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Pruning Latent Neurons in Autoencoders using Early-Bird Tickets

Rembrandt Klazinga Marco Loog

Abstract
Autoencoders seek to encode their input into a
bottleneck of latent neurons, and then decode it
to reconstruct the input. However, if the input
data has an intrinsic dimension (ID) smaller than
the number of latent neurons in the bottleneck,
this encoding becomes redundant. In this paper,
we study using the Early-Bird (EB) technique,
a structural pruning method, to regularise and
prune the redundant latent neurons. We do this for
both linear-layer and convolutional autoencoders,
on 1D and 2D data. We find that increasing the
strength of EB regularisation specifically on the la-
tent layer can lead to all redundant latent neurons
(and no more) being removed in one training run.
We also compare using EB in this manner to ex-
isting ID estimation methods: we find it performs
comparable to older methods like local-PCA, also
being relatively robust to noise, but that it does not
match the best existing ID estimation methods.

1. Introduction
Autoencoder networks have historically been used as fea-
ture extraction methods (Hinton & Zemel, 1993), and more
recently in generative models (Goodfellow et al., 2014). An
autoencoder is trained to compress the input into a latent
layer, such that these latent values can be used to reconstruct
the original input. Although the latent layer is the bottleneck
of the network, it may still be the case that there are too
many latent neurons, if the dataset on which the network is
trained has an underlying distribution that can be expressed
with fewer variables than there are latent neurons. This num-
ber of variables needed to describe the dataset is know as
the intrinsic dimension (ID) (Camastra & Staiano, 2016). In
such a case, the network nonetheless uses all of the available
latent neurons, resulting in an encoding that is redundant
(Laakom et al., 2022).
Conventionally, the redundant parts of a network can be
removed using structured network pruning1. Structured
pruning aims to cause as little loss increase as possible per
removed component, and therefore tends to prune layers
that are large relative to their importance in the network.

1Structured pruning is covered in the Background Knowledge

(a) Images with an intrinsic dimension of 1: each image is defined
only by the horizontal frequency.

(b) Autoencoder with 1 latent
neuron. The encoding is a bijec-
tive mapping to the horizontal
frequency.

(c) Autoencoder with 2 latent
neurons. Note how neither neu-
ron is a bijective mapping to the
horizontal frequency.

(d) Images from a overlaid on b. When the latent neurons match
the ID, the latent space can become meaningful: in this case, it
is segmented into three sections, corresponding to the number of
vertical lines in the image.

Figure 1. The impact of a (mis)matching number of latent neurons.

However, the latent layer is already the smallest layer in
the network, and pruning it will have the largest immediate
impact on the loss, even if the encoding is redundant. This
raises the question if naively applied structured pruning can
recognise and remove redundant latent neurons, which we
investigate in this paper.

There are two motivating factors for pruning redundant
latent neurons. Firstly, pruning redundant neurons has a
regularising effect on the latent space. As the example
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in Figure 1 shows, an autoencoder with too many latent
neurons may have a redundant and less meaningful latent
space.

Secondly, being able to find the correct number of latent
neurons can be used in other fields: this can be seen as
equivalent to finding the intrinsic dimension, which is an
active field of study (Camastra & Staiano, 2016). A caveat
for this equivalence is that the network must have sufficient
complexity in the encoder and decoder to make the required
transformation to and from the latent space.

To structurally prune latent neurons, we use the Early-Bird
(EB) technique (You et al., 2019). EB regularises channels
and neurons using the weight parameter of Batch Normal-
isation layers (Ioffe & Szegedy, 2015), and prunes those
with the smallest weights. EB is notable because it needs
only a fraction of a training run before it prunes the network.
This is an improvement in efficiency over other structured
pruning techniques, which often require a network to be
fully trained, possibly multiple times, before pruning can
occur.

The main research question of this paper is as follows:

What is the relation between the intrinsic dimension of a
dataset and the weights of latent neurons in networks trained
with the Early-Bird technique?

The following sub-questions are considered:

• Is this relation dependent on hyperparameters which
have to be optimised separately, and if so: why?

• How effective is this application of the EB technique
compared to existing methods of intrinsic dimension
estimation?

The first sub-question is relevant because the EB technique
has default values for its hyperparameters, but the novel ap-
plication of EB in this paper might increase the sensitivity to
hyperparameters, hence requiring a hyperparameter search
each time the technique is applied in a different setting. A
hyperparameter search would negate the key property of the
EB technique that it can otherwise be applied in a single
training run.
The second sub-question considers the use of the EB tech-
nique in the existing field of intrinsic dimension estimation,
which has other requirements than the regularisation of au-
toencoders (these requirements are described in Section 2
and Section 5.4).

In researching these questions, this paper produces the fol-
lowing contributions:

• We demonstrate that a much higher regularisation
strength applied specifically on the latent layer allows

the Early-Bird technique to find the appropriate num-
ber of latent neurons for a given dataset. We do this on
both 1D and image datasets.

• We propose an explanation for how this effect works,
which also gives a possible cause for an observed dif-
ference in performance on convolutional autoencoders.

• We propose a method to prevent overpruning, by scal-
ing the regularisation strength based on the loss.

• We compare removing redundant latent neurons with
EB to contemporary intrinsic dimension estimation
techniques.

The paper has the following structure. In Section 2, re-
lated and background work is discussed. In Section 3, we
describe how synthetic data is constructed to have a spe-
cific ID, and how we train autoencoders on this data. In
Section 4, the results of training are shown, as well as an
experiment comparing to other ID estimation methods. In
Section 5, the experimental results, potential weaknesses
in the methodology, and future research directions are dis-
cussed. In Section 6 the paper is summarised and concluded.

Appendix A describes the pilot experiment in detail, Ap-
pendix B provides details for reproducing the results in this
paper, and Appendix C contains additional figures.

2. Preliminaries and Related Work
This section covers fundamental work on which this paper
builds, as well as comparable methods for regularising au-
toencoders and intrinsic dimension estimation. Due to the
length of this section, it is divided into primary and sec-
ondary topics, where the primary topics relate most directly
to the work in this paper, and the secondary topics are more
focused on alternative views on the work in this paper.

2.1. Primary topics

Lottery Tickets. Lottery Tickets are a form of network
pruning. Their introduction challenged previous assump-
tions about how network pruning can be applied and laid
the foundation for Early-Bird tickets, which we use.
Frankle & Carbin (2018) first proposes the Lottery Ticket
(LT) hypothesis:

“A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in
isolation—it can match the test accuracy of the original
network after training for at most the same number of itera-
tions.” (Frankle & Carbin, 2018)

The key novelty in the LT hypothesis is that the trainable sub-
network exists as soon as the parent network is initialised;
no pre-training of the parent network is required before
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pruning. Conversely, before this point, it was assumed that a
network can only be pruned late in training, or after training
is finished; an untrained, pruned network was said to be
more difficult to train (Li et al., 2016).
The aforementioned subnetwork is defined by a binary mask
M over the network. The mask and the initial (untrained)
weights together form the Lottery Ticket. Frankle & Carbin
demonstrate the LT hypothesis with unstructured pruning.
Though they show the existence of LTs, they do not provide
a method for extracting these tickets early in training.
Liu et al. (2018) contests the results of Frankle & Carbin by
demonstrating that the initialisation of LTs does not always
matter in the case of unstructured pruning (which Frankle
& Carbin use), and never matters in the case of structured
pruning. Since we use the Early-Bird technique, which is
a structured method, we apply a similar experiment to Liu
et al. (2018), and reach the same conclusion in Appendix A:
the initialisation of the ticket does not matter.

Early-Bird. You et al. (2019) introduces Early-Bird (EB)
Tickets. The EB technique is different from LT in a number
of ways. Firstly, the pruning is changed to be structured,
meaning that entire components are removed from the net-
work, instead of sparsifying the weight matrices. Secondly,
EB improves upon LT by requiring less training time before
the subnetwork mask can be extracted: a stopping criterion
is added, based on the Hamming distance between recent
binary pruning masks, which triggers when this Hamming
distance stays below a given threshold.
Chen et al. (2020) applies EB to BERT, and You et al. (2021)
translates EB to the field of Graph CNNs. In this paper, we
also use the Early-Bird technique in a new domain (autoen-
coders), but do not need to alter the implementation due to
the similarity to a regular CNN.

Intrinsic dimension. We previously introduced the idea
of a theoretical “correct” number of latent neurons. This
is related to the intrinsic dimension (ID), a statistical and
signal processing term for the number of variables required
to describe a dataset or signal. Estimating the intrinsic di-
mension is a long-studied problem. Methods can generally
be divided into two categories (Camastra & Staiano, 2016):
global and local.
Global methods consider the entire dataset as lying on a sin-
gle manifold, and try to estimate the ID of this manifold. For
this, simple PCA can be used (by counting nonzero eigen-
values), but this tends to overestimate the ID. Variations of
PCA have been formulated to resolve this (Bishop (1998),
Zou et al. (2006), Li & Tao (2010)). Other categories of
global methods are Multidimensional Scaling (Cox & Cox,
2008) and Fractal-based methods (Grassberger & Procaccia,
2004).
Conversely, local methods for ID estimation consider only
the neighbourhood of a single datapoint at a time, and esti-
mate the ID of the local topology. This allows local meth-

ods to produce different ID estimates for different parts
of the dataset, though they can still be used to determine
an average ID over the whole dataset. Categories of lo-
cal methods include local-PCA (Fukunaga & Olsen, 1971),
nearest-neighbour (Farahmand et al., 2007; Facco et al.,
2017) and maximum-likelihood (Levina & Bickel, 2004;
Amsaleg et al., 2019).
A complicating factor in ID estimation is that the correct ID
is often ambiguous, as Campadelli et al. (2015) points out:
depending on the scale at which the dataset is viewed, the
apparent ID can have different values. One reason for this is
noise: any dimension of the data that contains independent
noise can arguably be seen as an intrinsic dimension needed
to fully represent the signal. However, this is usually not
the desired answer, and ID estimation techniques attempt
to be robust to such noise. This is also called multiscale
robustness.
Pruning redundant latent neurons can be seen as a form of
ID estimation: if all redundant latent neurons are removed,
and the remaining number allows any point in the dataset to
be encoded, this number of latent neurons is the ID. By the
above categorisation, ours would be a global method, since
the autoencoder trains on the entire dataset. We compare
our method to both local and global methods in Section 4.3.

2.2. Secondary topics

Neural Architecture Search. When structured network
pruning is used to find a better topology for a network, it can
be thought of as a type of Neural Architecture Search (NAS).
NAS seeks to construct a fitting network topology for a given
problem. A NAS method generally consists of three parts
(Elsken et al., 2019): a search space of possible topologies,
a strategy to navigate the search space, and a method to
estimate the performance of a single candidate. Categories
of search strategies include evolutionary approaches (Real
et al., 2019; Miller et al., 1989), reinforcement learning
(Zoph et al., 2018) and Bayesian optimisation (Domhan
et al., 2015). Model compression is also closely related to
NAS, since it can produce a smaller topology that is better
suited to the problem. Since Early-Bird is based on on the
model compression method Network Slimming (Liu et al.,
2017), we also perform a type of NAS: the search space
is the set of possible autoencoder topologies smaller than
the starting topology, while the strategy for navigation is
regularising neurons and channels during training.

Dimensionality reduction. Autoencoders with bottle-
necked latent spaces implicitly perform dimensionality re-
duction when encoding the input data into the latent layer.
Besides autoencoders, many other forms of classical and
learned dimensionality reduction exist. These can gener-
ally be categorised as either feature selection, or feature
extraction. Feature selection does not transform features,
but only seeks to find a subset that best explains the dataset.
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Figure 2. Parameterised Autoencoder. The hyperparameters governing the topology (number of latent neurons, etc.) are shown in bold.

Feature selection methods are typically not learned tech-
niques, but instead a genetic algorithm (Shah & Kusiak,
2004), or a probabilistic technique like simulated annealing
(Meiri & Zahavi, 2006). By contrast, feature extraction
combines features to create novel ones, for example Kernel
PCA (Schölkopf et al., 1997). Autoencoder networks are
also widely applied as a form of feature extraction (Hinton
& Zemel, 1993; Xing et al., 2016; Zabalza et al., 2016), with
the advantages that they can be nonlinear, and scale well
on image data using convolutional layers. Because of these
advantages, we also focus on autoencoders.

Regularising the latent space of autoencoders. Without
regularisation of some kind, autoencoders tend to have a
latent space that is not usable for other applications, such
as generative models or human-interpretable features. Ex-
tensions of autoencoders exist for this reason. Variational
autoencoders (Kingma & Welling, 2013) make the latent
space more continuous by sampling each latent variable
from a learned parameterised distribution, and regularising
those parameters with the KL-divergence. This also makes
the latent space more suited for generative purposes. Sparse
autoencoders (Goodfellow et al., 2016) take a different ap-
proach. Instead of containing a physical bottleneck in the
number of latent neurons, they force a fixed proportion of
the neurons to be disabled in each forward pass, based on
the activation strengths. This allows the network to remain
dense in terms of parameters, but keeps the information flow
sparse, which helps with overfitting.
Similarly to this work, Laakom et al. (2022) attempts to
reduce the redundancy of latent neurons: they minimise
the pair-wise covariance between latent features, instead of
removing redundant neurons, as in this work.
The regularisation of the autoencoder in this paper does not
aim to enforce any kind of distribution of the latent variables,
such as in VAEs. Also, where sparse autoencoders disable
a fixed proportion of neurons, in this paper the number of
removed latent neurons depends on the L1 regularisation.

3. Methodology
In this section, we describe the implementation and purpose
of the paper’s experiments in detail. Broadly speaking,
an experiment consists of first constructing a dataset with a
known intrinsic dimension, and then training an autoencoder
with a number of latent neurons larger than the ID, while we
regularise the network with EB. We investigate if this results
in a visible relation between the weights of latent neurons
and the ID. Specific details for the purposes of reproduction
are given in Appendix B.

3.1. Model

The model used in the experiments is a standard autoencoder.
For 2D input data, the linear layers are partially replaced by
convolutional layers, as shown in Figure 2. This figure also
shows the four hyperparameters that determine the topology:
the number of latent neurons, the number of linear layers
around the bottleneck, the number of convolutional layers,
and a multiplier of the channel count.

3.2. Training and Early-Bird regularisation

We follow a typical training regime (App. B), with the
notable addition of Early-Bird’s L1 regularisation. This reg-
ularisation operates on Batch Normalisation layers, which
we will now explain in detail. A BatchNorm layer applies
two steps, first normalising an activation x:

x̂ =
x− µ√
σ2 + ϵ

, (1)

where µ is the sample mean, σ is the sample standard devia-
tion, and ϵ is some small value. The BatchNorm layer then
applies a scaling and shifting to the normalised activation:

y = γx̂+ β, (2)

where γ is called the weight parameter and β the bias, which
are defined per channel or neuron. Note that for the rest of
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the paper, we use the phrase “the weight of a neuron” to refer
to the weight parameter γ in the associated BatchNorm layer.
The EB technique performs sub-gradient L1 regularisation
on only the weight parameters: during training, after each
backward pass, the gradient of all weight parameters is
modified as follows:

gradγ = gradγ + λ · sign(γ), (3)

where gradγ is the gradient of the weight, and λ is the
regularisation strength. Note that because the gradient is
modified after the backward pass, this L1 regularisation does
not directly affect the rest of the network during the subse-
quent optimiser step. The indirect effects on the network
are discussed in Section 5.2: it is hypothesised that over
multiple training iterations, the sub-gradient regularisation
effect propagates through the network through the influence
on the loss.

If the absolute value of γ for a latent neuron goes below
10−4 due to the regularisation, it is considered disabled,
and the weight and gradient are permanently set to 0. This
removes any information the latent neuron could pass to
the decoder, though the bias is still a non-zero, learnable
parameter. We make this addition (which is not present in
EB) to ensure that no information can flow through disabled
neurons: without this cutoff, a latent neuron with a weight
of e.g. 10−5 might still be able to pass some information
through, despite ostensibly not being used. The impact of
this decision is discussed in Section 5.6.

3.3. Synthetic 1D Data

The goal of this experiment is to demonstrate whether the
intrinsic dimension of a dataset can be extracted using the
strength of the latent neurons during the training phase of
the Early-Bird technique. To control the ID, we construct a
synthetic dataset. A sample from this synthetic dataset is the
output of a function, which contains a number of random
variables: the number of random variables is equal to the
intrinsic dimension of the dataset.

(a) Synthetic data with an ID
of 1: each line is a datapoint,
and only the amplitude varies;
noise strength σ = 0.01.

(b) Increasing noise to σ =
0.1. Despite an ostensibly
more complex signal, the ID
is still 1.

Figure 3. Examples of synthetic data with an ID of 1.

For one-dimensional (vector) data, we use a sine function:

Sin1D(x) = A · sin((x− P ) · F ) +B, (4)

where A is the amplitude, P the phase, F the frequency and
B the bias. The intrinsic dimension can be set by leaving
some variables at a constant value, while defining others
as independent random variables. For example, if the am-
plitude and phase are random, and the bias and frequency
constant, the resulting datapoints can be completely ex-
plained by only two numbers (amplitude and phase).
The sine wave is sampled at 16 points, which produces a 16-
dimensional dataset sample. We then apply Gaussian noise
to each value. As was discussed in the ID section of the
Related Work, adding noise makes the true ID ambiguous,
but ID estimation techniques should still be robust to such
noise. An example of synthetic data with an ID of 1 is given
in Figure 3.

3.4. Synthetic Image Data

For 2D image data, on which a convolutional autoencoder
can be evaluated, we use a 2D sine, similarly to Equation (4):

Sin2D(x, y) = A·sin(max(Fx ·|x−P |, Fy ·|y−P |)). (5)

This produces a concentric, rectangular sine wave with ran-
dom frequency (Fx, Fy). The brightness of the rectangles is
controlled by A, and the phase of the wave is determined by
P . Examples of the produced synthetic images are shown
in Figure 4. A rectangular sine wave is chosen (instead of
e.g. an elliptical shape) so that the horizontal and vertical
frequencies are axis-aligned, meaning that each can theoreti-
cally be estimated with only a single kernel. This makes the
task well-suited for convolutional layers, meaning that the
model can be kept relatively small. A small model implies
faster training times and a lower risk of overfitting. This
simplifies the experiments.

Figure 4. Example of synthetic images for increasing D. The
variables are, in order of addition: X frequency, Y frequency,
amplitude and phase.
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3.5. Hyperparameters

There are three key hyperparameters that have to be set in
each experimental run.

• D, the dimensionality of the dataset, which is deter-
mined by the number of random variables in the gener-
ator function.

• L, the initial number of latent neurons in the autoen-
coder network, which we pick to be larger than D.

• λ, the strength of the BatchNorm regularisation. For
some experiments, this is defined per layer type, i.e.
λlinear ̸= λlatent ̸= λconv, referring to the linear, la-
tent, and (transpose) convolutional layers respectively.

4. Experiments
This section documents the results of the various experi-
ments. Experiment 1 applies the methodology in the 1D
case. Experiment 2 naively extends this to 2D, but finds that
the regularisation is applied too soon in training, while the
network is not yet fitted. Hence, a scaling of the regularisa-

tion is added, based on the current training loss. Experiment
3 compares the methodology to other intrinsic dimension
estimation techniques.

4.1. Experiment 1: latent neuron weights for high λ

We start by evaluating the weights of the latent neurons over
time in a linear-layer autoencoder, with D = 2 and L = 6,
meaning that there are theoretically 4 redundant latent neu-
rons. We vary λ from 10−4 to 100 (note that Early-Bird uses
λ = 10−4 by default). In Figure 5, we plot the weight (γ) of
all 6 latent neurons during training. It can be observed that
for 10−2.5 ≤ λ ≤ 10−1, the weights of four latent neurons
drop to zero, while the two remaining weights are stable.
Ostensibly, the four disabled neurons were the redundant
ones, and the remaining two latent neurons indicate that
D = 2.

We examine when this disabling effect occurs by evaluating
a wider range of hyperparameters in Table 1. D, λlinear,
and λlatent are now varied separately. In each cell of the
table, the number of active (|γ| > 10−4) latent neurons is
counted after training is complete.

(a) λ = 10−4 (b) λ = 10−3 (c) λ = 10−2.5 (d) λ = 10−2

(e) λ = 10−1.5 (f) λ = 10−1 (g) λ = 10−0.5 (h) λ = 100

Figure 5. Weight (γ) of each latent neuron over training epochs. L = 6 and D = 2.

Table 1. Hyperparameter search for experiment 1. Each value is the active latent neuron count after 20 epochs, median of 3 runs; L = 8;
boldface indicates that the median latent count matches D; the median-absolute-deviation is given if it is not 0.

D = 1 D = 2 D = 3 D = 4

λlat

λlin 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−3 1 1 0 4 2 2 5 3 3 7 (1) 4 3
10−2 1 1 0 4 2 2 3 3 3 5 4 3
10−1 1 1 0 2 2 2 3 3 3 4 (1) 3 3
100 0 1 0 2 2 2 3 3 3 4 3 3
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It can be observed that disabling all redundant neurons
occurs under a relatively wide range of hyperparameters.
There are two exceptions to this: under a high λlinear, and
for D = 4. However, there are still values for λ that disable
the correct number of latent neurons for all D:
(λlat = 10−3, λlin = 10−2), (λlat = 10−2, λlin = 10−3),
and (λlat = 10−1, λlin = 10−3). Figure 9 (App. C) shows
the weights of latent neurons using these values for λ.

4.2. Experiment 2: convolutional autoencoders

The setup of experiment 1 was replicated, but with a convo-
lutional autoencoder and image dataset instead of their 1D
equivalents. The results of this experiment differed greatly
from what was seen in experiment 1, as can be seen in Ta-
ble 2, which shows the number of remaining latent neurons:
it can be observed that for higher D, there is an increasing
proportion of runs where all latent neurons are removed.
There is also a sizeable proportion of runs that only leave 1
neuron active when D ≥ 2.

Table 2. Distribution of remaining active latent neurons when
naively extending experiment 1 to image data.

NEURONS D = 1 D = 2 D = 3 D = 4

0 11% 19% 22% 31%
1 42% 53% 47% 33%

2+ 47% 28% 31% 36%

We investigate this result in more detail in Figure 6. Fig-
ure 6a shows the normal training behaviour without any
regularisation: most of the network convergence takes place
in the first 5 epochs. In Figure 6b, we see the difference
made by introducing a relatively small, constant regulari-
sation of λ = 10−3. Notably, the number of active latent
neurons drops to 0 after only 4 epochs, giving the network
no opportunity to converge to a state that actually uses the
latent neurons before they are disabled.

We hypothesise that the effect of the regularisation is in
some way proportional to the current loss: at a very high
loss, the neurons are removed easily, and vice versa. This
hypothesis is elaborated upon in Section 5.2. Accordingly,
we make a simple alteration to how the L1 regularisation is
applied: we use the training loss of the last batch to scale the
strength of the regularisation. This is done via the following
formula:

λscaled =

{
λunscaled · t

L if L < t

0 otherwise
, (6)

where t is the loss threshold and L is the training loss. This
means we do not apply the regularisation when the loss is
above the threshold, and that a loss below the threshold
causes proportionally stronger regularisation. t has to be
determined manually, and corresponds to what the practi-
tioner sees as a reasonable loss, indicating that the network

(a) Without regularisation: the network
converges in 5 epochs, no latent neurons
are removed.

(b) With constant regularisation: all latent
neurons are removed before the network
can converge.

(c) With scaling regularisation: neurons
are pruned proportionally to the loss.

Figure 6. Impact of how regularisation is applied to convolutional autoencoders. L = 8, D = 4, λlat = λlin = 10−3.

Table 3. Hyperparameter search for experiment 2: multiplicative scaling of regularisation based on loss. Note that the resulting neuron
count is generally monotonous with increasing regularisation. Each value is the active latent neuron count after 20 epochs, median of 3
runs; L = 8; boldface indicates that the median latent count matches D; the median-absolute-deviation is given if it is not 0.

D = 1 D = 2 D = 3 D = 4

λlat

λlin 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−3 3 2 (1) 1 4 (1) 4 4 (1) 6 4 4 (1) 6 (1) 4 6
10−2 2 2 1 3 3 (1) 3 (1) 4 4 3 4 (1) 5 3
10−1 1 1 1 2 2 2 3 3 2 4 3 3
100 1 1 1 1 2 1 2 2 2 3 (1) 2 3 (1)
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is fitting to some degree. Based on the loss achieved thus
far, we set t = 0.1. The positive results of this change can
be observed in Figure 6c: neurons are not removed until the
loss converges somewhat, and overpruning does not take
place.

We once again perform a hyperparameter search, now with
this addition. The results are shown in Table 3. It can be
observed that the number of latent neurons found is largely
monotonic with the regularisation strength. The sensitivity
to hyperparameters is higher than in experiment 1, and again
highest for D = 4. A positive observation is that a set of
hyperparameters which generally worked in experiment 1
(λlatent = 10−1, λlinear = 10−3) also works for all D in
this experiment. Figure 10 (App. C) shows the number of
active latent neurons over time using these values for λ.

4.3. Experiment 3: comparison to other intrinsic
dimension estimation methods

In this experiment, we answer the second sub-question by
evaluating how usable Early-Bird is as a form of intrinsic
dimension estimation. To reach a fair comparison, we first
have to set our hyperparameters to fixed values, since we
will also leave the hyperparameters of the other methods
at their default values. Additionally, a key benefit of the
Early-Bird technique is that it can be applied in a single-shot
fashion; a hyperparameter optimisation phase would negate
this. We choose values that worked well in both prior exper-
iments, namely λlatent = 10−1 and λlinear = 10−3. Note
that since this experiment uses the linear-layer autoencoder,
we do not apply the loss scaling from Equation (6).

We compare our method against global and local intrinsic
dimension estimation methods. The global methods are
Correlation Dimension (Grassberger & Procaccia, 2004),
and Fisher Separability (Albergante et al., 2019). The local
methods are Fukunaga-Olsen lPCA (Fukunaga & Olsen,
1971), Manifold-Adaptive Dimension Estimation (Farah-
mand et al., 2007), Maximum Likelihood (Levina & Bickel,
2004), Method of Moments (Amsaleg et al., 2018), Tight
Local Estimator (Amsaleg et al., 2019), and TwoNN (Facco
et al., 2017). We do not re-implement these methods; in-
stead we use an existing Python implementation by Bac
et al. (2021).

We evaluate these methods on multiple datasets: the syn-
thetic Sine wave described in Section 3.3 for various D and
noise strengths, as well as a number of ID estimation bench-
mark datasets defined by Campadelli et al. (2015). The
estimated ID produced by each method is listed in Table 4.
We interpret these results in Section 5.4.

5. Discussion
In this section, we consider the implications and limitations
of the experimental results.

5.1. Relation between ID and weights

We start by answering the main research question, which
reads: “What is the relation between the intrinsic dimension
of a dataset and the weights of latent neurons in networks
trained with the Early-Bird technique?”.
This relation appears in the form of redundant neurons’
BatchNorm weights dropping to zero, while other weights
reach a steady, non-zero state. The intrinsic dimension can
be inferred from the number of non-zero latent weights.
It should be noted that weights dropping to 0 is not necessar-
ily the expected behaviour of the EB technique: according
to Liu et al., the L1 regularisation can induce some spar-
sity, but the weights are generally only meant to have an
ordering, such that a fraction of the smallest weights can be
pruned in a separate step. Conversely, we do not see such
an ordering of the weights in latent neurons (see Figure 9):
they are either on or off. This is likely a result of λ being in
an entirely different regime (1000x higher), and not a result
of the change in architecture.

5.2. Explanation of L1 effects and results on image data

Before we can answer the first sub-question about the influ-
ence of hyperparameters, we should understand how EB can
determine which neurons are redundant: the sub-gradient
L1 regularisation is not applied through backpropagation,
but it nonetheless appears to have an effect on other parts
of the network, since regularising the latent layer can force
the entire network to converge to a non-redundant encoding.
We now give a possible explanation of how redundant la-
tent neurons can be selected and removed by this indirect
process:

• At some iteration I , the network is partially converged
and attains a training loss L.

• After the backward pass of I , but before the optimiser
takes a step along the gradient, the gradient is modified
by the EB regularisation: λ is added to the gradient,
based on the current sign of the weight.

• The regularisation causes the weight to have a smaller
absolute value in iteration I + 1. In this iteration,
the narrowed spread of the latent weights causes a
higher loss L+ϵ to be attained. If a latent neuron was
“important” i.e. the spread of its possible values was
used to keep the loss at L, it will have contributed a
relatively large amount to this ϵ.
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• Through backpropagation, the gradient of the latent
neuron weights (before it is regularised) comes to re-
flect the neurons’ importance to the network, based on
the induced additional loss: a gradient is generated that
has an opposite effect to the regularisation.

• Over many iterations, latent neurons that do not af-
fect the loss enough will fail to generate a sufficient
counter-gradient, and they will be removed from the
network. Conversely, important latent neurons will
reach a state of equilibrium, where the counter-gradient
has a similar magnitude to the regularisation. This state
of equilibrium can be observed in Figure 5, where the
equilibrium point also depends on the value of λ.

• Notably, the other network parameters are not frozen
during this process, and they also respond to the de-
creasing latent neuron weights through backpropaga-
tion of the loss: it is possible that a latent neuron is
initially important, but after the rest of the network
trains further, it is ultimately found to be redundant,
and removed.

A key requirement for the process outlined above, is that the
network must be in such a state that decreasing the weights
results in a larger loss: L+ϵ. This is not the case if the
network attains a high loss to begin with, either because
it is fitting poorly, or just training slowly. To use informal
phrasing: a latent neuron may eventually be relevant, but if
the network is not fitted well enough to notice this relevance,
the neuron will be removed regardless.

This can also explain why the initial, naive, application
in Experiment 2 saw a large amount of overpruning com-
pared to Experiment 1: while the linear-layer model fits ex-
tremely quickly, reaching minimal test and train loss within
1 epoch, the convolutional autoencoder takes much longer

to fit. Hence, the linear model quickly has the ability to
generate a counter-gradient that resists the regularisation for
non-redundant latent neurons, but the convolutional model
does not.

5.3. Regularisation strength

We now answer the first sub-question, which reads:
“Is [the relation between the ID and the BN weights of latent
neurons] dependent on hyperparameters which have to be
optimised separately, and if so: why?”.

The results suggest that this relation is heavily dependent
on using the correct value for λ: by setting λ lower or
higher, an arbitrary number of remaining latent neurons can
be reached. Hence, without prior knowledge, it may be
difficult to identify the correct setting. However, there do
appear to be sensible default values (λlatent = 10−1 and
λlinear = 10−3) that work in both experiment 1 and 2.

The reason λ is so impactful, is because it dictates the trade-
off between the loss and the number of remaining latent
neurons. That also means λ is directly related to the scale
of the loss: if every value in the dataset would be multiplied
by a large factor, the scale of the loss would correspond-
ingly increase, meaning that the gradients of weights would
increase, and so the relative influence of a fixed λ would
decrease. This implies that some kind of normalisation of
the data is required in all cases, if a default value for λ is to
be used.

Regarding the difference between λlatent and λlinear, we
were surprised by Table 1: it suggests that increasing ei-
ther λlatent or λlinear will cause more latent neurons to
be removed. That is counter to the reasonable assumption
that only λlatent affects how strongly latent neurons are
regularised.

Table 4. ID estimation of various methods on different datasets. If an estimate is correct, it is show in boldface. Since all correct ID’s are
integers, any fractal dimension is rounded to the nearest integer for the purpose of determining correctness.

DATASET D OURS CORRINT FISHERS LPCA MADA MLE MOM TLE TWONN

SINE (σ=0.01) 1 1 8.28 0.92 1 10.21 10.22 6.69 10.28 13.16
SINE (σ=0.1) 1 1 10.42 0.92 1 13.05 12.60 11.15 12.82 14.20
SINE (σ=0.01) 2 2 2.24 1.97 2 2.51 2.65 2.12 2.99 5.47
SINE (σ=0.1) 2 2 8.16 1.96 2 9.77 9.72 6.85 10.04 12.55
SINE (σ=0.01) 3 3 2.93 2.96 3 3.21 3.03 2.95 3.33 3.43
SINE (σ=0.1) 3 3 6.38 2.97 3 7.11 7.20 5.03 7.77 10.73
SINE (σ=0.01) 4 4 3.37 3.61 4 3.99 3.73 3.73 4.10 4.06
SINE (σ=0.1) 4 4 5.82 3.67 4 7.04 6.92 5.48 7.60 9.82
SWISS ROLL 2 3 1.94 2.88 3 2.09 1.96 1.99 2.12 1.93
PARABOLOID 3 3 2.44 2.80 3 3.09 2.91 2.90 3.17 2.96
CONCENTRATED 4 3 3.45 3.76 6 4.17 3.80 3.86 4.26 3.93
MANIFOLD 4 4 3.77 5.79 8 4.24 3.90 4.26 4.36 3.95
HYPERCUBE 10 8 8.83 10.31 11 9.41 8.85 8.59 9.79 9.22
AFFINE20 20 18 14.15 19.16 20 15.52 14.85 14.13 15.83 16.18
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For some of these cases, the cause is trivial: if λlatent =
10−3, increasing λlinear to 10−1 will cause the latent regu-
larisation to be stronger simply by making the layer before
or after the latent neurons the new bottleneck. After this hap-
pens, it takes little regularisation to also disable the latent
neurons. However, we also see the effect of λlinear when
λlatent >> λlinear (for example under D=4 in Table 1).
Here, we would expect there to be no bottleneck outside
the latent layers, and so the results are less easy to explain.
It may be the case that having a larger number of active
neurons around the latent layer makes it more difficult to
prune a latent neuron; perhaps because there is a higher
chance that some of the following neurons depend on it, or
because it is more complex for the network to transition to
a state where the latent neuron is not used. Some amount of
linear layer regularisation may help with this. It may also
be the case that regularising linear layers, and correspond-
ingly making the spread of these features narrower after
each BatchNorm layer, decreases the variability of the data,
thereby making it easier to fit said data in a smaller latent
space.

5.4. Use as an ID estimation method

Here we interpret the results of Experiment 3 (shown in
Table 4), where our method was compared against a range
of ID estimation techniques.

We can broadly identify two groups of methods: those that
work well on our Sine data (Ours, FisherS, lPCA), and those
that work well on the ID benchmark datasets (MADA, MLE,
MOM, TLE, TwoNN). The exception is the older CorrInt
method, which Camastra & Staiano (2016) also discard in
their comparison for being uncompetitive.

Although our technique may appear relatively competitive,
the results on the Sine datasets should be taken with a grain
of salt: the hyperparameters we selected were specifically
chosen based on the performance on this same Sine dataset
in experiment 1. Hence, these rows are not a fair direct
comparison between our technique and the others, but in-
stead serve to validate whether the Sine dataset is trivial as
an ID estimation problem. Given the results of the other
techniques, it seems estimating the ID of the Sine dataset is
not trivial.

Our technique appears to perform most similarly to
Fukunaga-Olsen local-PCA (Fukunaga & Olsen, 1971). A
difference can be seen on the “Manifold” dataset, which is
specifically described as as being nonlinear by Campadelli
et al. (2015). This may explain why the (linear) PCA over-
estimates the ID in this case, which is also a flaw pointed
out by Camastra & Staiano (2016).

The results on the “Affine” dataset may appear surprising:
every technique gives the wrong answer in this case, apart
from lPCA, which is otherwise not strong on the benchmark
datasets. The Affine dataset consists of 20-dimensionsional
datapoints, while the ID is also 20. Hence, there is no
redundancy in the data: the datapoints are only subject to
an affine transformation. It appears that most techniques
mistakenly identify some of the less impactful dimensions
as redundant, underestimating the ID. Conversely, lPCA
consistently over-estimates the ID on all datasets. This
seems to result in it accidentally finding the correct ID here,
since the highest value that could be given was 20.

A key vulnerability of our technique is illustrated in the re-
sult on the “Concentrated” dataset. This dataset is described
by Campadelli et al. as a “concentrated figure, mistakable
with a 3-dimensional one”: it is a figure that has 3 clear
intrinsic dimensions, and a fourth dimension which is less
evident. Because this fourth intrinsic dimension has a low
impact on the loss, the fourth remaining latent neuron seem-
ingly did not generate a sufficient counter-gradient to stay
active. This caused the ID to be underestimated.

Another observation of interest is robustness to noise (mul-
tiscaling robustness), which is a desirable property of ID
estimation techniques. On the Sine dataset, changing the
standard deviation of the noise from 0.01 to 0.1 (the im-
pact of which is visualised in Figure 3) causes the local
estimators, with the exception of lPCA, to overestimate the
ID somewhat, possibly because this noise makes the local
manifold topology seem more complex than it actually is.
Our technique seems to be robust to this noise (note that this
is the first time that we use a noise strength of 0.1 instead of
0.01). This may be because a deep, fully connected neural
network has sufficient complexity to filter out such Gaussian
noise and extract the most likely underlying signal.

5.5. Early-Bird as Model Compression

We believe there is a misconception in the original interpre-
tation of Early-Bird tickets: the EB technique is based on
Lottery Tickets, meaning that it considers the initialisation
of the network as relevant, and also differentiates between
which channels in a layer are removed. Due to the results
from Liu et al. (2018), which we validated in autoencoders
in Appendix A, we do not follow this viewpoint: the initial-
isation and choice of channels appears to have no impact
on performance under structured pruning. Although You
et al., the authors of EB, were aware of Liu et al. (2018),
they did not consider the implication of that result: if the
initialisation can be disregarded, EB is reduced to simple
Model Compression, where the only product of the tech-
nique is a fractional value for each layer, indicating how
much of the layer should be pruned. This is how we use EB
in this paper.
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5.6. Limitations

There are some methodological deficiencies and open ques-
tions not addressed in this paper, which we discuss here.

Hyperparameters. A crucial requirement for the useful-
ness of pruning redundant latent neurons is that it must be
possible in a single run. If multiple runs are required due to
hyperparameter optimisation of λ, the practitioner can just
as easily train multiple autoencoders with a different number
of latent neurons, and choose the network with the smallest
number that still achieves an acceptable loss. Though we
find a set of hyperparameters that works for all of our exper-
iments, we still believe it was not sufficiently shown that a
single choice of hyperparameters will work in a variety of
cases.

Weight cutoff. During training, we disable any neuron if
the absolute weight of the corresponding BatchNorm chan-
nel is below 10−4. We do this to guarantee that information
is not still passed through the “inactive” latent neurons. The
value of this threshold was determined based on prelimi-
nary experiments, where it was observed that the majority
of removed weights dropped far below 10−5, and that the
weights which did not drop dramatically generally stayed
above 10−3. The addition of this cutoff, as well as the cho-
sen threshold value, may have further effects on the results,
which are not studied in this paper. For instance, this cutoff
may remove neurons too aggressively, since a neuron is
removed if its weight drops below the threshold for even a
single iteration, and this removal is permanent. Additionally,
it may be the case that without the cutoff, neurons could
re-enable if they continue to have a strong enough effect on
the loss (and therefore a large enough gradient) to overcome
the regularisation.

Distribution of results. The empirical results in this paper
consist of the median of 3 identical, independent runs, due
to hardware limitations. While this removes some variance
from the data, it is not sufficient to study the distribution
of the results. An improvement would be to perform more
runs so that this distribution, and therefore the reliability of
the technique, can be estimated.

Importance of dimensions. In defining the synthetic
datasets, the random variables were purposefully distributed
such that they would all have an approximately equal effect
on the signal. For instance, the amplitude and bias were
chosen from the same range. In a real-world scenario, some
dimensions will certainly be less relevant than others. What
if, for instance, the bias is constant (non-random) in 80% of
the datapoints? This still makes it a relevant dimension, but
one that has less impact on the loss.

Starting number of latent neurons. The value of L was
set to be larger than D, but not extremely so (L = 8, D =
1...4). If we want to estimate D from a larger range, L
would also have to be larger. However, it was not studied
if a large number of latent neurons, say L = 30, would still
work with e.g. D = 1.

Overfitting. On the synthetic datasets, no overfitting was
observed. This was likely due to multiple factors: the data
was relatively simple, the network was small, the test and
training sets were drawn from the exact same distribution,
and some gaussian noise was added. On real, messier data,
it can be expected that we see some overfitting, which may
impact the results.

5.7. Directions of Future Study

Stopping Criterion. Our work looks at the number of
latent neurons that remains after the autoencoder is com-
pletely trained, i.e. when the loss has converged. However,
the Early-Bird technique contains a stopping criterion based
on the Hamming distance of network masks, which can be
triggered after only a fraction of a training run. A direction
of future research could be whether this stopping criterion
can also identify the right moment to stop pruning latent
neurons: when the binary mask stops changing through-
out the whole network, it may be the case that the network
has found a steady state where the regularisation of latent
neurons is completely counterbalanced, implying that the
correct number of latent neurons has been found.

Effect of removing all redundant neurons. The possibil-
ity that an autoencoder architecture can be given the exact
number of required latent neurons raises questions of the
impact of such non-redundancy on the latent space. The pos-
sible regularising effects were briefly alluded to in Section 1,
but otherwise not studied in this paper. For instance, is the
latent representation forced to be orthogonal in the absence
of redundant neurons? Would this orthogonal representation
contain features that are more human-interpretable?

6. Conclusion
The use of the Early-Bird technique was studied as a method
to remove redundant latent neurons from autoencoders. It
was found that setting the EB sub-gradient regularisation
strength higher in the latent layer causes redundant latent
neurons to have their weights reduced to near-zero, such that
the remaining number of latent neurons matches the intrinsic
dimension of the synthetic dataset. This effect was shown
on both 1D and 2D synthetic data, provided an appropriate
value for the regularisation strength is used. On 2D data,
an additional step was needed, where the regularisation
strength was scaled based on the current training loss, to
avoid excessive removal of neurons early in training.
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The ability to remove all redundant latent neurons presents
a potential intrinsic dimension estimation technique, by
counting the remaining latent neurons after training. Using
EB in this manner was compared to existing ID estimation
techniques: it was found that EB performs similarly to
the local-PCA method, and better than some older global
methods. However, it was not as accurate as state-of-the-art
local methods on independent benchmark datasets. Notably,
EB appears to be relatively robust to noise in the data.
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A. Pilot Experiment
This appendix describes the initial experiment, which intended to entirely reproduce the EB-technique, and demonstrate that
it functions as described by You et al. (2019) when used in autoencoders.

A.1. Experimental Setup

For the experiment, the Early-Bird technique was replicated in PyTorch (see Appendix B). The EB source code2 was
examined to verify that details were not missing in their paper, but no code was copied over. The model used is identical to
the one described in Section 3.1.

The autoencoder is trained on the Fashion-MNIST dataset according to Section 3.2, with a notable addition: multiple times
during training, a mask drawing phase occurs. Each “mask” is a binary mask over the network, that defines what channels
should be pruned. The mask is calculated based on the pruning ratio and the BatchNorm weights: if the pruning ratio is 0.3,
the lowest 30% of BatchNorm weights are marked for pruning in the network mask. In every mask drawing phase, we store
the mask corresponding to each of the pruning ratios under study (0.1, 0.3, 0.5, and 0.7, in this experiment).

After all the masks have been drawn, we can determine the quality of a mask by retraining the network with that pruning
mask applied. This happens according to the following procedure:

• Restore the convolutional autoencoder to its initial parameters before the first training.

• Structurally prune the network such that each convolutional, transpose convolutional and linear layer produces the
number of channels expected by the binary mask. This also means that the input channel count of the following layer
has to be pruned correspondingly.

• Train the pruned network for 20 epochs in normal fashion (without L1 regularisation).

• Track the training and test accuracy of the training pruned network per epoch.

The goal of the first experiment is to see if a sizeable fraction of the network can be pruned using EB without a significant
increase in loss, as was previously demonstrated by You et al. (2019).

We also conduct a validation experiment, where we determine if the initialisation and chosen channels of a
ticket matter. Frankle & Carbin (2018) states that they do have impact on the loss, but Liu et al. (2018)
contests this if the pruning is structured, as it is here. For the experiment, we retrain two networks in or-
der to compare them: one is the lottery ticket, including it’s original initialisation, as the LT method re-
quires. The other is a “random ticket”, which has the same topology, but the initial parameters are randomised.

Figure 7. Heatmap of pairwise Hamming distance between network
masks. The left figure is from You et al. (2019), the right figure is
our result, when training over the course of 20 epochs.

A.2. Pilot Results

Firstly, the network masks that were drawn could be com-
pared using the mask distance, as is shown in Figure 7.
Our heatmap appears to show a similar effect to that of
You et al.: the mask distance gradually decreases, in-
dicating that tickets “cool off” and settle into a stable
state. Based on this heatmap we conclude that 8 epochs
seems to be sufficient for the network mask to cool down.
Hence, we use the network masks drawn in epoch 8 for
the retraining phase.

The results of the retraining phase broadly indicate that
EB is applicable to the autoencoder architecture. We find
that up to 30% of the network can be structurally pruned
without significant loss of accuracy, even if the tickets are drawn early in training. We also find that latent neurons are never
pruned by the EB technique. This is sensible, since pruning latent neurons would have by far the greatest impact on the loss.

2The Early-Bird source code is available at https://github.com/RICE-EIC/Early-Bird-Tickets
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Notably, the results of the validation experiments show that the initialisation of the network make no difference, as can be
seen in Figure 8: for any particular pruning ratio, the randomly initialised network attains the same loss as the original ticket.
This corresponds with the results of Liu et al. (2018), and goes against the phrasing of the original Lottery Ticket hypothesis.
There is an important implication in this result: without the initialisation, the only product of the EB technique is a binary
pruning mask, which defines a smaller topology. Hence, due to this result, EB is reduced to a form of neural architecture
search, or model selection.

Figure 8. Attained loss for increasing pruning ratio. Note how the lottery ticket, with the specific initialisation, is equivalent to a randomly
initialised ticket with equivalent pruning.

B. Reproducibility
B.1. Code

All code is available on GitHub: https://github.com/RKlazinga/thesis-subnetworks-autoencoders.
The file experiments/progressive mask drawing.py is the usual starting point for an experiment: this per-
forms a training run of a network according to the EB technique. All available settings and hyperparameters can be
found in settings.py. The implementation of the subgradient descent L1 regularisation from EB can be found in
utils/subgrad l1.py.

B.2. Model

As shown in Figure 2, the autoencoder topology is defined by a number of hyperparameters. For experiments with the
linear-layer autoencoder, these were as follows: 8 latent neurons, 4 hidden layers (both before and after the bottleneck latent
layer), and a size multiplier of 1. For the convolutional autoencoder, these were as follows: 8 latent neurons, 2 linear layers,
5 convolutional layers, and a channel count multiplier of 12. These values were chosen by incrementing the size until the
network could attain a reasonably low loss on the most complex dataset (D = 4). For experiment 3 (using a linear-layer
autoencoder), the same shape parameters were used. However, the number of latent neurons was set equal to the number of
input neurons, so that the ID estimate would not be limited by the initial number of latent neurons (e.g. if a dataset contained
12-dimensional datapoints and had an ID of 10, using 8 latent neurons would mean the ID estimate could never be larger
than 8, so we start with 12 latent neurons).

B.3. Training

During training, we use Adam as the optimiser with a learning rate of 0.01, using MSE as the loss function. Networks are
trained for 20 epochs on a training set of 20000 samples. If the training set is smaller than this, such as in the comparative
experiment (5000 samples), the number of epochs is increased such that the total number of training iterations remains the
same. The test set consists of 2000 samples.
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B.4. Synthetic Data

For synthetic 1D data, there are four random variables as described in Equation (4): amplitude, phase, bias, and frequency.
When D was increased, these were added in that order. If the variable was set to be random instead of constant, the random
value was uniformly chosen from a range. This range, as well as the default constant value for each variable, is given here.
Note that all values assume a sine function that takes its input in degrees.

• A → default 0.5, random range [0.1, 1]

• P → default 0, random range [0, 16]

• B → default 0, random range [0.1, 1]

• F → default 22, random range [11, 33]

For synthetic 2D data, the following default values and random ranges were used:

• Fx → default 40, random range [30, 100]

• Fy → default 40, random range [30, 100]

• A → default 0.5, random range [0.25, 1]

• P → default 0, random range [0, 360]

C. Additional Figures

(a) D = 1 (b) D = 2 (c) D = 3 (d) D = 4

Figure 9. Channel strength of each latent neuron over training epochs, from experiment 1 (linear-layer autoencoder with 1D data), after
hyperparameter search; λlatent = 10−1, λlinear = 10−3

(a) D = 1 (b) D = 2 (c) D = 3 (d) D = 4

Figure 10. Number of active latent neurons and test loss, over training epochs, from experiment 2 (convolutional autoencoder with 2D
data, including scaling regularisation per Equation (6)), after hyperparameter search; λlatent = 10−1, λlinear = 10−3
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Background Knowledge
The following chapters provide background information for the reader, in support of the research paper
above. A level of pre-existing knowledge on machine learning and deep learning is assumed, including
the following concepts: tensors, neural networks, loss, gradient descent, and convolutions.

The following topics are discussed:

1. Batch Normalisation
2. Autoencoder Networks
3. Network Pruning
4. Lottery Tickets
5. Early-Bird Tickets

1. Batch-Normalisation
Batch Normalisation (Ioffe & Szegedy, 2015), abbreviated as BatchNorm or BN, is a normalisation
technique that has been shown to greatly improve the stability of network training, especially in deep
networks. Although the positive impact of batch normalisation is evident, the reason for why it works is
poorly understood and the subject of ongoing debate ((Bjorck et al., 2018), (Luo et al., 2018), (Santurkar
et al., 2018)). However, this discussion falls outside the scope of this paper.

A Batch Normalisation layer works by normalising the data flowing through the network along the
batch dimension, using the sample mean and variance of each feature:

x̂ =
x− µ√
σ2 + ϵ

, (7)

where x is an activation, µ is the sample mean, σ is the sample standard deviation, and ϵ is some small
value. The BatchNorm layer then applies a scaling and shifting to the normalised activation:

y = γx̂+ β, (8)

where γ is called the weight parameter and β the bias, which are defined per channel or neuron. These
are learned parameters, so they have a gradient which is calculated during backpropagation, and they
are updated by the optimiser like any other parameter. Note that the learned weight parameter γ will
play an important role in the techniques discussed later.

2. Autoencoders
2.1. Topology

Autoencoders (AE) are a class of network structure falling under the category of unsupervised (or
self-supervised) learning. This means they do not operate on labeled data: instead, given any input,
their task is simply to provide an identical output.

This task is non-trivial due to the topology of autoencoders (see Figure 11). The network has a
“bottleneck”, splitting the topology into two portions: the encoder compresses the input to a latent
representation. The second half of the network, called the decoder, then attempts to convert this latent
representation back into something resembling the input.
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Autoencoders may work on vectors of input data, on images using convolutional layers, or any other
input format for a neural network.

Figure 11. Autoencoder topology. Its task is to reproduce the input exactly in the output layer.

2.2. Usage

An assumption when using autoencoders is that the dataset it is trained on has some meaningful
structure. If you would try to train a convolutional AE on images consisting only of white noise, it
would not get very far, since such images do not contain a coherent signal, but instead a great number
of individual, uncorrelated signals. There is no way to represent such an image without describing each
pixel separately.

Figure 12. Sample of MNIST
dataset4

Conversely, an example of a dataset that is suitable for autoencoders is
MNIST5, a dataset of handwritten digits. The digits are encoded in a rel-
atively large amount of data (28x28 brightness values), but fundamentally
represent a very small range of possible images. Hence, an autoencoder
can make a meaningful representation of these images using as little as
2 latent neurons.

Once an autoencoder is trained, it can be used in multiple ways. Using only
the encoder, you can “compress” a new image from the same distribution,
and decompress it using the decoder. You can also pick a random point
in the latent space and feed it into the decoder to generate novel data in
the same distribution.

In practice, autoencoders have been applied in a variety of ways, for exam-
ple as a method of feature extraction, image denoising, image generation
and translation of text.

4Image taken from https://www.tensorflow.org/datasets/catalog/mnist; accessed on 14-03-2022
5MNIST can be downloaded here: http://yann.lecun.com/exdb/mnist/
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3. Pruning
Network pruning is a well-studied and broadly applied technique in neural networks. The core idea is
that during training, some parts of the network may turn out to be less relevant than others. You can
remove these less relevant components without (strongly) impacting the loss. In fact, the test loss may
actually improve after pruning, because the remaining network is smaller and hence inherently less
capable of overfitting. On top of this, pruning can improve the model size on disk, as well as inference
and training speed. As early as 1990, LeCun et al. applied this idea in a technique called “Optimal
Brain Damage”.

Typically, pruning consists of three steps (Liu et al., 2018):

1. The network is trained for a number of epochs

2. The least relevant components of the network are identified and removed

3. The pruned network is fine-tuned further. In the case of iterative pruning, go back to step 2

The amount of pruning is determined by the pruning ratio, which is the fraction of the network that
should be removed after pruning.

Pruning methods can be broadly divided into two types: structured and unstructured techniques.
Unstructured pruning operates on individual connections between elements, such as a single weight
between two neurons. This results in a sparse weight matrix. Conversely, structured pruning changes
the network topology by completely removing a component, such as a neuron in a feed-forward layer,
or a channel from a convolutional layer. Instead of producing a sparse weight matrix, this results in a
weight matrix with smaller dimensions, because entire rows and columns are removed from the weight
matrix. There are even structured pruning techniques that remove larger portions of the network, such
as an entire layer, but these are not considered in this work.

The advantage of unstructured pruning is that it applies finer alterations than structured pruning. Hence,
it allows more aggressive pruning, with pruning ratios up to 0.9 (90% of weights removed) without
losing accuracy (Li et al., 2016). However, modern machine learning hardware cannot take advantage
of this level of sparsity, so the network will be equally expensive to train and to perform inference with
after training.

Structured pruning, by comparison, has the benefit that it produces an actually smaller network topology,
which will be faster at both training and inference, and use less memory. However, because structured
techniques are more “coarse”, they cannot achieve the same pruning ratios as unstructured pruning
without incurring a significant loss increase.

4. Lottery Tickets
The Lottery Ticket hypothesis (Frankle & Carbin, 2018) brought a new view on pruning. Previously, it
was assumed that a network can only be pruned late in training, or after training is finished; an untrained,
pruned network is more difficult to train (Li et al., 2016). Hence, it was implied that the training process
is necessary to transform the network from its initial state to a “prune-able” one.

Frankle & Carbin show that these assumptions do not always hold by stating and demonstrating the
Lottery Ticket Hypothesis:
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“A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when
trained in isolation—it can match the test accuracy of the original network after training for at most
the same number of iterations.” (Frankle & Carbin, 2018)
This subnetwork is defined by a binary mask M over the network. The mask and the initial (untrained)
weights together form the Lottery Ticket.

An important consequence of the existence of Lottery Tickets, is that these theoretically exist as soon as
the network is instantiated. If the binary mask could be discovered, the pruned network would train
well, even without any training before it is pruned (counter to the assumption in earlier literature).

Frankle & Carbin demonstrate the existence of Lottery Tickets by extracting them using unstructured
weight pruning: a large network is trained on a task, and when this training is completed, a mask is
defined based on the largest weights in the trained network. This mask is then applied to the network
with its initial weights, and trained. They demonstrate that this process produces a network that achieves
an equal or better test loss, despite having fewer parameters and not being trained before pruning. A
visualisation of the technique is provided in Figure 13a. It should be noted that the approach by Frankle
and Carbin is really only a theoretical demonstration, because it requires fully training the network
before the mask can be extracted. They then show that if those masks were found earlier, the actual
network weights would not require pre-training for the lottery ticket to train effectively.

(a) Lottery Ticket method by Frankle & Carbin. The network is first fully trained, after which the most important weights are identified,
which defines the binary mask. This mask is applied to the untrained network, producing the winning ticket

(b) Early-Bird method by You et al.. After a fraction of the total training epochs, the Batch Normalisation channel weights are used to
identify the most important channels, defining the binary mask. This mask is then applied without resetting the weights

Figure 13. Difference between Lottery Ticket extraction methods
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5. Early-Bird Tickets
The Early-Bird (EB) technique (You et al., 2019) addresses a weakness in the original Lottery Tickets
paper: the network had to be trained completely to find the subnetwork mask. You et al. change
the pruning method to a structured technique, and demonstrate that this allows them to draw tickets
(subnetwork masks) much earlier, after only 20% of training epochs. The differences between Lottery
Tickets and Early-Bird are shown in Figure 13. The pruning technique used in Early-Bird is called
Network Slimming.

5.1. Network Slimming

Network Slimming (Liu et al., 2017) is a structured pruning method that uses the Batch Normalisation
(Ioffe & Szegedy, 2015) layers in a network to estimate the importance of channels. As discussed
in Section 1, each BatchNorm layer contains learned weight parameters, one for every input feature.
Liu et al. add L1 regularisation to the weight parameters. This provides a regularising pressure to
the weights, which is countered by each weight’s importance to the network. This naturally produces
some sparsity, and forces the network to use as few channels as possible. The result is that the channel
weights indicate the importance of channels, since some channels will retain a higher weight despite
the regularisation, because of their importance to the network.

5.2. Usage

In the Early-Bird technique, a binary mask is defined over the channels in the network, such that it
excludes the channels with the smallest BatchNorm weight. A stopping criterion is defined based on
this mask, using the pairwise Hamming distance. When the distance between the last two masks stays
below a threshold ϵ for a number of epochs, it implies that the ticket is not changing much anymore,
and that it has “cooled down” enough to be usable. At this point, the training process stops and the
ticket is extracted. An example of the pairwise Hamming distance is given in Figure 14.

Figure 14. Pairwise Hamming distance over epochs ((You et al., 2019), Figure 3). A brighter color indicates a smaller Hamming distance,
meaning the binary mask is changing relative little. The moment the stopping criterion is triggered is indicated by the dashed red line
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