the matching accuracy, as can be seen in Table II. This suggests
that such embeddings are not essential for simple graphs;
nevertheless, they contribute to improved matching accuracy
in more complex graphs.

The features of the spatial relationship, denoted by the rela-
tive positions of the nodes, were also identified as crucial. Re-
moving these geometric layout features greatly compromised
the framework’s performance, emphasizing the importance
of spatial relationship inclusion in distinguishing structurally
similar but geometrically distinct branches. The hierarchical
matching approach, which integrates global alignment with
detailed local refinement, proved to be superior, clearly ex-
ceeding simpler one-level matching methods. This multi-scale
strategy effectively tackles the complex, multi-dimensional
challenges in plant structure comparisons.

The findings from the ablation study highlight the syner-
gistic benefits of the Graph OT framework components. By
integrating node descriptors, spectral embeddings, Node2Vec

representations, spatial data, and hierarchical matching, our
method effectively captures both local and global structural
attributes. This comprehensive approach enables robust align-
ment of plant structures across a variety of transformational
scenarios, from rotational changes to partial structural distor-
tions. These results not only support our proposed methodol-
ogy, but also offer valuable insights for future advancements.
Researchers interested in graph-based plant structure analysis
can take advantage of these component-wise insights to create
more advanced alignment and comparison methods.

VII. DISCUSSION

While our method demonstrates strong overall performance,
certain patterns emerge in the error cases that warrant dis-
cussion. The higher variance observed in lower performing
plants suggests that specific structural configurations remain
a challenge for our approach. This is particularly evident in
the left portion of the accuracy distribution, where the method
shows increased variability in matching results.

The presence of occasional outliers in the performance
distribution indicates specific instances where the matching
process encounters difficulties. These cases often correspond
to particularly complex plant structures or situations where the
structural similarity between different parts of the plant leads
to ambiguous matching scenarios.

The stability of our method is demonstrated through the
consistent performance across different plant structures and
conditions. Trend analysis reveals that the method maintains
relatively consistent performance levels with fewer significant
drops in accuracy. This stability is particularly important for
applications that require reliable alignment of plant structure.

In conclusion, our experimental results demonstrate that the
proposed Graph OT framework provides a robust and effective
solution for plant structure alignment. Significant performance
improvements over traditional approaches, combined with
consistent accuracy across various plant structures, establish
our method as a viable tool for practical applications in plant
matching.

VIII. CONCLUSION

Our Graph OT framework introduces a novel approach
to plant structure matching, addressing critical challenges in
computational botany and plant structure analysis. By de-
veloping a sophisticated method that integrates multiple fea-
ture representations and a hierarchical matching strategy, we
have demonstrated a significant advancement in the accurate
alignment and comparison of plant structures across various
transformational scenarios.

The core strength of our approach lies in its compre-
hensive feature integration. By combining node descriptors,
spectral embeddings, Node2Vec representations, and relative
positioning, we have created a robust framework capable
of capturing both local and global structural characteristics
of plant architectures. The ablation study provides critical
insights into the contribution of each feature type, highlighting
the synergistic nature of our multidimensional approach.



Enhanced Descriptors Node2Vec Hierarchical Matching Position Cost Mean Accuracy Std Deviation

True False True True 0.8127 0.2020
True True True True 0.7932 0.1720
True True True False 0.7897 0.1715
True False False True 0.7863 0.2117
True False True False 0.7856 0.2004
True True False True 0.7793 0.1756
True True False False 0.7686 0.1794
False True True True 0.7611 0.1920
True False False False 0.7560 0.2095
False True True False 0.7450 0.1970
False True False True 0.7366 0.1936
False True False False 0.7215 0.2010
False False True True 0.7090 0.1993
False False True False 0.6797 0.1925
False False False True 0.6639 0.2036
False False False False 0.6298 0.1934

TABLE II: Ablation Study Configuration Performance

Fig. 5: Graph of a symmetric plant, with the target rotated by
180 deg

Our experimental results underscore the effectiveness of
the framework in different transformation types. With node
matching accuracies of 0.75 for rotated structures, 0.74 for
deformed structures, 0.67 for cut structures, and 0.71 for
structures with skipped nodes, the method consistently outper-
forms traditional optimal transport and other state-of-the-art
techniques. This performance demonstrates the framework’s
capability to manage complex structural variations, establish-
ing it as a useful tool for practical applications in plant analysis
and plant matching.

However, the method is not without limitations. Perfor-
mance can be compromised with extreme rotations (> 90°)
and highly symmetric structures, as can be seen in Figure 5.
Furthermore, computational complexity increases significantly
with graph size, potentially limiting applications to very large
plant structures (> 1000 nodes).

This study suggests several promising directions for future
research. First, extend this framework to the matching of
three-dimensional plant structures. Second, scale it up to ac-
commodate larger plant structures. Third, incorporate domain-
specific botanical constraints to enhance matching accuracy.
An additional crucial step is the extraction of graphs from
point cloud data generated by sensors.

The promising results of our Graph OT framework open

new avenues for computational plant analysis. By providing
a powerful tool for structural alignment, our approach can
significantly contribute to the field of computational botany
and its practical applications in agriculture and botanical
research.
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